WorldWideScience

Sample records for carlo dose mapping

  1. Gamma irradiator dose mapping: a Monte Carlo simulation and experimental measurements

    International Nuclear Information System (INIS)

    Rodrigues, Rogerio R.; Ribeiro, Mariana A.; Grynberg, Suely E.; Ferreira, Andrea V.; Meira-Belo, Luiz Claudio; Sousa, Romulo V.; Sebastiao, Rita de C.O.

    2009-01-01

    Gamma irradiator facilities can be used in a wide range of applications such as biological and chemical researches, food treatment and sterilization of medical devices and products. Dose mapping must be performed in these equipment in order to establish plant operational parameters, as dose uniformity, source utilization efficiency and maximum and minimum dose positions. The isodoses curves are generally measured using dosimeters distributed throughout the device, and this procedure often consume a large amount of dosimeters, irradiation time and manpower. However, a detailed curve doses identification of the irradiation facility can be performed using Monte Carlo simulation, which reduces significantly the monitoring with dosimeters. The present work evaluates the absorbed dose in the CDTN/CNEN Gammacell Irradiation Facility, using the Monte Carlo N-particles (MCNP) code. The Gammacell 220, serial number 39, was produced by Atomic Energy of Canada Limited and was loaded with sources of 60 Co. Dose measurements using TLD and Fricke dosimeters were also performed to validate the calculations. The good agreement of the results shows that Monte Carlo simulations can be used as a predictive tool of irradiation planning for the CDTN/CNEN Gamma Cell Irradiator. (author)

  2. GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.

    Science.gov (United States)

    Liu, Yangchuan; Tang, Yuguo; Gao, Xin

    2017-12-01

    The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.

  3. SU-G-BRC-15: The Potential Clinical Significance of Dose Mapping Error for Intra- Fraction Dose Mapping for Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Sayah, N [Thomas Cancer Center, Richmond, VA (United States); Weiss, E [Virginia Commonwealth University, Richmond, Virginia (United States); Watkins, W [University of Virginia, Charlottesville, VA (United States); Siebers, J [University of Virginia Health System, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To evaluate the dose-mapping error (DME) inherent to conventional dose-mapping algorithms as a function of dose-matrix resolution. Methods: As DME has been reported to be greatest where dose-gradients overlap tissue-density gradients, non-clinical 66 Gy IMRT plans were generated for 11 lung patients with the target edge defined as the maximum 3D density gradient on the 0% (end of inhale) breathing phase. Post-optimization, Beams were copied to 9 breathing phases. Monte Carlo dose computed (with 2*2*2 mm{sup 3} resolution) on all 10 breathing phases was deformably mapped to phase 0% using the Monte Carlo energy-transfer method with congruent mass-mapping (EMCM); an externally implemented tri-linear interpolation method with voxel sub-division; Pinnacle’s internal (tri-linear) method; and a post-processing energy-mass voxel-warping method (dTransform). All methods used the same base displacement-vector-field (or it’s pseudo-inverse as appropriate) for the dose mapping. Mapping was also performed at 4*4*4 mm{sup 3} by merging adjacent dose voxels. Results: Using EMCM as the reference standard, no clinically significant (>1 Gy) DMEs were found for the mean lung dose (MLD), lung V20Gy, or esophagus dose-volume indices, although MLD and V20Gy were statistically different (2*2*2 mm{sup 3}). Pinnacle-to-EMCM target D98% DMEs of 4.4 and 1.2 Gy were observed ( 2*2*2 mm{sup 3}). However dTransform, which like EMCM conserves integral dose, had DME >1 Gy for one case. The root mean square RMS of the DME for the tri-linear-to- EMCM methods was lower for the smaller voxel volume for the tumor 4D-D98%, lung V20Gy, and cord D1%. Conclusion: When tissue gradients overlap with dose gradients, organs-at-risk DME was statistically significant but not clinically significant. Target-D98%-DME was deemed clinically significant for 2/11 patients (2*2*2 mm{sup 3}). Since tri-linear RMS-DME between EMCM and tri-linear was reduced at 2*2*2 mm{sup 3}, use of this resolution is

  4. Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.

    2014-01-01

    Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer

  5. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    Science.gov (United States)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  6. Radiation transport simulation in gamma irradiator systems using E G S 4 Monte Carlo code and dose mapping calculations based on point kernel technique

    International Nuclear Information System (INIS)

    Raisali, G.R.

    1992-01-01

    A series of computer codes based on point kernel technique and also Monte Carlo method have been developed. These codes perform radiation transport calculations for irradiator systems having cartesian, cylindrical and mixed geometries. The monte Carlo calculations, the computer code 'EGS4' has been applied to a radiation processing type problem. This code has been acompanied by a specific user code. The set of codes developed include: GCELLS, DOSMAPM, DOSMAPC2 which simulate the radiation transport in gamma irradiator systems having cylinderical, cartesian, and mixed geometries, respectively. The program 'DOSMAP3' based on point kernel technique, has been also developed for dose rate mapping calculations in carrier type gamma irradiators. Another computer program 'CYLDETM' as a user code for EGS4 has been also developed to simulate dose variations near the interface of heterogeneous media in gamma irradiator systems. In addition a system of computer codes 'PRODMIX' has been developed which calculates the absorbed dose in the products with different densities. validation studies of the calculated results versus experimental dosimetry has been performed and good agreement has been obtained

  7. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm 2 . Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized.

  8. Monte Carlo dose distributions for radiosurgery

    International Nuclear Information System (INIS)

    Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.

    2001-01-01

    The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)

  9. Monte Carlo estimation of the absorbed dose in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Woo; Youn, Han Bean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The purpose of this study is to devise an algorithm calculating absorbed dose distributions of patients based on Monte Carlo (MC) methods, and which includes the dose estimations due to primary and secondary (scattered) x-ray photons. Assessment of patient dose in computed tomography (CT) at the population level has become a subject of public attention and concern, and ultimate CT quality assurance and dose optimization have the goal of reducing radiation-induced cancer risks in the examined population. However, the conventional CT dose index (CTDI) concept is not a surrogate of risk but it has rather been designed to measure an average central dose. In addition, the CTDI or the dose-length product has showed troubles for helical CT with a wider beam collimation. Simple algorithms to estimate a patient specific CT dose based on the MCNP output data have been introduced. For numerical chest and head phantoms, the spatial dose distributions were calculated. The results were reasonable. The estimated dose distribution map can be readily converted into the effective dose. The important list for further studies includes the validation of the models with the experimental measurements and the acceleration of algorithms.

  10. Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions

    International Nuclear Information System (INIS)

    Miao Binhe; Jeraj, Robert; Bao Shanglian; Mackie, Thomas R

    2003-01-01

    The Monte Carlo method is the most accurate method for radiotherapy dose calculations, if used correctly. However, any Monte Carlo dose calculation is burdened with statistical noise. In this paper, denoising of Monte Carlo dose distributions with a three-dimensional adaptive anisotropic diffusion method was investigated. The standard anisotropic diffusion method was extended by changing the filtering parameters adaptively according to the local statistical noise. Smoothing of dose distributions with different noise levels in an inhomogeneous phantom, a conventional and an IMRT treatment case is shown. The resultant dose distributions were analysed using several evaluating criteria. It is shown that the adaptive anisotropic diffusion method can reduce statistical noise significantly (two to five times, corresponding to the reduction of simulation time by a factor of up to 20), while preserving important gradients of the dose distribution well. The choice of free parameters of the method was found to be fairly robust

  11. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy

    International Nuclear Information System (INIS)

    Paganetti, Harald; Jiang, Hongyu; Parodi, Katia; Slopsema, Roelf; Engelsman, Martijn

    2008-01-01

    The goal of this work was to facilitate the clinical use of Monte Carlo proton dose calculation to support routine treatment planning and delivery. The Monte Carlo code Geant4 was used to simulate the treatment head setup, including a time-dependent simulation of modulator wheels (for broad beam modulation) and magnetic field settings (for beam scanning). Any patient-field-specific setup can be modeled according to the treatment control system of the facility. The code was benchmarked against phantom measurements. Using a simulation of the ionization chamber reading in the treatment head allows the Monte Carlo dose to be specified in absolute units (Gy per ionization chamber reading). Next, the capability of reading CT data information was implemented into the Monte Carlo code to model patient anatomy. To allow time-efficient dose calculation, the standard Geant4 tracking algorithm was modified. Finally, a software link of the Monte Carlo dose engine to the patient database and the commercial planning system was established to allow data exchange, thus completing the implementation of the proton Monte Carlo dose calculation engine ('DoC++'). Monte Carlo re-calculated plans are a valuable tool to revisit decisions in the planning process. Identification of clinically significant differences between Monte Carlo and pencil-beam-based dose calculations may also drive improvements of current pencil-beam methods. As an example, four patients (29 fields in total) with tumors in the head and neck regions were analyzed. Differences between the pencil-beam algorithm and Monte Carlo were identified in particular near the end of range, both due to dose degradation and overall differences in range prediction due to bony anatomy in the beam path. Further, the Monte Carlo reports dose-to-tissue as compared to dose-to-water by the planning system. Our implementation is tailored to a specific Monte Carlo code and the treatment planning system XiO (Computerized Medical Systems Inc

  12. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    OpenAIRE

    Leotta, Salvatore; Amato, Ernesto; Settineri, Nicola; Basile, Emilia; Italiano, Antonio; Auditore, Lucrezia; Santacaterina, Anna; Pergolizzi, Stefano

    2018-01-01

    Image Guided RadioTherapy (IGRT) is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT) scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS ...

  13. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  14. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  15. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    Directory of Open Access Journals (Sweden)

    Salvatore Leotta

    2018-02-01

    Full Text Available Image Guided RadioTherapy (IGRT is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations, reproducing an Elekta Synergy medical linac operating at 6 and 10 MV photon energy, and we set up a scalable anthropomorphic model. After a validation by comparison with the experimental quality indexes, we evaluated the average doses to all organs and tissues belonging to the model for the three cases of irradiated district. Scattered radiation in therapy is larger than that diffused by CBCT by one to two orders of magnitude.

  16. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu [Department of Physics and Astronomy, University of British Columbia, Vancouver V5Z 1L8 (Canada); Celler, Anna [Department of Radiology, University of British Columbia, Vancouver V5Z 1L8 (Canada)

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  17. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte-Carlo

  18. The Monte Carlo applied for calculation dose

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1988-01-01

    The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt

  19. Dose-mapping distribution around MNSR

    CERN Document Server

    Jamal, M H

    2002-01-01

    The aim of this study is to establish the dose-rate map through the determination of radiological dose-rate levels in reactor hall, adjacent rooms, and outside the MNSR facility. Controlling dose rate to reactor operating personnel , dose map was established. The map covers time and distances in the reactor hall, during reactor operation at nominal power. Different measurement of dose rates in other areas of the reactor buildings was established. The maximum dose rate, during normal operation of the MNSR was 40 and 21 Sv/hr on the top of the reactor and near the pool fence, respectively. Whereas, gamma and neutron doses have not exceeded natural background in all rooms adjacent to the reactor hall or nearly buildings. The relation between the dose rate for gamma rays and neutron flux at the top of cover of reactor pool was studied as well. It was found that this relation is linear.

  20. Dose-mapping distribution around MNSR

    International Nuclear Information System (INIS)

    Jamal, M. H.; Khamis, I.

    2002-12-01

    The aim of this study is to establish the dose-rate map through the determination of radiological dose-rate levels in reactor hall, adjacent rooms, and outside the MNSR facility. Controlling dose rate to reactor operating personnel , dose map was established. The map covers time and distances in the reactor hall, during reactor operation at nominal power. Different measurement of dose rates in other areas of the reactor buildings was established. The maximum dose rate, during normal operation of the MNSR was 40 and 21 Sv/hr on the top of the reactor and near the pool fence, respectively. Whereas, gamma and neutron doses have not exceeded natural background in all rooms adjacent to the reactor hall or nearly buildings. The relation between the dose rate for gamma rays and neutron flux at the top of cover of reactor pool was studied as well. It was found that this relation is linear. (author)

  1. Establishing an individual dosing system for patients undergoing interventional transcatheter arterial embolization: Radiochromic film and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Tsai, Hui-Yu; Lai, Pei-Ling; Li, Yang-Ying; Tyan, Yeu-Sheng

    2011-01-01

    Less invasive imaging-guided vascular interventions with fluoroscopy and digital subtraction angiography have recently become widespread and have been successfully used for treating various diseases. However, interventional fluoroscopy procedures may present deterministic and stochastic radiation risks. The International Commission on Radiological Protection (ICRP) and the Food and Drug Administration have requested identifying procedures that may involve patient doses greater than the recommended thresholds. In this study, radiochromic dosimetric media, known as self-developing films, and measurement-based Monte Carlo simulations were used to establish an interventional radiology dosing system for individual patients undergoing interventional transcatheter arterial embolization. The peak skin dose, evaluated from the entrance surface dose distribution, was 21% less than the cumulated dose reported from the console. A 3D dose map incorporated into CT images was established. The organ doses and effective doses for individual patients were evaluated using this dosing system. This system could be applied very well to other fluoroscopic or interventional procedures for patient dose management.

  2. Evaluation of absorbed radiation dose in mammography using Monte Carlo simulation; Avaliacao da dose absorvida em mamografia usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Bruno L.; Tomal, Alessandra [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Mammography is the main tool for breast cancer diagnosis, and it is based on the use of X-rays to obtain images. However, the glandular tissue present within the breast is highly sensitive to ionizing radiation, and therefore requires strict quality control in order to minimize the absorbed dose. The quantification of the absorbed dose in the breast tissue can be done by using Monte Carlo simulation, which allows a detailed study of the deposition of energy in different regions of the breast. Besides, the results obtained from the simulation can be associated with experimental data and provide values of dose interest, such as the dose deposited in glandular tissue. (author)

  3. Monte Carlo dose reconstruction in case of a radiological accident: application to the accident in Chile in December 2005; Reconstitution de dose par calcul Monte Carlo en cas d'accident radiologique: application a l'accident du Chili de decembre 2005

    Energy Technology Data Exchange (ETDEWEB)

    Huet, C.; Clairand, I.; Trompier, F.; Bottollier-Depois, J.F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Dir. de la Radioprotection de l' Homme, 92 - Fontenay aux Roses (France); Bey, E. [Hopital d' Instruction des Armees Percy, 92 - Clamart (France)

    2007-10-15

    Following a radiological accident caused by a gamma-graphy source in Chile in December 2005 involving one victim, I.R.S.N. was contacted to perform the dosimetric reconstruction of the accident using numerical simulation. Tools developed in the laboratory, associating anthropomorphic mathematic or voxel phantoms with the Monte Carlo calculation code m.c.n.p.x., were used in order to determine the dose distribution on the left buttock and absorbed doses to critical organs. The dosimetric mapping show that the absorbed at the skin surface is very high (1900 Gy) but drops rapidly at deep. At a depth of 5 cm, it is 20 Gy. Calculations performed with a mathematical phantom indicate that average doses to the critical organs are relatively low. Moreover, possible bone marrow sites for puncture are identified. Based on the dosimetric mapping, an excision measuring 5 cm in depth by 10 cm in diameter was performed on the left buttock of the victim. (authors)

  4. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation

    International Nuclear Information System (INIS)

    Yang, J; Li, J S; Qin, L; Xiong, W; Ma, C-M

    2004-01-01

    The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A 'random creep' method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head simulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams

  5. SU-F-T-575: Verification of a Monte-Carlo Small Field SRS/SBRT Dose Calculation System

    International Nuclear Information System (INIS)

    Sudhyadhom, A; McGuinness, C; Descovich, M

    2016-01-01

    Purpose: To develop a methodology for validation of a Monte-Carlo dose calculation model for robotic small field SRS/SBRT deliveries. Methods: In a robotic treatment planning system, a Monte-Carlo model was iteratively optimized to match with beam data. A two-part analysis was developed to verify this model. 1) The Monte-Carlo model was validated in a simulated water phantom versus a Ray-Tracing calculation on a single beam collimator-by-collimator calculation. 2) The Monte-Carlo model was validated to be accurate in the most challenging situation, lung, by acquiring in-phantom measurements. A plan was created and delivered in a CIRS lung phantom with film insert. Separately, plans were delivered in an in-house created lung phantom with a PinPoint chamber insert within a lung simulating material. For medium to large collimator sizes, a single beam was delivered to the phantom. For small size collimators (10, 12.5, and 15mm), a robotically delivered plan was created to generate a uniform dose field of irradiation over a 2×2cm 2 area. Results: Dose differences in simulated water between Ray-Tracing and Monte-Carlo were all within 1% at dmax and deeper. Maximum dose differences occurred prior to dmax but were all within 3%. Film measurements in a lung phantom show high correspondence of over 95% gamma at the 2%/2mm level for Monte-Carlo. Ion chamber measurements for collimator sizes of 12.5mm and above were within 3% of Monte-Carlo calculated values. Uniform irradiation involving the 10mm collimator resulted in a dose difference of ∼8% for both Monte-Carlo and Ray-Tracing indicating that there may be limitations with the dose calculation. Conclusion: We have developed a methodology to validate a Monte-Carlo model by verifying that it matches in water and, separately, that it corresponds well in lung simulating materials. The Monte-Carlo model and algorithm tested may have more limited accuracy for 10mm fields and smaller.

  6. Scattered dose to thyroid from prophylactic cranial irradiation during childhood: a Monte Carlo study

    International Nuclear Information System (INIS)

    Mazonakis, Michalis; Tzedakis, Antonis; Damilakis, John; Varveris, Haris; Kachris, Stefanos; Gourtsoyiannis, Nicholas

    2006-01-01

    The purpose of this study was to estimate the scattered dose to thyroid from prophylactic cranial irradiation during childhood. The MCNP transport code and mathematical phantoms representing the average individual at ages 3, 5, 10, 15 and 18 years old were employed to simulate cranial radiotherapy using two lateral opposed fields. The mean radiation dose received by the thyroid gland was calculated. A 10 cm thick lead block placed on the patient's couch to shield the thyroid was simulated by MCNP code. The Monte Carlo model was validated by measuring the scattered dose to the unshielded and shielded thyroid using three different humanoid phantoms and thermoluminescense dosimetry. For a cranial dose of 18 Gy, the thyroid dose obtained by Monte Carlo calculations varied from 47 to 79 cGy depending upon the age of the child. Appropriate placement of the couch block resulted in a thyroid dose reduction by 39 to 54%. Thyroid dose values at all possible positions of the radiosensitive gland with respect to the inferior field edge at five different patient ages were found. The mean difference between Monte Carlo results and thyroid dose measurements was 9.6%. (note)

  7. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans.

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-07

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients' CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  8. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    Science.gov (United States)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  9. SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, K; Chen, D. Z; Hu, X. S [University of Notre Dame, Notre Dame, IN (United States); Zhou, B [Altera Corp., San Jose, CA (United States)

    2014-06-01

    Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this procedure into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF

  10. New model for mines and transportation tunnels external dose calculation using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Allam, Kh. A.

    2017-01-01

    In this work, a new methodology is developed based on Monte Carlo simulation for tunnels and mines external dose calculation. Tunnels external dose evaluation model of a cylindrical shape of finite thickness with an entrance and with or without exit. A photon transportation model was applied for exposure dose calculations. A new software based on Monte Carlo solution was designed and programmed using Delphi programming language. The variation of external dose due to radioactive nuclei in a mine tunnel and the corresponding experimental data lies in the range 7.3 19.9%. The variation of specific external dose rate with position in, tunnel building material density and composition were studied. The given new model has more flexible for real external dose in any cylindrical tunnel structure calculations. (authors)

  11. On the use of Monte Carlo-derived dosimetric data in the estimation of patient dose from CT examinations

    International Nuclear Information System (INIS)

    Perisinakis, Kostas; Tzedakis, Antonis; Damilakis, John

    2008-01-01

    The purpose of this work was to investigate the applicability and appropriateness of Monte Carlo-derived normalized data to provide accurate estimations of patient dose from computed tomography (CT) exposures. Monte Carlo methodology and mathematical anthropomorphic phantoms were used to simulate standard patient CT examinations of the head, thorax, abdomen, and trunk performed on a multislice CT scanner. Phantoms were generated to simulate the average adult individual and two individuals with different body sizes. Normalized dose values for all radiosensitive organs and normalized effective dose values were calculated for standard axial and spiral CT examinations. Discrepancies in CT dosimetry using Monte Carlo-derived coefficients originating from the use of: (a) Conversion coefficients derived for axial CT exposures, (b) a mathematical anthropomorphic phantom of standard body size to derive conversion coefficients, and (c) data derived for a specific CT scanner to estimate patient dose from CT examinations performed on a different scanner, were separately evaluated. The percentage differences between the normalized organ dose values derived for contiguous axial scans and the corresponding values derived for spiral scans with pitch=1 and the same total scanning length were up to 10%, while the corresponding percentage differences in normalized effective dose values were less than 0.7% for all standard CT examinations. The normalized organ dose values for standard spiral CT examinations with pitch 0.5-1.5 were found to differ from the corresponding values derived for contiguous axial scans divided by the pitch, by less than 14% while the corresponding percentage differences in normalized effective dose values were less than 1% for all standard CT examinations. Normalized effective dose values for the standard contiguous axial CT examinations derived by Monte Carlo simulation were found to considerably decrease with increasing body size of the mathematical phantom

  12. SU-F-T-122: 4Dand 5D Proton Dose Evaluation with Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Titt, U; Mirkovic, D; Yepes, P; Liu, A; Peeler, C; Randenyia, S; Mohan, R [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: We evaluated uncertainties in therapeutic proton doses of a lung treatment, taking into account intra-fractional geometry changes, such as breathing, and inter-fractional changes, such as tumor shrinkage and weight loss. Methods: A Monte Carlo study was performed using four dimensional CT image sets (4DCTs) and weekly repeat imaging (5DCTs) to compute fixed RBE (1.1) and variable RBE weighted dose in an actual lung treatment geometry. The MC2 Monte Carlo system was employed to simulate proton energy deposition and LET distributions according to a thoracic cancer treatment plan developed with a 3D-CT in a commercial treatment planning system, as well as in each of the phases of 4DCT sets which were recorded weekly throughout the course of the treatment. A cumulative dose distribution in relevant structures was computed and compared to the predictions of the treatment planning system. Results: Using the Monte Carlo method, dose deposition estimates with the lowest possible uncertainties were produced. Comparison with treatment planning predictions indicates that significant uncertainties may be associated with therapeutic lung dose prediction from treatment planning systems, depending on the magnitude of inter- and intra-fractional geometry changes. Conclusion: As this is just a case study, a more systematic investigation accounting for a cohort of patients is warranted; however, this is less practical because Monte Carlo simulations of such cases require enormous computational resources. Hence our study and any future case studies may serve as validation/benchmarking data for faster dose prediction engines, such as the track repeating algorithm, FDC.

  13. Dose mapping for documentation of radiation sterilization

    DEFF Research Database (Denmark)

    Miller, A.

    1999-01-01

    The radiation sterilization standards EN 552 and ISO 11137 require that dose mapping in real or simulated product be carried in connection with the process qualification. This paper reviews the recommendations given in the standards and discusses the difficulties and limitations of practical dose...... mapping. The paper further gives recommendations for effective dose mapping including traceable dosimetry, documented procedures for placement of dosimeters, and evaluation of measurement uncertainties. (C) 1999 Elsevier Science Ltd. All rights reserved....

  14. Electron dose map inversion based on several algorithms

    International Nuclear Information System (INIS)

    Li Gui; Zheng Huaqing; Wu Yican; Fds Team

    2010-01-01

    The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)

  15. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    Science.gov (United States)

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  16. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da; Li, Xinhua; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Gao, Yiming; Xu, X. George [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2013-08-15

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated

  17. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Zhang, Da; Li, Xinhua; Liu, Bob; Gao, Yiming; Xu, X. George

    2013-01-01

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated

  18. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  19. DOSE COEFFICIENTS FOR LIVER CHEMOEMBOLISATION PROCEDURES USING MONTE CARLO CODE.

    Science.gov (United States)

    Karavasilis, E; Dimitriadis, A; Gonis, H; Pappas, P; Georgiou, E; Yakoumakis, E

    2016-12-01

    The aim of the present study is the estimation of radiation burden during liver chemoembolisation procedures. Organ dose and effective dose conversion factors, normalised to dose-area product (DAP), were estimated for chemoembolisation procedures using a Monte Carlo transport code in conjunction with an adult mathematical phantom. Exposure data from 32 patients were used to determine the exposure projections for the simulations. Equivalent organ (H T ) and effective (E) doses were estimated using individual DAP values. The organs receiving the highest amount of doses during these exams were lumbar spine, liver and kidneys. The mean effective dose conversion factor was 1.4 Sv Gy -1 m -2 Dose conversion factors can be useful for patient-specific radiation burden during chemoembolisation procedures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chao-Jen, E-mail: cjlai3711@gmail.com; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C. [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2015-06-15

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm{sup 2} field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical

  1. Effects of physics change in Monte Carlo code on electron pencil beam dose distributions

    International Nuclear Information System (INIS)

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2012-01-01

    Pencil beam algorithms used in computerized electron beam dose planning are usually described using the small angle multiple scattering theory. Alternatively, the pencil beams can be generated by Monte Carlo simulation of electron transport. In a previous work, the 4th version of the Electron Gamma Shower (EGS) Monte Carlo code was used to obtain dose distributions from monoenergetic electron pencil beam, with incident energy between 1 MeV and 50 MeV, interacting at the surface of a large cylindrical homogeneous water phantom. In 2000, a new version of this Monte Carlo code has been made available by the National Research Council of Canada (NRC), which includes various improvements in its electron-transport algorithms. In the present work, we were interested to see if the new physics in this version produces pencil beam dose distributions very different from those calculated with oldest one. The purpose of this study is to quantify as well as to understand these differences. We have compared a series of pencil beam dose distributions scored in cylindrical geometry, for electron energies between 1 MeV and 50 MeV calculated with two versions of the Electron Gamma Shower Monte Carlo Code. Data calculated and compared include isodose distributions, radial dose distributions and fractions of energy deposition. Our results for radial dose distributions show agreement within 10% between doses calculated by the two codes for voxels closer to the pencil beam central axis, while the differences are up to 30% for longer distances. For fractions of energy deposition, the results of the EGS4 are in good agreement (within 2%) with those calculated by EGSnrc at shallow depths for all energies, whereas a slightly worse agreement (15%) is observed at deeper distances. These differences may be mainly attributed to the different multiple scattering for electron transport adopted in these two codes and the inclusion of spin effect, which produces an increase of the effective range of

  2. Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Sempau, J.; Bielajew, A.F.

    2000-01-01

    The Monte Carlo calculation of dose for radiotherapy treatment planning purposes introduces unavoidable statistical noise into the prediction of dose in a given volume element (voxel). When the doses in these voxels are summed to produce dose volume histograms (DVHs), this noise translates into a broadening of differential DVHs and correspondingly flatter DVHs. A brute force approach would entail calculating dose for long periods of time - enough to ensure that the DVHs had converged. In this paper we introduce an approach for deconvolving the statistical noise from DVHs, thereby obtaining estimates for converged DVHs obtained about 100 times faster than the brute force approach described above. There are two important implications of this work: (a) decisions based upon DVHs may be made much more economically using the new approach and (b) inverse treatment planning or optimization methods may employ Monte Carlo dose calculations at all stages of the iterative procedure since the prohibitive cost of Monte Carlo calculations at the intermediate calculation steps can be practically eliminated. (author)

  3. Establishment Of Dose Correlation During Dose Mapping On Medical Devices

    International Nuclear Information System (INIS)

    Ruzalina Baharin; Hasan Sham; Ahsanulkhaliqin Abdul Wahab

    2014-01-01

    This paper explains the work done during product dose mapping in order to get the correlation between doses at MINTec-Sinagama plant. Product used was medical devices in aluminium tubes packaged in cardboard kegs packaging with average weight of 12 kg per carton. 12 cartons were loaded in every one tote to give 0.2 g/ cm 3 of density. Ceric cerous dosimeters were placed at specific locations as indicated in SP14: Product Dose Mapping, QMS of MINTec-Sinagama around three planes. Three processes were made at different days as a three replicates to show the reproducibility of measurements. (author)

  4. Novel hybrid Monte Carlo/deterministic technique for shutdown dose rate analyses of fusion energy systems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.; Grove, Robert E.

    2014-01-01

    Highlights: •Develop the novel Multi-Step CADIS (MS-CADIS) hybrid Monte Carlo/deterministic method for multi-step shielding analyses. •Accurately calculate shutdown dose rates using full-scale Monte Carlo models of fusion energy systems. •Demonstrate the dramatic efficiency improvement of the MS-CADIS method for the rigorous two step calculations of the shutdown dose rate in fusion reactors. -- Abstract: The rigorous 2-step (R2S) computational system uses three-dimensional Monte Carlo transport simulations to calculate the shutdown dose rate (SDDR) in fusion reactors. Accurate full-scale R2S calculations are impractical in fusion reactors because they require calculating space- and energy-dependent neutron fluxes everywhere inside the reactor. The use of global Monte Carlo variance reduction techniques was suggested for accelerating the R2S neutron transport calculation. However, the prohibitive computational costs of these approaches, which increase with the problem size and amount of shielding materials, inhibit their ability to accurately predict the SDDR in fusion energy systems using full-scale modeling of an entire fusion plant. This paper describes a novel hybrid Monte Carlo/deterministic methodology that uses the Consistent Adjoint Driven Importance Sampling (CADIS) method but focuses on multi-step shielding calculations. The Multi-Step CADIS (MS-CADIS) methodology speeds up the R2S neutron Monte Carlo calculation using an importance function that represents the neutron importance to the final SDDR. Using a simplified example, preliminary results showed that the use of MS-CADIS enhanced the efficiency of the neutron Monte Carlo simulation of an SDDR calculation by a factor of 550 compared to standard global variance reduction techniques, and that the efficiency enhancement compared to analog Monte Carlo is higher than a factor of 10,000

  5. CELLDOSE: A Monte Carlo code to assess electron dose distribution - S values for 131I in spheres of various sizes

    International Nuclear Information System (INIS)

    Champion, C.; Zanotti-Fregonara, P.; Hindie, E; Hindie, E.

    2008-01-01

    Monte Carlo simulation can be particularly suitable for modeling the microscopic distribution of energy received by normal tissues or cancer cells and for evaluating the relative merits of different radiopharmaceuticals. We used a new code, CELLDOSE, to assess electron dose for isolated spheres with radii varying from 2,500 μm down to 0.05 μm, in which 131 I is homogeneously distributed. Methods: All electron emissions of 131 I were considered,including the whole β - 131 I spectrum, 108 internal conversion electrons, and 21 Auger electrons. The Monte Carlo track-structure code used follows all electrons down to an energy threshold E-cutoff 7.4 eV. Results: Calculated S values were in good agreement with published analytic methods, lying in between reported results for all experimental points. Our S values were also close to other published data using a Monte Carlo code. Contrary to the latter published results, our results show that dose distribution inside spheres is not homogeneous, with the dose at the outmost layer being approximately half that at the center. The fraction of electron energy retained within the spheres decreased with decreasing radius (r): 87.1 % for r 2,500 μm, 8.73% for r 50 μm, and 1.18% for r 5 μm. Thus, a radioiodine concentration that delivers a dose of 100 Gy to a micro-metastasis of 2,500 μm radius would deliver 10 Gy in a cluster of 50 μm and only 1.4 Gy in an isolated cell. The specific contribution from Auger electrons varied from 0.25% for the largest sphere up to 76.8% for the smallest sphere. Conclusion: The dose to a tumor cell will depend on its position in a metastasis. For the treatment of very small metastases, 131 I may not be the isotope of choice. When trying to kill isolated cells or a small cluster of cells with 131 I, it is important to get the iodine as close as possible to the nucleus to get the enhancement factor from Auger electrons. The Monte Carlo code CELLDOSE can be used to assess the electron map deposit

  6. Modeling dose-rate on/over the surface of cylindrical radio-models using Monte Carlo methods

    International Nuclear Information System (INIS)

    Xiao Xuefu; Ma Guoxue; Wen Fuping; Wang Zhongqi; Wang Chaohui; Zhang Jiyun; Huang Qingbo; Zhang Jiaqiu; Wang Xinxing; Wang Jun

    2004-01-01

    Objective: To determine the dose-rates on/over the surface of 10 cylindrical radio-models, which belong to the Metrology Station of Radio-Geological Survey of CNNC. Methods: The dose-rates on/over the surface of 10 cylindrical radio-models were modeled using the famous Monte Carlo code-MCNP. The dose-rates on/over the surface of 10 cylindrical radio-models were measured by a high gas pressurized ionization chamber dose-rate meter, respectively. The values of dose-rate modeled using MCNP code were compared with those obtained by authors in the present experimental measurement, and with those obtained by other workers previously. Some factors causing the discrepancy between the data obtained by authors using MCNP code and the data obtained using other methods are discussed in this paper. Results: The data of dose-rates on/over the surface of 10 cylindrical radio-models, obtained using MCNP code, were in good agreement with those obtained by other workers using the theoretical method. They were within the discrepancy of ±5% in general, and the maximum discrepancy was less than 10%. Conclusions: As if each factor needed for the Monte Carlo code is correct, the dose-rates on/over the surface of cylindrical radio-models modeled using the Monte Carlo code are correct with an uncertainty of 3%

  7. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Randriantsizafy, R D; Ramanandraibe, M J [Madagascar Institut National des Sciences et Techniques Nucleaires, Antananarivo (Madagascar); Raboanary, R [Institut of astro and High-Energy Physics Madagascar, University of Antananarivo, Antananarivo (Madagascar)

    2007-07-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  8. Monte-Carlo Method Python Library for dose distribution Calculation in Brachytherapy

    International Nuclear Information System (INIS)

    Randriantsizafy, R.D.; Ramanandraibe, M.J.; Raboanary, R.

    2007-01-01

    The Cs-137 Brachytherapy treatment is performed in Madagascar since 2005. Time treatment calculation for prescribed dose is made manually. Monte-Carlo Method Python library written at Madagascar INSTN is experimentally used to calculate the dose distribution on the tumour and around it. The first validation of the code was done by comparing the library curves with the Nucletron company curves. To reduce the duration of the calculation, a Grid of PC's is set up with listner patch run on each PC. The library will be used to modelize the dose distribution in the CT scan patient picture for individual and better accuracy time calculation for a prescribed dose.

  9. SU-E-T-202: Impact of Monte Carlo Dose Calculation Algorithm On Prostate SBRT Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Venencia, C; Garrigo, E; Cardenas, J; Castro Pena, P [Instituto de Radioterapia - Fundacion Marie Curie, Cordoba (Argentina)

    2014-06-01

    Purpose: The purpose of this work was to quantify the dosimetric impact of using Monte Carlo algorithm on pre calculated SBRT prostate treatment with pencil beam dose calculation algorithm. Methods: A 6MV photon beam produced by a Novalis TX (BrainLAB-Varian) linear accelerator equipped with HDMLC was used. Treatment plans were done using 9 fields with Iplanv4.5 (BrainLAB) and dynamic IMRT modality. Institutional SBRT protocol uses a total dose to the prostate of 40Gy in 5 fractions, every other day. Dose calculation is done by pencil beam (2mm dose resolution), heterogeneity correction and dose volume constraint (UCLA) for PTV D95%=40Gy and D98%>39.2Gy, Rectum V20Gy<50%, V32Gy<20%, V36Gy<10% and V40Gy<5%, Bladder V20Gy<40% and V40Gy<10%, femoral heads V16Gy<5%, penile bulb V25Gy<3cc, urethra and overlap region between PTV and PRV Rectum Dmax<42Gy. 10 SBRT treatments plans were selected and recalculated using Monte Carlo with 2mm spatial resolution and mean variance of 2%. DVH comparisons between plans were done. Results: The average difference between PTV doses constraints were within 2%. However 3 plans have differences higher than 3% which does not meet the D98% criteria (>39.2Gy) and should have been renormalized. Dose volume constraint differences for rectum, bladder, femoral heads and penile bulb were les than 2% and within tolerances. Urethra region and overlapping between PTV and PRV Rectum shows increment of dose in all plans. The average difference for urethra region was 2.1% with a maximum of 7.8% and for the overlapping region 2.5% with a maximum of 8.7%. Conclusion: Monte Carlo dose calculation on dynamic IMRT treatments could affects on plan normalization. Dose increment in critical region of urethra and PTV overlapping region with PTV could have clinical consequences which need to be studied. The use of Monte Carlo dose calculation algorithm is limited because inverse planning dose optimization use only pencil beam.

  10. A graphical review of radiogenic animal cancer data using the 'dose and dose-rate map'

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Hoshi, Yuko; Sakai, Kazuo

    2008-01-01

    We have been investigating the effects of low dose or low dose rate irradiation on mice, using our low dose-rate irradiation facilities. In these studies, we found that the effects were highly dependent on both total dose and dose rate. To show this visually, we proposed the 'dose/dose rate map', and plotted the results of our laboratory and our co-workers. The map demonstrated that dose/dose rate plane could be divided into three areas; 1) An area where harmful effects are observed, 2) An area where no harmful effects are observed, and 3) Another area, between previous two areas, where certain protective functions are enhanced. As this map would be a powerful tool to find some trend among the vast numbers of data relating the biological effects of ionizing radiation, we have developed a computer program which plots the collected data on the dose/dose rate map sorting by experimental conditions. In this study, we graphically reviewed and analyzed the data relating to the lifespan studies of animals with a view to determining the relationships between doses and dose rates of ionizing radiation and cancer incidence. The data contains about 800 sets of experiments, which concerns 187,000 animals exposed to gamma ray or X-ray and their 112,000 controls, and total of about 30,000 cancers in exposed animals and 14,000 cancers in controls. About 800 points of data were plotted on the dose/dose rate map. The plot showed that 1) The divided three areas in the dose/dose rate map were generally confirmed by these 800 points of data, and 2) In some particular conditions, e.g. sarcoma by X-rays, the biologically effective area is extended to relatively high dose/dose rate area. (author)

  11. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    CERN Document Server

    Clouvas, A; Antonopoulos-Domis, M; Silva, J

    2000-01-01

    The dose rate conversion factors D/sub CF/ (absorbed dose rate in air per unit activity per unit of soil mass, nGy h/sup -1/ per Bq kg/sup -1/) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D/sub CF/ values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good ag...

  12. Monte Carlo simulation of dose enhancement effect of X-ray at Au/Si interface

    International Nuclear Information System (INIS)

    Wu Zhengxin; He Chengfa; Lu Wu; Guo Qi; Yu Xin; Zhang Lei; Deng Wei; Zheng Qiwen; ARKIN Abulim

    2013-01-01

    Background: The dose enhancement factor of X-ray was found in 1970s, because of its bad damage to electronic devices. Purpose: This paper is mainly to calculate the dose-enhancement factor at Au/Si interfaces. Methods: The gradient distribution of dose with X-rays has been studied at and near the interface of Au/Si by Monte-Carlo simulation of particle transportation. The mechanism of dose enhancement is discussed based on the principles of interaction of photon with matter. A 3D Au/Si model has been established by MCNP5 program and the dose-enhancement factors of different thicknesses Au/Si interfaces were calculated by Monte Carlo method. Results: The calculated results demonstrate that there exists a stronger dose-enhancement in the Si side near the interface when the energy of X-ray is 30-300 keV. Conclusions: When the thickness of Au is 0-10 μm, dose-enhancement factor of X-ray increases along with the increase of the thickness of Au, when the thickness of Au exceeds 10 μm, dose-enhancement factor of X-ray decreases along with the increase of the thickness of Au. (authors)

  13. The calculation of dose from external photon exposures using reference human phantoms and Monte-Carlo methods. Pt. 1

    International Nuclear Information System (INIS)

    Kramer, R.; Zankl, M.; Williams, G.; Drexler, G.

    1982-12-01

    By the help of a Monte-Carlo program the dose that single organs, organ groups and bigger or smaller parts of body would receive on an average, caused by an irradiation definitely fixed by the geometry of irradiation and photon energy, can be determined. Thus the phantom in connection with the Monte-Carlo program can be used for several considerations as for example - calculation of dose from occupational exposures - calculation of dose from diagnostic procedures - calculation of dose from radiotherapy procedures. (orig.)

  14. Monte Carlo simulation for radiation dose in children radiology

    International Nuclear Information System (INIS)

    Mendes, Hitalo R.; Tomal, Alessandra

    2016-01-01

    The dosimetry in pediatric radiology is essential due to the higher risk that children have in comparison to adults. The focus of this study is to present how the dose varies depending on the depth in a 10 year old and a newborn, for this purpose simulations are made using the Monte Carlo method. Potential differences were considered 70 and 90 kVp for the 10 year old and 70 and 80 kVp for the newborn. The results show that in both cases, the dose at the skin surface is larger for smaller potential value, however, it decreases faster for larger potential values. Another observation made is that because the newborn is less thick the ratio between the initial dose and the final is lower compared to the case of a 10 year old, showing that it is possible to make an image using a smaller entrance dose in the skin, keeping the same level of exposure at the detector. (author)

  15. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, Omar, E-mail: omar.chibani@fccc.edu; C-M Ma, Charlie [Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  16. Application of the measurement-based Monte Carlo method in nasopharyngeal cancer patients for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Yeh, C.Y.; Lee, C.C.; Chao, T.C.; Lin, M.H.; Lai, P.A.; Liu, F.H.; Tung, C.J.

    2014-01-01

    This study aims to utilize a measurement-based Monte Carlo (MBMC) method to evaluate the accuracy of dose distributions calculated using the Eclipse radiotherapy treatment planning system (TPS) based on the anisotropic analytical algorithm. Dose distributions were calculated for the nasopharyngeal carcinoma (NPC) patients treated with the intensity modulated radiotherapy (IMRT). Ten NPC IMRT plans were evaluated by comparing their dose distributions with those obtained from the in-house MBMC programs for the same CT images and beam geometry. To reconstruct the fluence distribution of the IMRT field, an efficiency map was obtained by dividing the energy fluence of the intensity modulated field by that of the open field, both acquired from an aS1000 electronic portal imaging device. The integrated image of the non-gated mode was used to acquire the full dose distribution delivered during the IMRT treatment. This efficiency map redistributed the particle weightings of the open field phase-space file for IMRT applications. Dose differences were observed in the tumor and air cavity boundary. The mean difference between MBMC and TPS in terms of the planning target volume coverage was 0.6% (range: 0.0–2.3%). The mean difference for the conformity index was 0.01 (range: 0.0–0.01). In conclusion, the MBMC method serves as an independent IMRT dose verification tool in a clinical setting. - Highlights: ► The patient-based Monte Carlo method serves as a reference standard to verify IMRT doses. ► 3D Dose distributions for NPC patients have been verified by the Monte Carlo method. ► Doses predicted by the Monte Carlo method matched closely with those by the TPS. ► The Monte Carlo method predicted a higher mean dose to the middle ears than the TPS. ► Critical organ doses should be confirmed to avoid overdose to normal organs

  17. Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations

  18. Dose perturbation in the presence of metallic implants: treatment planning system versus Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wieslander, Elinore; Knoeoes, Tommy

    2003-01-01

    An increasing number of patients receiving radiation therapy have metallic implants such as hip prostheses. Therefore, beams are normally set up to avoid irradiation through the implant; however, this cannot always be accomplished. In such situations, knowledge of the accuracy of the used treatment planning system (TPS) is required. Two algorithms, the pencil beam (PB) and the collapsed cone (CC), are implemented in the studied TPS. Comparisons are made with Monte Carlo simulations for 6 and 18 MV. The studied materials are steel, CoCrMo, Orthinox(a stainless steel alloy and registered trademark of Stryker Corporation), TiAlV and Ti. Monte Carlo simulated depth dose curves and dose profiles are compared to CC and PB calculated data. The CC algorithm shows overall a better agreement with Monte Carlo than the PB algorithm. Thus, it is recommended to use the CC algorithm to get the most accurate dose calculation both for the planning target volume and for tissues adjacent to the implants when beams are set up to pass through implants

  19. Monte Carlo calculation of received dose from ingestion and inhalation of natural uranium

    International Nuclear Information System (INIS)

    Trobok, M.; Zupunski, Lj.; Spasic-Jokic, V.; Gordanic, V.; Sovilj, P.

    2009-01-01

    For the purpose of this study eighty samples are taken from the area Bela Crkva and Vrsac. The activity of radionuclide in the soil is determined by gamma- ray spectrometry. Monte Carlo method is used to calculate effective dose received by population resulting from the inhalation and ingestion of natural uranium. The estimated doses were compared with the legally prescribed levels. (author) [sr

  20. Monte Carlo calculations of patient doses from dental radiography

    International Nuclear Information System (INIS)

    Gibbs, S.J.; Pujol, A.; Chen, T.S.; Malcolm, A.W.

    1984-01-01

    A Monte Carlo computer program has been developed to calculate patient dose from diagnostic radiologic procedures. Input data include patient anatomy as serial CT scans at 1-cm intervals from a typical cadaver, beam spectrum, and projection geometry. The program tracks single photons, accounting for photoelectric effect, coherent (using atomic form factors) and incoherent (using scatter functions) scatter. Inhomogeneities (bone, teeth, muscle, fat, lung, air cavities, etc.) are accounted for as they are encountered. Dose is accumulated in a three-dimensional array of voxels, corresponding to the CT input. Output consists of isodose curves, doses to specific organs, and effective dose equivalent, H/sub E/, as defined by ICRP. Initial results, from dental bite-wing projections using 90-kVp, half-wave rectified dental spectra, have produced H/sub E/ values ranging from 3 to 17 microsieverts (0.3-1.7 mrem) per image, depending on image receptor and projection geometry. The probability of stochastic effect is estimated by ICRP as 10/sup -2//Sv, or about 10/sup -7/ to 10/sup -8/ per image

  1. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  2. Dose measurement using radiochromic lms and Monte Carlo simulation for hadron-therapy

    International Nuclear Information System (INIS)

    Zahra, N.

    2010-06-01

    Because of the increase in dose at the end of the range of ions, dose delivery during patient treatment with hadron-therapy should be controlled with high precision. Monte Carlo codes are now considered mandatory for validation of clinical treatment planning and as a new tool for dosimetry of ion beams. In this work, we aimed to calculate the absorbed dose using Monte Carlo simulation Geant4/Gate. The effect on the dose calculation accuracy of different Geant4 parameters has been studied for mono-energetic carbon ion beams of 300 MeV/u in water. The parameters are: the production threshold of secondary particles and the maximum step limiter of the particle track. Tolerated criterion were chosen to meet the precision required in radiotherapy in term of value and dose localisation (2%, 2 mm respectively) and to obtain the best compromise on dose distribution and computational time. We propose here the values of parameters in order to satisfy the precision required. In the second part of this work, we study the response of radiochromic films MD-v2-55 for quality control in proton and carbon ion beams. We have particularly observed and studied the quenching effect of dosimetric films for high LET (≥20 keV/μm) irradiation in homogeneous and heterogeneous media. This effect is due to the high ionization density around the track of the particle. We have developed a method to predict the response of radiochromic films taking into account the saturation effect. This model is called the RADIS model for 'Radiochromic films Dosimetry for Ions using Simulations'. It is based on the response of films under photon irradiations and the saturation of films due to high linear energy deposit calculated by Monte Carlo. Different beams were used in this study and aimed to validate the model for hadron-therapy applications: carbon ions, protons and photons at different energies. Experiments were performed at Grand Accelerateur National d'Ions Lourds (GANIL), Proton therapy center of

  3. Study of dose distribution in dental radiology using the Monte Carlo Simulation; Estudo da distribuicao de dose em radiologia odontologica usando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bonzoumet, S P.J.; Braz, D; Lopes, R T [Nuclear Instrumentation Laboratory, COPPE/UFRJ, Rio de Janeiro (Brazil); Anjos, M J [Nuclear Instrumentation Laboratory, COPPE/UFRJ, Rio de Janeiro (Brazil); Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil). Instituto de Fisica; Barroso, R C.S. [Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil). Instituto de Fisica

    2003-11-15

    Full text: The purpose of this study was to study the absorbed dose in mouth due to scattering in teeth in dental radiography using the monte carlo simulation. The Electron Gamma Shower (EGS-4) system of computer codes was used, which is a general purpose package for monte carlo simulation of the coupled transport of electrons and photons in an arbitrary geometry for particles with energies above a few keV up to several TeV. In the case of a X ray dental the low energy photons beam, are removed of the spectrum by the filtration. These low energy photons beam do not contribute in the obtaining of the radiographic image, but they will be contribute in the dose to the patient, however when the incident radiation crosses the tooth it generates a scattering radiation that contributes in the dose received by the patient in the oral cavity (cheek, tooth and oral cavity). Dental radiography is one of the largest single groups of radiographic examination accounting for 32% of radiographs taken in the Brazil. A number of relatively recent improvements in technology, equipment and techniques have the potential to reduce patient radiation dose and improve image quality. To optimize radiation protection all reasonable means should be employed to minimize the dose of each exposure. Dentists therefore need to keep up to date with changes in techniques and equipment and modify their own practice. In preliminary analysis could be notice that the energy below the 30 keV (low energy) is deposited in the cheek. To 30 keV photons there is the maximum absorbed energy in the tooth (about 60%). In 40 keV could be notice that deposited energy is same to teeth and cheek, but up to 40 keV just a small part of energy is deposited, e.g., the great part of energy is transmitted to the inner mouth (oral cavity). (orig.)

  4. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    International Nuclear Information System (INIS)

    Folkerts, M; Graves, Y; Tian, Z; Gu, X; Jia, X; Jiang, S

    2014-01-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA

  5. SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, M [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States); University of California, San Diego, La Jolla, CA (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States); Tian, Z; Gu, X; Jia, X; Jiang, S [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-01

    Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is able to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.

  6. Calculation of dose distribution for 252Cf fission neutron source in tissue equivalent phantoms using Monte Carlo method

    International Nuclear Information System (INIS)

    Ji Gang; Guo Yong; Luo Yisheng; Zhang Wenzhong

    2001-01-01

    Objective: To provide useful parameters for neutron radiotherapy, the author presents results of a Monte Carlo simulation study investigating the dosimetric characteristics of linear 252 Cf fission neutron sources. Methods: A 252 Cf fission source and tissue equivalent phantom were modeled. The dose of neutron and gamma radiations were calculated using Monte Carlo Code. Results: The dose of neutron and gamma at several positions for 252 Cf in the phantom made of equivalent materials to water, blood, muscle, skin, bone and lung were calculated. Conclusion: The results by Monte Carlo methods were compared with the data by measurement and references. According to the calculation, the method using water phantom to simulate local tissues such as muscle, blood and skin is reasonable for the calculation and measurements of dose distribution for 252 Cf

  7. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    International Nuclear Information System (INIS)

    Paelinck, L; Reynaert, N; Thierens, H; Neve, W De; Wagter, C de

    2005-01-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 x 12 x 12 cm 3 containing a central cavity of 6 x 6 x 6 cm 3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 x 10 cm 2 field and a larger 10 x 10 cm 2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  8. Experimental verification of lung dose with radiochromic film: comparison with Monte Carlo simulations and commercially available treatment planning systems

    Science.gov (United States)

    Paelinck, L.; Reynaert, N.; Thierens, H.; DeNeve, W.; DeWagter, C.

