WorldWideScience

Sample records for cardiac iron overload

  1. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  2. Evaluation of cardiac and hepatic iron overload in thalassemia major patients with T2* magnetic resonance imaging.

    Science.gov (United States)

    Wahidiyat, Pustika Amalia; Liauw, Felix; Sekarsari, Damayanti; Putriasih, Siti Ayu; Berdoukas, Vasili; Pennell, Dudley J

    2017-09-01

    Recent advancements have promoted the use of T2* magnetic resonance imaging (MRI) in the non-invasive detection of iron overload in various organs for thalassemia major patients. This study aims to determine the iron load in the heart and liver of patients with thalassemia major using T2* MRI and to evaluate its correlation with serum ferritin level and iron chelation therapy. This cross-sectional study included 162 subjects diagnosed with thalassemia major, who were classified into acceptable, mild, moderate, or severe cardiac and hepatic iron overload following their T2* MRI results, respectively, and these were correlated to their serum ferritin levels and iron chelation therapy. The study found that 85.2% of the subjects had normal cardiac iron stores. In contrast, 70.4% of the subjects had severe liver iron overload. A significant but weak correlation (r = -0.28) was found between cardiac T2* MRI and serum ferritin, and a slightly more significant correlation (r = 0.37) was found between liver iron concentration (LIC) and serum ferritin. The findings of this study are consistent with several other studies, which show that patients generally manifest with liver iron overload prior to cardiac iron overload. Moreover, iron accumulation demonstrated by T2* MRI results also show a significant correlation to serum ferritin levels. This is the first study of its kind conducted in Indonesia, which supports the fact that T2* MRI is undoubtedly valuable in the early detection of cardiac and hepatic iron overload in thalassemia major patients.

  3. Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome.

    Directory of Open Access Journals (Sweden)

    Mariane de Montalembert

    Full Text Available The risk and clinical significance of cardiac iron overload due to chronic transfusion varies with the underlying disease. Cardiac iron overload shortens the life expectancy of patients with thalassemia, whereas its effect is unclear in those with myelodysplastic syndromes (MDS. In patients with sickle cell anemia (SCA, iron does not seem to deposit quickly in the heart. Our primary objective was to assess through a multicentric study the prevalence of cardiac iron overload, defined as a cardiovascular magnetic resonance T2*8 ECs in the past year, and age older than 6 years. We included from 9 centers 20 patients with thalassemia, 41 with SCA, and 25 with MDS in 2012-2014. Erythrocytapharesis did not consistently prevent iron overload in patients with SCA. Cardiac iron overload was found in 3 (15% patients with thalassemia, none with SCA, and 4 (16% with MDS. The liver iron content (LIC ranged from 10.4 to 15.2 mg/g dry weight, with no significant differences across groups (P = 0.29. Abnormal T2* was not significantly associated with any of the measures of transfusion or chelation. Ferritin levels showed a strong association with LIC. Non-transferrin-bound iron was high in the thalassemia and MDS groups but low in the SCA group (P<0.001. Hepcidin was low in thalassemia, normal in SCA, and markedly elevated in MDS (P<0.001. Two mechanisms may explain that iron deposition largely spares the heart in SCA: the high level of erythropoiesis recycles the iron and the chronic inflammation retains iron within the macrophages. Thalassemia, in contrast, is characterized by inefficient erythropoiesis, unable to handle free iron. Iron accumulation varies widely in MDS syndromes due to the competing influences of abnormal erythropoiesis, excess iron supply, and inflammation.

  4. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress.

    Science.gov (United States)

    Das, Subhash K; Patel, Vaibhav B; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y

    2017-01-23

    Sex-related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron-overload cardiomyopathy is poorly understood. Male and female wild-type and hemojuvelin-null mice were injected and fed with a high-iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron-overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron-overloaded mice based on echocardiographic and invasive pressure-volume analyses. Female mice demonstrated a marked suppression of iron-mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron-overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron-induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β-Estradiol therapy rescued the iron-overload cardiomyopathy in male wild-type mice. The responses in wild-type and hemojuvelin-null female mice were remarkably similar, highlighting a conserved mechanism of sex-dependent protection from iron-overload-mediated cardiac injury. Male and female mice respond differently to iron-overload-mediated effects on heart structure and function, and females are markedly protected from iron-overload cardiomyopathy. Ovariectomy in female mice exacerbated iron-induced myocardial injury and precipitated severe cardiac dysfunction during iron-overload conditions, whereas 17β-estradiol therapy was protective in male iron-overloaded mice.

  5. Iron overload in myelodysplastic syndromes (MDS).

    Science.gov (United States)

    Gattermann, Norbert

    2018-01-01

    Iron overload (IOL) starts to develop in MDS patients before they become transfusion-dependent because ineffective erythropoiesis suppresses hepcidin production in the liver and thus leads to unrestrained intestinal iron uptake. However, the most important cause of iron overload in MDS is chronic transfusion therapy. While transfusion dependency by itself is a negative prognostic factor reflecting poor bone marrow function, the ensuing transfusional iron overload has an additional dose-dependent negative impact on the survival of patients with lower risk MDS. Cardiac dysfunction appears to be important in this context, as a consequence of chronic anemia, age-related cardiac comorbidity, and iron overload. Another potential problem is iron-related endothelial dysfunction. There is some evidence that with increasing age, high circulating iron levels worsen the atherosclerotic phenotype. Transfusional IOL also appears to aggravate bone marrow failure in MDS, through unfavorable effects on mesenchymal stromal cells as well a hematopoietic cells, particularly erythroid precursors. Patient series and clinical trials have shown that the iron chelators deferoxamine and deferasirox can improve hematopoiesis in a minority of transfusion-dependent patients. Analyses of registry data suggest that iron chelation provides a survival benefit for patients with MDS, but data from a prospective randomized clinical trial are still lacking.

  6. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment.

    Science.gov (United States)

    Torlasco, Camilla; Cassinerio, Elena; Roghi, Alberto; Faini, Andrea; Capecchi, Marco; Abdel-Gadir, Amna; Giannattasio, Cristina; Parati, Gianfranco; Moon, James C; Cappellini, Maria D; Pedrotti, Patrizia

    2018-01-01

    Iron overload-related heart failure is the principal cause of death in transfusion dependent patients, including those with Thalassemia Major. Linking cardiac siderosis measured by T2* to therapy improves outcomes. T1 mapping can also measure iron; preliminary data suggests it may have higher sensitivity for iron, particularly for early overload (the conventional cut-point for no iron by T2* is 20ms, but this is believed insensitive). We compared T1 mapping to T2* in cardiac iron overload. In a prospectively large single centre study of 138 Thalassemia Major patients and 32 healthy controls, we compared T1 mapping to dark blood and bright blood T2* acquired at 1.5T. Linear regression analysis was used to assess the association of T2* and T1. A "moving window" approach was taken to understand the strength of the association at different levels of iron overload. The relationship between T2* (here dark blood) and T1 is described by a log-log linear regression, which can be split in three different slopes: 1) T2* low, 30ms, weak relationship. All subjects with T2*20ms, 38% had low T1 with most of the subjects in the T2* range 20-30ms having a low T1. In established cardiac iron overload, T1 and T2* are concordant. However, in the 20-30ms T2* range, T1 mapping appears to detect iron. These data support previous suggestions that T1 detects missed iron in 1 out of 3 subjects with normal T2*, and that T1 mapping is complementary to T2*. The clinical significance of a low T1 with normal T2* should be further investigated.

  7. Clinical consequences of iron overload in patients with myelodysplastic syndromes: the case for iron chelation therapy.

    Science.gov (United States)

    Shammo, Jamile M; Komrokji, Rami S

    2018-06-14

    Patients with myelodysplastic syndromes (MDS) are at increased risk of iron overload due to ineffective erythropoiesis and chronic transfusion therapy. The clinical consequences of iron overload include cardiac and/or hepatic failure, endocrinopathies, and infection risk. Areas covered: Iron chelation therapy (ICT) can help remove excess iron and ultimately reduce the clinical consequences of iron overload. The authors reviewed recent (last five years) English-language articles from PubMed on the topic of iron overload-related complications and the use of ICT (primarily deferasirox) to improve outcomes in patients with MDS. Expert Commentary: While a benefit of ICT has been more firmly established in other transfusion-dependent conditions such as thalassemia, its role in reducing iron overload in MDS remains controversial due to the lack of prospective controlled data demonstrating a survival benefit. Orally administered chelation agents (e.g., deferasirox), are now available, and observational and/or retrospective data support a survival benefit of using ICT in MDS. The placebo-controlled TELESTO trial (NCT00940602) is currently examining the use of deferasirox in MDS patients with iron overload, and is evaluating specifically whether use of ICT to alleviate iron overload can also reduce iron overload-related complications in MDS and improve survival.

  8. Females Are Protected From Iron?Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress

    OpenAIRE

    Das, Subhash K.; Patel, Vaibhav B.; Basu, Ratnadeep; Wang, Wang; DesAulniers, Jessica; Kassiri, Zamaneh; Oudit, Gavin Y.

    2017-01-01

    Background Sex?related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron?overload cardiomyopathy is poorly understood. Methods and Results Male and female wild?type and hemojuvelin?null mice were injected and fed with a high?iron diet, respectively, to develop secondary iron overload and geneti...

  9. Update on the use of deferasirox in the management of iron overload

    Directory of Open Access Journals (Sweden)

    Ali Taher

    2009-10-01

    Full Text Available Ali Taher,1 Maria Domenica Cappellini21American University of Beirut, Beirut, Lebanon; 2Universitá di Milano, Policlinico Foundation IRCCS, Milan, ItalyAbstract: Regular blood transfusions as supportive care for patients with chronic anemia inevitably lead to iron overload as humans cannot actively remove excess iron. The cumulative effects of iron overload cause significant morbidity and mortality if not effectively treated with chelation therapy. Based on a comprehensive clinical development program, the once-daily, oral iron chelator deferasirox (Exjade® is approved for the treatment of transfusional iron overload in adult and pediatric patients with various transfusion-dependent anemias, including β-thalassemia and the myelodysplastic syndromes. Deferasirox dose should be titrated for each individual patient based on transfusional iron intake, current iron burden and whether the goal is to decrease or maintain body iron levels. Doses of >30 mg/kg/day have been shown to be effective with a safety profile consistent with that observed at doses <30 mg/kg/day. Recent data have highlighted the ability of deferasirox to decrease cardiac iron levels and to prevent the accumulation of iron in the heart. The long-term efficacy and safety of deferasirox for up to 5 years of treatment have now been established. The availability of this effective and generally well tolerated oral therapy represents a significant advance in the management of transfusional iron overload. Keywords: deferasirox, Exjade, oral, iron chelation, iron overload, cardiac iron 

  10. TIMP3 deficiency exacerbates iron overload-mediated cardiomyopathy and liver disease.

    Science.gov (United States)

    Zhabyeyev, Pavel; Das, Subhash K; Basu, Ratnadeep; Shen, Mengcheng; Patel, Vaibhav B; Kassiri, Zamaneh; Oudit, Gavin Y

    2018-05-01

    Chronic iron overload results in heart and liver diseases and is a common cause of morbidity and mortality in patients with genetic hemochromatosis and secondary iron overload. We investigated the role of tissue inhibitor of metalloproteinase 3 (TIMP3) in iron overload-mediated tissue injury by subjecting male mice lacking Timp3 ( Timp3 -/- ) and wild-type (WT) mice to 12 wk of chronic iron overload. Whereas WT mice with iron overload developed diastolic dysfunction, iron-overloaded Timp3 -/- mice showed worsened cardiac dysfunction coupled with systolic dysfunction. In the heart, loss of Timp3 was associated with increased myocardial fibrosis, greater Timp1, matrix metalloproteinase ( Mmp) 2, and Mmp9 expression, increased active MMP-2 levels, and gelatinase activity. Iron overload in Timp3 -/- mice showed twofold higher iron accumulation in the liver compared with WT mice because of constituently lower levels of ferroportin. Loss of Timp3 enhanced the hepatic inflammatory response to iron overload, leading to greater neutrophil and macrophage infiltration and increased hepatic fibrosis. Expression of inflammation-related MMPs (MMP-12 and MMP-13) and inflammatory cytokines (IL-1β and monocyte chemoattractant protein-1) was elevated to a greater extent in iron-overloaded Timp3 -/- livers. Gelatin zymography demonstrated equivalent increases in MMP-2 and MMP-9 levels in WT and Timp3 -/- iron-overloaded livers. Loss of Timp3 enhanced the susceptibility to iron overload-mediated heart and liver injury, suggesting that Timp3 is a key protective molecule against iron-mediated pathology. NEW & NOTEWORTHY In mice, loss of tissue inhibitor of metalloproteinase 3 ( Timp3) was associated with systolic and diastolic dysfunctions, twofold higher hepatic iron accumulation (attributable to constituently lower levels of ferroportin), and increased hepatic inflammation. Loss of Timp3 enhanced the susceptibility to iron overload-mediated injury, suggesting that Timp3 plays a key

  11. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-01-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions

  12. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Costa, Fernando Ferreira [Universidade Estadual de Campinas, Campinas, SP (Brazil); Silveira, Paulo Augusto Achucarro [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Wood, John [University of Southern California, California (United States); Hamerschlak, Nelson [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2013-07-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  13. Iron overload in a teenager with xerocytosis: the importance of nuclear magnetic resonance imaging.

    Science.gov (United States)

    Assis, Reijâne Alves de; Kassab, Carolina; Seguro, Fernanda Salles; Costa, Fernando Ferreira; Silveira, Paulo Augusto Achucarro; Wood, John; Hamerschlak, Nelson

    2013-12-01

    To report a case of iron overload secondary to xerocytosis, a rare disease in a teenager, diagnosed, by T2* magnetic resonance imaging. We report the case of a symptomatic patient with xerocytosis, a ferritin level of 350ng/mL and a significant cardiac iron overload. She was diagnosed by T2* magnetic resonance imaging and received chelation therapy Ektacytometric analysis confirmed the diagnosis of hereditary xerocytosis. Subsequent T2* magnetic resonance imaging demonstrated complete resolution of the iron overload in various organs, as a new echocardiography revealed a complete resolution of previous cardiac alterations. The patient remains in chelation therapy. Xerocytosis is a rare autosomal dominant genetic disorder characterized by dehydrated stomatocytosis. The patient may present with intense fatigue and iron overload. We suggest the regular use of T2* magnetic resonance imaging for the diagnosis and control of the response to iron chelation in xerocytosis, and we believe it can be used also in other hemolytic anemia requiring transfusions.

  14. Magnetic resonance imaging of splenic iron overload

    International Nuclear Information System (INIS)

    Arrive, L.; Thurnher, S.; Hricak, H.; Price, D.C.

    1990-01-01

    The value of magnetic resonance (MR) imaging in assessing iron overload in the spleen was retrospectively investigated in 40 consecutive patients. MR appearance, mesaure of signal intensity and T1-and T2-relaxation times were correlated with the histologically determined level of iron in the spleen in each patient. Histologic examination revealed no iron overload in 19 patients, mild iron overload in seven, moderate iron overload in six, and severe iron overload in eight. All 19 patients with no splenic iron overload and 11 of the other 21 patients with splenic iron overload were correctly identified by MR imaging (sensitivity 52%, specificity 100%, accuracy 75%). Splenic iron overload was diagnosed when a decrease of signal intensity of the spleen compared with those of adipose tissue and renal cortex was demonstrated. MR images demonstrated all eight cases of severe, three of the six cases of moderate, and none of the seven cases of mild iron overload. Only spleens with severe iron overload had a significant mean decrease in signal intensity and T1- and T2-relaxation times. Although specific, MR imaging is poorly sensitive to splenic iron overload. (author). 15 refs.; 5 figs.; 3 tabs

  15. Role of liver magnetic resonance imaging in hyperferritinaemia and the diagnosis of iron overload.

    Science.gov (United States)

    Ruefer, Axel; Bapst, Christine; Benz, Rudolf; Bremerich, Jens; Cantoni, Nathan; Infanti, Laura; Samii, Kaveh; Schmid, Mathias; Vallée, Jean-Paul

    2017-11-09

    Hyperferritinaemia is a frequent clinical problem. Elevated serum ferritin levels can be detected in different genetic and acquired diseases and can occur with or without anaemia. It is therefore important to determine whether hyperferritinaemia is due to iron overload or due to a secondary cause. The main causes of iron overload are intestinal iron hyperabsorption disorders and transfusion-dependent disorders. Iron homeostasis and iron overload are quantified by different diagnostic approaches. The evaluation of serum ferritin and transferrin saturation is the first diagnostic step to identify the cause of hyperferritinaemia. The assessment of liver iron concentration by liver biopsy or magnetic resonance imaging (MRI) may guide the further diagnostic and therapeutic workup. Liver biopsy is invasive and poorly accepted by patients and should only be carried out in selected patients with hereditary haemochromatosis. As a non-invasive approach, MRI is considered the standard method to diagnose and to monitor both hepatic iron overload and the effectiveness of iron chelation therapy in many clinical conditions such as thalassaemia and myelodysplastic syndromes. Accurate evaluation and monitoring of iron overload has major implications regarding adherence, quality of life and prognosis. There are different technical MRI approaches to measuring the liver iron content. Of these, T2 and T2* relaxometry are considered the standard of care. MRI with cardiac T2* mapping is also suitable for the assessment of cardiac iron. Currently there is no consensus which technique should be preferred. The choice depends on local availability and patient population. However, it is important to use the same MRI technique in subsequent visits in the same patient to get comparable results. Signal intensity ratio may be a good adjunct to R2 and R2* methods as it allows easy visual estimation of the liver iron concentration. In this review a group of Swiss haematologists and radiologists

  16. Evaluation of a new tablet formulation of deferasirox to reduce chronic iron overload after long-term blood transfusions

    Directory of Open Access Journals (Sweden)

    Chalmers AW

    2016-02-01

    Full Text Available Anna W Chalmers, Jamile M Shammo Department of Internal Medicine, Division of Hematology/Oncology, Rush University Medical Center, Chicago, IL, USA Abstract: Transfusion-dependent anemia is a common feature in a wide array of hematological disorders, including thalassemia, sickle cell disease, aplastic anemia, myelofibrosis, and myelodysplastic syndromes. In the absence of a physiological mechanism to excrete excess iron, chronic transfusions ultimately cause iron overload. Without correction, iron overload can lead to end-organ damage, resulting in cardiac, hepatic, and endocrine dysfunction/failure. Iron chelating agents are utilized to reduce iron overload, as they form a complex with iron, leading to its clearance. Iron chelation has been proven to decrease organ dysfunction and improve survival in certain transfusion-dependent anemias, such as β-thalassemia. Several chelating agents have been approved by the United States Food and Drug Administration for the treatment of iron overload, including deferoxamine, deferiprone, and deferasirox. A variety of factors have to be considered when choosing an iron chelator, including dosing schedule, route of administration, tolerability, and side effect profile. Deferasirox is an orally administered iron chelator with proven efficacy and safety in multiple hematological disorders. There are two formulations of deferasirox, a tablet for suspension, and a new tablet form. This paper is intended to provide an overview of iron overload, with a focus on deferasirox, and its recently approved formulation Jadenu® for the reduction of transfusional iron overload in hematological disorders. Keywords: iron chelation therapy, transfusional iron overload, deferasirox

  17. Myelodysplastic syndromes and the role of iron overload.

    Science.gov (United States)

    Harvey, R Donald

    2010-04-01

    The epidemiology of myelodysplastic syndromes (MDS) and iron overload, recent clinical findings that highlight the importance of actively managing iron overload, and recommendations for initiating and maintaining iron chelation therapy (ICT) are summarized. MDS are a variety of hematological disorders with differing time courses. Disease morbidities are primarily due to cytopenias and evolution to acute myeloid leukemia. Iron overload is a serious complication in patients with MDS due to the long-term use of red blood cell transfusions in patients with symptomatic anemia. Clinical consequences of iron overload include end-organ damage and dysfunction, an increased frequency of transplant-related complications, and reduced survival rates. To prevent these complications, recommendations for initiating and maintaining ICT should be followed by clinicians caring for patients with MDS and iron overload. As current therapeutic options for patients with MDS do not always reduce the transfusion burden, many patients will still need long-term transfusion therapy. Strategies for the management of iron overload in MDS should be considered early in the disease course and in appropriate patients in order to prevent negative clinical outcomes associated with excessive iron accumulation.

  18. Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.

    Science.gov (United States)

    Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena

    2015-10-01

    What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane

  19. Transplantation in patients with iron overload: is there a place for magnetic resonance imaging? : Transplantation in iron overload.

    Science.gov (United States)

    Mavrogeni, Sophie; Kolovou, Genovefa; Bigalke, Boris; Rigopoulos, Angelos; Noutsias, Michel; Adamopoulos, Stamatis

    2018-03-01

    In iron overload diseases (thalassemia, sickle cell, and myelodysplastic syndrome), iron is deposited in all internal organs, leading to functional abnormalities. Hematopoietic stem cell transplantation (HSCT) is the only treatment offering a potential cure in these diseases. Our aim was to describe the experience in the field and the role of magnetic resonance imaging in the evaluation of iron overload before and after HSCT. Magnetic resonance imaging (MRI), using T2*, is the most commonly used tool to diagnose myocardial-liver iron overload and guide tailored treatment. Currently, HSCT offers complete cure in thalassemia major, after overcoming the immunologic barrier, and should be considered for all patients who have a suitable donor. The overall thalassemia-free survival of low-risk, HLA-matched sibling stem cell transplantation patients is 85-90%, with a 95% overall survival. The problems of rejection and engraftment are improving with the use of adequate immunosuppression. However, a detailed iron assessment of both heart and liver is necessary for pre- and post-transplant evaluation. In iron overload diseases, heart and liver iron evaluation is indispensable not only for the patients' survival, but also for evaluation before and after HSCT.

  20. Hepatic iron overload: Quantitative MR imaging

    International Nuclear Information System (INIS)

    Gomori, J.M.; Horev, G.; Tamary, H.; Zandback, J.; Kornreich, L.; Zaizov, R.; Freud, E.; Krief, O.; Ben-Meir, J.; Rotem, H.

    1991-01-01

    Iron deposits demonstrate characteristically shortened T2 relaxation times. Several previously published studies reported poor correlation between the in vivo hepatic 1/T2 measurements made by means of midfield magnetic resonance (MR) units and the hepatic iron content of iron-overloaded patients. In this study, the authors assessed the use of in vivo 1/T2 measurements obtained by means of MR imaging at 0.5 T using short echo times (13.4 and 30 msec) and single-echo-sequences as well as computed tomographic (CT) attenuation as a measure of liver iron concentration in 10 severely iron-overloaded patients with beta-thalassemia major. The iron concentrations in surgical wedge biopsy samples of the liver, which varied between 3 and 9 mg/g of wet weight (normal, less than or equal to 0.5 mg/g), correlated well (r = .93, P less than or equal to .0001) with the preoperative in vivo hepatic 1/T2 measurements. The CT attenuation did not correlate with liver iron concentration. Quantitative MR imaging is a readily available noninvasive method for the assessment of hepatic iron concentration in iron-overloaded patients, reducing the need for needle biopsies of the liver

  1. Iron overload patients with unknown etiology from national survey in Japan.

    Science.gov (United States)

    Ikuta, Katsuya; Hatayama, Mayumi; Addo, Lynda; Toki, Yasumichi; Sasaki, Katsunori; Tatsumi, Yasuaki; Hattori, Ai; Kato, Ayako; Kato, Koichi; Hayashi, Hisao; Suzuki, Takahiro; Kobune, Masayoshi; Tsutsui, Miyuki; Gotoh, Akihiko; Aota, Yasuo; Matsuura, Motoo; Hamada, Yuzuru; Tokuda, Takahiro; Komatsu, Norio; Kohgo, Yutaka

    2017-03-01

    Transfusion is believed to be the main cause of iron overload in Japan. A nationwide survey on post-transfusional iron overload subsequently led to the establishment of guidelines for iron chelation therapy in this country. To date, however, detailed clinical information on the entire iron overload population in Japan has not been fully investigated. In the present study, we obtained and studied detailed clinical information on the iron overload patient population in Japan. Of 1109 iron overload cases, 93.1% were considered to have occurred post-transfusion. There were, however, 76 cases of iron overload of unknown origin, which suggest that many clinicians in Japan may encounter some difficulty in correctly diagnosing and treating iron overload. Further clinical data were obtained for 32 cases of iron overload of unknown origin; median of serum ferritin was 1860.5 ng/mL. As occurs in post-transfusional iron overload, liver dysfunction was found to be as high as 95.7% when serum ferritin levels exceeded 1000 ng/mL in these patients. Gene mutation analysis of the iron metabolism-related genes in 27 cases of iron overload with unknown etiology revealed mutations in the gene coding hemojuvelin, transferrin receptor 2, and ferroportin; this indicates that although rare, hereditary hemochromatosis does occur in Japan.

  2. Iron overload and chelation therapy in myelodysplastic syndromes.

    Science.gov (United States)

    Temraz, Sally; Santini, Valeria; Musallam, Khaled; Taher, Ali

    2014-07-01

    Iron overload remains a concern in MDS patients especially those requiring recurrent blood transfusions. The consequence of iron overload may be more relevant in patients with low and intermediate-1 risk MDS who may survive long enough to experience such manifestations. It is a matter of debate whether this overload has time to yield organ damage, but it is quite evident that cellular damage and DNA genotoxic effect are induced. Iron overload may play a critical role in exacerbating pre-existing morbidity or even unmask silent ones. Under these circumstances, iron chelation therapy could play an integral role in the management of these patients. This review entails an in depth analysis of iron overload in MDS patients; its pathophysiology, effect on survival, associated risks and diagnostic options. It also discusses management options in relation to chelation therapy used in MDS patients and the impact it has on survival, hematologic response and organ function. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Risk of iron overload is decreased in beating heart coronary artery surgery compared to conventional bypass.

    Science.gov (United States)

    Mumby, S; Koh, T W; Pepper, J R; Gutteridge, J M

    2001-11-29

    Conventional cardiopulmonary bypass surgery (CCPB) increases the iron loading of plasma transferrin often to a state of plasma iron overload, with the presence of low molecular mass iron. Such iron is a potential risk factor for oxidative stress and microbial virulence. Here we assess 'off-pump' coronary artery surgery on the beating heart for changes in plasma iron chemistry. Seventeen patients undergoing cardiac surgery using the 'Octopus' myocardial wall stabilisation device were monitored at five time points for changes in plasma iron chemistry. This group was further divided into those (n=9) who had one- or two- (n=8) vessel grafts, and compared with eight patients undergoing conventional coronary artery surgery. Patients undergoing beating heart surgery had significantly lower levels of total plasma non-haem iron, and a decreased percentage saturation of their transferrin at all time points compared to conventional bypass patients. Plasma iron overload occurred in only one patient undergoing CCPB. Beating heart surgery appears to decrease red blood cell haemolysis, and tissue damage during the operative procedures and thereby significantly decreases the risk of plasma iron overload associated with conventional bypass.

  4. Iron overload following bone marrow transplantation in children: MR findings

    International Nuclear Information System (INIS)

    Kornreich, L.; Horev, G.; Grunebaum, M.; Yaniv, I.; Stein, J.; Zaizov, R.

    1997-01-01

    Objective. The purpose of this study was to determine the incidence of post-transfusional iron overload in children after bone marrow transplantation by reviewing their magnetic resonance imaging (MR) findings. Materials and methods. We reviewed the abdominal MR studies of 13 children after autologous bone marrow transplantation. Nine of the children had also undergone MR prior to transplantation. Iron deposition in the liver, spleen and bone marrow was graded semi-quantitatively on both T1- and T2-weighted images. Serum ferritin levels and number of blood units given after bone marrow transplantation were recorded. Results. None of the pre-transplantation MR studies revealed iron overload. After bone marrow transplantation, three children showed normal liver and spleen. Iron overload in the liver was noted in ten patients (77 %), six of whom also showed iron overload in the spleen (46 %) and five in the bone marrow (38.5 %). The degree of hepatic iron overload was correlated significantly and splenic iron overload was correlated weakly with the number of blood transfusions (P 0.01 and P > 0.01, respectively), but neither was correlated with the serum ferritin level. Conclusion. Iron overload commonly accompanies bone marrow transplantation. The observed pattern of iron deposition, in which the spleen was uninvolved in 40 % of patients demonstrating iron overload, is not typical of post-transfusional hemochromatosis. (orig.)

  5. Research progress in role of iron overload in non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    LI Guangming

    2013-12-01

    Full Text Available Iron overload is an important research focus in non-alcoholic fatty liver disease (NAFLD. The relationship between iron overload and NAFLD is summarized from the assessment method for iron overload, relationship between iron load and hemochromatosis gene mutations, incidence of iron load in NAFLD, and relationship between iron load and progression of NAFLD; the action mechanism of iron overload in the progression of NAFLD is reviewed from the causes of iron overload, relationship between iron overload and lipid metabolism, and relationship between type of iron deposition and liver damage; the significance of iron overload in the diagnosis and treatment of NAFLD is discussed from iron overload as a new marker of risk stratification and potential therapeutic target in NAFLD. It is currently considered that iron overload, whether the cause or result of NAFLD progression, will promote the progression of NAFLD once it occurs; as a new marker of risk stratification and potential therapeutic target in NAFLD, iron load is worthy of further study.

  6. Research progress in role of iron overload in non-alcoholic fatty liver disease

    OpenAIRE

    LI Guangming

    2013-01-01

    Iron overload is an important research focus in non-alcoholic fatty liver disease (NAFLD). The relationship between iron overload and NAFLD is summarized from the assessment method for iron overload, relationship between iron load and hemochromatosis gene mutations, incidence of iron load in NAFLD, and relationship between iron load and progression of NAFLD; the action mechanism of iron overload in the progression of NAFLD is reviewed from the causes of iron overload, relationship between iro...

  7. Magnetic and quadrupolar studies of the iron storage overload in livers

    International Nuclear Information System (INIS)

    Rimbert, J.N.; Dumas, F.; Richardot, G.; Kellershohn, C.

    1986-01-01

    Absorption 57 Fe Moessbauer spectra, performed directly on tissues of liver with iron overload due to an excessive intestinal iron absorption or induced by hypertransfusional therapeutics, have pointed out a new high spin ferric storage iron besides the ferritin and hemosiderin. Moessbauer studies, carried out on ferritin and hemosiderin fractions isolated from normal and overloaded livers, show that this compound, only present in the secondary iron overload (transfusional pathway), seems characteristic of the physiological process which induces the iron overload. (Auth.)

  8. Iron overload impact on P-ATPases.

    Science.gov (United States)

    Sousa, Leilismara; Pessoa, Marco Tulio C; Costa, Tamara G F; Cortes, Vanessa F; Santos, Herica L; Barbosa, Leandro Augusto

    2018-03-01

    Iron is a chemical element that is active in the fundamental physiological processes for human life, but its burden can be toxic to the body, mainly because of the stimulation of membrane lipid peroxidation. For this reason, the action of iron on many ATPases has been studied, especially on P-ATPases, such as the Na + ,K + -ATPase and the Ca 2+ -ATPase. On the Fe 2+ -ATPase activity, the free iron acts as an activator, decreasing the intracellular Fe 2+ and playing a protection role for the cell. On the Ca 2+ -ATPase activity, the iron overload decreases the enzyme activity, raising the cytoplasmic Ca 2+ and decreasing the sarco/endoplasmic reticulum and the Golgi apparatus Ca 2+ concentrations, which could promote an enzyme oxidation, nitration, and fragmentation. However, the iron overload effect on the Na + ,K + -ATPase may change according to the tissue expressions. On the renal cells, as well as on the brain and the heart, iron promotes an enzyme inactivation, whereas its effect on the erythrocytes seems to be the opposite, directly stimulating the ATPase activity, or stimulating it by signaling pathways involving ROS and PKC. Modulations in the ATPase activity may impair the ionic transportation, which is essential for cell viability maintenance, inducing irreversible damage to the cell homeostasis. Here, we will discuss about the iron overload effect on the P-ATPases, such as the Na + ,K + -ATPase, the Ca 2+ -ATPase, and the Fe 2+ -ATPase.

  9. Impact of iron overload and potential benefit from iron chelation in low-risk myelodysplastic syndrome.

    Science.gov (United States)

    Shenoy, Niraj; Vallumsetla, Nishanth; Rachmilewitz, Eliezer; Verma, Amit; Ginzburg, Yelena

    2014-08-07

    Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal bone marrow disorders characterized by ineffective hematopoiesis, peripheral blood cytopenias, and potential for malignant transformation. Lower/intermediate-risk MDSs are associated with longer survival and high red blood cell (RBC) transfusion requirements resulting in secondary iron overload. Recent data suggest that markers of iron overload portend a relatively poor prognosis, and retrospective analysis demonstrates that iron chelation therapy is associated with prolonged survival in transfusion-dependent MDS patients. New data provide concrete evidence of iron's adverse effects on erythroid precursors in vitro and in vivo. Renewed interest in the iron field was heralded by the discovery of hepcidin, the main serum peptide hormone negative regulator of body iron. Evidence from β-thalassemia suggests that regulation of hepcidin by erythropoiesis dominates regulation by iron. Because iron overload develops in some MDS patients who do not require RBC transfusions, the suppressive effect of ineffective erythropoiesis on hepcidin may also play a role in iron overload. We anticipate that additional novel tools for measuring iron overload and a molecular-mechanism-driven description of MDS subtypes will provide a deeper understanding of how iron metabolism and erythropoiesis intersect in MDSs and improve clinical management of this patient population. © 2014 by The American Society of Hematology.

  10. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload.

    Science.gov (United States)

    Elalfy, Mohsen S; Saber, Maha M; Adly, Amira Abdel Moneam; Ismail, Eman A; Tarif, Mohamed; Ibrahim, Fatma; Elalfy, Omar M

    2016-03-01

    Vitamin C, as antioxidant, increases the efficacy of deferoxamine (DFO). To investigate the effects of vitamin C as an adjuvant therapy to the three used iron chelators in moderately iron-overloaded young vitamin C-deficient patients with β-thalassemia major (β-TM) in relation to tissue iron overload. This randomized prospective trial that included 180 β-TM vitamin C-deficient patients were equally divided into three groups (n = 60) and received DFO, deferiprone (DFP), and deferasirox (DFX). Patients in each group were further randomized either to receive vitamin C supplementation (100 mg daily) or not (n = 30). All patients received vitamin C (group A) or no vitamin C (group B) were followed up for 1 yr with assessment of transfusion index, hemoglobin, iron profile, liver iron concentration (LIC) and cardiac magnetic resonance imaging (MRI) T2*. Baseline vitamin C was negatively correlated with transfusion index, serum ferritin (SF), and LIC. After vitamin C therapy, transfusion index, serum iron, SF, transferrin saturation (Tsat), and LIC were significantly decreased in group A patients, while hemoglobin and cardiac MRI T2* were elevated compared with baseline levels or those in group B without vitamin C. The same improvement was found among DFO-treated patients post-vitamin C compared with baseline data. DFO-treated patients had the highest hemoglobin with the lowest iron, SF, and Tsat compared with DFP or DFX subgroups. Vitamin C as an adjuvant therapy possibly potentiates the efficacy of DFO more than DFP and DFX in reducing iron burden in the moderately iron-overloaded vitamin C-deficient patients with β-TM, with no adverse events. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A composite mouse model of aplastic anemia complicated with iron overload.

    Science.gov (United States)

    Wu, Dijiong; Wen, Xiaowen; Liu, Wenbin; Xu, Linlong; Ye, Baodong; Zhou, Yuhong

    2018-02-01

    Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (Poverload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.

  12. Iron overload: what is the role of public health?

    Science.gov (United States)

    Hulihan, Mary M; Sayers, Cindy A; Grosse, Scott D; Garrison, Cheryl; Grant, Althea M

    2011-12-01

    Hereditary hemochromatosis type 1, also known as hereditary hemochromatosis classical (HHC), is an iron overload disorder associated, in most cases, with mutations of the hemochromatosis (HFE) gene. Although suggested algorithms for diagnosing iron overload are available, there are still questions about options for genetic and biochemical screening for hemochromatosis and duration of treatment. This article provides a summary of an expert workgroup meeting convened on September 24-25, 2009, entitled "Iron Overload: What is the Role of Public Health?" The purpose of the meeting was to enable subject matter experts to share their most recent clinical and scientific iron overload information and to facilitate the discussion of future endeavors, with special emphasis on the role of public health in this field. The two main topics were the research priorities of the field, including clinical, genetic, and public health issues, and the concerns about the validity of current screening recommendations for the condition. Published by Elsevier Inc.

  13. Iron overload of organism and current options of chelation treatment in onco haematology

    International Nuclear Information System (INIS)

    Guman, T.; Rothova, E.; Kafkova, A.; Fricova, M.; Dulova, I.; Stecova, N.; Hlebaskova, M.; Surova, M.; Takac, V.

    2011-01-01

    The article summarizes the biological importance of iron in the organism, primary and secondary causes of iron overload, complications in function of liver, heart and endocrine organs due to overload of iron, the pathophysiology of iron overload, transfusion risks associated with the iron overload, assessment of risk groups of patients suitable for chelation treatment fulfilling the indication criteria, treatment modalities of chelation therapy and its significance regarding the prevention and treatment effectiveness. (author)

  14. Iron deficiency and overload in relation to nutrition

    NARCIS (Netherlands)

    Spanjersberg MQI; Jansen EHJM; LEO

    2000-01-01

    Nutritional iron intake in the Netherlands has been reviewed with respect to both iron deficiency and iron overload. In general, iron intake and iron status in the Netherlands are adequate and therefore no change in nutrition policy is required. The following aspects and developments, however, need

  15. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.

    Science.gov (United States)

    Moreira-Gonçalves, Daniel; Henriques-Coelho, Tiago; Fonseca, Hélder; Ferreira, Rita; Padrão, Ana Isabel; Santa, Cátia; Vieira, Sara; Silva, Ana Filipa; Amado, Francisco; Leite-Moreira, Adelino; Duarte, José Alberto

    2015-09-01

    The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and

  16. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  17. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  18. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice

    Energy Technology Data Exchange (ETDEWEB)

    Guenancia, Charles [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Li, Na [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Hachet, Olivier [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Rigal, Eve [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cottin, Yves [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Dutartre, Patrick; Rochette, Luc [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Vergely, Catherine, E-mail: cvergely@u-bourgogne.fr [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France)

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran–iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran–iron (15 mg/kg) for 3 weeks (D0–D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6 mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran–iron (125–1000 μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+ 22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. - Highlights: • The effects of iron on cardiomyocytes were opposite to those on cancer cell lines. • In our model, iron overload did not potentiate anthracycline cardiotoxicity. • Chronic oxidative stress induced by iron could mitigate doxorubicin cardiotoxicity. • The role of iron in

  19. Fetal liver iron overload: the role of MR imaging

    International Nuclear Information System (INIS)

    Cassart, Marie; Avni, Freddy Efraim; Guibaud, Laurent; Molho, Marc; D'Haene, Nicky; Paupe, Alain

    2011-01-01

    To assess the potential role of MR imaging in the diagnosis of fetal liver iron overload. We reviewed seven cases of abnormal liver signal in fetuses referred to MR imaging in a context of suspected congenital infection (n = 2), digestive tract anomalies (n = 3) and hydrops fetalis (n = 2). The average GA of the fetuses was 31 weeks. The antenatal diagnoses were compared with histological data (n = 6) and postnatal work-up (n = 1). Magnetic resonance imaging demonstrated unexpected abnormal fetal liver signal suggestive of iron overload in all cases. The iron overload was confirmed on postnatal biopsy (n = 2) and fetopathology (n = 4). The final diagnosis was hepatic hemosiderosis (haemolytic anaemia (n = 2) and syndromal anomalies (n = 2)) and congenital haemochromatosis (n = 3). In all cases, the liver appeared normal on US. Magnetic resonance is the only imaging technique able to demonstrate liver iron overload in utero. Yet, the study outlines the fundamental role of MR imaging in cases of congenital haemochromatosis. The antenatal diagnosis of such a condition may prompt ante - (in the case of recurrence) or neonatal treatment, which might improve the prognosis. (orig.)

  20. Fetal liver iron overload: the role of MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cassart, Marie; Avni, Freddy Efraim [Erasme Hospital, Medical imaging, Brussels, Brabant (Belgium); Guibaud, Laurent [Hopital femme mere enfant, Imagerie Pediatrique et Foetale, Lyon-Bron (France); Molho, Marc [C.H.I Poissy/St Germain-en-Laye, Imagerie Medicale, Poissy (France); D' Haene, Nicky [Erasme Hospital, Anatomopathology Department, Brussels (Belgium); Paupe, Alain [C.H.I Poissy/St Germain-en-Laye, Pediatrie, Poissy (France)

    2011-02-15

    To assess the potential role of MR imaging in the diagnosis of fetal liver iron overload. We reviewed seven cases of abnormal liver signal in fetuses referred to MR imaging in a context of suspected congenital infection (n = 2), digestive tract anomalies (n = 3) and hydrops fetalis (n = 2). The average GA of the fetuses was 31 weeks. The antenatal diagnoses were compared with histological data (n = 6) and postnatal work-up (n = 1). Magnetic resonance imaging demonstrated unexpected abnormal fetal liver signal suggestive of iron overload in all cases. The iron overload was confirmed on postnatal biopsy (n = 2) and fetopathology (n = 4). The final diagnosis was hepatic hemosiderosis (haemolytic anaemia (n = 2) and syndromal anomalies (n = 2)) and congenital haemochromatosis (n = 3). In all cases, the liver appeared normal on US. Magnetic resonance is the only imaging technique able to demonstrate liver iron overload in utero. Yet, the study outlines the fundamental role of MR imaging in cases of congenital haemochromatosis. The antenatal diagnosis of such a condition may prompt ante - (in the case of recurrence) or neonatal treatment, which might improve the prognosis. (orig.)

  1. Hepatic iron overload is associated with hepatocyte apoptosis during Clonorchis sinensis infection.

    Science.gov (United States)

    Han, Su; Tang, Qiaoran; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli

    2017-08-01

    Hepatic iron overload has been implicated in many liver diseases; however, whether it is involved in clonorchiasis remains unknown. The purpose of this study is to investigate whether Clonorchis sinensis (C. sinensis) infection causes hepatic iron overload, analyze the relationship between the iron overload and associated cell apoptosis, so as to determine the role of excess iron plays in C. sinensis-induced liver injury. The Perls' Prussian staining and atomic absorption spectrometry methods were used to investigate the iron overload in hepatic sections of wistar rats and patients infected with C. sinensis. The hepatic apoptosis was detected by transferase uridyl nick end labeling (TUNEL) methods. Spearman analysis was used for determining the correlation of the histological hepatic iron index and the apoptotic index. Blue iron particles were deposited mainly in the hepatocytes, Kupffer cells and endothelial cells, around the liver portal and central vein area of both patients and rats. The total iron score was found to be higher in the infected groups than the respective control from 8 weeks. The hepatic iron concentration was also significantly higher in treatment groups than in control rats from 8 weeks. The hepatocyte apoptosis was found to be significantly higher in the portal area of the liver tissue and around the central vein. However, spearman's rank correlation coefficient revealed that there was a mildly negative correlation between the iron index and hepatocyte apoptosis. This present study confirmed that hepatic iron overload was found during C. sinensis infection. This suggests that iron overload may be associated with hepatocyte apoptosis and involved in liver injury during C. sinensis infection. Further studies are needed to investigate the molecular mechanism involved here.

  2. Iron overload induces hypogonadism in male mice via extrahypothalamic mechanisms.

    Science.gov (United States)

    Macchi, Chiara; Steffani, Liliana; Oleari, Roberto; Lettieri, Antonella; Valenti, Luca; Dongiovanni, Paola; Romero-Ruiz, Antonio; Tena-Sempere, Manuel; Cariboni, Anna; Magni, Paolo; Ruscica, Massimiliano

    2017-10-15

    Iron overload leads to multiple organ damage including endocrine organ dysfunctions. Hypogonadism is the most common non-diabetic endocrinopathy in primary and secondary iron overload syndromes. To explore the molecular determinants of iron overload-induced hypogonadism with specific focus on hypothalamic derangements. A dysmetabolic male murine model fed iron-enriched diet (IED) and cell-based models of gonadotropin-releasing hormone (GnRH) neurons were used. Mice fed IED showed severe hypogonadism with a significant reduction of serum levels of testosterone (-83%) and of luteinizing hormone (-86%), as well as reduced body weight gain, body fat and plasma leptin. IED mice had a significant increment in iron concentration in testes and in the pituitary. Even if iron challenge of in vitro neuronal models (GN-11 and GT1-7 GnRH cells) resulted in 10- and 5-fold iron content increments, respectively, no iron content changes were found in vivo in hypothalamus of IED mice. Conversely, mice placed on IED showed a significant increment in hypothalamic GnRH gene expression (+34%) and in the intensity of GnRH-neuron innervation of the median eminence (+1.5-fold); similar changes were found in the murine model HFE -/- , resembling human hemochromatosis. IED-fed adult male mice show severe impairment of hypothalamus-pituitary-gonadal axis without a relevant contribution of the hypothalamic compartment, which thus appears sufficiently protected from systemic iron overload. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Pharmacokinetics study of Zr-89-labeled melanin nanoparticle in iron-overload mice

    International Nuclear Information System (INIS)

    Zhang, Pengjun; Yue, Yuanyuan; Pan, Donghui; Yang, Runlin; Xu, Yuping; Wang, Lizhen; Yan, Junjie; Li, Xiaotian; Yang, Min

    2016-01-01

    Melanin, a natural biological pigment present in many organisms, has been found to exhibit multiple functions. An important property of melanin is its ability to chelate metal ions strongly, which might be developed as an iron chelator for iron overload therapy. Herein, we prepared the ultrasmall water-soluble melanin nanoparticle (MP) and firstly evaluate the pharmacokinetics of MP in iron-overload mice to provide scientific basis for treating iron-overload. To study the circulation time and biodistribution, MP was labeled with 89 Zr, a long half-life (78.4 h) positron-emitting metal which is suited for the labeling of nanoparticles and large bioactive molecule. MP was chelated with 89 Zr directly at pH 5, resulting in non-decay-corrected yield of 89.6% and a radiochemical purity of more than 98%. The specific activity was at least190 MBq/μmol. The 89 Zr-MP was stable in human plasma and PBS for at least 48 h. The half-life of 89 Zr-MP was about 15.70 ± 1.74 h in iron-overload mice. Biodistribution studies and MicroPET imaging showed that 89 Zr-MP mainly accumulated in liver and spleen, which are the target organ of iron-overload. The results indicate that the melanin nanoparticle is promising for further iron overload therapy.

  4. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Clinical outcomes of transfusion-associated iron overload in patients with refractory chronic anemia

    Directory of Open Access Journals (Sweden)

    Gao C

    2014-04-01

    Full Text Available Chong Gao, Li Li, Baoan Chen, Huihui Song, Jian Cheng, Xiaoping Zhang, Yunyu SunDepartment of Hematology and Oncology, Key Department of Jiangsu Medicine, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People’s Republic of ChinaBackground: The purpose of this study was to evaluate the clinical outcomes of transfusion-associated iron overload in patients with chronic refractory anemia.Methods: Clinical manifestations, main organ function, results of computed tomography (CT, endocrine evaluation, and serum ferritin levels were analyzed retrospectively in 13 patients who were transfusion-dependent for more than 1 year (receiving >50 units of red blood cells to determine the degree of iron overload and efficacy of iron-chelating therapy.Results: Serum ferritin levels increased to 1,830–5,740 ng/mL in all patients. Ten patients had abnormal liver function. The CT Hounsfield units in the liver increased significantly in eleven patients, and were proportional to their serum ferritin levels. Skin pigmentation, liver dysfunction, and endocrine dysfunction were observed in nine patients with serum ferritin >3,500 ng/mL, eight of whom have since died. Interestingly, serum ferritin levels did not decrease significantly in nine transfusion-dependent patients who had received 15–60 days of iron-chelating therapy.Conclusion: Transfusion-dependent patients may progress to secondary iron overload with organ impairment, which may be fatal in those who are heavily iron-overloaded. The CT Hounsfield unit is a sensitive indicator of iron overload in the liver. Iron chelation therapy should be initiated when serum ferritin is >1,000 ng/mL and continued until it is <1,000 ng/mL in transfusional iron-overloaded patients.Keywords: anemia, aplastic, iron overload, myelodysplastic syndromes

  6. Iron overload detection in rats by means of a susceptometer operating at room temperature

    International Nuclear Information System (INIS)

    Marinelli, M; Gianesin, B; Avignolo, C; Parodi, S; Minganti, V

    2008-01-01

    Biosusceptometry is a non-invasive procedure for determination of iron overload in a human body; it is essentially an assessment of the diamagnetic (water) and paramagnetic (iron) properties of tissues. We measured in vivo iron overload in the liver region of 12 rats by a room temperature susceptometer. The rats had been injected with sub-toxic doses of iron dextran. A quantitative relationship has been observed between the measurements and the number of treatments. The assessment of iron overload requires evaluating the magnetic signal corresponding to the same rat ideally without the overload. This background value was extrapolated on the basis of the signal measured in control rats versus body weight (R 2 = 0.73). The mean iron overload values for the treated rats, obtained after each iron injection, were significantly different from the means of the corresponding control rats (p 2 = 0.89). The magnetic moment of iron atoms in liver tissues was measured to be 3.6 Bohr magneton. Evaluation of the background signal is the limit to the measure; the error corresponds to about 30 mg (1 SD) of iron while the instrument sensitivity is more than a factor of 10 better.

  7. Mild iron overload in patients carrying the HFE S65C gene mutation: a retrospective study in patients with suspected iron overload and healthy controls

    OpenAIRE

    Holmström, P; Marmur, J; Eggertsen, G; Gåfvels, M; Stål, P

    2002-01-01

    Background and aims: The role of the HFE S65C mutation in the development of hepatic iron overload is unknown. The aim of the present study was: (A) to determine the HFE S65C frequency in a Northern European population; and (B) to evaluate whether the presence of the HFE S65C mutation would result in a significant hepatic iron overload.

  8. Treating thalassemia major-related iron overload: the role of deferiprone

    Directory of Open Access Journals (Sweden)

    Berdoukas V

    2012-10-01

    Full Text Available Vasilios Berdoukas,1 Kallistheni Farmaki,2 Susan Carson,1 John Wood,3 Thomas Coates11Division of Hematology/Oncology, Children's Hospital Los Angeles, Los Angeles, CA, USA; 2Thalassemia Unit, General Hospital of Corinth, Corinth, Greece; 3Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USAAbstract: Over the last 20 years, management for thalassemia major has improved to the point where we predict that patients' life expectancy will approach that of the normal population. These outcomes result from safer blood transfusions, the availability of three iron chelators, new imaging techniques that allow specific organ assessment of the degree of iron overload, and improvement in the treatment of hepatitis. In October 2011, the Food and Drug Administration licensed deferiprone, further increasing the available choices for iron chelation in the US. The ability to prescribe any of the three chelators as well as their combinations has led to more effective reduction of total body iron. The ability to determine the amount of iron in the liver and heart by magnetic resonance imaging allows the prescription of the most appropriate chelation regime for patients and to reconsider what our aims with respect to total body iron should be. Recent evidence from Europe has shown that by normalizing iron stores not only are new morbidities prevented but also reversal of many complications such as cardiac failure, hypothyroidism, hypogonadism, impaired glucose tolerance, and type 2 diabetes can occur, improving survival and patients' quality of life. The most effective way to achieve normal iron stores seems to be with the combination of deferoxamine and deferiprone. Furthermore, outcomes should continue to improve in the future. Starting relative intensive chelation in younger children may prevent short stature and abnormal pubertal maturation as well as other iron-related morbidities. Also, further information should become available on the

  9. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  10. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors.

    Science.gov (United States)

    Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie

    2018-06-11

    Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence.

    Science.gov (United States)

    Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi

    2017-10-01

    Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Right ventricular volumes and function in thalassemia major patients in the absence of myocardial iron overload

    Directory of Open Access Journals (Sweden)

    Porter John B

    2010-04-01

    Full Text Available Abstract Aim We aimed to define reference ranges for right ventricular (RV volumes, ejection fraction (EF in thalassemia major patients (TM without myocardial iron overload. Methods and results RV volumes, EF and mass were measured in 80 TM patients who had no myocardial iron overload (myocardial T2* > 20 ms by cardiovascular magnetic resonance. All patients were receiving deferoxamine chelation and none had evidence of pulmonary hypertension or other cardiovascular comorbidity. Forty age and sex matched healthy non-anemic volunteers acted as controls. The mean RV EF was higher in TM patients than controls (males 66.2 ± 4.1% vs 61.6 ± 6%, p = 0.0009; females 66.3 ± 5.1% vs 62.6 ± 6.4%, p = 0.017, which yielded a raised lower threshold of normality for RV EF in TM patients (males 58.0% vs 50.0% and females 56.4% vs 50.1%. RV end-diastolic volume index was higher in male TM patients (mean 98.1 ± 17.3 mL vs 88.4 ± 11.2 mL/m2, p = 0.027, with a higher upper limit (132 vs 110 mL/m2 but this difference was of borderline significance for females (mean 86.5 ± 13.6 mL vs 80.3 ± 12.8 mL/m2, p = 0.09, with upper limit of 113 vs 105 mL/m2. The cardiac index was raised in TM patients (males 4.8 ± 1.0 L/min vs 3.4 ± 0.7 L/min, p Conclusion The normal ranges for functional RV parameters in TM patients with no evidence of myocardial iron overload differ from healthy non-anemic controls. The new reference RV ranges are important for determining the functional effects of myocardial iron overload in TM patients.

  13. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    Science.gov (United States)

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Iron overload in patients with myelodysplastic syndromes: An updated overview.

    Science.gov (United States)

    Moukalled, Nour M; El Rassi, Fuad A; Temraz, Sally N; Taher, Ali T

    2018-06-15

    Myelodysplastic syndromes (MDS) encompass a heterogeneous group of clonal hematopoietic stem cell disorders characterized by a broad clinical spectrum related to ineffective hematopoiesis leading to unilineage or multilineage cytopenias, with a high propensity for transformation to acute myeloid leukemia. Iron overload has been recently identified as one of the important conditions complicating the management of these diverse disorders. The accumulation of iron is mainly related to chronic transfusions; however, evidence suggests a possible role for ineffective erythropoiesis and increased intestinal absorption of iron, related to altered hepcidin and growth differentiation factor-15 levels in the development of hemosiderosis in patients with MDS. In addition to its suggested role in the exacerbation of ineffective erythropoiesis, multiple reports have identified a prognostic implication for the development of iron overload in patients with MDS, with an improvement in overall survival after the initiation of iron chelation therapy. This review includes a detailed discussion of iron overload in patients with MDS whether they are undergoing supportive therapy or curative hematopoietic stem cell transplantation, with a focus on the mechanism, diagnosis, and effect on survival as well as the optimal management of this highly variable complication. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  15. Hemochromatosis C282Y gene mutation as a potential susceptibility factor for iron-overload in Egyptian beta-thalassemia patients

    Directory of Open Access Journals (Sweden)

    G.M. Mokhtar

    2018-04-01

    Full Text Available Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene’s mutation especially the C282Y mutation. The interaction between hemoglobin chain synthesis’ disorders and the C282Y mutation may worsen the clinical picture of beta-thalassemia major (β-TM. Aim: To establish the prevalence of the C282Y mutations in Egyptian β-TM patients and to address its adverse effects. Methods: Two-hundred and five β-TM patients were recruited and divided into two groups based on their serum ferritin (SF; group I (N = 125 (SF ≤ 2500 ng/dl and group II (N = 80 (SF > 2500 ng/dl. All patients were subjected to clinical and laboratory assessment with special emphasis on iron overload complications. Genotyping was assessed by polymerase chain reaction for detection of C282Y mutation in HFE gene. Results: The C282Y mutation was not detected in the studied β-TM neither in homozygous nor heterozygous state. There were several iron overload complications including cardiac complication (9.1%, liver disease (36.6%, delayed puberty (56.6%, primary (35.71% and secondary amenorrhea (21.42%, short stature (27.3%, diabetes (3.4%, neutropenia (9.7%, arthralgia (10.2%, gastrointestinal (21.1%, depression (2.9% and others (12.05%. Group I showed a statistically significant lower rate of taking iron-rich diet when compared to group II. Group II showed significant longer mean duration of disease, higher total transfusion rate per life, lower mean HbF% level, higher mean HbA% level, and higher rate of elevated liver enzymes than patients with SF ≤ 2500 ng/dl. Conclusion: The C282Y mutation was not detected in the studied cohort of Egyptian β-TM patients neither in homozygous nor heterozygous state in spite of manifestations of iron overload complications. Keywords: Beta-thalassemia major, Hereditary hemochromatosis, The C282Y mutation, Iron overload complications, Egyptian

  16. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome.

    Science.gov (United States)

    Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang

    2017-07-01

    Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of Hereditary Hemochromatosis Gene H63D and C282Y Mutations on Iron Overload in Sickle Cell Disease Patients

    Directory of Open Access Journals (Sweden)

    Yunus Kasım Terzi

    2016-12-01

    Full Text Available Objective: Hemochromatosis is an autosomal recessive disease that is one of the most important reasons for iron overload. Sickle cell disease is a hemoglobinopathy that occurs as a result of a homozygous mutation in the hemoglobin gene. Erythrocyte transfusion is frequently used in the treatment of this disease. Iron overload as a result of transfusion is important in the mortality and morbidity of sickle cell anemia patients as well as in other hemoglobinopathies. In this study, the effect of hemochromatosis gene (HFE p.H63D and p.C282Y mutations on transfusion-related cardiac and liver iron overload in sickle cell disease patients who carry homozygous hemoglobin S mutation has been investigated. Materials and Methods: This is a prospective single-center crosssectional study in patients with homozygous hemoglobin S mutation between the years 2008 and 2013. The patients were divided into two groups. The first group (group A, n=31 was receiving chelation therapy and the second group (group B, n=13 was not. Direct and indirect iron loads were analyzed by magnetic resonance imaging and biochemically, respectively. HFE gene mutations were analyzed by polymerase chain reaction-restriction fragment length polymorphism method. Statistical analyses were performed by independent samples t-test. Results: p.H63D mutation was detected in 10 (32.3% patients in group A and in only 1 patient (7.7% in group B. When the 2 groups were compared for iron overload, iron deposition in the liver was significantly higher in group B (p=0.046. In addition, in group A, iron deposition was significantly higher in HFE mutation carriers compared to patients without the mutation (p=0.05. Conclusion: Results of this study showed that HFE gene mutations are important in iron deposition in the liver in patients with sickle cell disease.

  18. Iatrogenic Iron Overload in Dialysis Patients at the Beginning of the 21st Century.

    Science.gov (United States)

    Rostoker, Guy; Vaziri, Nosratola D; Fishbane, Steven

    2016-05-01

    Iron overload used to be considered rare in hemodialysis patients but its clinical frequency is now increasingly realized. The liver is the main site of iron storage and the liver iron concentration (LIC) is closely correlated with total iron stores in patients with secondary hemosideroses and genetic hemochromatosis. Magnetic resonance imaging is now the gold standard method for LIC estimation and monitoring in non-renal patients. Studies of LIC in hemodialysis patients by quantitative magnetic resonance imaging and magnetic susceptometry have demonstrated a strong relation between the risk of iron overload and the use of intravenous (IV) iron products prescribed at doses determined by the iron biomarker cutoffs contained in current anemia management guidelines. These findings have challenged the validity of both iron biomarker cutoffs and current clinical guidelines, especially with respect to recommended IV iron doses. Three long-term observational studies have recently suggested that excessive IV iron doses may be associated with an increased risk of cardiovascular events and death in hemodialysis patients. We postulate that iatrogenic iron overload in the era of erythropoiesis-stimulating agents may silently increase complications in dialysis patients without creating frank clinical signs and symptoms. High hepcidin-25 levels were recently linked to fatal and nonfatal cardiovascular events in dialysis patients. It is therefore tempting to postulate that the main pathophysiological pathway leading to these events may involve the pleiotropic master hormone hepcidin (synergized by fibroblast growth factor 23), which regulates iron metabolism. Oxidative stress as a result of IV iron infusions and iron overload, by releasing labile non-transferrin-bound iron, might represent a 'second hit' on the vascular bed. Finally, iron deposition in the myocardium of patients with severe iron overload might also play a role in the pathogenesis of sudden death in some patients.

  19. THE EFFECT OF HAEMOCHROMATOSIS MUTATION ON IRON OVERLOAD IN THALASSAEMIA MAJOR PATIENTS

    Directory of Open Access Journals (Sweden)

    Tapas Ranjan Behera

    2016-11-01

    Full Text Available BACKGROUND Haemochromatosis is a genetic form of iron overload due to a defective HFE gene. Secondary iron overload is the main complication in transfusion-dependent thalassaemia major patients. This study aims at evaluating the degree of iron overload in β-thalassaemia major patients with and without HFE mutations (C282Y, H63D and S65C. MATERIALS AND METHODS A descriptive observational study was conducted including fifty diagnosed -thalassaemia major cases. Detailed clinical history and iron profile was estimated. DNA analysis by PCR-RFLP method for HFE gene mutations was performed. RESULTS After DNA analysis of all the thalassaemia major cases, two groups were identified, one with HFE gene mutation and other without HFE gene mutation. Iron profile of both the groups (with and without HFE gene mutation was estimated and compared. Only H63D mutation (out of three HFE gene mutations was detected in 16% cases (8 out of 50 cases, which comprised the group with mutation. Comparison of iron parameters between two groups (with and without HFE gene mutation showed significant difference in percent transferrin saturation (p=0.02, while other iron parameters (serum iron and serum ferritin did not show significant difference. CONCLUSION No significant difference between serum ferritin values (a marker of iron overload of groups with and without mutation (mean ferritin level 4641±2166 ng/mL and 4170±2461 ng/mL, respectively was found (p=0.61, in a patient population in whom transfusion protocol and proper chelation regimen was followed.

  20. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy

    International Nuclear Information System (INIS)

    Kapadia, A J; Tourassi, G D; Sharma, A C; Crowell, A S; Kiser, M R; Howell, C R

    2008-01-01

    Iron overload disorders have been the focus of several quantification studies involving non-invasive imaging modalities. Neutron spectroscopic techniques have demonstrated great potential in detecting iron concentrations within biological tissue. We are developing a neutron spectroscopic technique called neutron stimulated emission computed tomography (NSECT), which has the potential to diagnose iron overload in the liver at clinically acceptable patient dose levels through a non-invasive scan. The technique uses inelastic scatter interactions between atomic nuclei in the sample and incoming fast neutrons to non-invasively determine the concentration of elements in the sample. This paper discusses a non-tomographic application of NSECT investigating the feasibility of detecting elevated iron concentrations in the liver. A model of iron overload in the human body was created using bovine liver tissue housed inside a human torso phantom and was scanned with a 5 MeV pulsed beam using single-position spectroscopy. Spectra were reconstructed and analyzed with algorithms designed specifically for NSECT. Results from spectroscopic quantification indicate that NSECT can currently detect liver iron concentrations of 6 mg g -1 or higher and has the potential to detect lower concentrations by optimizing the acquisition geometry to scan a larger volume of tissue. The experiment described in this paper has two important outcomes: (i) it demonstrates that NSECT has the potential to detect clinically relevant concentrations of iron in the human body through a non-invasive scan and (ii) it provides a comparative standard to guide the design of iron overload phantoms for future NSECT liver iron quantification studies

  1. Changes in cardiac output and incidence of volume overload in cirrhotics receiving 20% albumin infusion.

    Science.gov (United States)

    Shasthry, Saggere M; Kumar, Manoj; Khumuckham, Jelen S; Sarin, Shiv Kumar

    2017-08-01

    Patients with cirrhosis are prone to develop volume over load, have increased capillary permeability and latent or overt cardiomyopathy. Whether albumin infusion causes volume overload in cirrhotics has not been adequately studied. Ninety nine consecutive cirrhotic patients receiving 1gm per kg albumin infusion were evaluated for development of volume overload. Clinical, echocardiographic and haemodynamic changes were closely monitored during and after albumin infusion. Thirty (30.30%) patients developed volume overload. Patients with higher BMI (P=.003), lower CTP (P=.01) and MELD (P=.034) were more often associated with the development of volume overload. Though baseline diastolic dysfunction was present in 82.8% of the patients, it did not influence the development of volume overload or changes in the cardiac output. The cardiac output increased significantly after albumin infusion (4.9±1.554 L/min to 5.86±1.85 L/min, Palbumin infusion develop volume overload, specially, those with higher BMI and lower severity of liver disease. Cardiac output increases after albumin infusion, and, baseline diastolic dysfunction has little effect on the development of volume overload or changes in cardiac output. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Iron-Induced Damage in Cardiomyopathy: Oxidative-Dependent and Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Elena Gammella

    2015-01-01

    Full Text Available The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.

  3. Cardiac complications in beta-thalassemia: From mice to men.

    Science.gov (United States)

    Kumfu, Sirinart; Fucharoen, Suthat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-06-01

    Beta-thalassemia is an inherited hemoglobin disorder caused by reduced or absent synthesis of the beta globin chains of hemoglobin. This results in variable outcomes ranging from clinically asymptomatic to severe anemia, which then typically requires regular blood transfusion. These regular blood transfusions can result in an iron overload condition. The iron overload condition can lead to iron accumulation in various organs, especially in the heart, leading to iron overload cardiomyopathy, which is the major cause of mortality in patients with thalassemia. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects that iron overload has on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. The in-depth understanding of biomolecular alterations in the heart of these iron overload thalassemic mice will help give guidance for more effective therapeutic approaches in the near future. Impact statement Iron overload cardiomyopathy is a major cause of morbidity and mortality in patients with thalassemia. Since investigation of iron overload cardiomyopathy in thalassemia patients has many limitations, a search for an animal model for this condition has been ongoing for decades. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects of

  4. Cardiac complications in beta-thalassemia: From mice to men

    Science.gov (United States)

    Kumfu, Sirinart; Fucharoen, Suthat; Chattipakorn, Siriporn C.