    2005-05-01

    The purpose of this study was to assess the absorbed dose in and around lung tissue by performing radiochromic film measurements, Monte Carlo simulations and calculations with superposition convolution algorithms. We considered a layered polystyrene phantom of 12 × 12 × 12 cm3 containing a central cavity of 6 × 6 × 6 cm3 filled with Gammex RMI lung-equivalent material. Two field configurations were investigated, a small 1 × 10 cm2 field and a larger 10 × 10 cm2 field. First, we performed Monte Carlo simulations to investigate the influence of radiochromic film itself on the measured dose distribution when the film intersects a lung-equivalent region and is oriented parallel to the central beam axis. To that end, the film and the lung-equivalent materials were modelled in detail, taking into account their specific composition. Next, measurements were performed with the film oriented both parallel and perpendicular to the central beam axis to verify the results of our Monte Carlo simulations. Finally, we digitized the phantom in two commercially available treatment planning systems, Helax-TMS version 6.1A and Pinnacle version 6.2b, and calculated the absorbed dose in the phantom with their incorporated superposition convolution algorithms to compare with the Monte Carlo simulations. Comparing Monte Carlo simulations with measurements reveals that radiochromic film is a reliable dosimeter in and around lung-equivalent regions when the film is positioned perpendicular to the central beam axis. Radiochromic film is also able to predict the absorbed dose accurately when the film is positioned parallel to the central beam axis through the lung-equivalent region. However, attention must be paid when the film is not positioned along the central beam axis, in which case the film gradually attenuates the beam and decreases the dose measured behind the cavity. This underdosage disappears by offsetting the film a few centimetres. We find deviations of about 3.6% between

  9. Comparison of ONETRAN calculations of electron beam dose profiles with Monte Carlo and experiment

    International Nuclear Information System (INIS)

    Garth, J.C.; Woolf, S.

    1987-01-01

    Electron beam dose profiles have been calculated using a multigroup, discrete ordinates solution of the Spencer-Lewis electron transport equation. This was accomplished by introducing electron transport cross-sections into the ONETRAN code in a simple manner. The authors' purpose is to ''benchmark'' this electron transport model and to demonstrate its accuracy and capabilities over the energy range from 30 keV to 20 MeV. Many of their results are compared with the extensive measurements and TIGER Monte Carlo data. In general the ONETRAN results are smoother, agree with TIGER within the statistical error of the Monte Carlo histograms and require about one tenth the running time of Monte Carlo

  10. 3D calculation of absorbed dose for 131I-targeted radiotherapy: A Monte Carlo study

    International Nuclear Information System (INIS)

    Saeedzadeh, E.; Sarkar, S.; Abbaspour Tehrani-Fard, A.; Ay, M. R.; Khosravi, H. R.; Loudos, G.

    2008-01-01

    Various methods, such as those developed by the Medical Internal Radiation Dosimetry (MIRD) Committee of the Society of Nuclear Medicine or employing dose point kernels, have been applied to the radiation dosimetry of 131 I radionuclide therapy. However, studies have not shown a strong relationship between tumour absorbed dose and its overall therapeutic response, probably due in part to inaccuracies in activity and dose estimation. In the current study, the GATE Monte Carlo computer code was used to facilitate voxel-level radiation dosimetry for organ activities measured in an. 131 I-treated thyroid cancer patient. This approach allows incorporation of the size, shape and composition of organs (in the current study, in the Zubal anthropomorphic phantom) and intra-organ and intra-tumour inhomogeneities in the activity distributions. The total activities of the tumours and their heterogeneous distributions were measured from the SPECT images to calculate the dose maps. For investigating the effect of activity distribution on dose distribution, a hypothetical homogeneous distribution of the same total activity was considered in the tumours. It was observed that the tumour mean absorbed dose rates per unit cumulated activity were 0.65 E-5 and 0.61 E-5 mGY MBq -1 s -1 for the uniform and non-uniform distributions in the tumour, respectively, which do not differ considerably. However, the dose-volume histograms (DVH) show that the tumour non-uniform activity distribution decreases the absorbed dose to portions of the tumour volume. In such a case, it can be misleading to quote the mean or maximum absorbed dose, because overall response is likely limited by the tumour volume that receives low (i.e. non-cytocidal) doses. Three-dimensional radiation dosimetry, and calculation of tumour DVHs, may lead to the derivation of clinically reliable dose-response relationships and therefore may ultimately improve treatment planning as well as response assessment for radionuclide

  11. Dose-image quality study in digital chest radiography using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.; Yoriyaz, H.

    2008-01-01

    One of the main preoccupations of diagnostic radiology is to guarantee a good image-sparing dose to the patient. In the present study, Monte Carlo simulations, with MCNPX code, coupled with an adult voxel female model (FAX) were performed to investigate how image quality and dose in digital chest radiography vary with tube voltage (80-150 kV) using air-gap technique and a computed radiography system. Calculated quantities were normalized to a fixed value of entrance skin exposure (ESE) of 0.0136 R. The results of the present analysis show that the image quality for chest radiography with imaging plate is improved and the dose reduced at lower tube voltage

  12. Application of Monte Carlo method for dose calculation in thyroid follicle

    International Nuclear Information System (INIS)

    Silva, Frank Sinatra Gomes da

    2008-02-01

    The Monte Carlo method is an important tool to simulate radioactive particles interaction with biologic medium. The principal advantage of the method when compared with deterministic methods is the ability to simulate a complex geometry. Several computational codes use the Monte Carlo method to simulate the particles transport and they have the capacity to simulate energy deposition in models of organs and/or tissues, as well models of cells of human body. Thus, the calculation of the absorbed dose to thyroid's follicles (compound of colloid and follicles' cells) have a fundamental importance to dosimetry, because these cells are radiosensitive due to ionizing radiation exposition, in particular, exposition due to radioisotopes of iodine, because a great amount of radioiodine may be released into the environment in case of a nuclear accidents. In this case, the goal of this work was use the code of particles transport MNCP4C to calculate absorbed doses in models of thyroid's follicles, for Auger electrons, internal conversion electrons and beta particles, by iodine-131 and short-lived iodines (131, 132, 133, 134 e 135), with diameters varying from 30 to 500 μm. The results obtained from simulation with the MCNP4C code shown an average percentage of the 25% of total absorbed dose by colloid to iodine- 131 and 75% to short-lived iodine's. For follicular cells, this percentage was of 13% to iodine-131 and 87% to short-lived iodine's. The contributions from particles with low energies, like Auger and internal conversion electrons should not be neglected, to assessment the absorbed dose in cellular level. Agglomerative hierarchical clustering was used to compare doses obtained by codes MCNP4C, EPOTRAN, EGS4 and by deterministic methods. (author)

  13. A dual resolution measurement based Monte Carlo simulation technique for detailed dose analysis of small volume organs in the skull base region

    International Nuclear Information System (INIS)

    Yeh, Chi-Yuan; Tung, Chuan-Jung; Chao, Tsi-Chain; Lin, Mu-Han; Lee, Chung-Chi

    2014-01-01

    The purpose of this study was to examine dose distribution of a skull base tumor and surrounding critical structures in response to high dose intensity-modulated radiosurgery (IMRS) with Monte Carlo (MC) simulation using a dual resolution sandwich phantom. The measurement-based Monte Carlo (MBMC) method (Lin et al., 2009) was adopted for the study. The major components of the MBMC technique involve (1) the BEAMnrc code for beam transport through the treatment head of a Varian 21EX linear accelerator, (2) the DOSXYZnrc code for patient dose simulation and (3) an EPID-measured efficiency map which describes non-uniform fluence distribution of the IMRS treatment beam. For the simulated case, five isocentric 6 MV photon beams were designed to deliver a total dose of 1200 cGy in two fractions to the skull base tumor. A sandwich phantom for the MBMC simulation was created based on the patient's CT scan of a skull base tumor [gross tumor volume (GTV)=8.4 cm 3 ] near the right 8th cranial nerve. The phantom, consisted of a 1.2-cm thick skull base region, had a voxel resolution of 0.05×0.05×0.1 cm 3 and was sandwiched in between 0.05×0.05×0.3 cm 3 slices of a head phantom. A coarser 0.2×0.2×0.3 cm 3 single resolution (SR) phantom was also created for comparison with the sandwich phantom. A particle history of 3×10 8 for each beam was used for simulations of both the SR and the sandwich phantoms to achieve a statistical uncertainty of <2%. Our study showed that the planning target volume (PTV) receiving at least 95% of the prescribed dose (VPTV95) was 96.9%, 96.7% and 99.9% for the TPS, SR, and sandwich phantom, respectively. The maximum and mean doses to large organs such as the PTV, brain stem, and parotid gland for the TPS, SR and sandwich MC simulations did not show any significant difference; however, significant dose differences were observed for very small structures like the right 8th cranial nerve, right cochlea, right malleus and right semicircular

  14. Monte Carlo calculations for doses in organs and tissues to oral radiography; Calculo de Monte Carlo para doses em orgaos e tecidos para radiologia oral

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, E V.M.

    1986-12-31

    Using the MIRD 5 phantom and Monte Carlo technique, organ doses in patients undergoing external dental examination were calculated taking into account the different x-ray beam geometries and the various possible positions of x-ray source with regard to the head of the patient. It was necessary to introduce in the original computer program a new source description specific for dental examinations. To have a realistic evaluation of organ doses during dental examination it was necessary to introduce a new region in the phantom heat which characterizes the teeth and salivary glands. The attenuation of the x-ray beam by the lead shield of the radiographic film was also introduced in the calculation. (author).

  15. Monte Carlo dose calculations for BNCT treatment of diffuse human lung tumours

    International Nuclear Information System (INIS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.

    2006-01-01

    In order to test the possibility to apply BNCT in the core of diffuse lung tumours, dose distribution calculations were made. The simulations were performed with the Monte Carlo code MCNP.4c2, using the male computational phantom Adam, version 07/94. Volumes of interest were voxelized for the tally requests, and results were obtained for tissues with and without Boron. Different collimated neutron sources were tested in order to establish the proper energies, as well as single and multiple beams to maximize neutron flux uniformity inside the target organs. Flux and dose distributions are reported. The use of two opposite epithermal neutron collimated beams insures good levels of dose homogeneity inside the lungs, with a substantially lower radiation dose delivered to surrounding structures. (author)

  16. Panoramic irradiator dose mapping with pin photodiodes

    International Nuclear Information System (INIS)

    Ferreira, Danilo Cardenuto; Napolitano, Celia Marina; Bueno, Carmen Cecilia

    2011-01-01

    In this work we study the possibility of using commercial silicon PIN photodiodes (Siemens, SFH 00206) for dose mapping in the Panoramic Irradiator facility at IPEN-CNEN/SP. The chosen photodiode, that is encased in 1.2 mm thickness polymer layer, displays promising dosimetric characteristics such as small size (sensitive area of 7.00 mm 2 ), high sensitivity and low dark current (≅ 300 pA, at 0 V) together with low-cost and wide availability. The Panoramic facility is an irradiator Type II with absorbed dose certificated by International Dose Assurance Service (IDAS) offered by the International Agency Energy Atomic (IAEA). The charge registered by the diode as a function of the absorbed dose was in excellent agreement with that one calibrated by IDAS. Besides this, the easy handling and fast response of the SFH00206 diode compared to Fricke chemical dosimeters encouraged us to perform dose mapping around the source. (author)

  17. ORANGE: a Monte Carlo dose engine for radiotherapy

    International Nuclear Information System (INIS)

    Zee, W van der; Hogenbirk, A; Marck, S C van der

    2005-01-01

    This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning

  18. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms

    International Nuclear Information System (INIS)

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-01-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1 mSv y"−"1 for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. - Highlights: • Consumer products considered that NORM would be included should be regulated. • 44 products were collected and its gamma activities were measured with HPGe detector. • Through Monte Carlo simulation, organ equivalent doses and effective doses on human phantom were calculated. • All annual effective doses for the products were evaluated as lower than dose limit for the public.

  19. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Gu, X; Tan, J; Hassan-Rezaeian, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Graves, Y [University of California, San Diego, La Jolla, CA (United States)

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashion in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion

  20. A Monte Carlo Study of dose enhancement according to the enhancement agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Kim, Chang Soo [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of); Hwang, Chul Hwan [Dept. of Radiation Oncology, Pusan National University Hospital, Busan (Korea, Republic of)

    2017-03-15

    Dose enhancement effects at megavoltage (MV) X and γ-ray energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide (Fe2O3) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co60 γ-ray were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

  1. DEEP code to calculate dose equivalents in human phantom for external photon exposure by Monte Carlo method

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1991-01-01

    The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)

  2. Entrance surface dose distribution and organ dose assessment for cone-beam computed tomography using measurements and Monte Carlo simulations with voxel phantoms

    Science.gov (United States)

    Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.

    2017-11-01

    Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the

  3. OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: absorbed dose and biologically effective dose considerations

    International Nuclear Information System (INIS)

    Petitguillaume, A.; Broggio, D.; Franck, D.; Desbree, A.; Bernardini, M.; Labriolle Vaylet, C. de

    2014-01-01

    For targeted radionuclide therapies, treatment planning usually consists of the administration of standard activities without accounting for the patient-specific activity distribution, pharmacokinetics and dosimetry to organs at risk. The OEDIPE software is a user-friendly interface which has an automation level suitable for performing personalized Monte Carlo 3D dosimetry for diagnostic and therapeutic radionuclide administrations. Mean absorbed doses to regions of interest (ROIs), isodose curves superimposed on a personalized anatomical model of the patient and dose-volume histograms can be extracted from the absorbed dose 3D distribution. Moreover, to account for the differences in radiosensitivity between tumoral and healthy tissues, additional functionalities have been implemented to calculate the 3D distribution of the biologically effective dose (BED), mean BEDs to ROIs, isoBED curves and BED-volume histograms along with the Equivalent Uniform Biologically Effective Dose (EUD) to ROIs. Finally, optimization tools are available for treatment planning optimization using either the absorbed dose or BED distributions. These tools enable one to calculate the maximal injectable activity which meets tolerance criteria to organs at risk for a chosen fractionation protocol. This paper describes the functionalities available in the latest version of the OEDIPE software to perform personalized Monte Carlo dosimetry and treatment planning optimization in targeted radionuclide therapies. (authors)

  4. Monte Carlo uncertainty analysis of dose estimates in radiochromic film dosimetry with single-channel and multichannel algorithms.

    Science.gov (United States)

    Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio

    2018-03-01

    To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Skin dose mapping for fluoroscopically guided interventions.

    Science.gov (United States)

    Johnson, Perry B; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E

    2011-10-01

    To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional

  6. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    Energy Technology Data Exchange (ETDEWEB)

    Li, JS; Fan, J; Ma, C-M [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom. MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.

  7. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    International Nuclear Information System (INIS)

    Li, JS; Fan, J; Ma, C-M

    2015-01-01

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom. MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc

  8. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy.

    Directory of Open Access Journals (Sweden)

    Luciana Tourinho Campos

    Full Text Available The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®; it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86, which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21, which is also from BEBIG.The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the photoelectric effect, pair

  9. Correction of CT artifacts and its influence on Monte Carlo dose calculations

    International Nuclear Information System (INIS)

    Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank

    2007-01-01

    Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts

  10. Measurement of dose rates and Monte Carlo analysis of neutrons in a spent-fuel shipping vessel

    International Nuclear Information System (INIS)

    Ueki, K.; Namito, Y.; Fuse, T.

    1986-01-01

    On-board experiments were carried out in a spent-fuel shipping vessel, the Pacific Swan, in which 13 casks of TN-12A and Excellox 3 were loaded in five holds, and neutron and gamma-ray dose rates were measured on the hatch covers of the holds. Before shipping those casks, dose rates were also measured on the cask surfaces, one by one, to eliminate radiation from other casks. The Monte Carlo coupling technique was employed successfully to analyze the measured neutron dose rate distributions in the spent-fuel shipping vessel. Through this study, the Monte Carlo coupling code system, MORSE-CG/CASK-VESSEL, on which the MORSE-CG code was based, was established. The agreement between the measured and the calculated neutron dose rates on the TN-12A cask surface was quite satisfactory. The calculated neutron dose rates agreed with the measured values within a factor of 1.5 on the hold 3 hatch cover and within a factor of 2 on the hold 5 hatch cover in which the concrete shield was fixed in the Pacific Swan

  11. Evaluation of equivalent doses in 18F PET/CT using the Monte Carlo method with MCNPX code

    International Nuclear Information System (INIS)

    Belinato, Walmir; Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira; Souza, Divanizia N.

    2017-01-01

    The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients

  12. Dose mapping role in gamma irradiation industry

    International Nuclear Information System (INIS)

    Noriah Mod Ali; John Konsoh Sangau; Mazni Abd Latif

    2002-01-01

    In this studies, the role of dosimetry activity in gamma irradiator was discussed. Dose distribution in the irradiator, which is a main needs in irradiator or chamber commissioning. This distribution data were used to confirm the dosimetry parameters i.e. exposure time, maximum and minimum dose map/points, and dose distribution - in which were used as guidelines for optimum product irradiation. (Author)

  13. Development and validation of Monte Carlo dose computations for contrast-enhanced stereotactic synchrotron radiation therapy

    International Nuclear Information System (INIS)

    Vautrin, M.

    2011-01-01

    Contrast-enhanced stereotactic synchrotron radiation therapy (SSRT) is an innovative technique based on localized dose-enhancement effects obtained by reinforced photoelectric absorption in the tumor. Medium energy monochromatic X-rays (50 - 100 keV) are used for irradiating tumors previously loaded with a high-Z element. Clinical trials of SSRT are being prepared at the European Synchrotron Radiation Facility (ESRF), an iodinated contrast agent will be used. In order to compute the energy deposited in the patient (dose), a dedicated treatment planning system (TPS) has been developed for the clinical trials, based on the ISOgray TPS. This work focuses on the SSRT specific modifications of the TPS, especially to the PENELOPE-based Monte Carlo dose engine. The TPS uses a dedicated Monte Carlo simulation of medium energy polarized photons to compute the deposited energy in the patient. Simulations are performed considering the synchrotron source, the modeled beamline geometry and finally the patient. Specific materials were also implemented in the voxelized geometry of the patient, to consider iodine concentrations in the tumor. The computation process has been optimized and parallelized. Finally a specific computation of absolute doses and associated irradiation times (instead of monitor units) was implemented. The dedicated TPS was validated with depth dose curves, dose profiles and absolute dose measurements performed at the ESRF in a water tank and solid water phantoms with or without bone slabs. (author) [fr

  14. 3D dose imaging for arc therapy techniques by means of Fricke gel dosimetry and dedicated Monte Carlo simulations

    International Nuclear Information System (INIS)

    Valente, Mauro; Castellano, Gustavo; Sosa, Carlos

    2008-01-01

    Full text: Radiotherapy is one of the most effective techniques for tumour treatment and control. During the last years, significant developments were performed regarding both irradiation technology and techniques. However, accurate 3D dosimetric techniques are nowadays not commercially available. Due to their intrinsic characteristics, traditional dosimetric techniques like ionisation chamber, film dosimetry or TLD do not offer proper continuous 3D dose mapping. The possibility of using ferrous sulphate (Fricke) dosimeters suitably fixed to a gel matrix, along with dedicated optical analysis methods, based on light transmission measurements for 3D absorbed dose imaging in tissue-equivalent materials, has become great interest in radiotherapy. Since Gore et al. showed in 1984 that the oxidation of ferrous ions to ferric ions still happen even when fixing the ferrous sulphate solution to a gelatine matrix, important efforts have been dedicated in developing and improving real continuous 3D dosimetric systems based on Fricke solution. The purpose of this work is to investigate the capability and suitability of Fricke gel dosimetry for arc therapy irradiations. The dosimetric system is mainly composed by Fricke gel dosimeters, suitably shaped in form of thin layers and optically analysed by means of visible light transmission measurements, acquiring sample images just before and after irradiation by means of a commercial flatbed-like scanner. Image acquisition, conversion to matrices and further analysis are accomplished by means of dedicated developed software, which includes suitable algorithms for optical density differences calculation and corresponding absorbed dose conversion. Dedicated subroutines allow 3D dose imaging reconstruction from single layer information, by means of computer tomography-like algorithms. Also, dedicated Monte Carlo (PENELOPE) subroutines have been adapted in order to achieve accurate simulation of arc therapy irradiation techniques

  15. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    International Nuclear Information System (INIS)

    Akahane, K.; Kai, M.; Kusama, T.; Saito, K.

    2002-01-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated

  16. Dose estimation of patients in CT examinations using EGS4 Monte-Carlo simulation of voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Akahane, K.; Kai, M.; Kusama, T. [Oita Univ., of Nursing and Health Sciences, Oita-Ken (Japan); Saito, K. [JAERI, Ibaraki-ken (Japan)

    2002-07-01

    A voxel phantom based on CT images of one Japanese male have developed in Japan Atomic Energy Research Institute. Dose calculations of patients in X-ray CT examinations were performed using the voxel phantom and EGS4 Monte-Carlo simulation code. The organ doses of the patients were estimated.

  17. Monte Carlo Calculated Effective Dose to Teenage Girls from Computed Tomography Examinations

    International Nuclear Information System (INIS)

    Caon, M.; Bibbo, G.; Pattison, J.

    2000-01-01

    Effective doses from CT to paediatric patients are not common in the literature. This article reports some effective doses to teenage girls from CT examinations. The voxel computational model ADELAIDE, representative of a 14-year-old girl, was scaled in size by ±5% to represent also 11-12-year-old and 16-year-old girls. The EGS4 Monte Carlo code was used to calculate the effective dose from chest, abdomen and whole torso CT examinations to the three version of ADELAIDE using a 120 kV spectrum. For the whole torso CT examination, in order of increasing model size, the effective doses were 9.0, 8.2 and 7.8 mSv per 100 mA.s. Data are presented that allow the estimation of effective dose from CT examinations of the torso for girls between the ages of 11 and 16. (author)

  18. In situ biological dose mapping estimates the radiation burden delivered to 'spared' tissue between synchrotron X-ray microbeam radiotherapy tracks.

    Directory of Open Access Journals (Sweden)

    Kai Rothkamm

    Full Text Available Microbeam radiation therapy (MRT using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.

  19. Superficial dose distribution in breast for tangential radiation treatment, Monte Carlo evaluation of Eclipse algorithms in case of phantom and patient geometries

    International Nuclear Information System (INIS)

    Chakarova, Roumiana; Gustafsson, Magnus; Bäck, Anna; Drugge, Ninni; Palm, Åsa; Lindberg, Andreas; Berglund, Mattias

    2012-01-01

    Purpose: The aim of this study is to examine experimentally and by the Monte Carlo method the accuracy of the Eclipse Pencil Beam Convolution (PBC) and Analytical Anisotropic Algorithm (AAA) algorithms in the superficial region (0–2 cm) of the breast for tangential photon beams in a phantom case as well as in a number of patient geometries. The aim is also to identify differences in how the patient computer tomography data are handled by the treatment planning system and in the Monte Carlo simulations in order to reduce influences of these effects on the evaluation. Materials and methods: Measurements by thermoluminescent dosimeters and gafchromic film are performed for six MV tangential irradiation of the cylindrical solid water phantom. Tangential treatment of seven patients is investigated considering open beams. Dose distributions are obtained by the Eclipse PBC and AAA algorithms. Monte Carlo calculations are carried out by BEAMnrc/DOSXYZnrc code package. Calculations are performed with a calculation grid of 1.25 × 1.25 × 5 mm 3 for PBC and 2 × 2 × 5 mm 3 for AAA and Monte Carlo, respectively. Dose comparison is performed in both dose and spatial domains by the normalized dose difference method. Results: Experimental profiles from the surface toward the geometrical center of the cylindrical phantom are obtained at the beam entrance and exit as well as laterally. Full dose is received beyond 2 mm in the lateral superficial region and beyond 7 mm at the beam entrance. Good agreement between experimental, Monte Carlo and AAA data is obtained, whereas PBC is seen to underestimate the entrance dose the first 3–4 mm and the lateral dose by more than 5% up to 8 mm depth. In the patient cases considered, AAA and Monte Carlo show agreement within 3% dose and 4 mm spatial tolerance. PBC systematically underestimates the dose at the breast apex. The dimensions of region out of tolerance vary with the local breast shape. Different interpretations of patient

  20. A comparison study for dose calculation in radiation therapy: pencil beam Kernel based vs. Monte Carlo simulation vs. measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Kwang-Ho; Suh, Tae-Suk; Lee, Hyoung-Koo; Choe, Bo-Young [The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Hoi-Nam; Yoon, Sei-Chul [Kangnam St. Mary' s Hospital, Seoul (Korea, Republic of)

    2002-07-01

    Accurate dose calculation in radiation treatment planning is most important for successful treatment. Since human body is composed of various materials and not an ideal shape, it is not easy to calculate the accurate effective dose in the patients. Many methods have been proposed to solve inhomogeneity and surface contour problems. Monte Carlo simulations are regarded as the most accurate method, but it is not appropriate for routine planning because it takes so much time. Pencil beam kernel based convolution/superposition methods were also proposed to correct those effects. Nowadays, many commercial treatment planning systems have adopted this algorithm as a dose calculation engine. The purpose of this study is to verify the accuracy of the dose calculated from pencil beam kernel based treatment planning system comparing to Monte Carlo simulations and measurements especially in inhomogeneous region. Home-made inhomogeneous phantom, Helax-TMS ver. 6.0 and Monte Carlo code BEAMnrc and DOSXYZnrc were used in this study. In homogeneous media, the accuracy was acceptable but in inhomogeneous media, the errors were more significant. However in general clinical situation, pencil beam kernel based convolution algorithm is thought to be a valuable tool to calculate the dose.

  1. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    Science.gov (United States)

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  2. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  3. A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.

    Science.gov (United States)

    Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei

    2014-12-16

    The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately

  4. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: a comparison between EGS4, EGSnrc, and MCNP.

    Science.gov (United States)

    Wang, R; Li, X A

    2001-02-01

    The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.

  5. Monte Carlo dose calculation of microbeam in a lung phantom

    International Nuclear Information System (INIS)

    Company, F.Z.; Mino, C.; Mino, F.

    1998-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate permit investigation of the application of an array of closely spaced, parallel or converging microplanar beams in radiotherapy. The proposed techniques takes advantage of the hypothesised repair mechanism of capillary cells between alternate microbeam zones, which regenerates the lethally irradiated endothelial cells. The lateral and depth doses of 100 keV microplanar beams are investigated for different beam dimensions and spacings in a tissue, lung and tissue/lung/tissue phantom. The EGS4 Monte Carlo code is used to calculate dose profiles at different depth and bundles of beams (up to 20x20cm square cross section). The maximum dose on the beam axis (peak) and the minimum interbeam dose (valley) are compared at different depths, bundles, heights, widths and beam spacings. Relatively high peak to valley ratios are observed in the lung region, suggesting an ideal environment for microbeam radiotherapy. For a single field, the ratio at the tissue/lung interface will set the maximum dose to the target volume. However, in clinical application, several fields would be involved allowing much greater doses to be applied for the elimination of cancer cells. We conclude therefore that multifield microbeam therapy has the potential to achieve useful therapeutic ratios for the treatment of lung cancer

  6. SU-F-I-53: Coded Aperture Coherent Scatter Spectral Imaging of the Breast: A Monte Carlo Evaluation of Absorbed Dose

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R [Durham, NC (United States); Lakshmanan, M; Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States); Greenberg, J [Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scan protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to

  7. SU-F-T-619: Dose Evaluation of Specific Patient Plans Based On Monte Carlo Algorithm for a CyberKnife Stereotactic Radiosurgery System

    Energy Technology Data Exchange (ETDEWEB)

    Piao, J [PLA General Hospital, Beijing (China); PLA 302 Hospital, Beijing (China); Xu, S [PLA General Hospital, Beijing (China); Tsinghua University, Beijing (China); Wu, Z; Liu, Y [Tsinghua University, Beijing (China); Li, Y [Beihang University, Beijing (China); Qu, B [PLA General Hospital, Beijing (China); Duan, X [PLA 302 Hospital, Beijing (China)

    2016-06-15

    Purpose: This study will use Monte Carlo to simulate the Cyberknife system, and intend to develop the third-party tool to evaluate the dose verification of specific patient plans in TPS. Methods: By simulating the treatment head using the BEAMnrc and DOSXYZnrc software, the comparison between the calculated and measured data will be done to determine the beam parameters. The dose distribution calculated in the Raytracing, Monte Carlo algorithms of TPS (Multiplan Ver4.0.2) and in-house Monte Carlo simulation method for 30 patient plans, which included 10 head, lung and liver cases in each, were analyzed. The γ analysis with the combined 3mm/3% criteria would be introduced to quantitatively evaluate the difference of the accuracy between three algorithms. Results: More than 90% of the global error points were less than 2% for the comparison of the PDD and OAR curves after determining the mean energy and FWHM.The relative ideal Monte Carlo beam model had been established. Based on the quantitative evaluation of dose accuracy for three algorithms, the results of γ analysis shows that the passing rates (84.88±9.67% for head,98.83±1.05% for liver,98.26±1.87% for lung) of PTV in 30 plans between Monte Carlo simulation and TPS Monte Carlo algorithms were good. And the passing rates (95.93±3.12%,99.84±0.33% in each) of PTV in head and liver plans between Monte Carlo simulation and TPS Ray-tracing algorithms were also good. But the difference of DVHs in lung plans between Monte Carlo simulation and Ray-tracing algorithms was obvious, and the passing rate (51.263±38.964%) of γ criteria was not good. It is feasible that Monte Carlo simulation was used for verifying the dose distribution of patient plans. Conclusion: Monte Carlo simulation algorithm developed in the CyberKnife system of this study can be used as a reference tool for the third-party tool, which plays an important role in dose verification of patient plans. This work was supported in part by the grant

  8. SU-F-303-17: Real Time Dose Calculation of MRI Guided Co-60 Radiotherapy Treatments On Free Breathing Patients, Using a Motion Model and Fast Monte Carlo Dose Calculation

    International Nuclear Information System (INIS)

    Thomas, D; O’Connell, D; Lamb, J; Cao, M; Yang, Y; Agazaryan, N; Lee, P; Low, D

    2015-01-01

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment were generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments

  9. Monte Carlo based treatment planning for modulated electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michael C. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: mclee@reyes.stanford.edu; Deng Jun; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2001-08-01

    A Monte Carlo based treatment planning system for modulated electron radiation therapy (MERT) is presented. This new variation of intensity modulated radiation therapy (IMRT) utilizes an electron multileaf collimator (eMLC) to deliver non-uniform intensity maps at several electron energies. In this way, conformal dose distributions are delivered to irregular targets located a few centimetres below the surface while sparing deeper-lying normal anatomy. Planning for MERT begins with Monte Carlo generation of electron beamlets. Electrons are transported with proper in-air scattering and the dose is tallied in the phantom for each beamlet. An optimized beamlet plan may be calculated using inverse-planning methods. Step-and-shoot leaf sequences are generated for the intensity maps and dose distributions recalculated using Monte Carlo simulations. Here, scatter and leakage from the leaves are properly accounted for by transporting electrons through the eMLC geometry. The weights for the segments of the plan are re-optimized with the leaf positions fixed and bremsstrahlung leakage and electron scatter doses included. This optimization gives the final optimized plan. It is shown that a significant portion of the calculation time is spent transporting particles in the leaves. However, this is necessary since optimizing segment weights based on a model in which leaf transport is ignored results in an improperly optimized plan with overdosing of target and critical structures. A method of rapidly calculating the bremsstrahlung contribution is presented and shown to be an efficient solution to this problem. A homogeneous model target and a 2D breast plan are presented. The potential use of this tool in clinical planning is discussed. (author)

  10. SU-F-T-370: A Fast Monte Carlo Dose Engine for Gamma Knife

    Energy Technology Data Exchange (ETDEWEB)

    Song, T; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Li, Y [Beihang University, Beijing, Beijing (China)

    2016-06-15

    Purpose: To develop a fast Monte Carlo dose calculation algorithm for Gamma Knife. Methods: To make the simulation more efficient, we implemented the track repeating technique on GPU. We first use EGSnrc to pre-calculate the photon and secondary electron tracks in water from two mono-energy photons of 60Co. The total photon mean free paths for different materials and energies are obtained from NIST. During simulation, each entire photon track was first loaded to shared memory for each block, the incident original photon was then splitted to Nthread sub-photons, each thread transport one sub-photon, the Russian roulette technique was applied for scattered and bremsstrahlung photons. The resultant electrons from photon interactions are simulated by repeating the recorded electron tracks. The electron step length is stretched/shrunk proportionally based on the local density and stopping power ratios of the local material. Energy deposition in a voxel is proportional to the fraction of the equivalent step length in that voxel. To evaluate its accuracy, dose deposition in a 300mm*300mm*300mm water phantom is calculated, and compared to EGSnrc results. Results: Both PDD and OAR showed great agreements (within 0.5%) between our dose engine result and the EGSnrc result. It only takes less than 1 min for every simulation, being reduced up to ∼40 times compared to EGSnrc simulations. Conclusion: We have successfully developed a fast Monte Carlo dose engine for Gamma Knife.

  11. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.

    Science.gov (United States)

    Yoriyaz, H; Stabin, M G; dos Santos, A

    2001-04-01

    This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)

  12. Accuracy and Radiation Dose of CT-Based Attenuation Correction for Small Animal PET: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Yang, Ching-Ching; Chan, Kai-Chieh

    2013-06-01

    -Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18 F radioactivity concentration of 1.86x10 5 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The

  13. Monte Carlo Calculations of Dose to Medium and Dose to Water for Carbon Ion Beams in Various Media

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Petersen, Jørgen B.B.; Jäkel, Oliver

    treatment plans. Here, we quantisize the effect of dose to water vs. dose to medium for a series of typical target materials found in medical physics. 2     Material and Methods The Monte Carlo code FLUKA [Battistioni et al. 2007] is used to simulate the particle fluence spectrum in a series of target...... for water. This represents the case that our “detector” is an infinitesimal small non-perturbing entity made of water, where charged particle equilibrium can be assumed following the Bragg-Gray cavity theory. Dw and Dm are calculated for typical materials such as bone, brain, lung and soft-tissues using...

  14. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koch, Nicholas C; Newhauser, Wayne D

    2010-01-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  15. Applying graphics processor units to Monte Carlo dose calculation in radiation therapy

    Directory of Open Access Journals (Sweden)

    Bakhtiari M

    2010-01-01

    Full Text Available We investigate the potential in using of using a graphics processor unit (GPU for Monte-Carlo (MC-based radiation dose calculations. The percent depth dose (PDD of photons in a medium with known absorption and scattering coefficients is computed using a MC simulation running on both a standard CPU and a GPU. We demonstrate that the GPU′s capability for massive parallel processing provides a significant acceleration in the MC calculation, and offers a significant advantage for distributed stochastic simulations on a single computer. Harnessing this potential of GPUs will help in the early adoption of MC for routine planning in a clinical environment.

  16. Verification of the VEF photon beam model for dose calculations by the voxel-Monte-Carlo-algorithm

    International Nuclear Information System (INIS)

    Kriesen, S.; Fippel, M.

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tuebingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning. (orig.)

  17. [Verification of the VEF photon beam model for dose calculations by the Voxel-Monte-Carlo-Algorithm].

    Science.gov (United States)

    Kriesen, Stephan; Fippel, Matthias

    2005-01-01

    The VEF linac head model (VEF, virtual energy fluence) was developed at the University of Tübingen to determine the primary fluence for calculations of dose distributions in patients by the Voxel-Monte-Carlo-Algorithm (XVMC). This analytical model can be fitted to any therapy accelerator head by measuring only a few basic dose data; therefore, time-consuming Monte-Carlo simulations of the linac head become unnecessary. The aim of the present study was the verification of the VEF model by means of water-phantom measurements, as well as the comparison of this system with a common analytical linac head model of a commercial planning system (TMS, formerly HELAX or MDS Nordion, respectively). The results show that both the VEF and the TMS models can very well simulate the primary fluence. However, the VEF model proved superior in the simulations of scattered radiation and in the calculations of strongly irregular MLC fields. Thus, an accurate and clinically practicable tool for the determination of the primary fluence for Monte-Carlo-Simulations with photons was established, especially for the use in IMRT planning.

  18. Monte Carlo assessment of the dose rates produced by spent fuel from CANDU reactors

    International Nuclear Information System (INIS)

    Pantazi, Doina; Mateescu, Silvia; Stanciu, Marcela

    2003-01-01

    One of the technical measures considered for biological protection is radiation shielding. The implementation process of a spent fuel intermediate storage system at Cernavoda NPP includes an evolution in computation methods related to shielding evaluation: from using simpler computer codes, like MicroShield and QAD, to systems of codes, like SCALE (which contains few independent modules) and the multipurpose and multi-particles transport code MCNP, based on Monte Carlo method. The Monte Carlo assessment of the dose rates produced by CANDU type spent fuel, during its handling for the intermediate storage, is the main objective of this paper. The work had two main features: -establishing of geometrical models according to description mode used in code MCNP, capable to account for the specific characteristics of CANDU nuclear fuel; - confirming the correctness of proposed models, by comparing MCNP results and the related results obtained with other computer codes for shielding evaluation and dose rates calculations. (authors)

  19. Monte Carlo characterisation of the Dose Magnifying Glass for proton therapy quality assurance

    International Nuclear Information System (INIS)

    Merchant, A H; Guatelli, S; Petesecca, M; Jackson, M; Rozenfeld, A B

    2017-01-01

    A Geant4 Monte Carlo simulation study was carried out to characterise a novel silicon strip detector, the Dose Magnifying Glass (DMG), for use in proton therapy Quality Assurance. We investigated the possibility to use DMG to determine the energy of the incident proton beam. The advantages of DMG are quick response, easy operation and high spatial resolution. In this work we theoretically proved that DMG can be used for QA in the determination of the energy of the incident proton beam, for ocular and prostate cancer therapy. The study was performed by means of Monte Carlo simulations Experimental measurements are currently on their way to confirm the results of this simulation study. (paper)

  20. Monte Carlo characterisation of the Dose Magnifying Glass for proton therapy quality assurance

    Science.gov (United States)

    Merchant, A. H.; Guatelli, S.; Petesecca, M.; Jackson, M.; Rozenfeld, A. B.

    2017-01-01

    A Geant4 Monte Carlo simulation study was carried out to characterise a novel silicon strip detector, the Dose Magnifying Glass (DMG), for use in proton therapy Quality Assurance. We investigated the possibility to use DMG to determine the energy of the incident proton beam. The advantages of DMG are quick response, easy operation and high spatial resolution. In this work we theoretically proved that DMG can be used for QA in the determination of the energy of the incident proton beam, for ocular and prostate cancer therapy. The study was performed by means of Monte Carlo simulations Experimental measurements are currently on their way to confirm the results of this simulation study.

  1. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  2. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  3. The calculation of dose from photon exposures using reference human phantoms and Monte Carlo methods. Pt. 5

    International Nuclear Information System (INIS)

    Petoussi, N.; Zankl, M.; Williams, G.; Veit, R.; Drexler, G.

    1987-01-01

    There has been some evidence that cervical cancer patients who were treated by radiotherapy, had an increased incidence of second primary cancers noticeable 15 years or more after the radiotherapy. The data suggested that high dose pelvic irradiation was associated with increase in cancers of the bladder, kidneys, rectum, ovaries, corpus uteri, and non-Hodgkin's lymphoma but not leukemia (Kleinerman et al., 1982, Morton 1973). The aim of the present work is to estimate the absorbed dose, due to radiotherapy treatment for cervival cancer, to various organs and tissues in the body. Monte Carlo calculations were performed to calculate the organ absorbed doses resulting from intracavitary sources such as ovoids and applicators filled or loaded with radium, Co-60 and Cs-137. For that purpose a routine which simulates an internal source was constructed and added to the existing Monte Carlo code (GSF-Bericht S-885, Kramer et al.). Calculations were also made for external beam therapy. Various anterior, posterior and lateral fields were applied, resulting from megavoltage, Co-60 and Cs-137 therapy machines. The calculated organ doses are tabulated in three different ways: as organ dose per air Kerma in the reference field, according to the recommendations of the International Commission on Radiation Units and Measurements (ICRU Report No 38, 1985); as organ dose per surface dose and as organ dose per tissue dose at Point B. (orig.)

  4. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    International Nuclear Information System (INIS)

    Wang, Yan; Zhou, Jiliu; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Shen, Dinggang; Wu, Xi; Lalush, David S; Lin, Weili

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures. (paper)

  5. Evaluation of equivalent doses in {sup 18}F PET/CT using the Monte Carlo method with MCNPX code; Avaliação de doses equivalentes em PET/CT com {sup 18}F utilizando o Método Monte Carlo com código MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, Walmir [Instituto Federal de Bahia (IFBA), Vitória da Conquista, BA (Brazil); Santos, William Souza; Perini, Ana Paula; Neves, Lucio Pereira [Universidade Federal de Uberlândia (UFU), Uberlândia, MG (Brazil). Instituto de Física; Caldas, Linda V. E. [Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil); Souza, Divanizia N. [Universidade Federal de Sergipe (UFS), São Cristóvão, SE (Brazil)

    2017-07-01

    The present work used the Monte Carlo method (MMC), specifically the Monte Carlo NParticle - MCNPX, to simulate the interaction of radiation involving photons and particles, such as positrons and electrons, with virtual adult anthropomorphic simulators on PET / CT scans and to determine absorbed and equivalent doses in adult male and female patients.

  6. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

    Science.gov (United States)

    Ziegenhein, Peter; Pirner, Sven; Kamerling, Cornelis Ph; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  7. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  8. TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T; Bush, K [Stanford School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identify the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.

  9. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Grassberger, C; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Dowdell, S [Illawarra Shoalhaven Local Health District, Wollongong (Australia)

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  10. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-01-01

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  11. Dose distribution close to metal implants in Gamma Knife Radiosurgery: A Monte Carlo study

    International Nuclear Information System (INIS)

    Cheung, Joel Y.C.; Yu, K.N.; Chan, Josie F.K.; Ho, Robert T.K.; Yu, C.P.

    2003-01-01

    Materials with high atomic numbers favor the occurrence of the photoelectric effect when they are irradiated with gamma rays. Therefore, the photoelectric effects of metal implants within the target regions in Gamma Knife Radiosurgery are worth studying. In the present work, Monte Carlo simulations using EGS4 were employed to investigate the resulting dose enhancements. A dose enhancement as high as 10% was observed close to a platinum implant along the x and y axes, while no significant dose enhancements were observed for silver, stainless steel 301, and titanium ones. A dose enhancement as high as 20% was observed close to the platinum implant along the z axis at the superior position of the metal-phantom interface and was 10% higher for other metal implants

  12. Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.

    Science.gov (United States)

    Jensen, Michael D; Abdellatif, Ady; Chen, Jeff; Wong, Eugene

    2012-04-21

    Respiratory motion may lead to dose errors when treating thoracic and abdominal tumours with radiotherapy. The interplay between complex multileaf collimator patterns and patient respiratory motion could result in unintuitive dose changes. We have developed a treatment reconstruction simulation computer code that accounts for interplay effects by combining multileaf collimator controller log files, respiratory trace log files, 4DCT images and a Monte Carlo dose calculator. Two three-dimensional (3D) IMRT step-and-shoot plans, a concave target and integrated boost were delivered to a 1D rigid motion phantom. Three sets of experiments were performed with 100%, 50% and 25% duty cycle gating. The log files were collected, and five simulation types were performed on each data set: continuous isocentre shift, discrete isocentre shift, 4DCT, 4DCT delivery average and 4DCT plan average. Analysis was performed using 3D gamma analysis with passing criteria of 2%, 2 mm. The simulation framework was able to demonstrate that a single fraction of the integrated boost plan was more sensitive to interplay effects than the concave target. Gating was shown to reduce the interplay effects. We have developed a 4DCT Monte Carlo simulation method that accounts for IMRT interplay effects with respiratory motion by utilizing delivery log files.

  13. Monte Carlo calculations for doses in organs and tissues to oral radiography

    International Nuclear Information System (INIS)

    Sampaio, E.V.M.

    1985-01-01

    Using the MIRD 5 phantom and Monte Carlo technique, organ doses in patients undergoing external dental examination were calculated taking into account the different x-ray beam geometries and the various possible positions of x-ray source with regard to the head of the patient. It was necessary to introduce in the original computer program a new source description specific for dental examinations. To have a realistic evaluation of organ doses during dental examination it was necessary to introduce a new region in the phantom heat which characterizes the teeth and salivary glands. The attenuation of the x-ray beam by the lead shield of the radiographic film was also introduced in the calculation. (author)

  14. Image quality and dose assessment in digital breast tomosynthesis: A Monte Carlo study

    International Nuclear Information System (INIS)

    Baptista, M.; Di Maria, S.; Oliveira, N.; Matela, N.; Janeiro, L.; Almeida, P.; Vaz, P.

    2014-01-01

    Mammography is considered a standard technique for the early detection of breast cancer. However, its sensitivity is limited essentially due to the issue of the overlapping breast tissue. This limitation can be partially overcome, with a relatively new technique, called digital breast tomosynthesis (DBT). For this technique, optimization of acquisition parameters which maximize image quality, whilst complying with the ALARA principle, continues to be an area of considerable research. The aim of this work was to study the best quantum energies that optimize the image quality with the lowest achievable dose in DBT and compare these results with the digital mammography (DM) ones. Monte Carlo simulations were performed using the state-of-the-art computer program MCNPX 2.7.0 in order to generate several 2D cranio-caudal (CC) projections obtained during an acquisition of a standard DBT examination. Moreover, glandular absorbed doses and photon flux calculations, for each projection image, were performed. A homogeneous breast computational phantom with 50%/50% glandular/adipose tissue composition was used and two compressed breast thicknesses were evaluated: 4 cm and 8 cm. The simulated projection images were afterwards reconstructed with an algebraic reconstruction tool and the signal difference to noise ratio (SDNR) was calculated in order to evaluate the image quality in DBT and DM. Finally, a thorough comparison between the results obtained in terms of SDNR and dose assessment in DBT and DM was performed. - Highlights: • Optimization of the image quality in digital breast tomosynthesis. • Calculation of photon energies that maximize the signal difference to noise ratio. • Projections images and dose calculations through the Monte Carlo (MC) method. • Tumor masses and microcalcifications included in the MC model. • A dose saving of about 30% can be reached if optimal photon energies are used

  15. Comparison of measured and Monte Carlo calculated dose distributions from circular collimators for radiosurgical beams

    International Nuclear Information System (INIS)

    Esnaashari, K. N.; Allahverdi, M.; Gharaati, H.; Shahriari, M.

    2007-01-01

    Stereotactic radiosurgery is an important clinical tool for the treatment of small lesions in the brain, including benign conditions, malignant and localized metastatic tumors. A dosimetry study was performed for Elekta 'Synergy S' as a dedicated Stereotactic radiosurgery unit, capable of generating circular radiation fields with diameters of 1-5 cm at iso centre using the BEAM/EGS4 Monte Carlo code. Materials and Methods: The linear accelerator Elekta Synergy S equipped with a set of 5 circular collimators from 10 mm to 50 mm in diameter at iso centre distance was used. The cones were inserted in a base plate mounted on the collimator linac head. A PinPoint chamber and Wellhofer water tank chamber were selected for clinical dosimetry of 6 MV photon beams. The results of simulations using the Monte Carlo system BEAM/EGS4 to model the beam geometry were compared with dose measurements. Results: An excellent agreement was found between Monte Carlo calculated and measured percentage depth dose and lateral dose profiles which were performed in water phantom for circular cones with 1, 2, 3, 4 and 5 cm in diameter. The comparison between calculation and measurements showed up to 0.5 % or 1 m m difference for all field sizes. The penumbra (80-20%) results at 5 cm depth in water phantom and SSD=95 ranged from 1.5 to 2.1 mm for circular collimators with diameter 1 to 5 cm. Conclusion: This study showed that BEAMnrc code has been accurate in modeling Synergy S linear accelerator equipped with circular collimators

  16. PCXMC. A PC-based Monte Carlo program for calculating patient doses in medical x-ray examinations

    International Nuclear Information System (INIS)

    Tapiovaara, M.; Lakkisto, M.; Servomaa, A.

    1997-02-01

    The report describes PCXMC, a Monte Carlo program for calculating patients' organ doses and the effective dose in medical x-ray examinations. The organs considered are: the active bone marrow, adrenals, brain, breasts, colon (upper and lower large intestine), gall bladder, heats, kidneys, liver, lungs, muscle, oesophagus, ovaries, pancreas, skeleton, skin, small intestine, spleen, stomach, testes, thymes, thyroid, urinary bladder, and uterus. (42 refs.)

  17. Environmental dose rate assessment of ITER using the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2014-01-01

    Full Text Available Exposure to radiation is one of the main sources of risk to staff employed in reactor facilities. The staff of a tokamak is exposed to a wide range of neutrons and photons around the tokamak hall. The International Thermonuclear Experimental Reactor (ITER is a nuclear fusion engineering project and the most advanced experimental tokamak in the world. From the radiobiological point of view, ITER dose rates assessment is particularly important. The aim of this study is the assessment of the amount of radiation in ITER during its normal operation in a radial direction from the plasma chamber to the tokamak hall. To achieve this goal, the ITER system and its components were simulated by the Monte Carlo method using the MCNPX 2.6.0 code. Furthermore, the equivalent dose rates of some radiosensitive organs of the human body were calculated by using the medical internal radiation dose phantom. Our study is based on the deuterium-tritium plasma burning by 14.1 MeV neutron production and also photon radiation due to neutron activation. As our results show, the total equivalent dose rate on the outside of the bioshield wall of the tokamak hall is about 1 mSv per year, which is less than the annual occupational dose rate limit during the normal operation of ITER. Also, equivalent dose rates of radiosensitive organs have shown that the maximum dose rate belongs to the kidney. The data may help calculate how long the staff can stay in such an environment, before the equivalent dose rates reach the whole-body dose limits.

  18. TU-C-17A-12: Towards a Passively Optimized Phase-Space Monte Carlo (POPMC) Treatment Planning Method: A Proof of Principle

    International Nuclear Information System (INIS)

    Yang, Y M; Bednarz, B; Zankowski, C; Svatos, M

    2014-01-01

    Purpose: The advent of on-line/off-line adaptive, and biologically-conformal radiation therapy has led to a need for treatment planning solutions that utilize voxel-specific penalties, requiring optimization over a large solution space that is performed quickly, and the dose in each voxel calculated accurately. This work proposes a “passive” optimization framework, which is executed concurrently during Monte Carlo dose calculation, evaluating the cost/benefit of each history during transport, and creates a passively optimized fluence map. Methods: The Monte Carlo code Geant4 v9.6 was used for this study. The standard voxel geometry implementation was modified to support the passive optimization framework, with voxel-specific optimization parameters. Dose-benefit functions, which will increase a particle history’s weight upon dose deposition, were defined in a central collection of voxels to effectively create target structures. Histories that deposit energy to voxels are reweighted based on a voxel’s dose multiplied by its cost/benefit value. Upon full termination of each history, the dose contributions of that history are reweighted to reflect a contribution proportional to the history’s final weight. A parallel-planar 1.25 MeV photon fluence is transported through the geometry, and re-weighted at each dose deposition step. The resulting weight is tallied with the incident spatial and directional coordinates in a phase-space distribution. Results: A uniform incident fluence was reweighted during MC dose calculations to create an optimized fluence map which would generate dose profiles in target volumes that exhibit the same dose characteristics as the prescribed optimization parameters. An optimized dose profile, calculated concurrently with the phase-space, reflects the resulting dose distribution. Conclusion: This study demonstrated the feasibility of passively optimizing an incident fluence map during Monte Carlo dose calculations. The flexibility of

  19. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  20. SU-E-T-256: Development of a Monte Carlo-Based Dose-Calculation System in a Cloud Environment for IMRT and VMAT Dosimetric Verification

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y [Tokai University School of Medicine, Isehara, Kanagawa (Japan)

    2015-06-15

    Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057.

  1. SU-E-T-256: Development of a Monte Carlo-Based Dose-Calculation System in a Cloud Environment for IMRT and VMAT Dosimetric Verification

    International Nuclear Information System (INIS)

    Fujita, Y

    2015-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) are techniques that are widely used for treating cancer due to better target coverage and critical structure sparing. The increasing complexity of IMRT and VMAT plans leads to decreases in dose calculation accuracy. Monte Carlo simulations are the most accurate method for the determination of dose distributions in patients. However, the simulation settings for modeling an accurate treatment head are very complex and time consuming. The purpose of this work is to report our implementation of a simple Monte Carlo simulation system in a cloud-computing environment for dosimetric verification of IMRT and VMAT plans. Methods: Monte Carlo simulations of a Varian Clinac linear accelerator were performed using the BEAMnrc code, and dose distributions were calculated using the DOSXYZnrc code. Input files for the simulations were automatically generated from DICOM RT files by the developed web application. We therefore must only upload the DICOM RT files through the web interface, and the simulations are run in the cloud. The calculated dose distributions were exported to RT Dose files that can be downloaded through the web interface. The accuracy of the calculated dose distribution was verified by dose measurements. Results: IMRT and VMAT simulations were performed and good agreement results were observed for measured and MC dose comparison. Gamma analysis with a 3% dose and 3 mm DTA criteria shows a mean gamma index value of 95% for the studied cases. Conclusion: A Monte Carlo-based dose calculation system has been successfully implemented in a cloud environment. The developed system can be used for independent dose verification of IMRT and VMAT plans in routine clinical practice. The system will also be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems. This work was supported by JSPS KAKENHI Grant Number 25861057

  2. Measurement-based Monte Carlo simulation of high definition dose evaluation for nasopharyngeal cancer patients treated by using intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Yeh, C.Y.; Tung, C.J.; Lee, C.C.; Lin, M.H.; Chao, T.C.

    2014-01-01

    Measurement-based Monte Carlo (MBMC) simulation using a high definition (HD) phantom was used to evaluate the dose distribution in nasopharyngeal cancer (NPC) patients treated with intensity modulated radiation therapy (IMRT). Around nasopharyngeal cavity, there exists many small volume organs-at-risk (OARs) such as the optic nerves, auditory nerves, cochlea, and semicircular canal which necessitate the use of a high definition phantom for accurate and correct dose evaluation. The aim of this research was to study the advantages of using an HD phantom for MBMC simulation in NPC patients treated with IMRT. The MBMC simulation in this study was based on the IMRT treatment plan of three NPC patients generated by the anisotropic analytical algorithm (AAA) of the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA, USA) using a calculation grid of 2 mm 2 . The NPC tumor was treated to a cumulative dose of 7000 cGy in 35 fractions using the shrinking-field sequential IMRT (SIMRT) method. The BEAMnrc MC Code was used to simulate a Varian EX21 linear accelerator treatment head. The HD phantom contained 0.5 × 0.5 × 1 mm 3 voxels for the nasopharyngeal area and 0.5 × 0.5 × 3 mm 3 for the rest of the head area. An efficiency map was obtained for the amorphous silicon aS1000 electronic portal imaging device (EPID) to adjust the weighting of each particle in the phase-space file for each IMRT beam. Our analysis revealed that small volume organs such as the eighth cranial nerve, semicircular canal, cochlea and external auditory canal showed an absolute dose difference of ≥200 cGy, while the dose difference for larger organs such as the parotid glands and tumor was negligible for the MBMC simulation using the HD phantom. The HD phantom was found to be suitable for Monte Carlo dose volume analysis of small volume organs. - Highlights: • HD dose evaluation for IMRT of NPC patients have been verified by the MC method. • MC results shows

  3. Fast dose planning Monte Carlo simulations in inhomogeneous phantoms submerged in uniform, static magnetic fields

    International Nuclear Information System (INIS)

    Yanez, R.; Dempsey, J. F.

    2007-01-01

    We present studies in support of the development of a magnetic resonance imaging (MRI) guided intensity modulated radiation therapy (IMRT) device for the treatment of cancer patients. Fast and accurate computation of the absorbed ionizing radiation dose delivered in the presence of the MRI magnetic field are required for clinical implementation. The fast Monte Carlo simulation code DPM, optimized for radiotherapy treatment planning, is modified to simulate absorbed doses in uniform, static magnetic fields, and benchmarked against PENELOPE. Simulations of dose deposition in inhomogeneous phantoms in which a low density material is sandwiched in water shows that a lower MRI field strength (0.3 T) is to prefer in order to avoid dose build-up near material boundaries. (authors)

  4. Adjoint electron Monte Carlo calculations

    International Nuclear Information System (INIS)

    Jordan, T.M.

    1986-01-01

    Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment

  5. Studies on reduction of dosimeter used in the product dose mapping process at Sinagama Plant

    International Nuclear Information System (INIS)

    Sofian Ibrahim; Syuhada Ramli; Cosmos George; Zarina Mohd Nor; Kamarudin Buyong; Shahidan Yob; Nor Ishadi Ismail; Mohd Sidek Othman; Ahsanulkhaliqin Abdul Wahab; Mohd Khairul Azfar Ramli

    2012-01-01

    Product dose mapping is the determination of the best product loading configuration which will be used during routine sterilization. In product dose mapping, dosimeters are placed throughout products at strategic locations to determine the zones of minimum and maximum dose. On previous Sinagama's product dose mapping method, a total of 240 unit's ceric-cerous dosimeter been used for a tote. Based on the data obtained from Irradiator Dose Mapping Report in 2004 and data from recent studies, the number of dosimeter to be used in product dose mapping can be reduced to 28 units without sacrificing precision and accuracy of the dose mapping results. This also led changes of the placing dosimeter method from Plane system to Coordinate system. Reduction of 88 % on dosimeters usage will directly reduce the cost of expenses on dosimeter, time and labor. (author)

  6. Characterization of 60Co dose distribution using BEAMnrc Monte Carlo code

    International Nuclear Information System (INIS)

    Abuissa, M. I. M.

    2012-12-01

    In this study BEAMnrc based on EGSnrc as Monte Carlo code has been used for modeling and simulating 6 0C o machine in radioisotope centre of Khartoum (RICK), Two fields size ( 5 cm x 5 cm and 35 cm x 35 cm), were been studied, to define the characterization of 6 0C o machine and to investigate the effect of increasing the surface to skin distance (SSD) on the 6 0C o machine properties, e.g.; beam profile and percentage depth dose (Pdd). For the narrow field size there is a small change observed in the curves representing beam profile and the percentage depth dose when increasing the distance by 5 cm, for the wide fi ld size there relatively clear different in curves. The study results been compared with other previous studies and clear consistence observed. (Author)

  7. Dosimetric control of radiotherapy treatments by Monte Carlo simulation of transmitted portal dose image

    International Nuclear Information System (INIS)

    Badel, Jean-Noel

    2009-01-01

    This research thesis addresses the dosimetric control of radiotherapy treatments by using amorphous silicon digital portal imagery. In a first part, the author reports the analysis of the dosimetric abilities of the imager (iViewGT) which is used in the radiotherapy department. The stability of the imager response on a short and on a long term has been studied. A relationship between the image grey level and the dose has been established for a reference irradiation field. The influence of irradiation parameters on the grey level variation with respect to the dose has been assessed. The obtained results show the possibility to use this system for dosimetry provided that a precise calibration is performed while taking the most influencing irradiation parameters into account, i.e. photon beam nominal energy, field size, and patient thickness. The author reports the development of a Monte Carlo simulation to model the imager response. It models the accelerator head by a generalized source point. Space and energy distributions of photons are calculated. This modelling can also be applied to the calculation of dose distribution within a patient, or to study physical interactions in the accelerator head. Then, the author explores a new approach to dose portal image prediction within the frame of an in vivo dosimetric control. He computes the image transmitted through the patient by Monte Carlo simulation, and measures the portal image of the irradiation field without the patient. Validation experiments are reported, and problems to be solved are highlighted (computation time, improvement of the collimator simulation) [fr

  8. Mapping the outdoor gamma dose rate in Indonesia

    International Nuclear Information System (INIS)

    Iskandar, Dadong; Syarbaini, Sutarman; Bunawas, Kusdiana

    2008-01-01

    Full text: Indonesia is the largest archipelago in the world, comprising five main islands - Java, Sumatra, Sulawesi, Kalimantan and Papua - as well as 30 archipelagoes totaling 17,508 islands with about 6000 of those inhabited. Mapping the outdoor gamma dose rate in Indonesia is a research project conducted by National Nuclear Energy Agency since 2005 aiming to produce a baseline data map as an overview for planning purposes. In these three years 4 main islands has been measured. The grid system has been used in the research. In Sumatra Island the grid is 50 x 50 km 2 , while in Java 40 x 40 km 2 , in Kalimantan 60 x 60 km 2 , and in Sulawesi 40 x 40 km 2 . The gamma dose rates have been measured by Mini Gamma Ray Spectrometer Model GR-130 made by Exploranium-Canada. Figure 1 shows the map of outdoor gamma dose rate in Indonesia. Range of dose rate are in Sumatra from 22,96 ± 0,46 n Sv/h to 186,08 ± 3,72 n Sv/h, in Java 11,32 ± 0,72 n Sv/h to 127,54 ± 6,14 n Sv/h, in Kalimantan 10.72 ± 8.32 n Sv/h to 349,48 ± 57,21 n Sv/h, and in Sulawesi 17.7 ± 11,5 n Sv/h to 467 ± 102 n Sv/h. The arithmetic and geometric mean of dose rate in Indonesia are 68 n Sv/h and 53 n Sv/h, respectively. In general, outdoor gamma dose rate in Indonesia is in a normal range. There are some regions have anomaly of gamma dose rate, for examples at North Sumatra 186.08 ± 3,72 n Sv/h (N 2.12727, E 99.80909), at West Kalimantan 349,48 ± 57,21 n Sv/h (S 1.39507, E 110.57584), at West Sulawesi 487 ± 103 n Sv/h (S 2.95781, E 118.86995), etc. These data is very useful as a radiation baseline in Indonesia. (author)

  9. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    Energy Technology Data Exchange (ETDEWEB)

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André; Phillips, Christophe; Plenevaux, Alain; Seret, Alain, E-mail: aseret@ulg.ac.be [Cyclotron Research Centre, University of Liège, Sart Tilman B30, Liège 4000 (Belgium)

    2015-10-15

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulations in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120

  10. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.

    Directory of Open Access Journals (Sweden)

    Chaeyeong Lee

    Full Text Available Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC by Monte Carlo simulation for beam commissioning. After the commissioning, a secondary neutron ambient dose from proton scanning nozzle (Gantry 1 was simulated and measured. This simulation was performed to evaluate beam properties such as percent depth dose curve, Bragg peak, and distal fall-off, so that they could be verified with measured data. Using the validated beam nozzle, the secondary neutron ambient dose was simulated and then compared with the measured ambient dose from Gantry 1. We calculated secondary neutron dose at several different points. We demonstrated the validity modeling a proton scanning nozzle system to evaluate various parameters using FLUKA. The measured secondary neutron ambient dose showed a similar tendency with the simulation result. This work will increase the knowledge necessary for the development of radiation safety technology in medical particle accelerators.

  11. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy

    Science.gov (United States)

    Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2018-01-01

    This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.

  12. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    Science.gov (United States)

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  13. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy

    CERN Document Server

    Mairani, A; Valente, M; Battistoni, G; Botta, F; Pedroli, G; Ferrari, A; Cremonesi, M; Di Dia, A; Ferrari, M; Fasso, A

    2011-01-01

    Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic...

  14. Problems following hippocampal irradiation in interventional radiologists - doses and potential effect:a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Cumak, V.; Morgun, A.; Bakhanova, O.; Loganovs'kij, K.; Loganovs'ka, T.; Marazziti, D.

    2015-01-01

    This study aimed at investigating radiation exposure of hippocampus in interventional medical professionals irradiated in the operating room, and to compare doses in the hippocampus with the effective dose (protection quantity), as well as with the doses measured by individual dosimeter, in order to estimate probability of reaching levels of radiation induced cognitive and other neuropsychiatric alterations during their working career, through a Monte Carlo simulation. The results showed that cranial irradiation was very heterogeneous and depended on the projection: doses of left and right hippocampi may be different up to a factor of 2.5; under certain conditions, the dose of the left hippocampus may be twice the effective dose, estimated by conventional double dosimetry algorithm. The professional span doses of the irradiated hippocampus may overcome the threshold able to provoke possible cognitive and emotional-behavioral impairment. Therefore, in-depth studies of the effects of brain irradiation in occupationally exposed interventional medical personnel appear urgently needed and crucial

  15. TU-F-18A-03: Improving Tissue Segmentation for Monte Carlo Dose Calculation Using DECT Data

    International Nuclear Information System (INIS)

    Di, Salvio A; Bedwani, S; Carrier, J

    2014-01-01

    Purpose: To develop a new segmentation technique using dual energy CT (DECT) to overcome limitations related to segmentation from a standard Hounsfield unit (HU) to electron density (ED) calibration curve. Both methods are compared with a Monte Carlo analysis of dose distribution. Methods: DECT allows a direct calculation of both ED and effective atomic number (EAN) within a given voxel. The EAN is here defined as a function of the total electron cross-section of a medium. These values can be effectively acquired using a calibrated method from scans at two different energies. A prior stoichiometric calibration on a Gammex RMI phantom allows us to find the parameters to calculate EAN and ED within a voxel. Scans from a Siemens SOMATOM Definition Flash dual source system provided the data for our study. A Monte Carlo analysis compares dose distribution simulated by dosxyz-nrc, considering a head phantom defined by both segmentation techniques. Results: Results from depth dose and dose profile calculations show that materials with different atomic compositions but similar EAN present differences of less than 1%. Therefore, it is possible to define a short list of basis materials from which density can be adapted to imitate interaction behavior of any tissue. Comparison of the dose distributions on both segmentations shows a difference of 50% in dose in areas surrounding bone at low energy. Conclusion: The presented segmentation technique allows a more accurate medium definition in each voxel, especially in areas of tissue transition. Since the behavior of human tissues is highly sensitive at low energies, this reduces the errors on calculated dose distribution. This method could be further developed to optimize the tissue characterization based on anatomic site

  16. TU-F-18A-03: Improving Tissue Segmentation for Monte Carlo Dose Calculation Using DECT Data

    Energy Technology Data Exchange (ETDEWEB)

    Di, Salvio A; Bedwani, S; Carrier, J [CHUM - Notre-Dame, Montreal, QC (Canada)

    2014-06-15

    Purpose: To develop a new segmentation technique using dual energy CT (DECT) to overcome limitations related to segmentation from a standard Hounsfield unit (HU) to electron density (ED) calibration curve. Both methods are compared with a Monte Carlo analysis of dose distribution. Methods: DECT allows a direct calculation of both ED and effective atomic number (EAN) within a given voxel. The EAN is here defined as a function of the total electron cross-section of a medium. These values can be effectively acquired using a calibrated method from scans at two different energies. A prior stoichiometric calibration on a Gammex RMI phantom allows us to find the parameters to calculate EAN and ED within a voxel. Scans from a Siemens SOMATOM Definition Flash dual source system provided the data for our study. A Monte Carlo analysis compares dose distribution simulated by dosxyz-nrc, considering a head phantom defined by both segmentation techniques. Results: Results from depth dose and dose profile calculations show that materials with different atomic compositions but similar EAN present differences of less than 1%. Therefore, it is possible to define a short list of basis materials from which density can be adapted to imitate interaction behavior of any tissue. Comparison of the dose distributions on both segmentations shows a difference of 50% in dose in areas surrounding bone at low energy. Conclusion: The presented segmentation technique allows a more accurate medium definition in each voxel, especially in areas of tissue transition. Since the behavior of human tissues is highly sensitive at low energies, this reduces the errors on calculated dose distribution. This method could be further developed to optimize the tissue characterization based on anatomic site.

  17. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation; Comparacao da dose absorvida no tratamento do cancer ginecologico por braquiterapia de alta taxa de dose utilizando o planejamento convencional do tratamento e simulacao de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Aneli Oliveira da

    2010-07-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of {sup 192}Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results

  18. Igo - A Monte Carlo Code For Radiotherapy Planning

    International Nuclear Information System (INIS)

    Goldstein, M.; Regev, D.

    1999-01-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results

  19. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ying, C. K. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu (Malaysia); Kamil, W. A. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and Radiology Department, Hospital USM, Kota Bharu (Malaysia); Shuaib, I. L. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang (Malaysia); Matsufuji, Naruhiro [Research Centre of Charged Particle Therapy, National Institute of Radiological Sciences, NIRS, Chiba (Japan)

    2014-02-12

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.

  20. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro

    2014-01-01

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations

  1. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C.K.; Kamil, W.A.; Shuaib, I.L.; Ying, C.K.; Kamil, W.A.

    2013-01-01

    Full-text: Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations. (author)

  2. Primary and scattering contributions to beta scaled dose point kernels by means of Monte Carlo simulations; Contribuicoes primaria e espalhada para dosimetria beta calculadas pelo dose point kernels empregando simulacoes pelo Metodo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Mauro [CONICET - Consejo Nacional de Investigaciones Cientificas y Tecnicas de La Republica Argentina (Conicet), Buenos Aires, AR (Brazil); Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Milan (Italy). Medical Physics Department; Perez, Pedro, E-mail: valente@famaf.unc.edu.ar [Universidad Nacional de Cordoba, Cordoba (Argentina). Fac. de Matematica, Astronomia y Fisica (FaMAF)

    2012-07-01

    Beta-emitters have proved to be appropriate for radioimmunotherapy. The dosimetric characterization of each radionuclide has to be carefully investigated. One usual and practical dosimetric approach is the calculation of dose distribution from a unit point source emitting particles according to any radionuclide of interest, which is known as dose point kernel. Absorbed dose distributions are due to primary and radiation scattering contributions. This work presented a method capable of performing dose distributions for nuclear medicine dosimetry by means of Monte Carlo methods. Dedicated subroutines have been developed in order to separately compute primary and scattering contributions to the total absorbed dose, performing particle transport up to 1 keV or least. Preliminarily, the suitability of the calculation method has been satisfactory, being tested for monoenergetic sources, and it was further applied to the characterization of different beta-minus radionuclides of nuclear medicine interests for radioimmunotherapy. (author)

  3. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.

    2017-10-01

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  4. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Silva, Aneli Oliveira da

    2010-01-01

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192 Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate

  5. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system

    International Nuclear Information System (INIS)

    Rodrigues, Leonardo; Braz, Delson; Goncalves Magalhaes, Luis Alexandre

    2015-01-01

    Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of the breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 15 projections over a 15 deg. angular range (from -7.5 deg. to +7.5 deg.). An important factor in determining the optimal imaging technique for breast tomosynthesis is the radiation dose. In breast imaging, the radiation dose of concern is that deposited in the glandular tissue of the breast because this is the tissue that has a risk of developing cancer. The concept of the normalised mean glandular dose (DgN) has been introduced as the metric for the dose in breast imaging. The DgN is difficult to measure. The Monte Carlo techniques offer an alternative method for a realistic estimation of the radiation dose. The purpose of this work was to use the Monte Carlo code MCNPX technique to generate monoenergetic glandular dose data for estimating the breast tissue dose in tomosynthesis for arbitrary spectra as well as to observe the deposited radiation dose by projection on the glandular portion of the breast in a Selenia Dimensions DBT system. A Monte Carlo simulation of the system was developed to compute the DgN in a craniocaudal view. Monoenergetic X-ray beams from 10 to 49 keV in 1-keV increments were used. The simulation utilised the assumption of a homogeneous breast composition and three compositions (0 % glandular, 50 % glandular and 100 % glandular). The glandular and adipose tissue compositions were specified according ICRU Report 44. A skin layer of 4 mm was assumed to encapsulate the breast on all surfaces. The breast size was varied using the chest wall-to-nipple distance (CND) and compressed breast thickness (t). In this work, the authors assumed a CND of 5 cm and the thicknesses ranged from 2 to 8 cm, in steps of 2 cm. The fractional energy absorption increases (up to 44

  6. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  7. Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

    International Nuclear Information System (INIS)

    Sawakuchi, Gabriel O; Titt, Uwe; Mirkovic, Dragan; Ciangaru, George; Zhu, X Ronald; Sahoo, Narayan; Gillin, Michael T; Mohan, Radhe

    2010-01-01

    Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

  8. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams.

    Science.gov (United States)

    Vandervoort, Eric J; Tchistiakova, Ekaterina; La Russa, Daniel J; Cygler, Joanna E

    2014-02-01

    In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm(2). Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm γ-criteria) provided that the steep dose gradient in the depth direction is considered. Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  9. Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy

    International Nuclear Information System (INIS)

    Fraass, Benedick A.; Smathers, James; Deye, James

    2003-01-01

    Due to the significant interest in Monte Carlo dose calculations for external beam megavoltage radiation therapy from both the research and commercial communities, a workshop was held in October 2001 to assess the status of this computational method with regard to use for clinical treatment planning. The Radiation Research Program of the National Cancer Institute, in conjunction with the Nuclear Data and Analysis Group at the Oak Ridge National Laboratory, gathered a group of experts in clinical radiation therapy treatment planning and Monte Carlo dose calculations, and examined issues involved in clinical implementation of Monte Carlo dose calculation methods in clinical radiotherapy. The workshop examined the current status of Monte Carlo algorithms, the rationale for using Monte Carlo, algorithmic concerns, clinical issues, and verification methodologies. Based on these discussions, the workshop developed recommendations for future NCI-funded research and development efforts. This paper briefly summarizes the issues presented at the workshop and the recommendations developed by the group

  10. Patient-Specific Quality Assurance Using Monte Carlo Dose Calculation and Elekta Log Files for Prostate Volumetric-Modulated Arc Therapy.

    Science.gov (United States)

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Sawada, Kinya; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2017-12-01

    Log file-based methods are attracting increasing interest owing to their ability to validate volumetric-modulated arc therapy outputs with high resolution in the leaf and gantry positions and in delivered dose. Cross-validation of these methods for comparison with measurement-based methods using the ionization chamber/ArcCHECK-3DVH software (version 3.2.0) under the same conditions of treatment anatomy and plan enables an efficient evaluation of this method. In this study, with the purpose of cross-validation, we evaluate the accuracy of a log file-based method using Elekta log files and an X-ray voxel Monte Carlo dose calculation technique in the case of leaf misalignment during prostate volumetric-modulated arc therapy. In this study, 10 prostate volumetric-modulated arc therapy plans were used. Systematic multileaf collimator leaf positional errors (±0.4 and ±0.8 mm for each single bank) were deliberately introduced into the optimized plans. Then, the delivered 3-dimensional doses to a phantom with a certain patient anatomy were estimated by our system. These doses were compared with the ionization chamber dose and the ArcCHECK-3DVH dose. For the given phantom and patient anatomy, the estimated dose strongly coincided with the ionization chamber/ArcCHECK-3DVH dose ( P < .01). In addition, good agreement between the estimated dose and the ionization chamber/ArcCHECK-3DVH dose was observed. The dose estimation accuracy of our system, which combines Elekta log files and X-ray voxel Monte Carlo dose calculation, was evaluated.

  11. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.

  12. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-01-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm 3 , 1 × 1 × 0.5 cm 3 , and 1 × 1 × 0.8 cm 3 . The 1 × 10 9 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d max from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm 3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm 3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important

  13. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  14. Electron Irradiation of Conjunctival Lymphoma-Monte Carlo Simulation of the Minute Dose Distribution and Technique Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo, E-mail: lorenzo.brualla@uni-due.de [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany); Zaragoza, Francisco J.; Sempau, Josep [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Barcelona (Spain); Wittig, Andrea [Department of Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Marburg (Germany); Sauerwein, Wolfgang [NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Essen (Germany)

    2012-07-15

    Purpose: External beam radiotherapy is the only conservative curative approach for Stage I non-Hodgkin lymphomas of the conjunctiva. The target volume is geometrically complex because it includes the eyeball and lid conjunctiva. Furthermore, the target volume is adjacent to radiosensitive structures, including the lens, lacrimal glands, cornea, retina, and papilla. The radiotherapy planning and optimization requires accurate calculation of the dose in these anatomical structures that are much smaller than the structures traditionally considered in radiotherapy. Neither conventional treatment planning systems nor dosimetric measurements can reliably determine the dose distribution in these small irradiated volumes. Methods and Materials: The Monte Carlo simulations of a Varian Clinac 2100 C/D and human eye were performed using the PENELOPE and PENEASYLINAC codes. Dose distributions and dose volume histograms were calculated for the bulbar conjunctiva, cornea, lens, retina, papilla, lacrimal gland, and anterior and posterior hemispheres. Results: The simulated results allow choosing the most adequate treatment setup configuration, which is an electron beam energy of 6 MeV with additional bolus and collimation by a cerrobend block with a central cylindrical hole of 3.0 cm diameter and central cylindrical rod of 1.0 cm diameter. Conclusions: Monte Carlo simulation is a useful method to calculate the minute dose distribution in ocular tissue and to optimize the electron irradiation technique in highly critical structures. Using a voxelized eye phantom based on patient computed tomography images, the dose distribution can be estimated with a standard statistical uncertainty of less than 2.4% in 3 min using a computing cluster with 30 cores, which makes this planning technique clinically relevant.

  15. Image registration of BANG[reg] gel dose maps for quantitative dosimetry verification

    International Nuclear Information System (INIS)

    Meeks, Sanford L.; Bova, Frank J.; Maryanski, Marek J.; Kendrick, Lance A.; Ranade, Manisha K.; Buatti, John M.; Friedman, William A.

    1999-01-01

    Background: The BANG[reg] (product symbol SGEL, MGS Research Inc., Guilford, CT) polymer gel has been shown to be a valuable dosimeter for determining three-dimensional (3D) dose distributions. Because the proton relaxation rate (R2) of the gel changes as a function of absorbed dose, MR scans of the irradiated gel can be used to generate 3D dose maps. Previous work with the gel, however, has not relied on precise localization of the measured dose distribution. This has limited its quantitative use, as no precise correlation exists with the planned distribution. This paper reports on a technique for providing this correlation, thus providing a quality assurance tool that includes all of the steps of imaging, treatment planning, dose calculation, and treatment localization. Methods and Materials: The BANG[reg] gel formulation was prepared and poured into spherical flasks (15.3-cm inner diameter). A stereotactic head ring was attached to each flask. Three magnetic resonance imaging (MRI) and computed tomography (CT) compatible fiducial markers were placed on the flask, thus defining the central axial plane. A high-resolution CT scan was obtained of each flask. These images were transferred to a radiosurgery treatment-planning program, where treatment plans were developed. The gels were irradiated using our systems for stereotactic radiosurgery or fractionated stereotactic radiotherapy. The gels were MR imaged, and a relative 3D dose map was created from an R2 map of these images. The dose maps were transferred to an image-correlation program, and then fused to the treatment-planning CT scan through a rigid body match of the MRI/CT-compatible fiducial markers. The fused dose maps were imported into the treatment-planning system for quantitative comparison with the calculated treatment plans. Results: Calculated and measured isodose surfaces agreed to within 2 mm at the worst points within the in-plane dose distributions. This agreement is excellent, considering that

  16. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources.

    Science.gov (United States)

    Hunt, J G; da Silva, F C A; Mauricio, C L P; dos Santos, D S

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature.

  17. The validation of organ dose calculations using voxel phantoms and Monte Carlo methods applied to point and water immersion sources

    International Nuclear Information System (INIS)

    Hunt, J. G.; Da Silva, F. C. A.; Mauricio, C. L. P.; Dos Santos, D. S.

    2004-01-01

    The Monte Carlo program 'Visual Monte Carlo-dose calculation' (VMC-dc) uses a voxel phantom to simulate the body organs and tissues, transports photons through this phantom and reports the absorbed dose received by each organ and tissue relevant to the calculation of effective dose as defined in ICRP Publication 60. This paper shows the validation of VMC-dc by comparison with EGSnrc and with a physical phantom containing TLDs. The validation of VMC-dc by comparison with EGSnrc was made for a collimated beam of 0.662 MeV photons irradiating a cube of water. For the validation by comparison with the physical phantom, the case considered was a whole body irradiation with a point 137 Cs source placed at a distance of 1 m from the thorax of an Alderson-RANDO phantom. The validation results show good agreement for the doses obtained using VMC-dc and EGSnrc calculations, and from VMC-dc and TLD measurements. The program VMC-dc was then applied to the calculation of doses due to immersion in water containing gamma emitters. The dose conversion coefficients for water immersion are compared with their equivalents in the literature. (authors)

  18. Effective dose in individuals from exposure the patients treated with 131I using Monte Carlo method

    International Nuclear Information System (INIS)

    Carvalho Junior, Alberico B. de; Silva, Ademir X.

    2007-01-01

    In this work, using the Visual Monte Carlo code and the voxel phantom FAX, elaborated similar scenes of irradiation to the treatments used in the nuclear medicine, with the intention of estimate the effective dose in individuals from exposure the patients treated with 131 I. We considered often specific situations, such as doses to others while sleeping, using public or private transportation, or being in a cinema for a few hours. In the possible situations that has been considered, the value of the effective dose did not overcome 0.05 mSv, demonstrating that, for the considered parameters the patient could be release without receiving instructions from radioprotection. (author)

  19. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    International Nuclear Information System (INIS)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher; Fisher, Ryan; Hoerner, Matthew R.; Hintenlang, David; Bolch, Wesley E.

    2013-01-01

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT

  20. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography*

    Science.gov (United States)

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Objective Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography. PMID:26811553

  1. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography

    Directory of Open Access Journals (Sweden)

    Lucas Paixão

    2015-12-01

    Full Text Available Abstract Objective: Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Materials and Methods: Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Results: Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. Conclusion: The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  2. Development of a Monte Carlo multiple source model for inclusion in a dose calculation auditing tool.

    Science.gov (United States)

    Faught, Austin M; Davidson, Scott E; Fontenot, Jonas; Kry, Stephen F; Etzel, Carol; Ibbott, Geoffrey S; Followill, David S

    2017-09-01

    The Imaging and Radiation Oncology Core Houston (IROC-H) (formerly the Radiological Physics Center) has reported varying levels of agreement in their anthropomorphic phantom audits. There is reason to believe one source of error in this observed disagreement is the accuracy of the dose calculation algorithms and heterogeneity corrections used. To audit this component of the radiotherapy treatment process, an independent dose calculation tool is needed. Monte Carlo multiple source models for Elekta 6 MV and 10 MV therapeutic x-ray beams were commissioned based on measurement of central axis depth dose data for a 10 × 10 cm 2 field size and dose profiles for a 40 × 40 cm 2 field size. The models were validated against open field measurements consisting of depth dose data and dose profiles for field sizes ranging from 3 × 3 cm 2 to 30 × 30 cm 2 . The models were then benchmarked against measurements in IROC-H's anthropomorphic head and neck and lung phantoms. Validation results showed 97.9% and 96.8% of depth dose data passed a ±2% Van Dyk criterion for 6 MV and 10 MV models respectively. Dose profile comparisons showed an average agreement using a ±2%/2 mm criterion of 98.0% and 99.0% for 6 MV and 10 MV models respectively. Phantom plan comparisons were evaluated using ±3%/2 mm gamma criterion, and averaged passing rates between Monte Carlo and measurements were 87.4% and 89.9% for 6 MV and 10 MV models respectively. Accurate multiple source models for Elekta 6 MV and 10 MV x-ray beams have been developed for inclusion in an independent dose calculation tool for use in clinical trial audits. © 2017 American Association of Physicists in Medicine.

  3. Dose mapping in working space of KORI unit 1 using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. W.; Shin, C. H.; Kim, J. G. [Hanyang University, Seoul (Korea, Republic of); Kim, S. Y. [Innovative Techonology Center for Radiation Safety, Seoul (Korea, Republic of)

    2004-07-01

    Radiation field analysis in nuclear power plant mainly depends on actual measurements. In this study, the analysis using computational calculation is performed to overcome the limits of measurement and provide the initial information for unfolding. The radiation field mapping is performed, which makes it possible to analyze the trends of the radiation filed for whole space. By using MCNPX code, containment building inside is modeled for KORI unit 1 cycle 21 under operation. Applying the neutron spectrum from the operating reactor as a radiation source, the ambient doses are calculated in the whole space, containment building inside, for neutron and photon fields. Dose mapping is performed for three spaces, 6{approx}20, 20{approx}44, 44{approx}70 ft from bottom of the containment building. The radiation distribution in dose maps shows the effects from structures and materials of components. With this dose maps, radiation field analysis contained the region near the detect position. The analysis and prediction are possible for radiation field from other radiation source or operating cycle.

  4. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Krstic, D.; Markovic, V.M.; Jovanovic, Z.; Milenkovic, B.; Nikezic, D.; Atanackovic, J.

    2014-01-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. The difference in evaluated dose in cancer and normal lung tissue suggests that BNCT could be applied for the treatment of cancers. The difference in exposure of cancer and healthy tissue can be observed, so the healthy tissue can be spared from damage. An absorbed dose ratio of metastatic tissue-to-the healthy tissue was ∼5. Absorbed dose to all other organs was low when compared with the lung dose. Absorbed dose depth distribution shows that BNC therapy can be very useful in the treatments for tumour. The ratio of the tumour absorbed dose and irradiated healthy tissue absorbed dose was also ∼5. It was seen that an elliptical neutron field was better irradiation choice. (authors)

  5. The effect on dose accumulation accuracy of inverse-consistency and transitivity error reduced deformation maps

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bender, Edward T.; Tomé, Wolfgang A.

    2014-01-01

    It has previously been shown that deformable image registrations (DIRs) often result in deformation maps that are neither inverse-consistent nor transitive, and that the dose accumulation based on these deformation maps can be inconsistent if different image pathways are used for dose accumulation. A method presented to reduce inverse consistency and transitivity errors has been shown to result in more consistent dose accumulation, regardless of the image pathway selected for dose accumulation. The present study investigates the effect on the dose accumulation accuracy of deformation maps processed to reduce inverse consistency and transitivity errors. A set of lung 4DCT phases were analysed, consisting of four images on which a dose grid was created. Dose to 75 corresponding anatomical locations was manually tracked. Dose accumulation was performed between all image sets with Demons derived deformation maps as well as deformation maps processed to reduce inverse consistency and transitivity errors. The ground truth accumulated dose was then compared with the accumulated dose derived from DIR. Two dose accumulation image pathways were considered. The post-processing method to reduce inverse consistency and transitivity errors had minimal effect on the dose accumulation accuracy. There was a statistically significant improvement in dose accumulation accuracy for one pathway, but for the other pathway there was no statistically significant difference. A post-processing technique to reduce inverse consistency and transitivity errors has a positive, yet minimal effect on the dose accumulation accuracy. Thus the post-processing technique improves consistency of dose accumulation with minimal effect on dose accumulation accuracy.

  6. Photon dose estimation from ultraintense laser–solid interactions and shielding calculation with Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yang, Bo; Qiu, Rui; Li, JunLi; Lu, Wei; Wu, Zhen; Li, Chunyan

    2017-01-01

    When a strong laser beam irradiates a solid target, a hot plasma is produced and high-energy electrons are usually generated (the so-called “hot electrons”). These energetic electrons subsequently generate hard X-rays in the solid target through the Bremsstrahlung process. To date, only limited studies have been conducted on this laser-induced radiological protection issue. In this study, extensive literature reviews on the physics and properties of hot electrons have been conducted. On the basis of these information, the photon dose generated by the interaction between hot electrons and a solid target was simulated with the Monte Carlo code FLUKA. With some reasonable assumptions, the calculated dose can be regarded as the upper boundary of the experimental results over the laser intensity ranging from 10 19 to 10 21 W/cm 2 . Furthermore, an equation to estimate the photon dose generated from ultraintense laser–solid interactions based on the normalized laser intensity is derived. The shielding effects of common materials including concrete and lead were also studied for the laser-driven X-ray source. The dose transmission curves and tenth-value layers (TVLs) in concrete and lead were calculated through Monte Carlo simulations. These results could be used to perform a preliminary and fast radiation safety assessment for the X-rays generated from ultraintense laser–solid interactions. - Highlights: • The laser–driven X-ray ionizing radiation source was analyzed in this study. • An equation to estimate the photon dose based on the laser intensity is given. • The shielding effects of concrete and lead were studied for this new X-ray source. • The aim of this study is to analyze and mitigate the laser–driven X-ray hazard.

  7. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    International Nuclear Information System (INIS)

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O.

    2011-01-01

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  8. Changes in dose with segmentation of breast tissues in Monte Carlo calculations for low-energy brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J. G. H.; Thomson, R. M.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa K1S 5B6 (Canada)

    2011-08-15

    Purpose: To investigate the use of various breast tissue segmentation models in Monte Carlo dose calculations for low-energy brachytherapy. Methods: The EGSnrc user-code BrachyDose is used to perform Monte Carlo simulations of a breast brachytherapy treatment using TheraSeed Pd-103 seeds with various breast tissue segmentation models. Models used include a phantom where voxels are randomly assigned to be gland or adipose (randomly segmented), a phantom where a single tissue of averaged gland and adipose is present (averaged tissue), and a realistically segmented phantom created from previously published numerical phantoms. Radiation transport in averaged tissue while scoring in gland along with other combinations is investigated. The inclusion of calcifications in the breast is also studied in averaged tissue and randomly segmented phantoms. Results: In randomly segmented and averaged tissue phantoms, the photon energy fluence is approximately the same; however, differences occur in the dose volume histograms (DVHs) as a result of scoring in the different tissues (gland and adipose versus averaged tissue), whose mass energy absorption coefficients differ by 30%. A realistically segmented phantom is shown to significantly change the photon energy fluence compared to that in averaged tissue or randomly segmented phantoms. Despite this, resulting DVHs for the entire treatment volume agree reasonably because fluence differences are compensated by dose scoring differences. DVHs for the dose to only the gland voxels in a realistically segmented phantom do not agree with those for dose to gland in an averaged tissue phantom. Calcifications affect photon energy fluence to such a degree that the differences in fluence are not compensated for (as they are in the no calcification case) by dose scoring in averaged tissue phantoms. Conclusions: For low-energy brachytherapy, if photon transport and dose scoring both occur in an averaged tissue, the resulting DVH for the entire

  9. Dose calculations for a simplified Mammosite system with the Monte Carlo Penelope and MCNPX simulation codes

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Varon T, C.F.; Pedraza N, R.

    2007-01-01

    The treatment of the breast cancer at early stages is of vital importance. For that, most of the investigations are dedicated to the early detection of the suffering and their treatment. As investigation consequence and clinical practice, in 2002 it was developed in U.S.A. an irradiation system of high dose rate known as Mammosite. In this work we carry out dose calculations for a simplified Mammosite system with the Monte Carlo Penelope simulation code and MCNPX, varying the concentration of the contrast material that it is used in the one. (Author)

  10. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goosman, D.R.

    1984-08-14

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table.

  11. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1984-01-01

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table

  12. Moving from organ dose to microdosimetry: contribution of the Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Christophe Champion

    2005-10-01

    Full Text Available When living cells are irradiated by charged particles, a wide variety of interactions occurs that leads to a deep modification of the biological material. To understand the fine structure of the microscopic distribution of the energy deposits, Monte Carlo event-by-event simulations are particularly suitable. However, the development of these track structure codes needs accurate interaction cross sections for all the electronic processes: ionization, excitation, Positronium formation (for incident positrons and even elastic scattering. Under these conditions, we have recently developed a Monte Carlo code for electrons and positrons in water, this latter being commonly used to simulate the biological medium. All the processes are studied in detail via theoretical differential and total cross sections calculated by using partial wave methods. Comparisons with existing theoretical and experimental data show very good agreements. Moreover, this kind of detailed description allows one access to a useful microdosimetry, which can be coupled to a geometrical modelling of the target organ and then provide a detailed dose calculation at the nanometric scale.Quando células vivas são irradiadas por partículas carregadas, ocorre uma grande variedade de interações, o que leva a uma modificação profunda do material biológico. Para entender a delicada estrutura da distribuição microscópica dos depósitos de energia, as simulações de Monte Carlo são particularmente adequadas. Entretanto, o desenvolvimento destes códigos necessitam de amostras representativa de interações perfeitas para todos os processos eletrônicos: ionização, excitação, formação de positrônico (para pósitrons incidentes e mesmo espalhamento elástico. Nessas condições, nós desenvolvemos recentemente um código Monte Carlo para elétrons e pósitrons em água usada posteriormente para simular o meio biológico. Todos os processos são estudados detalhadamente via se

  13. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    Science.gov (United States)

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SU-G-IeP2-13: Toward Heavy Ion Computed Tomography with Carbon Ions: A Monte Carlo Study

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, D; Qin, N; Zhang, Y; Jia, X; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: In the present Monte Carlo study, we investigated the use of Carbon ions for computed tomography (CT) with a relatively low imaging dose. This will enable us to avoid any conversion of X-ray CT numbers to the relative stopping power (or relative electron density) values and the associated uncertainties in Carbon dose calculation. Methods: In the first stage, we studied the propagation of Carbon nuclei through a water phantom using the Geant4 specially to understand their lateral displacement inside the phantom. In the second stage, we used our GPU-based Monte Carlo code, which has been cross validated against Geant4, to create the 2D map of the water equivalent path length (WEPL) inside a human head size phantom by acquiring 240 projections each 1.5° apart. Subsequently the 3D relative electron density map of the phantom was reconstructed from the 2D WEPL map using the Algebraic Reconstruction Technique (ART) coupled with total variation (TV) minimization Results: A high quality image of the relative electron density inside the phantom was reconstructed by ARTTV. The mean relative error between the reconstructed image for low contrast object (PMMA) was about 1.74%. The delivered dose per scan at the center of the phantom was about 0.1 Gy. Conclusion: We have been able to obtain a 3D map of the electron density using a human head size phantom while keeping the delivered dose to relatively low value. Using the GPU capabilities of our simulation engine, we believe that a real time CT with Carbon ions could be a reality in future.

  15. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    International Nuclear Information System (INIS)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young

    2016-01-01

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety

  16. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2016-11-15

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety.

  17. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  18. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    International Nuclear Information System (INIS)

    Carrier, Jean-Francois; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-01-01

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D 90 parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future

  19. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yani, Sitti, E-mail: sitti.yani@s.itb.ac.id [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Akademi Kebidanan Pelita Ibu, Kendari (Indonesia); Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam [Nuclear Physics and Biophysics Division, Physics Department, Institut Teknologi Bandung (Indonesia); Rhani, Moh. Fadhillah [Tan Tock Seng Hospital (Singapore)

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  20. Monte Carlo-based dose reconstruction in a rat model for scattered ionizing radiation investigations.

    Science.gov (United States)

    Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Anna; Kolb, Bryan; Kovalchuk, Olga

    2013-09-01

    In radiation biology, rats are often irradiated, but the precise dose distributions are often lacking, particularly in areas that receive scatter radiation. We used a non-dedicated set of resources to calculate detailed dose distributions, including doses to peripheral organs well outside of the primary field, in common rat exposure settings. We conducted a detailed dose reconstruction in a rat through an analog to the conventional human treatment planning process. The process consisted of: (i) Characterizing source properties of an X-ray irradiator system, (ii) acquiring a computed tomography (CT) scan of a rat model, and (iii) using a Monte Carlo (MC) dose calculation engine to generate the dose distribution within the rat model. We considered cranial and liver irradiation scenarios where the rest of the body was protected by a lead shield. Organs of interest were the brain, liver and gonads. The study also included paired scenarios where the dose to adjacent, shielded rats was determined as a potential control for analysis of bystander effects. We established the precise doses and dose distributions delivered to the peripheral organs in single and paired rats. Mean doses to non-targeted organs in irradiated rats ranged from 0.03-0.1% of the reference platform dose. Mean doses to the adjacent rat peripheral organs were consistent to within 10% those of the directly irradiated rat. This work provided details of dose distributions in rat models under common irradiation conditions and established an effective scenario for delivering only scattered radiation consistent with that in a directly irradiated rat.

  1. Quality control of the treatment planning systems dose calculations in external radiation therapy using the Penelope Monte Carlo code; Controle qualite des systemes de planification dosimetrique des traitements en radiotherapie externe au moyen du code Monte-Carlo Penelope

    Energy Technology Data Exchange (ETDEWEB)

    Blazy-Aubignac, L

    2007-09-15

    The treatment planning systems (T.P.S.) occupy a key position in the radiotherapy service: they realize the projected calculation of the dose distribution and the treatment duration. Traditionally, the quality control of the calculated distribution doses relies on their comparisons with dose distributions measured under the device of treatment. This thesis proposes to substitute these dosimetry measures to the profile of reference dosimetry calculations got by the Penelope Monte-Carlo code. The Monte-Carlo simulations give a broad choice of test configurations and allow to envisage a quality control of dosimetry aspects of T.P.S. without monopolizing the treatment devices. This quality control, based on the Monte-Carlo simulations has been tested on a clinical T.P.S. and has allowed to simplify the quality procedures of the T.P.S.. This quality control, in depth, more precise and simpler to implement could be generalized to every center of radiotherapy. (N.C.)

  2. Entrances skin dose distribution maps for interventional neuroradiological procedures: A preliminary study

    International Nuclear Information System (INIS)

    Rampado, O.; Ropolo, R.

    2005-01-01

    Does estimation in interventional neuroradiology can be useful to limit skin radiation injuries. The purpose of this study was to evaluate the role of entrance skin dose (ESD) maps in planning exposure condition optimisation. Thirteen cerebral angiography and five embolisation procedures were monitored, measuring ESD, dose-area product (DAP) and other operational parameters. A transmission ionisation chamber, simultaneously measuring air kerma and DAP, measured dose-related quantities. Data acquisition software collected dosimetric and geometrical data during the interventional procedure and provided a distribution map of ESD on a standard phantom digital image, with maximum value estimation. Values of 88-1710 mGy for maximum skin dose and 16.7-343 Gy cm 2 for DAP were found. These data confirm the possibility of deterministic effects during therapeutic interventional neuroradiological procedures like cerebral embolisation. ESD maps are useful to retrospectively study the exposure characteristics of a procedure and plan patient exposure optimisation. (authors)

  3. Primary and scattering contributions to beta scaled dose point kernels by means of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Valente, Mauro; Botta, Francesca; Pedroli, Guido

    2012-01-01

    Beta-emitters have proved to be appropriate for radioimmunotherapy. The dosimetric characterization of each radionuclide has to be carefully investigated. One usual and practical dosimetric approach is the calculation of dose distribution from a unit point source emitting particles according to any radionuclide of interest, which is known as dose point kernel. Absorbed dose distributions are due to primary and radiation scattering contributions. This work presented a method capable of performing dose distributions for nuclear medicine dosimetry by means of Monte Carlo methods. Dedicated subroutines have been developed in order to separately compute primary and scattering contributions to the total absorbed dose, performing particle transport up to 1 keV or least. Preliminarily, the suitability of the calculation method has been satisfactory, being tested for monoenergetic sources, and it was further applied to the characterization of different beta-minus radionuclides of nuclear medicine interests for radioimmunotherapy. (author)

  4. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  5. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    Science.gov (United States)

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  6. Effective dose in individuals from exposure the patients treated with {sup 131}I using Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho Junior, Alberico B. de; Silva, Ademir X. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: ajunior@con.ufrj.br; Hunt, John G. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN), Rio de Janeiro, RJ (Brazil)]. E-mail: john@ird.gov.br

    2007-07-01

    In this work, using the Visual Monte Carlo code and the voxel phantom FAX, elaborated similar scenes of irradiation to the treatments used in the nuclear medicine, with the intention of estimate the effective dose in individuals from exposure the patients treated with {sup 131}I. We considered often specific situations, such as doses to others while sleeping, using public or private transportation, or being in a cinema for a few hours. In the possible situations that has been considered, the value of the effective dose did not overcome 0.05 mSv, demonstrating that, for the considered parameters the patient could be release without receiving instructions from radioprotection. (author)

  7. SU-E-T-110: Development of An Independent, Monte Carlo, Dose Calculation, Quality Assurance Tool for Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Faught, A [UT MD Anderson Cancer Center, Houston, TX (United States); University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX (United States); Davidson, S [University of Texas Medical Branch of Galveston, Galveston, TX (United States); Kry, S; Ibbott, G; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States); Fontenot, J [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Etzel, C [Consortium of Rheumatology Researchers of North America (CORRONA), Inc., Southborough, MA (United States)

    2014-06-01

    Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Purpose: To commission a multiple-source Monte Carlo model of Elekta linear accelerator beams of nominal energies 6MV and 10MV. Methods: A three source, Monte Carlo model of Elekta 6 and 10MV therapeutic x-ray beams was developed. Energy spectra of two photon sources corresponding to primary photons created in the target and scattered photons originating in the linear accelerator head were determined by an optimization process that fit the relative fluence of 0.25 MeV energy bins to the product of Fatigue-Life and Fermi functions to match calculated percent depth dose (PDD) data with that measured in a water tank for a 10x10cm2 field. Off-axis effects were modeled by a 3rd degree polynomial used to describe the off-axis half-value layer as a function of off-axis angle and fitting the off-axis fluence to a piecewise linear function to match calculated dose profiles with measured dose profiles for a 40×40cm2 field. The model was validated by comparing calculated PDDs and dose profiles for field sizes ranging from 3×3cm2 to 30×30cm2 to those obtained from measurements. A benchmarking study compared calculated data to measurements for IMRT plans delivered to anthropomorphic phantoms. Results: Along the central axis of the beam 99.6% and 99.7% of all data passed the 2%/2mm gamma criterion for 6 and 10MV models, respectively. Dose profiles at depths of dmax, through 25cm agreed with measured data for 99.4% and 99.6% of data tested for 6 and 10MV models, respectively. A comparison of calculated dose to film measurement in a head and neck phantom showed an average of 85.3% and 90.5% of pixels passing a 3%/2mm gamma criterion for 6 and 10MV models respectively. Conclusion: A Monte Carlo multiple-source model for Elekta 6 and 10MV therapeutic x-ray beams has been developed as a

  8. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 7. Organ doses due to parallel and environmental exposure geometries

    Energy Technology Data Exchange (ETDEWEB)

    Zankl, M. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz; Drexler, G. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz; Petoussi-Henss, N. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz; Saito, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    1997-03-01

    This report presents a tabulation of organ and tissue equivalent dose as well as effective dose conversion coefficients, normalised to air kerma free in air, for occupational exposures and environmental exposures of the public to external photon radiation. For occupational exposures, whole-body irradiation with idealised geometries, i.e. broad parallel beams and fully isotropic radiation incidence, is considered. The directions of incidence for the parallel beams are anterior-posterior, posterior-anterior, left lateral, right lateral and a full 360 rotation around the body`s longitudinal axis. The influence of beam divergence on the body doses is also considered as well as the dependence of effective dose on the angle of radiation incidence. Regarding exposure of the public to environmental sources, three source geometries are considered: exposure from a radioactive cloud, from ground contamination and from the natural radionuclides distributed homogeneously in the ground. The precise angular and energy distributions of the gamma rays incident on the human body were taken into account. The organ dose conversion coefficients given in this catalogue were calculated using a Monte Carlo code simulating the photon transport in mathematical models of an adult male and an adult female, respectively. Conversion coefficients are given for the equivalent dose of 23 organs and tissues as well as for effective dose and the equivalent dose of the so-called `remainder`. The organ equivalent dose conversion coefficients are given separately for the adult male and female models and - as arithmetic mean of the conversion coefficients of both - for an average adult. Fitted data of the coefficients are presented in tables; the primary raw data as resulting from the Monte Carlo calculation are shown in figures together with the fitted data. (orig.)