    2017-01-01

    Beta-thalassemia is an inherited hemoglobin disorder caused by reduced or absent synthesis of the beta globin chains of hemoglobin. This results in variable outcomes ranging from clinically asymptomatic to severe anemia, which then typically requires regular blood transfusion. These regular blood transfusions can result in an iron overload condition. The iron overload condition can lead to iron accumulation in various organs, especially in the heart, leading to iron overload cardiomyopathy, which is the major cause of mortality in patients with thalassemia. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects that iron overload has on the hearts of β-thalassemic mice under conditions of iron overload as well as the efficacy of pharmacological interventions to combat these adverse effects on the heart are reviewed and discussed. The in-depth understanding of biomolecular alterations in the heart of these iron overload thalassemic mice will help give guidance for more effective therapeutic approaches in the near future. Impact statement Iron overload cardiomyopathy is a major cause of morbidity and mortality in patients with thalassemia. Since investigation of iron overload cardiomyopathy in thalassemia patients has many limitations, a search for an animal model for this condition has been ongoing for decades. In the past decades, there is no doubt that the use of β-thalassemic mice as a study model to investigate the pathophysiology of iron overload cardiomyopathy and the role of various pharmacological interventions, has shed some light in understanding this serious complication and in improving the associated cardiac dysfunction. In this review, the effects of

  5. LRRC10 is required to maintain cardiac function in response to pressure overload.

    Science.gov (United States)

    Brody, Matthew J; Feng, Li; Grimes, Adrian C; Hacker, Timothy A; Olson, Timothy M; Kamp, Timothy J; Balijepalli, Ravi C; Lee, Youngsook

    2016-01-15

    We previously reported that the cardiomyocyte-specific leucine-rich repeat containing protein (LRRC)10 has critical functions in the mammalian heart. In the present study, we tested the role of LRRC10 in the response of the heart to biomechanical stress by performing transverse aortic constriction on Lrrc10-null (Lrrc10(-/-)) mice. Mild pressure overload induced severe cardiac dysfunction and ventricular dilation in Lrrc10(-/-) mice compared with control mice. In addition to dilation and cardiomyopathy, Lrrc10(-/-) mice showed a pronounced increase in heart weight with pressure overload stimulation and a more dramatic loss of cardiac ventricular performance, collectively suggesting that the absence of LRRC10 renders the heart more disease prone with greater hypertrophy and structural remodeling, although rates of cardiac fibrosis and myocyte dropout were not different from control mice. Lrrc10(-/-) cardiomyocytes also exhibited reduced contractility in response to β-adrenergic stimulation, consistent with loss of cardiac ventricular performance after pressure overload. We have previously shown that LRRC10 interacts with actin in the heart. Here, we show that His(150) of LRRC10 was required for an interaction with actin, and this interaction was reduced after pressure overload, suggesting an integral role for LRRC10 in the response of the heart to mechanical stress. Importantly, these experiments demonstrated that LRRC10 is required to maintain cardiac performance in response to pressure overload and suggest that dysregulated expression or mutation of LRRC10 may greatly sensitize human patients to more severe cardiac disease in conditions such as chronic hypertension or aortic stenosis. Copyright © 2016 the American Physiological Society.

  6. Uncoupling and oxidative stress in liver mitochondria isolated from rats with acute iron overload

    Energy Technology Data Exchange (ETDEWEB)

    Pardo Andreu, G.L. [Centro de Quimica Farmaceutica, Departamento de Investigaciones Biomedicas, Ciudad de La Habana (Cuba); Inada, N.M.; Vercesi, A.E. [Universidade Estadual de Campinas, Departamento de Patologia Clinica, Faculdade de Ciencias Medicas, Campinas, SP (Brazil); Curti, C. [Universidade de Sao Paulo, Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, SP (Brazil)

    2009-01-15

    One hypothesis for the etiology of cell damage arising from iron overload is that its excess selectively affects mitochondria. Here we tested the effects of acute iron overload on liver mitochondria isolated from rats subjected to a single dose of i.p. 500 mg/kg iron-dextran. The treatment increased the levels of iron in mitochondria (from 21{+-}4 to 130{+-}7 nmol/mg protein) and caused both lipid peroxidation and glutathione oxidation. The mitochondria of iron-treated rats showed lower respiratory control ratio in association with higher resting respiration. The mitochondrial uncoupling elicited by iron-treatment did not affect the phosphorylation efficiency or the ATP levels, suggesting that uncoupling is a mitochondrial protective mechanism against acute iron overload. Therefore, the reactive oxygen species (ROS)/H{sup +} leak couple, functioning as a mitochondrial redox homeostatic mechanism could play a protective role in the acutely iron-loaded mitochondria. (orig.)

  7. Iron overload and HFE gene mutations in Polish patients with liver cirrhosis.

    Science.gov (United States)

    Sikorska, Katarzyna; Romanowski, Tomasz; Stalke, Piotr; Iżycka-Świeszewska, Ewa; Bielawski, Krzysztof Piotr

    2011-06-01

    Increased liver iron stores may contribute to the progression of liver injury and fibrosis, and are associated with a higher risk of hepatocellular carcinoma development. Pre-transplant symptoms of iron overload in patients with liver cirrhosis are associated with higher risk of infectious and malignant complications in liver transplant recipients. HFE gene mutations may be involved in the pathogenesis of liver iron overload and influence the progression of chronic liver diseases of different origins. This study was designed to determine the prevalence of iron overload in relation to HFE gene mutations among Polish patients with liver cirrhosis. Sixty-one patients with liver cirrhosis included in the study were compared with a control group of 42 consecutive patients subjected to liver biopsy because of chronic liver diseases. Liver function tests and serum iron markers were assessed in both groups. All patients were screened for HFE mutations (C282Y, H63D, S65C). Thirty-six of 61 patients from the study group and all controls had liver biopsy performed with semiquantitative assessment of iron deposits in hepatocytes. The biochemical markers of iron overload and iron deposits in the liver were detected with a higher frequency (70% and 47% respectively) in patients with liver cirrhosis. There were no differences in the prevalence of all HFE mutations in both groups. In patients with a diagnosis of hepatocellular carcinoma, no significant associations with iron disorders and HFE gene mutations were found. Iron disorders were detected in patients with liver cirrhosis frequently but without significant association with HFE gene mutations. Only the homozygous C282Y mutation seems to occur more frequently in the selected population of patients with liver cirrhosis. As elevated biochemical iron indices accompanied liver iron deposits more frequently in liver cirrhosis compared to controls with chronic liver disease, there is a need for more extensive studies searching for

  8. Dietary iron rural blacks overload In southern African

    African Journals Online (AJOL)

    1990-09-15

    Sep 15, 1990 ... suggest that iron overload from any cause may predispose to infection7 and there are .... consumption and acute inflammatory diseases. However, it ..... Addison GM, Beamish MR, Hales C ',Hodgkins M, Jacobs A, Llewellin P.

  9. Diagnosis of hepatic iron overload: a family study illustrating pitfalls in diagnosing hemochromatosis.

    Science.gov (United States)

    Schranz, Melanie; Talasz, Heribert; Graziadei, Ivo; Winder, Thomas; Sergi, Consolato; Bogner, Klaus; Vogel, Wolfgang; Zoller, Heinz

    2009-03-01

    Recent identification of genetic variants in iron storage disease has changed the classification system and diagnostic algorithms for hemochromatosis. Clinical diagnosis of the disease requires phenotypic evidence of iron overload because the commonly disease-associated HFE genotypes have an incomplete penetrance. Furthermore, approximately 20% of patients with a clinical diagnosis of hemochromatosis have no disease-associated genotype, which underlines the importance of clear phenotypic criteria of hemochromatosis. A diagnosis of hemochromatosis cannot be made even in patients with liver cirrhosis simply on the basis of genetic testing that indicates that iron overload is the cause of the disease and not its consequence. Proper diagnosis requires integration of clinical presentation, family history, and the results of biochemical and histopathologic tests. Here we propose a rational diagnostic algorithm for hepatic iron overload syndromes and illustrate potential pitfalls by presenting a family study in a pedigree with rare HFE variants (H63D and E168Q), in cis on the same chromosome. Although the clinical suspicion of hemochromatosis was confirmed by histology, chemical analysis of liver tissue revealed a normal hepatic iron concentration, which is compatible with the genetic finding of 1 normal and 1 doubly mutated allele. In conclusion, clinical suspicion of hemochromatosis and elevated serum iron parameters should prompt HFE genotyping for C282Y and H63D. Should they be uninformative, further genetic tests should be recommended only if iron overload in liver tissue has been confirmed chemically.

  10. Effects of Exogenous Antioxidants on Dietary Iron Overload

    OpenAIRE

    Asare, George A.; Kew, Michael C.; Mossanda, Kensese S.; Paterson, Alan C.; Siziba, Kwanele; Kahler-Venter, Christiana P.

    2008-01-01

    In dietary iron overload, excess hepatic iron promotes liver damage. The aim was to attenuate free radical-induced liver damage using vitamins. Four groups of 60 Wistar rats were studied: group 1 (control) was fed normal diet, group 2 (Fe) 2.5% pentacarbonyl iron (CI) followed by 0.5% Ferrocene, group 3 (Fe + V gp) CI, Ferrocene, plus vitamins A and E (42× and 10× RDA, respectively), group 4 (Fe – V gp) CI, Ferrocene diet, minus vitamins A and E. At 20 months, glutathione peroxidase (GPx), su...

  11. Assessment of Iron Overload in Homozygous and Heterozygous Beta Thalassemic Children below 5 Years of Age

    Directory of Open Access Journals (Sweden)

    Dhiraj J. Trivedi

    2014-07-01

    Full Text Available Background: Thalassemia is a genetic disease having 3-7% carrier rate in Indians. It is transfusion dependent anemia having high risk of iron overloading. A clinical symptom of iron overload becomes detectable in second decade causing progressive liver, heart and endocrine glands damage. There is a need to assess iron overload in thalassemics below 5 years of age to protect them from complications at later age of life. Aims and objectives: Present study was undertaken to estimate serum iron status and evaluate serum transferrin saturation in both homozygous & heterozygous form of thalassemia as an index of iron overload among children of one to five years of age. Materials and Methods: Clinically diagnosed thirty cases of β thalassemia major & thirty cases of β thalassemia minor having severe anemia, hepatospleenomegaly and between 1 year to 5 years of age were included in study group and same age matched healthy controls were included in the study. RBC indices and HbA, HbA2 and HbF were estimated along with serum iron & serum Total Iron Binding Capacity (TIBC and serum transferrin levels. Results: Significant difference was observed in hemoglobin levels between control and both beta thalassemia groups. Mean Corpuscular Volume (MCV and Mean Corpuscular Hemoglobin (MCH values were reduced. Hemoglobin electrophoresis showed the elevated levels of HbF and HbA2 in both beta thalassemia groups. Among serum iron parameters, serum iron, TIBC and transferrin saturation were elevated whereas serum transferrin levels were low in thalassemia major in children below 5 years of age. Conclusion: Although clinical symptoms of iron overload have been absent in thalassemic children below five years of age, biochemical iron overloading has started at much lower age which is of great concern.

  12. Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus.

    Science.gov (United States)

    Gonçalves, N; Gomes-Ferreira, C; Moura, C; Roncon-Albuquerque, R; Leite-Moreira, A F; Falcão-Pires, I

    2016-08-15

    Diabetic cardiomyopathy is characterized by cardiac structural and functional abnormalities. Additionally, chronic pressure overload conditions are highly prevalent amongst diabetic population and this association leads to a more severe myocardial impairment. The differences in myocardial pathophysiology between type 1 and type 2 diabetes mellitus (DM) still remain to be clarified. Thus, we aimed to investigate biventricular structural and functional changes promoted by the two types of DM and the impact of concomitant chronic pressure overload. Wistar rats were injected with streptozotocin (Type 1 DM, T1DM) or fed with a hypercaloric diet (Type 2 DM, T2DM). Pressure overload was imposed in DM animals by aortic constriction and after 5weeks of DM the cardiac function and structure were evaluated. Both types of DM promoted hypertrophy, increased fibrosis and advanced glycation end-products deposition, in the two ventricles. Interestingly, the induced myocardial alterations were distinct. While T1DM stimulated a pronounced hypertrophy and extracellular matrix remodeling, T2DM induced functional impairment. The negative impact of the association of DM with aortic constriction was more pronounced in T2DM, promoting impaired function and increased stiffness, particularly in the right ventricle. Our study demonstrated that the two types of diabetes induce distinct cardiac alterations per se or when combined with chronic pressure overload. T1DM promoted a more extensive remodeling in cardiac structure while T2DM significantly impaired ventricular function. The impact of pressure overload was more notorious in T2DM as observed by worse myocardial remodeling, suggesting a higher susceptibility to the deleterious effects of chronic pressure overload, namely hypertension, among this diabetic population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders

    NARCIS (Netherlands)

    de Swart, Louise; Hendriks, Jan C. M.; van der Vorm, Lisa N.; Cabantchik, Z. Ioav; Evans, Patricia J.; Hod, Eldad A.; Brittenham, Gary M.; Furman, Yael; Wojczyk, Boguslaw; Janssen, Mirian C. H.; Porter, John B.; Mattijssen, Vera E. J. M.; Biemond, Bart J.; MacKenzie, Marius A.; Origa, Raffaella; Galanello, Renzo; Hider, Robert C.; Swinkels, Dorine W.

    2016-01-01

    Non-transferrin-bound iron and its labile (redox active) plasma iron component are thought to be potentially toxic forms of iron originally identified in the serum of patients with iron overload. We compared ten worldwide leading assays (6 for non-transferrin-bound iron and 4 for labile plasma iron)

  14. Quantification of liver fat in the presence of iron overload.

    Science.gov (United States)

    Horng, Debra E; Hernando, Diego; Reeder, Scott B

    2017-02-01

    To evaluate the accuracy of R2* models (1/T 2 * = R2*) for chemical shift-encoded magnetic resonance imaging (CSE-MRI)-based proton density fat-fraction (PDFF) quantification in patients with fatty liver and iron overload, using MR spectroscopy (MRS) as the reference standard. Two Monte Carlo simulations were implemented to compare the root-mean-squared-error (RMSE) performance of single-R2* and dual-R2* correction in a theoretical liver environment with high iron. Fatty liver was defined as hepatic PDFF >5.6% based on MRS; only subjects with fatty liver were considered for analyses involving fat. From a group of 40 patients with known/suspected iron overload, nine patients were identified at 1.5T, and 13 at 3.0T with fatty liver. MRS linewidth measurements were used to estimate R2* values for water and fat peaks. PDFF was measured from CSE-MRI data using single-R2* and dual-R2* correction with magnitude and complex fitting. Spectroscopy-based R2* analysis demonstrated that the R2* of water and fat remain close in value, both increasing as iron overload increases: linear regression between R2* W and R2* F resulted in slope = 0.95 [0.79-1.12] (95% limits of agreement) at 1.5T and slope = 0.76 [0.49-1.03] at 3.0T. MRI-PDFF using dual-R2* correction had severe artifacts. MRI-PDFF using single-R2* correction had good agreement with MRS-PDFF: Bland-Altman analysis resulted in -0.7% (bias) ± 2.9% (95% limits of agreement) for magnitude-fit and -1.3% ± 4.3% for complex-fit at 1.5T, and -1.5% ± 8.4% for magnitude-fit and -2.2% ± 9.6% for complex-fit at 3.0T. Single-R2* modeling enables accurate PDFF quantification, even in patients with iron overload. 1 J. Magn. Reson. Imaging 2017;45:428-439. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Iron overload in the liver diagnostic and quantification

    Energy Technology Data Exchange (ETDEWEB)

    Alustiza, Jose M. [Osatek SA, P Dr. Beguiristain 109, 20014, San Sebastian, Guipuzcoa (Spain)]. E-mail: jmalustiza@osatek.es; Castiella, Agustin [Osatek SA, P Dr. Beguiristain 109, 20014, San Sebastian, Guipuzcoa (Spain); Juan, Maria D. de [Osatek SA, P Dr. Beguiristain 109, 20014, San Sebastian, Guipuzcoa (Spain); Emparanza, Jose I. [Osatek SA, P Dr. Beguiristain 109, 20014, San Sebastian, Guipuzcoa (Spain); Artetxe, Jose [Osatek SA, P Dr. Beguiristain 109, 20014, San Sebastian, Guipuzcoa (Spain); Uranga, Maite [Osatek SA, P Dr. Beguiristain 109, 20014, San Sebastian, Guipuzcoa (Spain)

    2007-03-15

    Hereditary Hemochromatosis is the most frequent modality of iron overload. Since 1996 genetic tests have facilitated significantly the non-invasive diagnosis of the disease. There are however many cases of negative genetic tests that require confirmation by hepatic iron quantification which is traditionally performed by hepatic biopsy. There are many studies that have demonstrated the possibility of performing hepatic iron quantification with Magnetic Resonance. However, a consensus has not been reached yet regarding the technique or the possibility to reproduce the same method of calculus in different machines. This article reviews the state of the art of the question and delineates possible future lines to standardise this non-invasive method of hepatic iron quantification.

  16. Iron overload in the liver diagnostic and quantification

    International Nuclear Information System (INIS)

    Alustiza, Jose M.; Castiella, Agustin; Juan, Maria D. de; Emparanza, Jose I.; Artetxe, Jose; Uranga, Maite

    2007-01-01

    Hereditary Hemochromatosis is the most frequent modality of iron overload. Since 1996 genetic tests have facilitated significantly the non-invasive diagnosis of the disease. There are however many cases of negative genetic tests that require confirmation by hepatic iron quantification which is traditionally performed by hepatic biopsy. There are many studies that have demonstrated the possibility of performing hepatic iron quantification with Magnetic Resonance. However, a consensus has not been reached yet regarding the technique or the possibility to reproduce the same method of calculus in different machines. This article reviews the state of the art of the question and delineates possible future lines to standardise this non-invasive method of hepatic iron quantification

  17. Iron overload in very low birth weight infants: Serum Ferritin and adverse outcomes

    LENUS (Irish Health Repository)

    Barrett, M

    2011-11-01

    Adequate iron isessential for growth and haematpoiesis. Oral iron supplementation is the standard of care in VLBW infants. Post mortem evidence has confirmed significant iron overload. Excessive free iron has been associated with free radical formation and brain injury in term infants.

  18. The role of MR imaging in detection of hepatic iron overload in patients with cirrhosis of different origins.

    Science.gov (United States)

    Szurowska, Edyta; Sikorska, Katarzyna; Izycka-Swieszewska, E; Nowicki, Tomasz; Romanowski, Tomasz; Bielawski, Krzysztof P; Studniarek, Michał

    2010-01-27

    There are many pathological conditions with hepatic iron overload. Classical definite diagnostic methods of these disorders are invasive and based on a direct tissue biopsy material. For the last years the role of MR imaging in liver diagnostics has been increasing. MRI shows changes of liver intensity in patients with hepatic iron overload. Changes in MR signal are an indirect consequence of change of relaxation times T2 and T2*, that can be directly measured. The purpose of the study was to evaluate usefulness of MR imaging in the detection of hepatic iron overload in patients with cirrhosis of different origins. MR imaging at 1.5T was prospectively performed in 44 patients with liver cirrhosis who had undergone liver biopsy with histopathological assessment of hepatic iron deposits. In all patients the following sequences were used: SE, Express, GRE in T2 and T1-weighted images. Signal intensity (SI) was measured on images obtained with each T2 weighted sequence by means of regions of interest, placed in the liver and paraspinal muscles. The correlation between iron overload, histopathological score, serum ferritin and SI ratio was analyzed. In 20 patients with iron overload confirmed by the biopsy, the liver parenchyma demonstrated lower signal intensity than that of paraspinal muscles. This effect was visible only in 8 patients with hepatic iron overload in Express T2-weighted images. Higher signal intensity of liver than that of skeletal muscles on GRE - T2 weighted images was noted in 24 patients with cirrhosis and without elevated hepatic iron concentration. We observed a correlation between low and high iron concentration and liver to muscle SI ratio. MR imaging is a useful and fast noninvasive diagnostic tool for the detection of liver iron overload in patients with cirrhosis of different origins.Liver to muscle SI ratio in GRE-T2-weighted sequence facilitates to differentiate patients with low and high degree of hepatic iron overload, which correlates

  19. Effect of Andrographolide‭ Extract on Blood Glucose and Lipid Profile in Rats with Secondary Iron Overload

    Directory of Open Access Journals (Sweden)

    َArash Mehri Pirayvatlo

    2017-01-01

    Full Text Available Background & objectives: Iron overload is involved in the pathophysiology of many diseases including diabetes. In fact, the excess iron by creating free radicals makes damage to pancreas and leads to insulin resistance and diabetes. Andrographolide extract has hypoglycemic and antioxidant properties. This study has surveyed the effects of andrographolide on blood glucose and lipid profile in rats with secondary iron overload. Methods: In this experimental study, 36 male Wistar rats were randomly divided into 6 groups: the healthy control group, secondary iron overload group, secondary iron overload groups treated with a dose of 3.5 and 7 mg/kg of andrographolide extract, and andrographolide groups treated with a dose of 3.5 and 7 mg/kg of extract. Iron and extract were injected for 6 and 12 days, respectively. Blood samples were taken for measurement of blood glucose and lipid profiles. Data were analyzed using ANOVA test. Results: The pathological results of samples from liver of animals receiving iron showed that the iron was deposited in the liver tissues. Iron injection significantly increased blood glucose levels compared to healthy control group (p<0.05. In the iron overload group, andrographolide extract with a dose of 3.5 mg/kg or 7 mg/kg significantly decreased blood glucose levels (p<0.05. Iron injections did not increase the serum triglyceride and cholesterollevels. Injections of andrographolide extract with a dose of 3.5 mg/kg and 7 mg/kg, significantly decreased the cholesterol levels compared to iron receiving group (p<0.05. Conclusion: Results of this study showed that the andrographolide with different doses may be effective in the treatment of diabetes by reducing serum glucose and cholesterol levels.

  20. A natural antioxidant, tannic acid mitigates iron-overload induced hepatotoxicity in Swiss albino mice through ROS regulation.

    Science.gov (United States)

    Basu, Tapasree; Panja, Sourav; Shendge, Anil Khushalrao; Das, Abhishek; Mandal, Nripendranath

    2018-05-01

    Tannic acid (TA), a water soluble natural polyphenol with 8 gallic acids groups, is abundantly present in various medicinal plants. Previously TA has been investigated for its antimicrobial and antifungal properties. Being a large polyphenol, TA chelates more than 1 metal. Hence TA has been explored for potent antioxidant activities against reactive oxygen species (ROS), reactive nitrogen species (RNS) and as iron chelator in vitro thereby mitigating iron-overload induced hepatotoxicity in vivo. Iron dextran was injected intraperitoneally in Swiss albino mice to induce iron-overload triggered hepatotoxicity, followed by oral administration of TA for remediation. After treatment, liver, spleen, and blood samples were processed from sacrificed animals. The liver iron, serum ferritin, serum markers, ROS, liver antioxidant status, and liver damage parameters were assessed, followed by histopathology and protein expression studies. Our results show that TA is a prominent ROS and RNS scavenger as well as iron chelator in vitro. It also reversed the ROS levels in vivo and restricted the liver damage parameters as compared to the standard drug, desirox. Moreover, this natural polyphenol exclusively ameliorates the histopathological and fibrotic changes in liver sections reducing the iron-overload, along with chelation of liver iron and normalization of serum ferritin. The protective role of TA against iron-overload induced apoptosis in liver was further supported by changed levels of caspase 3, PARP as well as Bax/BCl-2 ratio. Thus, TA can be envisaged as a better orally administrable iron chelator to reduce iron-overload induced hepatotoxicity through ROS regulation. © 2018 Wiley Periodicals, Inc.

  1. Diagnosis, management and response criteria of iron overload in myelodysplastic syndromes (MDS): updated recommendations of the Austrian MDS platform.

    Science.gov (United States)

    Valent, Peter; Stauder, Reinhard; Theurl, Igor; Geissler, Klaus; Sliwa, Thamer; Sperr, Wolfgang R; Bettelheim, Peter; Sill, Heinz; Pfeilstöcker, Michael

    2018-02-01

    Despite the availability of effective iron chelators, transfusion-related morbidity is still a challenge in chronically transfused patients with myelodysplastic syndromes (MDS). In these patients, transfusion-induced iron overload may lead to organ dysfunction or even organ failure. In addition, iron overload is associated with reduced overall survival in MDS. Areas covered: During the past 10 years, various guidelines for the management of MDS patients with iron overload have been proposed. In the present article, we provide our updated recommendations for the diagnosis, prevention and therapy of iron overload in MDS. In addition, we propose refined treatment response criteria. As in 2006 and 2007, recommendations were discussed and formulated by participants of our Austrian MDS platform in a series of meetings in 2016 and 2017. Expert commentary: Our updated recommendations should support early recognition of iron overload, optimal patient management and the measurement of clinical responses to chelation treatment in daily practice.

  2. Global transcriptional response to Hfe deficiency and dietary iron overload in mouse liver and duodenum.

    Directory of Open Access Journals (Sweden)

    Alejandra Rodriguez

    2009-09-01

    Full Text Available Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in murine liver and duodenum. Illumina arrays containing over 47,000 probes were used to study global transcriptional changes. Quantitative RT-PCR (Q-RT-PCR was used to validate the microarray results. In the liver, the expression of 151 genes was altered in Hfe(-/- mice while dietary iron overload changed the expression of 218 genes. There were 173 and 108 differentially expressed genes in the duodenum of Hfe(-/- mice and mice with dietary iron overload, respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR. Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes.

  3. The role of magnetic resonance imaging in the evaluation of transfusional iron overload in myelodysplastic syndromes.

    Science.gov (United States)

    Petrou, Emmanouil; Mavrogeni, Sophie; Karali, Vasiliki; Kolovou, Genovefa; Kyrtsonis, Marie-Christine; Sfikakis, Petros P; Panayiotidis, Panayiotis

    2015-01-01

    Myelodysplastic syndromes represent a group of heterogeneous hematopoietic neoplasms derived from an abnormal multipotent progenitor cell, characterized by a hyperproliferative bone marrow, dysplasia of the cellular hemopoietic elements and ineffective erythropoiesis. Anemia is a common finding in myelodysplastic syndrome patients, and blood transfusions are the only therapeutic option in approximately 40% of cases. The most serious side effect of regular blood transfusion is iron overload. Currently, cardiovascular magnetic resonance using T2 is routinely used to identify patients with myocardial iron overload and to guide chelation therapy, tailored to prevent iron toxicity in the heart. This is a major validated non-invasive measure of myocardial iron overloading and is superior to surrogates such as serum ferritin, liver iron, ventricular ejection fraction and tissue Doppler parameters. The indication for iron chelation therapy in myelodysplastic syndrome patients is currently controversial. However, cardiovascular magnetic resonance may offer an excellent non-invasive, diagnostic tool for iron overload assessment in myelodysplastic syndromes. Further studies are needed to establish the precise indications of chelation therapy and the clinical implications of this treatment on survival in myelodysplastic syndromes. Copyright © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  4. Iron overload across the spectrum of non-transfusion-dependent thalassaemias: role of erythropoiesis, splenectomy and transfusions.

    Science.gov (United States)

    Porter, John B; Cappellini, Maria Domenica; Kattamis, Antonis; Viprakasit, Vip; Musallam, Khaled M; Zhu, Zewen; Taher, Ali T

    2017-01-01

    Non-transfusion-dependent thalassaemias (NTDT) encompass a spectrum of anaemias rarely requiring blood transfusions. Increased iron absorption, driven by hepcidin suppression secondary to erythron expansion, initially causes intrahepatic iron overload. We examined iron metabolism biomarkers in 166 NTDT patients with β thalassaemia intermedia (n = 95), haemoglobin (Hb) E/β thalassaemia (n = 49) and Hb H syndromes (n = 22). Liver iron concentration (LIC), serum ferritin (SF), transferrin saturation (TfSat) and non-transferrin-bound iron (NTBI) were elevated and correlated across diagnostic subgroups. NTBI correlated with soluble transferrin receptor (sTfR), labile plasma iron (LPI) and nucleated red blood cells (NRBCs), with elevations generally confined to previously transfused patients. Splenectomised patients had higher NTBI, TfSat, NRBCs and SF relative to LIC, than non-splenectomised patients. LPI elevations were confined to patients with saturated transferrin. Erythron expansion biomarkers (sTfR, growth differentiation factor-15, NRBCs) correlated with each other and with iron overload biomarkers, particularly in Hb H patients. Plasma hepcidin was similar across subgroups, increased with >20 prior transfusions, and correlated inversely with TfSat, NTBI, LPI and NRBCs. Hepcidin/SF ratios were low, consistent with hepcidin suppression relative to iron overload. Increased NTBI and, by implication, risk of extra-hepatic iron distribution are more likely in previously transfused, splenectomised and iron-overloaded NTDT patients with TfSat >70%. © 2016 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  5. Hepatic iron overload following liver transplantation of a C282y homozygous allograft: a case report and literature review.

    LENUS (Irish Health Repository)

    Dwyer, Jeremy P

    2011-11-01

    Hereditary haemochromatosis is a common genetic disease associated with progressive iron overload and parenchymal organ damage including liver, pancreas and heart. We report a case of inadvertent transplantation of a liver from a haemochromatosis donor to a 56-year-old Asian female. Progressive iron overload occurred over a 2 year follow up as assessed by liver biopsy and iron studies in the absence of a secondary cause of iron overload, supporting a primary role of liver rather than small intestine in the regulation of iron homeostasis in hereditary haemochromatosis.

  6. Iron overload triggers mitochondrial fragmentation via calcineurin-sensitive signals in HT-22 hippocampal neuron cells

    International Nuclear Information System (INIS)

    Park, Junghyung; Lee, Dong Gil; Kim, Bokyung; Park, Sun-Ji; Kim, Jung-Hak; Lee, Sang-Rae; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2015-01-01

    Highlights: • FAC-induced iron overload promotes neuronal apoptosis. • Iron overload causes mitochondrial fragmentation in a Drp1-dependent manner. • Iron-induced Drp1 activation depends on dephosphorylation of Drp1(Ser637). • Calcineurin is a key regulator of Drp1-dependent mitochondrial fission by iron. - Abstract: The accumulation of iron in neurons has been proposed to contribute to the pathology of numerous neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. However, insufficient research has been conducted on the precise mechanism underlying iron toxicity in neurons. In this study, we investigated mitochondrial dynamics in hippocampal HT-22 neurons exposed to ferric ammonium citrate (FAC) as a model of iron overload and neurodegeneration. Incubation with 150 μM FAC for 48 h resulted in decreased cell viability and apoptotic death in HT-22 cells. The FAC-induced iron overload triggered mitochondrial fragmentation, which was accompanied by Drp1(Ser637) dephosphorylation. Iron chelation with deferoxamine prevented the FAC-induced mitochondrial fragmentation and apoptotic cell death by inhibiting Drp1(Ser637) dephosphorylation. In addition, a S637D mutation of Drp1, which resulted in a phosphorylation-mimetic form of Drp1 at Ser637, protected against the FAC-induced mitochondrial fragmentation and neuronal apoptosis. FK506 and cyclosporine A, inhibitors of calcineurin activation, determined that calcineurin was associated with the iron-induced changes in mitochondrial morphology and the phosphorylation levels of Drp1. These results indicate that the FAC-induced dephosphorylation of Drp1-dependent mitochondrial fragmentation was rescued by the inhibition of calcineurin activation. Therefore, these findings suggest that calcineurin-mediated phosphorylation of Drp1(Ser637) acts as a key regulator of neuronal cell loss by modulating mitochondrial dynamics in iron-induced toxicity. These results may contribute to the

  7. Role of Three-Dimensional Speckle Tracking Echocardiography in the Quantification of Myocardial Iron Overload in Patients with Beta-Thalassemia Major.

    Science.gov (United States)

    Li, Shu-Juan; Hwang, Yu-Yan; Ha, Shau-Yin; Chan, Godfrey C F; Mok, Amanda S P; Wong, Sophia J; Cheung, Yiu-Fai

    2016-09-01

    The new three-dimensional speckle tracking echocardiography (3DSTE) may enable comprehensive quantification of global left ventricular (LV) myocardial mechanics. Twenty-four patients aged 29.3 ± 5.2 years and 22 controls were studied. 3DSTE was performed to assess LV 3D global strain, twist and torsion, ejection fraction, and systolic dyssynchrony index (SDI). The LV SDI was calculated as % of SD of times-to-peak strain of 16 segments/RR interval. The global performance index (GPI) was calculated as (global 3D strain·torsion)/SDI. Area under the receiver operating characteristic curve (AUC) was calculated to determine the capability of 3DSTE parameters to discriminate between patients with (cardiac magnetic resonance T2* overload. Compared with controls, patients had significantly lower LV global 3D strain (P overload. The LV composite index of strain, torsion, and dyssynchrony derived from 3DSTE enables sensitive detection of myocardial iron overload in patients with thalassemia. © 2016, Wiley Periodicals, Inc.

  8. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  9. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Gabriele G. Schiattarella

    2018-05-01

    Full Text Available Left ventricular hypertrophy (LVH is a major contributor to the development of heart failure (HF. Alterations in cyclic adenosine monophosphate (cAMP-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA anchor proteins (AKAPs, tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 (Akap1-/-, Akap1 heterozygous (Akap1+/-, and their wild-type (wt littermates underwent transverse aortic constriction (TAC or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1-/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 (Siah2 knockout mice (Siah2-/-. Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  10. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.

    Science.gov (United States)

    Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia

    2018-01-01

    Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  11. A free software for the calculation of T2* values for iron overload assessment.

    Science.gov (United States)

    Fernandes, Juliano Lara; Fioravante, Luciana Andrea Barozi; Verissimo, Monica P; Loggetto, Sandra R

    2017-06-01

    Background Iron overload assessment with magnetic resonance imaging (MRI) using T2* has become a key diagnostic method in the management of many diseases. Quantitative analysis of the MRI images with a cost-effective tool has been a limitation to increased use of the method. Purpose To provide a free software solution for this purpose comparing the results with a commercial solution. Material and Methods The free tool was developed as a standalone program to be directly downloaded and ran in a common personal computer platform without the need of a dedicated workstation. Liver and cardiac T2* values were calculated using both tools and the values obtained compared between them in a group of 56 patients with suspected iron overload using Bland-Altman plots and concordance correlation coefficients (CCC). Results In the heart, the mean T2* differences between the two methods was 0.46 ms (95% confidence interval [CI], -0.037 -0.965) and in the liver 0.49 ms (95% CI, 0.257-0.722). The CCC for both the heart and the liver were significantly high (0.98 [95% CI, 0.966-0.988] with a Pearson ρ of 0.9811 and 0.991 [95% CI, 0.986-0.994] with a Pearson ρ of 0.996, respectively. No significant differences were observed when analyzing only patients with abnormal concentrations of iron in both organs compared to the whole cohort. Conclusion The proposed free software tool is accurate for calculation of T2* values of the liver and heart and might be a solution for centers that cannot use paid commercial solutions.

  12. Effects of quercetin on hemoglobin-dependent redox reactions: relationship to iron-overload rat liver injury.

    Science.gov (United States)

    Lu, Nai-Hao; Chen, Chao; He, Ying-Jie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2013-01-01

    Flavonoids have been widely reported to protect liver injury in iron-overload diseases, where the mechanism of this therapeutic action is dependent on their antioxidant effects, including free radical scavenging and metal-chelating. In this study, in contrast to the significant decrease in iron content, quercetin (Qu) from lower diet (0.3%, w/w) showed pro-oxidant ability on protein carbonyl formation and exhibited unobvious effect on iron-overload rat liver injury. Furthermore, the anti- and pro-oxidant activities of Qu on hemoglobin (Hb)-dependent redox reactions (i.e. the oxidative stability of Hb and its cytotoxic ferryl intermediate, Hb-induced protein oxidation) were investigated to illustrate the elevated protein oxidation in lower Qu-treated iron-overload rat. It was found that superoxide (O₂·⁻) and hydrogen peroxide (H₂O₂) were generated during the reaction between Qu and Hb. Qu, however, effectively reduced ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. Moreover, Qu could significantly aggravate Hb-H₂O₂-induced protein oxidation at low concentrations and exhibit protective effects at high concentrations. Different from the classic antioxidant mechanisms of Qu, the dual effects on Hb redox reactions in vitro, therefore, may provide new insights into the physiological and pharmacological implications of Qu with iron-overload disease.

  13. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons.

    Science.gov (United States)

    Tao, Ling-Xue; Huang, Xiao-Tian; Chen, Yu-Ting; Tang, Xi-Can; Zhang, Hai-Yan

    2016-11-01

    Iron dyshomeostasis is one of the primary causes of neuronal death in Alzheimer's disease (AD). Huperzine A (HupA), a natural inhibitor of acetylcholinesterase (AChE), is a licensed anti-AD drug in China and a nutraceutical in the United Sates. Here, we investigated the protective effects of HupA against iron overload-induced injury in neurons. Rat cortical neurons were treated with ferric ammonium citrate (FAC), and cell viability was assessed with MTT assays. Reactive oxygen species (ROS) assays and adenosine triphosphate (ATP) assays were performed to assess mitochondrial function. The labile iron pool (LIP) level, cytosolic-aconitase (c-aconitase) activity and iron uptake protein expression were measured to determine iron metabolism changes. The modified Ellman's method was used to evaluate AChE activity. HupA significantly attenuated the iron overload-induced decrease in neuronal cell viability. This neuroprotective effect of HupA occurred concurrently with a decrease in ROS and an increase in ATP. Moreover, HupA treatment significantly blocked the upregulation of the LIP level and other aberrant iron metabolism changes induced by iron overload. Additionally, another specific AChE inhibitor, donepezil (Don), at a concentration that caused AChE inhibition equivalent to that of HupA negatively, influenced the aberrant changes in ROS, ATP or LIP that were induced by excessive iron. We provide the first demonstration of the protective effects of HupA against iron overload-induced neuronal damage. This beneficial role of HupA may be attributed to its attenuation of oxidative stress and mitochondrial dysfunction and elevation of LIP, and these effects are not associated with its AChE-inhibiting effect.

  14. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Zhou, Heng; Xu, Dachun; Shan, Tichao; Zhang, Fan; Guo, Yuan; Chen, Yuguo; Wu, Dawei

    2015-01-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  15. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  16. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload.

    Science.gov (United States)

    Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo

    2015-08-01

    Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Diagnostic Value of Pulsed Wave Tissue Doppler Imaging in Asymptomatic Beta- Thalassemia Major Children and Young Adults; Relation to Chemical Biomarkers of Left Ventricular Function and Iron Overload.

    Science.gov (United States)

    Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T

    2015-01-01

    Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E' (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E' ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP.

  18. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    Science.gov (United States)

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  19. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane.

    Directory of Open Access Journals (Sweden)

    Leilismara Sousa

    Full Text Available Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1, iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5% than in women and was associated with an increase (446% in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS and an increase (327% in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132% in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.

  20. The impact of iron overload and its treatment on quality of life: results from a literature review.

    Science.gov (United States)

    Abetz, Linda; Baladi, Jean-Francois; Jones, Paula; Rofail, Diana

    2006-09-28

    To assess the literature for the impact of iron overload and infusion Iron Chelation Therapy (ICT) on patients' quality of life (QoL), and the availability of QoL instruments for patients undergoing infusion ICT. Also, to obtain patients' experiences of having iron overload and receiving infusion ICT, and experts' clinical opinions about the impact of treatment on patients' lives. A search of studies published between 1966 and 2004 was conducted using Medline and the Health Economic Evaluation Database (HEED). Qualitative results from patient and expert interviews were analysed. Hand searching of relevant conference abstracts completed the search. Few studies measuring the impact of ICT with deferoxamine (DFO) on patients QoL were located (n = 15). QoL domains affected included: depression; fatigue; dyspnoea; physical functioning; psychological distress; decrease in QoL during hospitalization. One theme in all articles was that oral ICT should improve QoL. No iron overload or ICT-specific QoL instruments were located in the articles. Interviews revealed that the impact of ICT on patients with thalassemia, sickle cell disease, and myelodysplastic syndromes is high. A limited number of studies assessed the impact of ICT or iron overload on QoL. All literature suggested a need for easily administered, efficacious and well tolerated oral iron overload treatments, given the impact of current ICT on adherence. Poor adherence to ICT was documented to negatively impact survival. Further research is warranted to continue the qualitative and quantitative study of QoL using validated instruments in patients receiving ICT to further understanding the issues and improve patients QoL.

  1. Incidental splenic nodules found on MR imaging done for assessment of iron overload in children

    International Nuclear Information System (INIS)

    Ahyad, Rayan A.; Lam, Christopher Z.; Navarro, Oscar M.; Shearkhani, Omid

    2017-01-01

    MR imaging is used to assess iron overload in patients with hemoglobinopathies and in those who have undergone multiple blood transfusions. Sometimes splenic nodules are found incidentally on these examinations and this may cause diagnostic uncertainty. To determine the prevalence, imaging characteristics and evolution of splenic nodules found on MR imaging for iron overload evaluation. Retrospective review of all MR imaging examinations performed for iron overload assessment from 2005 to 2015 in a tertiary pediatric hospital. The presence of focal splenic nodules including number, size, signal characteristics and changes on follow-up MR imaging were recorded. Relevant patient clinical information including underlying hematological disease was also documented. A total of 318 patients had MR imaging for iron overload assessment. Of these, 25 (8%) had at least one incidental splenic nodule. Sickle cell disease was present in 22 patients (88%) and thalassemia in 3 (12%). On intermediate-weighted spin-echo images, the nodules had high signal intensity compared to the remainder of the spleen in 23 patients (92%) and low signal intensity in the remaining 2 (8%). In all patients (100%) the nodules showed progressive loss of signal intensity with increasing echo time values. Follow-up MR imaging was performed in 20 (80%) patients, which showed an increase in the size of the splenic nodules in 7 patients (35%) stability in 11 (55%) and a decrease in size in 2 (10%). It is not uncommon to find splenic nodules during MR evaluation of iron overload. In patients with sickle cell disease, most of these nodules are thought to represent preserved splenic tissue and appear hyperintense compared to the remainder of the spleen. They frequently remain stable on follow-up imaging, although about a third of them may show growth. Awareness of these nodules is important to avoid concern for potential malignancy and unnecessary investigations. (orig.)

  2. Incidental splenic nodules found on MR imaging done for assessment of iron overload in children

    Energy Technology Data Exchange (ETDEWEB)

    Ahyad, Rayan A.; Lam, Christopher Z.; Navarro, Oscar M. [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Shearkhani, Omid [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada)

    2017-06-15

    MR imaging is used to assess iron overload in patients with hemoglobinopathies and in those who have undergone multiple blood transfusions. Sometimes splenic nodules are found incidentally on these examinations and this may cause diagnostic uncertainty. To determine the prevalence, imaging characteristics and evolution of splenic nodules found on MR imaging for iron overload evaluation. Retrospective review of all MR imaging examinations performed for iron overload assessment from 2005 to 2015 in a tertiary pediatric hospital. The presence of focal splenic nodules including number, size, signal characteristics and changes on follow-up MR imaging were recorded. Relevant patient clinical information including underlying hematological disease was also documented. A total of 318 patients had MR imaging for iron overload assessment. Of these, 25 (8%) had at least one incidental splenic nodule. Sickle cell disease was present in 22 patients (88%) and thalassemia in 3 (12%). On intermediate-weighted spin-echo images, the nodules had high signal intensity compared to the remainder of the spleen in 23 patients (92%) and low signal intensity in the remaining 2 (8%). In all patients (100%) the nodules showed progressive loss of signal intensity with increasing echo time values. Follow-up MR imaging was performed in 20 (80%) patients, which showed an increase in the size of the splenic nodules in 7 patients (35%) stability in 11 (55%) and a decrease in size in 2 (10%). It is not uncommon to find splenic nodules during MR evaluation of iron overload. In patients with sickle cell disease, most of these nodules are thought to represent preserved splenic tissue and appear hyperintense compared to the remainder of the spleen. They frequently remain stable on follow-up imaging, although about a third of them may show growth. Awareness of these nodules is important to avoid concern for potential malignancy and unnecessary investigations. (orig.)

  3. Analysis of HFE gene mutations and HLA-A alleles in Brazilian patients with iron overload

    Directory of Open Access Journals (Sweden)

    Rodolfo Delfini Cançado

    Full Text Available CONTEXT AND OBJECTIVE: Hemochromatosis is a common inherited disorder of iron metabolism and one of the most important causes of iron overload. The objective was to analyze the presence of C282Y, H63D and S65C mutations in the HFE gene and HLA-A alleles for a group of Brazilian patients with iron overload, and to correlate genotype with clinical and laboratory variables. DESIGN AND SETTING: Prospective study, in Discipline of Hematology and Oncology, Faculdade de Ciências Médicas da Santa Casa de Misericórdia de São Paulo. METHODS: We studied 35 patients with iron overload seen at our outpatient unit between January 2001 and December 2003. Fasting levels of serum iron and ferritin, and total iron-binding capacity, were assayed using standard techniques. Determinations of C282Y, H63D and S65C mutations in the HFE gene and of HLA-A alleles were performed by polymerase chain reaction (PCR. RESULTS: Twenty-six out of 35 patients (74% presented at least one of the HFE gene mutations analyzed. Among these, five (14% were C282Y/C282Y, four (11% C282Y/H63D, one (3% H63D/H63D, six (17% C282Y/WT and ten (29% H63D/WT. No patients had the S65C mutation and nine (25% did not present any of the three HFE mutations. Four out of five patients with C282Y/C282Y genotype (80% and three out of four patients with C282Y/H63D genotype (75% were HLA A*03. CONCLUSION: Analysis of HFE gene mutations constitutes an important procedure in identifying patients with hereditary hemochromatosis, particularly for patients with iron overload.

  4. Minocycline attenuates brain injury and iron overload after intracerebral hemorrhage in aged female rats.

    Science.gov (United States)

    Dai, Shuhui; Hua, Ya; Keep, Richard F; Novakovic, Nemanja; Fei, Zhou; Xi, Guohua

    2018-06-05

    Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2 ⁎ -weighted and T2 ⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Virtual iron concentration imaging based on dual-energy CT for noninvasive quantification and grading of liver iron content: An iron overload rabbit model study

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian Fu; Yang, Yi; Xie, Xue Qian; Zhang, Huan; Chai, Wei Min; Yan, Fu Hua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Yan, Jing [Siemens Shanghai Medical Equipment Ltd., Shanghai (China); Wang, Li [Fudan University, Center of Analysis and Measurement, Shanghai (China); Schmidt, Bernhard [Siemens AG, Healthcare Sector, Forchheim (Germany)

    2015-09-15

    To assess the accuracy of liver iron content (LIC) quantification and grading ability associated with clinical LIC stratification using virtual iron concentration (VIC) imaging on dual-energy CT (DECT) in an iron overload rabbit model. Fifty-one rabbits were prepared as iron-loaded models by intravenous injection of iron dextran. DECT was performed at 80 and 140 kVp. VIC images were derived from an iron-specific algorithm. Postmortem LIC assessments were conducted on an inductively coupled plasma (ICP) spectrometer. Correlation between VIC and LIC was analyzed. VIC were stratified according to the corresponding clinical LIC thresholds of 1.8, 3.2, 7.0, and 15.0 mg Fe/g. Diagnostic performance of stratification was evaluated by receiver operating characteristic analysis. VIC linearly correlated with LIC (r = 0.977, P < 0.01). No significant difference was observed between VIC-derived LICs and ICP (P > 0.05). For the four clinical LIC thresholds, the corresponding cutoff values of VIC were 19.6, 25.3, 36.9, and 61.5 HU, respectively. The highest sensitivity (100 %) and specificity (100 %) were achieved at the threshold of 15.0 mg Fe/g. Virtual iron concentration imaging on DECT showed potential ability to accurately quantify and stratify hepatic iron accumulation in the iron overload rabbit model. (orig.)

  6. The impact of iron overload and its treatment on quality of life: results from a literature review

    Directory of Open Access Journals (Sweden)

    Jones Paula

    2006-09-01

    Full Text Available Abstract Background To assess the literature for the impact of iron overload and infusion Iron Chelation Therapy (ICT on patients' quality of life (QoL, and the availability of QoL instruments for patients undergoing infusion ICT. Also, to obtain patients' experiences of having iron overload and receiving infusion ICT, and experts' clinical opinions about the impact of treatment on patients' lives. Methods A search of studies published between 1966 and 2004 was conducted using Medline and the Health Economic Evaluation Database (HEED. Qualitative results from patient and expert interviews were analysed. Hand searching of relevant conference abstracts completed the search. Results Few studies measuring the impact of ICT with deferoxamine (DFO on patients QoL were located (n = 15. QoL domains affected included: depression; fatigue; dyspnoea; physical functioning; psychological distress; decrease in QoL during hospitalization. One theme in all articles was that oral ICT should improve QoL. No iron overload or ICT-specific QoL instruments were located in the articles. Interviews revealed that the impact of ICT on patients with thalassemia, sickle cell disease, and myelodysplastic syndromes is high. Conclusion A limited number of studies assessed the impact of ICT or iron overload on QoL. All literature suggested a need for easily administered, efficacious and well tolerated oral iron overload treatments, given the impact of current ICT on adherence. Poor adherence to ICT was documented to negatively impact survival. Further research is warranted to continue the qualitative and quantitative study of QoL using validated instruments in patients receiving ICT to further understanding the issues and improve patients QoL.

  7. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.

    Science.gov (United States)

    Aziza, Samy Ali Hussein; Azab, Mohammed El-Said; El-Shall, Soheir Kamal

    2014-08-01

    Iron is an essential element that participates in several metabolic activities of cells; however, excess iron is a major cause of iron-induced oxidative stress and several human diseases. Natural flavonoids, as rutin, are well-known antioxidants and could be efficient protective agents. Therefore, the present study was undertaken to evaluate the protective influence of rutin supplementation to improve rat antioxidant systems against IOL-induced hepatic oxidative stress. Sixty male albino rats were randomly divided to three equal groups. The first group, the control, the second group, iron overload group, the third group was used as iron overload+rutin group. Rats received six doses of ferric hydroxide polymaltose (100 mg kg(-1) b.wt.) as one dose every two days, by intraperitoneal injections (IP) and administrated rutin (50 mg kg(-1) b.wt.) as one daily oral dose until the sacrificed day. Blood samples for serum separation and liver tissue specimens were collected three times, after three, four and five weeks from the onset of the experiment. Serum iron profiles total iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), transferrin (Tf) and Transferrin Saturation% (TS%)}, ferritin, albumin, total Protein, total cholesterol, triacylglycerols levels and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were determined. Moreover, total iron in the liver, L-malondialdehyde (L-MDA), glutathione (GSH), Nitric Oxide (NO) and Total Nucleic Acid (TNA) levels and glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) activities were also determined. The obtained results revealed that, iron overload (IOL) resulted in significant increase in serum iron, TIBC, Tf, TS% and ferritin levels and AST and ALT activities and also increased liver iron, L-MDA and NO levels. Meanwhile, it decreased serum UIBC, total cholesterol, triacylglycerols, albumin, total protein and liver GSH, TNA levels and Gpx, CAT

  8. Liver iron overloading in captive muriquis (Brachyteles spp.).

    Science.gov (United States)

    Santos, Stéfanie V; Strefezzi, Ricardo De F; Pissinatti, Alcides; Catão-Dias, José L

    2011-04-01

    Iron accumulation was investigated qualitatively and quantitatively in the liver of 15 captive Brachyteles spp. Hepatic hemosiderosis index (HHI) was determined as the area percentage of the liver parenchyma occupied by hemosiderin and ferritin deposits, through computerized histomorphometric analysis of Prussian blue-stained histologic sections. All studied animals presented liver hemosiderosis, and HHI ranged from 0.2% to 41.7%. There were no significant differences in HHI between muriqui species or genders, and no correlations were detected among HHI and age, time in captivity or body mass. Iron deposits were accompanied by other hepatic disorders. This is the first study addressing the occurrence and consequences of iron overloading in the liver of muriquis. We propose that hemosiderosis may act as a contribute factor for the development of hepatic injuries. Further studies are advised to clarify the role of diet in the pathogenesis of hemosiderosis in these atelids. © 2010 John Wiley & Sons A/S.

  9. Two novel mutations in the SLC40A1 and HFE genes implicated in iron overload in a Spanish man.

    Science.gov (United States)

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Alvarez-Sala-Walther, Luis-Antonio; Cuadrado-Grande, Nuria; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2011-03-01

    The most common form of hemochromatosis is caused by mutations in the HFE gene. Rare forms of the disease are caused by mutations in other genes. We present a patient with hyperferritinemia and iron overload, and facial flushing. Magnetic resonance imaging was performed to measure hepatic iron overload, and a molecular study of the genes involved in iron metabolism was undertaken. The iron overload was similar to that observed in HFE hemochromatosis, and the patient was double heterozygous for two novel mutations, c.-20G>A and c.718A>G (p.K240E), in the HFE and ferroportin (FPN1 or SLC40A1) genes, respectively. Hyperferritinemia and facial flushing improved after phlebotomy. Two of the patient's children were also studied, and the daughter was heterozygous for the mutation in the SLC40A1 gene, although she did not have hyperferritinemia. The patient presented a mild iron overload phenotype probably because of the two novel mutations in the HFE and SLC40A1 genes. © 2011 John Wiley & Sons A/S.

  10. THE DIAGNOSTIC VALUE OF PULSED WAVE TISSUE DOPPLER IMAGING IN ASYMPTOMATIC BETA- THALASSEMIA MAJOR CHILDREN AND YOUNG ADULTS ; RELATION TO CHEMICAL BIOMARKERS OF LEFT VENTRICULAR FUNCTION AND IRON OVERLOAD .

    Directory of Open Access Journals (Sweden)

    Seham Ragab

    2015-08-01

    Full Text Available Background: Cardiac iron toxicity is the leading cause of death among  β-halassaemia major (TM  patients.  Once  heart failure becomes overt , it will be  difficult to reverse . Objectives: To investigate non overt cardiac dysfunctions  in TM patients using  pulsed wave Tissue Doppler  Imaging (TD I and its relation to the iron overload and brain natruritic peptide (BNP. Methods: Thorough  clinical , conventional echo and  pulsed  wave TDI  parameters were compared between  asymtomatic 25 β-TM  patients  and 20 age and gender matched individuals. Serum ferritin and plasma BNP  levels were assayed by  ELISA .  Results: TM patients had significant higher mitral inflow early diastolic (E wave and  non significant other conventional echo  parameters. Pulsed wave TDI revealed systolic and diastolic dysfunctions in the form of significant higher  isovolumetric contraction time (ICT , ejection time ( E T and  isovolumetric relaxation time (IRT with significantly lower  mitral annulus  early diastolic velocity E` (12.07 ±2.06 vs 15.04±2.65 ,P= 0.003  in patients compared to  controls. Plasma BNP was higher in patients compared to the controls.  Plasma BNP and serum ferritin had significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions.  Patients with E/E` ≥ 8 had  significant higher  serum ferritin  and plasma BNP levels compared to those with E/E` ratio < 8 without difference in Hb levels .Conclusion:  Pulsed wave TDI  is an  important diagnostic tool for latent cardiac dysfunction in iron loaded TM patients and is related to iron overload and BNP .

  11. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract.

    Science.gov (United States)

    Niu, Qiang; He, Ping; Xu, Shangzhi; Ma, Ruling; Ding, Yusong; Mu, Lati; Li, Shugang

    2018-01-01

    Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.

  12. Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia.

    Science.gov (United States)

    Bou-Fakhredin, Rayan; Bazarbachi, Abdul-Hamid; Chaya, Bachar; Sleiman, Joseph; Cappellini, Maria Domenica; Taher, Ali T

    2017-12-20

    Iron overload (IOL) due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT), which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient's needs and on the available facilities. Iron chelation therapy (ICT) remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT.

  13. Iron Overload and Chelation Therapy in Non-Transfusion Dependent Thalassemia

    Directory of Open Access Journals (Sweden)

    Rayan Bou-Fakhredin

    2017-12-01

    Full Text Available Iron overload (IOL due to increased intestinal iron absorption constitutes a major clinical problem in patients with non-transfusion-dependent thalassemia (NTDT, which is a cumulative process with advancing age. Current models for iron metabolism in patients with NTDT suggest that suppression of serum hepcidin leads to an increase in iron absorption and subsequent release of iron from the reticuloendothelial system, leading to depletion of macrophage iron, relatively low levels of serum ferritin, and liver iron loading. The consequences of IOL in patients with NTDT are multiple and multifactorial. Accurate and reliable methods of diagnosis and monitoring of body iron levels are essential, and the method of choice for measuring iron accumulation will depend on the patient’s needs and on the available facilities. Iron chelation therapy (ICT remains the backbone of NTDT management and is one of the most effective and practical ways of decreasing morbidity and mortality. The aim of this review is to describe the mechanism of IOL in NTDT, and the clinical complications that can develop as a result, in addition to the current and future therapeutic options available for the management of IOL in NTDT.

  14. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system......RNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle....

  15. Role of iron overload-induced macrophage apoptosis in the pathogenesis of peritoneal endometriosis.

    Science.gov (United States)

    Pirdel, Leila; Pirdel, Manijeh

    2014-06-01

    This article presents an overview of the involvement of iron overload-induced nitric oxide (NO) overproduction in apoptosis of peritoneal macrophages of women with endometriosis. We have postulated that the peritoneal iron overload originated from retrograde menstruation or bleeding lesions in the ectopic endometrium, which may contribute to the development of endometriosis by a wide range of mechanisms, including oxidative damage and chronic inflammation. Excessive NO production may also be associated with impaired clearance of endometrial cells by macrophages, which promotes cell growth in the peritoneal cavity. Therefore, further research of the mechanisms and consequences of macrophage apoptosis in endometriosis helps discover novel therapeutic strategies that are designed to prevent progression of endometriosis. © 2014 Society for Reproduction and Fertility.

  16. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na+ pumps are crucial.

    Science.gov (United States)

    Blaustein, Mordecai P

    2017-11-01

    Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na + pumps, however, have demonstrated that cardiac ouabain-sensitive α 2 -Na + pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α 2 -Na + pumps and in mice with cardiac-selective knockout or transgenic overexpression of α 2 -Na + pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α 2 ) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α 2 -ouabain-resistant (R) mice in which the normally ouabain-resistant α 1 -Na + pumps were mutated to an ouabain-sensitive (S) form (α 1 S/S α 2 R/R or "SWAP" vs. wild-type or α 1 R/R α 2 S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α 2 , are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na + pump pathway in cardiovascular disease. Copyright © 2017 the American Physiological Society.

  17. Non cardiopatic and cardiopatic beta thalassaemic patients: quantitative and qualitative cardiac iron deposition evaluation with MRI

    International Nuclear Information System (INIS)

    Macarini, Luca; Marini, Stefania; Scardapane, Arnaldo; Pietrapertosa, Anna; Ettore, Giovanni Carlo

    2005-01-01

    Purpose: Cardiomyopathy is one of the major complications of β thalassaemia major as a result of transfusion iron overload. The aim of our study is to evaluate with MR if there is any difference of iron deposition signal intensity (SI) or distribution between non-cardiopatic and cardiopatic thalassaemic patients in order to establish if there is a relationship between cardiopathy and iron deposition. Materials and methods: We studied 20 patients affected by β thalassaemia major, of whom 10 cardiopatic and 10 non-cardiopatic, and 10 healthy volunteers as control group. Serum ferritin and left ventricular ejection fraction were calculated in thalassaemic patients. All patients were examinated using a 1.5 MR unit with ECG-gated GE cine-MR T2*-weighted, SE T1-weighted and GE T2*-weighted sequences. In all cases, using an adequate ROI, the myocardial and skeletal muscle signal intensity (SI), the myocardial/skeletal muscle signal intensity radio (SIR) and the SI average of the myocardium and skeletal muscle were calculated for every study group. The qualitative evaluation of iron deposition distribution was independently performed by three radiologists who analysed the extension, the site and the morphology of iron deposition on the MR images and reported their observations on the basis of a four-level rating scale: 0 (absent), 1 (limited), 2 (partial), 3 (widespread deposition). The results of quantitative and qualitative evaluation were analysed with statistical tests. Results: Cardiac iron deposition was found in 8/10 non-cardiopatic thalassaemic patients and in all cardiopatic thalassaemic patients. We noticed a significant SI difference (p>0.05) between the healthy volunteer control group and the thalassaemic patients with iron deposition, but no significant SI difference in iron deposition between non-cardiopatic thalassaemic patients in the areas evaluated. The qualitative evaluation revealed a different distribution of iron deposition between the two

  18. Role of phenolics from Spondias pinnata bark in amelioration of iron overload induced hepatic damage in Swiss albino mice.

    Science.gov (United States)

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Panja, Sourav; Mandal, Nripendranath

    2016-07-26

    Crude Spondias pinnata bark extract was previously assessed for its antioxidant, anticancer and iron chelating potentials. The isolated compounds gallic acid (GA) and methyl gallate (MG) were evaluated for their curative potential against iron overload-induced liver fibrosis and hepatocellular damage. In vitro iron chelation property and in vivo ameliorating potential from iron overload induced liver toxicity of GA and MG was assessed by different biochemical assays and histopathological studies. MG and GA demonstrated excellent reducing power activities but iron chelation potential of MG is better than GA. Oral MG treatment in mice displayed excellent efficacy (better than GA) to significantly restore the levels of liver antioxidants, serum markers and cellular reactive oxygen species in a dose-dependent fashion. Apart from these, MG exceptionally prevented lipid peroxidation and protein oxidation whereas GA demonstrated better activity to reduce collagen content, thereby strengthening its position as an efficient drug against hepatic damage/fibrosis, which was further supported by histopathological studies. Alongside, MG efficiently eliminated the cause of liver damage, i.e., excess iron, by chelating free iron and reducing the ferritin-bound iron. The present study confirmed the curative effect of GA and MG against iron overload hepatic damage via their potent antioxidant and iron-chelating potential.

  19. SQUID biosusceptometry in the measurement of hepatic iron

    International Nuclear Information System (INIS)

    Sheth, Sujit

    2003-01-01

    Individuals with primary or secondary abnormalities of iron metabolism, such as hereditary hemochromatosis and transfusional iron loading, may develop potentially lethal systemic iron overload. Over time, this excess iron is progressively deposited in the liver, heart, pancreas, and other organs, resulting in cirrhosis, heart disease, diabetes and other disorders. Unless treated, death usually results from cardiac failure. The amount of iron in the liver is the best indicator of the amount of iron in the whole body. At present, the only sure way to measure the amount of iron in the liver is to remove a sample of the liver by biopsy. Iron stored in the liver can be magnetized to a small degree when placed in a magnetic field. The amount of magnetization is measured by our instrument, called a superconducting quantum interference device (SQUID) susceptometer. In patients with iron overload, our previous studies have shown that magnetic measurements of liver iron in patients with iron overload are quantitatively equivalent to biochemical determinations on tissue obtained by biopsy. The safety, ease, rapidity, and comfort of magnetic measurements make frequent, serial studies technically feasible and practically acceptable to patients. (orig.)

  20. Leukocytic Toll-Like Receptor 2 Deficiency Preserves Cardiac Function And Reduces Fibrosis In Sustained Pressure Overload

    NARCIS (Netherlands)

    Wang, Jiong-Wei; Fontes, Magda S. C.; Wang, Xiaoyuan; Chong, Suet Yen; Kessler, Elise L.; Zhang, Ya-Nan; de Haan, Judith J.; Arslan, Fatih; de Jager, Saskia C. A.; Timmers, Leo; van Veen, Toon A. B.; Lam, Carolyn S. P.; de Kleijn, Dominique P. V.

    2017-01-01

    An involement of Toll-like receptor 2 (TLR2) has been established in cardiac dysfunction after acute myocardial infarction; however, its role in chronic pressure overload is unclear. We sought to evaluate the role of TLR2 in cardiac hypertrophy, fibrosis and dysfunction in sustained pressure

  1. Combined treatment of 3-hydroxypyridine-4-one derivatives and green tea extract to induce hepcidin expression in iron-overloaded β-thalassemic mice

    Directory of Open Access Journals (Sweden)

    Supranee Upanan

    2015-12-01

    Conclusions: The GTE + DFP treatment could ameliorate iron overload and liver oxidative damage in non-transfusion dependent β-thalassemic mice, by chelating toxic iron in plasma and tissues, and increasing hepcidin expression to inhibit duodenal iron absorption and iron release from hepatocytes and macrophages in the spleen. There is probably an advantage in giving GTE with DFP when treating patients with iron overload.

  2. Quantitative assessment of iron load in myocardial overload rabbit model: preliminary study of MRI T2* map

    International Nuclear Information System (INIS)

    Huang Lu; Han Rui; Li Zhiwei; Yuan Sishu; Xia Liming

    2014-01-01

    Objective: To preliminarily investigate the feasibility of MRI-T 2 * map in evaluating myocardial iron load of myocardial iron overload rabbit models. Methods: Eleven rabbits were included in this study and divided into two groups, myocardial iron overload group (n =10) and the control group (n = 1). Iron dextrin (dose of 50 mg/kg) was injected in muscles of thigh once a week, totally 12 weeks. Serum iron test and MRI examination were performed before iron injection,and 1 week to 12 weeks after iron injection. MRI scan protocol included short axial T 2 * map of the left ventricle and cross-section T 2 * map of the liver. T 2 * and R 2 * of the heart and the liver were measured. One rabbit was killed after MRI examination at pre-iron injection, 1 week to 8 weeks, 11 weeks and 12 weeks after iron injection,respectively. Heart and liver were avulsed to undergo in vitro MRI scan and then paraffin embedded for pathological slices. MRI scan protocol and measurements of the heart and the liver samples were the same to that of in vivo ones. Pearson correlation was used to calculate the relationships between the parameters. Results: Myocardial T 2 * [(32.5 ± 8.3 ms)] and R 2 * values [(38.4 ± 7.9) Hz] had significant correlation with injecting iron content (1033.2 ± 673.4 mg), the Pearson coefficients were -0.799 (P = 0.001) and 0.770 (P = 0.002), respectively. Myocardial T 2 * had no significant correlation with liver T 2 * values (r = 0.556, P = 0.070). T 2 * values of heart and liver in vivo [(32.5 ± 8.3) ms and (8.8 ± 5.4) ms], respectively had strong correlation with those in vitro [(19.4 ± 6.5) ms and (9.8 ± 5.0) ms], respectively (r = 0.757, P = 0.007 and r = 0.861, P = 0.001). T 2 * and R 2 * values of the heart and the liver in vivo and in vitro had no significant correlations with serum iron (P>0.05). On Prussian blue staining slices,blue particles of myocardium, sinus hepaticas and hepatocyte increased with injecting iron content. Conclusions: It is

  3. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Wang, Heyang; Li, Hongxia; Jiang, Xin; Shi, Wencai; Shen, Zhilei; Li, Min

    2014-05-01

    Iron overload is frequently observed in type 2 diabetes mellitus (DM2), but the underlying mechanisms remain unclear. We hypothesize that hepcidin may be directly regulated by insulin and play an important role in iron overload in DM2. We therefore examined the hepatic iron content, serum iron parameters, intestinal iron absorption, and liver hepcidin expression in rats treated with streptozotocin (STZ), which was given alone or after insulin resistance induced by a high-fat diet. The direct effect of insulin on hepcidin and its molecular mechanisms were furthermore determined in vitro in HepG2 cells. STZ administration caused a significant reduction in liver hepcidin level and a marked increase in intestinal iron absorption and serum and hepatic iron content. Insulin obviously upregulated hepcidin expression in HepG2 cells and enhanced signal transducer and activator of transcription 3 protein synthesis and DNA binding activity. The effect of insulin on hepcidin disappeared when the signal transducer and activator of transcription 3 pathway was blocked and could be partially inhibited by U0126. In conclusion, the current study suggests that hepcidin can be directly regulated by insulin, and the suppressed liver hepcidin synthesis may be an important reason for the iron overload in DM2.