  9. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 7. Organ doses due to parallel and environmental exposure geometries

    International Nuclear Information System (INIS)

    Zankl, M.

    1997-03-01

    This report presents a tabulation of organ and tissue equivalent dose as well as effective dose conversion coefficients, normalised to air kerma free in air, for occupational exposures and environmental exposures of the public to external photon radiation. For occupational exposures, whole-body irradiation with idealised geometries, i.e. broad parallel beams and fully isotropic radiation incidence, is considered. The directions of incidence for the parallel beams are anterior-posterior, posterior-anterior, left lateral, right lateral and a full 360 rotation around the body's longitudinal axis. The influence of beam divergence on the body doses is also considered as well as the dependence of effective dose on the angle of radiation incidence. Regarding exposure of the public to environmental sources, three source geometries are considered: exposure from a radioactive cloud, from ground contamination and from the natural radionuclides distributed homogeneously in the ground. The precise angular and energy distributions of the gamma rays incident on the human body were taken into account. The organ dose conversion coefficients given in this catalogue were calculated using a Monte Carlo code simulating the photon transport in mathematical models of an adult male and an adult female, respectively. Conversion coefficients are given for the equivalent dose of 23 organs and tissues as well as for effective dose and the equivalent dose of the so-called 'remainder'. The organ equivalent dose conversion coefficients are given separately for the adult male and female models and - as arithmetic mean of the conversion coefficients of both - for an average adult. Fitted data of the coefficients are presented in tables; the primary raw data as resulting from the Monte Carlo calculation are shown in figures together with the fitted data. (orig.)

  10. SU-E-T-556: Monte Carlo Generated Dose Distributions for Orbital Irradiation Using a Single Anterior-Posterior Electron Beam and a Hanging Lens Shield

    International Nuclear Information System (INIS)

    Duwel, D; Lamba, M; Elson, H; Kumar, N

    2015-01-01

    Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations. Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens

  11. Imprecision of dose predictions for radionuclides released to the environment: an application of a Monte Carlo simulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, G; Hoffman, F O

    1980-01-01

    An evaluation of the imprecision in dose predictions for radionuclides has been performed using correct dose assessment models and knowledge of model parameter value uncertainties. The propagation of parameter uncertainties is demonstrated using a Monte Carlo technique for elemental iodine 131 transported via the pasture-cow-milk-child pathway. Results indicated that when site-specific information is unavailable, the imprecision inherent in the predictions for this pathway is potentially large. (3 graphs, 25 references, 5 tables)

  12. Monte Carlo method for dose calculation due to oral X-rays

    International Nuclear Information System (INIS)

    Loureiro, Eduardo Cesar de Miranda

    1998-06-01

    The increasing utilization of oral X-rays, especially in youngsters and children, calls for the assessment of equivalent doses in their organs and tissues. With this purpose, a Monte Carlo code was adapted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM.FOR developed at the GSF-Germany) and the adapted program (MCDRO.PAS). Good agreement between results obtained with both codes was observed. Irradiations of the incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone narrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the larger the field area, the higher the dose in assessed organs and tissues. The variation of the source-skin distance does not change the conversion coefficients. On the other hand, the increase in the voltage applied to the X-ray tube causes an increase in the calculated conversion coefficients. (author)

  13. Construction of radioelement and dose rate baseline maps by combining ground and airborne radiometric data

    International Nuclear Information System (INIS)

    Rybach, L.; Medici, F.; Schwarz, G.F.

    1997-01-01

    For emergency situations like nuclear accidents, lost isotopic sources, debris of reactor-powered satellites etc. well-documented baseline information is indispensable. Maps of cosmic, terrestrial natural and artificial radiation can be constructed by assembling different datasets such as ground and airborne gamma spectrometry, direct dose rate measurements, and soil/rock samples. The in situ measurements were calibrated using the soil samples taken at/around the field measurement sites, the airborne measurements by a combination of in situ, and soil/rock sample data. The radioelement concentrations (Bq/kg) were in turn converted to dose-rate (nSv/h). First, the cosmic radiation map was constructed from a digital terrain model, averaging topographic heights within cells of 2 km X 2 km size. For the terrestrial radiation a total of 1615 ground data points were available, in addition to the airborne data. The artificial radiation map (Chernobyl and earlier fallout) has the smallest data base (184 data points from airborne and ground measurements). The dose rate map was constructed by summing up the above-mentioned contributions. It relies on a data base which corresponds to a density of about 1 point per 25 km 2 . The cosmic radiation map shows elevated dose rates in the high parts of the Swiss Alps. The cosmic dose rate ranges from 40 to 190 nSv/h, depending on altitude. The terrestrial dose rate maps show general agreement with lithology: elevated dose rates (100 to 200 nSv/h) characterize the Central Massifs of the Alps where crystalline rocks give a maximum of 370 nSv/h, whereas the sedimentary northern Alpine Foreland (Jura, Molasse basin) shows consistently lower dose rates (40-100 nSv/h). The artificial radiation map has its maximum value in the southern part of Switzerland (90 nSv/h). The map of total dose rate exhibits values from 55 to 570 nSv/h. These values are considerably higher than reported in the Radiation Atlas (''Natural Sources of Ionising

  14. Calculation of organ doses from environmental gamma rays using human phantoms and Monte Carlo methods. Pt. 1

    International Nuclear Information System (INIS)

    Saito, K.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1990-01-01

    Organ doses from environmental γ-rays (U-238, Th-232, K-40) were calculated using Monte Carlo methods for three typical sources of a semi-infinite volume source in the air, an infinite plane source in the ground and a volume source in the ground. γ-ray fields in the natural environment were simulated rigourously without approximations or simplifications in the intermediate steps except for the disturbance of the radiation field by the human body which was neglected. Organ doses were calculated for four anthropomorphic phantoms representing a baby, a child, a female and a male adult. The dose of a fetus is given by the dose to the uterus of the adult female. Air kerma and dose conversion factors normalised to air kerma and to source intensity are given for monoenergetic sources and for the natural radionuclides. (orig./HP)

  15. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    Science.gov (United States)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  16. Converging Stereotactic Radiotherapy Using Kilovoltage X-Rays: Experimental Irradiation of Normal Rabbit Lung and Dose-Volume Analysis With Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M.; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N.; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-01-01

    Purpose: To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. Methods and Materials: A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. Results: A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. Conclusions: A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  17. Imprecision of dose predictions for radionuclides released to the environment: an application of a Monte Carlo simulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, G; Hoffman, F O

    1980-01-01

    An evaluation of the imprecision in dose predictions has been performed using current dose assessment models and present knowledge of the variability or uncertainty in model parameter values. The propagation of parameter uncertainties is demonstrated using a Monte Carlo technique for elemental /sup 131/I transported via the pasture-cow-milk-child pathway. The results indicate that when site-specific information is not available the imprecision inherent in the predictions for this pathway is potentially large. Generally, the 99th percentile in thyroid dose for children was predicted to be approximately an order of magnitude greater than the median value. The potential consequences of the imprecision in dose for radiation protection purposes are discussed.

  18. Monte Carlo dosimetry of the IRAsource high dose rate 192Ir brachytherapy source

    International Nuclear Information System (INIS)

    Sarabiasl, Akbar; Ayoobian, Navid; Jabbari, Iraj; Poorbaygi, Hossein; Javanshir, Mohammad Reza

    2016-01-01

    High-dose-rate (HDR) brachytherapy is a common method for cancer treatment in clinical brachytherapy. Because of the different source designs, there is a need for specific dosimetry data set for each HDR model. The purpose of this study is to obtain detailed dose rate distributions in water phantom for a first prototype HDR 192 Ir brachytherapy source model, IRAsource, and compare with the other published works. In this study, Monte Carlo N-particle (MCNP version 4C) code was used to simulate the dose rate distributions around the HDR source. A full set of dosimetry parameters reported by the American Association of Physicists in Medicine Task Group No. 43U1 was evaluated. Also, the absorbed dose rate distributions in water, were obtained in an along-away look-up table. The dose rate constant, Λ, of the IRAsource was evaluated to be equal to 1.112 ± 0.005 cGy h −1 U −1 . The results of dosimetry parameters are presented in tabulated and graphical formats and compared with those reported from other commercially available HDR 192 Ir sources, which are in good agreement. This justifies the use of specific data sets for this new source. The results obtained in this study can be used as input data in the conventional treatment planning systems.

  19. Dose mapping in category I irradiators

    International Nuclear Information System (INIS)

    Mondal, Sandip; Shinde, S.H.; Mhatre, S.G.V.

    2012-01-01

    that such dose mapping exercises need to be carried out on a regular basis to avoid errors in dose delivery to samples. (author)

  20. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    Science.gov (United States)

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Monte Carlo simulation on hard X-ray dose produced in interaction between high intensity laser and solid target

    International Nuclear Information System (INIS)

    Yang Bo; Qiu Rui; Li Junli; Zhang Hui

    2014-01-01

    The X-ray dose produced in the interaction between high intensity laser and solid target was studied by simulation using Monte Carlo code. Compared with experimental results, the calculation model was verified. The calculation model was used to study the effect on X-ray dose with different electron temperatures, target materials (including Au, Cu and PE) and thicknesses. The results indicate that the X-ray dose is mainly determined by the electron temperature, and will be affected by the target parameters. X-ray dose of Au is about 1.2 times that of Cu, and is about 5 times that of PE (polyethylene). In addition, compared with other target thickness, when target thickness is the mean range of electron in the target, X-ray dose is relatively large. These results will provide references on evaluating the ionizing radiation dose for laser devices. (authors)

  2. Dose mapping of the multi-purpose gamma irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Villamater, D T [Irradiation Services, Nuclear Services and Training Division, Philippine Nuclear Research Institute, Quezon City (Philippines)

    1989-12-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author).

  3. Dose mapping of the multi-purpose gamma irradiation facility

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Villamater, D.T.

    1989-01-01

    In radiation processing, reliable dosimetry constitutes a very important part of process control and quality assurance. Radiation dosimetry is the only acceptable method to guarantee that the irradiated product has undergone the correct radiation treatment. In preparation therefore, for the routine operation of the newly installed multi-purpose gamma irradiation facility at the Philippine Nuclear Research Institute (PNRI), dose mapping distribution studies were undertaken. Results of dose distribution in air as well as in dummy product are presented. The effects of product bulk density, product geometry and product to source distance on minimum absorbed dose and uniformity ratio have been determined. (Author)

  4. Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Scott E., E-mail: sedavids@utmb.edu [Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555 (United States); Cui, Jing [Radiation Oncology, University of Southern California, Los Angeles, California 90033 (United States); Kry, Stephen; Ibbott, Geoffrey S.; Followill, David S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Vicic, Milos [Department of Applied Physics, University of Belgrade, Belgrade 11000 (Serbia); White, R. Allen [Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2016-08-15

    Purpose: A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today’s modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis. Methods: The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source. Results: Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data

  5. Estimation of the dose deposited by electron beams in radiotherapy in voxelised phantoms using the Monte Carlo simulation platform GATE based on GEANT4 in a grid environment

    International Nuclear Information System (INIS)

    Perrot, Y.

    2011-01-01

    Radiation therapy treatment planning requires accurate determination of absorbed dose in the patient. Monte Carlo simulation is the most accurate method for solving the transport problem of particles in matter. This thesis is the first study dealing with the validation of the Monte Carlo simulation platform GATE (GEANT4 Application for Tomographic Emission), based on GEANT4 (Geometry And Tracking) libraries, for the computation of absorbed dose deposited by electron beams. This thesis aims at demonstrating that GATE/GEANT4 calculations are able to reach treatment planning requirements in situations where analytical algorithms are not satisfactory. The goal is to prove that GATE/GEANT4 is useful for treatment planning using electrons and competes with well validated Monte Carlo codes. This is demonstrated by the simulations with GATE/GEANT4 of realistic electron beams and electron sources used for external radiation therapy or targeted radiation therapy. The computed absorbed dose distributions are in agreement with experimental measurements and/or calculations from other Monte Carlo codes. Furthermore, guidelines are proposed to fix the physics parameters of the GATE/GEANT4 simulations in order to ensure the accuracy of absorbed dose calculations according to radiation therapy requirements. (author)

  6. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT: comparison of commercially available Monte Carlo dose calculation with other algorithms

    Directory of Open Access Journals (Sweden)

    Takahashi Wataru

    2012-02-01

    Full Text Available Abstract Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC calculations, in actual computed tomography (CT scans for use in stereotactic radiotherapy (SRT of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS. The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs. Collapsed cone convolution (CCC from Pinnacle3, superposition (SP from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC doses and the minimal dose received by 95% of the PTV (PTV95 compared to XVMC. The differences in mean doses were 2.96 Gy (6.17% for IC and 5.02 Gy (11.18% for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17, and -2.67% (p = 0.0036, respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.

  7. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    Science.gov (United States)

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  8. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams

    International Nuclear Information System (INIS)

    Kuenzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar

    2009-01-01

    The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (γ) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% ± 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 x 10 cm 2 field at the first density interface from tissue to lung equivalent material. Small fields (2 x 2 cm 2 ) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the

  9. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  10. Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms

    International Nuclear Information System (INIS)

    Gu, J.; George Xu, X.; Caracappa, P. F.; Liu, B.

    2013-01-01

    To investigate the radiation dose to the fetus using retrospective tube current modulation (TCM) data selected from archived clinical records. This paper describes the calculation of fetal doses using retrospective TCM data and Monte Carlo (MC) simulations. Three TCM schemes were adopted for use with three pregnant patient phantoms. MC simulations were used to model CT scanners, TCM schemes and pregnant patients. Comparisons between organ doses from TCM schemes and those from non-TCM schemes show that these three TCM schemes reduced fetal doses by 14, 18 and 25 %, respectively. These organ doses were also compared with those from ImPACT calculation. It is found that the difference between the calculated fetal dose and the ImPACT reported dose is as high as 46 %. This work demonstrates methods to study organ doses from various TCM protocols and potential ways to improve the accuracy of CT dose calculation for pregnant patients. (authors)

  11. A Monte-Carlo simulation framework for joint optimisation of image quality and patient dose in digital paediatric radiography

    International Nuclear Information System (INIS)

    Menser, Bernd; Manke, Dirk; Mentrup, Detlef; Neitzel, Ulrich

    2016-01-01

    In paediatric radiography, according to the as low as reasonably achievable (ALARA) principle, the imaging task should be performed with the lowest possible radiation dose. This paper describes a Monte-Carlo simulation framework for dose optimisation of imaging parameters in digital paediatric radiography. Patient models with high spatial resolution and organ segmentation enable the simultaneous evaluation of image quality and patient dose on the same simulated radiographic examination. The accuracy of the image simulation is analysed by comparing simulated and acquired images of technical phantoms. As a first application example, the framework is applied to optimise tube voltage and pre-filtration in newborn chest radiography. At equal patient dose, the highest CNR is obtained with low-kV settings in combination with copper filtration. (authors)

  12. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.

    Science.gov (United States)

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X George

    2014-07-01

    Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm

  13. SU-F-T-111: Investigation of the Attila Deterministic Solver as a Supplement to Monte Carlo for Calculating Out-Of-Field Radiotherapy Dose

    Energy Technology Data Exchange (ETDEWEB)

    Mille, M; Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD (United States); Failla, G [Varian Medical Systems, Gig Harbor, WA (United States)

    2016-06-15

    Purpose: To use the Attila deterministic solver as a supplement to Monte Carlo for calculating out-of-field organ dose in support of epidemiological studies looking at the risks of second cancers. Supplemental dosimetry tools are needed to speed up dose calculations for studies involving large-scale patient cohorts. Methods: Attila is a multi-group discrete ordinates code which can solve the 3D photon-electron coupled linear Boltzmann radiation transport equation on a finite-element mesh. Dose is computed by multiplying the calculated particle flux in each mesh element by a medium-specific energy deposition cross-section. The out-of-field dosimetry capability of Attila is investigated by comparing average organ dose to that which is calculated by Monte Carlo simulation. The test scenario consists of a 6 MV external beam treatment of a female patient with a tumor in the left breast. The patient is simulated by a whole-body adult reference female computational phantom. Monte Carlo simulations were performed using MCNP6 and XVMC. Attila can export a tetrahedral mesh for MCNP6, allowing for a direct comparison between the two codes. The Attila and Monte Carlo methods were also compared in terms of calculation speed and complexity of simulation setup. A key perquisite for this work was the modeling of a Varian Clinac 2100 linear accelerator. Results: The solid mesh of the torso part of the adult female phantom for the Attila calculation was prepared using the CAD software SpaceClaim. Preliminary calculations suggest that Attila is a user-friendly software which shows great promise for our intended application. Computational performance is related to the number of tetrahedral elements included in the Attila calculation. Conclusion: Attila is being explored as a supplement to the conventional Monte Carlo radiation transport approach for performing retrospective patient dosimetry. The goal is for the dosimetry to be sufficiently accurate for use in retrospective

  14. Measurement of absorbed doses near interfaces, and dose mapping using gas chromic dosimetry media. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, F; Said, F I.A.; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Atomic Energy Athority, P.O.Box 29 Nasr City, Cairo (Egypt)

    1996-03-01

    Gas chromic dosimetry media is a thin-coated film which has advantages for high-dose radiation dosimetry, and produces high-resolution radiation image for gamma radiation. Therefore, these films were calibrated for the dose range 0.1-50 kGy in terms of increase in absorbance at 600 nm, 400 nm; increase in the area of the absorption spectra in the ranges 395-405 nm and 320-450 nm wave length as a function of absorbed dose in water. The calibrated films were used for measurement of absorbed doses close to metal interface, and dose mapping of the radiation field inside product box during a run for sterilizing surgical gloves at the mega-gamma irradiation facility.7 figs.

  15. The Monte Carlo SRNA-VOX code for 3D proton dose distribution in voxelized geometry using CT data

    International Nuclear Information System (INIS)

    Ilic, Radovan D; Spasic-Jokic, Vesna; Belicev, Petar; Dragovic, Milos

    2005-01-01

    This paper describes the application of the SRNA Monte Carlo package for proton transport simulations in complex geometry and different material compositions. The SRNA package was developed for 3D dose distribution calculation in proton therapy and dosimetry and it was based on the theory of multiple scattering. The decay of proton induced compound nuclei was simulated by the Russian MSDM model and our own using ICRU 63 data. The developed package consists of two codes: the SRNA-2KG, which simulates proton transport in combinatorial geometry and the SRNA-VOX, which uses the voxelized geometry using the CT data and conversion of the Hounsfield's data to tissue elemental composition. Transition probabilities for both codes are prepared by the SRNADAT code. The simulation of the proton beam characterization by multi-layer Faraday cup, spatial distribution of positron emitters obtained by the SRNA-2KG code and intercomparison of computational codes in radiation dosimetry, indicate immediate application of the Monte Carlo techniques in clinical practice. In this paper, we briefly present the physical model implemented in the SRNA package, the ISTAR proton dose planning software, as well as the results of the numerical experiments with proton beams to obtain 3D dose distribution in the eye and breast tumour

  16. Application of a Monte Carlo linac model in routine verifications of dose calculations

    International Nuclear Information System (INIS)

    Linares Rosales, H. M.; Alfonso Laguardia, R.; Lara Mas, E.; Popescu, T.

    2015-01-01

    The analysis of some parameters of interest in Radiotherapy Medical Physics based on an experimentally validated Monte Carlo model of an Elekta Precise lineal accelerator, was performed for 6 and 15 Mv photon beams. The simulations were performed using the EGSnrc code. As reference for simulations, the optimal beam parameters values (energy and FWHM) previously obtained were used. Deposited dose calculations in water phantoms were done, on typical complex geometries commonly are used in acceptance and quality control tests, such as irregular and asymmetric fields. Parameters such as MLC scatter, maximum opening or closing position, and the separation between them were analyzed from calculations in water. Similarly simulations were performed on phantoms obtained from CT studies of real patients, making comparisons of the dose distribution calculated with EGSnrc and the dose distribution obtained from the computerized treatment planning systems (TPS) used in routine clinical plans. All the results showed a great agreement with measurements, finding all of them within tolerance limits. These results allowed the possibility of using the developed model as a robust verification tool for validating calculations in very complex situation, where the accuracy of the available TPS could be questionable. (Author)

  17. Suitability of new anode materials in mammography: Dose and subject contrast considerations using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2006-01-01

    Mammography is the technique with the highest sensitivity and specificity, for the early detection of nonpalpable lesions associated with breast cancer. As screening mammography refers to asymptomatic women, the task of optimization between the image quality and the radiation dose is critical. A way toward optimization could be the introduction of new anode materials. A method for producing the x-ray spectra of different anode/filter combinations is proposed. The performance of several mammographic spectra, produced by both existing and theoretical anode materials, is evaluated, with respect to their dose and subject contrast characteristics, using a Monte Carlo simulation.The mammographic performance is evaluated utilizing a properly designed mathematical phantom with embedded inhomogeneities, irradiated with different spectra, based on combinations of conventional and new (Ru, Ag) anode materials, with several filters (Mo, Rh, Ru, Ag, Nb, Al). An earlier developed and validated Monte Carlo model, for deriving both image and dose characteristics in mammography, was utilized and overall performance results were derived in terms of subject contrast to dose ratio and squared subject contrast to dose ratio. Results demonstrate that soft spectra, mainly produced from Mo, Rh, and Ru anodes and filtered with k-edge filters, provide increased subject contrast for inhomogeneities of both small size, simulating microcalcifications and low density, simulating masses. The harder spectra (W and Ag anode) come short in the discrimination task but demonstrate improved performance when considering the dose delivered to the breast tissue. As far as the overall performance is concerned, new theoretical spectra demonstrate a noticeable good performance that is similar, and in some cases better compared to commonly used systems, stressing the possibility of introducing new materials in mammographic practice as a possible contribution to its optimization task. In the overall

  18. Monte Carlo method for dose calculation due to oral X-rays; Coeficientes de conversao para calculo de doses devidos a radiografias odontologicas utilizando o metodo de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Eduardo Cesar de Miranda

    1998-06-01

    The increasing utilization of oral X-rays, especially in youngsters and children, calls for the assessment of equivalent doses in their organs and tissues. With this purpose, a Monte Carlo code was adapted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM.FOR developed at the GSF-Germany) and the adapted program (MCDRO.PAS). Good agreement between results obtained with both codes was observed. Irradiations of the incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone narrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the larger the field area, the higher the dose in assessed organs and tissues. The variation of the source-skin distance does not change the conversion coefficients. On the other hand, the increase in the voltage applied to the X-ray tube causes an increase in the calculated conversion coefficients. (author)

  19. Application of the Monte Carlo integration method in calculations of dose distributions in HDR-Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.

  20. Assessment of physician and patient (child and adult) equivalent doses during renal angiography by Monte Carlo method

    International Nuclear Information System (INIS)

    Karimian, A.; Nikparvar, B.; Jabbari, I.

    2014-01-01

    Renal angiography is one of the medical imaging methods in which patient and physician receive high equivalent doses due to long duration of fluoroscopy. In this research, equivalent doses of some radiosensitive tissues of patient (adult and child) and physician during renal angiography have been calculated by using adult and child Oak Ridge National Laboratory phantoms and Monte Carlo method (MCNPX). The results showed, in angiography of right kidney in a child and adult patient, that gall bladder with the amounts of 2.32 and 0.35 mSv, respectively, has received the most equivalent dose. About the physician, left hand, left eye and thymus absorbed the most amounts of doses, means 0.020 mSv. In addition, equivalent doses of the physician's lens eye, thyroid and knees were 0.023, 0.007 and 7.9 - 4 mSv, respectively. Although these values are less than the reported thresholds by ICRP 103, it should be noted that these amounts are related to one examination. (authors)

  1. MCID: A Software Tool to Provide Monte Carlo Driven Dosimetric Calculations Using Multimodality NM Images

    International Nuclear Information System (INIS)

    Vergara Gil, Alex; Torres Aroche, Leonel A; Coca Péreza, Marco A; Pacilio, Massimiliano; Botta, Francesca; Cremonesi, Marta

    2016-01-01

    Aim: In this work, a new software tool (named MCID) to calculate patient specific absorbed dose in molecular radiotherapy, based on Monte Carlo simulation, is presented. Materials & Methods: The inputs for MCID are two co-registered medical images containing anatomical (CT) and functional (PET or SPECT) information of the patient. The anatomical image is converted to a density map, and tissues segmentation is provided considering compositions and densities from ICRU 44 and ICRP; the functional image provides the cumulative activity map at voxel level (figure 1). MCID creates an input file for Monte Carlo (MC) codes such as MCNP5 and GATE, and converts the MC outputs into an absorbed dose image. Results: The developed tool allows estimating dose distributions for non-uniform activities distributions and non-homogeneous tissues. It includes tools for delineation of volumes of interest, and dosimetric data analysis. Procedures to decrease the calculation time are implemented in order to allow its use in clinical settings. Dose–volume histograms are computed and presented from the obtained dosimetric maps as well as dose statistics such as mean, minimum and maximum dose values; the results can be saved in common medical image formats (Interfile, DICOM, Analyze, MetaImage). The MCID was validated by comparing estimated dose values versus reference data, such as gold standards phantoms (OLINDA´s spheres) and other MC simulations of non-homogeneous phantoms. A good agreement was obtained in spheres ranged 1g to 1kg of mass and in non-homogeneous phantoms. Clinical studies were also examined. Dosimetric evaluations in patients undergoing 153Sm-EDTMP therapy for osseous metastases showed non-significant differences with calculations performed by traditional methods. The possibility of creating input files to perform the simulations using the Gate Code has increased the MCID applications and improved its functionality, Different clinical situations including PET and SPECT

  2. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.; Bolch, Wesley E.

    2012-01-01

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI vol (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependent reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI vol - and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI vol for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose differences up to

  3. TestDose: A nuclear medicine software based on Monte Carlo modeling for generating gamma camera acquisitions and dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marie-Paule, E-mail: marie-paule.garcia@univ-brest.fr; Villoing, Daphnée [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, 31062 Toulouse (France); McKay, Erin [St George Hospital, Gray Street, Kogarah, New South Wales 2217 (Australia); Ferrer, Ludovic [ICO René Gauducheau, Boulevard Jacques Monod, St Herblain 44805 (France); Cremonesi, Marta; Botta, Francesca; Ferrari, Mahila [European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy); Bardiès, Manuel [UMR 1037 INSERM/UPS, CRCT, 133 Route de Narbonne, Toulouse 31062 (France)

    2015-12-15

    Purpose: The TestDose platform was developed to generate scintigraphic imaging protocols and associated dosimetry by Monte Carlo modeling. TestDose is part of a broader project (www.dositest.com) whose aim is to identify the biases induced by different clinical dosimetry protocols. Methods: The TestDose software allows handling the whole pipeline from virtual patient generation to resulting planar and SPECT images and dosimetry calculations. The originality of their approach relies on the implementation of functional segmentation for the anthropomorphic model representing a virtual patient. Two anthropomorphic models are currently available: 4D XCAT and ICRP 110. A pharmacokinetic model describes the biodistribution of a given radiopharmaceutical in each defined compartment at various time-points. The Monte Carlo simulation toolkit GATE offers the possibility to accurately simulate scintigraphic images and absorbed doses in volumes of interest. The TestDose platform relies on GATE to reproduce precisely any imaging protocol and to provide reference dosimetry. For image generation, TestDose stores user’s imaging requirements and generates automatically command files used as input for GATE. Each compartment is simulated only once and the resulting output is weighted using pharmacokinetic data. Resulting compartment projections are aggregated to obtain the final image. For dosimetry computation, emission data are stored in the platform database and relevant GATE input files are generated for the virtual patient model and associated pharmacokinetics. Results: Two samples of software runs are given to demonstrate the potential of TestDose. A clinical imaging protocol for the Octreoscan™ therapeutical treatment was implemented using the 4D XCAT model. Whole-body “step and shoot” acquisitions at different times postinjection and one SPECT acquisition were generated within reasonable computation times. Based on the same Octreoscan™ kinetics, a dosimetry

  4. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    International Nuclear Information System (INIS)

    Fragoso, M; Love, P A; Verhaegen, F; Nalder, C; Bidmead, A M; Leach, M; Webb, S

    2004-01-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous-with an air cavity-polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated

  5. Development of 1-year-old computational phantom and calculation of organ doses during CT scans using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Pan, Yuxi; Qiu, Rui; Ge, Chaoyong; Xie, Wenzhang; Li, Junli; Gao, Linfeng; Zheng, Junzheng

    2014-01-01

    With the rapidly growing number of CT examinations, the consequential radiation risk has aroused more and more attention. The average dose in each organ during CT scans can only be obtained by using Monte Carlo simulation with computational phantoms. Since children tend to have higher radiation sensitivity than adults, the radiation dose of pediatric CT examinations requires special attention and needs to be assessed accurately. So far, studies on organ doses from CT exposures for pediatric patients are still limited. In this work, a 1-year-old computational phantom was constructed. The body contour was obtained from the CT images of a 1-year-old physical phantom and the internal organs were deformed from an existing Chinese reference adult phantom. To ensure the organ locations in the 1-year-old computational phantom were consistent with those of the physical phantom, the organ locations in 1-year-old computational phantom were manually adjusted one by one, and the organ masses were adjusted to the corresponding Chinese reference values. Moreover, a CT scanner model was developed using the Monte Carlo technique and the 1-year-old computational phantom was applied to estimate organ doses derived from simulated CT exposures. As a result, a database including doses to 36 organs and tissues from 47 single axial scans was built. It has been verified by calculation that doses of axial scans are close to those of helical scans; therefore, this database could be applied to helical scans as well. Organ doses were calculated using the database and compared with those obtained from the measurements made in the physical phantom for helical scans. The differences between simulation and measurement were less than 25% for all organs. The result shows that the 1-year-old phantom developed in this work can be used to calculate organ doses in CT exposures, and the dose database provides a method for the estimation of 1-year-old patient doses in a variety of CT examinations. (paper)

  6. Estimation of computed tomography dose index in cone beam computed tomography: MOSFET measurements and Monte Carlo simulations.

    Science.gov (United States)

    Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald

    2010-05-01

    To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry.

  7. Estimating statistical uncertainty of Monte Carlo efficiency-gain in the context of a correlated sampling Monte Carlo code for brachytherapy treatment planning with non-normal dose distribution.

    Science.gov (United States)

    Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr

    2012-01-01

    Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Evaluation of an electron Monte Carlo dose calculation algorithm for treatment planning.

    Science.gov (United States)

    Chamberland, Eve; Beaulieu, Luc; Lachance, Bernard

    2015-05-08

    The purpose of this study is to evaluate the accuracy of the electron Monte Carlo (eMC) dose calculation algorithm included in a commercial treatment planning system and compare its performance against an electron pencil beam algorithm. Several tests were performed to explore the system's behavior in simple geometries and in configurations encountered in clinical practice. The first series of tests were executed in a homogeneous water phantom, where experimental measurements and eMC-calculated dose distributions were compared for various combinations of energy and applicator. More specifically, we compared beam profiles and depth-dose curves at different source-to-surface distances (SSDs) and gantry angles, by using dose difference and distance to agreement. Also, we compared output factors, we studied the effects of algorithm input parameters, which are the random number generator seed, as well as the calculation grid size, and we performed a calculation time evaluation. Three different inhomogeneous solid phantoms were built, using high- and low-density materials inserts, to clinically simulate relevant heterogeneity conditions: a small air cylinder within a homogeneous phantom, a lung phantom, and a chest wall phantom. We also used an anthropomorphic phantom to perform comparison of eMC calculations to measurements. Finally, we proceeded with an evaluation of the eMC algorithm on a clinical case of nose cancer. In all mentioned cases, measurements, carried out by means of XV-2 films, radiographic films or EBT2 Gafchromic films. were used to compare eMC calculations with dose distributions obtained from an electron pencil beam algorithm. eMC calculations in the water phantom were accurate. Discrepancies for depth-dose curves and beam profiles were under 2.5% and 2 mm. Dose calculations with eMC for the small air cylinder and the lung phantom agreed within 2% and 4%, respectively. eMC calculations for the chest wall phantom and the anthropomorphic phantom also

  9. Interindividual registration and dose mapping for voxelwise population analysis of rectal toxicity in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dréan, Gaël; Acosta, Oscar, E-mail: Oscar.Acosta@univ-rennes1.fr; Simon, Antoine; Haigron, Pascal [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Lafond, Caroline; Crevoisier, Renaud de [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Département de Radiothérapie, Center Eugène Marquis, Rennes F-35000 (France)

    2016-06-15

    Purpose: Recent studies revealed a trend toward voxelwise population analysis in order to understand the local dose/toxicity relationships in prostate cancer radiotherapy. Such approaches require, however, an accurate interindividual mapping of the anatomies and 3D dose distributions toward a common coordinate system. This step is challenging due to the high interindividual variability. In this paper, the authors propose a method designed for interindividual nonrigid registration of the rectum and dose mapping for population analysis. Methods: The method is based on the computation of a normalized structural description of the rectum using a Laplacian-based model. This description takes advantage of the tubular structure of the rectum and its centerline to be embedded in a nonrigid registration-based scheme. The performances of the method were evaluated on 30 individuals treated for prostate cancer in a leave-one-out cross validation. Results: Performance was measured using classical metrics (Dice score and Hausdorff distance), along with new metrics devised to better assess dose mapping in relation with structural deformation (dose-organ overlap). Considering these scores, the proposed method outperforms intensity-based and distance maps-based registration methods. Conclusions: The proposed method allows for accurately mapping interindividual 3D dose distributions toward a single anatomical template, opening the way for further voxelwise statistical analysis.

  10. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); University Cairo (Egypt); Mora, G [de Lisboa, Codex, Lisboa (Portugal)

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  11. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model

    International Nuclear Information System (INIS)

    Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold

    2016-01-01

    Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this

  12. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model.

    Science.gov (United States)

    Wang, Yuhe; Mazur, Thomas R; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H Harold

    2016-07-01

    The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on penelope and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. penelope was first translated from fortran to c++ and the result was confirmed to produce equivalent results to the original code. The c++ code was then adapted to cuda in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gpenelope highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gpenelope as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gpenelope. Ultimately, gpenelope was applied toward independent validation of patient doses calculated by MRIdian's kmc. An acceleration factor of 152 was achieved in comparison to the original single-thread fortran implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gpenelope with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). A Monte Carlo simulation platform was developed based on a GPU- accelerated version of penelope. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and

  13. A GPU-accelerated Monte Carlo dose calculation platform and its application toward validating an MRI-guided radiation therapy beam model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuhe; Mazur, Thomas R.; Green, Olga; Hu, Yanle; Li, Hua; Rodriguez, Vivian; Wooten, H. Omar; Yang, Deshan; Zhao, Tianyu; Mutic, Sasa; Li, H. Harold, E-mail: hli@radonc.wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

    2016-07-15

    Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: PENELOPE was first translated from FORTRAN to C++ and the result was confirmed to produce equivalent results to the original code. The C++ code was then adapted to CUDA in a workflow optimized for GPU architecture. The original code was expanded to include voxelized transport with Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, the vendor-provided MRIdian head model was incorporated into the code in an effort to apply gPENELOPE as both an accurate and rapid dose validation system. A set of experimental measurements were performed on the MRIdian system to examine the accuracy of both the head model and gPENELOPE. Ultimately, gPENELOPE was applied toward independent validation of patient doses calculated by MRIdian’s KMC. Results: An acceleration factor of 152 was achieved in comparison to the original single-thread FORTRAN implementation with the original accuracy being preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen(1), mediastinum (1), and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: A Monte Carlo simulation platform was developed based on a GPU- accelerated version of PENELOPE. This platform was used to validate that both the vendor-provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this

  14. ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    Science.gov (United States)

    Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George

    2014-01-01

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified

  15. Towards real-time photon Monte Carlo dose calculation in the cloud

    Science.gov (United States)

    Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe

    2017-06-01

    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.

  16. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    Science.gov (United States)

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated

  17. GPU-Monte Carlo based fast IMRT plan optimization

    Directory of Open Access Journals (Sweden)

    Yongbao Li

    2014-03-01

    Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z

  18. Estimation of skyshine dose from turbine building of BWR plant using Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Yuji, Nemoto; Toshihisa, Tsukiyama; Shigeki, Nemezawa [Hitachi. Ltd., Saiwai-cho, Hitachi (Japan); Tadashi, Yamasaki; Hidetsugu, Okada [Chubu Electric Power Company, Inc., Odaka-cho, Midori-ku Nagoya (Japan)

    2007-07-01

    The Monte Carlo N-Particle transport code (MCNP) was adopted to calculate the skyshine dose from the turbine building of a BWR plant for obtaining precise estimations at the site boundary. In MCNP calculation, the equipment and piping arranged on the operating floor of the turbine building were considered and modeled in detail. The inner and outer walls of the turbine building, the shielding materials around the high-pressure turbine, and the piping connected from the moisture separator to the low-pressure turbine were all considered. A three-step study was conducted to estimate the applicability of MCNP code. The first step is confirming the propriety of calculation models. The atmospheric relief diaphragms, which are installed on top of the low-pressure turbine exhaust hood, are not considered in the calculation model. There was little difference between the skyshine dose distributions that were considered when using and not using the atmospheric relief diaphragms. The calculated dose rates agreed well with the measurements taken around the turbine. The second step is estimating the dose rates on the outer roof surface of the turbine building. This calculation was made to confirm the dose distribution of gamma-rays on the turbine roof before being scattered into the air. The calculated dose rates agreed well with the measured data. The third step is making a final confirmation by comparing the calculations and measurements of skyshine dose rates around the turbine building. The source terms of the main steam system are based on the measured activity data of N-16 and C-15. As a conclusion, we were able to calculate reasonable skyshine dose rates by using MCNP code. (authors)

  19. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  20. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  1. SU-C-204-06: Monte Carlo Dose Calculation for Kilovoltage X-Ray-Psoralen Activated Cancer Therapy (X-PACT): Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Mein, S [Duke University Medical Physics Graduate Program (United States); Gunasingha, R [Department of Radiation Safety, Duke University Medical Center (United States); Nolan, M [Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University (United States); Oldham, M; Adamson, J [Department of Radiation Oncology, Duke University Medical Center (United States)

    2016-06-15

    Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp with the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold

  2. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany)

    2016-10-15

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  3. Clinical evaluation of a dose monitoring software tool based on Monte Carlo Simulation in assessment of eye lens doses for cranial CT scans

    International Nuclear Information System (INIS)

    Guberina, Nika; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Forsting, Michael; Theysohn, Jens; Wetter, Axel; Ringelstein, Adrian

    2016-01-01

    The aim of this study was to verify the results of a dose monitoring software tool based on Monte Carlo Simulation (MCS) in assessment of eye lens doses for cranial CT scans. In cooperation with the Federal Office for Radiation Protection (Neuherberg, Germany), phantom measurements were performed with thermoluminescence dosimeters (TLD LiF:Mg,Ti) using cranial CT protocols: (I) CT angiography; (II) unenhanced, cranial CT scans with gantry angulation at a single and (III) without gantry angulation at a dual source CT scanner. Eye lens doses calculated by the dose monitoring tool based on MCS and assessed with TLDs were compared. Eye lens doses are summarized as follows: (I) CT angiography (a) MCS 7 mSv, (b) TLD 5 mSv; (II) unenhanced, cranial CT scan with gantry angulation, (c) MCS 45 mSv, (d) TLD 5 mSv; (III) unenhanced, cranial CT scan without gantry angulation (e) MCS 38 mSv, (f) TLD 35 mSv. Intermodality comparison shows an inaccurate calculation of eye lens doses in unenhanced cranial CT protocols at the single source CT scanner due to the disregard of gantry angulation. On the contrary, the dose monitoring tool showed an accurate calculation of eye lens doses at the dual source CT scanner without gantry angulation and for CT angiography examinations. The dose monitoring software tool based on MCS gave accurate estimates of eye lens doses in cranial CT protocols. However, knowledge of protocol and software specific influences is crucial for correct assessment of eye lens doses in routine clinical use. (orig.)

  4. A methodological approach to a realistic evaluation of skin absorbed doses during manipulation of radioactive sources by means of GAMOS Monte Carlo simulations

    Science.gov (United States)

    Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio

    2018-05-01

    The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.

  5. Application of the Monte Carlo method to estimate doses in a radioactive waste drum environment

    International Nuclear Information System (INIS)

    Rodenas, J.; Garcia, T.; Burgos, M.C.; Felipe, A.; Sanchez-Mayoral, M.L.

    2002-01-01

    During refuelling operation in a Nuclear Power Plant, filtration is used to remove non-soluble radionuclides contained in the water from reactor pool. Filter cartridges accumulate a high radioactivity, so that they are usually placed into a drum. When the operation ends up, the drum is filled with concrete and stored along with other drums containing radioactive wastes. Operators working in the refuelling plant near these radwaste drums can receive high dose rates. Therefore, it is convenient to estimate those doses to prevent risks in order to apply ALARA criterion for dose reduction to workers. The Monte Carlo method has been applied, using MCNP 4B code, to simulate the drum containing contaminated filters and estimate doses produced in the drum environment. In the paper, an analysis of the results obtained with the MCNP code has been performed. Thus, the influence on the evaluated doses of distance from drum and interposed shielding barriers has been studied. The source term has also been analysed to check the importance of the isotope composition. Two different geometric models have been considered in order to simplify calculations. Results have been compared with dose measurements in plant in order to validate the calculation procedure. This work has been developed at the Nuclear Engineering Department of the Polytechnic University of Valencia in collaboration with IBERINCO in the frame of an RD project sponsored by IBERINCO

  6. Calculation of equivalent dose index for electrons from 5,0 to 22,0 MeV by the Monte Carlo method

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1979-01-01

    The index of equivalent dose in depth and in a sphere surface of a soft tissue equivalent material were determined by Monte Carlo method for electron irradiations from 5,0 to 22.00 MeV. The effect of different irradiation geometries which simulate the incidence of onedirectional opposite rotational and isotropic beams was studied. It is also shown that the detector of wall thickness with 0.5g/cm 2 and isotropic response com be used to measure index of equivalent dose for fast electrons. The alternative concept of average equivalent dose for radiation protection is discussed. (M.C.K.) [pt

  7. Assessment of influence of OSL dosimeters in the skin dose in radiotherapy: study for Monte Carlo simulation; Avaliacao da influencia de dosimetros OSL na dose na pele em radioterapia: estudo por simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, Franciely F.; Nicolucci, Patricia, E-mail: franschuch@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeiraoo Preto, SP (Brazil)

    2017-11-01

    The interest in optically stimulated luminescence (OSL) dosimetry materials is growing due to its potential use in quality control in Radiotherapy. The use of these dosimeters for in vivo dosimetry, however, may influence the dose to the skin and deeper tissues in the patient. The goal of this study is to evaluate the influence of the OSL Al{sub 2}O{sub 3} material in dose deposited in the skin and deep in Radiotherapy. Monte Carlo simulation is used to evaluate this purpose when OSL dosimeters of Al{sub 2}O{sub 3} are positioned on the skin surface of the patient. Percentage depth dose curves for clinical beams of 6 and 10 MV were simulated with and without the presence of the dosimeter on the surface of a water phantom. The results showed a decrease of doses in regions close to the surface of the skin. In the build-up region, the maximum decreases of dose produced by the presence of the dosimeters were 52,5% and 47,5% for the 6 and 10 MV beams, respectively. After the build-up region, there are not significant changes in the doses for any of the used beams. The differences of doses found are due to the influence of the dosimetric material on the relative fluence of electrons near the end surface of the dosimeter. Thus, the results showed that the presence of the dosimetric material on the surface interferes on the skin dose. However, these dosimeters do not cause dose variations in depths of clinical interest, allowing its application in routine in vivo dosimetry in Radiotherapy. (author)

  8. Dose-rate mapping and search of radioactive sources in Estonia

    International Nuclear Information System (INIS)

    Ylaetalo, S.; Karvonen, J.; Ilander, T.; Honkamaa, T.; Toivonen, H.

    1996-12-01

    The Estonian Ministry of Environment and the Finnish Centre for Radiation and Nuclear Safety (STUK) agreed in 1995 on a radiation mapping project in Estonia. The country was searched to find potential man-made radioactive sources. Another goal of the project was to produce a background dose-rate map over the whole country. The measurements provided an excellent opportunity to test new in-field measuring systems that are useful in a nuclear disaster. The basic idea was to monitor road sides, cities, domestic waste storage places and former military or rocket bases from a moving vehicle by measuring gamma spectrum and dose rate. The measurements were carried out using vehicle installed systems consisting of a pressurised ionisation chamber (PIC) in 1995 and a combination of a scintillation spectrometer (NaI(TI)) and Geiger-Mueller-counter (GM) in 1996. All systems utilised GPS-satellite navigation signals to relate the measured dose rates and gamma-spectra to current geographical location. The data were recorded for further computer analysis. The dose rate varied usually between 0.03-0.17 μSv/h in the whole country, excluding a few nuclear material storage places (in Saku and in Sillamae). Enhanced dose rates of natural origin (0.17-0.5 μSv/h) were measured near granite statues, buildings and bridges. No radioactive sources were found on road sides or in towns or villages. (orig.) (14 refs.)

  9. Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments

    International Nuclear Information System (INIS)

    Tilly, David; Tilly, Nina; Ahnesjö, Anders

    2013-01-01

    Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions. A framework was developed where the dose mapping can be associated with a variable known uncertainty to simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to also study the dose mapping sensitivity to penumbra widths. The planning parameter most sensitive to the DIR uncertainty was found to be the target D 95 . We found that the registration mean absolute error needs to be ≤0.20 cm to obtain an uncertainty better than 3% of the calculated D 95 for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk. The DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the accumulated dose

  10. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 6

    International Nuclear Information System (INIS)

    Zankl, M.; Panzer, W.; Drexler, G.

    1991-11-01

    Computed tomography (CT) is a technique which offers a high diagnostic capability; however, the dose to the patient is high compared to conventional radiography. This report provides a catalogue of organ doses resulting from CT examinations. The organ doses were calculated for the type of CT scanners most commonly used in the FRG and for three different radiation qualities. For the dose calculations, the patients were represented by the adult mathematical phantoms Adam and Eva. The radiation transport in the body was simulated using a Monte Carlo method. The doses were calculated as conversion factors of mean organ doses per air kerma free in air on the axis of rotation. Mean organ dose conversion factors are given per organ and per single CT slice of 1 cm width. The mean dose to an organ resulting from a particular CT examination can be estimated by summing up the contribution to the organ dose from each relevant slice. In order to facilitate the selection of the appropriate slices, a table is given which relates the mathematical phantoms' coordinates to certain anatomical landmarks in the human body. (orig.)

  11. Monte Carlo method applied to medical physics

    International Nuclear Information System (INIS)

    Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.

    2000-01-01

    The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)

  12. Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine

    International Nuclear Information System (INIS)

    Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F

    2005-01-01

    IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre

  13. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions

    Science.gov (United States)

    Schneider, Wilfried; Bortfeld, Thomas; Schlegel, Wolfgang

    2000-02-01

    We describe a new method to convert CT numbers into mass density and elemental weights of tissues required as input for dose calculations with Monte Carlo codes such as EGS4. As a first step, we calculate the CT numbers for 71 human tissues. To reduce the effort for the necessary fits of the CT numbers to mass density and elemental weights, we establish four sections on the CT number scale, each confined by selected tissues. Within each section, the mass density and elemental weights of the selected tissues are interpolated. For this purpose, functional relationships between the CT number and each of the tissue parameters, valid for media which are composed of only two components in varying proportions, are derived. Compared with conventional data fits, no loss of accuracy is accepted when using the interpolation functions. Assuming plausible values for the deviations of calculated and measured CT numbers, the mass density can be determined with an accuracy better than 0.04 g cm-3 . The weights of phosphorus and calcium can be determined with maximum uncertainties of 1 or 2.3 percentage points (pp) respectively. Similar values can be achieved for hydrogen (0.8 pp) and nitrogen (3 pp). For carbon and oxygen weights, errors up to 14 pp can occur. The influence of the elemental weights on the results of Monte Carlo dose calculations is investigated and discussed.

  14. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators

    Science.gov (United States)

    Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.