  4. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-β1 pathway.

    Science.gov (United States)

    Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli

    2018-02-01

    Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF-β 1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF-β 1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF-β 1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF-β 1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.

  5. Liver steatosis correlates with iron overload but not with HFE gene mutations in chronic hepatitis C.

    Science.gov (United States)

    Sikorska, Katarzyna; Stalke, Piotr; Romanowski, Tomasz; Rzepko, Robert; Bielawski, Krzysztof Piotr

    2013-08-01

    Liver steatosis and iron overload, which are frequently observed in chronic hepatitis C (CHC), may contribute to the progression of liver injury. This study aimed to evaluate the correlation between liver steatosis and iron overload in Polish patients with CHC compared to non-alcoholic fatty liver disease (NAFLD) and HFE-hereditary hemochromatosis (HH) patients. A total of 191 CHC patients were compared with 67 NAFLD and 21 HH patients. Liver function tests, serum markers of iron metabolism, cholesterol and triglycerides were assayed. The inflammatory activity, fibrosis, iron deposits and steatosis stages were assessed in liver specimens. HFE gene polymorphisms were investigated by PCR-RFLP. Liver steatosis was associated with obesity and diabetes mellitus. This disease was confirmed in 76/174 (44%) CHC patients, most of whom were infected with genotype 1. The average grade of steatosis was higher in NAFLD patients. CHC patients had significantly higher iron concentrations and transferrin saturations than NAFLD patients. Compared with CHC patients, HH patients had higher values of serum iron parameters and more intensive hepatocyte iron deposits without differences in the prevalence and intensity of liver steatosis. In the CHC group, lipids accumulation in hepatocytes was significantly associated with the presence of serum markers of iron overload. No correlation between the HFE gene polymorphism and liver steatosis in CHC patients was found. Liver steatosis was diagnosed in nearly half of CHC patients, most of whom were infected with genotype 1. The intensity of steatosis was lower in CHC patients than that in NAFLD patients because of a less frequent diagnosis of metabolic syndrome. Only in CHC patients were biochemical markers of iron accumulation positively correlated with liver steatosis; these findings were independent of HFE gene mutations.

  6. The Association between Myocardial Iron Load and Ventricular Repolarization Parameters in Asymptomatic Beta-Thalassemia Patients

    Directory of Open Access Journals (Sweden)

    Mehmet Kayrak

    2012-01-01

    Full Text Available Previous studies have demonstrated impaired ventricular repolarization in patients with β-TM. However, the effect of iron overload with cardiac T2* magnetic resonance imaging (MRI on cardiac repolarization remains unclear yet. We aimed to examine relationship between repolarization parameters and iron loading using cardiac T2* MRI in asymptomatic β-TM patients. Twenty-two β-TM patients and 22 age- and gender-matched healthy controls were enrolled to the study. From the 12-lead surface electrocardiography, regional and transmyocardial repolarization parameters were evaluated manually by two experienced cardiologists. All patients were also undergone MRI for cardiac T2* evaluation. Cardiac T2* score <20 msec was considered as iron overload status. Of the QT parameters, QT duration, corrected QT interval, and QT peak duration were significantly longer in the β-TM group compared to the healthy controls. Tp−Te and Tp−Te dispersions were also significantly prolonged in β-TM group compared to healthy controls. (Tp-Te/QT was similar between groups. There was no correlation between repolarization parameters and cardiac T2* MRI values. In conclusion, although repolarization parameters were prolonged in asymptomatic β-TM patients compared with control, we could not find any relation between ECG findings and cardiac iron load.

  7. Acute iron overload and oxidative stress in brain

    International Nuclear Information System (INIS)

    Piloni, Natacha E.; Fermandez, Virginia; Videla, Luis A.; Puntarulo, Susana

    2013-01-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6 h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A·)/ascorbate (AH − ) ratio, taken as oxidative stress index, was assessed. The A·/AH − ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR·) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8 h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21 h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6 h after Fe administration. CAT activity was significantly increased after 8 h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR· generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR· generation rate after 6

  8. TNF-α as a potential mediator of cardiac dysfunction due to intracellular Ca2+-overload

    International Nuclear Information System (INIS)

    Zhang Ming; Xu Yanjun; Saini, Harjot K.; Turan, Belma; Liu, Peter P.; Dhalla, Naranjan S.

    2005-01-01

    TNF-α has been shown to be involved in cardiac dysfunction during ischemia/reperfusion injury; however, no information regarding the status of TNF-α production in myocardial injury due to intracellular Ca 2+ -overload is available in the literature. The intracellular Ca 2+ -overload was induced in the isolated rat hearts subjected to 5 min Ca 2+ -depletion and 30 min Ca 2+ -repletion (Ca 2+ -paradox). The Ca 2+ -paradox hearts exhibited a dramatic depression in left ventricular developed pressure, a marked elevation in left ventricular end diastolic pressure, and more than a 4-fold increase in TNF-α content. The ratio of cytosolic to homogenate nuclear factor-κB (NFκB) was decreased whereas the ratio of phospho-NFκB to total NFκB was increased in the Ca 2+ -paradox hearts. All these changes due to Ca 2+ -paradox were significantly attenuated upon treating the hearts with 100 μM pentoxifylline. These results suggest that activation of NFκB and increased production of TNF-α may play an important role in cardiac injury due to intracellular Ca 2+ -overload

  9. In vivo cardiac role of migfilin during experimental pressure overload.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Moik, Daniel; Schuetz, Thomas; Reiner, Martin F; Voelkl, Jakob G; Streil, Katrin; Bader, Kerstin; Zhao, Lei; Scheu, Claudia; Mair, Johannes; Pachinger, Otmar; Metzler, Bernhard

    2015-06-01

    Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. Comparison of Deferoxamine, Activated Charcoal, and Vitamin C in Changing the Serum Level of Fe in Iron Overloaded Rats

    Directory of Open Access Journals (Sweden)

    Reza Ghafari

    2014-02-01

    Full Text Available Background: Iron is an essential mineral for normal cellular physiology but its overload can lead to cell injury. For many years, deferoxamine injection has been used as an iron chelator for treatment of iron overload. The aim of this study is to compare oral deferoxamine, activated charcoal, and vitamin C, as an absorbent factor of Fe, in changing the serum level of iron in iron overload rats. Methods: In this experimental study, all groups were administered 150 mg iron dextran orally by gavage. After eight hours, rats in the first group received oral deferoxamine while those in the second and third groups received oral activated charcoal 1 mg/kg and oral vitamin C 150 mg, respectively. Then, serum levels of iron ware measured in all rats. Results: The mean serum level of iron in rats that received oral deferoxamine was 258.11±10.49 µg/dl, whereas mean levels of iron in charcoal and vitamin C groups were 380.88±11.21 µg/dl and 401.22±13.28 µg/dl, respectively. None of the measurements were within safety limits of serum iron. Conclusion: It seems that oral deferoxamine per se may not help physicians in the management of cases presented with iron toxicity. Activated charcoal did not reduce serum iron significantly in this study and further investigations may be warranted to assess the potential clinical utility of its mixture with oral deferoxamine as an adjunct in the clinical management of iron ingestions.

  11. Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model.

    Science.gov (United States)

    Millot, Sarah; Delaby, Constance; Moulouel, Boualem; Lefebvre, Thibaud; Pilard, Nathalie; Ducrot, Nicolas; Ged, Cécile; Lettéron, Philippe; de Franceschi, Lucia; Deybach, Jean Charles; Beaumont, Carole; Gouya, Laurent; De Verneuil, Hubert; Lyoumi, Saïd; Puy, Hervé; Karim, Zoubida

    2017-02-01

    Hemolysis occurring in hematologic diseases is often associated with an iron loading anemia. This iron overload is the result of a massive outflow of hemoglobin into the bloodstream, but the mechanism of hemoglobin handling has not been fully elucidated. Here, in a congenital erythropoietic porphyria mouse model, we evaluate the impact of hemolysis and regenerative anemia on hepcidin synthesis and iron metabolism. Hemolysis was confirmed by a complete drop in haptoglobin, hemopexin and increased plasma lactate dehydrogenase, an increased red blood cell distribution width and osmotic fragility, a reduced half-life of red blood cells, and increased expression of heme oxygenase 1. The erythropoiesis-induced Fam132b was increased, hepcidin mRNA repressed, and transepithelial iron transport in isolated duodenal loops increased. Iron was mostly accumulated in liver and spleen macrophages but transferrin saturation remained within the normal range. The expression levels of hemoglobin-haptoglobin receptor CD163 and hemopexin receptor CD91 were drastically reduced in both liver and spleen, resulting in heme- and hemoglobin-derived iron elimination in urine. In the kidney, the megalin/cubilin endocytic complex, heme oxygenase 1 and the iron exporter ferroportin were induced, which is reminiscent of significant renal handling of hemoglobin-derived iron. Our results highlight ironbound hemoglobin urinary clearance mechanism and strongly suggest that, in addition to the sequestration of iron in macrophages, kidney may play a major role in protecting hepatocytes from iron overload in chronic hemolysis. Copyright© Ferrata Storti Foundation.

  12. Iron overload in a murine model of hereditary hemochromatosis is associated with accelerated progression of osteoarthritis under mechanical stress.

    Science.gov (United States)

    Camacho, A; Simão, M; Ea, H-K; Cohen-Solal, M; Richette, P; Branco, J; Cancela, M L

    2016-03-01

    Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes.

    Science.gov (United States)

    Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong

    2017-08-01

    The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.

  14. Sobrecarga e quelação de ferro na anemia falciforme Iron overload and iron chelation in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Cançado

    2007-09-01

    Full Text Available Pacientes cronicamente transfundidos desenvolvem sobrecarga de ferro que ocasiona lesão orgânica e morte. Nos últimos trinta anos, pacientes com sobrecarga de ferro transfusional dependem de infusões noturnas de desferroxamina para quelação de ferro. Apesar da dramática melhora da expectativa de vida na era da desferroxamina para pacientes com anemias dependentes de transfusão, 50% dos pacientes com talassemia maior morrem antes dos 30 anos de idade, predominantemente devido à insuficiência cardíaca induzida pelo ferro. A difícil natureza desse tratamento com infusão subcutânea prolongada por meio de aparelho infusor portátil motivou o desenvolvimento de formas alternativas de tratamento que facilitasse a aderência do paciente. Estratégias para reduzir a sobrecarga de ferro e suas conseqüências, através da melhora dos regimes de quelação, foram as prioridades mais importantes nos últimos anos. Nesta revisão, descrevemos os avanços mais importantes da terapia quelante de ferro. Em particular, analisamos os dois quelantes de ferro ativos por via oral: deferiprona e o novo quelante de ferro oral deferasirox.Patients who are chronically dependent on transfusions will develop iron overload that leads to organ damage and eventually to death. For nearly 30 years, patients with transfusional iron overload have been subject to overnight deferoxamine infusions for iron chelation. Despite dramatic gains in terms of life expectancy in the deferoxamine era for patients with transfusion-dependent anemias, 50% of patients with thalassemia major die before the age of 35 years, predominantly due to iron-induced heart failure. The very demanding nature of this treatment with prolonged subcutaneous infusion via portable pump infusions has been the motivation for attempts to develop alternative forms of treatment that would facilitate the patients' compliance. Strategies to reduce iron overload and its consequences by improving chelation

  15. Reducing the iron burden and improving survival in transfusion-dependent thalassemia patients: current perspectives

    Directory of Open Access Journals (Sweden)

    Bayanzay K

    2016-08-01

    Full Text Available Karim Bayanzay, Lama Alzoebie Department of Hematology, Gulf Medical University, Ajman, United Arab Emirates Abstract: Hypertransfusion regimens for thalassemic patients revolutionized the management of severe thalassemia; transforming a disease which previously led to early infant death into a chronic condition. The devastating effect of the accrued iron from chronic blood transfusions necessitates a more finely tuned approach to limit the complications of the disease, as well as its treatment. A comprehensive approach including carefully tailored transfusion protocol, continuous monitoring and assessment of total body iron levels, and iron chelation are currently the mainstay in treating iron overload. There are also indications for ancillary treatments, such as splenectomy and fetal hemoglobin induction. The main cause of death in iron overload continues to be related to cardiac complications. However, since the widespread use of iron chelation started in the 1970s, there has been a general improvement in survival in these patients. Keywords: hematology, chelators, deferoxamine, deferiserox, deferiprone, liver iron concentration, iron overload, serum ferritin concentration, hepatic iron storage, iron chelation therapy

  16. CCR2+ Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload

    Directory of Open Access Journals (Sweden)

    Bindiya Patel, PhD

    2018-04-01

    Full Text Available Summary: Although chronic inflammation is a central feature of heart failure (HF, the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF. Key Words: cardiac remodeling, heart failure, inflammation, macrophages, T cells

  17. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  18. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    Science.gov (United States)

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  19. MicroRNAs and liver cancer associated with iron overload: Therapeutic targets unravelled

    Science.gov (United States)

    Greene, Catherine M; Varley, Robert B; Lawless, Matthew W

    2013-01-01

    Primary liver cancer is a global disease that is on the increase. Hepatocellular carcinoma (HCC) accounts for most primary liver cancers and has a notably low survival rate, largely attributable to late diagnosis, resistance to treatment, tumour recurrence and metastasis. MicroRNAs (miRNAs/miRs) are regulatory RNAs that modulate protein synthesis. miRNAs are involved in several biological and pathological processes including the development and progression of HCC. Given the poor outcomes with current HCC treatments, miRNAs represent an important new target for therapeutic intervention. Several studies have demonstrated their role in HCC development and progression. While many risk factors underlie the development of HCC, one process commonly altered is iron homeostasis. Iron overload occurs in several liver diseases associated with the development of HCC including Hepatitis C infection and the importance of miRNAs in iron homeostasis and hepatic iron overload is well characterised. Aberrant miRNA expression in hepatic fibrosis and injury response have been reported, as have dysregulated miRNA expression patterns affecting cell cycle progression, evasion of apoptosis, invasion and metastasis. In 2009, miR-26a delivery was shown to prevent HCC progression, highlighting its therapeutic potential. Several studies have since investigated the clinical potential of other miRNAs with one drug, Miravirsen, currently in phase II clinical trials. miRNAs also have potential as biomarkers for the diagnosis of HCC and to evaluate treatment efficacy. Ongoing studies and clinical trials suggest miRNA-based treatments and diagnostic methods will have novel clinical applications for HCC in the coming years, yielding improved HCC survival rates and patient outcomes. PMID:23983424

  20. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  1. Glutathione S transferase polymorphisms influence on iron overload in β-thalassemia patients

    Directory of Open Access Journals (Sweden)

    Serena Sclafani

    2013-11-01

    Full Text Available In patients with β-thalassemia iron overload that leads to damage to vital organs is observed. Glutathione S transferase (GST enzymes have an antioxidant role in detoxification processes of toxic substances. This role is determined genetically. In this study, we correlated GSTT1 and GSTM1 genotypes with iron overload measured with direct and indirect non-invasive methods; in particular, we used serum ferritin and signal intensity of the magnetic resonance image (MRI in 42 patients with β-thalassemia, which were regularly subjected to chelation and transfusion therapy. Multiplex polymerase chain reaction was used to determine the genotype. The loss of both alleles leads to a decreased value of liver and heart MRI-signal intensity with a consequent iron accumulation in these organs; the loss of only one allele doesn’t lead to relevant overload. Serum ferritin doesn’t appear to be correlated to iron overload instead. 对于β-地中海贫血患者,由于铁过量而造成重要器官受损的情况也在观察之中。谷胱甘肽S转移酶(GST 酶类在对有毒物质进行解毒的过程中有着抗氧化剂的作用。该作用是由基因决定的。 在这份研究中,我们运用了直接和间接非侵入性的方法对基因型铁过量GSTT1 和GSTM1进行了相关性测量;特别地,我们对42位定期接受螯合和输血治疗的β-地中海贫血患者进行了血清铁蛋白和磁共振强度图像(MRI 的测试。 多重聚合酶链反应的测试也被运用来确定该基因型。 该两种等位基因的缺失,导致了肝功能减损及心脏磁共振强度的下降,并造成了在这些器官中铁含量的积累;其中一种等位基因的缺失并不会导致过度的铁含量。血清蛋白和铁过量之间,看起来并不存在相关性。

  2. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    Science.gov (United States)

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  3. Iron Overload Leading to Torsades de Pointes in β-Thalassemia and Long QT Syndrome

    DEFF Research Database (Denmark)

    Refaat, Marwan M; El Hage, Lea; Steffensen, Annette Buur

    2016-01-01

    The authors present a unique case of torsades de pointes in a β-thalassemia patient with early iron overload in the absence of any structural abnormalities as seen in hemochromatosis. Genetic testing showed a novel KCNQ1 gene mutation 1591C>T [Gln531Ter(X)]. Testing of the gene mutation in Xenopus...

  4. Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload.

    Science.gov (United States)

    Henninger, B; Kremser, C; Rauch, S; Eder, R; Zoller, H; Finkenstedt, A; Michaely, H J; Schocke, M

    2012-11-01

    To evaluate MRI using T1 and T2* mapping sequences in patients with suspected hepatic iron overload (HIO). Twenty-five consecutive patients with clinically suspected HIO were retrospectively studied. All underwent MRI and liver biopsy. For the quantification of liver T2* values we used a fat-saturated multi-echo gradient echo sequence with 12 echoes (TR = 200 ms, TE = 0.99 ms +  n × 1.41 ms, flip angle 20°). T1 values were obtained using a fast T1 mapping sequence based on an inversion recovery snapshot FLASH sequence. Parameter maps were analysed using regions of interest. ROC analysis calculated cut-off points at 10.07 ms and 15.47 ms for T2* in the determination of HIO with accuracy 88 %/88 %, sensitivity 84 %/89.5 % and specificity 100 %/83 %. MRI correctly classified 20 patients (80 %). All patients with HIO only had decreased T1 and T2* relaxation times. There was a significant difference in T1 between patients with HIO only and patients with HIO and steatohepatitis (P = 0.018). MRI-based T2* relaxation diagnoses HIO very accurately, even at low iron concentrations. Important additional information may be obtained by the combination of T1 and T2* mapping. It is a rapid, non-invasive, accurate and reproducible technique for validating the evidence of even low hepatic iron concentrations. • Hepatic iron overload causes fibrosis, cirrhosis and increases hepatocellular carcinoma risk. • MRI detects iron because of the field heterogeneity generated by haemosiderin. • T2* relaxation is very accurate in diagnosing hepatic iron overload. • Additional information may be obtained by T1 and T2* mapping.

  5. Iron chelation therapy: clinical effectiveness, economic burden and quality of life in patients with iron overload.

    Science.gov (United States)

    Payne, Krista A; Rofail, Diana; Baladi, Jean-François; Viala, Muriel; Abetz, Linda; Desrosiers, Marie-Pierre; Lordan, Noreen; Ishak, Khajak; Proskorovsky, Irina

    2008-08-01

    This study of UK patients examines clinical, health-related quality of life (HRQOL) and economic outcomes associated with iron chelation therapy (ICT). Desferrioxamine (DFO) (Desferal; Novartis, Switzerland) and Deferiprone (Ferriprox; Apotex, Canada) are ICTs used to treat iron overload. DFO requires 8-to 12-hour infusions a minimum of five times per week. Deferiprone is administered in an oral daily regimen. Although pharmacologically efficacious, clinical effectiveness of ICT within the real-world setting is yet to be fully elucidated. A naturalistic cohort study of 60 patients (beta-thalassaemia, n=40; sickle cell disease, n=14; myelodysplastic syndromes, n=6; 63% female) receiving ICT in four UK treatment centres was conducted. Serum ferritin level data were abstracted from medical charts. Compliance, HRQOL, satisfaction and resource utilisation data were collected from interviews. Maximum ICT costs were estimated using the resource utilisation data associated with DFO. Mean serum ferritin levels, generally, remained elevated despite ICT. Compliance was suboptimal and HRQOL scores were lower than population norms. The total estimated mean weighted annual per-patient cost of DFO treatment was approximately pound19,000. DFO-related equipment, DFO drug, and home healthcare were estimated to account for 43%, 19% and 24% of costs, respectively. Other more minor components of total annual costs were for in-patient infusions, ICT home delivery services and monitoring costs. Generally, patients are not achieving target serum ferritin thresholds despite chronic treatment for iron overload. ICT appears to negatively impact HRQOL; compliance with ICT is poor; and, in the case of DFO, treatment costs well exceed the cost of DFO alone. These results suggest that current ICT in the real-world setting is suboptimal with respect to various clinical, HRQOL and economic outcomes.

  6. Desferrioxamine treatment of iron overload secondary to RH isoimmunization and intrauterine transfusion in a newborn infant.

    Science.gov (United States)

    Yalaz, Mehmet; Bilgin, Betül Siyah; Köroğlu, Ozge Altun; Ay, Yılmaz; Arıkan, Ciğdem; Sagol, Sermet; Akısü, Mete; Kültürsay, Nilgün

    2011-11-01

    Intrauterine transfusion is the standard of care in the management of severe Rh isoimmunization. Desferrioxamine has been used for the treatment of iron overload secondary to hemolysis and intrauterine transfusions in Rh isoimmunization cases. Here, we report a preterm infant born at 34 weeks of gestational age who had formerly received intrauterine transfusions for Rhesus hemolytic disease and presented with severe hyperferritinemia and elevated liver enzymes in the first week of life. Desferrioxamine treatment was started due to a ferritin level of 28,800 ng/ml and continued for 13 weeks. Although the treatment was successful, we observed resistant leukopenia which resolved after the cessation of treatment. In conclusion, iron overload secondary to intrauterine transfusions can be treated successfully with desferrioxamine; however, neonatologists must be aware of the possible side effects of this drug which has been used in only a limited number of newborns.

  7. Effect of Combined versus Monotherapy with Deferoxamine and Deferiprone in Iron Overloaded Thalassemia Patients: a Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Sasan Hejazi

    2016-06-01

    Full Text Available Background: Patients with transfusional iron overload have depended on iron chelation therapy and improving chelation regimens have been of the highest priority. The aim of this study was to compare effect of combined versus monotherapy with Deferoxamine (DFO and Deferiprone (DFP in iron overloaded beta thalassemia (BT major patients Materials and Methods We studied 36 BT major patients (mean age 7.6±4.6; range 3–16 years attending the Ormieh Motahari hospital for regular transfusional support. Patients were randomly allocated to receive one of the following two treatments: DFO in combination with DFP (n=12, DFO alone (n=12 and DFP alone (n=12. Serum ferritin level, liver enzymes, blood urea nitrogen, and creatinine and side effects were monitored over a 12 months period. Results: After one year, serum ferritin decreased more significantly in patients on DFO+DFP therapy compared to patients who only received DFO or DFP alone (P

  8. Diagnosis of iron overload and heart disease by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    J.C. Wood

    2011-12-01

    Full Text Available The use of Magnetic resonance imaging (MRI to estimate tissue iron was initiated nearly three decades ago but has only become a practical reality in the last ten years. MRI is most often used to estimate hepatic and cardiac iron in patients with thalassemia or sickle cell disease and has largely replaced liver biopsy for liver iron quantification. The ability of MRI to image extra hepatic organs has really transformed our understanding of iron mediated toxicity in transfusional siderosis. For decades, iron cardiomyopathy was the leading cause of death in thalassemia major, but it is now relatively rare in centers with regular MRI screening. Early recognition of cardiac iron loading allows more gentle modifications of iron chelation therapy prior to life threatening organ dysfunction. Serial MRI evaluations have demonstrated differential kinetics of uptake and clearance among the difference organs of the body. Although elevated serum ferritin and liver iron concentration increase the risk of cardiac and endocrine toxicities, extra hepatic iron deposition and toxicity occurs in many patients despite having low total body iron stores; there is no safe liver iron level in chronically transfused patients. Instead, the type, dose, and pattern of iron chelation therapy all contribute to whether cardiac iron accumulation will occur. These observations, coupled with the advent of increasing options for iron chelation therapy, are allowing clinicians to more appropriately tailor chelation therapy to individual patient needs, producing greater efficacy with fewer toxicities. With the decline in cardiac mortality, future frontiers in MRI monitoring including better prevention of endocrine toxicities, particularly hypogonadotropic hypogonadism and diabetes. These organs also serve as early warning signals for inadequate control of non-transferrin bound iron, a risk factor for cardiac iron loading. Thus MRI assessment of extra hepatic iron stores is a

  9. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease

    Directory of Open Access Journals (Sweden)

    Joana Neves

    2017-06-01

    Full Text Available Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1C326S, increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder.

  10. The critical role of Nramp1 in degrading α-synuclein oligomers in microglia under iron overload condition.

    Science.gov (United States)

    Wu, Kuo-Chen; Liou, Horng-Huei; Kao, Yu-Han; Lee, Chih-Yu; Lin, Chun-Jung

    2017-08-01

    Oligomeric α-synuclein is a key mediator in the pathogenesis of Parkinson's disease (PD) and is mainly cleared by autophagy-lysosomal pathway, whose dysfunction results in the accumulation and cell-to-cell transmission of α-synuclein. In this study, concomitant with the accumulation of iron and oligomeric α-synuclein, higher expression of a lysosomal iron transporter, natural resistance-associated macrophage protein-1 (Nramp1), was observed in microglia in post-mortem striatum of sporadic PD patients. Using Nramp1-deficient macrophage (RAW264.7) and microglial (BV-2) cells as in-vitro models, iron exposure significantly reduced the degradation rate of the administered human α-synuclein oligomers, which can be restored by the expression of the wild-type, but not mutant (D543N), Nramp1. Likewise, under iron overload condition, mice with functional Nramp1 (DBA/2 and C57BL/6 congenic mice carrying functional Nramp1) had a better ability to degrade infused human α-synuclein oligomers than mice with nonfunctional Nramp1 (C57BL/6) in the brain and microglia. The interplay between iron and Nramp1 exhibited parallel effects on the clearance of α-synuclein and the activity of lysosomal cathepsin D in vitro and in vivo. Collectively, these findings suggest that the function of Nramp1 contributes to microglial degradation of oligomeric α-synuclein under iron overload condition and may be implicated in the pathogenesis of PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Assessment and management of iron overload in β-thalassaemia major patients during the 21st century: a real-life experience from the Italian WEBTHAL project.

    Science.gov (United States)

    Piga, Antonio; Longo, Filomena; Musallam, Khaled M; Cappellini, Maria Domenica; Forni, Gian Luca; Quarta, Giovanni; Chiavilli, Francesco; Commendatore, Francesca; Mulas, Sergio; Caruso, Vincenzo; Galanello, Renzo

    2013-06-01

    We conducted a cross-sectional study on 924 β-thalassaemia major patients (mean age 30·1 years) treated at nine Italian centres using the WEBTHAL software, to evaluate real-life application of iron overload assessment and management standards. Serum ferritin 2 years. Patients who never had a cardiac MRI (CMR) T2* measurement were 2 years. Deferoxamine (22·8%) was more commonly used in patients with Hepatitis C Virus or high serum creatinine. Deferiprone (20·6%) was less commonly prescribed in patients with elevated alanine aminotransferase; while a deferoxamine + deferiprone combination (17·9%) was more commonly used in patients with serum ferritin >2500 ng/ml or CMR T2* <20 ms. Deferasirox (38·3%) was more commonly prescribed in patients <18 years, but less commonly used in those with heart disease or high iron intake. These observations largely echoed guidelines at the time, although some practices are expected to change in light of evolving evidence. © 2013 John Wiley & Sons Ltd.

  12. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    Science.gov (United States)

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  13. Iron overload by Superparamagnetic Iron Oxide Nanoparticles is a High Risk Factor in Cirrhosis by a Systems Toxicology Assessment

    Science.gov (United States)

    Wei, Yushuang; Zhao, Mengzhu; Yang, Fang; Mao, Yang; Xie, Hang; Zhou, Qibing

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent have been widely used in magnetic resonance imaging for tumor diagnosis and theranostics. However, there has been safety concern of SPIONs with cirrhosis related to excess iron-induced oxidative stress. In this study, the impact of iron overload by SPIONs was assessed on a mouse cirrhosis model. A single dose of SPION injection at 0.5 or 5 mg Fe/kg in the cirrhosis group induced a septic shock response at 24 h with elevated serum levels of liver and kidney function markers and extended impacts over 14 days including high levels of serum cholesterols and persistent low serum iron level. In contrast, full restoration of liver functions was found in the normal group with the same dosages over time. Analysis with PCR array of the toxicity pathways revealed the high dose of SPIONs induced significant expression changes of a distinct subset of genes in the cirrhosis liver. All these results suggested that excess iron of the high dose of SPIONs might be a risk factor for cirrhosis because of the marked impacts of elevated lipid metabolism, disruption of iron homeostasis and possibly, aggravated loss of liver functions.

  14. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  15. Therapeutic Phlebotomy is Safe in Children with Sickle Cell Anaemia and can be Effective Treatment for Transfusional Iron Overload

    OpenAIRE

    Aygun, Banu; Mortier, Nicole A.; Kesler, Karen; Lockhart, Alexandre; Schultz, William H.; Cohen, Alan R.; Alvarez, Ofelia; Rogers, Zora R.; Kwiatkowski, Janet L.; Miller, Scott T.; Sylvestre, Pamela; Iyer, Rathi; Lane, Peter A.; Ware, Russell E.

    2015-01-01

    Serial phlebotomy was performed on sixty children with sickle cell anaemia, stroke and transfusional iron overload randomized to hydroxycarbamide in the Stroke With Transfusions Changing to Hydroxyurea trial. There were 927 phlebotomy procedures with only 33 adverse events, all of which were grade 2. Among 23 children completing 30 months of study treatment, the net iron balance was favourable (−8.7 mg Fe/kg) with significant decrease in ferritin, although liver iron concentration remained un...

  16. Spatial learning, monoamines and oxidative stress in rats exposed to 900 MHz electromagnetic field in combination with iron overload.

    Science.gov (United States)

    Maaroufi, Karima; Had-Aissouni, Laurence; Melon, Christophe; Sakly, Mohsen; Abdelmelek, Hafedh; Poucet, Bruno; Save, Etienne

    2014-01-01

    The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ESR spectroscopy of blood serum in thalassemia: discrimination of iron overload severity in deferoxamine-cured patients

    International Nuclear Information System (INIS)

    Preoteasa, E.A.; Schianchi, G.; Giori, D.C.; Pedrazzi, G.

    1997-01-01

    Iron impairments in homozygous β-thalassemia include iron overload syndrome, partially prevented by deferoxamine (DF) and methemalbumin (MHA) in serum. The latter has been studied by electron spin resonance ESR before the clinical use of DF and recently in DF cured subjects. We monitored by X-band ESR at 163 K, the Fe (III) bound in MHA and transferrin (Tf) in serum from transfused, DF-cured patients. Plotting MHA/Tf versus individual DF dose divided the patients into two subgroups, A and B; A with the two variables correlated linearly and B presenting no correlation. The patients in B presented a higher incidence and severity of clinical complications and lower therapy responsiveness as compared to subjects in A. The ratio MHA/Tf evidenced a quadratic dependence on the mass of transfused erythrocytes (TE) in A, and no regularity in B. Similar patterns appeared in plots of ferritin (FT) and hemoglobin (Hb) vs. DF and TE, but all correlation become visible only after A vs. B discrimination by ESR. The results point to a heavier iron overload in B than in A patients, suggesting different Hb degradation pathways in the two subgroups with more toxic 'free' iron produced in B than in A. Therefore, ESR of serum might serve for improving the precision of diagnosis, for prognosis of dissimilar therapeutic efficiency of DF in patients and for monitoring the long-term efficiency of therapy in homozygous β-thalassemia. (authors)

  18. Enhanced iron removal from liver parenchymal cells in experimental iron overload: liposome encapsulation of HBED and phenobarbital administration

    International Nuclear Information System (INIS)

    Rahman, Y.E.; Cerny, E.A.; Lau, E.H.; Carnes, B.A.

    1983-01-01

    The effectiveness of N,N'-bis[2-hydroxybenzyl]-ethylene-diamine-N,N'-diacetic acid (HBED) in removing radioiron introduced into the parenchymal cells of mouse liver as 59 Fe-ferritin has been investigated. The effectiveness of HBED, an iron chelator of low water solubility, has also been compared with that of desferrioxamine (DF), an iron chelator of high water solubility and currently in clinical use for treatment of transfusional iron overload. Using the 59 Fe excretion as the measure of effectiveness of chelation therapy and a standardized single chelator dose of 25 mg/kg, they have found that: (1) a saline suspension of HBED, prepared by sonication and given intraperitoneally to mice, promotes a small but significant increase in excretion of radioiron compared to the untreated controls, whereas DF, in its free form, is ineffective; (2) HBED encapsulated in lipid bilayers of liposomes and given intravenously is superior to nonencapsulated HBED; (3) DF encapsulated in small unilamellar liposomes is ineffective in removing iron given in the form of ferritin; (4) administration of phenobarbital in drinking water, at a concentration of 1 g/liter, induces a 30%-55% increase of iron excretion from untreated control mice and also from mice given HBED either in liposome-encapsulated or nonencapsulated form. HBED is superior to DF for removal of storage iron from liver parenchymal cells and liposomes are useful carriers for iron chelators of low water solubility

  19. SUBCHRONIC PULMONARY PATHOLOGY, IRON-OVERLOAD AND TRANSCRIPTIONAL ACTIVITY AFTER LIBBY AMPHIBOLE EXPOSURE IN RAT MODELS OF CARDIOVASCULAR DISEASE

    Science.gov (United States)

    Background: Surface-available iron (Fe) is proposed to contribute to asbestos-induced toxicity through the production of reactive oxygen species.Objective: Our goal was to evaluate the hypothesis that rat models of cardiovascular disease with coexistent Fe overload would be incre...

  20. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis.

    Science.gov (United States)

    Muthuramu, Ilayaraja; Amin, Ruhul; Postnov, Andrey; Mishra, Mudit; Jacobs, Frank; Gheysens, Olivier; Van Veldhoven, Paul P; De Geest, Bart

    2017-07-18

    Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC) in C57BL/6 mice. Mortality rate after TAC was higher ( p coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64) during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold ( p coconut oil mice than in standard chow mice. Myocardial capillary density ( p coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold ( p coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower ( p coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  1. Comparison of Deferasirox and deferoxamine treatment in iron-overloaded patients: liver iron concentration determined by quantitative MRI-R_2"*

    International Nuclear Information System (INIS)

    Peng Peng; Long Liling; Huang Zhongkui; Zhang Ling; Feng Xiao; Li Xiaohui; Yang Gaohui

    2013-01-01

    Objective: To explore the value of MRI-R_2"* and to compare clinical effect of two iron chelators (Deferasirox and deferoxamine) in iron-overloaded patients. Methods: By completely randomized balanced design, 24 iron-overloaded patients were randomly divided into 2 groups, which consisted of 12 patients treated with Deferasirox and 12 patients treated with deferoxamine. The planned Deferasirox dose was 40 mg · kg"-"1 · d"-"1, and the deferoxamine dose was no less than 50 mg · kg"-"1 · d"-"1. All patients underwent quantitative MRI at the time points of the primary screening, 6 months and 12 months. Pair Wilcoxon rank sum test was used to compare the differences of liver R_2"* values of the 2 groups at various time points respectively. Wilcoxon rank sum test was used to compare the differences of change rate of liver R_2"* values between the two groups at the time point of 6 months, 12 months, respectively. Results: Deferasirox group's liver R_2"* values of primary screening, 6 months and 12 months were 1081, 889 and 712 Hz, while deferoxamine group's liver R_2"* values were 1042, 838 and 488 Hz. There was no statistically significant difference between liver R_2"* values of two groups at primary screening (Z = -0.029, P > 0.05). The change rate of liver R_2"* of Deferasirox group at 12 month was -32%, while it was -58% for the deferoxamine group, and there was statistically significant difference between the two groups (Z = -3.060, P < 0.01). The change rate of serum ferritin of Deferasirox group at 12 month was -15%, while it was -55% for the deferoxamine group, and there was statistically significant difference between the two groups (Z = -2.945, P < 0.01). Conclusion: By using MRI-R_2"*, it suggest that both Deferasirox and deferoxamine can effectively remove liver iron and deferoxamine is superior to Deferasirox. (authors)

  2. Increased levels of advanced glycation end products positively correlate with iron overload and oxidative stress markers in patients with β-thalassemia major.

    Science.gov (United States)

    Mirlohi, Maryam Sadat; Yaghooti, Hamid; Shirali, Saeed; Aminasnafi, Ali; Olapour, Samaneh

    2018-04-01

    The impaired biosynthesis of the β-globin chain in β-thalassemia leads to the accumulation of unpaired alpha globin chains, failure in hemoglobin formation, and iron overload due to frequent blood transfusion. Iron excess causes oxidative stress and massive tissue injuries. Advanced glycation end products (AGEs) are harmful agents, and their production accelerates in oxidative conditions. This study was conducted on 45 patients with major β-thalassemia who received frequent blood transfusions and chelation therapy and were compared to 40 healthy subjects. Metabolic parameters including glycemic and iron indices, hepatic and renal functions tests, oxidative stress markers, and AGEs (carboxymethyl-lysine and pentosidine) levels were measured. All parameters were significantly increased in β-thalassemia compared to the control except for glutathione levels. Blood glucose, iron, serum ferritin, non-transferrin-bound iron (NTBI), MDA, soluble form of low-density lipoprotein receptor, glutathione peroxidase, total reactive oxygen species (ROS), and AGE levels were significantly higher in the β-thalassemia patients. Iron and ferritin showed a significant positive correlation with pentosidine (P overload in β-thalassemia major patients and highlight the enhanced formation of AGEs, which may play an important role in the pathogenesis of β-thalassemia major.

  3. Expression of Hepcidin and Growth Differentiation Factor 15 (GDF-15 Levels in Thalassemia Patients with Iron Overload and Positive Anti Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Nuri Dyah Indrasari

    2016-09-01

    Full Text Available Background: Thalassemia patients who undergo life-long recurrent blood transfusion will experience iron overload in various organs including the liver and possibly suffer from chronic hepatitis C infection which may lead to liver impairment. The liver produces hepcidin, a hormone which plays role in the regulation of iron level in the blood. Various factors may influence hepcidin level in the blood. Chronic hepatitis C causes iron overload and liver impairment. Liver impairment and haemolytic anaemia due to haemoglobinopathy will suppress hepcidin production. Anaemia stimulates growth differentiation factor 15 (GDF-15 to increase erythropoiesis and suppress hepcidin production. Iron overload causes increase in hepcidin level. Presence of factors which decrease or increase hepcidin production will express various levels of hepcidin. This study aimed to identify the expression of hepcidin and GDF-15 levels in thalassemia patients with iron overload and positive anti-HCV. Information on hepcidin and GDF-15 levels are beneficial in the management of iron overload in thalassemia with positive anti-HCV. Method: This study was a descriptive analytic study in thalassemia patients who had received recurrent blood transfusion ≥ 12 times, suffered from iron overload (transferrin saturation > 55% and ferritin > 1,000 ng/mL, which consisted of 31 individuals with positive anti-HCV and 27 individuals with negative anti-HCV. This study was performed in Thalassemia Centre Department of Child Health and Department of Clinical Pathology, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo Hospital, in October 2011–January 2012. Serum hepcidin and GDF-15 examinations were performed using enzyme-linked immunosorbent assay (ELISA method. Aspartate aminotransferase (AST and alanine aminotransferase (ALT examinations were performed using colorimetry method. Data on ferritin and transferrin saturation were obtained from medical records in the last 3

  4. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  5. MRI for the determination of pituitary iron overload in children and young adults with β-thalassaemia major

    International Nuclear Information System (INIS)

    Christoforidis, Athanasios; Haritandi, Afroditi; Perifanis, Vassilios; Tsatra, Ioanna; Athanassiou-Metaxa, Miranda; Dimitriadis, Athanasios S.

    2007-01-01

    Hypogonadism, resulting from iron-induced pituitary dysfunction, is the most frequently reported complication in patients with β-thalassaemia major. The aim of this study was to evaluate pituitary Magnetic Resonance Imaging (MRI) signal intensity reduction, on T2*-weighted images, as a marker of pituitary iron overload. Thirty patients (13 females and 17 males, mean age: 16.6 ± 4.1) with β-thalassaemia major on conventional treatment and 13 healthy volunteers (7 females and 6 males, mean age: 11 ± 4.51 years) were studied with T2*-weighted images of the anterior pituitary using a 1.5 T unit. Four thalassaemic patients (2 females and 2 males) had clinical hypogonadism and required hormonal replacement treatment. Results revealed a statistically significant reduction of pituitary signal intensity in the thalassaemia group compared to controls (p 2 = 0.443, p = 0.001), whereas ferritin levels and pituitary MRI values were moderately correlated (r = -0.56, r 2 = 0.32, p = 0.08) in adult thalassaemic patients. In conclusion, pituitary MRI indices as measured on T2*-weighted images seem to reflect pituitary iron overload and could, therefore, be used for a preclinical detection of patients who are in greater danger of developing hypogonadism

  6. HFE gene mutation and iron overload in Egyptian pediatric acute lymphoblastic leukemia survivors: a single-center study.

    Science.gov (United States)

    El-Rashedi, Farida H; El-Hawy, Mahmoud A; El-Hefnawy, Sally M; Mohammed, Mona M

    2017-08-01

    Hereditary hemochromatosis gene (HFE) mutations have a role in iron overload in pediatric acute lymphoblastic leukemia (ALL) survivors. We aimed to evaluate the genotype frequency and allelic distribution of the two HFE gene mutations (C282Y and H63D) in a sample of Egyptian pediatric ALL survivors and to detect the impact of these two mutations on their iron profile. This study was performed on 35 ALL survivors during their follow-up visits to the Hematology and Oncology Unit, Pediatric Department, Menoufia University Hospitals. Thirty-five healthy children of matched age and sex were chosen as controls. After completing treatment course, ALL survivors were screened for the prevalence of these two mutations by polymerase chain reaction-restriction fragment length polymorphism. Serum ferritin levels were measured by an enzyme-linked immunosorbent assay technique (ELISA). C282Y mutation cannot be detected in any of the 35 survivors or the 35 controls. The H63D heterozygous state (CG) was detected in 28.6% of the survivors group and in 20% of controls, while the H63D homozygous (GG) state was detected in 17.1% of survivors. No compound heterozygosity (C282Y/H63D) was detected at both groups with high G allele frequency (31.4%) in survivors more than controls (10%). There were significant higher levels of iron parameters in homozygote survivors than heterozygotes and the controls. H63D mutation aggravates the iron overload status in pediatric ALL survivors.

  7. ELABELA-APJ axis protects from pressure overload heart failure and angiotensin II-induced cardiac damage.

    Science.gov (United States)

    Sato, Teruki; Sato, Chitose; Kadowaki, Ayumi; Watanabe, Hiroyuki; Ho, Lena; Ishida, Junji; Yamaguchi, Tomokazu; Kimura, Akinori; Fukamizu, Akiyoshi; Penninger, Josef M; Reversade, Bruno; Ito, Hiroshi; Imai, Yumiko; Kuba, Keiji

    2017-06-01

    Elabela/Toddler/Apela (ELA) has been identified as a novel endogenous peptide ligand for APJ/Apelin receptor/Aplnr. ELA plays a crucial role in early cardiac development of zebrafish as well as in maintenance of self-renewal of human embryonic stem cells. Apelin was the first identified APJ ligand, and exerts positive inotropic heart effects and regulates the renin-angiotensin system. The aim of this study was to investigate the biological effects of ELA in the cardiovascular system. Continuous infusion of ELA peptide significantly suppressed pressure overload-induced cardiac hypertrophy, fibrosis and impaired contractility in mice. ELA treatment reduced mRNA expression levels of genes associated with heart failure and fibrosis. The cardioprotective effects of ELA were diminished in APJ knockout mice, indicating that APJ is the key receptor for ELA in the adult heart. Mechanistically, ELA downregulated angiotensin-converting enzyme (ACE) expression in the stressed hearts, whereas it showed little effects on angiotensin-converting enzyme 2 (ACE2) expression, which are distinct from the effects of Apelin. FoxM1 transcription factor, which induces ACE expression in the stressed hearts, was downregulated by ELA but not by Apelin. ELA antagonized angiotensin II-induced hypertension, cardiac hypertrophy, and fibrosis in mice. The ELA-APJ axis protects from pressure overload-induced heart failure possibly via suppression of ACE expression and pathogenic angiotensin II signalling. The different effects of ELA and Apelin on the expression of ACE and ACE2 implicate fine-tuned mechanisms for a ligand-induced APJ activation and downstream signalling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  8. Iron Overload Is Associated With Oxidative Stress and Nutritional Immunity During Viral Infection in Fish.

    Science.gov (United States)

    Tarifeño-Saldivia, Estefanía; Aguilar, Andrea; Contreras, David; Mercado, Luis; Morales-Lange, Byron; Márquez, Katherine; Henríquez, Adolfo; Riquelme-Vidal, Camila; Boltana, Sebastian

    2018-01-01

    Iron is a trace element, essential to support life due to its inherent ability to exchange electrons with a variety of molecules. The use of iron as a cofactor in basic metabolic pathways is essential to both pathogenic microorganisms and their hosts. During evolution, the shared requirement of micro- and macro-organisms for this important nutrient has shaped the pathogen-host relationship. Infectious pancreatic necrosis virus (IPNv) affects salmonids constituting a sanitary problem for this industry as it has an important impact on post-smolt survival. While immune modulation induced by IPNv infection has been widely characterized on Salmo salar , viral impact on iron host metabolism has not yet been elucidated. In the present work, we evaluate short-term effect of IPNv on several infected tissues from Salmo salar . We observed that IPNv displayed high tropism to headkidney, which directly correlates with a rise in oxidative stress and antiviral responses. Transcriptional profiling on headkidney showed a massive modulation of gene expression, from which biological pathways involved with iron metabolism were remarkable. Our findings suggest that IPNv infection increase oxidative stress on headkidney as a consequence of iron overload induced by a massive upregulation of genes involved in iron metabolism.

  9. Continuous Manual Exchange Transfusion for Patients with Sickle Cell Disease: An Efficient Method to Avoid Iron Overload.

    Science.gov (United States)

    Koehl, Bérengère; Missud, Florence; Holvoet, Laurent; Ithier, Ghislaine; Sakalian-Black, Oliver; Haouari, Zinedine; Lesprit, Emmanuelle; Baruchel, André; Benkerrou, Malika

    2017-03-14

    Children with sickle cell anemia (SCA) may be at risk of cerebral vasculopathy and strokes, which can be prevented by chronic transfusion programs. Repeated transfusions of packed red blood cells (PRBCs) is currently the simplest and most used technique for chronic transfusion programs. However, iron overload is one of the major side effects of this therapy. More developed methods exist, notably the apheresis of RBC (erythrapheresis), which is currently the safest and most efficient method. However, it is costly, complicated, and cannot be implemented everywhere, nor is it suitable for all patients. Manual exchange transfusions combine one or more manual phlebotomies with a PRBC transfusion. At the Reference Center of Sickle Cell Disease, we set up a continuous method of manual exchange transfusion that is feasible for all hospital settings, demands no specific equipment, and is widely applicable. In terms of HbS decrease, stroke prevention, and iron overload prevention, this method showed comparable efficiency to erythrapheresis. In cases where erythrapheresis is not available, this method can be a good alternative for patients and care centers.

  10. Hyperferritinemia without iron overload in patients with bilateral cataracts: a case series

    Directory of Open Access Journals (Sweden)

    Mumford Andrew

    2011-09-01

    Full Text Available Abstract Introduction Hepatologists and internists often encounter patients with unexplained high serum ferritin concentration. After exclusion of hereditary hemochromatosis and hemosiderosis, rare disorders like hereditary hyperferritinemia cataract syndrome should be considered in the differential diagnosis. This autosomal dominant syndrome, that typically presents with juvenile bilateral cataracts, was first described in 1995 and has an increasing number of recognized molecular defects within a regulatory region of the L-ferritin gene (FTL. Case presentation Two patients (32 and 49-year-old Caucasian men from our ambulatory clinic were suspected as having this syndrome and a genetic analysis was performed. In both patients, sequencing of the FTL 5' region showed previously described mutations within the iron responsive element (FTL c.33 C > A and FTL c.32G > C. Conclusion Hereditary hyperferritinemia cataract syndrome should be considered in all patients with unexplained hyperferritinemia without signs of iron overload, particularly those with juvenile bilateral cataracts. Liver biopsy and phlebotomy should be avoided in this disorder.

  11. Iron Overload Accelerates the Progression of Diabetic Retinopathy in Association with Increased Retinal Renin Expression.

    Science.gov (United States)

    Chaudhary, Kapil; Promsote, Wanwisa; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi; Tawfik, Amany; Arjunan, Pachiappan; Martin, Pamela; Smith, Sylvia B; Thangaraju, Muthusamy; Kisselev, Oleg; Ganapathy, Vadivel; Gnana-Prakasam, Jaya P

    2018-02-14

    Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.

  12. Fluid overload correction and cardiac history influence brain natriuretic peptide evolution in incident haemodialysis patients.

    Science.gov (United States)

    Chazot, Charles; Vo-Van, Cyril; Zaoui, Eric; Vanel, Thierry; Hurot, Jean Marc; Lorriaux, Christie; Mayor, Brice; Deleaval, Patrick; Jean, Guillaume

    2011-08-01

    Brain natriuretic peptide (BNP) is a cardiac peptide secreted by ventricle myocardial cells under stretch constraint. Increased BNP has been shown associated with increased mortality in end-stage renal disease patients. In patients starting haemodialysis (HD), both fluid overload and cardiac history are frequently present and may be responsible for a high BNP plasma level. We report in this study the evolution of BNP levels in incident HD patients, its relationship with fluid removal and cardiac history as well as its prognostic value. Forty-six patients (female/male: 21/25; 68.6 ± 14.5 years old) surviving at least 6 months after HD treatment onset were retrospectively analysed. Plasma BNP (Chemoluminescent Microparticule ImmunoAssay on i8200 Architect Abbott, Paris, France; normal value < 100 pg/mL) was assessed at HD start and during the second quarter of HD treatment (Q2). At dialysis start, the plasma BNP level was 1041 ± 1178 pg/mL (range: 14-4181 pg/mL). It was correlated with age (P = 0.0017) and was significantly higher in males (P = 0.0017) and in patients with cardiac disease history (P = 0.001). The plasma BNP level at baseline was not related to the mortality risk. At Q2, predialysis systolic blood pressure (BP) decreased from 140.5 ± 24.5 to 129.4 ± 20.6 mmHg (P = 0.0001) and the postdialysis body weight by 7.6 ± 8.4% (P < 0.0001). The BNP level decreased to 631 ± 707 pg/mL (P = 0.01) at Q2. Its variation was significantly correlated with systolic BP decrease (P = 0.006). A high BNP level was found associated with an increased risk of mortality. Hence, plasma BNP levels decreased during the first months of HD treatment during the dry weight quest. Whereas initial BNP values were not associated with increased mortality risk, the BNP level at Q2 was independently predictive of mortality. Hence, BNP is a useful tool to follow patient dehydration after dialysis start. Initial fluid overload may act as a confounding factor for its value as a

  13. The Correlation of Cardiac and Hepatic Hemosiderosis as Measured by T2*MRI Technique with Ferritin Levels and Hemochromatosis Gene Mutations in Iranian Patients with Beta Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman Soltanpour

    2018-01-01

    Full Text Available Objectives: Organ-specific hemosiderosis and iron overload complications are more serious and more frequent in some patients with beta thalassemia major (BTM compared with others. We investigated whether coinheritance of HFE H63D or C282Y gene mutations in patients with BTM contributes to the phenotypic variation of iron overload complications and assessed the correlation of cardiac and hepatic hemosiderosis with plasma ferritin levels. Methods: We studied 60 patients with BTM with a mean age of 17.5±9.1 years from the Northwest of Iran. HFE gene mutations were analyzed using the polymerase chain reaction-restriction fragment length polymorphism method. Cardiac and hepatic hemosiderosis was assessed using T2*magnetic resonance imaging (MRI. Ferritin levels were measured using the enzyme immunoassay method. Results: Ferritin levels showed a strong inverse correlation with hepatic T2*MRI values (r = -0.631, p = 0.001 but a poor correlation with cardiac T2*MRI values (r = -0.297, p = 0.044. The correlation between cardiac T2*MRI values and hepatic T2*MRI values was poor and insignificant (r = 0.287, p = 0.058. Genotype and allele distribution of HFE H63D and C282Y mutation did not differ significantly between patients with and without hepatic or cardiac hemosiderosis (p > 0.050. However, carriers of HFE 63D allele had significantly higher ferritin levels compared with non-carriers (1 903±993 vs. 992±683, p < 0.001. Conclusions: Cardiac T2*MRI values showed a poor correlation with hepatic T2*MRI values and ferritin levels. Accurate assessment of cardiac iron overload in patients with BTM can only be done using the T2*MRI technique. Additionally, HFE H63D is a significant determinant factor for elevated ferritin levels in BTM patients.

  14. Improved treatment satisfaction and convenience with deferasirox in iron-overloaded patients with beta-Thalassemia: Results from the ESCALATOR Trial.

    Science.gov (United States)

    Taher, Ali; Al Jefri, Abdullah; Elalfy, Mohsen Saleh; Al Zir, Kusai; Daar, Shahina; Rofail, Diana; Baladi, Jean François; Habr, Dany; Kriemler-Krahn, Ulrike; El-Beshlawy, Amal

    2010-01-01

    Patient-reported outcomes of once-daily oral deferasirox (Exjade) in iron-overloaded patients with beta-thalassemia not achieving successful chelation with prior deferoxamine and/or deferiprone were investigated in a prospective, open-label, 1-year, multicenter study in the Middle East (ESCALATOR). The initial dose of deferasirox was 20 mg/kg/day, with subsequent dose adjustments. At baseline and the end of study (EOS), patients (n = 237) completed a 5-point rating scale for treatment satisfaction and convenience, and recorded time lost to treatment. At EOS, 90.7% of patients were 'satisfied'/'very satisfied' with their iron chelation therapy (ICT) versus 23.2% at baseline. 92.8% (EOS) versus 21.5% (baseline) of patients considered their therapy to be 'convenient'/'very convenient'. Time lost to therapy for daily activities was substantially reduced (3.2 +/- 8.6 [mean +/- SD; EOS] vs. 30.1 +/- 44.2 [baseline] h/month). Patients reported greater satisfaction and convenience, and lower impact on daily activities, with deferasirox than with previous ICT. This may help improve adherence to lifelong ICT in iron-overloaded beta-thalassemia patients. 2010 S. Karger AG, Basel.

  15. Liver disease in adult transfusion-dependent beta-thalassaemic patients: investigating the role of iron overload and chronic HCV infection.

    Science.gov (United States)

    Kountouras, Dimitrios; Tsagarakis, Nikolaos J; Fatourou, Evangelia; Dalagiorgos, Efthimios; Chrysanthos, Nikolaos; Berdoussi, Helen; Vgontza, Niki; Karagiorga, Markissia; Lagiandreou, Athanasios; Kaligeros, Konstantinos; Voskaridou, Ersi; Roussou, Paraskevi; Diamanti-Kandarakis, Evanthia; Koskinas, John

    2013-03-01

    Iron overload and hepatitis-C virus (HCV) infection, have been implicated in the evolution of liver disease, in patients with transfusion-dependent beta-thalassaemia major (BTM). However, the impact of these factors in late stages of liver disease in adults with BTM, has not been extensively studied. To investigate serum indices of iron overload, HCV infection and liver disease, in a cohort of 211 adult Greek patients with BTM, in relation with the findings from liver biopsies. In this cross-sectional study, 211 patients with BTM were enrolled and studied, in relation with HCV infection, ferritin, transaminases, chelation treatment and antiviral treatment. Based on 109 patients biopsied, we correlated liver fibrosis, haemosiderosis and inflammation, with serum indices and HCV status Among all patients, 74.4% were anti-HCV positive (HCV+). Ferritin was positively correlated with transaminases and negatively correlated with age, while it was not significantly different among HCV+ and HCV- patients. Among the HCV+ patients, 55.4% reported antiviral treatment, while genotype 1 predominated. In a subfraction of 109 patients, in which liver biopsy was performed, 89% were HCV+ and 11% HCV-. Fibrosis was significantly correlated with age (P = 0.046), AST (P = 0.004), ALT (P = 0.044) and inflammation (P overload may be the critical determinant, since fibrosis is related to the minimal haemosiderosis, independently of HCV history. © 2012 John Wiley & Sons A/S.

  16. [Guidelines for diagnosis and treatment of secondary iron overload in patients with congenital anemia].

    Science.gov (United States)

    Cario, H; Grosse, R; Janssen, G; Jarisch, A; Meerpohl, J; Strauss, G

    2010-11-01

    In Germany and Central Europe, congenital disorders leading to secondary hemochromatosis are rare. The majority of these patients are treated in peripheral medical institutions. As a consequence, the experience of each institution in the treatment of secondary hemochromatosis in patients with congenital anemia is limited. Recent developments concerning new chelating agents, their combination for intensified chelation and new possibilities to diagnose and monitor iron overload have important consequences for the management of patients with secondary hemochromatosis and increase its complexity enormously. Therefore, the development of a guideline for rational and efficient diagnostics and treatment was necessary. The new guideline was developed within a formal consensus process and finally approved by a consensus conference with participants from both the pediatric and adult German hematology societies (GPOH and DGHO). Apart from general information and recommendations, the guideline contains 9 consensus statements on diagnostics (iron status, siderotic complications, chelator side-effects), the start of chelation, indications for intensified chelation, iron elimination in specific disorders, and iron elimination after stem cell transplantation. Here, these consensus statements are presented and discussed in detail. For the complete text of the guideline, please visit the AWMF homepage at http://www.leitlinien.net . © Georg Thieme Verlag KG Stuttgart · New York.

  17. MR marrow signs of iron overload in transfusion-dependent patients with sickle cell disease

    International Nuclear Information System (INIS)

    Levin, T.L.; Sheth, S.S.; Hurlet, A.; Comerci, S.C.; Ruzal-Shapiro, C.; Piomelli, S.; Berdon, W.E.

    1995-01-01

    Magnetic resonance (MR) marrow signal in the axial and appendicular skeleton of 13 transfusion-dependent and chelated pediatric patients with sickle cell anemia (SSD) was compared with marrow signal in six non-transfusion-dependent patients with SSD. Hepatic, pancreatic, and renal MR signal were also evaluated. Indication for hypertransfusion therapy was primarily prior history of stroke. Transfusion-dependent patients had evidence of iron deposition throughout the imaged marrow and the liver, despite deferoxamine chelation therapy. Non-transfusion-dependent patients did not demonstrate grossly apparent signs of iron overload. Red marrow restoration was present in the spine, pelvis, and long bones and, in some patients, within the epiphyses. Marrow edema secondary to vaso-occlusive crises was evident in the metaphyses and diaphyses of long bones in areas of both red and fatty marrow and was best seen using fat-saturated T2-weighted imaging techniques. (orig.). With 4 figs., 2 tabs

  18. Lack of chemokine signaling through CXCR5 causes increased mortality, ventricular dilatation and deranged matrix during cardiac pressure overload.

    Directory of Open Access Journals (Sweden)

    Anne Waehre

    Full Text Available RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF, but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/- displayed increased mortality during a follow-up of 80 days after aortic banding (AB. Following three weeks of AB, CXCR5(-/- developed significant left ventricular (LV dilatation compared to wild type (WT mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs were significantly reduced in AB CXCR5(-/- compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/- mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly.

  19. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    International Nuclear Information System (INIS)

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-01-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific 32 P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH

  20. Association between baseline serum hepcidin levels and infection in kidney transplant recipients: Potential role for iron overload.

    Science.gov (United States)

    Fernández-Ruiz, Mario; Parra, Patricia; Ruiz-Merlo, Tamara; López-Medrano, Francisco; San Juan, Rafael; Polanco, Natalia; González, Esther; Andrés, Amado; Aguado, José María

    2018-02-01

    The liver-synthesized peptide hepcidin is a key regulator of iron metabolism and correlates with total iron stores. We analyzed the association between pre-transplant hepcidin-25 levels and infection after kidney transplantation (KT). Serum hepcidin-25 levels were measured at baseline by high-sensitivity ELISA in 91 patients undergoing KT at our institution between December 2011 and March 2013. The impact of this biomarker on the incidence of post-transplant infection (excluding lower urinary tract infection) during the first year was assessed by Cox regression. Mean hepcidin-25 level was 82.3 ± 67.4 ng/mL and strongly correlated with serum ferritin (Spearman's rho = 0.703; P role for iron overload in the individual susceptibility to post-transplant infection. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Coconut Oil Aggravates Pressure Overload-Induced Cardiomyopathy without Inducing Obesity, Systemic Insulin Resistance, or Cardiac Steatosis

    Directory of Open Access Journals (Sweden)

    Ilayaraja Muthuramu

    2017-07-01

    Full Text Available Studies evaluating the effects of high-saturated fat diets on cardiac function are most often confounded by diet-induced obesity and by systemic insulin resistance. We evaluated whether coconut oil, containing C12:0 and C14:0 as main fatty acids, aggravates pressure overload-induced cardiomyopathy induced by transverse aortic constriction (TAC in C57BL/6 mice. Mortality rate after TAC was higher (p < 0.05 in 0.2% cholesterol 10% coconut oil diet-fed mice than in standard chow-fed mice (hazard ratio 2.32, 95% confidence interval 1.16 to 4.64 during eight weeks of follow-up. The effects of coconut oil on cardiac remodeling occurred in the absence of weight gain and of systemic insulin resistance. Wet lung weight was 1.76-fold (p < 0.01 higher in coconut oil mice than in standard chow mice. Myocardial capillary density (p < 0.001 was decreased, interstitial fibrosis was 1.88-fold (p < 0.001 higher, and systolic and diastolic function was worse in coconut oil mice than in standard chow mice. Myocardial glucose uptake was 1.86-fold (p < 0.001 higher in coconut oil mice and was accompanied by higher myocardial pyruvate dehydrogenase levels and higher acetyl-CoA carboxylase levels. The coconut oil diet increased oxidative stress. Myocardial triglycerides and free fatty acids were lower (p < 0.05 in coconut oil mice. In conclusion, coconut oil aggravates pressure overload-induced cardiomyopathy.

  2. HFE MUTATIONS AND IRON OVERLOAD IN PATIENTS WITH ALCOHOLIC LIVER DISEASE

    Directory of Open Access Journals (Sweden)

    Luis COSTA-MATOS

    2013-03-01

    Full Text Available Context Alcoholic liver disease (ALD is generally associated with iron overload, which may contribute to its pathogenesis, through increased oxidative stress and cellular damage. There are conflicting reports in literature about hemochromatosis (HFE gene mutations and the severity of liver disease in alcoholic patients. Objectives To compare the prevalence of mutations in the hemochromatosis (HFE gene between patients with ALD and healthy controls; to assess the relation of HFE mutations with liver iron stores and liver disease severity. Methods Liver biopsy specimens were obtained from 63 ALD patients (during routine treatment and 52 healthy controls (during elective cholecystectomy. All individuals underwent routine liver function tests and HFE genotyping (to detect wild-type sequences and C282Y, H63D, S65C, E168Q, E168X, V59M, H63H, P160delC, Q127H, Q283P, V53M and W164X mutations. Associations between HFE mutations and risk of excessive liver iron stores, abnormal serum ferritin, liver fibrosis, or necroinflammatory activity were assessed by multivariate logistic regression analysis. Results ALD patients had significantly higher serum ferritin and transferrin saturation than controls (both P<0.05, but the distribution of HFE mutations was similar between the two groups. For ALD patients, the odds ratio for having at least one HFE mutation and excessive liver iron stores was 17.23 (95% confidence interval (CI: 2.09-142.34, P = 0.008. However, the presence of at least one HFE mutation was not associated with an increased risk of liver fibrosis or necroinflammatory activity. Active alcohol ingestion showed the strongest association to increased serum ferritin (OR = 8.87, 95% CI: 2.11-34.78, P = 0.003. Conclusions ALD patients do not present with a differential profile of HFE mutations from healthy controls. In ALD patients, however, the presence of at least one HFE mutation increases the risk of having excessive liver iron stores but has no

  3. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways.

    Science.gov (United States)

    Kumar, Sandeep; Kain, Vasundhara; Sitasawad, Sandhya L

    2012-07-01

    Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Iron overload and HFE gene mutations in Czech patients with chronic liver diseases.