    2017-08-01

    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin

  15. Monte Carlo and experimental internal radionuclide dosimetry in RANDO head phantom

    International Nuclear Information System (INIS)

    Ghahraman Asl, Ruhollah; Nasseri, Shahrokh; Parach, Ali Asghar; Zakavi, Seyed Rasoul; Momennezhad Mehdi; Davenport, David

    2015-01-01

    Monte Carlo techniques are widely employed in internal dosimetry to obtain better estimates of absorbed dose distributions from irradiation sources in medicine. Accurate 3D absorbed dosimetry would be useful for risk assessment of inducing deterministic and stochastic biological effects for both therapeutic and diagnostic radiopharmaceuticals in nuclear medicine. The goal of this study was to experimentally evaluate the use of Geant4 application for tomographic emission (GATE) Monte Carlo package for 3D internal dosimetry using the head portion of the RANDO phantom. GATE package (version 6.1) was used to create a voxel model of a human head phantom from computed tomography (CT) images. Matrix dimensions consisted of 319 × 216 × 30 voxels (0.7871 × 0.7871 × 5 mm 3 ). Measurements were made using thermoluminescent dosimeters (TLD-100). One rod-shaped source with 94 MBq activity of 99m Tc was positioned in the brain tissue of the posterior part of the human head phantom in slice number 2. The results of the simulation were compared with measured mean absorbed dose per cumulative activity (S value). Absorbed dose was also calculated for each slice of the digital model of the head phantom and dose volume histograms (DVHs) were computed to analyze the absolute and relative doses in each slice from the simulation data. The S-values calculated by GATE and TLD methods showed a significant correlation (correlation coefficient, r 2 ≥ 0.99, p < 0.05) with each other. The maximum relative percentage differences were ≤14 % for most cases. DVHs demonstrated dose decrease along the direction of movement toward the lower slices of the head phantom. Based on the results obtained from GATE Monte Carlopackage it can be deduced that a complete dosimetry simulation study, from imaging to absorbed dose map calculation, is possible to execute in a single framework.

  16. Ant colony algorithm implementation in electron and photon Monte Carlo transport: application to the commissioning of radiosurgery photon beams.

    Science.gov (United States)

    García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M

    2010-07-01

    In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  17. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' ' Carlos Haya' ' , Avda. Carlos Haya s/n, E-29010 Malaga (Spain); Unidad de Radiofisica Hospitalaria, Hospital Xanit Internacional, Avda. de los Argonautas s/n, E-29630 Benalmadena (Malaga) (Spain); NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Hufelandstr. 55, D-45122 Essen (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2010-07-15

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within {approx}3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  18. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    International Nuclear Information System (INIS)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M.

    2010-01-01

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within ∼3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  19. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, L; Fan, J; Eldib, A; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.

  20. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 3

    International Nuclear Information System (INIS)

    Drexler, G.; Panzer, W.; Widenmann, L.; Williams, G.; Zankl, M.

    1984-03-01

    This report gives tables of conversion factors for the calculation of organ doses from technical parameters of typical radiographic techniques. These conversion factors were calculated using a male and a female mathematical human phantom and an efficient Monte Carlo programme that determines the mean organ doses from the energy deposited in each organ. Each diagnostic X-ray examination is studied using three X-ray spectra resulting from three different high tension values. The conversion factors per unit entrance air dose in free air are given for sixteen organs and for the entrance and exit surface skin doses. The tables are actually valid only for the given parameters such as phantom dimensions, source-to-skin distance, projection and X-ray quality. This, of course, gives rise to some uncertainty when dealing with the individual technique and patient. The uncertainty in organ dose of adult patients, however, should not be very large, if the calculation is based on a similar geometry, and before all, on the actually administered entrance air dose in the selected high tension range according to the patient parameters. (orig.)

  1. Monte Carlo evaluation of hand and finger doses due to exposure to 18F in PET procedures

    International Nuclear Information System (INIS)

    Pessanha, Paula R.; Queiroz Filho, Pedro P.; Santos, Denison S.; Mauricio, Claudia L.P.

    2011-01-01

    The increasing number of PET procedures performed in nuclear medicine, and, consequently, of workers handling radiopharmaceuticals, is a potential hazard in radiation protection. It is then necessary to evaluate the doses of workers employed in the practice of PET. In this work, the Geant4 Monte Carlo code was used to evaluate doses to fingers and hands of those workers. A geometric phantom, representing the hand of the professional inserted in the clinical procedure, was implemented in the simulation code, with dimensions of a standard man's forearm, which in this case will assess the exposure of the extremities. The geometric phantom is designed so that a simple definition of joint angles configures the fingers, allowing investigations into alternative configurations. Thus, it was possible the placement of the phantom fingers, to simulate all forms of manipulation of a syringe, and subsequently obtain exposure data, relating to the administration procedure of the PET radiopharmaceutical to the patient. The simulation was validated by the irradiation of a REMAB R hand phantom, consisting of a human skeleton hand covered by a tenite II shell, which can be filled with water. Air Kerma values were obtained from the beam dosimetry, which was done with a calibrated ionization chamber. The reading of TLD's, placed on certain points of the surface of the phantom, were compared with the values obtained in the Monte Carlo simulation. After validation of the program, we obtained dose values for the PET procedure, simulating syringes with and without shielding. (author)

  2. TU-AB-BRC-02: Accuracy Evaluation of GPU-Based OpenCL Carbon Monte Carlo Package (goCMC) in Biological Dose and Microdosimetry in Comparison to FLUKA Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Taleei, R; Peeler, C; Qin, N; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: One of the most accurate methods for radiation transport is Monte Carlo (MC) simulation. Long computation time prevents its wide applications in clinic. We have recently developed a fast MC code for carbon ion therapy called GPU-based OpenCL Carbon Monte Carlo (goCMC) and its accuracy in physical dose has been established. Since radiobiology is an indispensible aspect of carbon ion therapy, this study evaluates accuracy of goCMC in biological dose and microdosimetry by benchmarking it with FLUKA. Methods: We performed simulations of a carbon pencil beam with 150, 300 and 450 MeV/u in a homogeneous water phantom using goCMC and FLUKA. Dose and energy spectra for primary and secondary ions on the central beam axis were recorded. Repair-misrepair-fixation model was employed to calculate Relative Biological Effectiveness (RBE). Monte Carlo Damage Simulation (MCDS) tool was used to calculate microdosimetry parameters. Results: Physical dose differences on the central axis were <1.6% of the maximum value. Before the Bragg peak, differences in RBE and RBE-weighted dose were <2% and <1%. At the Bragg peak, the differences were 12.5% caused by small range discrepancy and sensitivity of RBE to beam spectra. Consequently, RBE-weighted dose difference was 11%. Beyond the peak, RBE differences were <20% and primarily caused by differences in the Helium-4 spectrum. However, the RBE-weighted dose agreed within 1% due to the low physical dose. Differences in microdosimetric quantities were small except at the Bragg peak. The simulation time per source particle with FLUKA was 0.08 sec, while goCMC was approximately 1000 times faster. Conclusion: Physical doses computed by FLUKA and goCMC were in good agreement. Although relatively large RBE differences were observed at and beyond the Bragg peak, the RBE-weighted dose differences were considered to be acceptable.

  3. A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry

    Science.gov (United States)

    Oliver, P. A. K.; Thomson, Rowan M.

    2017-02-01

    This work investigates how doses to cellular targets depend on cell morphology, as well as relations between cellular doses and doses to bulk tissues and water. Multicellular models of five healthy and cancerous soft tissues are developed based on typical values of cell compartment sizes, elemental compositions and number densities found in the literature. Cells are modelled as two concentric spheres with nucleus and cytoplasm compartments. Monte Carlo simulations are used to calculate the absorbed dose to the nucleus and cytoplasm for incident photon energies of 20-370 keV, relevant for brachytherapy, diagnostic radiology, and out-of-field radiation in higher-energy external beam radiotherapy. Simulations involving cell clusters, single cells and single nuclear cavities are carried out for cell radii between 5 and 10~μ m, and nuclear radii between 2 and 9~μ m. Seven nucleus and cytoplasm elemental compositions representative of animal cells are considered. The presence of a cytoplasm, extracellular matrix and surrounding cells can affect the nuclear dose by up to 13 % . Differences in cell and nucleus size can affect dose to the nucleus (cytoplasm) of the central cell in a cluster of 13 cells by up to 13 % (8 % ). Furthermore, the results of this study demonstrate that neither water nor bulk tissue are reliable substitutes for subcellular targets for incident photon energies  <50 keV: nuclear (cytoplasm) doses differ from dose-to-medium by up to 32 % (18 % ), and from dose-to-water by up to 21 % (8 % ). The largest differences between dose descriptors are seen for the lowest incident photon energies; differences are less than 3 % for energies ≥slant 90 keV. The sensitivity of results with regard to the parameters of the microscopic tissue structure model and cell model geometry, and the importance of the nucleus and cytoplasm as targets for radiation-induced cell death emphasize the importance of accurate models for cellular dosimetry studies.

  4. Development of virtual CT DICOM images of patients with tumors: application for TPS and Monte Carlo dose evaluation

    International Nuclear Information System (INIS)

    Milian, F. M.; Attili, A.; Russo, G; Marchetto, F.; Cirio, R.; Bourhaleb, F.

    2013-01-01

    A novel procedure for the generation of a realistic virtual Computed Tomography (CT) image of a patient, using the advanced Boundary RE Presentation (BREP)-based model MASH, has been implemented. This method can be used in radiotherapy assessment. It is shown that it is possible to introduce an artificial cancer, which can be modeled using mesh surfaces. The use of virtual CT images based on BREP models presents several advantages with respect to CT images of actual patients, such as automation, control and flexibility. As an example, two artificial cases, namely a brain and a prostate cancer, were created through the generation of images and tumor/organ contours. As a secondary objective, the described methodology has been used to generate input files for treatment planning system (TPS) and Monte Carlo code dose evaluation. In this paper, we consider treatment plans generated assuming a dose delivery via an active proton beam scanning performed with the INFN-IBA TPS kernel. Additionally, Monte Carlo simulations of the two treatment plans were carried out with GATE/GEANT4. The work demonstrates the feasibility of the approach based on the BREP modeling to produce virtual CT images. In conclusion, this study highlights the benefits in using digital phantom model capable of representing different anatomical structures and varying tumors across different patients. These models could be useful for assessing radiotherapy treatment planning systems (TPS) and computer simulations for the evaluation of the adsorbed dose. (author)

  5. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Rodríguez, Jesús, E-mail: jesus.silva.rodriguez@sergas.es; Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Santiago de Compostela, Galicia (Spain); Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela (USC), 15782, Galicia (Spain); Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias (IDIS), Santiago de Compostela, 15706, Galicia (Spain); Sánchez, Manuel; Mosquera, Javier; Luna-Vega, Víctor [Servicio de Radiofísica y Protección Radiológica, Complexo Hospitalario Universidade de Santiago de Compostela (USC), 15782, Galicia (Spain); Cortés, Julia; Garrido, Miguel [Servicio de Medicina Nuclear, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Galicia, Spain and Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias (IDIS), Santiago de Compostela, 15706, Galicia (Spain); Pombar, Miguel [Servicio de Radiofísica y Protección Radiológica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Galicia (Spain); Ruibal, Álvaro [Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela (USC), 15782, Galicia (Spain); Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias (IDIS), Santiago de Compostela, 15706, Galicia (Spain); Fundación Tejerina, 28003, Madrid (Spain)

    2014-05-15

    Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.

  6. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jiasen, E-mail: ma.jiasen@mayo.edu; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G. [Department of Radiation Oncology, Division of Medical Physics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States)

    2014-12-15

    Purpose: Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. Methods: An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. Results: For relatively large and complex three-field head and neck cases, i.e., >100 000 spots with a target volume of ∼1000 cm{sup 3} and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. Conclusions: A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45

  7. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.

    Science.gov (United States)

    Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G

    2014-12-01

    Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and

  8. ARCHERRT – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    International Nuclear Information System (INIS)

    Su, Lin; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond

    2014-01-01

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER RT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER RT . Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER RT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER RT agree well with DOSXYZnrc. For clinical cases, results from ARCHER RT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU

  9. Radioactivity determination of sealed pure beta-sources by surface dose measurements and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Heon [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Seongmoon [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Choi, Kanghyuk; Son, Kwang-Jae; Lee, Jun Sig [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ye, Sung-Joon, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul (Korea, Republic of); Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul (Korea, Republic of); Center for Convergence Research on Robotics, Advance Institutes of Convergence Technology, Seoul National University, Suwon (Korea, Republic of)

    2016-04-21

    This study aims to determine the activity of a sealed pure beta-source by measuring the surface dose rate using an extrapolation chamber. A conversion factor (cGy s{sup −1} Bq{sup −1}), which was defined as the ratio of surface dose rate to activity, can be calculated by Monte Carlo simulations of the extrapolation chamber measurement. To validate this hypothesis the certified activities of two standard pure beta-sources of Sr/Y-90 and Si/P-32 were compared with those determined by this method. In addition, a sealed test source of Sr/Y-90 was manufactured by the HANARO reactor group of KAERI (Korea Atomic Energy Research Institute) and used to further validate this method. The measured surface dose rates of the Sr/Y-90 and Si/P-32 standard sources were 4.615×10{sup −5} cGy s{sup −1} and 2.259×10{sup −5} cGy s{sup −1}, respectively. The calculated conversion factors of the two sources were 1.213×10{sup −8} cGy s{sup −1} Bq{sup −1} and 1.071×10{sup −8} cGy s{sup −1} Bq{sup −1}, respectively. Therefore, the activity of the standard Sr/Y-90 source was determined to be 3.995 kBq, which was 2.0% less than the certified value (4.077 kBq). For Si/P-32 the determined activity was 2.102 kBq, which was 6.6% larger than the certified activity (1.971 kBq). The activity of the Sr/Y-90 test source was determined to be 4.166 kBq, while the apparent activity reported by KAERI was 5.803 kBq. This large difference might be due to evaporation and diffusion of the source liquid during preparation and uncertainty in the amount of weighed aliquot of source liquid. The overall uncertainty involved in this method was determined to be 7.3%. We demonstrated that the activity of a sealed pure beta-source could be conveniently determined by complementary combination of measuring the surface dose rate and Monte Carlo simulations.

  10. Impact of thermoplastic mask on X-ray surface dose calculated with Monte Carlo code

    International Nuclear Information System (INIS)

    Zhao Yanqun; Li Jie; Wu Liping; Wang Pei; Lang Jinyi; Wu Dake; Xiao Mingyong

    2010-01-01

    Objective: To calculate the effects of thermoplastic mask on X-ray surface dose. Methods: The BEAMnrc Monte Carlo Code system, designed especially for computer simulation of radioactive sources, was performed to evaluate the effects of thermoplastic mask on X-ray surface dose.Thermoplastic mask came from our center with a material density of 1.12 g/cm 2 . The masks without holes, with holes size of 0.1 cm x 0.1 cm, and with holes size of 0. 1 cm x 0.2 cm, and masks with different depth (0.12 cm and 0.24 cm) were evaluated separately. For those with holes, the material width between adjacent holes was 0.1 cm. Virtual masks with a material density of 1.38 g/cm 3 without holes with two different depths were also evaluated. Results: Thermoplastic mask affected X-rays surface dose. When using a thermoplastic mask with the depth of 0.24 cm without holes, the surface dose was 74. 9% and 57.0% for those with the density of 1.38 g/cm 3 and 1.12 g/cm 3 respectively. When focusing on the masks with the density of 1.12 g/cm 3 , the surface dose was 41.2% for those with 0.12 cm depth without holes; 57.0% for those with 0. 24 cm depth without holes; 44.5% for those with 0.24 cm depth with holes size of 0.1 cm x 0.2 cm;and 54.1% for those with 0.24 cm depths with holes size of 0.1 cm x 0.1 cm.Conclusions: Using thermoplastic mask during the radiation increases patient surface dose. The severity is relative to the hole size and the depth of thermoplastic mask. The surface dose change should be considered in radiation planning to avoid severe skin reaction. (authors)

  11. TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks

    Energy Technology Data Exchange (ETDEWEB)

    French, S; Nazareth, D [Roswell Park Cancer Institute, Buffalo, NY (United States); Bellor, M [Lockheed Martin, Manassas, VA (United States)

    2016-06-15

    Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrc package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate

  12. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    Science.gov (United States)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  13. NEUTRON GENERATOR FACILITY AT SFU: GEANT4 DOSE RATE PREDICTION AND VERIFICATION.

    Science.gov (United States)

    Williams, J; Chester, A; Domingo, T; Rizwan, U; Starosta, K; Voss, P

    2016-11-01

    Detailed dose rate maps for a neutron generator facility at Simon Fraser University were produced via the GEANT4 Monte Carlo framework. Predicted neutron dose rates throughout the facility were compared with radiation survey measurements made during the facility commissioning process. When accounting for thermal neutrons, the prediction and measurement agree within a factor of 2 or better in most survey locations, and within 10 % inside the vault housing the neutron generator. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Patient dose map indications on interventional X-ray systems and validation with Gafchromic XR-RV3 film

    International Nuclear Information System (INIS)

    Bordier, C.; Klausz, R.; Desponds, L.

    2015-01-01

    To help avoiding secondary effects of interventional procedures like skin damage, a dose map method has been developed to provide an indication of the local dose on a surface representative of individual patient shapes. To minimise user interactions, patient envelope shapes are automatically determined depending on simple patient data information. Local doses are calculated in 1-cm 2 areas depending on the estimated air kerma, table and gantry positions and system settings, taking into account the table and mattress attenuations and estimated backscatter from the patient. These local doses are cumulated for each location of the patient envelope during the clinical procedure. To assess the accuracy of the method, Gafchromic XR-RV3 films have been used in several operating configurations. Good visual agreements on cumulated dose localisation were obtained within the 1-cm 2 precision of the map and the dose values agreed within 24.9 % accuracy. The resulting dose map method has been integrated into GE Healthcare X-Ray angiographic systems and should help in the management of the dose by the users during the procedure. (authors)

  15. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Pt. 4

    International Nuclear Information System (INIS)

    Williams, G.; Zankl, M.; Drexler, G.

    1984-12-01

    This report considers the contribution from scattered radiation to the dose to organs and tissues which lie outside the useful therapy beams. The results presented are the product of Monte Carlo studies used to determine the tissue doses due to internal scattering of the useful beams only. General cases are calculated in which central target volumes in the trunk are treated with 10 x 14 cm 2 and 14 x 14 cm 2 fields from 200 kV, Co-60, 8 MV and 25 MV therapy equipment. Target volumes in the neck are considered to be treated with 5 x 5 cm 2 fields. Different treatment plans are calculated including rotational therapy. Also two specific cases are more fully analysed, namely for Ankylosing Spondylitis and central abdomen malignant disease in the region of the head of the pancreas. The calculated organ doses are presented in tables as a percentage of the target volume dose. (orig.)

  16. SU-F-T-560: Measurement of Dose Blurring Effect Due to Respiratory Motion for Lung Stereotactic Body Radiation Therapy (SBRT) Using Monte Carlo Based Calculation Algorithm

    International Nuclear Information System (INIS)

    Badkul, R; Pokhrel, D; Jiang, H; Lominska, C; Wang, F; Ramanjappa, T

    2016-01-01

    Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients were planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0

  17. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Koong, Albert C; Tantawi, Sami; Dolgashev, Valery; Maxim, Peter G; Loo, Billy W

    2015-04-01

    To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  18. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  19. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer

  20. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, KIRAMS, Seoul (Korea, Republic of); Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol [Jeonbuk Department of Inhalation Research, Korea Institute of toxicology, KRICT, Jeongeup (Korea, Republic of)

    2016-12-15

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  1. Evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Wook; Park, Yong Sung; Kang, Joo Hyun; Lee, Yong Jin; Cho, Doo Wan; Lee, Hong Soo; Han, Su Cheol

    2016-01-01

    These absorbed dose can calculated using the Monte Carlo transport code MCNP (Monte Carlo N-particle transport code). Internal radiotherapy absorbed dose was calculated using conventional software, such as OLINDA/EXM or Monte Carlo simulation. However, the OLINDA/EXM does not calculate individual absorbed dose and non-standard organ, such as tumor. While the Monte Carlo simulation can calculated non-standard organ and specific absorbed dose using individual CT image. External radiotherapy, absorbed dose can calculated by specific absorbed energy in specific organs using Monte Carlo simulation. The specific absorbed energy in each organ was difference between species or even if the same species. Since they have difference organ sizes, position, and density of organs. The aim of this study was to individually evaluated cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. We evaluation of cobalt-60 energy deposit in mouse and monkey using Monte Carlo simulation. The absorbed energy in each organ compared with mouse heart was 54.6 fold higher than monkey absorbed energy in heart. Likewise lung was 88.4, liver was 16.0, urinary bladder was 29.4 fold higher than monkey. It means that the distance of each organs and organ mass was effects of the absorbed energy. This result may help to can calculated absorbed dose and more accuracy plan for external radiation beam therapy and internal radiotherapy.

  2. TH-A-19A-12: A GPU-Accelerated and Monte Carlo-Based Intensity Modulated Proton Therapy Optimization System

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J; Wan Chan Tseung, H; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    Purpose: To develop a clinically applicable intensity modulated proton therapy (IMPT) optimization system that utilizes more accurate Monte Carlo (MC) dose calculation, rather than analytical dose calculation. Methods: A very fast in-house graphics processing unit (GPU) based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified gradient based optimization method was used to achieve the desired dose volume histograms (DVH). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve the spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that Result from maintaining the intrinsic CT resolution and large number of proton spots. The dose effects were studied particularly in cases with heterogeneous materials in comparison with the commercial treatment planning system (TPS). Results: For a relatively large and complex three-field bi-lateral head and neck case (i.e. >100K spots with a target volume of ∼1000 cc and multiple surrounding critical structures), the optimization together with the initial MC dose influence map calculation can be done in a clinically viable time frame (i.e. less than 15 minutes) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The DVHs of the MC TPS plan compare favorably with those of a commercial treatment planning system. Conclusion: A GPU accelerated and MC-based IMPT optimization system was developed. The dose calculation and plan optimization can be performed in less than 15 minutes on a hardware system costing less than 45,000 dollars. The fast calculation and optimization makes the system easily expandable to robust and multi-criteria optimization. This work was funded in part by a grant from Varian Medical Systems, Inc.

  3. TH-A-19A-12: A GPU-Accelerated and Monte Carlo-Based Intensity Modulated Proton Therapy Optimization System

    International Nuclear Information System (INIS)

    Ma, J; Wan Chan Tseung, H; Beltran, C

    2014-01-01

    Purpose: To develop a clinically applicable intensity modulated proton therapy (IMPT) optimization system that utilizes more accurate Monte Carlo (MC) dose calculation, rather than analytical dose calculation. Methods: A very fast in-house graphics processing unit (GPU) based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified gradient based optimization method was used to achieve the desired dose volume histograms (DVH). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve the spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that Result from maintaining the intrinsic CT resolution and large number of proton spots. The dose effects were studied particularly in cases with heterogeneous materials in comparison with the commercial treatment planning system (TPS). Results: For a relatively large and complex three-field bi-lateral head and neck case (i.e. >100K spots with a target volume of ∼1000 cc and multiple surrounding critical structures), the optimization together with the initial MC dose influence map calculation can be done in a clinically viable time frame (i.e. less than 15 minutes) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The DVHs of the MC TPS plan compare favorably with those of a commercial treatment planning system. Conclusion: A GPU accelerated and MC-based IMPT optimization system was developed. The dose calculation and plan optimization can be performed in less than 15 minutes on a hardware system costing less than 45,000 dollars. The fast calculation and optimization makes the system easily expandable to robust and multi-criteria optimization. This work was funded in part by a grant from Varian Medical Systems, Inc

  4. Dose Mapping of Frozen Chickens Using 10 MeV Electrons

    International Nuclear Information System (INIS)

    Eichenberger, C.; Haider, S.A.; Maxim, J.; Miller, R.B.

    2005-09-01

    Irradiation of locally produced and imported food products was approved in the Kingdom of Saudi Arabia (KSA) in 2002. SureBeam Middle East (SME) has constructed the first food irradiation facility in Riyadh, KSA and will begin production irradiation in Q4 of 2005. In an effort to find efficient and cost effective means of irradiating frozen whole body chickens, SME has sponsored dose mapping studies using a 10 MeV dual electron beam processing system at the Electron Beam Food Research Facility at Texas A and M University (TAMU). Frozen chickens available to consumers in KSA range in size from nominal 600 grams to 1400 grams. Poultry processors typically provide retailers with equal weight birds packaged ten to a box (2 rows of 5 birds). Areal densities of the packages increase with the weight of the birds. For this study equivalent size birds were grown and processed by the Department of Poultry Science at TAMU and packaged in the same manner as in KSA. The goal of this investigation was to determine which size birds could be processed at a minimum dose of 2.5 kGy and not have the maximum dose exceed the level where negative sensory effects become noticeable. The minimum dose was chosen to reduce the population of any salmonella contamination by more than a factor of 1000. A description of the experimental set up and results of the dose mapping of frozen whole body chickens are reported herein, as are the results which indicate that electron beam processing of frozen chickens up to approximately 1000 grams can be readily accomplished and that processing of chickens up to 1400 grams may be possible Salmonella

  5. SU-C-BRC-05: Monte Carlo Calculations to Establish a Simple Relation of Backscatter Dose Enhancement Around High-Z Dental Alloy to Its Atomic Number

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, S; Kushima, N; Katsura, K; Tanabe, S; Hayakawa, T; Sakai, H; Yamada, T; Takahashi, H; Abe, E; Wada, S; Aoyama, H [Niigata University, Niigata (Japan)

    2016-06-15

    Purpose: To establish a simple relation of backscatter dose enhancement around a high-Z dental alloy in head and neck radiation therapy to its average atomic number based on Monte Carlo calculations. Methods: The PHITS Monte Carlo code was used to calculate dose enhancement, which is quantified by the backscatter dose factor (BSDF). The accuracy of the beam modeling with PHITS was verified by comparing with basic measured data namely PDDs and dose profiles. In the simulation, a high-Z alloy of 1 cm cube was embedded into a tough water phantom irradiated by a 6-MV (nominal) X-ray beam of 10 cm × 10 cm field size of Novalis TX (Brainlab). The ten different materials of high-Z alloys (Al, Ti, Cu, Ag, Au-Pd-Ag, I, Ba, W, Au, Pb) were considered. The accuracy of calculated BSDF was verified by comparing with measured data by Gafchromic EBT3 films placed at from 0 to 10 mm away from a high-Z alloy (Au-Pd-Ag). We derived an approximate equation to determine the relation of BSDF and range of backscatter to average atomic number of high-Z alloy. Results: The calculated BSDF showed excellent agreement with measured one by Gafchromic EBT3 films at from 0 to 10 mm away from the high-Z alloy. We found the simple linear relation of BSDF and range of backscatter to average atomic number of dental alloys. The latter relation was proven by the fact that energy spectrum of backscatter electrons strongly depend on average atomic number. Conclusion: We found a simple relation of backscatter dose enhancement around high-Z alloys to its average atomic number based on Monte Carlo calculations. This work provides a simple and useful method to estimate backscatter dose enhancement from dental alloys and corresponding optimal thickness of dental spacer to prevent mucositis effectively.

  6. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D [University at Buffalo (SUNY) School of Med., Buffalo, NY (United States)

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  7. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    International Nuclear Information System (INIS)

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D

    2016-01-01

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  8. Monte Carlo simulations in skin radiotherapy

    International Nuclear Information System (INIS)

    Sarvari, A.; Jeraj, R.; Kron, T.

    2000-01-01

    The primary goal of this work was to develop a procedure for calculation the appropriate filter shape for a brachytherapy applicator used for skin radiotherapy. In the applicator a radioactive source is positioned close to the skin. Without a filter, the resultant dose distribution would be highly nonuniform.High uniformity is usually required however. This can be achieved using an appropriately shaped filter, which flattens the dose profile. Because of the complexity of the transport and geometry, Monte Carlo simulations had to be used. An 192 Ir high dose rate photon source was used. All necessary transport parameters were simulated with the MCNP4B Monte Carlo code. A highly efficient iterative procedure was developed, which enabled calculation of the optimal filter shape in only few iterations. The initially non-uniform dose distributions became uniform within a percent when applying the filter calculated by this procedure. (author)

  9. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for 99mTc-hynic-Tyr3-octreotide Imaging

    International Nuclear Information System (INIS)

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of 99m Tc-hydrazinonicotinamide (hynic)-Tyr 3 -octreotide as a SPECT radiotracer. 99m Tc patient-speci@@@@@@c S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of 99m hynic-Tyr 3 -octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results

  10. Calculations of dose distributions using a neural network model

    International Nuclear Information System (INIS)

    Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J

    2005-01-01

    The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map

  11. Core map generation for the ITU TRIGA Mark II research reactor using Genetic Algorithm coupled with Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Türkmen, Mehmet, E-mail: tm@hacettepe.edu.tr [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey); Çolak, Üner [Energy Institute, Istanbul Technical University, Ayazağa Campus, Maslak, Istanbul (Turkey); Ergün, Şule [Nuclear Engineering Department, Hacettepe University, Beytepe Campus, Ankara (Turkey)

    2015-12-15

    Highlights: • Optimum core maps were generated for the ITU TRIGA Mark II Research Reactor. • Calculations were performed using a Monte Carlo based reactor physics code, MCNP. • Single-Objective and Multi-Objective Genetic Algorithms were used for the optimization. • k{sub eff} and ppf{sub max} were considered as the optimization objectives. • The generated core maps were compared with the fresh core map. - Abstract: The main purpose of this study is to present the results of Core Map (CM) generation calculations for the İstanbul Technical University TRIGA Mark II Research Reactor by using Genetic Algorithms (GA) coupled with a Monte Carlo (MC) based-particle transport code. Optimization problems under consideration are: (i) maximization of the core excess reactivity (ρ{sub ex}) using Single-Objective GA when the burned fuel elements with no fresh fuel elements are used, (ii) maximization of the ρ{sub ex} and minimization of maximum power peaking factor (ppf{sub max}) using Multi-Objective GA when the burned fuels with fresh fuels are used. The results were obtained when all the control rods are fully withdrawn. ρ{sub ex} and ppf{sub max} values of the produced best CMs were provided. Core-averaged neutron spectrum, and variation of neutron fluxes with respect to radial distance were presented for the best CMs. The results show that it is possible to find an optimum CM with an excess reactivity of 1.17 when the burned fuels are used. In the case of a mix of burned fuels and fresh fuels, the best pattern has an excess reactivity of 1.19 with a maximum peaking factor of 1.4843. In addition, when compared with the fresh CM, the thermal fluxes of the generated CMs decrease by about 2% while change in the fast fluxes is about 1%.Classification: J. Core physics.

  12. Monte Carlo and analytic simulations in nanoparticle-enhanced radiation therapy

    Directory of Open Access Journals (Sweden)

    Paro AD

    2016-09-01

    Full Text Available Autumn D Paro,1 Mainul Hossain,2 Thomas J Webster,1,3,4 Ming Su1,4 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2NanoScience Technology Center and School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, USA; 3Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou Medical University, Zhejiang, People’s Republic of China Abstract: Analytical and Monte Carlo simulations have been used to predict dose enhancement factors in nanoparticle-enhanced X-ray radiation therapy. Both simulations predict an increase in dose enhancement in the presence of nanoparticles, but the two methods predict different levels of enhancement over the studied energy, nanoparticle materials, and concentration regime for several reasons. The Monte Carlo simulation calculates energy deposited by electrons and photons, while the analytical one only calculates energy deposited by source photons and photoelectrons; the Monte Carlo simulation accounts for electron–hole recombination, while the analytical one does not; and the Monte Carlo simulation randomly samples photon or electron path and accounts for particle interactions, while the analytical simulation assumes a linear trajectory. This study demonstrates that the Monte Carlo simulation will be a better choice to evaluate dose enhancement with nanoparticles in radiation therapy. Keywords: nanoparticle, dose enhancement, Monte Carlo simulation, analytical simulation, radiation therapy, tumor cell, X-ray 

  13. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, F; Freud, N; Letang, J M; Babot, D [CNDRI (Nondestructive Testing using Ionizing Radiations) Laboratory, INSA-Lyon, 69621 Villeurbanne Cedex (France); Adam, J-F; Elleaume, H; Esteve, F [INSERM U-836, Equipe 6 ' Rayonnement Synchrotron et Recherche Medicale' , Institut des Neurosciences de Grenoble (France); Ferrero, C; Bravin, A [European Synchrotron Radiation Facility, Grenoble (France)], E-mail: francois.smekens@insa-lyon.fr

    2009-08-07

    A hybrid approach, combining deterministic and Monte Carlo (MC) calculations, is proposed to compute the distribution of dose deposited during stereotactic synchrotron radiation therapy treatment. The proposed approach divides the computation into two parts: (i) the dose deposited by primary radiation (coming directly from the incident x-ray beam) is calculated in a deterministic way using ray casting techniques and energy-absorption coefficient tables and (ii) the dose deposited by secondary radiation (Rayleigh and Compton scattering, fluorescence) is computed using a hybrid algorithm combining MC and deterministic calculations. In the MC part, a small number of particle histories are simulated. Every time a scattering or fluorescence event takes place, a splitting mechanism is applied, so that multiple secondary photons are generated with a reduced weight. The secondary events are further processed in a deterministic way, using ray casting techniques. The whole simulation, carried out within the framework of the Monte Carlo code Geant4, is shown to converge towards the same results as the full MC simulation. The speed of convergence is found to depend notably on the splitting multiplicity, which can easily be optimized. To assess the performance of the proposed algorithm, we compare it to state-of-the-art MC simulations, accelerated by the track length estimator technique (TLE), considering a clinically realistic test case. It is found that the hybrid approach is significantly faster than the MC/TLE method. The gain in speed in a test case was about 25 for a constant precision. Therefore, this method appears to be suitable for treatment planning applications.

  14. Development of an effective dose coefficient database using a computational human phantom and Monte Carlo simulations to evaluate exposure dose for the usage of NORM-added consumer products.

    Science.gov (United States)

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee

    2017-11-01

    After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Importance estimation in Monte Carlo modelling of neutron and photon transport

    International Nuclear Information System (INIS)

    Mickael, M.W.

    1992-01-01

    The estimation of neutron and photon importance in a three-dimensional geometry is achieved using a coupled Monte Carlo and diffusion theory calculation. The parameters required for the solution of the multigroup adjoint diffusion equation are estimated from an analog Monte Carlo simulation of the system under investigation. The solution of the adjoint diffusion equation is then used as an estimate of the particle importance in the actual simulation. This approach provides an automated and efficient variance reduction method for Monte Carlo simulations. The technique has been successfully applied to Monte Carlo simulation of neutron and coupled neutron-photon transport in the nuclear well-logging field. The results show that the importance maps obtained in a few minutes of computer time using this technique are in good agreement with Monte Carlo generated importance maps that require prohibitive computing times. The application of this method to Monte Carlo modelling of the response of neutron porosity and pulsed neutron instruments has resulted in major reductions in computation time. (Author)

  16. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  17. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Anderson, Danielle; Fallone, B Gino; Warkentin, Brad; Siegbahn, E Albert; Serduc, Raphael

    2012-01-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm 2 microbeam array in each phantom, as well as a 16 × 16 mm 2 array in the 8 cm cat head, and a 32 × 32 mm 2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2–49 (mouse) and 2–46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2–87% and 33–96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this

  18. Absorbed dose measurements in mammography using Monte Carlo method and ZrO2+PTFE dosemeters

    International Nuclear Information System (INIS)

    Duran M, H. A.; Hernandez O, M.; Salas L, M. A.; Hernandez D, V. M.; Vega C, H. R.; Pinedo S, A.; Ventura M, J.; Chacon, F.; Rivera M, T.

    2009-10-01

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO 2 +PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  19. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia

    International Nuclear Information System (INIS)

    Sanusi, M.S.M.; Ramli, A.T.; Gabdo, H.T.; Garba, N.N.; Heryanshah, A.; Wagiran, H.; Said, M.N.

    2014-01-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h −1 to 500 nGy h −1 . The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h −1 . This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h −1 (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. - Highlights: • A methodology is presented to reduce terrestrial gamma dose rate field survey. • Geological background of acid intrusive of granitic type has the highest dose rates. • The mean dose rate is 2 times higher than the world average. • Isodose map of terrestrial gamma radiation for Selangor, Kuala Lumpur and Putrajaya was produced

  20. TH-AB-207A-07: Radiation Dose Simulation for a Newly Proposed Dynamic Bowtie Filters for CT Using Fast Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T; Lin, H; Gao, Y; Caracappa, P; Wang, G; Cong, W; Xu, X [Rensselaer Polytechnic Institute, Troy, NY (United States)

    2016-06-15

    Purpose: Dynamic bowtie filter is an innovative design capable of modulating the X-ray and balancing the flux in the detectors, and it introduces a new way of patient-specific CT scan optimizations. This study demonstrates the feasibility of performing fast Monte Carlo dose calculation for a type of dynamic bowtie filter for cone-beam CT (Liu et al. 2014 9(7) PloS one) using MIC coprocessors. Methods: The dynamic bowtie filter in question consists of a highly attenuating bowtie component (HB) and a weakly attenuating bowtie (WB). The HB is filled with CeCl3 solution and its surface is defined by a transcendental equation. The WB is an elliptical cylinder filled with air and immersed in the HB. As the scanner rotates, the orientation of WB remains the same with the static patient. In our Monte Carlo simulation, the HB was approximated by 576 boxes. The phantom was a voxelized elliptical cylinder composed of PMMA and surrounded by air (44cm×44cm×40cm, 1000×1000×1 voxels). The dose to the PMMA phantom was tallied with 0.15% statistical uncertainty under 100 kVp source. Two Monte Carlo codes ARCHER and MCNP-6.1 were compared. Both used double-precision. Compiler flags that may trade accuracy for speed were avoided. Results: The wall time of the simulation was 25.4 seconds by ARCHER on a 5110P MIC, 40 seconds on a X5650 CPU, and 523 seconds by the multithreaded MCNP on the same CPU. The high performance of ARCHER is attributed to the parameterized geometry and vectorization of the program hotspots. Conclusion: The dynamic bowtie filter modeled in this study is able to effectively reduce the dynamic range of the detected signals for the photon-counting detectors. With appropriate software optimization methods, the accelerator-based (MIC and GPU) Monte Carlo dose engines have shown good performance and can contribute to patient-specific CT scan optimizations.

  1. Monte-Carlo calculation of irradiation dose content beyond shielding of high-energy accelerators

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Frolov, V.V.

    1975-01-01

    The MARS programme, designed for calculating the three-dimensional internuclear cascade in defence of the accelerators by the Monte Carlo method, is described. The methods used to reduce the dispersion and the system of semi-empirical formulas made it possible to exceed the parameters of the existing programmes. By means of a synthesis of the results, registered by MARS and HAMLET programmes, the dosage fields for homogeneous and heterogeneous defence were evaluated. The results of the calculated absorbed and equivalent dose behind the barrier, irradiated by a proton beam, having the energy of Esub(o)=1/1000 GeV are exposed. The dependence of the high- and low-energy neutron, proton, pion, kaon, muonium and γ-quantum dosage on the initial energy and thickness, on the material and the composition of the defence is investigated

  2. Monte Carlo Simulation of stepping source in afterloading intracavitary brachytherapy for GZP6 unit

    International Nuclear Information System (INIS)

    Toossi, M.T.B.; Abdollahi, M.; Ghorbani, M.

    2010-01-01

    Full text: Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Dose calculation accuracy plays a vital role in the outcome of brachytherapy treatment. In this study, the stepping source (channel 6) of GZP6 brachytherapy unit was simulated by Monte Carlo simulation and matrix shift method. The stepping source of GZP6 was simulated by Monte Carlo MCNPX code. The Mesh tally (type I) was employed for absorbed dose calculation in a cylindrical water phantom. 5 x 108 photon histories were scored and a 0.2% statistical uncertainty was obtained by Monte Carlo calculations. Dose distributions were obtained by our matrix shift method for esophageal cancer tumor lengths of 8 and 10 cm. Isodose curves produced by simulation and TPS were superimposed to estimate the differences. Results Comparison of Monte Carlo and TPS dose distributions show that in longitudinal direction (source movement direction) Monte Carlo and TPS dose distributions are comparable. [n transverse direction, the dose differences of 7 and 5% were observed for esophageal tumor lengths of 8 and 10 cm respectively. Conclusions Although, the results show that the maximum difference between Monte Carlo and TPS calculations is about 7%, but considering that the certified activity is given with ± I 0%, uncertainty, then an error of the order of 20% for Monte Carlo calculation would be reasonable. It can be suggested that accuracy of the dose distribution produced by TPS is acceptable for clinical applications. (author)

  3. Doses determination in UCCA treatments with LDR brachytherapy using Monte Carlo methods; Determinacion de dosis en tratamientos de CaCU con braquiterapia LDR usando metodos Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Comite de Investigacion, Calz. de la Cruz 118 sur, 63000 Tepic, Nayarit (Mexico); Vega C, H. R., E-mail: neutronesrapidos@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2017-10-15

    Using Monte Carlo methods, with the code MCNP5, a gynecological mannequin and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rate in uterine cervical cancer (UCCA) treatments was determined under the modality of manual brachytherapy of low dose rate (B-LDR). The design of the model included the gynecological liquid water mannequin, a vaginal cylinder applicator of Lucite (PMMA) with hemisphere termination. The applicator was formed by a vaginal cylinder 10.3 cm long and 2 cm in diameter. This cylinder was mounted on a stainless steel tube 15.2 cm long by 0.6 cm in diameter. A linear array of four radioactive sources of Cesium 137 was inserted into the tube. 13 water cells of 0.5 cm in diameter were modeled around the vaginal cylinder and the absorbed dose was calculated in these. The distribution of the fluence of gamma photons in the mesh was calculated. It was found that the distribution of the absorbed dose is symmetric for cells located in the upper and lower part of the vaginal cylinder. The values of the absorbed dose rate were estimated for the date of manufacture of the sources. This result allows the use of the law of radioactive decay to determine the dose rate at any date of a gynecological treatment of B-LDR. (Author)

  4. Study of the parameters affecting operator doses in interventional radiology using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Koukorava, C.; Carinou, E.; Ferrari, P.; Krim, S.; Struelens, L.

    2011-01-01

    Measurements performed within the ORAMED project helped to evaluate the dose levels to the operators’ hands, wrists, legs and eye lenses, during several types of interventional radiology (IR) and cardiology (IC) procedures, and also to determine the parameters that affect the doses. However, the study of the effect of each parameter separately, was possible only through Monte Carlo (MC) simulations, as in clinical practice many of those parameters change simultaneously. The influence of the protective equipment, the beam projections, the beam quality, the field size and the position of the operator according to the position of access of the catheter was investigated, using anthropomorphic phantoms in setups that represent realistic IR/IC procedures. The proper use of protective shields was found to be the most important way of reducing extremity and eye lens exposure during such examinations. Ceiling suspended shields can reduce the doses to the eye lenses up to 97%, but they can also reduce hand doses about 70% when placed correctly. The highest exposure to the operator is observed for left anterior oblique (LAO) and cranial projections. Additionally, for overcouch irradiations the eyes and the hands are about 6 times more exposed compared to the cases where the tube is below the operating table. For the lateral LAO projection, placing the ceiling suspended shield at the left side of the operator is twice more effective for the protection of the eyes compared to the cases where it is placed above the patient. Finally, beam collimation was found to play an important role in the reduction of the hands and wrists doses, especially when the operator is close to the irradiation field.

  5. Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV x-ray beams and comparisons with Monte Carlo calculations

    International Nuclear Information System (INIS)

    Xiang, Hong F.; Song, Jun S.; Chin, David W. H.; Cormack, Robert A.; Tishler, Roy B.; Makrigiorgos, G. Mike; Court, Laurence E.; Chin, Lee M.

    2007-01-01

    This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 deg. - 80 deg. onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC

  6. Technical Note: A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-12-01

    To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in

  7. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    Rosu, Mihaela; Chetty, Indrin J.; Balter, James M.; Kessler, Marc L.; McShan, Daniel L.; Ten Haken, Randall K.

    2005-01-01

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  8. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiu-Ling [Department of Dental Medicine, Mackay Memorial Hospital, Taipei, Taiwan (China); Huang, Yung-Hui [Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung, Taiwan (China); Wu, Tung-Hsin, E-mail: tung@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Wang, Shih-Yuan [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China); Lee, Jason J.S., E-mail: jslee@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 112 Taiwan (China)

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31{+-}15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  9. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    Science.gov (United States)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  10. Comprehensive evaluations of cone-beam CT dose in image-guided radiation therapy via GPU-based Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Graves, Yan Jiang; Cervino, Laura [Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, CA 92037-0843 (United States); Yan, Hao; Jiang, Steve B; Jia, Xun [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9315 (United States); Rice, Roger [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92037-0843 (United States)

    2014-03-07

    Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1–3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case. (paper)

  11. Gamma irradiation of cultural artifacts for disinfection using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Choi, Jong-il; Yoon, Minchul; Kim, Dongho

    2012-01-01

    In this study, it has been investigated the disinfection of Korean cultural artifacts by gamma irradiation, simulating the absorbed dose distribution on the object with the Monte Carlo methodology. Fungal contamination was identified on two traditional Korean agricultural tools, Hongdukkae and Holtae, which had been stored in a museum. Nine primary species were identified from these items: Bjerkandera adusta, Dothideomycetes sp., Penicillium sp., Cladosporium tenuissimum, Aspergillus versicolor, Penicillium sp., Entrophospora sp., Aspergillus sydowii, and Corynascus sepedonium. However, these fungi were completely inactivated by gamma irradiation at an absorbed dose of 20 kGy on the front side. Monte Carlo N Particle Transport Code was used to simulate the doses applied to these cultural artifacts, and the measured dose distributions were well predicted by the simulations. These results show that irradiation is effective for the disinfection of cultural artifacts and that dose distribution can be predicted with Monte Carlo simulations, allowing the optimization of the radiation treatment. - Highlights: ► Radiation was applied for the disinfection of Korean cultural artifacts. ► Fungi on the artifacts were completely inactivated by the irradiation. ► Monte Carlo N Particle Transport Code was used to predict the dose distribution. ► This study is applicable for the preservation of cultural artifacts by irradiation.

  12. Organ S values and effective doses for family members exposed to adult patients following I-131 treatment: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Young [Department of Radiation Oncology, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205 (United States); Lee, Choonsik [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20852 (United States); Mcguire, Lynn; Brown, Tracy L. Y. [Department of Radiology, Division of Nuclear Medicine, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205 (United States); Bolch, Wesley E. [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2013-08-15

    Purpose: To calculate organ S values (mGy/Bq-s) and effective doses per time-integrated activity (mSv/Bq-s) for pediatric and adult family members exposed to an adult male or female patient treated with I-131 using a series of hybrid computational phantoms coupled with a Monte Carlo radiation transport technique.Methods: A series of pediatric and adult hybrid computational phantoms were employed in the study. Three different exposure scenarios were considered: (1) standing face-to-face exposures between an adult patient and pediatric or adult family phantoms at five different separation distances; (2) an adult female patient holding her newborn child, and (3) a 1-yr-old child standing on the lap of an adult female patient. For the adult patient model, two different thyroid-related diseases were considered: hyperthyroidism and differentiated thyroid cancer (DTC) with corresponding internal distributions of {sup 131}I. A general purpose Monte Carlo code, MCNPX v2.7, was used to perform the Monte Carlo radiation transport.Results: The S values show a strong dependency on age and organ location within the family phantoms at short distances. The S values and effective dose per time-integrated activity from the adult female patient phantom are relatively high at shorter distances and to younger family phantoms. At a distance of 1 m, effective doses per time-integrated activity are lower than those values based on the NRC (Nuclear Regulatory Commission) by a factor of 2 for both adult male and female patient phantoms. The S values to target organs from the hyperthyroid-patient source distribution strongly depend on the height of the exposed family phantom, so that their values rapidly decrease with decreasing height of the family phantom. Active marrow of the 10-yr-old phantom shows the highest S values among family phantoms for the DTC-patient source distribution. In the exposure scenario of mother and baby, S values and effective doses per time-integrated activity to

  13. Organ S values and effective doses for family members exposed to adult patients following I-131 treatment: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Han, Eun Young; Lee, Choonsik; Mcguire, Lynn; Brown, Tracy L. Y.; Bolch, Wesley E.

    2013-01-01

    Purpose: To calculate organ S values (mGy/Bq-s) and effective doses per time-integrated activity (mSv/Bq-s) for pediatric and adult family members exposed to an adult male or female patient treated with I-131 using a series of hybrid computational phantoms coupled with a Monte Carlo radiation transport technique.Methods: A series of pediatric and adult hybrid computational phantoms were employed in the study. Three different exposure scenarios were considered: (1) standing face-to-face exposures between an adult patient and pediatric or adult family phantoms at five different separation distances; (2) an adult female patient holding her newborn child, and (3) a 1-yr-old child standing on the lap of an adult female patient. For the adult patient model, two different thyroid-related diseases were considered: hyperthyroidism and differentiated thyroid cancer (DTC) with corresponding internal distributions of 131 I. A general purpose Monte Carlo code, MCNPX v2.7, was used to perform the Monte Carlo radiation transport.Results: The S values show a strong dependency on age and organ location within the family phantoms at short distances. The S values and effective dose per time-integrated activity from the adult female patient phantom are relatively high at shorter distances and to younger family phantoms. At a distance of 1 m, effective doses per time-integrated activity are lower than those values based on the NRC (Nuclear Regulatory Commission) by a factor of 2 for both adult male and female patient phantoms. The S values to target organs from the hyperthyroid-patient source distribution strongly depend on the height of the exposed family phantom, so that their values rapidly decrease with decreasing height of the family phantom. Active marrow of the 10-yr-old phantom shows the highest S values among family phantoms for the DTC-patient source distribution. In the exposure scenario of mother and baby, S values and effective doses per time-integrated activity to the

  14. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  15. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  16. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    International Nuclear Information System (INIS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon–electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783–97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48–0.53% for the electron beam cases and 0.15–0.17% for the photon beam cases. In terms of efficiency, goMC was ∼4–16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was

  17. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2011-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons ( 2 H + ) in the energy range 10 MeV -1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  18. Advanced local dose rate calculations with the Monte Carlo code MCNP for plutonium nitrate storage containers

    International Nuclear Information System (INIS)

    Quade, U.