    Science.gov (United States)

    Dostalikova-Cimburova, Marketa; Kratka, Karolina; Stransky, Jaroslav; Putova, Ivana; Cieslarova, Blanka; Horak, Jiri

    2012-01-01

    The aim of the study was to identify the prevalence of HFE gene mutations in Czech patients with chronic liver diseases and the influence of the mutations on iron status. The presence of HFE gene mutations (C282Y, H63D, and S65C) analyzed by the PCR-RFLP method, presence of cirrhosis, and serum iron indices were compared among 454 patients with different chronic liver diseases (51 with chronic hepatitis B, 122 with chronic hepatitis C, 218 with alcoholic liver disease, and 63 patients with hemochromatosis). Chronic liver diseases patients other than hemochromatics did not have an increased frequency of HFE gene mutations compared to controls. Although 33.3% of patients with hepatitis B, 43% of patients with hepatitis C, and 73.2% of patients with alcoholic liver disease had elevated transferrin saturation or serum ferritin levels, the presence of HFE gene mutations was not significantly associated with iron overload in these patients. Additionally, patients with cirrhosis did not have frequencies of HFE mutations different from those without cirrhosis. This study emphasizes the importance, not only of C282Y, but also of the H63D homozygous genetic constellation in Czech hemochromatosis patients. Our findings show that increased iron indices are common in chronic liver diseases but {\\it HFE} mutations do not play an important role in the pathogenesis of chronic hepatitis B, chronic hepatitis C, and alcoholic liver disease.

  5. A time-cost augmented economic evaluation of oral deferasirox versus infusional deferoxamine [corrected] for patients with iron overload in South Korea.

    Science.gov (United States)

    Kim, Jinhyun; Kim, Younhee

    2009-01-01

    This study aims to conduct an economic evaluation of oral deferasirox (DSX) compared with infusional deferoxamine (DFO) in patients with transfusional iron overload. Depending on the methods for measuring time-cost and convenience associated with the mode of administration, either cost-utility analysis or cost-effectiveness analysis was undertaken. The difference in compliance rate between DSX and DFO was applied. Although the drug cost of DSX was US$124,070 higher than that of DFO (US$96,039 vs. US$220,199), all other costs were lower in patients with DSX than in patients with DFO. In the cost-utility analysis, DSX resulted in US$3197 savings with a gain of 2.63 quality-adjusted life-years per patient. The result of the cost-effectiveness analysis also showed that DSX dominated DFO. With a considerable improvement in convenience and injection time rather than efficacy, DSX is considered as a dominant therapy for patients with iron overload.

  6. Protein quality control in protection against systolic overload cardiomyopathy: the long term role of small heat shock proteins.

    Science.gov (United States)

    Kumarapeli, Asangi R K; Horak, Kathleen; Wang, Xuejun

    2010-07-21

    Molecular chaperones represent the first line of defense of intracellular protein quality control. As a major constituent of molecular chaperones, heat shock proteins (HSP) are known to confer cardiomyocyte short-term protection against various insults and injuries. Previously, we reported that the small HSP alphaB-crystallin (CryAB) attenuates cardiac hypertrophic response in mice subjected to 2 weeks of severe pressure overload. However, the long-term role of small HSPs in cardiac hypertrophy and failure has rarely been studied. The present study investigates the cardiac responses to chronic severe pressure overload in CryAB/HSPB2 germ line ablated (KO) and cardiac-specific CryAB overexpressingtransgenic (TG) mice. Pressure overload was induced by transverse aortic constriction in KO, TG, and non-transgenic wild type (NTG) control mice and 10 weeks later molecular, cellular, and whole organ level hypertrophic responses were analyzed. As we previously described, CryAB/HSPB2 KO mice showed abnormal baseline cardiac physiology that worsened into a restrictive cardiomyopathic phenotype with aging. Severe pressure overload in these mice led to rapid deterioration of heart function and development of congestive cardiac failure. Contrary to their short term protective phenotype, CryAB TG mice showed no significant effects on cardiac hypertrophic responses and very modest improvement of hemodynamics during chronic systolic overload. These findings indicate that small HSPs CryAB and/or HSPB2 are essential to maintain cardiac structure and function but overex-pression of CryAB is not sufficient to confer a sustained protection against chronic systolic overload.

  7. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    Science.gov (United States)

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  8. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    Science.gov (United States)

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  9. Combined Therapy of Iron Chelator and Antioxidant Completely Restores Brain Dysfunction Induced by Iron Toxicity

    Science.gov (United States)

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    Background Excessive iron accumulation leads to iron toxicity in the brain; however the underlying mechanism is unclear. We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine) effects on iron-overload brains were also studied. Methodology Male Wistar rats were fed either normal diet or high iron-diet consumption for 12 weeks, after which rats in each diet group were treated with vehicle or deferiprone (50 mg/kg) or n-acetyl cysteine (100 mg/kg) or both for another 4 weeks. High iron-diet consumption caused brain iron accumulation, brain mitochondrial dysfunction, impaired brain synaptic plasticity and cognition, blood-brain-barrier breakdown, and brain apoptosis. Although both iron chelator and antioxidant attenuated these deleterious effects, combined therapy provided more robust results. Conclusion In conclusion, this is the first study demonstrating that combined iron chelator and anti-oxidant therapy completely restored brain function impaired by iron overload. PMID:24400127

  10. Reduction of body iron in HFE-related haemochromatosis and moderate iron overload (Mi-Iron): a multicentre, participant-blinded, randomised controlled trial.

    Science.gov (United States)

    Ong, Sim Y; Gurrin, Lyle C; Dolling, Lara; Dixon, Jeanette; Nicoll, Amanda J; Wolthuizen, Michelle; Wood, Erica M; Anderson, Gregory J; Ramm, Grant A; Allen, Katrina J; Olynyk, John K; Crawford, Darrell; Ramm, Louise E; Gow, Paul; Durrant, Simon; Powell, Lawrie W; Delatycki, Martin B

    2017-12-01

    The iron overload disorder hereditary haemochromatosis is most commonly caused by HFE p.Cys282Tyr homozygosity. In the absence of results from any randomised trials, current evidence is insufficient to determine whether individuals with hereditary haemochromatosis and moderately elevated serum ferritin, should undergo iron reduction treatment. This trial aimed to establish whether serum ferritin normalisation in this population improved symptoms and surrogate biomarkers. This study was a multicentre, participant-blinded, randomised controlled trial done at three centres in Australia. We enrolled people who were homozygous for HFE p.Cys282Tyr, aged between 18 and 70 years, with moderately elevated serum ferritin, defined as 300-1000 μg/L, and raised transferrin saturation. Participants were randomly assigned, via a computer-generated random number, to undergo either iron reduction by erythrocytapheresis (treatment group) or sham treatment by plasmapheresis (control group). Randomisation was stratified by baseline serum ferritin (cognitive subcomponent (-3·6, -5·9 to -1·3, p=0·0030), but not in the physical (-1·90 -4·5 to 0·63, p=0·14) and psychosocial (-0·54, -1·2 to 0·11, p=0·10) subcomponents. No serious adverse events occurred in either group. One participant in the control group had a vasovagal event and 17 participants (14 in the treatment group and three in the control group) had transient symptoms assessed as related to hypovolaemia. Mild citrate reactions were more common in the treatment group (32 events [25%] in 129 procedures) compared with the control group (one event [1%] in 93 procedures). To our knowledge, this study is the first to objectively assess the consequences of iron removal in individuals with hereditary haemochromatosis and moderately elevated serum ferritin. Our results suggest that serum ferritin normalisation by iron depletion could be of benefit for all individuals with hereditary haemochromatosis and elevated serum

  11. Carriers of the Complex Allele HFE c.[187C>G;340+4T>C] Have Increased Risk of Iron Overload in São Miguel Island Population (Azores, Portugal).

    Science.gov (United States)

    Branco, Claudia C; Gomes, Cidália T; De Fez, Laura; Bulhões, Sara; Brilhante, Maria José; Pereirinha, Tânia; Cabral, Rita; Rego, Ana Catarina; Fraga, Cristina; Miguel, António G; Brasil, Gracinda; Macedo, Paula; Mota-Vieira, Luisa

    2015-01-01

    Iron overload is associated with acquired and genetic conditions, the most common being hereditary hemochromatosis (HH) type-I, caused by HFE mutations. Here, we conducted a hospital-based case-control study of 41 patients from the São Miguel Island (Azores, Portugal), six belonging to a family with HH type-I pseudodominant inheritance, and 35 unrelated individuals fulfilling the biochemical criteria of iron overload compatible with HH type-I. For this purpose, we analyzed the most common HFE mutations- c.845G>A [p.Cys282Tyr], c.187C>G [p.His63Asp], and c.193A>T [p.Ser65Cys]. Results revealed that the family's HH pseudodominant pattern is due to consanguineous marriage of HFE-c.845G>A carriers, and to marriage with a genetically unrelated spouse that is a -c.187G carrier. Regarding unrelated patients, six were homozygous for c.845A, and three were c.845A/c.187G compound heterozygous. We then performed sequencing of HFE exons 2, 4, 5 and their intron-flanking regions. No other mutations were observed, but we identified the -c.340+4C [IVS2+4C] splice variant in 26 (74.3%) patients. Functionally, the c.340+4C may generate alternative splicing by HFE exon 2 skipping and consequently, a protein missing the α1-domain essential for HFE/ transferrin receptor-1 interactions. Finally, we investigated HFE mutations configuration with iron overload by determining haplotypes and genotypic profiles. Results evidenced that carriers of HFE-c.187G allele also carry -c.340+4C, suggesting in-cis configuration. This data is corroborated by the association analysis where carriers of the complex allele HFE-c.[187C>G;340+4T>C] have an increased iron overload risk (RR = 2.08, 95% CI = 1.40-2.94, poverload because they will produce two altered proteins--the p.63Asp [c.187G], and the protein lacking 88 amino acids encoded by exon 2. In summary, we provide evidence that the complex allele HFE-c.[187C>G;340+4T>C] has a role, as genetic predisposition factor, on iron overload in the S

  12. Iron overload accelerates neuronal amyloid-β production and cognitive impairment in transgenic mice model of Alzheimer's disease.

    Science.gov (United States)

    Becerril-Ortega, Javier; Bordji, Karim; Fréret, Thomas; Rush, Travis; Buisson, Alain

    2014-10-01

    Iron dyshomeostasis is proving increasingly likely to be involved in the pathology of Alzheimer's disease (AD); yet, its mechanism is not well understood. Here, we investigated the AD-related mechanism(s) of iron-sulfate exposure in vitro and in vivo, using cultured primary cortical neurons and APP/PS1 AD-model mice, respectively. In both systems, we observed iron-induced disruptions of amyloid precursor protein (APP) processing, neuronal signaling, and cognitive behavior. Iron overload increased production of amyloidogenic KPI-APP and amyloid beta. Further, this APP misprocessing was blocked by MK-801 in vitro, suggesting the effect was N-methyl-D-aspartate receptor (NMDAR) dependent. Calcium imaging confirmed that 24 hours iron exposure led to disrupted synaptic signaling by augmenting GluN2B-containing NMDAR expression-GluN2B messenger RNA and protein levels were increased and promoting excessing extrasynaptic NMDAR signaling. The disrupted GluN2B expression was concurrent with diminished expression of the splicing factors, sc35 and hnRNPA1. In APP/PS1 mice, chronic iron treatment led to hastened progression of cognitive impairment with the novel object recognition discrimination index, revealing a deficit at the age of 4 months, concomitant with augmented GluN2B expression. Together, these data suggest iron-induced APP misprocessing and hastened cognitive decline occur through inordinate extrasynaptic NMDAR activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. T lymphocytes and iron overload: novel correlations of possible significance to the biology of the immunological system

    Directory of Open Access Journals (Sweden)

    Maria de Sousa

    1992-01-01

    Full Text Available This paper is written in the context of our changing preception of the immunological system as a system with possible biological roles exceding the prevailung view of a system concerned principally with the defense against external pathogens. The view discussed here relates the immunological system inextricably to the metabolism of iron, the circulation of the blood and the resolution of the evolutionary paradox created by oxygen and iron. Indirect evidence for this inextricable relationship between the two systems can be derived from the discrepancy between the theoretical quasi-impossibility of the existence of an iron deficiency state in the adult and the reality of the WHO numbers of people in the world with iron deficiency anemia. With mounting evidence that TNF, IL-1, and T lymphocyte cytokines affect hemopoieisis and iron metabolism it is possible that the reported discrepancy is a reflection of that inextricable interdependence between the two systems in the face of infection. Further direct evidence for a relationship between T cell subset numbers and iron metabolism is presented from the results of a study of T cell populations in patients with hereditary hemochromatosis. The recent finding of a correlation between low CD8+ lymphocite numbers, liver demage associated with HCVpositivity and severity of iron overload in B-thalassemia major patients (umpublished data of RW Grandy; P. Giardina, M. Hilgartner concludes this review.

  14. Potential involvement of iron in the pathogenesis of peritoneal endometriosis.

    Science.gov (United States)

    Defrère, S; Lousse, J C; González-Ramos, R; Colette, S; Donnez, J; Van Langendonckt, A

    2008-07-01

    The aim of this study is to review the current literature associating endometriosis with iron and to discuss the potential causes and consequences of iron overload in the pelvic cavity. Indeed, iron is essential for all living organisms. However, excess iron can result in toxicity and is associated with pathological disorders. In endometriosis patients, iron overload has been demonstrated in the different components of the peritoneal cavity (peritoneal fluid, endometriotic lesions, peritoneum and macrophages). Animal models allow us to gather essential information on the origin, metabolism and effect of iron overload in endometriosis, which may originate from erythrocytes carried into the pelvic cavity mainly by retrograde menstruation. Peritoneal macrophages play an important role in the degradation of these erythrocytes and in subsequent peritoneal iron metabolism. Iron overload could affect a wide range of mechanisms involved in endometriosis development, such as oxidative stress or lesion proliferation. In conclusion, excess iron accumulation can result in toxicity and may be one of the factors contributing to the development of endometriosis. Treatment with an iron chelator could thus be beneficial in endometriosis patients to prevent iron overload in the pelvic cavity, thereby diminishing its deleterious effect.

  15. Effect of Ca2+ overload on phosphoinositide (PI) metabolism in cardiac muscle

    International Nuclear Information System (INIS)

    Otani, H.; Otani, H.; Engelman, R.M.; Das, D.K.

    1986-01-01

    The investigated the relationship between Ca 2+ load and PI metabolism in isolated rat papillary muscle labeled with [ 3 H]inositol. Increase in [Ca 2+ ]/sub o/ from 0-3.6 mM reduced the incorporation of [ 3 H] inositol into PI moderately and increased the resting tension slightly. The incorporation of the label into PI was unchanged by 10 μm A-23187 at 1.8 mM [Ca 2+ ]/sub o/ that increased the contractility by 70% without a significant change in the resting tension. However, either 10.8 mM [Ca 2+ ]/sub o/ or 0.3 mM ouabain at 1.8 mM [Ca 2+ ]/sub o/ markedly decreased the PI labeling with corresponding increase in the resting tension while inclusion of excess EGTA greatly enhanced the radioactivity in PI. Determination of the PI breakdown and the inositol phosphates production by pulse-chase experiments revealed that the reduced PI turnover in the Ca 2+ -overload muscle was due to both inhibition of the synthesis and stimulation of the breakdown of this lipid that accounted for 30% decrease in the labeled PI from the muscle during 45 min without significant loss of the net PI pool size, suggesting the presence of a relatively smaller compartment of PI pool undergoing a rapid breakdown during Ca 2+ overload. The authors propose that alteration of Ca 2+ homeostasis may modulate the production of putative second messengers, inositol trisphosphate and diacylglycerol, which feed back to regulate [Ca 2+ ]/sub i/ in cardiac muscle

  16. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  17. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    International Nuclear Information System (INIS)

    Liguori, Carlo; Pitocco, Francesca; Di Giampietro, Ilenia; Vivo, Aldo Eros de; Schena, Emiliano; Cianciulli, Paolo; Zobel, Bruno Beomonte

    2013-01-01

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients

  18. Diagnostic value of real-time elastography in the assessment of hepatic fibrosis in patients with liver iron overload

    International Nuclear Information System (INIS)

    Paparo, Francesco; Cevasco, Luca; Zefiro, Daniele; Biscaldi, Ennio; Bacigalupo, Lorenzo; Balocco, Manuela; Pongiglione, Marta; Banderali, Simone; Forni, Gian Luca; Rollandi, Gian Andrea

    2013-01-01

    Objective: The objective of our prospective monocentric work was to determine the diagnostic value of real-time elastography (RTE) in the assessment of liver fibrosis in patients with iron overload, using transient elastography (TE) as reference standard. Methods: Sixty-seven consecutive patients with MRI detectable iron overload (T2* < 6.3 ms) were enrolled. TE and RTE were performed on the same day as MRI. Elastograms were acquired by an experienced operator and analyzed by calculating the elastic ratio between perihepatic soft tissues and liver parenchyma. An elliptical ROI of 1 cm 2 (Z 1 ) was positioned in the liver parenchyma and a smaller elliptical ROI of 2 mm 2 (Z 2 ) was positioned in a homogeneously soft (red) region of the diaphragm, which was considered as internal control to calculate the elastic ratio Z 2 /Z 1 . Results: Seven patients were excluded because of invalid TE or RTE examinations. The remaining 60 patients were 57% males and 43% females (mean age: 42 [21–76] years), including 37 homozygous-β-thalassemics, 13 patients with β-thalassemia intermedia, 6 with primary hemochromatosis, and 4 with myelodysplastic syndrome. Increasing elastic ratios were significantly correlated with increasing TE values (r = 0.645, 95% CI 0.468–0.772, P < 0.0001). The mean elastic ratios for each METAVIR group were as follows: F0/1 = 1.9 ± 0.4; F2 = 2.2 ± 0.4; F3 = 2.9 ± 0.5; F4 = 3.2 ± 0.4. The diagnostic accuracy of RTE for F ≥ 2 evaluated by AUC-ROC analysis was 0.798 (95% CI 0.674–0.890). The diagnostic accuracy of RTE for F ≥ 3 was 0.909 (95% CI 0.806–0.968). At a cut-off ≥ 2.75, RTE showed a sensitivity of 70% (95% CI 45.7–88.1) and a specificity of 97.5% (95% CI 86.8–99.9). Conclusions: In patients with MRI-detectable liver iron-overload RTE allows to discriminate between F0/1–F2 and F3–F4 with a reasonable diagnostic accuracy

  19. Diagnostic value of real-time elastography in the assessment of hepatic fibrosis in patients with liver iron overload

    Energy Technology Data Exchange (ETDEWEB)

    Paparo, Francesco [Department of Radiology, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128 Genoa (Italy); Cevasco, Luca [School of Radiology, University of Genoa, Via Leon Battista Alberti 4, 16132 Genoa (Italy); Zefiro, Daniele [Medical Physics Department, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128 Genoa (Italy); Biscaldi, Ennio; Bacigalupo, Lorenzo [Department of Radiology, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128 Genoa (Italy); Balocco, Manuela [Unit of Microcitemia and Hereditary Anaemias, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128 Genoa (Italy); Pongiglione, Marta; Banderali, Simone [Department of Radiology, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128 Genoa (Italy); Forni, Gian Luca [Unit of Microcitemia and Hereditary Anaemias, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128 Genoa (Italy); Rollandi, Gian Andrea, E-mail: gian.andrea.rollandi@galliera.it [Department of Radiology, E.O. Ospedali Galliera, Mura della Cappuccine 14, 16128 Genoa (Italy)

    2013-12-01

    Objective: The objective of our prospective monocentric work was to determine the diagnostic value of real-time elastography (RTE) in the assessment of liver fibrosis in patients with iron overload, using transient elastography (TE) as reference standard. Methods: Sixty-seven consecutive patients with MRI detectable iron overload (T2* < 6.3 ms) were enrolled. TE and RTE were performed on the same day as MRI. Elastograms were acquired by an experienced operator and analyzed by calculating the elastic ratio between perihepatic soft tissues and liver parenchyma. An elliptical ROI of 1 cm{sup 2} (Z{sub 1}) was positioned in the liver parenchyma and a smaller elliptical ROI of 2 mm{sup 2} (Z{sub 2}) was positioned in a homogeneously soft (red) region of the diaphragm, which was considered as internal control to calculate the elastic ratio Z{sub 2}/Z{sub 1}. Results: Seven patients were excluded because of invalid TE or RTE examinations. The remaining 60 patients were 57% males and 43% females (mean age: 42 [21–76] years), including 37 homozygous-β-thalassemics, 13 patients with β-thalassemia intermedia, 6 with primary hemochromatosis, and 4 with myelodysplastic syndrome. Increasing elastic ratios were significantly correlated with increasing TE values (r = 0.645, 95% CI 0.468–0.772, P < 0.0001). The mean elastic ratios for each METAVIR group were as follows: F0/1 = 1.9 ± 0.4; F2 = 2.2 ± 0.4; F3 = 2.9 ± 0.5; F4 = 3.2 ± 0.4. The diagnostic accuracy of RTE for F ≥ 2 evaluated by AUC-ROC analysis was 0.798 (95% CI 0.674–0.890). The diagnostic accuracy of RTE for F ≥ 3 was 0.909 (95% CI 0.806–0.968). At a cut-off ≥ 2.75, RTE showed a sensitivity of 70% (95% CI 45.7–88.1) and a specificity of 97.5% (95% CI 86.8–99.9). Conclusions: In patients with MRI-detectable liver iron-overload RTE allows to discriminate between F0/1–F2 and F3–F4 with a reasonable diagnostic accuracy.

  20. HFE gene mutation is a risk factor for tissue iron accumulation in hemodialysis patients.

    Science.gov (United States)

    Turkmen, Ercan; Yildirim, Tolga; Yilmaz, Rahmi; Hazirolan, Tuncay; Eldem, Gonca; Yilmaz, Engin; Aybal Kutlugun, Aysun; Altindal, Mahmut; Altun, Bulent

    2017-07-01

    HFE gene mutations are responsible from iron overload in general population. Studies in hemodialysis patients investigated the effect of presence of HFE gene mutations on serum ferritin and transferrin saturation (TSAT) with conflicting results. However effect of HFE mutations on iron overload in hemodialysis patients was not previously extensively studied. 36 hemodialysis patients (age 51.3 ± 15.6, (18/18) male/female) and 44 healthy control subjects included in this cross sectional study. Hemoglobin, ferritin, TSAT in the preceding 2 years were recorded. Iron and erythropoietin (EPO) administered during this period were calculated. Iron accumulation in heart and liver was detected by MRI. Relationship between HFE gene mutation, hemoglobin, iron parameters and EPO doses, and tissue iron accumulation were determined. Iron overload was detected in nine (25%) patients. Hemoglobin, iron parameters, weekly EPO doses, and monthly iron doses of patients with and without iron overload were similar. There was no difference between control group and hemodialysis patients with respect to the prevalence of HFE gene mutations. Iron overload was detected in five of eight patients who had HFE gene mutations, but iron overload was present in 4 of 28 patients who had no mutations (P = 0.01). Hemoglobin, iron parameters, erythropoietin, and iron doses were similar in patients with and without gene mutations. HFE gene mutations remained the main determinant of iron overload after multivariate logistic regression analysis (P = 0.02; OR, 11.6). Serum iron parameters were not adequate to detect iron overload and HFE gene mutation was found to be an important risk factor for iron accumulation. © 2017 International Society for Hemodialysis.

  1. Multi-center transferability of a breath-hold T2 technique for myocardial iron assessment

    Directory of Open Access Journals (Sweden)

    Chan Godfrey CF

    2008-02-01

    Full Text Available Abstract Background Cardiac iron overload is the leading cause of death in thalassemia major and is usually assessed using myocardial T2* measurements. Recently a cardiovascular magnetic resonance (CMR breath-hold T2 sequence has been developed as a possible alternative. This cardiac T2 technique has good interstudy reproducibility, but its transferability to different centres has not yet been investigated. Methods and Results The breath-hold black blood spin echo T2 sequence was installed and validated on 1.5T Siemens MR scanners at 4 different centres across the world. Using this sequence, 5–10 thalassemia patients from each centre were scanned twice locally within a week for local interstudy reproducibility (n = 34 and all were rescanned within one month at the standardization centre in London (intersite reproducibility. The local interstudy reproducibility (coefficient of variance and mean difference were 4.4% and -0.06 ms. The intersite reproducibility and mean difference between scanners were 5.2% and -0.07 ms. Conclusion The breath-hold myocardial T2 technique is transferable between Siemens scanners with good intersite and local interstudy reproducibility. This technique may have value in the diagnosis and management of patients with iron overload conditions such as thalassemia.

  2. Study of gonadal hormones in Egyptian female children with sickle cell anemia in correlation with iron overload: Single center study.

    Science.gov (United States)

    Hagag, Adel A; El-Farargy, Mohamed S; Elrefaey, Shaymaa; Abo El-enein, Amany M

    2016-03-01

    Sickle cell disease is a hereditary hemoglobinopathy characterized by abnormal hemoglobin production, hemolytic anemia, and intermittent occlusion of small blood vessels, leading to tissue ischemia, chronic organ damage, and organ dysfunction including endocrine organs. The aim of this work was to evaluate some gonadal hormones in female children with sickle cell anemia (SCA) in correlation with iron overload. This study was conducted on 40 female children with SCA with a serum ferritin of > 1000ng/mL, who were attendants at the Hematology Unit, Pediatric Department, Tanta University, Tanta, Egypt in the period from May 2012 to April 2014. Their ages ranged from 11 years to 15years and the mean age value was 12.63±1.36 years (Group I). Forty female children with SCA of matched age with no iron overload served as a control Group (Group II). For all patients in Groups I and II the following were performed/assessed: complete blood count, hemoglobin electrophoresis, serum iron status, serum estrogen, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). There were significantly higher serum ferritin and serum iron levels and significantly lower total iron binding capacity, FSH, LH, and estrogen levels in Group I compared with Group II (mean serum ferritin was 2635.1±918.9 in Group I vs. 292.55±107.2 in Group II with a p value of .001; mean serum iron was 196.3±55.6 in Group I vs. 120±16.57 in Group II with a p value of .001 and mean serum total iron binding capacity was 247.3±28.6 in Group I vs. 327.8.7±21.96 in Group II with a p value of .001; mean FSH level was 1.36±0.22mIU/mL in Group I vs. 2.64±0.81mIU/mL in Group II with a p value of .021; mean LH level was 0.11±0.006mIU/mL in Group I vs. 1.78±1.12mIU/mL in Group II with a p value of .003; mean estrogen level was 21.45±10.23pg/mL in Group I vs. 42.36±15.44pg/mL in Group II with a p value of 0.001) with significant negative correlation between serum gonadal hormones and serum ferritin (r

  3. Fluid overload in the ICU: evaluation and management.

    Science.gov (United States)

    Claure-Del Granado, Rolando; Mehta, Ravindra L

    2016-08-02

    Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid balance becomes a central component of the management of critically ill patients. In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration, and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status; however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal therapies. In critically ill patients, fluid overload is related to increased mortality and also lead to several complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of continuous

  4. Secondary Hemochromatosis due to Chronic Oral Iron Supplementation

    Directory of Open Access Journals (Sweden)

    Ronald Lands

    2017-01-01

    Full Text Available Iron may accumulate in excess due to a mutation in the HFE gene that upregulates absorption or when it is ingested or infused at levels that exceed the body’s ability to clear it. Excess iron deposition in parenchymal tissue causes injury and ultimately organ dysfunction. Diabetes mellitus and hepatic cirrhosis due to pancreas and liver damage are just two examples of diseases that result from iron overload. Despite the rapid growth of information regarding iron metabolism and iron overload states, the most effective treatment is still serial phlebotomies. We present a patient who developed iron overload due to chronic ingestion of oral ferrous sulfate. This case illustrates the importance of querying geriatric patients regarding their use of nonprescription iron products without a medical indication.

  5. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  6. Al-hijamah and oral honey for treating thalassemia, conditions of iron overload, and hyperferremia: toward improving the therapeutic outcomes

    Science.gov (United States)

    El Sayed, Salah Mohamed; Baghdadi, Hussam; Abou-Taleb, Ashraf; Mahmoud, Hany Salah; Maria, Reham A; Ahmed, Nagwa S; Helmy Nabo, Manal Mohamed

    2014-01-01

    Iron overload causes iron deposition and accumulation in the liver, heart, skin, and other tissues resulting in serious tissue damages. Significant blood clearance from iron and ferritin using wet cupping therapy (WCT) has been reported. WCT is an excretory form of treatment that needs more research efforts. WCT is an available, safe, simple, economic, and time-saving outpatient modality of treatment that has no serious side effects. There are no serious limitations or precautions to discontinue WCT. Interestingly, WCT has solid scientific and medical bases (Taibah mechanism) that explain its effectiveness in treating many disease conditions differing in etiology and pathogenesis. WCT utilizes an excretory physiological principle (pressure-dependent excretion) that resembles excretion through renal glomerular filtration and abscess evacuation. WCT exhibits a percutaneous excretory function that clears blood (through fenestrated skin capillaries) and interstitial fluids from pathological substances without adding a metabolic or detoxification burden on the liver and the kidneys. Interestingly, WCT was reported to decrease serum ferritin (circulating iron stores) significantly by about 22.25% in healthy subjects (in one session) and to decrease serum iron significantly to the level of causing iron deficiency (in multiple sessions). WCT was reported to clear blood significantly of triglycerides, low-density lipoprotein (LDL) cholesterol, total cholesterol, uric acid, inflammatory mediators, and immunoglobulin antibodies (rheumatoid factor). Moreover, WCT was reported to enhance the natural immunity, potentiate pharmacological treatments, and to treat many different disease conditions. There are two distinct methods of WCT: traditional WCT and Al-hijamah (WCT of prophetic medicine). Both start and end with skin sterilization. In traditional WCT, there are two steps, skin scarification followed by suction using plastic cups (double S technique); Al-hijamah is a three

  7. Initial Serum Ferritin Predicts Number of Therapeutic Phlebotomies to Iron Depletion in Secondary Iron Overload

    Science.gov (United States)

    Panch, Sandhya R.; Yau, Yu Ying; West, Kamille; Diggs, Karen; Sweigart, Tamsen; Leitman, Susan F.

    2014-01-01

    Background Therapeutic phlebotomy is increasingly used in patients with transfusional siderosis to mitigate organ injury associated with iron overload (IO). Laboratory response parameters and therapy duration are not well characterized in such patients. Methods We retrospectively evaluated 99 consecutive patients undergoing therapeutic phlebotomy for either transfusional IO (TIO, n=88; 76% had undergone hematopoietic transplantation) or non-transfusional indications (hyperferritinemia or erythrocytosis) (n=11). CBC, serum ferritin (SF), transferrin saturation, and transaminases were measured serially. Phlebotomy goal was an SF< 300 mcg/L. Results Mean SF prior to phlebotomy among TIO and nontransfusional subjects was 3,093 and 396 mcg/L, respectively. Transfusion burden in the TIO group was 94 ± 108 (mean ± SD) RBC units; about half completed therapy with 24 ± 23 phlebotomies (range 1–103). One-third was lost to follow-up. Overall, 15% had mild adverse effects, including headache, nausea, and dizziness, mainly during first phlebotomy. Prior transfusion burden correlated poorly with initial ferritin and total number of phlebotomies to target (NPT) in the TIO group. However, NPT was strongly correlated with initial SF (R2=0.8; p<0.0001) in both TIO and nontransfusional groups. ALT decreased significantly with serial phlebotomy in all groups (mean initial and final values, 61 and 39 U/L; p = 0.03). Conclusions Initial SF but not transfusion burden predicted number of phlebotomies to target in patients with TIO. Despite good treatment tolerance, significant losses to follow-up were noted. Providing patients with an estimated phlebotomy number and follow-up duration, and thus a finite endpoint, may improve compliance. Hepatic function improved with iron off-loading. PMID:25209879

  8. Frequency of Hereditary Hemochromatosis (HFE) Gene Mutations in Egyptian Beta Thalassemia Patients and its Relation to Iron Overload.

    Science.gov (United States)

    Enein, Azza Aboul; El Dessouky, Nermine A; Mohamed, Khalda S; Botros, Shahira K A; Abd El Gawad, Mona F; Hamdy, Mona; Dyaa, Nehal

    2016-06-15

    This study aimed to detect the most common HFE gene mutations (C282Y, H63D, and S56C) in Egyptian beta thalassemia major patients and its relation to their iron status. The study included 50 beta thalassemia major patients and 30 age and sex matched healthy persons as a control group. Serum ferritin, serum iron and TIBC level were measured. Detection of the three HFE gene mutations (C282Y, H63D and S65C) was done by PCR-RFLP analysis. Confirmation of positive cases for the mutations was done by sequencing. Neither homozygote nor carrier status for the C282Y or S65C alleles was found. The H63D heterozygous state was detected in 5/50 (10%) thalassemic patients and in 1/30 (3.3%) controls with no statistically significant difference between patients and control groups (p = 0.22). Significantly higher levels of the serum ferritin and serum iron in patients with this mutation (p = 001). Our results suggest that there is an association between H63D mutation and the severity of iron overload in thalassemic patients.