    1994-01-01

    Neutron- und Gamma dose rate calculations were performed for the storage containers filled with plutonium nitrate of the MOX fabrication facility of Siemens. For the particle transport calculations the Monte Carlo Code MCNP 4.2 was used. The calculated results were compared with experimental dose rate measurements. It can be stated that the choice of the code system was appropriate since all aspects of the many facettes of the problem were well reproduced in the calculations. The position dependency as well as the influence of the shieldings, the reflections and the mutual influences of the sources were well described by the calculations for the gamma and for the neutron dose rates. However, good agreement with the experimental results on the gamma dose rates could only be reached when the lead shielding of the detector was integrated into the geometry modelling of the calculations. For some few cases of thick shieldings and soft gamma ray sources the statistics of the calculational results were not sufficient. In such cases more elaborate variance reduction methods must be applied in future calculations. Thus the MCNP code in connection with NGSRC has been proven as an effective tool for the solution of this type of problems. (orig./HP) [de

  19. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Paixao, L.; Oliveira, B. B.; Nogueira, M. do S. [Centro de Desenvolvimento da Tecnologia Nuclear, Post-graduation in Science and Technology of Radiations, Minerals and Materials, Pte. Antonio Carlos 6.627, Pampulha, 31270-901 Belo Horizonte (Brazil); Viloria, C. [UFMG, Departamento de Engenharia Nuclear, Post-graduation in Nuclear Sciences and Techniques, Pte. Antonio Carlos 6.627, Pampulha, 31270-901 Belo Horizonte (Brazil); Alves de O, M. [UFMG, Department of Anatomy and Imaging, Prof. Alfredo Balena 190, 30130-100 Belo Horizonte (Brazil); Araujo T, M. H., E-mail: lpr@cdtn.br [Dr Maria Helena Araujo Teixeira Clinic, Guajajaras 40, 30180-100 Belo Horizonte (Brazil)

    2014-08-15

    It is widely accepted that the mean glandular dose (D{sub G}) for the glandular tissue is the more useful magnitude for characterizing the breast cancer risk. The procedure to estimate the D{sub G}, for being difficult to measure it directly in the breast, it is to make the use of conversion factors that relate incident air kerma (K{sub i}) at this dose. Generally, the conversion factors vary with the x-ray spectrum half-value layer and the breast composition and thickness. Several authors through computer simulations have calculated such factors by the Monte Carlo (Mc) method. Many spectral models for D{sub G} computer simulations purposes are available in the diagnostic range. One of the models available generates unfiltered spectra. In this work, the Monte Carlo EGSnrc code package with the C++ class library (eg spp) was employed to derive filtered tungsten x-ray spectra used in digital mammography systems. Filtered spectra for rhodium and aluminium filters were obtained for tube potentials between 26 and 32 kV. The half-value layer of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F and Mam Detector Platinum and 8201023-C Xi Base unit Platinum Plus w m As in a Hologic Selenia Dimensions system using a Direct Radiography mode. Calculated half-value layer values showed good agreement compared to those obtained experimentally. These results show that the filtered tungsten anode x-ray spectra and the EGSnrc Mc code can be used for D{sub G} determination in mammography. (Author)

  20. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography

    International Nuclear Information System (INIS)

    Paixao, L.; Oliveira, B. B.; Nogueira, M. do S.; Viloria, C.; Alves de O, M.; Araujo T, M. H.

    2014-08-01

    It is widely accepted that the mean glandular dose (D G ) for the glandular tissue is the more useful magnitude for characterizing the breast cancer risk. The procedure to estimate the D G , for being difficult to measure it directly in the breast, it is to make the use of conversion factors that relate incident air kerma (K i ) at this dose. Generally, the conversion factors vary with the x-ray spectrum half-value layer and the breast composition and thickness. Several authors through computer simulations have calculated such factors by the Monte Carlo (Mc) method. Many spectral models for D G computer simulations purposes are available in the diagnostic range. One of the models available generates unfiltered spectra. In this work, the Monte Carlo EGSnrc code package with the C++ class library (eg spp) was employed to derive filtered tungsten x-ray spectra used in digital mammography systems. Filtered spectra for rhodium and aluminium filters were obtained for tube potentials between 26 and 32 kV. The half-value layer of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F and Mam Detector Platinum and 8201023-C Xi Base unit Platinum Plus w m As in a Hologic Selenia Dimensions system using a Direct Radiography mode. Calculated half-value layer values showed good agreement compared to those obtained experimentally. These results show that the filtered tungsten anode x-ray spectra and the EGSnrc Mc code can be used for D G determination in mammography. (Author)

  1. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations.

    Science.gov (United States)

    Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken

    2018-05-17

    An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4

  2. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  3. Strategies for CT tissue segmentation for Monte Carlo calculations in nuclear medicine dosimetry

    DEFF Research Database (Denmark)

    Braad, P E N; Andersen, T; Hansen, Søren Baarsgaard

    2016-01-01

    in the ICRP/ICRU male phantom and in a patient PET/CT-scanned with 124I prior to radioiodine therapy. Results: CT number variations body CT examinations at effective CT doses ∼2 mSv. Monte Carlo calculated absorbed doses depended on both the number of media types and accurate......Purpose: CT images are used for patient specific Monte Carlo treatment planning in radionuclide therapy. The authors investigated the impact of tissue classification, CT image segmentation, and CT errors on Monte Carlo calculated absorbed dose estimates in nuclear medicine. Methods: CT errors...

  4. Radiation dose considerations by intra-individual Monte Carlo simulations in dual source spiral coronary computed tomography angiography with electrocardiogram-triggered tube current modulation and adaptive pitch

    International Nuclear Information System (INIS)

    May, Matthias S.; Kuettner, Axel; Lell, Michael M.; Wuest, Wolfgang; Scharf, Michael; Uder, Michael; Deak, Paul; Kalender, Willi A.; Keller, Andrea K.; Haeberle, Lothar; Achenbach, Stephan; Seltmann, Martin

    2012-01-01

    To evaluate radiation dose levels in patients undergoing spiral coronary computed tomography angiography (CTA) on a dual-source system in clinical routine. Coronary CTA was performed for 56 patients with electrocardiogram-triggered tube current modulation (TCM) and heart-rate (HR) dependent pitch adaptation. Individual Monte Carlo (MC) simulations were performed for dose assessment. Retrospective simulations with constant tube current (CTC) served as reference. Lung tissue was segmented and used for organ and effective dose (ED) calculation. Estimates for mean relative ED was 7.1 ± 2.1 mSv/100 mAs for TCM and 12.5 ± 5.3 mSv/100 mAs for CTC (P 70 bpm, 29 ± 12%). However lowest ED is achieved at high HR (5.2 ± 1.5 mSv/100 mAs), compared with intermediate (6.7 ± 1.6 mSv/100 mAs) and low (8.3 ± 2.1 mSv/100 mAs) HR when automated pitch adaptation is applied. Radiation dose savings up to 52% are achievable by TCM at low and regular HR. However lowest ED is attained at high HR by pitch adaptation despite inferior radiation dose reduction by TCM. circle Monte Carlo simulations allow for individual radiation dose calculations. (orig.)

  5. Dose calculations for a simplified Mammosite system with the Monte Carlo Penelope and MCNPX simulation codes; Calculos de dosis para un sistema Mammosite simplificado con los codigos de simulacion Monte Carlo PENELOPE y MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Varon T, C.F.; Pedraza N, R. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: elrc@nuclear.inin.mx

    2007-07-01

    The treatment of the breast cancer at early stages is of vital importance. For that, most of the investigations are dedicated to the early detection of the suffering and their treatment. As investigation consequence and clinical practice, in 2002 it was developed in U.S.A. an irradiation system of high dose rate known as Mammosite. In this work we carry out dose calculations for a simplified Mammosite system with the Monte Carlo Penelope simulation code and MCNPX, varying the concentration of the contrast material that it is used in the one. (Author)

  6. Monte Carlo simulations for dose enhancement in cancer treatment using bismuth oxide nanoparticles implanted in brain soft tissue.

    Science.gov (United States)

    Taha, Eslam; Djouider, Fathi; Banoqitah, Essam

    2018-03-26

    The objective of this work is to study the dosimetric performances of bismuth oxide nanoparticles implanted in tumors in cancer radiotherapy. GEANT4 based Monte Carlo numerical simulations were performed to assess dose enhancement distributions in and around a 1 × 1 × 1 cm 3 tumor implanted with different concentrations of bismuth oxide and irradiated with low energies 125 I, 131 Cs, and 103 Pd radioactive sources. Dose contributions were considered from photoelectrons, Auger electrons, and characteristic X-rays. Our results show the dose enhancement increased with increasing both bismuth oxide concentration in the target and photon energy. A dose enhancement factor up to 18.55 was obtained for a concentration of 70 mg/g of bismuth oxide in the tumor when irradiated with 131 Cs source. This study showed that bismuth oxide nanoparticles are innovative agents that could be potentially applicable to in vivo cancer radiotherapy due to the fact that they induce a highly localized energy deposition within the tumor.

  7. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  8. Monte Carlo techniques in diagnostic and therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Zaidi, H.

    2002-01-01

    Monte Carlo techniques have become one of the most popular tools in different areas of medical radiation physics following the development and subsequent implementation of powerful computing systems for clinical use. In particular, they have been extensively applied to simulate processes involving random behaviour and to quantify physical parameters that are difficult or even impossible to calculate analytically or to determine by experimental measurements. The use of the Monte Carlo method to simulate radiation transport turned out to be the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides. There is broad consensus in accepting that the earliest Monte Carlo calculations in medical radiation physics were made in the area of nuclear medicine, where the technique was used for dosimetry modelling and computations. Formalism and data based on Monte Carlo calculations, developed by the Medical Internal Radiation Dose (MIRD) committee of the Society of Nuclear Medicine, were published in a series of supplements to the Journal of Nuclear Medicine, the first one being released in 1968. Some of these pamphlets made extensive use of Monte Carlo calculations to derive specific absorbed fractions for electron and photon sources uniformly distributed in organs of mathematical phantoms. Interest in Monte Carlo-based dose calculations with β-emitters has been revived with the application of radiolabelled monoclonal antibodies to radioimmunotherapy. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the medical physics

  9. Validating a virtual source model based in Monte Carlo Method for profiles and percent deep doses calculation

    Energy Technology Data Exchange (ETDEWEB)

    Del Nero, Renata Aline; Yoriyaz, Hélio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nakandakari, Marcos Vinicius Nakaoka, E-mail: hyoriyaz@ipen.br, E-mail: marcos.sake@gmail.com [Hospital Beneficência Portuguesa de São Paulo, SP (Brazil)

    2017-07-01

    The Monte Carlo method for radiation transport data has been adapted for medical physics application. More specifically, it has received more attention in clinical treatment planning with the development of more efficient computer simulation techniques. In linear accelerator modeling by the Monte Carlo method, the phase space data file (phsp) is used a lot. However, to obtain precision in the results, it is necessary detailed information about the accelerator's head and commonly the supplier does not provide all the necessary data. An alternative to the phsp is the Virtual Source Model (VSM). This alternative approach presents many advantages for the clinical Monte Carlo application. This is the most efficient method for particle generation and can provide an accuracy similar when the phsp is used. This research propose a VSM simulation with the use of a Virtual Flattening Filter (VFF) for profiles and percent deep doses calculation. Two different sizes of open fields (40 x 40 cm² and 40√2 x 40√2 cm²) were used and two different source to surface distance (SSD) were applied: the standard 100 cm and custom SSD of 370 cm, which is applied in radiotherapy treatments of total body irradiation. The data generated by the simulation was analyzed and compared with experimental data to validate the VSM. This current model is easy to build and test. (author)

  10. ARCHER{sub RT} – A GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: Software development and application to helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lin; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George, E-mail: xug2@rpi.edu [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Yang, Youming; Bednarz, Bryan [Medical Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Sterpin, Edmond [Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels, Belgium 1348 (Belgium)

    2014-07-15

    Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER{sub RT} is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER{sub RT}. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER{sub RT} and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER{sub RT} agree well with DOSXYZnrc. For clinical cases, results from ARCHER{sub RT} are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to

  11. Development of PC based Monte Carlo simulations for the calculation of scanner-specific normalized organ doses from CT

    International Nuclear Information System (INIS)

    Jansen, J. T. M.; Shrimpton, P. C.; Zankl, M.

    2009-01-01

    This paper discusses the simulation of contemporary computed tomography (CT) scanners using Monte Carlo calculation methods to derive normalized organ doses, which enable hospital physicists to estimate typical organ and effective doses for CT examinations. The hardware used in a small PC-cluster at the Health Protection Agency (HPA) for these calculations is described. Investigations concerning optimization of software, including the radiation transport codes MCNP5 and MCNPX, and the Intel and PGI FORTRAN compilers, are presented in relation to results and calculation speed. Differences in approach for modelling the X-ray source are described and their influences are analysed. Comparisons with previously published calculations at HPA from the early 1990's proved satisfactory for the purposes of quality assurance and are presented in terms of organ dose ratios for whole body exposure and differences in organ location. Influences on normalized effective dose are discussed in relation to choice of cross section library, CT scanner technology (contemporary multi slice versus single slice), definition for effective dose (1990 and 2007 versions) and anthropomorphic phantom (mathematical and voxel). The results illustrate the practical need for the updated scanner-specific dose coefficients presently being calculated at HPA, in order to facilitate improved dosimetry for contemporary CT practice. (authors)

  12. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    Science.gov (United States)

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are

  13. Radiation dose considerations by intra-individual Monte Carlo simulations in dual source spiral coronary computed tomography angiography with electrocardiogram-triggered tube current modulation and adaptive pitch

    Energy Technology Data Exchange (ETDEWEB)

    May, Matthias S.; Kuettner, Axel; Lell, Michael M.; Wuest, Wolfgang; Scharf, Michael; Uder, Michael [University of Erlangen, Department of Radiology, Erlangen (Germany); Deak, Paul; Kalender, Willi A. [University of Erlangen, Department of Medical Physics, Erlangen (Germany); Keller, Andrea K.; Haeberle, Lothar [University of Erlangen, Department of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Achenbach, Stephan; Seltmann, Martin [University of Erlangen, Department of Cardiology, Erlangen (Germany)

    2012-03-15

    To evaluate radiation dose levels in patients undergoing spiral coronary computed tomography angiography (CTA) on a dual-source system in clinical routine. Coronary CTA was performed for 56 patients with electrocardiogram-triggered tube current modulation (TCM) and heart-rate (HR) dependent pitch adaptation. Individual Monte Carlo (MC) simulations were performed for dose assessment. Retrospective simulations with constant tube current (CTC) served as reference. Lung tissue was segmented and used for organ and effective dose (ED) calculation. Estimates for mean relative ED was 7.1 {+-} 2.1 mSv/100 mAs for TCM and 12.5 {+-} 5.3 mSv/100 mAs for CTC (P < 0.001). Relative dose reduction at low HR ({<=}60 bpm) was highest (49 {+-} 5%) compared to intermediate (60-70 bpm, 33 {+-} 12%) and high HR (>70 bpm, 29 {+-} 12%). However lowest ED is achieved at high HR (5.2 {+-} 1.5 mSv/100 mAs), compared with intermediate (6.7 {+-} 1.6 mSv/100 mAs) and low (8.3 {+-} 2.1 mSv/100 mAs) HR when automated pitch adaptation is applied. Radiation dose savings up to 52% are achievable by TCM at low and regular HR. However lowest ED is attained at high HR by pitch adaptation despite inferior radiation dose reduction by TCM. circle Monte Carlo simulations allow for individual radiation dose calculations. (orig.)

  14. Neutrons in active proton therapy. Parameterization of dose and dose equivalent

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Uwe; Haelg, Roger A. [Univ. of Zurich (Switzerland). Dept. of Physics; Radiotherapy Hirslanden AG, Aarau (Switzerland); Lomax, Tony [Paul Scherrer Institute, Villigen (Switzerland). Center for Proton Therapy

    2017-08-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85 cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138 MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160 MeV or 177 MeV instead of 138 MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy.

  15. Monte Carlo method for calculating the radiation skyshine produced by electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Kong Chaocheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China)]. E-mail: kongchaocheng@tsinghua.org.cn; Li Quanfeng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Chen Huaibi [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Du Taibin [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Cheng Cheng [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Tang Chuanxiang [Department of Engineering Physics, Tsinghua University Beijing 100084 (China); Zhu Li [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Zhang Hui [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Pei Zhigang [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China); Ming Shenjin [Laboratory of Radiation and Environmental Protection, Tsinghua University, Beijing 100084 (China)

    2005-06-01

    Using the MCNP4C Monte Carlo code, the X-ray skyshine produced by 9 MeV, 15 MeV and 21 MeV electron linear accelerators were calculated respectively with a new two-step method combined with the split and roulette variance reduction technique. Results of the Monte Carlo simulation, the empirical formulas used for skyshine calculation and the dose measurements were analyzed and compared. In conclusion, the skyshine dose measurements agreed reasonably with the results computed by the Monte Carlo method, but deviated from computational results given by empirical formulas. The effect on skyshine dose caused by different structures of accelerator head is also discussed in this paper.

  16. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Nilseia Aparecida Barbosa

    2014-08-01

    Full Text Available Purpose: Melanoma at the choroid region is the most common primary cancer that affects the eye in adult patients. Concave ophthalmic applicators with 106Ru/106Rh beta sources are the more used for treatment of these eye lesions, mainly lesions with small and medium dimensions. The available treatment planning system for 106Ru applicators is based on dose distributions on a homogeneous water sphere eye model, resulting in a lack of data in the literature of dose distributions in the eye radiosensitive structures, information that may be crucial to improve the treatment planning process, aiming the maintenance of visual acuity. Methods: The Monte Carlo code MCNPX was used to calculate the dose distribution in a complete mathematical model of the human eye containing a choroid melanoma; considering the eye actual dimensions and its various component structures, due to an ophthalmic brachytherapy treatment, using 106Ru/106Rh beta-ray sources. Two possibilities were analyzed; a simple water eye and a heterogeneous eye considering all its structures. Two concave applicators, CCA and CCB manufactured by BEBIG and a complete mathematical model of the human eye were modeled using the MCNPX code. Results and Conclusion: For both eye models, namely water model and heterogeneous model, mean dose values simulated for the same eye regions are, in general, very similar, excepting for regions very distant from the applicator, where mean dose values are very low, uncertainties are higher and relative differences may reach 20.4%. For the tumor base and the eye structures closest to the applicator, such as sclera, choroid and retina, the maximum difference observed was 4%, presenting the heterogeneous model higher mean dose values. For the other eye regions, the higher doses were obtained when the homogeneous water eye model is taken into consideration. Mean dose distributions determined for the homogeneous water eye model are similar to those obtained for the

  17. Quantum statistical Monte Carlo methods and applications to spin systems

    International Nuclear Information System (INIS)

    Suzuki, M.

    1986-01-01

    A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures

  18. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values

  19. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  20. Direct aperture optimization for IMRT using Monte Carlo generated beamlets

    International Nuclear Information System (INIS)

    Bergman, Alanah M.; Bush, Karl; Milette, Marie-Pierre; Popescu, I. Antoniu; Otto, Karl; Duzenli, Cheryl

    2006-01-01

    This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5x5.0 mm 2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is ∼33% compared to fluence-based optimization methods

  1. Monte Carlo determination of dose in crystalline and thyroid during chest tomography examinations

    International Nuclear Information System (INIS)

    Quispe H, B.; Pena V, J. D.; Waldo B, G.; Leon M, M.; Ceron R, P.; Vallejo H, A.; Sosa A, M.; Vega C, H. R.

    2017-10-01

    Computed tomography is a diagnostic imaging method that deposits higher doses than other radio diagnosis methods. The knowledge of the spectrum of X-rays is important, since is in direct function with the dose absorbed by the patient. In this work we estimated the spectrum of X-rays, produced during the interaction of monoenergetic electrons of 130 KeV with Tungsten white, in order to determine their energetic characteristics at 50 cm from the focal point. The study was done using Monte Carlo methods with the code MCNP5 where the X-ray tube of a Siemens SOMATOM Perspective tomograph of the General Regional Hospital of Leon, Mexico was modeled. In the calculations, 3 x 10 8 stories were used and a relative uncertainty of less than 0.1% was obtained. Also, a neck manikin with thyroid, thorax and head that included the eye, the table and gantry with 70 cm opening of the tomography was modeled. The X-ray spectrum calculated with a cut thickness of 10 mm limited by Pb collimators was used as the source term. The radiological service routine scanning protocol was used for chest computed tomography; the step-by-step or instant trigger method was simulated by moving the manikin coordinates for each cut and 360 degree continuous rotation movement. 36 positions of the X-ray tube were used in steps of 10 degrees. The radiation dispersed in the thorax deposits a dose of 2.063 mGy in crystalline and 252 mGy in thyroid. (Author)

  2. Dose rate evaluation of body phantom behind ITER bio-shield wall using Monte Carlo method

    International Nuclear Information System (INIS)

    Beheshti, A.; Jabbari, I.; Karimian, A.; Abdi, M.

    2012-01-01

    One of the most critical risks to humans in reactors environment is radiation exposure. Around the tokamak hall personnel are exposed to a wide range of particles, including neutrons and photons. International Thermonuclear Experimental Reactor (ITER) is a nuclear fusion research and engineering project, which is the most advanced experimental tokamak nuclear fusion reactor. Dose rates assessment and photon radiation due to the neutron activation of the solid structures in ITER is important from the radiological point of view. Therefore, the dosimetry considered in this case is based on the Deuterium-Tritium (DT) plasma burning with neutrons production rate at 14.1 MeV. The aim of this study is assessment the amount of radiation behind bio-shield wall that a human received during normal operation of ITER by considering neutron activation and delay gammas. To achieve the aim, the ITER system and its components were simulated by Monte Carlo method. Also to increase the accuracy and precision of the absorbed dose assessment a body phantom were considered in the simulation. The results of this research showed that total dose rates level near the outside of bio-shield wall of the tokamak hall is less than ten percent of the annual occupational dose limits during normal operation of ITER and It is possible to learn how long human beings can remain in that environment before the body absorbs dangerous levels of radiation. (authors)

  3. Use of Monte Carlo simulation software for calculating effective dose in cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gomes B, W. O., E-mail: wilsonottobatista@gmail.com [Instituto Federal da Bahia, Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador de Bahia (Brazil)

    2016-10-15

    This study aimed to develop a geometry of irradiation applicable to the software PCXMC and the consequent calculation of effective dose in applications of the Computed Tomography Cone Beam (CBCT). We evaluated two different CBCT equipment s for dental applications: Care stream Cs 9000 3-dimensional tomograph; i-CAT and GENDEX GXCB-500. Initially characterize each protocol measuring the surface kerma input and the product kerma air-area, P{sub KA}, with solid state detectors RADCAL and PTW transmission chamber. Then we introduce the technical parameters of each preset protocols and geometric conditions in the PCXMC software to obtain the values of effective dose. The calculated effective dose is within the range of 9.0 to 15.7 μSv for 3-dimensional computer 9000 Cs; within the range 44.5 to 89 μSv for GXCB-500 equipment and in the range of 62-111 μSv for equipment Classical i-CAT. These values were compared with results obtained dosimetry using TLD implanted in anthropomorphic phantom and are considered consistent. Os effective dose results are very sensitive to the geometry of radiation (beam position in mathematical phantom). This factor translates to a factor of fragility software usage. But it is very useful to get quick answers to regarding process optimization tool conclusions protocols. We conclude that use software PCXMC Monte Carlo simulation is useful assessment protocols for CBCT tests in dental applications. (Author)

  4. Application of OMEGA Monte Carlo codes for radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Ayyangar, Komanduri M.; Jiang, Steve B.

    1998-01-01

    The accuracy of conventional dose algorithms for radiosurgery treatment planning is limited, due to the inadequate consideration of the lateral radiation transport and the difficulty of acquiring accurate dosimetric data for very small beams. In the present paper, some initial work on the application of Monte Carlo method in radiation treatment planning in general, and in radiosurgery treatment planning in particular, has been presented. Two OMEGA Monte Carlo codes, BEAM and DOSXYZ, are used. The BEAM code is used to simulate the transport of particles in the linac treatment head and radiosurgery collimator. A phase space file is obtained from the BEAM simulation for each collimator size. The DOSXYZ code is used to calculate the dose distribution in the patient's body reconstructed from CT slices using the phase space file as input. The accuracy of OMEGA Monte Carlo simulation for radiosurgery dose calculation is verified by comparing the calculated and measured basic dosimetric data for several radiosurgery beams and a 4 x 4 cm 2 conventional beam. The dose distributions for three clinical cases are calculated using OMEGA codes as the dose engine for an in-house developed radiosurgery treatment planning system. The verification using basic dosimetric data and the dose calculation for clinical cases demonstrate the feasibility of applying OMEGA Monte Carlo code system to radiosurgery treatment planning. (author)

  5. Monte Carlo simulation of dose calculation in voxel and geometric phantoms using GEANT4 code

    International Nuclear Information System (INIS)

    Martins, Maximiano C.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Silva, Rosana de S. e; Begalli, Marcia

    2009-01-01

    Monte Carlo simulation techniques have become a valuable tool for scientific purposes. In radiation protection many quantities are obtained by means of the simulation of particles passing through human body models, also known as phantoms, allowing the calculation of doses deposited in an individual's organs exposed to ionizing radiation. These information are very useful from the medical viewpoint, as they are used in the planning of external beam radiotherapy and brachytherapy treatments. The goal of this work is the implementation of a voxel phantom and a geometrical phantom in the framework of the Geant4 tool kit, aiming at a future use of this code by professionals in the medical area. (author)

  6. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    International Nuclear Information System (INIS)

    Varadhan; Way, S; Arentsen, L; Gerbi, B

    2016-01-01

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R_8_0_–_2_0 electron distal falloff distance and number of particle histories was set at 500,000 per cm"2. Percent depth dose scans and beam profiles at dmax, d_9_0 and d_8_0 depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom"2 scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d_9_0 and d_8_0 depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  7. SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields

    Energy Technology Data Exchange (ETDEWEB)

    Varadhan [Minneapolis Radiation Oncology, Fridley, MN (United States); Way, S [Minneapolis Radiation Oncology, Robbinsdale, MN (United States); Arentsen, L; Gerbi, B [University of Minnesota, Minneapolis, MN (United States)

    2016-06-15

    Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distance and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.

  8. Tritons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons ( 3 H + ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV. Published by Oxford Univ. Press on behalf of the US Government 2010. (authors)

  9. Helions at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    International Nuclear Information System (INIS)

    Copeland, K.; Parker, D. E.; Friedberg, W.

    2010-01-01

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions ( 3 He 2+ ) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilder TM 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV. Published by Oxford Univ. Press on behalf of the U.S. Government 2010. (authors)

  10. Preliminary study of the distribution of dose in patients with Graves' disease undergoing examination of uptake of iodine-131 using Monte Carlo simulation; Estudo preliminar da distribuicao de dose em pacientes com doenca de Graves submetidos a exame de captacao de iodo-131 utilizando simulacao Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Schwarcke, Marcelo; Marques, Tatiana; Nicolucci, Patricia; Baffa, Oswaldo, E-mail: mschwarcke@usp.b [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica; Bornemann, Clarissa [Hospital de Caridade Astrogildo de Azevedo, Santa Maria, RS (Brazil). Servico de Medicina Nuclear de Santa Maria

    2010-06-15

    Patients with Graves disease have a high hormonal disorder, which causes behavioral changes. One way to treat this disease is the use of high doses of {sup 131} Iodine, requiring that the patient carries out the examination of {sup 131}I uptake to estimate the activity to be administered. Using these data capture and compared with the simulated data using the Monte Carlo code PENELOPE is possible to determine a distribution of dose to the region surrounding the thyroid. As noted the difference between the simulated values and the experimentally obtained were 10.36%, thus showing the code of simulation for accurate determination of absorbed dose in tissue near the thyroid. (author)

  11. Study of the heterogeneities effect in the dose distributions of Leksell Gamma Knife (R), through Monte Carlo simulation

    International Nuclear Information System (INIS)

    Rojas C, E.L.; Al-Dweri, F.M.O.; Lallena R, A.M.

    2005-01-01

    In this work they are studied, by means of Monte Carlo simulation, the effects that take place in the dose profiles that are obtained with the Leksell Gamma Knife (R), when they are kept in account heterogeneities. The considered heterogeneities simulate the skull and the spaces of air that are in the head, like they can be the nasal breasts or the auditory conduits. The calculations were made using the Monte Carlo Penelope simulation code (v. 2003). The geometry of each one of the 201 sources that this instrument is composed, as well as of the corresponding channels of collimation of the Gamma Knife (R), it was described by means of a simplified model of geometry that has been recently studied. The obtained results when they are kept in mind the heterogeneities they present non worthless differences regarding those obtained when those are not considered. These differences are maximum in the proximities of the interfaces among different materials. (Author)

  12. Development of Monte Carlo simulations to provide scanner-specific organ dose coefficients for contemporary CT

    Science.gov (United States)

    Jansen, Jan T. M.; Shrimpton, Paul C.

    2016-07-01

    The ImPACT (imaging performance assessment of CT scanners) CT patient dosimetry calculator is still used world-wide to estimate organ and effective doses (E) for computed tomography (CT) examinations, although the tool is based on Monte Carlo calculations reflecting practice in the early 1990’s. Subsequent developments in CT scanners, definitions of E, anthropomorphic phantoms, computers and radiation transport codes, have all fuelled an urgent need for updated organ dose conversion factors for contemporary CT. A new system for such simulations has been developed and satisfactorily tested. Benchmark comparisons of normalised organ doses presently derived for three old scanners (General Electric 9800, Philips Tomoscan LX and Siemens Somatom DRH) are within 5% of published values. Moreover, calculated normalised values of CT Dose Index for these scanners are in reasonable agreement (within measurement and computational uncertainties of  ±6% and  ±1%, respectively) with reported standard measurements. Organ dose coefficients calculated for a contemporary CT scanner (Siemens Somatom Sensation 16) demonstrate potential deviations by up to around 30% from the surrogate values presently assumed (through a scanner matching process) when using the ImPACT CT Dosimetry tool for newer scanners. Also, illustrative estimates of E for some typical examinations and a range of anthropomorphic phantoms demonstrate the significant differences (by some 10’s of percent) that can arise when changing from the previously adopted stylised mathematical phantom to the voxel phantoms presently recommended by the International Commission on Radiological Protection (ICRP), and when following the 2007 ICRP recommendations (updated from 1990) concerning tissue weighting factors. Further simulations with the validated dosimetry system will provide updated series of dose coefficients for a wide range of contemporary scanners.

  13. Dose estimation in the crystalline lens of industrial radiography personnel using Monte Carlo Method

    International Nuclear Information System (INIS)

    Lima, Alexandre Roza de

    2014-01-01

    The International Commission on Radiological Protection, ICRP, in its publication 103, reviewed recent epidemiological evidence and indicated that, for the eye lens, the absorbed dose threshold for induction of late detriment is around 0.5 Gy. On this basis, on April 21, 2011, the ICRP recommended changes to the occupational dose limit in planned exposure situations, reducing the eye lens equivalent dose limit from 150 mSv to 20 mSv per year, on average, during the period of 5 years, with exposure not to exceed 50 mSv in a single year. This paper presents the dose estimation to eye lens, H p (10), effective dose and doses to important organs in the body, received by industrial gamma radiography workers, during planned or accidental exposure situations. The computer program Visual Monte Carlo was used and two relevant scenarios were postulated. The first is a planned exposure situation scenario where the operator is directly exposed to radiation during the operation. 12 radiographic exposures per day for 250 days per year, which leads to an exposure of 36,000 seconds or 10 hours per year were considered. The simulation was carried out using the following parameters: a 192 Ir source with 1.0 TBq of activity, the source/operator distance varying from 5 m to 10 m at three different heights of 0.2 m, 1.0 m and 2.0 m. The eyes lens doses were estimated as being between 16.9 mSv/year and 66.9 mSv/year and for H p (10) the doses were between 17.7 mSv/year and 74.2 mSv/year. For the accidental exposure situation scenario, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m e 2.0 m, the source/operator distance was 40 cm and, the exposure time 74 seconds. The eyes lens doses, for 1.5 m, were 12.3 mGy and 0.28 mGy without and with a collimator, respectively. Three conclusions resulted from this work. The first was that the estimated doses show that the new

  14. Evaluation of tomographic-image based geometries with PENELOPE Monte Carlo

    International Nuclear Information System (INIS)

    Kakoi, A.A.Y.; Galina, A.C.; Nicolucci, P.

    2009-01-01

    The Monte Carlo method can be used to evaluate treatment planning systems or for the determination of dose distributions in radiotherapy planning due to its accuracy and precision. In Monte Carlo simulation packages typically used in radiotherapy, however, a realistic representation of the geometry of the patient can not be used, which compromises the accuracy of the results. In this work, an algorithm for the description of geometries based on CT images of patients, developed to be used with Monte Carlo simulation package PENELOPE, is tested by simulating the dose distribution produced by a photon beam of 10 MV. The geometry simulated was based on CT images of a planning of prostate cancer. The volumes of interest in the treatment were adequately represented in the simulation geometry, allowing the algorithm to be used in verification of doses in radiotherapy treatments. (author)

  15. Monte Carlo Treatment Planning for Advanced Radiotherapy

    DEFF Research Database (Denmark)

    Cronholm, Rickard

    This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...

  16. Implementation of a Monte Carlo based inverse planning model for clinical IMRT with MCNP code

    International Nuclear Information System (INIS)

    He, Tongming Tony

    2003-01-01

    Inaccurate dose calculations and limitations of optimization algorithms in inverse planning introduce systematic and convergence errors to treatment plans. This work was to implement a Monte Carlo based inverse planning model for clinical IMRT aiming to minimize the aforementioned errors. The strategy was to precalculate the dose matrices of beamlets in a Monte Carlo based method followed by the optimization of beamlet intensities. The MCNP 4B (Monte Carlo N-Particle version 4B) code was modified to implement selective particle transport and dose tallying in voxels and efficient estimation of statistical uncertainties. The resulting performance gain was over eleven thousand times. Due to concurrent calculation of multiple beamlets of individual ports, hundreds of beamlets in an IMRT plan could be calculated within a practical length of time. A finite-sized point source model provided a simple and accurate modeling of treatment beams. The dose matrix calculations were validated through measurements in phantoms. Agreements were better than 1.5% or 0.2 cm. The beamlet intensities were optimized using a parallel platform based optimization algorithm that was capable of escape from local minima and preventing premature convergence. The Monte Carlo based inverse planning model was applied to clinical cases. The feasibility and capability of Monte Carlo based inverse planning for clinical IMRT was demonstrated. Systematic errors in treatment plans of a commercial inverse planning system were assessed in comparison with the Monte Carlo based calculations. Discrepancies in tumor doses and critical structure doses were up to 12% and 17%, respectively. The clinical importance of Monte Carlo based inverse planning for IMRT was demonstrated

  17. Use of Monte Carlo simulation software for the calculation of the effective dose in cone beam Tomography

    International Nuclear Information System (INIS)

    Gomes B, W. O.

    2015-10-01

    Full text: In this study irradiation geometry applicable to PCXMC and the consequent calculation of effective dose in applications of cone beam computed tomography (CBCT) was developed. Two different CBCT equipment s for dental applications were evaluated: Care Stream Cs-9000 3-Dimensional and Gendex GXCB-500 tomographs. Each protocol initially was characterized by measuring the surface kerma input and the product air kerma-area, P KA . Then, technical parameters of each of the predetermined protocols and geometric conditions in the PCXMC software were introduced to obtain the values of effective dose. The calculated effective dose is within the range of 9.0 to 15.7 μSv for Cs 9000 3-D and in the range 44.5 to 89 mSv for GXCB-500 equipment. These values were compared with dosimetric results obtained using thermoluminescent dosimeters implanted in anthropomorphic mannequin and were considered consistent. The effective dose results are very sensitive to the radiation geometry (beam position); this represents a factor of fragility software usage, but on the other hand, turns out to be a very useful tool for quick conclusions regarding the optimization process of protocols. We can conclude that the use of Monte Carlo simulation software PCXMC is useful in the evaluation of test protocols of CBCT in dental applications. (Author)

  18. Preliminary study of the distribution of dose in patients with Graves' disease undergoing examination of uptake of iodine-131 using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Schwarcke, Marcelo; Marques, Tatiana; Nicolucci, Patricia; Baffa, Oswaldo; Bornemann, Clarissa

    2010-01-01

    Patients with Graves disease have a high hormonal disorder, which causes behavioral changes. One way to treat this disease is the use of high doses of 131 Iodine, requiring that the patient carries out the examination of 131 I uptake to estimate the activity to be administered. Using these data capture and compared with the simulated data using the Monte Carlo code PENELOPE is possible to determine a distribution of dose to the region surrounding the thyroid. As noted the difference between the simulated values and the experimentally obtained were 10.36%, thus showing the code of simulation for accurate determination of absorbed dose in tissue near the thyroid. (author)

  19. Evaluation of dose equivalent to the people accompanying patients in diagnostic radiology using MCNP4C Monte Carlo code

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Zehtabian, M.

    2007-01-01

    Complete text of publication follows. Objective: X rays used in diagnostic radiology contribute a major share to population doses from man-made sources of radiation. In some branches of radiology, it is necessary that another person stay in the imaging room and immobilize the patient to carry out radiological operation. ICRP 70 recommends that this should be done by parents or accompanying nursing or ancillary personnel and not in any case by radiation workers. Methods: Dose measurements were made previously using standard methods employing LiF TLD-100 dosimeters. A TLD card was installed on the main trunk of the body of the accompanying people where the maximum dose was probable. In this research the general purpose Monte Carlo N-particle radiation transport computer code (MCNP4C) is used to calculate the equivalent dose to the people accompanying patients exposed to radiation scattered from the patient (Without protective clothing). To do the simulations, all components of the geometry are placed within an air-filled box. Two homogeneous water phantoms are used to simulate the patient and the accompanying person. The accompanying person leans against the table at one side of the patient. Finally in case of source specification, only the focus of the X-ray tube is modelled, i.e. as a standard MCNP point source emitting a cone of photons. Photon stopping material is used as a collimator model to reduce the circular cross section of the cone to a rectangle. The X-ray spectra to be used in the MCNP simulations are generated with spectrum generator software, taking the X-ray voltage and all filtration applied in the clinic as input parameters. These calculations are done for different patient sizes and for different radiological operations. Results: In case of TL dosimetry, for a group of 100 examinations, the dose equivalents ranged from 0.01 μsv to 0.13 msv with the average of 0.05 msv. The results are seen to be in close agreement with Monte Carlo simulations

  20. PEREGRINE: An all-particle Monte Carlo code for radiation therapy

    International Nuclear Information System (INIS)

    Hartmann Siantar, C.L.; Chandler, W.P.; Rathkopf, J.A.; Svatos, M.M.; White, R.M.

    1994-09-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor while minimizing the dose to normal tissues. To carry out this task, it is critical to calculate correctly the distribution of dose delivered. Monte Carlo transport methods have the potential to provide more accurate prediction of dose distributions than currently-used methods. PEREGRINE is a new Monte Carlo transport code developed at Lawrence Livermore National Laboratory for the specific purpose of modeling the effects of radiation therapy. PEREGRINE transports neutrons, photons, electrons, positrons, and heavy charged-particles, including protons, deuterons, tritons, helium-3, and alpha particles. This paper describes the PEREGRINE transport code and some preliminary results for clinically relevant materials and radiation sources

  1. Comparison of film dosimetry and Monte Carlo simulations in small field IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.R.; Suh, T.S.; Choe, B.Y.; Lee, H.K. [The Catholic Univ., Seoul (Korea, Republic of); Sohn. Jason W. [Washington Univ., St. Louis (United States)

    2002-07-01

    Intensity modulated radiation therapy(IMRT) is a recent useful technique that conforms a high dose to the target volume while restricting dose to the surrounding critical organs. In IMRT, the small size beam let is used for intensity modulation. Thus, dose calculation in small field is very important. But, dose calculation in small field is not accurate in recent RTP system because electronic disequilibrium and the effect of multiple scattering electron are not considered in dose calculation. and therefore, We have evaluated the errors of depth dose and beam profile between measurement data and Monte Carlo simulation. With a homogeneous phantom and two heterogeneous phantoms, A thermoluminescent dosimeter (TLD) and radiochromic films have been selected for dose measurement in 6 MV photon beams. A linear accelerator Varian 2300C (Varian Medical Systems, USA) equipped with a multileaf collimator have been used in dose measurement. The results of simulations using the Monte Carlo systems BEAM/EGS4 (NRC, Canada) to model the beam geometry have been compared with dose measurements. Generally good agreements were found between measurements and dose calculations of Monte Carlo simulation. But some discrepancies were found in this study. Thus further study will be needed to compensate these errors.

  2. Clinical considerations of Monte Carlo for electron radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Faddegon, Bruce; Balogh, Judith; Mackenzie, Robert; Scora, Daryl

    1998-01-01

    Technical requirements for Monte Carlo based electron radiotherapy treatment planning are outlined. The targeted overall accuracy for estimate of the delivered dose is the least restrictive of 5% in dose, 5 mm in isodose position. A system based on EGS4 and capable of achieving this accuracy is described. Experience gained in system design and commissioning is summarized. The key obstacle to widespread clinical use of Monte Carlo is lack of clinically acceptable measurement based methodology for accurate commissioning

  3. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.

    Science.gov (United States)

    Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-03-01

    The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given

  4. [Study of the influence of uniform transverse magnetic field on the dose distribution of high energy electron beam using Monte Carlo method].

    Science.gov (United States)

    You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun

    2014-12-01

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

  5. A Monte Carlo model for mean glandular dose evaluation in spot compression mammography.

    Science.gov (United States)

    Sarno, Antonio; Dance, David R; van Engen, Ruben E; Young, Kenneth C; Russo, Paolo; Di Lillo, Francesca; Mettivier, Giovanni; Bliznakova, Kristina; Fei, Baowei; Sechopoulos, Ioannis

    2017-07-01

    To characterize the dependence of normalized glandular dose (DgN) on various breast model and image acquisition parameters during spot compression mammography and other partial breast irradiation conditions, and evaluate alternative previously proposed dose-related metrics for this breast imaging modality. Using Monte Carlo simulations with both simple homogeneous breast models and patient-specific breasts, three different dose-related metrics for spot compression mammography were compared: the standard DgN, the normalized glandular dose to only the directly irradiated portion of the breast (DgNv), and the DgN obtained by the product of the DgN for full field irradiation and the ratio of the mid-height area of the irradiated breast to the entire breast area (DgN M ). How these metrics vary with field-of-view size, spot area thickness, x-ray energy, spot area and position, breast shape and size, and system geometry was characterized for the simple breast model and a comparison of the simple model results to those with patient-specific breasts was also performed. The DgN in spot compression mammography can vary considerably with breast area. However, the difference in breast thickness between the spot compressed area and the uncompressed area does not introduce a variation in DgN. As long as the spot compressed area is completely within the breast area and only the compressed breast portion is directly irradiated, its position and size does not introduce a variation in DgN for the homogeneous breast model. As expected, DgN is lower than DgNv for all partial breast irradiation areas, especially when considering spot compression areas within the clinically used range. DgN M underestimates DgN by 6.7% for a W/Rh spectrum at 28 kVp and for a 9 × 9 cm 2 compression paddle. As part of the development of a new breast dosimetry model, a task undertaken by the American Association of Physicists in Medicine and the European Federation of Organizations of Medical Physics

  6. Monte Carlo study of MOSFET dosimeter dose correction factors considering energy spectrum of radiation field in a steam generator channel head

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of)

    2006-12-15

    In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit no.1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.662 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible ({<=}1.5%), which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease by {approx}7% when we apply the dose correction factors.

  7. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Science.gov (United States)

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  8. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    Directory of Open Access Journals (Sweden)

    Obioma Nwankwo

    Full Text Available To introduce a new method of deriving a virtual source model (VSM of a linear accelerator photon beam from a phase space file (PSF for Monte Carlo (MC dose calculation.A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses.The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate for the evaluated fields.A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  9. Normalized glandular dose (DgN) coefficients for flat-panel CT breast imaging

    International Nuclear Information System (INIS)

    Thacker, Samta C; Glick, Stephen J

    2004-01-01

    The development of new digital mammography techniques such as dual-energy imaging, tomosynthesis and CT breast imaging will require investigation of optimal camera design parameters and optimal imaging acquisition parameters. In optimizing these acquisition protocols and imaging systems it is important to have knowledge of the radiation dose to the breast. This study presents a methodology for estimating the normalized glandular dose to the uncompressed breast using the geometry proposed for flat-panel CT breast imaging. The simulation uses the GEANT 3 Monte Carlo code to model x-ray transport and absorption within the breast phantom. The Monte Carlo software was validated for breast dosimetry by comparing results of the normalized glandular dose (DgN) values of the compressed breast to those reported in the literature. The normalized glandular dose was then estimated for a range of breast diameters from 10 cm to 18 cm using an uncompressed breast model with a homogeneous composition of adipose and glandular tissue, and for monoenergetic x-rays from 10 keV to 120 keV. These data were fit providing expressions for the normalized glandular dose. Using these expressions for the DgN coefficients and input variables such as the diameter, height and composition of the breast phantom, the mean glandular dose for any spectra can be estimated. A computer program to provide normalized glandular dose values has been made available online. In addition, figures displaying energy deposition maps are presented to better understand the spatial distribution of dose in CT breast imaging

  10. Monte Carlo dose calculation using a cell processor based PlayStation 3 system

    International Nuclear Information System (INIS)

    Chow, James C L; Lam, Phil; Jaffray, David A

    2012-01-01

    This study investigates the performance of the EGSnrc computer code coupled with a Cell-based hardware in Monte Carlo simulation of radiation dose in radiotherapy. Performance evaluations of two processor-intensive functions namely, HOWNEAR and RANMAR G ET in the EGSnrc code were carried out basing on the 20-80 rule (Pareto principle). The execution speeds of the two functions were measured by the profiler gprof specifying the number of executions and total time spent on the functions. A testing architecture designed for Cell processor was implemented in the evaluation using a PlayStation3 (PS3) system. The evaluation results show that the algorithms examined are readily parallelizable on the Cell platform, provided that an architectural change of the EGSnrc was made. However, as the EGSnrc performance was limited by the PowerPC Processing Element in the PS3, PC coupled with graphics processing units or GPCPU may provide a more viable avenue for acceleration.

  11. Monte Carlo dose calculation using a cell processor based PlayStation 3 system

    Science.gov (United States)

    Chow, James C. L.; Lam, Phil; Jaffray, David A.

    2012-02-01

    This study investigates the performance of the EGSnrc computer code coupled with a Cell-based hardware in Monte Carlo simulation of radiation dose in radiotherapy. Performance evaluations of two processor-intensive functions namely, HOWNEAR and RANMAR_GET in the EGSnrc code were carried out basing on the 20-80 rule (Pareto principle). The execution speeds of the two functions were measured by the profiler gprof specifying the number of executions and total time spent on the functions. A testing architecture designed for Cell processor was implemented in the evaluation using a PlayStation3 (PS3) system. The evaluation results show that the algorithms examined are readily parallelizable on the Cell platform, provided that an architectural change of the EGSnrc was made. However, as the EGSnrc performance was limited by the PowerPC Processing Element in the PS3, PC coupled with graphics processing units or GPCPU may provide a more viable avenue for acceleration.

  12. Monte Carlo dose calculation using a cell processor based PlayStation 3 system

    Energy Technology Data Exchange (ETDEWEB)

    Chow, James C L; Lam, Phil; Jaffray, David A, E-mail: james.chow@rmp.uhn.on.ca [Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9 (Canada)

    2012-02-09

    This study investigates the performance of the EGSnrc computer code coupled with a Cell-based hardware in Monte Carlo simulation of radiation dose in radiotherapy. Performance evaluations of two processor-intensive functions namely, HOWNEAR and RANMAR{sub G}ET in the EGSnrc code were carried out basing on the 20-80 rule (Pareto principle). The execution speeds of the two functions were measured by the profiler gprof specifying the number of executions and total time spent on the functions. A testing architecture designed for Cell processor was implemented in the evaluation using a PlayStation3 (PS3) system. The evaluation results show that the algorithms examined are readily parallelizable on the Cell platform, provided that an architectural change of the EGSnrc was made. However, as the EGSnrc performance was limited by the PowerPC Processing Element in the PS3, PC coupled with graphics processing units or GPCPU may provide a more viable avenue for acceleration.

  13. Fluence map optimization (FMO) with dose-volume constraints in IMRT using the geometric distance sorting method.

    Science.gov (United States)

    Lan, Yihua; Li, Cunhua; Ren, Haozheng; Zhang, Yong; Min, Zhifang

    2012-10-21

    A new heuristic algorithm based on the so-called geometric distance sorting technique is proposed for solving the fluence map optimization with dose-volume constraints which is one of the most essential tasks for inverse planning in IMRT. The framework of the proposed method is basically an iterative process which begins with a simple linear constrained quadratic optimization model without considering any dose-volume constraints, and then the dose constraints for the voxels violating the dose-volume constraints are gradually added into the quadratic optimization model step by step until all the dose-volume constraints are satisfied. In each iteration step, an interior point method is adopted to solve each new linear constrained quadratic programming. For choosing the proper candidate voxels for the current dose constraint adding, a so-called geometric distance defined in the transformed standard quadratic form of the fluence map optimization model was used to guide the selection of the voxels. The new geometric distance sorting technique can mostly reduce the unexpected increase of the objective function value caused inevitably by the constraint adding. It can be regarded as an upgrading to the traditional dose sorting technique. The geometry explanation for the proposed method is also given and a proposition is proved to support our heuristic idea. In addition, a smart constraint adding/deleting strategy is designed to ensure a stable iteration convergence. The new algorithm is tested on four cases including head-neck, a prostate, a lung and an oropharyngeal, and compared with the algorithm based on the traditional dose sorting technique. Experimental results showed that the proposed method is more suitable for guiding the selection of new constraints than the traditional dose sorting method, especially for the cases whose target regions are in non-convex shapes. It is a more efficient optimization technique to some extent for choosing constraints than the dose

  14. Estimation of the effects of a lead vest on dose reduction for radiation workers using Monte Carlo calculations

    International Nuclear Information System (INIS)

    Young-khi, Lim; Byoung-il, Lee; Jeong-in, Kim

    2008-01-01

    Full text: In the field of medical diagnosis or treatments using radiations, lead vests or aprons are widely used to protect the patients or workers from unwanted irradiation. Also, in nuclear power plants, it is recommended that the workers should wear a lead vest to reduce the dose for working in high radiation area. Generally, personal dosimeters were used to estimate the doses of workers but these cannot give the absolute values. So, measured values should be modified by comparing the reference conditions with conversion factors. Many trials to estimate the doses of workers with lead shield using two or more dosimeters at different locations were done but these had limitations. Through this study the personal dose with/without a lead vest and the effectiveness were evaluated by Monte Carlo methods. A lead vest which had been used at several nuclear sites was modelled with MIRD-V and typical Korean voxel phantom using MCNP-5 transport code. Organ doses were calculated in AP, PA, RLAT, LLAT irradiation geometry for several parallel photon beams. Also irradiation experiments were carried out using real typical Korean phantom with the lead vest and the results were compared with those calculated by simulations. In most cases, the lead vest decreases the organ doses about 30%. For low energy, the lead vest is very effective to reduce the dose but it is not so good for high energy photon shielding. For thyroids, the doses to high energy photons increased by 5% on the contrary. This study may be applied to the better design of personal shielding and dose estimation procedures for practical use. (author)

  15. Conversion from tooth enamel dose to organ doses for electron spin resonance dosimetry

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Yamaguchi, Yasuhiro; Saito, Kimiaki; Hamada, Tatsuji

    2002-01-01

    Conversion from tooth enamel dose to organ doses was analyzed to establish a method of retrospective individual dose assessment against external photon exposure by electron spin resonance (ESR) dosimetry. Dose to tooth enamel was obtained by Monte Carlo calculations using a modified MIRD-type phantom with a teeth part. The calculated tooth enamel doses were verified by measurements with thermo-luminescence dosimeters inserted in a physical head phantom. Energy and angular dependences of tooth enamel dose were compared with those of other organ doses. Additional Monte Carlo calculations were performed to study the effect of human model on the tooth enamel dose with a voxel-type phantom, which was based on computed tomography images of the physical phantom. The data derived with the modified MIRD-type phantom were applied to convert from tooth enamel dose to organ doses against external photon exposure in a hypothesized field, where scattered radiation was taken into account. The results indicated that energy distribution of photons incident to a human body is required to evaluate precisely an individual dose based on ESR dosimetry for teeth. (author)

  16. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  17. WE-EF-BRA-02: A Monte Carlo Study of Macroscopic and Microscopic Dose Descriptors for Kilovoltage Cellular Dosimetry

    International Nuclear Information System (INIS)

    Oliver, P; Thomson, R

    2015-01-01

    Purpose: To investigate how doses to cellular (microscopic) targets depend on cell morphology, and how cellular doses relate to doses to bulk tissues and water for 20 to 370 keV photon sources using Monte Carlo (MC) simulations. Methods: Simulation geometries involve cell clusters, single cells, and single nuclear cavities embedded in various healthy and cancerous bulk tissue phantoms. A variety of nucleus and cytoplasm elemental compositions are investigated. Cell and nucleus radii range from 5 to 10 microns and 2 to 9 microns, respectively. Doses to water and bulk tissue cavities are compared to nucleus and cytoplasm doses. Results: Variations in cell dose with simulation geometry are most pronounced for lower energy sources. Nuclear doses are sensitive to the surrounding geometry: the nuclear dose in a multicell model differs from the dose to a cavity of nuclear medium in an otherwise homogeneous bulk tissue phantom by more than 7% at 20 keV. Nuclear doses vary with cell size by up to 20% at 20 keV, with 10% differences persisting up to 90 keV. Bulk tissue and water cavity doses differ from cellular doses by up to 16%. MC results are compared to cavity theory predictions; large and small cavity theories qualitatively predict nuclear doses for energies below and above 50 keV, respectively. Burlin’s (1969) intermediate cavity theory best predicts MC results with an average discrepancy of 4%. Conclusion: Cellular doses vary as a function of source energy, subcellular compartment size, elemental composition, and tissue morphology. Neither water nor bulk tissue is an appropriate surrogate for subcellular targets in radiation dosimetry. The influence of microscopic inhomogeneities in the surrounding environment on the nuclear dose and the importance of the nucleus as a target for radiation-induced cell death emphasizes the potential importance of cellular dosimetry for understanding radiation effects. Funded by the Natural Sciences and Engineering Research Council

  18. Preliminary study of the distribution of dose in patients with Graves disease undergoing examination of uptake of iodine-131 using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Schwarcke, Marcelo; Marques, Tatiana; Alva, Mirko; Baffa, Oswaldo; Nicolucci, Patricia

    2009-01-01

    Patients with Graves' disease have a high hormonal disorder, which causes the change of behavior in society. One way to treat this disease is the use of doses of Iodine-131, requiring that the patient carries out the examination of uptake of 131 I estimates for completion of the activity to be administered. Using these data capture and compared with the simulated data using the Monte Carlo code Penelope is possible to determine a distribution of dose to the region surrounding the thyroid. As noted the difference between the simulated values and the experimentally obtained were 10.36%, thus showing the code of simulation for accurate determination of absorbed dose in tissue near the thyroid. (author)

  19. On the use of Gafchromic EBT3 films for validating a commercial electron Monte Carlo dose calculation algorithm.

    Science.gov (United States)

    Chan, EuJin; Lydon, Jenny; Kron, Tomas

    2015-03-07

    This study aims to investigate the effects of oblique incidence, small field size and inhomogeneous media on the electron dose distribution, and to compare calculated (Elekta/CMS XiO) and measured results. All comparisons were done in terms of absolute dose. A new measuring method was developed for high resolution, absolute dose measurement of non-standard beams using Gafchromic® EBT3 film. A portable U-shaped holder was designed and constructed to hold EBT3 films vertically in a reproducible setup submerged in a water phantom. The experimental film method was verified with ionisation chamber measurements and agreed to within 2% or 1 mm. Agreement between XiO electron Monte Carlo (eMC) and EBT3 was within 2% or 2 mm for most standard fields and 3% or 3 mm for the non-standard fields. Larger differences were seen in the build-up region where XiO eMC overestimates dose by up to 10% for obliquely incident fields and underestimates the dose for small circular fields by up to 5% when compared to measurement. Calculations with inhomogeneous media mimicking ribs, lung and skull tissue placed at the side of the film in water agreed with measurement to within 3% or 3 mm. Gafchromic film in water proved to be a convenient high spatial resolution method to verify dose distributions from electrons in non-standard conditions including irradiation in inhomogeneous media.

  20. A new Monte Carlo program for calculations of dose distributions within tissue equivalent phantoms irradiated from π--meson beams

    International Nuclear Information System (INIS)

    Przybilla, G.

    1980-11-01

    The present paper reports on the structure and first results from a new Monte Carlo programme for calculations of energy distributions within tissue equivalent phantoms irradiated from π - -beams. Each pion or generated secondary particle is transported until to the complete loss of its kinetic energy taking into account pion processes like multiple Coulomb scattering, pion reactions in flight and absorption of stopped pions. The code uses mainly data from experiments, and physical models have been added only in cases of lacking data. Depth dose curves for a pensil beam of 170 MeV/c within a water phantom are discussed as a function of various parameters. Isodose contours are plotted resulting from a convolution of an extended beam profile and the dose distribution of a pencil beams. (orig.) [de

  1. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  2. Terrestrial gamma radiation dose rates and radiological mapping of Terengganu state, Malaysia

    International Nuclear Information System (INIS)

    Garba, N.N.

    2015-01-01

    Measurement of terrestrial gamma radiation dose (TGRD) rates in Terengganu state, Malaysia was carried out from 145 different locations using NaI[Tl] micro roentgen survey meter. The measured TGRD rates ranged from 35 to 340 nGy h -1 with mean value of 150 nGy h -1 . The annual effective dose to population was found to be 0.92 mSv y -1 . The data obtained were used in constructing the gamma isodose map using ArcGis 9.3 which shows the distribution of TGRD rates across the state. (author)

  3. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations

    Science.gov (United States)

    Gu, J.; Bednarz, B.; Caracappa, P. F.; Xu, X. G.

    2009-05-01

    The latest multiple-detector technologies have further increased the popularity of x-ray CT as a diagnostic imaging modality. There is a continuing need to assess the potential radiation risk associated with such rapidly evolving multi-detector CT (MDCT) modalities and scanning protocols. This need can be met by the use of CT source models that are integrated with patient computational phantoms for organ dose calculations. Based on this purpose, this work developed and validated an MDCT scanner using the Monte Carlo method, and meanwhile the pregnant patient phantoms were integrated into the MDCT scanner model for assessment of the dose to the fetus as well as doses to the organs or tissues of the pregnant patient phantom. A Monte Carlo code, MCNPX, was used to simulate the x-ray source including the energy spectrum, filter and scan trajectory. Detailed CT scanner components were specified using an iterative trial-and-error procedure for a GE LightSpeed CT scanner. The scanner model was validated by comparing simulated results against measured CTDI values and dose profiles reported in the literature. The source movement along the helical trajectory was simulated using the pitch of 0.9375 and 1.375, respectively. The validated scanner model was then integrated with phantoms of a pregnant patient in three different gestational periods to calculate organ doses. It was found that the dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. The paper also discusses how these fetal dose values can be used to evaluate imaging procedures and to assess risk using recommendations of the report from AAPM Task Group 36. This work demonstrates the ability of modeling and validating an MDCT scanner by the Monte Carlo method, as well as

  4. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Gu, J; Bednarz, B; Caracappa, P F; Xu, X G

    2009-01-01

    The latest multiple-detector technologies have further increased the popularity of x-ray CT as a diagnostic imaging modality. There is a continuing need to assess the potential radiation risk associated with such rapidly evolving multi-detector CT (MDCT) modalities and scanning protocols. This need can be met by the use of CT source models that are integrated with patient computational phantoms for organ dose calculations. Based on this purpose, this work developed and validated an MDCT scanner using the Monte Carlo method, and meanwhile the pregnant patient phantoms were integrated into the MDCT scanner model for assessment of the dose to the fetus as well as doses to the organs or tissues of the pregnant patient phantom. A Monte Carlo code, MCNPX, was used to simulate the x-ray source including the energy spectrum, filter and scan trajectory. Detailed CT scanner components were specified using an iterative trial-and-error procedure for a GE LightSpeed CT scanner. The scanner model was validated by comparing simulated results against measured CTDI values and dose profiles reported in the literature. The source movement along the helical trajectory was simulated using the pitch of 0.9375 and 1.375, respectively. The validated scanner model was then integrated with phantoms of a pregnant patient in three different gestational periods to calculate organ doses. It was found that the dose to the fetus of the 3 month pregnant patient phantom was 0.13 mGy/100 mAs and 0.57 mGy/100 mAs from the chest and kidney scan, respectively. For the chest scan of the 6 month patient phantom and the 9 month patient phantom, the fetal doses were 0.21 mGy/100 mAs and 0.26 mGy/100 mAs, respectively. The paper also discusses how these fetal dose values can be used to evaluate imaging procedures and to assess risk using recommendations of the report from AAPM Task Group 36. This work demonstrates the ability of modeling and validating an MDCT scanner by the Monte Carlo method, as well as

  5. SU-E-T-235: Monte Carlo Analysis of the Dose Enhancement in the Scalp of Patients Due to Titanium Plate Backscatter During Post-Operative Radiotherapy

    International Nuclear Information System (INIS)

    Hardin, M; Elson, H; Lamba, M; Wolf, E; Warnick, R

    2014-01-01

    Purpose: To quantify the clinically observed dose enhancement adjacent to cranial titanium fixation plates during post-operative radiotherapy. Methods: Irradiation of a titanium burr hole cover was simulated using Monte Carlo code MCNPX for a 6 MV photon spectrum to investigate backscatter dose enhancement due to increased production of secondary electrons within the titanium plate. The simulated plate was placed 3 mm deep in a water phantom, and dose deposition was tallied for 0.2 mm thick cells adjacent to the entrance and exit sides of the plate. These results were compared to a simulation excluding the presence of the titanium to calculate relative dose enhancement on the entrance and exit sides of the plate. To verify simulated results, two titanium burr hole covers (Synthes, Inc. and Biomet, Inc.) were irradiated with 6 MV photons in a solid water phantom containing GafChromic MD-55 film. The phantom was irradiated on a Varian 21EX linear accelerator at multiple gantry angles (0–180 degrees) to analyze the angular dependence of the backscattered radiation. Relative dose enhancement was quantified using computer software. Results: Monte Carlo simulations indicate a relative difference of 26.4% and 7.1% on the entrance and exit sides of the plate respectively. Film dosimetry results using a similar geometry indicate a relative difference of 13% and -10% on the entrance and exit sides of the plate respectively. Relative dose enhancement on the entrance side of the plate decreased with increasing gantry angle from 0 to 180 degrees. Conclusion: Film and simulation results demonstrate an increase in dose to structures immediately adjacent to cranial titanium fixation plates. Increased beam obliquity has shown to alleviate dose enhancement to some extent. These results are consistent with clinically observed effects

  6. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    Science.gov (United States)

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  7. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*

    Science.gov (United States)

    Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G

    2014-01-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  8. Automatic commissioning of a GPU-based Monte Carlo radiation dose calculation code for photon radiotherapy

    International Nuclear Information System (INIS)

    Tian, Zhen; Jia, Xun; Jiang, Steve B; Graves, Yan Jiang

    2014-01-01

    Monte Carlo (MC) simulation is commonly considered as the most accurate method for radiation dose calculations. Commissioning of a beam model in the MC code against a clinical linear accelerator beam is of crucial importance for its clinical implementation. In this paper, we propose an automatic commissioning method for our GPU-based MC dose engine, gDPM. gDPM utilizes a beam model based on a concept of phase-space-let (PSL). A PSL contains a group of particles that are of the same type and close in space and energy. A set of generic PSLs was generated by splitting a reference phase-space file. Each PSL was associated with a weighting factor, and in dose calculations the particle carried a weight corresponding to the PSL where it was from. Dose for each PSL in water was pre-computed, and hence the dose in water for a whole beam under a given set of PSL weighting factors was the weighted sum of the PSL doses. At the commissioning stage, an optimization problem was solved to adjust the PSL weights in order to minimize the difference between the calculated dose and measured one. Symmetry and smoothness regularizations were utilized to uniquely determine the solution. An augmented Lagrangian method was employed to solve the optimization problem. To validate our method, a phase-space file of a Varian TrueBeam 6 MV beam was used to generate the PSLs for 6 MV beams. In a simulation study, we commissioned a Siemens 6 MV beam on which a set of field-dependent phase-space files was available. The dose data of this desired beam for different open fields and a small off-axis open field were obtained by calculating doses using these phase-space files. The 3D γ-index test passing rate within the regions with dose above 10% of d max dose for those open fields tested was improved averagely from 70.56 to 99.36% for 2%/2 mm criteria and from 32.22 to 89.65% for 1%/1 mm criteria. We also tested our commissioning method on a six-field head-and-neck cancer IMRT plan. The

  9. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Jin Han, Tae; Kim, Haeyoung; Lee, Me-Yeon; Ju Kim, Kyoung, E-mail: kjkim@hallym.or.kr; Bae, Hoonsik

    2015-10-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.

  10. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.

    Science.gov (United States)

    Wu, J; Liu, Y L; Chang, S J; Chao, M M; Tsai, S Y; Huang, D E

    2012-11-01

    Monte Carlo (MC) simulation has been commonly used in the dose evaluation of radiation accidents and for medical purposes. The accuracy of simulated results is affected by the particle-tracking algorithm, cross-sectional database, random number generator and statistical error. The differences among MC simulation software packages must be validated. This study simulated the dose point kernel (DPK) and the cellular S-values of monoenergetic electrons ranging from 0.01 to 2 MeV and the radionuclides of (90)Y, (177)Lu and (103 m)Rh, using Fluktuierende Kaskade (FLUKA) and MC N-Particle Transport Code Version 5 (MCNP5). A 6-μm-radius cell model consisting of the cell surface, cytoplasm and cell nucleus was constructed for cellular S-value calculation. The mean absolute percentage errors (MAPEs) of the scaled DPKs, simulated using FLUKA and MCNP5, were 7.92, 9.64, 4.62, 3.71 and 3.84 % for 0.01, 0.1, 0.5, 1 and 2 MeV, respectively. For the three radionuclides, the MAPEs of the scaled DPKs were within 5 %. The maximum deviations of S(N←N), S(N←Cy) and S(N←CS) for the electron energy larger than 10 keV were 6.63, 6.77 and 5.24 %, respectively. The deviations for the self-absorbed S-values and cross-dose S-values of the three radionuclides were within 4 %. On the basis of the results of this study, it was concluded that the simulation results are consistent between FLUKA and MCNP5. However, there is a minor inconsistency for low energy range. The DPK and the cellular S-value should be used as the quality assurance tools before the MC simulation results are adopted as the gold standard.

  11. Monte carlo calculation of the neutron effective dose rate at the outer surface of the biological shield of HTR-10 reactor

    International Nuclear Information System (INIS)

    Remetti, Romolo; Andreoli, Giulio; Keshishian, Silvina

    2012-01-01

    Highlights: ► We deal with HTR-10, that is a helium-cooled graphite-moderated pebble bed reactor. ► We carried out Monte Carlo simulation of the core by MCNP5. ► Extensive use of MCNP5 variance reduction methods has been done. ► We calculated the trend of neutron flux within the biological shield. ► We calculated neutron effective dose at the outer surface of biological shield. - Abstract: Research on experimental reactors, such as HTR-10, provide useful data about potentialities of very high temperature gas-cooled reactors (VHTR). The latter is today rated as one of the six nuclear reactor types involved in the Generation-IV International Forum (GIF) Initiative. In this study, the MCNP5 code has been employed to evaluate the neutron radiation trend vs. the biological shield's thickness and to calculate the neutron effective dose rate at the outer surface. The reactor's geometry has been completely modeled by means of lattices and universes provided by MCNP, even though some approximations were required. Monte Carlo calculations have been performed by means of a simple PC and, as a consequence, in order to obtain acceptable run times, it was made an extensive recourse to variance reduction methods.

  12. Use of Monte Carlo computation in benchmarking radiotherapy treatment planning system algorithms

    International Nuclear Information System (INIS)

    Lewis, R.D.; Ryde, S.J.S.; Seaby, A.W.; Hancock, D.A.; Evans, C.J.

    2000-01-01

    Radiotherapy treatments are becoming more complex, often requiring the dose to be calculated in three dimensions and sometimes involving the application of non-coplanar beams. The ability of treatment planning systems to accurately calculate dose under a range of these and other irradiation conditions requires evaluation. Practical assessment of such arrangements can be problematical, especially when a heterogeneous medium is used. This work describes the use of Monte Carlo computation as a benchmarking tool to assess the dose distribution of external photon beam plans obtained in a simple heterogeneous phantom by several commercially available 3D and 2D treatment planning system algorithms. For comparison, practical measurements were undertaken using film dosimetry. The dose distributions were calculated for a variety of irradiation conditions designed to show the effects of surface obliquity, inhomogeneities and missing tissue above tangential beams. The results show maximum dose differences of 47% between some planning algorithms and film at a point 1 mm below a tangentially irradiated surface. Overall, the dose distribution obtained from film was most faithfully reproduced by the Monte Carlo N-Particle results illustrating the potential of Monte Carlo computation in evaluating treatment planning system algorithms. (author)

  13. Monte Carlo simulated dose to the human body due to neutrons emitted in laser-fusion

    International Nuclear Information System (INIS)

    Gileadi, A.E.; Cohen, M.O.

    1977-01-01

    Considering a point neutron source located at a given distance from the human body, modeled by a 'standard reference man' phantom, neutron doses to the whole body, as well as to selected organs thereof, are determined, using the SAM-CE system, a Monte Carlo computer code, written in Fortran and designed to solve time, space and energy dependent neutron and gamma ray transport equations in complex three-dimensional geometrice. Collision density, energy deposition and dose are treated in the SAM-CE system as flux functionals. A special feature of SAM-CE is its use of the 'Combinatorial Geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All neutron and gamma ray cross section data, as well as gamma ray production data, are derived from the ENDF libraries. Both resolved and unresolved resonance parameters from ENDF neutron data files are treated automatically and extremely precise and detailed descriptions of cross section behavior is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux-averaged cross sections based on assumed flux distributions which may or may not be appropriate. The 'standard reference man', a heterogeneous phantom, uses simple geometric forms to approximate the shape and dimensions of the human body. Materials composition of each subregion representing a certain 'organ' is given. Typical values of neutron doses to the whole body and to selected 'organs' of interest are presented

  14. Does the fluence map editing in electronic tissue compensator improve dose homogeneity in bilateral field plan of head and neck patients?

    Directory of Open Access Journals (Sweden)

    Kinhikar Rajesh

    2008-01-01

    Full Text Available The purpose of this study was to evaluate the effect of fluence map editing in electronic tissue compensator (ETC on the dose homogeneity for head and neck cancer patients. Treatment planning using 6-MV X-rays and bilateral field arrangement employing ETC was carried out on the computed tomography (CT datasets of 20 patients with head and neck cancer. All the patients were planned in Varian Eclipse three-dimensional treatment planning system (3DTPS with dynamic multileaf collimator (DMLC. The treatment plans, with and without fluence editing, was compared and the effect of pre-editing and post-editing the fluence maps in the treatment field was evaluated. The skin dose was measured with thermoluminescent dosimeters (TLDs and was compared with the skin dose estimated by TPS. The mean percentage volume of the tissue receiving at least 107% of the prescription dose was 5.4 (range 1.5-10; SD 2.4. Post-editing fluence map showed that the mean percentage volume of the tissue receiving at least 107% of the prescription dose was 0.47 (range 0.1-0.9; SD 0.3. The mean skin dose measured with TLD was found to be 74% (range 71-80% of the prescribed dose while the TPS showed the mean skin dose as 85% (range 80-90%. The TPS overestimated the skin dose by 11%. Fluence map editing thus proved to be a potential tool for improving dose homogeneity in head and neck cancer patients planned with ETC, thus reducing the hot spots in the treatment region as well. The treatment with ETC is feasible with DMLC and does not take any additional time for setup or delivery. The method used to edit the fluence maps is simple and time efficient. Manual control over a plan is essential to create the best treatment plan possible.

  15. Fitting and benchmarking of Monte Carlo output parameters for iridium-192 high dose rate brachytherapy source

    International Nuclear Information System (INIS)

    Acquah, F.G.

    2011-01-01

    Brachytherapy, the use of radioactive sources for the treatment of tumours is an important tool in radiation oncology. Accurate calculations of dose delivered to malignant and normal tissues are the main responsibility of the Medical Physics staff. With the use of Treatment Planning System (TPS) computers now becoming a standard practice in the Radiation Oncology Departments, Independent calculations to certify the results of these commercial TPSs are important part of a good quality management system for brachytherapy implants. There are inherent errors in the dose distributions produced by these TPSs due to its failure to account for heterogeneity in the calculation algorithms and Monte Carlo (MC) method seems to be the panacea for these corrections. In this study, a fit functional form using MC output parameters was performed to reduce dose calculation uncertainty using the Matlab software curve fitting applications. This includes the modification of the AAPM TG-43 parameters to accommodate the new developments for a rapid brachytherapy dose rate calculation. Analytical computations were performed to hybridize the anisotropy function, F(r,θ) and radial dose function, g(r) into a single new function f(r,θ) for the Nucletron microSelectron High Dose Rate 'new or v2' (mHDRv2) 192 Ir brachytherapy source. In order to minimize computation time and to improve the accuracy of manual calculations, the dosimetry function f(r,θ) used fewer parameters and formulas for the fit. Using MC outputs as the standard, the percentage errors for the fits were calculated and used to evaluate the average and maximum uncertainties. Dose rate deviation between the MC data and fit were also quantified as errors(E), which showed minimal values. These results showed that the dosimetry parameters from this study as compared to those of MC outputs parameters were in good agreement and better than the results obtained from literature. The work confirms a lot of promise in building robust

  16. SU-F-T-155: Validation of a Commercial Monte Carlo Dose Calculation Algorithm for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Saini, J; Wong, T [SCCA Proton Therapy Center, Seattle, WA (United States); St James, S; Stewart, R; Bloch, C [University of Washington, Seattle, WA (United States); Traneus, E [Raysearch Laboratories AB, Stockholm. (Sweden)

    2016-06-15

    Purpose: Compare proton pencil beam scanning dose measurements to GATE/GEANT4 (GMC) and RayStation™ Monte Carlo (RMC) simulations. Methods: Proton pencil beam models of the IBA gantry at the Seattle Proton Therapy Center were developed in the GMC code system and a research build of the RMC. For RMC, a preliminary beam model that does not account for upstream halo was used. Depth dose and lateral profiles are compared for the RMC, GMC and a RayStation™ pencil beam dose (RPB) model for three spread out Bragg peaks (SOBPs) in homogenous water phantom. SOBP comparisons were also made among the three models for a phantom with a (i) 2 cm bone and a (ii) 0.5 cm titanium insert. Results: Measurements and GMC estimates of R80 range agree to within 1 mm, and the mean point-to-point dose difference is within 1.2% for all integrated depth dose (IDD) profiles. The dose differences at the peak are 1 to 2%. All of the simulated spot sigmas are within 0.15 mm of the measured values. For the three SOBPs considered, the maximum R80 deviation from measurement for GMC was −0.35 mm, RMC 0.5 mm, and RPB −0.1 mm. The minimum gamma pass using the 3%/3mm criterion for all the profiles was 94%. The dose comparison for heterogeneous inserts in low dose gradient regions showed dose differences greater than 10% at the distal edge of interface between RPB and GMC. The RMC showed improvement and agreed with GMC to within 7%. Conclusion: The RPB dosimetry show clinically significant differences (> 10%) from GMC and RMC estimates. The RMC algorithm is superior to the RPB dosimetry in heterogeneous media. We suspect modelling of the beam’s halo may be responsible for a portion of the remaining discrepancy and that RayStation will reduce this discrepancy as they finalize the release. Erik Traneus is employed as a Research Scientist at RaySearch Laboratories. The research build of the RayStation TPS used in the study was made available to the SCCA free of charge. RaySearch did not provide

  17. Selection of important Monte Carlo histories

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    1987-01-01

    The 1986 Dosimetry System (DS86) for Japanese A-bomb survivors uses information describing the behavior of individual radiation particles, simulated by Monte Carlo methods, to calculate the transmission of radiation into structures and, thence, into humans. However, there are practical constraints on the number of such particle 'histories' that may be used. First, the number must be sufficiently high to provide adequate statistical precision fir any calculated quantity of interest. For integral quantities, such as dose or kerma, statistical precision of approximately 5% (standard deviation) is required to ensure that statistical uncertainties are not a major contributor to the overall uncertainty of the transmitted value. For differential quantities, such as scalar fluence spectra, 10 to 15% standard deviation on individual energy groups is adequate. Second, the number of histories cannot be so large as to require an unacceptably large amount of computer time to process the entire survivor data base. Given that there are approx. 30,000 survivors, each having 13 or 14 organs of interest, the number of histories per organ must be constrained to less than several ten's of thousands at the very most. Selection and use of the most important Monte Carlo leakage histories from among all those calculated allows the creation of an efficient house and organ radiation transmission system for use at RERF. While attempts have been made during the adjoint Monte Carlo calculation to bias the histories toward an efficient dose estimate, this effort has been far from satisfactory. Many of the adjoint histories on a typical leakage tape are either starting in an energy group in which there is very little kerma or dose or leaking into an energy group with very little free-field couple with. By knowing the typical free-field fluence and the fluence-to-dose factors with which the leaking histories will be used, one can select histories rom a leakage tape that will contribute to dose

  18. Range uncertainties in proton therapy and the role of Monte Carlo simulations

    International Nuclear Information System (INIS)

    Paganetti, Harald

    2012-01-01

    The main advantages of proton therapy are the reduced total energy deposited in the patient as compared to photon techniques and the finite range of the proton beam. The latter adds an additional degree of freedom to treatment planning. The range in tissue is associated with considerable uncertainties caused by imaging, patient setup, beam delivery and dose calculation. Reducing the uncertainties would allow a reduction of the treatment volume and thus allow a better utilization of the advantages of protons. This paper summarizes the role of Monte Carlo simulations when aiming at a reduction of range uncertainties in proton therapy. Differences in dose calculation when comparing Monte Carlo with analytical algorithms are analyzed as well as range uncertainties due to material constants and CT conversion. Range uncertainties due to biological effects and the role of Monte Carlo for in vivo range verification are discussed. Furthermore, the current range uncertainty recipes used at several proton therapy facilities are revisited. We conclude that a significant impact of Monte Carlo dose calculation can be expected in complex geometries where local range uncertainties due to multiple Coulomb scattering will reduce the accuracy of analytical algorithms. In these cases Monte Carlo techniques might reduce the range uncertainty by several mm. (topical review)

  19. Mesh-based weight window approach for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Liu, L.; Gardner, R.P.

    1997-01-01

    The Monte Carlo method has been increasingly used to solve particle transport problems. Statistical fluctuation from random sampling is the major limiting factor of its application. To obtain the desired precision, variance reduction techniques are indispensable for most practical problems. Among various variance reduction techniques, the weight window method proves to be one of the most general, powerful, and robust. The method is implemented in the current MCNP code. An importance map is estimated during a regular Monte Carlo run, and then the map is used in the subsequent run for splitting and Russian roulette games. The major drawback of this weight window method is lack of user-friendliness. It normally requires that users divide the large geometric cells into smaller ones by introducing additional surfaces to ensure an acceptable spatial resolution of the importance map. In this paper, we present a new weight window approach to overcome this drawback

  20. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Science.gov (United States)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  1. SU-C-BRC-01: A Monte Carlo Study of Out-Of-Field Doses From Cobalt-60 Teletherapy Units Intended for Historical Correlations of Dose to Normal Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Petroccia, H [University of Florida, Gainesville, FL (United States); Olguin, E [Gainesville, FL (United States); Culberson, W [University of Wisconsin Madison, Madison, WI (United States); Bednarz, B [University of Wisconsin, Madison, WI (United States); Mendenhall, N [UF Health Proton Therapy Institute, Jacksonville, FL (United States); Bolch, W [University Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: Innovations in radiotherapy treatments, such as dynamic IMRT, VMAT, and SBRT/SRS, result in larger proportions of low-dose regions where normal tissues are exposed to low doses levels. Low doses of radiation have been linked to secondary cancers and cardiac toxicities. The AAPM TG Committee No.158 entitled, ‘Measurements and Calculations of Doses outside the Treatment Volume from External-Beam Radiation Therapy’, has been formed to review the dosimetry of non-target and out-of-field exposures using experimental and computational approaches. Studies on historical patients can provide comprehensive information about secondary effects from out-of-field doses when combined with long-term patient follow-up, thus providing significant insight into projecting future outcomes of patients undergoing modern-day treatments. Methods: We present a Monte Carlo model of a Theratron-1000 cobalt-60 teletherapy unit, which historically treated patients at the University of Florida, as a means of determining doses located outside the primary beam. Experimental data for a similar Theratron-1000 was obtained at the University of Wisconsin’s ADCL to benchmark the model for out-of-field dosimetry. An Exradin A12 ion chamber and TLD100 chips were used to measure doses in an extended water phantom to 60 cm outside the primary field at 5 and 10 cm depths. Results: Comparison between simulated and experimental measurements of PDDs and lateral profiles show good agreement for in-field and out-of-field doses. At 10 cm away from the edge of a 6×6, 10×10, and 20×20 cm2 field, relative out-of-field doses were measured in the range of 0.5% to 3% of the dose measured at 5 cm depth along the CAX. Conclusion: Out-of-field doses can be as high as 90 to 180 cGy assuming historical prescription doses of 30 to 60 Gy and should be considered when correlating late effects with normal tissue dose.

  2. Monte Carlo simulation of the dose distribution around the 125I model 6711 seed as function of radius of the silver cylinder using the Penelope code

    International Nuclear Information System (INIS)

    Nerio, U.; Chica, L.; Paul, A.

    2004-01-01

    The Monte Carlo method is applied to find the dose rates distribution in tissue around 125 I seeds model 6711 as a function of the silver cylinder radius, R sc (0.017, 0.021, 0.025, 0.029 and 0.033) cm are used as radius values. It is found here that the dose rate at any point within the tissue decreases as R sc increases. The relative difference of dose rate that produced by the standard R sc seed, is less than 5%, for seeds with Rsc between 0.017 and 0.033 cm. (author)

  3. Fast GPU-based Monte Carlo simulations for LDR prostate brachytherapy

    Science.gov (United States)

    Bonenfant, Éric; Magnoux, Vincent; Hissoiny, Sami; Ozell, Benoît; Beaulieu, Luc; Després, Philippe

    2015-07-01

    The aim of this study was to evaluate the potential of bGPUMCD, a Monte Carlo algorithm executed on Graphics Processing Units (GPUs), for fast dose calculations in permanent prostate implant dosimetry. It also aimed to validate a low dose rate brachytherapy source in terms of TG-43 metrics and to use this source to compute dose distributions for permanent prostate implant in very short times. The physics of bGPUMCD was reviewed and extended to include Rayleigh scattering and fluorescence from photoelectric interactions for all materials involved. The radial and anisotropy functions were obtained for the Nucletron SelectSeed in TG-43 conditions. These functions were compared to those found in the MD Anderson Imaging and Radiation Oncology Core brachytherapy source registry which are considered the TG-43 reference values. After appropriate calibration of the source, permanent prostate implant dose distributions were calculated for four patients and compared to an already validated Geant4 algorithm. The radial function calculated from bGPUMCD showed excellent agreement (differences within 1.3%) with TG-43 accepted values. The anisotropy functions at r = 1 cm and r = 4 cm were within 2% of TG-43 values for angles over 17.5°. For permanent prostate implants, Monte Carlo-based dose distributions with a statistical uncertainty of 1% or less for the target volume were obtained in 30 s or less for 1 × 1 × 1 mm3 calculation grids. Dosimetric indices were very similar (within 2.7%) to those obtained with a validated, independent Monte Carlo code (Geant4) performing the calculations for the same cases in a much longer time (tens of minutes to more than a hour). bGPUMCD is a promising code that lets envision the use of Monte Carlo techniques in a clinical environment, with sub-minute execution times on a standard workstation. Future work will explore the use of this code with an inverse planning method to provide a complete Monte Carlo-based planning solution.

  4. Recommender engine for continuous-time quantum Monte Carlo methods

    Science.gov (United States)

    Huang, Li; Yang, Yi-feng; Wang, Lei

    2017-03-01

    Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.

  5. Electron dose distributions caused by the contact-type metallic eye shield: Studies using Monte Carlo and pencil beam algorithms.

    Science.gov (United States)

    Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin; Park, Soah; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik

    2015-01-01

    A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shield was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  6. Monte Carlo-based QA for IMRT of head and neck cancers

    Science.gov (United States)

    Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.

    2007-06-01

    It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal

  7. Monte Carlo Simulations of Necrotic Cell Targeted Alpha Therapy

    International Nuclear Information System (INIS)

    Penfold, S.N.; Brown, M.P.; Bezak, E.

    2011-01-01

    Full text: Hypoxic tumour cells are radioresistant and are significant contributors to the locoregional recurrences and distant metastases that mark treatment failure. Due to restricted circulatory supply, hypoxic tumor cells frequently become necrotic and thus necrotic areas often lie near hypoxic tumour areas. In this study we investigate the feasibility of binding an alpha-emitting conjugate to necrotic cells located in the proximity of hypoxic, viable tumour cells. Monte Carlo radiation transport simulations were performed to investigate the dose distribution resulting from the thorium 227 (Th227) decay chain in a representative tumour geometry. The Geant4 software toolkit was used to simulate the decay and interactions of the Th227 decay chain. The distribution of Th227 was based on a study by Thomlinson and Gray of human lung cancer histological samples (Thomlinson RH, Gray LH. Br J Cancer 1955; 9:539). The normalized dose distribution obtained with Geant4 from a cylindrical Th227 source in water is illustrated in Fig. I. The relative contribution of the different decay channels is displayed, together with a profile through the centre of the accumulated dose map. The results support the hypothesis that significant α-particle doses will be deposited in the hypoxic tumor tissue immediately surrounding the necrotic core (where the majority of Th227 will be located). As an internal a-particle generator, the Th227-radioimmunoconjugate shows potential as an efficient hypoxic tumour sterilizer.

  8. Current and future applications of Monte Carlo

    International Nuclear Information System (INIS)

    Zaidi, H.

    2003-01-01

    Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic

  9. Monte Carlo dosimetric characterization of the Flexisource Co-60 high-dose-rate brachytherapy source using PENELOPE.

    Science.gov (United States)

    Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M

    60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. MO-F-CAMPUS-I-03: GPU Accelerated Monte Carlo Technique for Fast Concurrent Image and Dose Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, M; Tian, X; Segars, P; Samei, E [Clinical Imaging Physics Group, Department of Radiology, Duke University Me, Durham, NC (United States)

    2015-06-15

    Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches.

  11. MO-F-CAMPUS-I-03: GPU Accelerated Monte Carlo Technique for Fast Concurrent Image and Dose Simulation

    International Nuclear Information System (INIS)

    Becchetti, M; Tian, X; Segars, P; Samei, E

    2015-01-01

    Purpose: To develop an accurate and fast Monte Carlo (MC) method of simulating CT that is capable of correlating dose with image quality using voxelized phantoms. Methods: A realistic voxelized phantom based on patient CT data, XCAT, was used with a GPU accelerated MC code for helical MDCT. Simulations were done with both uniform density organs and with textured organs. The organ doses were validated using previous experimentally validated simulations of the same phantom under the same conditions. Images acquired by tracking photons through the phantom with MC require lengthy computation times due to the large number of photon histories necessary for accurate representation of noise. A substantial speed up of the process was attained by using a low number of photon histories with kernel denoising of the projections from the scattered photons. These FBP reconstructed images were validated against those that were acquired in simulations using many photon histories by ensuring a minimal normalized root mean square error. Results: Organ doses simulated in the XCAT phantom are within 10% of the reference values. Corresponding images attained using projection kernel smoothing were attained with 3 orders of magnitude less computation time compared to a reference simulation using many photon histories. Conclusion: Combining GPU acceleration with kernel denoising of scattered photon projections in MC simulations allows organ dose and corresponding image quality to be attained with reasonable accuracy and substantially reduced computation time than is possible with standard simulation approaches

  12. Monte Carlo simulations to replace film dosimetry in IMRT verification

    International Nuclear Information System (INIS)

    Goetzfried, Thomas; Trautwein, Marius; Koelbi, Oliver; Bogner, Ludwig; Rickhey, Mark

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3 mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. (orig.)

  13. SU-C-BRC-03: Development of a Novel Strategy for On-Demand Monte Carlo and Deterministic Dose Calculation Treatment Planning and Optimization for External Beam Photon and Particle Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y M; Bush, K; Han, B; Xing, L [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high

  14. SU-C-BRC-03: Development of a Novel Strategy for On-Demand Monte Carlo and Deterministic Dose Calculation Treatment Planning and Optimization for External Beam Photon and Particle Therapy

    International Nuclear Information System (INIS)

    Yang, Y M; Bush, K; Han, B; Xing, L

    2016-01-01

    Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) method that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high

  15. SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose

    Energy Technology Data Exchange (ETDEWEB)

    Prajapati, S; Yan, Y; Gifford, K [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films were placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and was 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.

  16. Calculating of Dose Distribution in Tongue Brachytherapy by Different Radioisotopes using Monte Carlo Simulation and Comparing by Experimental Data

    Directory of Open Access Journals (Sweden)

    Banafsheh Zeinali Rafsanjani

    2011-06-01

    Full Text Available Introduction: Among different kinds of oral cavity cancers, the frequency of tongue cancer occurrence is more significant. Brachytherapy is the most common method to cure tongue cancers. Long sources are used in different techniques of tongue brachytherapy. The objective of this study is to asses the dose distribution around long sources, comparing different radioisotopes as brachytherapy sources, measuring the homogeneity of delivered dose to treatment volume and also comparing mandible dose and dose of tongue in the regions near the mandible with and without using shield. Material and Method: The Monte Carlo code MCNP4C was used for simulation. The accuracy of simulation was verified by comparing the results with experimental data. The sources like Ir-192, Cs-137, Ra-226, Au-198, In-111 and Ba-131 were simulated and the position of sources was determined by Paris system. Results: The percentage of mandible dose reduction with use of 2 mm Pb shield for the sources mentioned above were: 35.4%, 20.1%, 86.6%, 32.24%, 75.6%, and 36.8%. The tongue dose near the mandible with use of shied did not change significantly. The dose homogeneity from the most to least was obtained from these sources: Cs-137, Au-198, Ir-192, Ba-131, In-111 and Ra-226. Discussion and Conclusion: Ir-192 and Cs-137 were the best sources for tongue brachytherapy treatment but In-111 and Ra-226 were not suitable choices for tongue brachytherapy. The sources like Au-198 and Ba-131 had rather the same performance as Ir-192

  17. SU-F-T-658: Out-Of-Field Dose Comparison for TrueBeam Low Energy Beams for Extended Distances: Measurement Vs Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wijesooriya, K [University of Virginia Health Systems, Charlottesville, VA (United States); University of Virginia, Charlottesville, VA (United States); Liyanage, N; Kaluarachchi, M [University of Virginia, Charlottesville, VA (United States); Sawkey, D [Varian Medical Systems, Palo Alto, CA (United States)

    2016-06-15

    Purpose: Patient dose far from the treatment field is comprised of scatter from within the patient, and treatment head leakage. We quantify the treatment head leakage for TrueBeam linear accelerator for 6X and 6X-FFF beams by comparing measurements to Monte Carlo simulations for a variety of jaw sizes and collimator rotations. This work is conceptually similar to that of Kry et al. (Medical Physics 2006; 33: 4405), who considered a Clinac linear accelerator. Methods: Measurements were made using an EXRADIN A101 ion chamber positioned in the patient plane, at distances up to 100 cm from isocenter. Simulations were done using VirtuaLinac, the GEANT4-based Monte Carlo model of the TrueBeam treatment head, and an in-house (U. Virginia) GEANT4-based code. In-house code modelled an ion chamber with build-up, based on a CT scan of the chamber. VirtuaLinac included a detailed model of the treatment head shielding, and was run on the Amazon Web Services cloud to generate spherical phase space files surrounding the treatment head. These phase space files were imported into the in-house code. Results: Initial comparisons between measurements and simulation showed an excess of dose in the in-plane direction, away from the gantry, in the simulations. This was traced to an incomplete model of the shielding—specifically, the component holding the primary collimator was smaller in the model than in the TrueBeam. Modifications were made to VirtuaLinac to more closely match the engineering drawings. In the in-plane direction, the lowest out of field dose was away from gantry (negative abscissa values) at around 60 cm from isocenter, for fields smaller than 10×10 cm2. Out of field dose decreased with decreasing jaw size. Flattening-filter free beam produced out-of-field doses as low as 65% of those with flattened beam. Conclusion: Doses determined from simulation and measurement were in close agreement. Funding support from the Jefferson Trust Foundation.

  18. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139,7, Bobadela LRS 2695-066 (Portugal); Figueira, Catarina [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN (United Kingdom); Sarmento, Marta; Orvalho, Lurdes [Serviço de Imagiologia, Hospital da Luz, Avenida Lusíada, 100, Lisboa 1500-650 (Portugal)

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  19. A comparison of the angular dependence of effective dose and effective dose equivalent

    International Nuclear Information System (INIS)

    Sitek, M.A.; Gierga, D.P.; Xu, X.G.

    1996-01-01

    In ICRP (International Commission on Radiological Protection) Publication 60, the set of critical organs and their weighing factors were changed, defining the quantity effective dose, E. This quantity replaced the effective dose equivalent, H E , as defined by ICRP 26. Most notably, the esophagus was added to the list of critical organs. The Monte Carlo neutron/photon transport code MCNP was used to determine the effective dose to sex-specific anthropomorphic phantoms. The phantoms, developed in previous research, were modified to include the esophagus. Monte Carlo simulations were performed for monoenergetic photon beams of energies 0.08 MeV, 0.3 MeV, and 1.0 MeV for various azimuthal and polar angles. Separate organ equivalent doses were determined for male and female phantoms. The resulting organ equivalent doses were calculated from arithmetic mean averages. The angular dependence of effective dose was compared with that of effective dose equivalent reported in previous research. The differences between the two definitions and possible implications to regulatory agencies were summarized

  20. SU-E-T-58: Calculation of Dose Distribution of Accuboost Brachytherapy in Deformable Polyvinil Alcohol Breast Phantom Using Biomechanical Modeling and Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Mohammadyari, P; Faghihi, R; Shirazi, M Mosleh; Lotfi, M; Meigooni, A

    2014-01-01

    Purpose: the accuboost is the most modern method of breast brachytherapy that is a boost method in compressed tissue by a mammography unit. the dose distribution in uncompressed tissue, as compressed tissue is important that should be characterized. Methods: In this study, the mechanical behavior of breast in mammography loading, the displacement of breast tissue and the dose distribution in compressed and uncompressed tissue, are investigated. Dosimetry was performed by two dosimeter methods of Monte Carlo simulations using MCNP5 code and thermoluminescence dosimeters. For Monte Carlo simulations, the dose values in cubical lattice were calculated using tally F6. The displacement of the breast elements was simulated by Finite element model and calculated using ABAQUS software, from which the 3D dose distribution in uncompressed tissue was determined. The geometry of the model is constructed from MR images of 6 volunteers. Experimental dosimetery was performed by placing the thermoluminescence dosimeters into the polyvinyl alcohol breast equivalent phantom and on the proximal edge of compression plates to the chest. Results: The results indicate that using the cone applicators would deliver more than 95% of dose to the depth of 5 to 17mm, while round applicator will increase the skin dose. Nodal displacement, in presence of gravity and 60N forces, i.e. in mammography compression, was determined with 43% contraction in the loading direction and 37% expansion in orthogonal orientation. Finally, in comparison of the acquired from thermoluminescence dosimeters with MCNP5, they are consistent with each other in breast phantom and in chest's skin with average different percentage of 13.7±5.7 and 7.7±2.3, respectively. Conclusion: The major advantage of this kind of dosimetry is the ability of 3D dose calculation by FE Modeling. Finally, polyvinyl alcohol is a reliable material as a breast tissue equivalent dosimetric phantom that provides the ability of TLD

  1. SU-E-T-58: Calculation of Dose Distribution of Accuboost Brachytherapy in Deformable Polyvinil Alcohol Breast Phantom Using Biomechanical Modeling and Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadyari, P [Nuclear Engineering Department, School of Mechanical Engineering, Shiraz Un, Ilam (Iran, Islamic Republic of); Faghihi, R [Nuclear Engineering Department, Shiraz University, Shiraz (Iran, Islamic Republic of); Shirazi, M Mosleh [Radiotherapy and Oncology Department, Namazi Hospital, Shiraz University of M, Shiraz (Iran, Islamic Republic of); Lotfi, M [Shiraz University of Medical Sciences, Medical Imaging Research Center, Shiraz (Iran, Islamic Republic of); Meigooni, A [Comprehensive cancer center of Nevada - University of Nevada Las Vegas UNL, Las Vegas, NV (United States)

    2014-06-01

    Purpose: the accuboost is the most modern method of breast brachytherapy that is a boost method in compressed tissue by a mammography unit. the dose distribution in uncompressed tissue, as compressed tissue is important that should be characterized. Methods: In this study, the mechanical behavior of breast in mammography loading, the displacement of breast tissue and the dose distribution in compressed and uncompressed tissue, are investigated. Dosimetry was performed by two dosimeter methods of Monte Carlo simulations using MCNP5 code and thermoluminescence dosimeters. For Monte Carlo simulations, the dose values in cubical lattice were calculated using tally F6. The displacement of the breast elements was simulated by Finite element model and calculated using ABAQUS software, from which the 3D dose distribution in uncompressed tissue was determined. The geometry of the model is constructed from MR images of 6 volunteers. Experimental dosimetery was performed by placing the thermoluminescence dosimeters into the polyvinyl alcohol breast equivalent phantom and on the proximal edge of compression plates to the chest. Results: The results indicate that using the cone applicators would deliver more than 95% of dose to the depth of 5 to 17mm, while round applicator will increase the skin dose. Nodal displacement, in presence of gravity and 60N forces, i.e. in mammography compression, was determined with 43% contraction in the loading direction and 37% expansion in orthogonal orientation. Finally, in comparison of the acquired from thermoluminescence dosimeters with MCNP5, they are consistent with each other in breast phantom and in chest's skin with average different percentage of 13.7±5.7 and 7.7±2.3, respectively. Conclusion: The major advantage of this kind of dosimetry is the ability of 3D dose calculation by FE Modeling. Finally, polyvinyl alcohol is a reliable material as a breast tissue equivalent dosimetric phantom that provides the ability of TLD

  2. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  3. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  4. Poster - 20: Detector selection for commissioning of a Monte Carlo based electron dose calculation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Anusionwu, Princess [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Alpuche Aviles, Jorge E. [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Pistorius, Stephen [Medical Physics, CancerCare Manitoba, Winnipeg Canada (Canada); Department of Physics & Astronomy, University of Manitoba, Winnipeg Canada (Canada); Department of Radiology, University of Manitoba, Winnipeg (Canada)

    2016-08-15

    Objective: Commissioning of a Monte Carlo based electron dose calculation algorithm requires percentage depth doses (PDDs) and beam profiles which can be measured with multiple detectors. Electron dosimetry is commonly performed with cylindrical chambers but parallel plate chambers and diodes can also be used. The purpose of this study was to determine the most appropriate detector to perform the commissioning measurements. Methods: PDDs and beam profiles were measured for beams with energies ranging from 6 MeV to 15 MeV and field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Detectors used included diodes, cylindrical and parallel plate ionization chambers. Beam profiles were measured in water (100 cm source to surface distance) and in air (95 cm source to detector distance). Results: PDDs for the cylindrical chambers were shallower (1.3 mm averaged over all energies and field sizes) than those measured with the parallel plate chambers and diodes. Surface doses measured with the diode and cylindrical chamber were on average larger by 1.6 % and 3% respectively than those of the parallel plate chamber. Profiles measured with a diode resulted in penumbra values smaller than those measured with the cylindrical chamber by 2 mm. Conclusion: The diode was selected as the most appropriate detector since PDDs agreed with those measured with parallel plate chambers (typically recommended for low energies) and results in sharper profiles. Unlike ion chambers, no corrections are needed to measure PDDs, making it more convenient to use.

  5. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  6. Monte Carlo assessment of the finger shallow dose from direct contact with a microcentrifuge tube containing common biotechnology isotopes in solution.

    Science.gov (United States)

    Cutright, Dan; Medich, David; Ring, Joseph

    2012-04-01

    Eppendorf tubes often are used in biomedical research labs and contain radioactive tracers. Although the associated direct contact finger doses are typically small, it is suggested (and in line with the principle of ALARA) to handle these tubes from the cap of the tube. When containing radioactive material, handling a tube near the bottom conical section would unnecessarily increase the skin dose to the fingers. This investigation modeled a 2.0-mL Eppendorf tube containing various individual beta emitting isotopes commonly used in a biomedical research environment (i.e., (14)C, (3)H, (131)I, (32)P, and (35)S) to determine the skin dose when directly handling the tube at the cap end and when handling it at the bottom conical section. The primary goal of this paper is to assess how significantly this dose is altered by handling geometry. The skin dose to a single finger was calculated with Monte Carlo simulations using MCNP5 and determined at a depth of 0.007 cm(2) in water averaged over 10 cm as described in 10CFR20. Results show that the dose rate may vary by as much as a factor of 700 depending on handling geometry.

  7. Effects of internal and external scatter on the build-up characteristics of Monte Carlo calculated absorbed dose for electron irradiation

    International Nuclear Information System (INIS)

    Lin, H.; Wu, DS.; Wu, AD.

    2005-01-01

    The effects of internal and external scatter on surface, build-up and depth dose characteristics simulated by Monte Carlo code EGSnrc for varying field size and SSD for a 10 MeV monoenergetic electron beam with and without an accelerator model are extensively studied in this paper. In particular, sub-millimetre surface PDD was investigated. The percentage depth doses affected significantly by the external scatter show a larger build-up dose. A forward shifted Dmax depth and a sharper fall-off region compared to PDDs with only internal scatter considered. The surface dose with both internal and external scatter shows a marked decrease at 110 cm SSD, and then slight further changes with the increasing SSD since few external scattered particles from accelerator model can reach the phantom for large SSDs. The sharp PDD increase for the 5 cm x 5 cm field compared to other fields seen when only internal scatter is considered is significantly less when external scatter is also present. The effect of external scatter on surface PDD is more pronounced for large fields than small fields (5 cm x 5 cm field)

  8. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

    International Nuclear Information System (INIS)

    Angel, Erin; Yaghmai, Nazanin; Jude, Cecilia Matilda; DeMarco, John J; Cagnon, Christopher H; Goldin, Jonathan G; McNitt-Gray, Michael F; Primak, Andrew N; McCollough, Cynthia H; Stevens, Donna M; Cody, Dianna D

    2009-01-01

    Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were

  9. Monte Carlo determination of the infinite matrix dose rate correction factors for 250 μm quartz and TLD500 chip

    International Nuclear Information System (INIS)

    Baly, L.; Martín, G.; Quesada, I.; Padilla, F.; Arteche, R.

    2015-01-01

    A new approach based on the Monte Carlo simulation is used to calculate the infinite matrix dose rate correction factors of gamma, beta and internal conversion radiations for 250 μm diameter grains of quartz and TLD500 chips. Here, the dependence of the correction factor on the radiation energy is initially calculated for each type of emitted particle and with this result the correction factors for the 232 Th and 238 U series and 40 K are determined. This analysis is made for dry soil and also for different levels of water content in it. The obtained beta correction factors for quartz are in good agreement with those previously reported. For the TLD500 chip certain differences with previously reported data are found. The analysis of the gamma water correction factor for quartz based on Zimmerman equation shows the correspondence with the similar correction factor for electrons. In the case of TLD500 chip a gamma water correction factor value of 1.0 was found. - Highlights: • A new approach based on Monte Carlo simulation is used to compute infinite matrix dose rate correction factors. • Infinite matrix models with real dimensions were analyzed within 3% uncertainties. • The dependence of grain size attenuation on particle energy is determined. • The same dependence for water correction factors is also analyzed

  10. Preliminary study of using imaging plates to map skin dose of patients in interventional radiology procedures

    International Nuclear Information System (INIS)

    Ohuchi, H.; Satoh, T.; Eguchi, Y.; Mori, K.

    2005-01-01

    A method using europium-doped BaFBr imaging plates (IPs) has been studied for mapping entrance skin doses during interventional radiology (IR); the mapping is useful for detecting overlap between irradiation fields and determining the most exposed skin areas. IPs, which are two-dimensional radiation sensors made of photostimulated luminescence materials, have a linear dose response up to ∼100 Gy, can accurately measure doses from 1 μGy to 10 Gy and can be used repeatedly. Because the energy dependence of IPs is rather high, the IPs were characterised in this study and a sensitivity variation of ∼13% was observed for effective energies of 32.7 to 44.7 keV, which are used in IR procedures. Simulation of actual interventional cardiology procedures showed that the variation of sensitivity was within 5%, meaning that IPs are practical for measuring skin doses during IR. Moreover, the patient data can be stored online and easily called up when IR procedures must be repeated, helping to prevent radiation injuries. (authors)

  11. Clinical treatment planning for stereotactic radiotherapy, evaluation by Monte Carlo simulation

    International Nuclear Information System (INIS)

    Kairn, T.; Aland, T.; Kenny, J.; Knight, R.T.; Crowe, S.B.; Langton, C.M.; Franich, R.D.; Johnston, P.N.

    2010-01-01

    Full text: This study uses re-evaluates the doses delivered by a series of clinical stereotactic radiotherapy treatments, to test the accuracy of treatment planning predictions for very small radiation fields. Stereotactic radiotherapy treatment plans for meningiomas near the petrous temporal bone and the foramen magnum (incorp rating fields smaller than I c m2) were examined using Monte Carlo simulations. Important differences between treatment planning predictions and Monte Carlo calculations of doses delivered to stereotactic radiotherapy patients are apparent. For example, in one case the Monte Carlo calculation shows that the delivery a planned meningioma treatment would spare the patient's critical structures (eyes, brainstem) more effectively than the treatment plan predicted, and therefore suggests that this patient could safely receive an increased dose to their tumour. Monte Carlo simulations can be used to test the dose predictions made by a conventional treatment planning system, for dosimetrically challenging small fields, and can thereby suggest valuable modifications to clinical treatment plans. This research was funded by the Wesley Research Institute, Australia. The authors wish to thank Andrew Fielding and David Schlect for valuable discussions of aspects of this work. The authors are also grateful to Muhammad Kakakhel, for assisting with the design and calibration of our linear accelerator model, and to the stereotactic radiation therapy team at Premion, who designed the treatment plans. Computational resources and services used in this work were provided by the HPC and Research Support Unit, QUT, Brisbane, Australia. (author)

  12. SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function

    International Nuclear Information System (INIS)

    Bailey, D; Spaans, J; Kumaraswamy, L; Podgorsak, M

    2016-01-01

    Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty on and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published

  13. SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D [Northside Hospital Cancer Institute, Atlanta, GA (United States); Spaans, J; Kumaraswamy, L; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty on and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published

  14. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Rechner, Laura; Mirkovic, Dragan; Yepes, Pablo; Koch, Nicholas C.; Titt, Uwe; Fontenot, Jonas D.; Zhang, Rui

    2013-01-01

    Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beamline. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved. - Highlights: • We compared measurements and Monte Carlo predictions of dose perturbations caused by the metal objects in proton beams. • Different Monte Carlo codes were used, including MCNPX, GEANT4 and Fast Dose Calculator. • Good agreement was found between measurements and Monte Carlo simulations. • The modification of multiple Coulomb scattering model in MCNPX code yielded improved accuracy. • Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy

  15. Improved tissue assignment using dual-energy computed tomography in low-dose rate prostate brachytherapy for Monte Carlo dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Côté, Nicolas [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4 (Canada); Bedwani, Stéphane [Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada); Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca [Département de Physique, Université de Montréal, Pavillon Roger-Gaudry (D-428), 2900 Boulevard Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada and Département de Radio-Oncologie, Centre Hospitalier de l’Université de Montréal (CHUM), 1560 Rue Sherbrooke Est, Montréal, Québec H2L 4M1 (Canada)

    2016-05-15

    Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HU of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D

  16. Radiotherapy Monte Carlo simulation using cloud computing technology.

    Science.gov (United States)

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  17. Radiotherapy Monte Carlo simulation using cloud computing technology

    International Nuclear Information System (INIS)

    Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.

    2012-01-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  18. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.

    Science.gov (United States)

    Chibani, Omar; Li, X Allen

    2002-05-01

    Three Monte Carlo photon/electron transport codes (GEPTS, EGSnrc, and MCNP) are bench-marked against dose measurements in homogeneous (both low- and high-Z) media as well as at interfaces. A brief overview on physical models used by each code for photon and electron (positron) transport is given. Absolute calorimetric dose measurements for 0.5 and 1 MeV electron beams incident on homogeneous and multilayer media are compared with the predictions of the three codes. Comparison with dose measurements in two-layer media exposed to a 60Co gamma source is also performed. In addition, comparisons between the codes (including the EGS4 code) are done for (a) 0.05 to 10 MeV electron beams and positron point sources in lead, (b) high-energy photons (10 and 20 MeV) irradiating a multilayer phantom (water/steel/air), and (c) simulation of a 90Sr/90Y brachytherapy source. A good agreement is observed between the calorimetric electron dose measurements and predictions of GEPTS and EGSnrc in both homogeneous and multilayer media. MCNP outputs are found to be dependent on the energy-indexing method (Default/ITS style). This dependence is significant in homogeneous media as well as at interfaces. MCNP(ITS) fits more closely the experimental data than MCNP(DEF), except for the case of Be. At low energy (0.05 and 0.1 MeV), MCNP(ITS) dose distributions in lead show higher maximums in comparison with GEPTS and EGSnrc. EGS4 produces too penetrating electron-dose distributions in high-Z media, especially at low energy (MCNP results depend significantly on the electron energy-indexing method.

  19. Multigroup and coupled forward-adjoint Monte Carlo calculation efficiencies for secondary neutron doses from proton beams

    International Nuclear Information System (INIS)

    Kelsey IV, Charles T.; Prinja, Anil K.

    2011-01-01

    We evaluate the Monte Carlo calculation efficiency for multigroup transport relative to continuous energy transport using the MCNPX code system to evaluate secondary neutron doses from a proton beam. We consider both fully forward simulation and application of a midway forward adjoint coupling method to the problem. Previously we developed tools for building coupled multigroup proton/neutron cross section libraries and showed consistent results for continuous energy and multigroup proton/neutron transport calculations. We observed that forward multigroup transport could be more efficient than continuous energy. Here we quantify solution efficiency differences for a secondary radiation dose problem characteristic of proton beam therapy problems. We begin by comparing figures of merit for forward multigroup and continuous energy MCNPX transport and find that multigroup is 30 times more efficient. Next we evaluate efficiency gains for coupling out-of-beam adjoint solutions with forward in-beam solutions. We use a variation of a midway forward-adjoint coupling method developed by others for neutral particle transport. Our implementation makes use of the surface source feature in MCNPX and we use spherical harmonic expansions for coupling in angle rather than solid angle binning. The adjoint out-of-beam transport for organs of concern in a phantom or patient can be coupled with numerous forward, continuous energy or multigroup, in-beam perturbations of a therapy beam line configuration. Out-of-beam dose solutions are provided without repeating out-of-beam transport. (author)

  20. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    International Nuclear Information System (INIS)

    Fulea, D.; Cosma, C.

    2006-01-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several methods which

  1. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Fulea, D [Institute of Public Health ' Prof.Dr.Iuliu Moldovan' , Cluj-Napoca (Romania); Cosma, C [Babes-Bolyai Univ., Faculty of Physics, Cluj-Napoca (Romania)

    2006-07-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several methods which

  2. Monte Carlo Method in the calculate of conversion coefficients for dose in children's organs and tissues subjected to dentistric radiography

    International Nuclear Information System (INIS)

    Loureiro, E.C.M.; Khoury, H.; Lima, F.R.A.

    1998-01-01

    The increasing utilization of oral X-rays, specially in youngsters and children, prompts the assessment of equivalent doses in their organs and tissues. With this purpose, Monte Carlo code was adopted to simulate an X-ray source irradiating phantoms of the MIRD-5 type with different ages (10, 15 and 40 years old) to calculate the conversion coefficients which transform the exposure at skin to equivalent doses at several organs and tissues of interest. In order to check the computer program, simulations were performed for adult patients using the original code (ADAM,FOR developed by GSF Germany) and the adapted program (MCDRO,PAS). Good agreement between results obtained by both programs was observed. Applications to incisive, canine and molar teeth were simulated. The conversion factors were calculated for the following organs and tissues: thyroid, active bone marrow (head and whole body), bone (facial skeleton, cranium and whole body), skin (head and whole body) and crystalline. Based on the obtained results, it follows that the younger the patient and the langer the field area, the higher the doses in assessed organs and tissues

  3. Dose to drivers during drive-through cargo scanning using GEANT4 Monte Carlo simulation

    International Nuclear Information System (INIS)

    Gomes, Rogerio S.; Gomes, Joana D'Arc R.L.; Costa, Mara Lucia L.

    2013-01-01

    The use of radiation technologies to perform screening for cargo containers has been increased due to security issues, mainly, as a consequence of the United States (US) legislation which requires, from 2013, the scanning of all intermodal cargo containers which arrive at US ports. Currently, systems to cargo inspections, using accelerator-driven high energy X-rays, between 4 and 9 MeV, are available for scanning operations. It is expected that, in the future, the use of these systems will be widely spread on roads, ports and airports in Brazil. However, in order to improve the productivity and reduce the costs of acquisition, operation and maintenance these systems require that the driver drives its vehicle through irradiation area, in a situation where members of the public (the truck drivers) enter in controlled area and are deliberately exposed to high-energy beam. Some manufacturers justifies this procedure arguing that the drivers are exposed briefly, and only to the scattered beam, since there are safety systems in order to avoid that the drivers are exposed to direct beam. In this work, it is presented the preliminary results of Monte Carlo simulations concerning the dose of drivers during scanning operations, including the dose due to a failure of safety system, producing an exposure of drivers to the direct beam, as well as, an analysis of the justification of practice, mainly related to the drive-through operational procedure. (author)

  4. A comparison of Monte Carlo and Fermi-Eyges-Hogstrom estimates of heart and lung dose from breast electron boost treatment

    International Nuclear Information System (INIS)

    Coleman, Joy; Park, Catherine; Villarreal-Barajas, J. Eduardo; Petti, Paula; Faddegon, Bruce

    2005-01-01

    Purpose: Electrons are commonly used in the treatment of breast cancer primarily to deliver a tumor bed boost. We compared the use of the Monte Carlo (MC) method and the Fermi-Eyges-Hogstrom (FEH) algorithm to calculate the dose distribution of electron treatment to normal tissues. Methods and materials: Ten patients with left-sided breast cancer treated with breast-conservation therapy at the University of California, San Francisco, were included in this study. Each patient received an electron boost to the surgical bed to a dose of 1,600 cGy in 200 cGy fractions prescribed to 80% of the maximum. Doses to the left ventricle (LV) and the ipsilateral lung (IL) were calculated using the EGS4 MC system and the FEH algorithm implemented on the commercially available Pinnacle treatment planning system. An anthromorphic phantom was irradiated with radiochromic film in place to verify the accuracy of the MC system. Results: Dose distributions calculated with the MC algorithm agreed with the film measurements within 3% or 3 mm. For all patients in the study, the dose to the LV and IL was relatively low as calculated by MC. That is, the maximum dose received by up to 98% of the LV volume was 30 cGy and differences in maximum dose of < 35 cGy/day to the LV and 80 cGy/day to the IL. Conclusions: From our series, using clinical judgment to prescribe the boost to the surgical bed after breast-conserving treatment results in low doses to the underlying LV and IL. When calculated dose distributions are desired, MC is the most accurate, but FEH can still be used

  5. A Monte Carlo Study on the Effect of Various Neutron Capturers on Dose Distribution in Brachytherapy with 252Cf Source

    Directory of Open Access Journals (Sweden)

    Firoozabadi M. M.

    2017-03-01

    Full Text Available Background: In neutron interaction with matter and reduction of neutron energy due to multiple scatterings to the thermal energy range, increasing the probability of thermal neutron capture by neutron captures makes dose enhancement in the tumors loaded with these materials. Objective: The purpose of this study is to evaluate dose distribution in the presence of 10B, 157Gd and 33S neutron capturers and to determine the effect of these materials on dose enhancement rate for 252Cf brachytherapy source. Methods: Neutron-ray flux and energy spectra, neutron and gamma dose rates and dose enhancement factor (DEF are determined in the absence and presence of 10B, 157Gd and 33S using Monte Carlo simulation. Results: The difference in the thermal neutron flux rate in the presence of 10B and 157Gd is significant, while the flux changes in the fast and epithermal energy ranges are insensible. The dose enhancement factor has increased with increasing distance from the source and reached its maximum amount equal to 258.3 and 476.1 cGy/h/µg for 157Gd and 10B, respectively at about 8 cm distance from the source center. DEF for 33S is equal to one. Conclusion: Results show that the magnitude of dose augmentation in tumors containing 10B and 157Gd in brachytherapy with 252Cf source will depend not only on the capture product dose level, but also on the tumor distance from the source. 33S makes dose enhancement under specific conditions that these conditions depend on the neutron energy spectra of source, the 33S concentration in tumor and tumor distance from the source.

  6. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    Energy Technology Data Exchange (ETDEWEB)

    Moirano, J [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference point air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.

  7. The dose distribution surrounding 192Ir and 137Cs seed sources

    International Nuclear Information System (INIS)

    Thomason, C.; Mackie, T.R.; Wisconsin Univ., Madison, WI; Lindstrom, M.J.; Higgins, P.D.

    1991-01-01

    Dose distributions in water were measured using LiF thermoluminescent dosemeters for 192 Ir seed sources with stainless steel and with platinum encapsulation to determine the effect of differing encapsulation. Dose distribution was measured for a 137 Cs seed source. In addition, dose distributions surrounding these sources were calculated using the EGS4 Monte Carlo code and were compared to measured data. The two methods are in good agreement for all three sources. Tables are given describing dose distribution surrounding each source as a function of distance and angle. Specific dose constants were also determined from results of Monte Carlo simulation. This work confirms the use of the EGS4 Monte Carlo code in modelling 192 Ir and 137 Cs seed sources to obtain brachytherapy dose distributions. (author)

  8. Monte Carlo model of diagnostic X-ray dosimetry

    International Nuclear Information System (INIS)

    Khrutchinsky, Arkady; Kutsen, Semion; Gatskevich, George

    2008-01-01

    Full text: A Monte Carlo simulation of absorbed dose distribution in patient's tissues is often used in a dosimetry assessment of X-ray examinations. The results of such simulations in Belarus are presented in the report based on an anthropomorphic tissue-equivalent Rando-like physical phantom. The phantom corresponds to an adult 173 cm high and of 73 kg and consists of a torso and a head made of tissue-equivalent plastics which model soft (muscular), bone, and lung tissues. It consists of 39 layers (each 25 mm thick), including 10 head and neck ones, 16 chest and 13 pelvis ones. A tomographic model of the phantom has been developed from its CT-scan images with a voxel size of 0.88 x 0.88 x 4 mm 3 . A necessary pixelization in Mathematics-based in-house program was carried out for the phantom to be used in the radiation transport code MCNP-4b. The final voxel size of 14.2 x 14.2 x 8 mm 3 was used for the reasonable computer consuming calculations of absorbed dose in tissues and organs in various diagnostic X-ray examinations. MCNP point detectors allocated through body slices obtained as a result of the pixelization were used to calculate the absorbed dose. X-ray spectra generated by the empirical TASMIP model were verified on the X-ray units MEVASIM and SIREGRAPH CF. Absorbed dose distributions in the phantom volume were determined by the corresponding Monte Carlo simulations with a set of point detectors. Doses in organs of the adult phantom computed from the absorbed dose distributions by another Mathematics-based in-house program were estimated for 22 standard organs for various standard X-ray examinations. The results of Monte Carlo simulations were compared with the results of direct measurements of the absorbed dose in the phantom on the X-ray unit SIREGRAPH CF with the calibrated thermo-luminescent dosimeter DTU-01. The measurements were carried out in specified locations of different layers in heart, lungs, liver, pancreas, and stomach at high voltage of

  9. Monte Carlo studies for irradiation process planning at the Portuguese gamma irradiation facility

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Botelho, M.L.M. Luisa; Ferreira, L.M.

    2000-01-01

    The paper describes a Monte Carlo study for planning the irradiation of test samples for microbiological validation of distinct products in the Portuguese Gamma Irradiation Facility. Three different irradiation geometries have been used. Simulated and experimental results are compared and good agreement is observed. It is shown that Monte Carlo simulation improves process understanding, predicts absorbed dose distributions and calculates dose uniformity in different products. Based on these results, irradiation planning of the product can be performed

  10. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    Science.gov (United States)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.

    2015-12-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%.

  11. Calculation of dose distribution in compressible breast tissues using finite element modeling, Monte Carlo simulation and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S

    2015-01-01

    Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost ® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney–Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5%  ±  5.9%. (paper)

  12. Commissioning and Validation of the First Monte Carlo Based Dose Calculation Algorithm Commercial Treatment Planning System in Mexico

    International Nuclear Information System (INIS)

    Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Hernandez-Bojorquez, M.; Galvan de la Cruz, O. O.; Ballesteros-Zebadua, P.

    2010-01-01

    This work presents the beam data commissioning and dose calculation validation of the first Monte Carlo (MC) based treatment planning system (TPS) installed in Mexico. According to the manufacturer specifications, the beam data commissioning needed for this model includes: several in-air and water profiles, depth dose curves, head-scatter factors and output factors (6x6, 12x12, 18x18, 24x24, 42x42, 60x60, 80x80 and 100x100 mm 2 ). Radiographic and radiochromic films, diode and ionization chambers were used for data acquisition. MC dose calculations in a water phantom were used to validate the MC simulations using comparisons with measured data. Gamma index criteria 2%/2 mm were used to evaluate the accuracy of MC calculations. MC calculated data show an excellent agreement for field sizes from 18x18 to 100x100 mm 2 . Gamma analysis shows that in average, 95% and 100% of the data passes the gamma index criteria for these fields, respectively. For smaller fields (12x12 and 6x6 mm 2 ) only 92% of the data meet the criteria. Total scatter factors show a good agreement ( 2 ) that show a error of 4.7%. MC dose calculations are accurate and precise for clinical treatment planning up to a field size of 18x18 mm 2 . Special care must be taken for smaller fields.

  13. SU-E-I-42: Normalized Embryo/fetus Doses for Fluoroscopically Guided Pacemaker Implantation Procedures Calculated Using a Monte Carlo Technique

    Energy Technology Data Exchange (ETDEWEB)

    Damilakis, J; Stratakis, J; Solomou, G [University of Crete, Heraklion (Greece)

    2014-06-01

    Purpose: It is well known that pacemaker implantation is sometimes needed in pregnant patients with symptomatic bradycardia. To our knowledge, there is no reported experience regarding radiation doses to the unborn child resulting from fluoroscopy during pacemaker implantation. The purpose of the current study was to develop a method for estimating embryo/fetus dose from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all trimesters of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study. Three mathematical anthropomorphic phantoms representing the average pregnant patient at the first, second and third trimesters of gestation were generated using Bodybuilder software (White Rock science, White Rock, NM). The normalized embryo/fetus dose from the posteroanterior (PA), the 30° left-anterior oblique (LAO) and the 30° right-anterior oblique (RAO) projections were calculated for a wide range of kVp (50–120 kVp) and total filtration values (2.5–9.0 mm Al). Results: The results consist of radiation doses normalized to a) entrance skin dose (ESD) and b) dose area product (DAP) so that the dose to the unborn child from any fluoroscopic technique and x-ray device used can be calculated. ESD normalized doses ranged from 0.008 (PA, first trimester) to 2.519 μGy/mGy (RAO, third trimester). DAP normalized doses ranged from 0.051 (PA, first trimester) to 12.852 μGy/Gycm2 (RAO, third trimester). Conclusion: Embryo/fetus doses from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all stages of gestation can be estimated using the method developed in this study. This study was supported by the Greek Ministry of Education and Religious Affairs, General Secretariat for Research and Technology, Operational Program ‘Education and Lifelong Learning’, ARISTIA (Research project: CONCERT)

  14. SU-E-I-42: Normalized Embryo/fetus Doses for Fluoroscopically Guided Pacemaker Implantation Procedures Calculated Using a Monte Carlo Technique

    International Nuclear Information System (INIS)

    Damilakis, J; Stratakis, J; Solomou, G

    2014-01-01

    Purpose: It is well known that pacemaker implantation is sometimes needed in pregnant patients with symptomatic bradycardia. To our knowledge, there is no reported experience regarding radiation doses to the unborn child resulting from fluoroscopy during pacemaker implantation. The purpose of the current study was to develop a method for estimating embryo/fetus dose from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all trimesters of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study. Three mathematical anthropomorphic phantoms representing the average pregnant patient at the first, second and third trimesters of gestation were generated using Bodybuilder software (White Rock science, White Rock, NM). The normalized embryo/fetus dose from the posteroanterior (PA), the 30° left-anterior oblique (LAO) and the 30° right-anterior oblique (RAO) projections were calculated for a wide range of kVp (50–120 kVp) and total filtration values (2.5–9.0 mm Al). Results: The results consist of radiation doses normalized to a) entrance skin dose (ESD) and b) dose area product (DAP) so that the dose to the unborn child from any fluoroscopic technique and x-ray device used can be calculated. ESD normalized doses ranged from 0.008 (PA, first trimester) to 2.519 μGy/mGy (RAO, third trimester). DAP normalized doses ranged from 0.051 (PA, first trimester) to 12.852 μGy/Gycm2 (RAO, third trimester). Conclusion: Embryo/fetus doses from fluoroscopically guided pacemaker implantation procedures performed on pregnant patients during all stages of gestation can be estimated using the method developed in this study. This study was supported by the Greek Ministry of Education and Religious Affairs, General Secretariat for Research and Technology, Operational Program ‘Education and Lifelong Learning’, ARISTIA (Research project: CONCERT)

  15. Dose assessment for brachytherapy with Henschke applicator

    International Nuclear Information System (INIS)

    Yu, Pei-Chieh; Chao, Tsi-Chian; Tung, Chuan-Jong; Wu, Ching-Jung; Lee, Chung-Chi

    2011-01-01

    Dose perturbation caused by the Henschke applicator is a major concern for the brachytherapy planning system (BPS) in recent years. To investigate dose impact owing to neglect of the metal shielding effect, Monte Carlo (MC) simulation, BPS calculation, and film measurement have been performed for dose assessment in a water phantom. Additionally, a cylindrical air cavity representing the rectum was added into the MC simulation to study its effect on dose distribution. Monte Carlo N-Particle Transport Code (MCNP) was used in this study to simulate the dose distribution using a mesh tally. This Monte Carlo simulation has been validated using the TG-43 data in a previous report. For the measurement, the Henschke applicator was placed in a specially-designed phantom, and Gafchromic films were inserted in the center plane for 2D dose assessment. Isodose distributions with and without the Henschke applicator by the MC simulation show significant deviation from those by the BPS. For MC simulation, the isodose curves shrank more significantly when the metal applicator was applied. For the impact of the added air cavity, the results indicate that it is hard to distinguish between with and without the cavity. Thus, the rectum cavity has little impact on the dose distribution around the Henschke applicator.

  16. Monte Carlo evaluation of a photon pencil kernel algorithm applied to fast neutron therapy treatment planning

    Science.gov (United States)

    Söderberg, Jonas; Alm Carlsson, Gudrun; Ahnesjö, Anders

    2003-10-01

    When dedicated software is lacking, treatment planning for fast neutron therapy is sometimes performed using dose calculation algorithms designed for photon beam therapy. In this work Monte Carlo derived neutron pencil kernels in water were parametrized using the photon dose algorithm implemented in the Nucletron TMS (treatment management system) treatment planning system. A rectangular fast-neutron fluence spectrum with energies 0-40 MeV (resembling a polyethylene filtered p(41)+ Be spectrum) was used. Central axis depth doses and lateral dose distributions were calculated and compared with the corresponding dose distributions from Monte Carlo calculations for homogeneous water and heterogeneous slab phantoms. All absorbed doses were normalized to the reference dose at 10 cm depth for a field of radius 5.6 cm in a 30 × 40 × 20 cm3 water test phantom. Agreement to within 7% was found in both the lateral and the depth dose distributions. The deviations could be explained as due to differences in size between the test phantom and that used in deriving the pencil kernel (radius 200 cm, thickness 50 cm). In the heterogeneous phantom, the TMS, with a directly applied neutron pencil kernel, and Monte Carlo calculated absorbed doses agree approximately for muscle but show large deviations for media such as adipose or bone. For the latter media, agreement was substantially improved by correcting the absorbed doses calculated in TMS with the neutron kerma factor ratio and the stopping power ratio between tissue and water. The multipurpose Monte Carlo code FLUKA was used both in calculating the pencil kernel and in direct calculations of absorbed dose in the phantom.

  17. Monte Carlo based investigations of electron contamination from telecobalt unit head in build up region and its impact on surface dose.

    Science.gov (United States)

    Jagtap, A S; Palani Selvam, T; Patil, B J; Chavan, S T; Pethe, S N; Kulkarni, Gauri; Dahiwale, S S; Bhoraskar, V N; Dhole, S D

    2016-12-01

    A Telecobalt unit has wide range of applications in cancer treatments and is used widely in many countries all around the world. Estimation of surface dose in Cobalt-60 teletherapy machine becomes important since clinically useful photon beam consist of contaminated electrons during the patient treatment. EGSnrc along with the BEAMnrc user code was used to model the Theratron 780E telecobalt unit. Central axis depth dose profiles including surface doses have been estimated for the field sizes of 0×0, 6×6, 10×10, 15×15, 20×20, 25×25, 30×30cm 2 and at Source-to-surface distance (SSD) of 60 and 80cm. Surface dose was measured experimentally by the Gafchromic RTQA2 films and are in good agreement with the simulation results. The central axis depth dose data are compared with the data available from the British Journal of Radiology report no. 25. Contribution of contaminated electrons has also been calculated using Monte Carlo simulation by the different parts of the Cobalt-60 head for different field size and SSD's. Moreover, depth dose curve in zero area field size is calculated by extrapolation method and compared with the already published data. They are found in good agreement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Monte Carlo dose calculations and radiobiological modelling: analysis of the effect of the statistical noise of the dose distribution on the probability of tumour control

    International Nuclear Information System (INIS)

    Buffa, Francesca M.

    2000-01-01

    The aim of this work is to investigate the influence of the statistical fluctuations of Monte Carlo (MC) dose distributions on the dose volume histograms (DVHs) and radiobiological models, in particular the Poisson model for tumour control probability (tcp). The MC matrix is characterized by a mean dose in each scoring voxel, d, and a statistical error on the mean dose, σ d ; whilst the quantities d and σ d depend on many statistical and physical parameters, here we consider only their dependence on the phantom voxel size and the number of histories from the radiation source. Dose distributions from high-energy photon beams have been analysed. It has been found that the DVH broadens when increasing the statistical noise of the dose distribution, and the tcp calculation systematically underestimates the real tumour control value, defined here as the value of tumour control when the statistical error of the dose distribution tends to zero. When increasing the number of energy deposition events, either by increasing the voxel dimensions or increasing the number of histories from the source, the DVH broadening decreases and tcp converges to the 'correct' value. It is shown that the underestimation of the tcp due to the noise in the dose distribution depends on the degree of heterogeneity of the radiobiological parameters over the population; in particular this error decreases with increasing the biological heterogeneity, whereas it becomes significant in the hypothesis of a radiosensitivity assay for single patients, or for subgroups of patients. It has been found, for example, that when the voxel dimension is changed from a cube with sides of 0.5 cm to a cube with sides of 0.25 cm (with a fixed number of histories of 10 8 from the source), the systematic error in the tcp calculation is about 75% in the homogeneous hypothesis, and it decreases to a minimum value of about 15% in a case of high radiobiological heterogeneity. The possibility of using the error on the

  19. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study

    International Nuclear Information System (INIS)

    Cho, S H

    2005-01-01

    A recent mice study demonstrated that gold nanoparticles could be safely administered and used to enhance the tumour dose during radiation therapy. The use of gold nanoparticles seems more promising than earlier methods because of the high atomic number of gold and because nanoparticles can more easily penetrate the tumour vasculature. However, to date, possible dose enhancement due to the use of gold nanoparticles has not been well quantified, especially for common radiation treatment situations. Therefore, the current preliminary study estimated this dose enhancement by Monte Carlo calculations for several phantom test cases representing radiation treatments with the following modalities: 140 kVp x-rays, 4 and 6 MV photon beams, and 192 Ir gamma rays. The current study considered three levels of gold concentration within the tumour, two of which are based on the aforementioned mice study, and assumed either no gold or a single gold concentration level outside the tumour. The dose enhancement over the tumour volume considered for the 140 kVp x-ray case can be at least a factor of 2 at an achievable gold concentration of 7 mg Au/g tumour assuming no gold outside the tumour. The tumour dose enhancement for the cases involving the 4 and 6 MV photon beams based on the same assumption ranged from about 1% to 7%, depending on the amount of gold within the tumour and photon beam qualities. For the 192 Ir cases, the dose enhancement within the tumour region ranged from 5% to 31%, depending on radial distance and gold concentration level within the tumour. For the 7 mg Au/g tumour cases, the loading of gold into surrounding normal tissue at 2 mg Au/g resulted in an increase in the normal tissue dose, up to 30%, negligible, and about 2% for the 140 kVp x-rays, 6 MV photon beam, and 192 Ir gamma rays, respectively, while the magnitude of dose enhancement within the tumour was essentially unchanged. (note)

  20. Spectra and depth-dose deposition in a polymethylmethacrylate breast phantom obtained by experimental and Monte Carlo method; Espectros e deposicao de dose em profundidade em phantom de mama de polimetilmetacrilato: obtencao experimental e por metodo de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    David, Mariano G.; Pires, Evandro J.; Magalhaes, Luis A.; Almeida, Carlos E. de; Alves, Carlos F.E., E-mail: marianogd08@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Lab. Ciencias Radiologicas; Albuquerque, Marcos A. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Instituto Alberto Luiz Coimbra; Bernal, Mario A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Peixoto, Jose G. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2012-08-15

    This paper focuses on the obtainment, using experimental and Monte Carlo-simulated (MMC) methods, of the photon spectra at various depths and depth-dose deposition curves for x-rays beams used in mammography, obtained on a polymethylmethacrylate (PMMA) breast phantom. Spectra were obtained for 28 and 30 kV quality-beams and the corresponding average energy values (Emed) were calculated. For the experimental acquisition was used a Si-PIN photodiode spectrometer and for the MMC simulations the PENELOPE code was employed. The simulated and the experimental spectra show a very good agreement, which was corroborated by the low differences found between the Emed values. An increase in the Emed values and a strong attenuation of the beam through the depth of the PMMA phantom was also observed. (author)

  1. Determination of the distal dose edge in a human phantom by measuring the prompt gamma distribution: a Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Min, Chul Hee; Lee, Han Rim; Yeom, Yeon Su; Cho, Sung Koo; Kim, Chan Hyeong [Hanyang University, Seoul (Korea, Republic of)

    2010-06-15

    The close relationship between the proton dose distribution and the distribution of prompt gammas generated by proton-induced nuclear interactions along the path of protons in a water phantom was demonstrated by means of both Monte Carlo simulations and limited experiments. In order to test the clinical applicability of the method for determining the distal dose edge in a human body, a human voxel model, constructed based on a body-composition-approximated physical phantom, was used, after which the MCNPX code was used to analyze the energy spectra and the prompt gamma yields from the major elements composing the human voxel model; finally, the prompt gamma distribution, generated from the voxel model and measured by using an array-type prompt gamma detection system, was calculated and compared with the proton dose distribution. According to the results, effective prompt gammas were produced mainly by oxygen, and the specific energy of the prompt gammas, allowing for selective measurement, was found to be 4.44 MeV. The results also show that the distal dose edge in the human phantom, despite the heterogeneous composition and the complicated shape, can be determined by measuring the prompt gamma distribution with an array-type detection system.

  2. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    International Nuclear Information System (INIS)

    Papadimitroulas, P; Kagadis, G C; Ploussi, A; Kordolaimi, S; Papamichail, D; Karavasilis, E; Syrgiamiotis, V; Loudos, G

    2015-01-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼10 10 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition. (paper)

  3. Clinical introduction of Monte Carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size

    International Nuclear Information System (INIS)

    Voort van Zyp, Noelle C. van der; Hoogeman, Mischa S.; Water, Steven van de; Levendag, Peter C.; Holt, Bronno van der; Heijmen, Ben J.M.; Nuyttens, Joost J.

    2010-01-01

    Purpose: To provide a prescription dose for Monte Carlo (MC) treatment planning in patients with non-small-cell lung cancer according to tumor size and location. Methods: Fifty-three stereotactic radiotherapy plans designed using the equivalent path-length (EPL) algorithm were re-calculated using MC. Plans were compared by the minimum dose to 95% of the PTV (D95), the heterogeneity index (HI) and the mean dose to organs at risk (OARs). Based on changes in D95, the prescription dose was converted from EPL to MC. Based on changes in HI, we examined the feasibility of MC prescription to plans re-calculated but not re-optimized with MC. Results: The MC fraction dose for peripheral tumors is 16-18 Gy depending on tumor size. For central tumors the MC dose was reduced less than for peripheral tumors. The HI decreased on average by 4-9% in peripheral tumors and 3-5% in central tumors. The mean dose to OARs was lower for MC than EPL, and correlated strongly (R 2 = 0.98-0.99). Conclusion: For the conversion from EPL to MC we recommend a separate prescription dose according to tumor size. MC optimization is not required if a HI ≥ 70% is accepted. Dose constraints to OARs can be easily converted due to the high EPL-MC correlation.

  4. Investigation of Reduction of the Uncertainty of Monte Carlo Dose Calculations in Oncor® Clinical Linear Accelerator Simulation Using the DBS Variance Reduction Technique in Monte Carlo Code BEAMnrc

    Directory of Open Access Journals (Sweden)

    Amin Asadi

    2017-10-01

    Full Text Available Purpose: To study the benefits of Directional Bremsstrahlung Splitting (DBS dose variance reduction technique in BEAMnrc Monte Carlo (MC code for Oncor® linac at 6MV and 18MV energies. Materials and Method: A MC model of Oncor® linac was built using BEAMnrc MC Code and verified by the measured data for 6MV and 18MV energies of various field sizes. Then Oncor® machine was modeled running DBS technique, and the efficiency of total fluence and spatial fluence for electron and photon, the efficiency of dose variance reduction of MC calculations for PDD on the central beam axis and lateral dose profile across the nominal field was measured and compared. Result: With applying DBS technique, the total fluence of electron and photon increased in turn 626.8 (6MV and 983.4 (6MV, and 285.6 (18MV and 737.8 (18MV, the spatial fluence of electron and photon improved in turn 308.6±1.35% (6MV and 480.38±0.43% (6MV, and 153±0.9% (18MV and 462.6±0.27% (18MV. Moreover, by running DBS technique, the efficiency of dose variance reduction for PDD MC dose calculations before maximum dose point and after dose maximum point enhanced 187.8±0.68% (6MV and 184.6±0.65% (6MV, 156±0.43% (18MV and 153±0.37% (18MV, respectively, and the efficiency of MC calculations for lateral dose profile remarkably on the central beam axis and across the treatment field raised in turn 197±0.66% (6MV and 214.6±0.73% (6MV, 175±0.36% (18MV and 181.4±0.45% (18MV. Conclusion: Applying dose variance reduction technique of DBS for modeling Oncor® linac with using BEAMnrc MC Code surprisingly improved the fluence of electron and photon, and it therefore enhanced the efficiency of dose variance reduction for MC calculations. As a result, running DBS in different kinds of MC simulation Codes might be beneficent in reducing the uncertainty of MC calculations. 

  5. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions

    International Nuclear Information System (INIS)

    Fonseca, Gabriel Paiva; Yoriyaz, Hélio; Landry, Guillaume; White, Shane; Reniers, Brigitte; Verhaegen, Frank; D’Amours, Michel; Beaulieu, Luc

    2014-01-01

    Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192 Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. (paper)

  6. Real time Monte Carlo simulation for evaluation of patient doses involved in radiological examinations

    Energy Technology Data Exchange (ETDEWEB)

    Fulea, D. [Institute of Public Health ' Prof.Dr.Iuliu Moldovan' , Cluj-Napoca (Romania); Cosma, C. [Babes-Bolyai Univ., Faculty of Physics, Cluj-Napoca (Romania)

    2006-07-01

    In order to apply the Monte Carlo simulation technique for usual radiological examinations we developed a Pc program, 'IradMed', written entirely in Java. The main purpose of this program is to compute the organ doses and the effective dose of patients, which are exposed at a X-ray beam having photon energies in 10 to 150 keV radiodiagnostic range. Three major radiological procedures are considered, namely mammography, radiography and CT. The fluoroscopy implies an irregular geometry and therefore it is neglected. Nevertheless, a gross estimation of patient doses can be made taking into account the fluoroscopy as being composed of several radiographic examinations applied in different anatomical regions. The interactions between radiation and matter are well-known, and the accuracy of the calculation is limited by the accuracy of the anatomical model used to describe actual patients and by characterisation of the radiation field applied. In this version of IradMed, it is assumed that the absorbed dose is equal with kerma for all tissues. No procedure has been used to take account of the finite range of the secondary electrons that are produced by photoelectric or Compton interactions. These ranges are small compared with the dimensions of the organs, and the absorbed dose will not change abruptly with distance except at boundary where composition and density change. However these boundary effects would have little effect in the determination of the average doses to almost all organs, except the active bone marrow which is treated separately. Another justification for this kerma approximation is the fact that the sum of all electron energies that exit the organ is statistically equal with the sum of all electron energies that enter in that particular organ. In this version of program, it is considered the following interactions: the Rayleigh scattering, the Compton scattering and the photoelectric effect. The Compton scattering is modeled by several

  7. Evaluation of the effect of patient dose from cone beam computed tomography on prostate IMRT using Monte Carlo simulation.

    Science.gov (United States)

    Chow, James C L; Leung, Michael K K; Islam, Mohammad K; Norrlinger, Bernhard D; Jaffray, David A

    2008-01-01

    The aim of this study is to evaluate the impact of the patient dose due to the kilovoltage cone beam computed tomography (kV-CBCT) in a prostate intensity-modulated radiation therapy (IMRT). The dose distributions for the five prostate IMRTs were calculated using the Pinnacle treatment planning system. To calculate the patient dose from CBCT, phase-space beams of a CBCT head based on the ELEKTA x-ray volume imaging system were generated using the Monte Carlo BEAMnr code for 100, 120, 130, and 140 kVp energies. An in-house graphical user interface called DOSCTP (DOSXYZnrc-based) developed using MATLAB was used to calculate the dose distributions due to a 360 degrees photon arc from the CBCT beam with the same patient CT image sets as used in Pinnacle. The two calculated dose distributions were added together by setting the CBCT doses equal to 1%, 1.5%, 2%, and 2.5% of the prescription dose of the prostate IMRT. The prostate plan and the summed dose distributions were then processed in the CERR platform to determine the dose-volume histograms (DVHs) of the regions of interest. Moreover, dose profiles along the x- and y-axes crossing the isocenter with and without addition of the CBCT dose were determined. It was found that the added doses due to CBCT are most significant at the femur heads. Higher doses were found at the bones for a relatively low energy CBCT beam such as 100 kVp. Apart from the bones, the CBCT dose was observed to be most concentrated on the anterior and posterior side of the patient anatomy. Analysis of the DVHs for the prostate and other critical tissues showed that they vary only slightly with the added CBCT dose at different beam energies. On the other hand, the changes of the DVHs for the femur heads due to the CBCT dose and beam energy were more significant than those of rectal and bladder wall. By analyzing the vertical and horizontal dose profiles crossing the femur heads and isocenter, with and without the CBCT dose equal to 2% of the

  8. Evaluation of the effect of patient dose from cone beam computed tomography on prostate IMRT using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chow, James C. L.; Leung, Michael K. K.; Islam, Mohammad K.; Norrlinger, Bernhard D.; Jaffray, David A.

    2008-01-01

    The aim of this study is to evaluate the impact of the patient dose due to the kilovoltage cone beam computed tomography (kV-CBCT) in a prostate intensity-modulated radiation therapy (IMRT). The dose distributions for the five prostate IMRTs were calculated using the Pinnacle3 treatment planning system. To calculate the patient dose from CBCT, phase-space beams of a CBCT head based on the ELEKTA x-ray volume imaging system were generated using the Monte Carlo BEAMnrc code for 100, 120, 130, and 140 kVp energies. An in-house graphical user interface called DOSCTP (DOSXYZnrc-based) developed using MATLAB was used to calculate the dose distributions due to a 360 deg. photon arc from the CBCT beam with the same patient CT image sets as used in Pinnacle3. The two calculated dose distributions were added together by setting the CBCT doses equal to 1%, 1.5%, 2%, and 2.5% of the prescription dose of the prostate IMRT. The prostate plan and the summed dose distributions were then processed in the CERR platform to determine the dose-volume histograms (DVHs) of the regions of interest. Moreover, dose profiles along the x- and y-axes crossing the isocenter with and without addition of the CBCT dose were determined. It was found that the added doses due to CBCT are most significant at the femur heads. Higher doses were found at the bones for a relatively low energy CBCT beam such as 100 kVp. Apart from the bones, the CBCT dose was observed to be most concentrated on the anterior and posterior side of the patient anatomy. Analysis of the DVHs for the prostate and other critical tissues showed that they vary only slightly with the added CBCT dose at different beam energies. On the other hand, the changes of the DVHs for the femur heads due to the CBCT dose and beam energy were more significant than those of rectal and bladder wall. By analyzing the vertical and horizontal dose profiles crossing the femur heads and isocenter, with and without the CBCT dose equal to 2% of the

  9. Commissioning of a Monte Carlo treatment planning system for clinical use in radiation therapy; Evaluacion de un sistema de planificacion Monte Carlo de uso clinico para radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Zucca Aparcio, D.; Perez Moreno, J. M.; Fernandez Leton, P.; Garcia Ruiz-Zorrila, J.

    2016-10-01

    The commissioning procedures of a Monte Carlo treatment planning system (MC) for photon beams from a dedicated stereotactic body radiosurgery (SBRT) unit has been reported in this document. XVMC has been the MC Code available in the treatment planning system evaluated (BrainLAB iPlan RT Dose) which is based on Virtual Source Models that simulate the primary and scattered radiation, besides the electronic contamination, using gaussian components for whose modelling are required measurements of dose profiles, percentage depth dose and output factors, performed both in water and in air. The dosimetric accuracy of the particle transport simulation has been analyzed by validating the calculations in homogeneous and heterogeneous media versus measurements made under the same conditions as the dose calculation, and checking the stochastic behaviour of Monte Carlo calculations when using different statistical variances. Likewise, it has been verified how the planning system performs the conversion from dose to medium to dose to water, applying the stopping power ratio water to medium, in the presence of heterogeneities where this phenomenon is relevant, such as high density media (cortical bone). (Author)

  10. Dosimetric measurements and Monte Carlo simulation for achieving ...

    Indian Academy of Sciences (India)

    Research Articles Volume 74 Issue 3 March 2010 pp 457-468 ... Food irradiation; electron accelerator; Monte Carlo; dose uniformity. ... for radiation processing of food and medical products is being commissioned at our centre in Indore, India.

  11. Monte Carlo simulation of a clinical linear accelerator

    International Nuclear Information System (INIS)

    Lin, S.-Y.; Chu, T.-C.; Lin, J.-P.

    2001-01-01

    The effects of the physical parameters of an electron beam from a Siemens PRIMUS clinical linear accelerator (linac) on the dose distribution in water were investigated by Monte Carlo simulation. The EGS4 user code, OMEGA/BEAM, was used in this study. Various incident electron beams, for example, with different energies, spot sizes and distances from the point source, were simulated using the detailed linac head structure in the 6 MV photon mode. Approximately 10 million particles were collected in the scored plane, which was set under the reticle to form the so-called phase space file. The phase space file served as a source for simulating the dose distribution in water using DOSXYZ. Dose profiles at D max (1.5 cm) and PDD curves were calculated following simulating about 1 billion histories for dose profiles and 500 million histories for percent depth dose (PDD) curves in a 30x30x30 cm 3 water phantom. The simulation results were compared with the data measured by a CEA film and an ion chamber. The results show that the dose profiles are influenced by the energy and the spot size, while PDD curves are primarily influenced by the energy of the incident beam. The effect of the distance from the point source on the dose profile is not significant and is recommended to be set at infinity. We also recommend adjusting the beam energy by using PDD curves and, then, adjusting the spot size by using the dose profile to maintain the consistency of the Monte Carlo results and measured data

  12. Monte Carlo codes use in neutron therapy; Application de codes Monte Carlo en neutrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D. [Hopital Pasteur, 06 - Nice (France); Pignol, J.P. [Hopital du Hasenrain, 68 - Mulhouse (France); Cuendet, P. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Fares, G.; Hachem, A. [Faculte des Sciences, 06 - Nice (France); Iborra, N. [Centre Antoine-Lacassagne, 06 - Nice (France)

    1998-04-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  13. SU-E-T-752: Three-Dimensional Carcinogenic Maps Induced by Photons and Protons

    Energy Technology Data Exchange (ETDEWEB)

    Manem, V; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: Evaluate the excess relative risk (ERR) induced by photons and protons in each voxel of the lung, and display it as a three-dimensional map, known as the ERRM (i.e. excess relative risk map) along with the dose distribution map. In addition, we also study the effect of variations in the linear energy transfer (LET) distribution on ERRM for a given proton plan. Methods: The excess relative risk due to radiation is estimated using the initiation-inactivation-proliferation formalism. This framework accounts for three biological phenomenon: mutation induction, cell kill and proliferation. Cell kill and mutation induction are taken as a function of LET using experimental data. LET distributions are calculated using a Monte Carlo algorithm. ERR is then estimated for each voxel in the organ, and displayed as a three dimensional carcinogenic map. Results: The differences in the ERR’s between photons and protons is seen from the three-dimensional ERR map. In addition, we also varied the LET of a proton plan and observed the differences in the corresponding ERR maps demonstrating variations in the ERR maps depend on features of a proton plan. Additionally, our results suggest that any two proton plans that have the same integral dose does not necessarily imply identical ERR maps, and these changes are due to the variations in the LET distribution map. Conclusion: Clinically, it is important to have a three dimensional display of biological end points. This study is an effort to introduce 3D ERR maps into the treatment planning workflow for certain sites such as pediatric head and neck tumors.

  14. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, L., E-mail: bandura@msu.ed [Argonne National Laboratory, Argonne, IL 60439 (United States); Erdelyi, B. [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Nolen, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-12-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  15. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    International Nuclear Information System (INIS)

    Bandura, L.; Erdelyi, B.; Nolen, J.

    2010-01-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  16. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    International Nuclear Information System (INIS)

    Carver, R; Popple, R; Benhabib, S; Antolak, J; Sprunger, C; Hogstrom, K

    2014-01-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10 9 ), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT

  17. SU-E-T-356: Accuracy of Eclipse Electron Macro Monte Carlo Dose Algorithm for Use in Bolus Electron Conformal Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carver, R [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Popple, R; Benhabib, S [UniversityAlabama Birmingham, Birmingham, AL (United Kingdom); Antolak, J [Mayo Clinic, Rochester, MN (United States); Sprunger, C [Louisiana State University, Baton Rouge, LA (United States); Hogstrom, K [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Louisiana State University, Baton Rouge, LA (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.

  18. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT

    International Nuclear Information System (INIS)

    Zheng, Dandan; Zhu, Xiaofeng; Zhang, Qinghui; Liang, Xiaoying; Zhen, Weining; Lin, Chi; Verma, Vivek; Wang, Shuo; Wahl, Andrew; Lei, Yu; Zhou, Sumin; Zhang, Chi

    2016-01-01

    A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R 2 values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume

  19. Proton therapy analysis using the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, Houshyar [Center for Theoretical Physics and Mathematics, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)]. E-mail: hnoshad@aeoi.org.ir; Givechi, Nasim [Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of)

    2005-10-01

    The range and straggling data obtained from the transport of ions in matter (TRIM) computer program were used to determine the trajectories of monoenergetic 60 MeV protons in muscle tissue by using the Monte Carlo technique. The appropriate profile for the shape of a proton pencil beam in proton therapy as well as the dose deposited in the tissue were computed. The good agreements between our results as compared with the corresponding experimental values are presented here to show the reliability of our Monte Carlo method.

  20. Dose-response functions and corrosion mapping for a small geographical area

    International Nuclear Information System (INIS)

    Haagenrud, S.E.; Henriksen, J.F.; Gram, F.

    1985-01-01

    Detailed corrosion and environmental measurements have been used to develop dose response (D/R) functions for carbon steel, zinc, copper, and aluminum for a 26 x 31 km urban/rural area with approximately homogeneous climate. The D/R functions, expressed in terms of SO 2 and time of wetness, were of the same type for all four metals. The SO 2 contribution to the total corrosion dominates in the centers of towns and around an industrial plant. Corrosion maps for the whole area were established