  9. Heart and liver T2* assessment for iron overload using different software programs

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Juliano L. [University of Campinas, Unicamp, Campinas (Brazil); Radiologia Clinica de Campinas, Campinas (Brazil); Cardiology, Department of Internal Medicine, Campinas, SP (Brazil); Sampaio, Erika Fontana; Coelho, Otavio R. [University of Campinas, Unicamp, Campinas (Brazil); Verissimo, Monica; Pereira, Fabricio B. [Centro Infantil Boldrini, Campinas (Brazil); Silva, Jose Alvaro da; Figueiredo, Gabriel S. de; Kalaf, Jose M. [Radiologia Clinica de Campinas, Campinas (Brazil)

    2011-12-15

    To assess the level of agreement and interchangeability among different software programs for calculation of T2* values for iron overload. T2* images were analysed in 60 patients with thalassaemia major using the truncation method in three software programs. Levels of agreement were assessed using Pearson correlation and Bland-Altman plots. Categorical classification for levels of iron concentration by each software program was also compared. For the heart, all correlation coefficients were significant among the software programs (P < 0.001 for all coefficients). The mean differences and 95% limits of agreement were 0.2 (-4.73 to 5.0); 0.1 (-4.0 to 3.9); and -0.1 (-4.3 to 4.8). For the liver all correlations were also significant with P < 0.001. Bland-Altman plots showed differences of -0.02 (-0.7 to 0.6); 0.01 (-0.4 to 0.4); and -0.02 (-0.6 to 0.6). There were no significant differences in clinical classification among the software programs. All tools used in this study provided very good agreement among heart and liver T2* values. The results indicate that interpretation of T2* data is interchangeable with any of the software programs tested. (orig.)

  10. HFE gene mutations in patients with primary iron overload: is there a significant improvement in molecular diagnosis yield with HFE sequencing?

    Science.gov (United States)

    Santos, Paulo C J L; Pereira, Alexandre C; Cançado, Rodolfo D; Schettert, Isolmar T; Sobreira, Tiago J P; Oliveira, Paulo S L; Hirata, Rosario D C; Hirata, Mario H; Figueiredo, Maria Stella; Chiattone, Carlos S; Krieger, Jose E; Guerra-Shinohara, Elvira M

    2010-12-15

    Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation>50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n=11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and β2-microglobulin (β2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Ratiometric measurements of adiponectin by mass spectrometry in bottlenose dolphins (Tursiops truncatus with iron overload reveal an association with insulin resistance and glucagon

    Directory of Open Access Journals (Sweden)

    Benjamin A Neely

    2013-09-01

    Full Text Available High molecular weight (HMW adiponectin levels are reduced in humans with type 2 diabetes and insulin resistance. Similar to humans with insulin resistance, managed bottlenose dolphins (Tursiops truncatus diagnosed with hemochromatosis (iron overload have higher levels of 2 h post-prandial plasma insulin than healthy controls. A parallel reaction monitoring assay for dolphin serum adiponectin was developed based on tryptic peptides identified by mass spectrometry. Using identified post-translational modifications, a differential measurement was constructed. Total and unmodified adiponectin levels were measured in sera from dolphins with (n=4 and without (n=5 iron overload. This measurement yielded total adiponectin levels as well as site specific percent unmodified adiponectin that may inversely correlate with HMW adiponectin. Differences in insulin levels between iron overload cases and controls were observed 2 h post-prandial, but not during the fasting state. Thus, post-prandial as well as fasting serum adiponectin levels were measured to determine whether adiponectin and insulin would follow similar patterns. There was no difference in total adiponectin or percent unmodified adiponectin from case or control fasting animals. There was no difference in post-prandial total adiponectin levels between case and control dolphins (mean ± S.D. at 763 ± 298 and 727 ± 291 pmol/ml, respectively (p = 0.91; however, percent unmodified adiponectin was significantly higher in post-prandial cases compared controls (30.0 ± 6.3 versus 17.0 ± 6.6%, respectively; p = 0.016. Interestingly, both total and percent unmodified adiponectin were correlated with glucagon levels in controls (r = 0.999, p < 0.001, but not in cases, which is possibly a reflection of insulin resistance. Although total adiponectin levels were not significantly different, the elevated percent unmodified adiponectin follows a trend similar to HMW adiponectin reported for humans with

  12. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    Science.gov (United States)

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions

  13. Relationship between elevated liver enzyme with iron overload and viralhepatitis in thalassemia major patients in Northern Iran

    International Nuclear Information System (INIS)

    Ameli, M.; Besharati, S.; Nemati, K.; Zamani, F.

    2008-01-01

    Objective was to determine the relationship between elevated liverenzymes with iron overload and viral hepatitis in thalassemia patients. Thisdescriptive cross-sectional study was carried out in the thalassemic ward ofTonekabon Hospital, Mazandaran, Northern Iran from 20 April to 20 Septemberof 2006. Patients were studied with respect to age, liver enzymes,anti-hepatitis C virus (anti-HCV) antibody and hepatitis B surface antigen(HBsAg), transferring saturation (TSAT)and blood transfusion index(multiplication of frequency and units of transfusion). Alanineaminotransferase (ALT) >=40 U/L was considered elevated. Sixty-five patientswere evaluated (median age 19.51+-8.9 years, range 4-54). Eleven patientswere anti-HCV positive (16.9%). The mean serum ferritin was significantlyhigher in patients with ALT>=40 (2553.08 ug/L versus 1783.7750 ug/L)(p=0.012). The mean ALT was significantly higher in patients with TSAT >=60%(41.26 U/L versus 28.82 U/L) (p=0.021). The relationship between ALT>=40 andanti-HCV positively was statistically significant. The mean ALT was 60.91 U/Lin anti-HCV positive patients and 39.29 U/L in the negative group (p=0.001).The mean serum iron and transfusion index were significantly higher inanti-HCV positive versus negative patients (234.0 versus 195.4815; p=0.02),(1693.6 versus 1036.29, p=0.014). Close association between elevated ALT withiron overload, transfusion index, age and anti-HCV positivity in thalassemiapatients of Tonekabon is recommended to re-evaluate transfusion and Desferaldoses and therapies other than blood transfusion. (author)

  14. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  15. Iron excess in recreational marathon runners.

    Science.gov (United States)

    Mettler, S; Zimmermann, M B

    2010-05-01

    Iron deficiency and anemia may impair athletic performance, and iron supplements are commonly consumed by athletes. However, iron overload should be avoided because of the possible long-term adverse health effects. We investigated the iron status of 170 male and female recreational runners participating in the Zürich marathon. Iron deficiency was defined either as a plasma ferritin (PF) concentration or =4.5 (functional iron deficiency). After excluding subjects with elevated C-reactive protein concentrations, iron overload was defined as PF >200 microg/l. Iron depletion was found in only 2 out of 127 men (1.6% of the male study population) and in 12 out of 43 (28.0%) women. Functional iron deficiency was found in 5 (3.9%) and 11 (25.5%) male and female athletes, respectively. Body iron stores, calculated from the sTfR/PF ratio, were significantly higher (Pmarathon runners. Median PF among males was 104 microg/l, and the upper limit of the PF distribution in males was 628 microg/l. Iron overload was found in 19 out of 127 (15.0%) men but only 2 out of 43 in women (4.7%). Gender (male sex), but not age, was a predictor of higher PF (Pperformance, our findings indicate excess body iron may be common in male recreational runners and suggest supplements should only be used if tests of iron status indicate deficiency.

  16. Brain iron overload, insulin resistance, and cognitive performance in obese subjects: a preliminary MRI case-control study.

    Science.gov (United States)

    Blasco, Gerard; Puig, Josep; Daunis-I-Estadella, Josep; Molina, Xavier; Xifra, Gemma; Fernández-Aranda, Fernando; Pedraza, Salvador; Ricart, Wifredo; Portero-Otín, Manuel; Fernández-Real, José Manuel

    2014-11-01

    The linkage among the tissue iron stores, insulin resistance (IR), and cognition remains unclear in the obese population. We aimed to identify the factors that contribute to increased hepatic iron concentration (HIC) and brain iron overload (BIO), as evaluated by MRI, and to evaluate their impact on cognitive performance in obese and nonobese subjects. We prospectively recruited 23 middle-aged obese subjects without diabetes (13 women; age 50.4 ± 7.7 years; BMI 43.7 ± 4.48 kg/m2) and 20 healthy nonobese volunteers (10 women; age 48.8 ± 9.5 years; BMI 24.3 ± 3.54 kg/m2) in whom iron load was assessed in white and gray matter and the liver by MRI. IR was measured from HOMA-IR and an oral glucose tolerance test. A battery of neuropsychological tests was used to evaluate the cognitive performance. Multivariate regression analysis was used to identify the independent associations of BIO and cognitive performance. A significant increase in iron load was detected at the caudate nucleus (P cognitive performance. Obesity and IR may contribute to increased HIC and BIO being associated with worse cognitive performance. BIO could be a potentially useful MRI biomarker for IR and obesity-associated cognitive dysfunction. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Consequences and costs of noncompliance with iron chelation therapy in patients with transfusion-dependent thalassemia: a literature review.

    Science.gov (United States)

    Delea, Thomas E; Edelsberg, John; Sofrygin, Oleg; Thomas, Simu K; Baladi, Jean-Francois; Phatak, Pradyumna D; Coates, Thomas D

    2007-10-01

    Patients with thalassemia major require iron chelation therapy (ICT) to prevent complications from transfusional iron overload. Deferoxamine is effective, but requires administration as a slow continuous subcutaneous or intravenous infusion five to seven times per week. Deferiprone is a three-times-daily oral iron chelator, but has limited availability in the United States. Deferasirox is a once-daily oral iron chelator that was approved in the United States in 2005 for patients older than 2 years of age with transfusional iron overload. Published evidence on rates of compliance with ICT and the association between compliance, and the incidence and costs of complications of iron overload, in patients with thalassemia major was reviewed. A total of 18 studies were identified reporting data on compliance with ICT, including 7 that examined deferoxamine only, 6 that examined deferiprone only, and 5 that compared deferoxamine and deferiprone; no studies reporting compliance with deferasirox were identified. In studies of deferoxamine only, estimated mean compliance ranged from 59 to 78 percent. Studies of deferiprone generally reported better compliance, ranging from 79 to 98 percent. Results of comparative studies of deferoxamine and deferiprone suggest that compliance may be better with oral therapy. Numerous studies demonstrate that that poor compliance with ICT results in increased risk of cardiac disease and endocrinopathies, as well as lower survival. Although data on the costs of noncompliance are limited, a recent model-based study estimated the lifetime costs of inadequate compliance with deferoxamine to be $33,142. Inadequate compliance with ICT in thalassemia major is common and results in substantial morbidity and mortality, as well as increased costs.

  18. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  19. Health-Related Quality of Life, Treatment Satisfaction, Adherence and Persistence in β-Thalassemia and Myelodysplastic Syndrome Patients with Iron Overload Receiving Deferasirox: Results from the EPIC Clinical Trial

    Directory of Open Access Journals (Sweden)

    John Porter

    2012-01-01

    Full Text Available Treatment of iron overload using deferoxamine (DFO is associated with significant deficits in patients' health-related quality of life (HRQOL and low treatment satisfaction. The current article presents patient-reported HRQOL, satisfaction, adherence, and persistence data from β-thalassemia (n=274 and myelodysplastic syndrome (MDS patients (n=168 patients participating in the Evaluation of Patients' Iron Chelation with Exjade (EPIC study (NCT00171821; a large-scale 1-year, phase IIIb study investigating the efficacy and safety of the once-daily oral iron chelator, deferasirox. HRQOL and satisfaction, adherence, and persistence to iron chelation therapy (ICT data were collected at baseline and end of study using the Medical Outcomes Short-Form 36-item Health Survey (SF-36v2 and the Satisfaction with ICT Questionnaire (SICT. Compared to age-matched norms, β-thalassemia and MDS patients reported lower SF-36 domain scores at baseline. Low levels of treatment satisfaction, adherence, and persistence were also observed. HRQOL improved following treatment with deferasirox, particularly among β-thalassemia patients. Furthermore, patients reported high levels of satisfaction with deferasirox at end of study and greater ICT adherence, and persistence. Findings suggest deferasirox improves HRQOL, treatment satisfaction, adherence, and persistence with ICT in β-thalassemia and MDS patients. Improving such outcomes is an important long-term goal for patients with iron overload.

  20. Chelation Therapy with Oral Solution of Deferiprone in Transfusional Iron-Overloaded Children with Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    Alexandros Makis

    2013-01-01

    Full Text Available Iron overload in hemoglobinopathies is secondary to blood transfusions, chronic hemolysis, and increased iron absorption and leads to tissue injury requiring the early use of chelating agents. The available agents are parenteral deferoxamine and oral deferiprone and deferasirox. There are limited data on the safety and efficacy of deferiprone at a very young age. The aim of our study was the presentation of data regarding the use of oral solution of deferiprone in 9 children (mean age 6.5, range 2–10 with transfusion dependent hemoglobinopathies (6 beta thalassemia major, 1 thalassemia intermedia, and 2 sickle cell beta thalassemia. The mean duration of treatment was 21.5 months (range 15–31. All children received the oral solution without any problems of compliance. Adverse reactions were temporary abdominal discomfort and diarrhea (1 child, mild neutropenia (1 child that resolved with no need of discontinuation of treatment, and transient arthralgia (1 child that resolved spontaneously. The mean ferritin levels were significantly reduced at the end of 12 months (initial 2440 versus final 1420 μg/L, . This small study shows that oral solution of deferiprone was well tolerated by young children and its use was not associated with major safety concerns. Furthermore, it was effective in decreasing serum ferritin.

  1. The relationship between heart and liver iron in thalassemia: a quantitative analysis using MRI

    International Nuclear Information System (INIS)

    Peng Peng; Huang Zhongkui; Long Liliang; Long Mei; Zhao Fanyu; Li Chunyan; Li Wenmei

    2012-01-01

    Objective: To quantify the heart and liver iron overload in thalassemia patients and discuss the relationship of iron deposition between them, and to evaluate the accuracy of using hepatic iron concentration > 15 mg/g dry tissue as an index to predict heart iron deposition as used in clinical practice. Methods: One hundred and three transfusion-dependent patients with thalassemia, who were older than 5 years, underwent MRI heart and liver measurement to obtain T 2 * values. The Spearman rank correlation was employed to analyze the relationship between cardiac T 2 * and liver T 2 * values. By using liver T 2 * =0.96 ms as standard setting, patients were divided into two groups, and the differences of cardiac T 2 * values between the two groups were compared by Wilcoxon rank sum test. Then by using cardiac T 2 * =10, 20 ms as standard setting, patients were divided into 3 groups, and the differences of liver T 2 * values among the 3 groups were compared by Wilcoxon rank sum test. The ROC curves were drawn to predict the possibility of using hepatic iron concentration > 15 mg/g dry tissue as an index of cardiac iron deposition. Results: The cardiac and liver T 2 * values of the 103 thalassemia patients showed low correlation (r=0.453, P=0.000). With the liver T 2 * value reduced, the cardiac T 2 * value did not decline proportionally. The cardiac T 2 * value range and median of 25 patients' group whose liver T 2 * < 0.96 ms were 4.70 to 41.70 ms and 12.10 ms, respectively. The cardiac T 2 * value range and the median of 78 patients' group whose liver T 2 * > 0.96 ms were 4.80 to 51.10 ms and 26.10 ms, respectively. There was statistically significant difference between those of the two groups (Z=-3.566, P=0.000). The liver T 2 * value range and the median of 20 patients' group whose cardiac T 2 * < 10 ms was 0.68 to 3.83 ms and 1.06 ms, respectively. The liver T 2 * value range and the median of 58 patients' group whose cardiac T 2 * ≥20 ms were

  2. Role of glutaredoxin 3 in iron homeostasis

    Science.gov (United States)

    Iron is an essential mineral nutrient that is tightly regulated through mechanisms involving iron regulatory genes, intracellular storage, and iron recycling. Dysregulation of these mechanisms often results in either excess tissue iron accumulation (overload) or iron deficiency (anemia). Many bioche...

  3. Iron excess in recreational marathon runners

    NARCIS (Netherlands)

    Mettler, S.; Zimmermann, M.B.

    2010-01-01

    Background/Objectives: Iron deficiency and anemia may impair athletic performance, and iron supplements are commonly consumed by athletes. However, iron overload should be avoided because of the possible long-term adverse health effects. Methods: We investigated the iron status of 170 male and

  4. Urinary iron excretion induced by intravenous infusion of deferoxamine in ß-thalassemia homozygous patients

    Directory of Open Access Journals (Sweden)

    Boturão-Neto E.

    2002-01-01

    Full Text Available The purpose of the present study was to identify noninvasive methods to evaluate the severity of iron overload in transfusion-dependent ß-thalassemia and the efficiency of intensive intravenous therapy as an additional tool for the treatment of iron-overloaded patients. Iron overload was evaluated for 26 ß-thalassemia homozygous patients, and 14 of them were submitted to intensive chelation therapy with high doses of intravenous deferoxamine (DF. Patients were classified into six groups of increasing clinical severity and were divided into compliant and non-compliant patients depending on their adherence to chronic chelation treatment. Several methods were used as indicators of iron overload. Total gain of transfusion iron, plasma ferritin, and urinary iron excretion in response to 20 to 60 mg/day subcutaneous DF for 8 to 12 h daily are useful to identify iron overload; however, urinary iron excretion in response to 9 g intravenous DF over 24 h and the increase of urinary iron excretion induced by high doses of the chelator are more reliable to identify different degrees of iron overload because of their correlation with the clinical grades of secondary hemochromatosis and the significant differences observed between the groups of compliant and non-compliant patients. Finally, the use of 3-9 g intravenous DF for 6-12 days led to a urinary iron excretion corresponding to 4.1 to 22.4% of the annual transfusion iron gain. Therefore, continuous intravenous DF at high doses may be an additional treatment for these patients, as a complement to the regular subcutaneous infusion at home, but requires individual planning and close monitoring of adverse reactions.

  5. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Keith Dadson

    Full Text Available Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM remodeling in response to pressure overload (PO. Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO and wild-type (WT mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson's trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects.

  6. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    Science.gov (United States)

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  7. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  8. Hydroxyurea could be a good clinically relevant iron chelator.

    Science.gov (United States)

    Italia, Khushnooma; Colah, Roshan; Ghosh, Kanjaksha

    2013-01-01

    Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  9. Hydroxyurea could be a good clinically relevant iron chelator.

    Directory of Open Access Journals (Sweden)

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  10. The role of T2*-weighted gradient echo in the diagnosis of tumefactive intrahepatic extramedullary hematopoiesis in myelodysplastic syndrome and diffuse hepatic iron overload: a case report and review of the literature.

    Science.gov (United States)

    Belay, Abel A; Bellizzi, Andrew M; Stolpen, Alan H

    2018-01-15

    Extramedullary hematopoiesis is the proliferation of hematopoietic cells outside bone marrow secondary to marrow hematopoiesis failure. Extramedullary hematopoiesis rarely presents as a mass-forming hepatic lesion; in this case, imaging-based differentiation from primary and metastatic hepatic neoplasms is difficult, often leading to biopsy for definitive diagnosis. We report a case of tumefactive hepatic extramedullary hematopoiesis in the setting of myelodysplastic syndrome with concurrent hepatic iron overload, and the role of T2*-weighted gradient-echo magnetic resonance imaging in differentiating extramedullary hematopoiesis from primary and metastatic hepatic lesions. To the best of our knowledge, T2*-weighted gradient-echo evaluation of extramedullary hematopoiesis in the setting of diffuse hepatic hemochromatosis has not been previously described. A 52-year-old white man with myelodysplastic syndrome and marrow fibrosis was found to have a 4 cm hepatic lesion on ultrasound during workup for bone marrow transplantation. Magnetic resonance imaging revealed diffuse hepatic iron overload and non-visualization of the lesion on T2* gradient-echo sequence suggesting the presence of iron deposition within the lesion similar to that in background hepatic parenchyma. Subsequent ultrasound-guided biopsy of the lesion revealed extramedullary hematopoiesis. Six months later, while still being evaluated for bone marrow transplant, our patient was found to have poor pulmonary function tests. Follow-up computed tomography angiogram showed a mass within his right main pulmonary artery. Bronchoscopic biopsy of this mass once again revealed extramedullary hematopoiesis. He received radiation therapy to his chest. However, 2 weeks later, he developed mediastinal hematoma and died shortly afterward, secondary to respiratory arrest. Mass-forming extramedullary hematopoiesis is rare; however, our report emphasizes that it needs to be considered in the initial differential

  11. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    Science.gov (United States)

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  12. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  13. Iron inhibits respiratory burst of peritoneal phagocytes in vitro

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Jurek, Aleksandra; Kubit, Piotr

    2011-01-01

    Objective. This study examines the effects of iron ions Fe(3+) on the respiratory burst of phagocytes isolated from peritoneal effluents of continuous ambulatory peritoneal dialysis (CAPD) patients, as an in vitro model of iron overload in end-stage renal disease (ESRD). Material and Methods....... Respiratory burst of peritoneal phagocytes was measured by chemiluminescence method. Results. At the highest used concentration of iron ions Fe(3+) (100 µM), free radicals production by peritoneal phagocytes was reduced by 90% compared to control. Conclusions. Iron overload may increase the risk of infectious...

  14. Factors for the bioavailability of heme iron preparation in female rats

    OpenAIRE

    村上, 亜由美; 岸本, 三香子; 川口, 真規子; 松浦, 寿喜; 市川, 富夫; Ayumi, Murakami; Mikako, Kishimoto; Makiko, Kawaguchi; Toshiki, Matsuura; Tomio, Ichikawa

    1998-01-01

    Factors for iron absorption in small intestine using heme iron preparation (HIP) and ferric citrate (FC) were investigated. We measured the solubility of iron of experimental diets (FC-normal, FC-overload, HIP-normal, HIP-overload) in water (adjusted pH6.8) and the diffusibility of dietary iron after digestion in vitro. The results did not show significantly differences between FC and HIP. Also, we measured microsomal heme oxygenase (HO) activity in intestinal mucosa of female rats fed experi...

  15. Terapia quelante oral com deferiprona em pacientes com sobrecarga de ferro Oral iron chelator therapy with deferiprone in patients with overloaded iron

    Directory of Open Access Journals (Sweden)

    Antonio Fabron Jr

    2003-01-01

    . For these patients, the orally active iron chelator deferiprone is an attractive alternative to control the overloaded iron. It has been estimated that more than six thousands patients have already been treated with deferiprone, with some of them taking the chelator for 10 years or more. The deferiprone-induced iron excretion is directly related to the dose of deferiprone and the patient's iron load. In most of transfusion-dependent patients, a dose of 75 mg/kg/day is sufficient to offset the transfusional iron-load. Recently, it has been demonstrated that desferrioxamine and deferiprone exhibit different chelating capabilities for the removal of iron from the various body iron pools and that the use of both chelators promote an additive or synergistic iron excretion with rapid reduction in the body iron load. It now is possible to consider tailor-made chelation regimens based on individual patient needs.

  16. Iron metabolism in mynah birds (Gracula religiosa) resembles human hereditary haemochromatosis

    NARCIS (Netherlands)

    Mete, A; Hendriks, HG; Klaren, PHM; Dorrestein, GM; van Dijk, JE; Marx, JJM

    2003-01-01

    Iron overload is a very frequent finding in several animal species and a genetic predisposition is suggested. In one of the most commonly reported species with susceptibility for iron overload ( mynah bird), it was recently shown that the cause of this pathophysiology is high uptake and retention of

  17. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

    Science.gov (United States)

    Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th; hide

    1999-01-01

    Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the

  18. Thallium-201 myocardial imaging for evaluation of right-ventricular overloading

    International Nuclear Information System (INIS)

    Kondo, M.; Kubo, A.; Yamazaki, H.; Ohsuzu, F.; Handa, S.; Tsugu, T.; Masaki, H.; Kinoshita, F.; Hashimoto, S.

    1978-01-01

    This study evaluated the specificity and sensitivity of Tl-201 myocardial imaging in the detection of right-ventricular (RV) overloading. Right-ventricular visualization (RVV) after administration of Tl-201 chloride was studied on 99 patients with various heart diseases. Tracer uptake in the free wall of the RV was graded in four degrees. The degree of RVV was compared with the findings of cardiac catheterization. The comparisons indicated that the uptake increased in step with the inreases in RV systolic pressure, RV end-diastolic pressure, mean pulmonary arterial pressure, total pulmonary vascular resistance, and stroke-work index of the right ventricle (P < 0.05--P < 0.001). Of the patients with visible RV, all but three had RV overloading, and all but three of those without RVV had normal RV systolic pressure. Myocardial images also reflect the type of RV overloading. In patients with RV pressure overloading, the septum showed a tendency to appear straight. In patients with atrial septal defect leading to RV volume overloading, the RV cavity was dilated, the LV image small, and the septum convex toward the RV cavity. These results indicate that Tl-201 myocardial imaging is a sensitive and specific method for the study of RV overloading

  19. Influence of genetic polymorphisms and mutations in the cardiac pathology of iron overload in thalassemia and sickle cell anemia patients: a retrospective study

    Directory of Open Access Journals (Sweden)

    Veronica Agrigento

    2012-11-01

    Full Text Available Cardiac disease in thalassemia is determined by the accumulation of iron in the tissue. Genetic factors could influence the severity and the rapidity of the modifications of the cardiac tissue. Mutations or polymorphisms of genes have already been described as being implicated in cardiac disease. In particular, we studied the polymorphisms C1091T in the Connexin 37 gene (CX 37, 4G -668 5G in the Plasminogen Activator Inhibitor-1 gene (PAI 1 and 5A-1171 6A in the Stromelysin-1 gene (SL in 193 randomly selected patients affected by hemoglobinopathies and 100 normal subjects randomly selected from the general population. A retrospective analysis based on history, clinical data and imaging studies was carried out to assess the presence and type of heart disease. The results of our study do not demonstrate a close association between polymorphism in these candidate genes and cardiac disease, and in particular with myocardial infarction in a cohort of Sicilian patients affected by hemoglobinopathies. 地中海贫血心脏病的关键诱因是组织中的铁沉积。遗传因子可能影响心脏组织修复的严重程度和速度。基因突变或基因多态性与心脏病有关。尤其是,我们研究了193名随机选择的血红蛋白病患者以及从普通人群中随机选择的100名正常受试者的连接蛋白37基因(CX37)的C1091T、纤溶酶原激活物抑制剂-1基因(PAI1)的4G -668 5G 和基质分解素-1基因(SL)的5A-1171 6A等多态性。根据病史、临床资料和影像研究进行回顾性分析,以评估心脏病的存在情况和类型。我们的研究结果并没有表明这些候选基因的多态性和心脏疾病之间存在密切联系,尤其是与一组西西里岛血红蛋白病患者的心肌梗塞存在密切联系。

  20. Does Fat Suppression via Chemically Selective Saturation (CHESS) Affect R2*-MRI for Transfusional Iron Overload Assessment? A Clinical Evaluation at 1.5 and 3 Tesla

    Science.gov (United States)

    Krafft, Axel J.; Loeffler, Ralf B.; Song, Ruitian; Bian, Xiao; McCarville, M. Beth; Hankins, Jane S.; Hillenbrand, Claudia M.

    2015-01-01

    Purpose Fat suppression (FS) via chemically selective saturation (CHESS) eliminates fat-water oscillations in multi-echo gradient echo (mGRE) R2*-MRI. However, for increasing R2* values as seen with increasing liver iron content (LIC), the water signal spectrally overlaps with the CHESS band, which may alter R2*. Here, we investigate the effect of CHESS on R2* and describe a heuristic correction for the observed CHESS-induced R2* changes. Methods Eighty patients (49/31 female/male, mean age: 18.3±11.7 years) with iron overload were scanned with a non-FS and a CHESS-FS mGRE sequence at 1.5T and 3T. Mean liver R2* values were evaluated using 3 published fitting approaches. Measured and model-corrected R2* values were compared and statistically analyzed. Results At 1.5T, CHESS led to a systematic R2* reduction (PCHESS-induced R2* bias after correction (linear regression slopes: 1.032/0.927/0.981). No CHESS-induced R2* reductions were found at 3T. Conclusion The CHESS-induced R2* bias at 1.5T needs to be considered when applying R2*-LIC biopsy calibrations for clinical LIC assessment which were established without FS at 1.5T. The proposed model corrects the R2* bias and could therefore improve clinical iron overload assessment based on linear R2*-LIC calibrations. PMID:26308155

  1. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  2. Prion protein modulates glucose homeostasis by altering intracellular iron.

    Science.gov (United States)

    Ashok, Ajay; Singh, Neena

    2018-04-26

    The prion protein (PrP C ), a mainly neuronal protein, is known to modulate glucose homeostasis in mouse models. We explored the underlying mechanism in mouse models and the human pancreatic β-cell line 1.1B4. We report expression of PrP C on mouse pancreatic β-cells, where it promoted uptake of iron through divalent-metal-transporters. Accordingly, pancreatic iron stores in PrP knockout mice (PrP -/- ) were significantly lower than wild type (PrP +/+ ) controls. Silencing of PrP C in 1.1B4 cells resulted in significant depletion of intracellular (IC) iron, and remarkably, upregulation of glucose transporter GLUT2 and insulin. Iron overloading, on the other hand, resulted in downregulation of GLUT2 and insulin in a PrP C -dependent manner. Similar observations were noted in the brain, liver, and neuroretina of iron overloaded PrP +/+ but not PrP -/- mice, indicating PrP C -mediated modulation of insulin and glucose homeostasis through iron. Peripheral challenge with glucose and insulin revealed blunting of the response in iron-overloaded PrP +/+ relative to PrP -/- mice, suggesting that PrP C -mediated modulation of IC iron influences both secretion and sensitivity of peripheral organs to insulin. These observations have implications for Alzheimer's disease and diabetic retinopathy, known complications of type-2-diabetes associated with brain and ocular iron-dyshomeostasis.

  3. Severe iron overload and hyporegenerative anemia in a case with rhesus hemolytic disease: therapeutic approach to rare complications

    Directory of Open Access Journals (Sweden)

    Fatih Demircioğlu

    2010-09-01

    Full Text Available A 33 weeks’ gestation, a baby with rhesus hemolytic disease (RHD, who had received intrauterine transfusions twice, developed cholestatic hepatic disease and late hyporegenerative anemia. Her serum ferritin and bilirubin levels increased to 8842 ng/ml and 17.9 mg/dl, respectively. Liver biopsy showed cholestasis and severe iron overload. Treatment with recombinant erythropoietin (rHuEPO decreased the transfusion need, and intravenous deferoxamine resulted in a marked decreased in serum ferritin levels and normalization of liver function. In patients who have undergone intrauterine transfusions due to RHD, hyperferritinemia and late hyporegenerative anemia should be kept in mind. Chelation therapy in cases with symptomatic hyperferritinemia and rHuEPO treatment in cases with severe hyporegenerative anemia should be considered.

  4. Changes of iron concentrations in skin and plasma of patients with hemochromatosis along therapy

    International Nuclear Information System (INIS)

    Pinheiro, T.; Alves, L.C.; Neres, M.; Pinheiro, T.; Barreiros, A.; Fleming, R.; Silva, J.N.; Filipe, P.; Silva, R.

    2009-01-01

    Skin as a manageable organ can provide direct or indirect information of tissue iron overload resulting from inherited disorders as hemochromatosis. Patients with hemochromatosis were evaluated at three consecutive phases along the therapy programme. Nuclear microprobe techniques were used to assess skin iron and Total Reflection X-ray Fluorescence to determine the plasma iron concentrations. Results showed that iron pools were differently correlated at the three therapy phases. These variations highlighted the value of skin iron content to assess organ iron deposition and therapy efficacy. Skin iron content can be used for a better management of patients with iron overload pathologies. (author)

  5. Al-hijamah and oral honey for treating thalassemia, conditions of iron overload, and hyperferremia: toward improving the therapeutic outcomes

    Directory of Open Access Journals (Sweden)

    El Sayed SM

    2014-10-01

    Full Text Available Salah Mohamed El Sayed,1,2 Hussam Baghdadi,2 Ashraf Abou-Taleb,3 Hany Salah Mahmoud,4 Reham A Maria,2,5 Nagwa S Ahmed,1 Manal Mohamed Helmy Nabo6,71Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag University, Sohag, Egypt; 2Department of Clinical Biochemistry and Molecular Medicine, Taibah Faculty of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Kingdom of Saudi Arabia; 3Department of Pediatrics, Sohag Faculty of Medicine, Sohag University, Sohag; 4World Federation of Alternative and Complementary Medicine, Cairo Regional Headquarter, Cairo; 5Department of Medical Biochemistry, Tanta Faulty of Medicine, Tanta University, Tanta; 6Department of Pediatrics, Sohag Teaching Hospital, Sohag, Egypt; 7Division of Pediatric Cardiology, Department of Pediatrics, Maternity and Children Hospital, King Abdullah Medical City, Al-Madinah Al-Munawwarah, Kingdom of Saudi ArabiaAbstract: Iron overload causes iron deposition and accumulation in the liver, heart, skin, and other tissues resulting in serious tissue damages. Significant blood clearance from iron and ferritin using wet cupping therapy (WCT has been reported. WCT is an excretory form of treatment that needs more research efforts. WCT is an available, safe, simple, economic, and time-saving outpatient modality of treatment that has no serious side effects. There are no serious limitations or precautions to discontinue WCT. Interestingly, WCT has solid scientific and medical bases (Taibah mechanism that explain its effectiveness in treating many disease conditions differing in etiology and pathogenesis. WCT utilizes an excretory physiological principle (pressure-dependent excretion that resembles excretion through renal glomerular filtration and abscess evacuation. WCT exhibits a percutaneous excretory function that clears blood (through fenestrated skin capillaries and interstitial fluids from pathological substances without adding a metabolic or detoxification burden on the

  6. Information overload and data overload in lexicography

    DEFF Research Database (Denmark)

    Gouws, Rufus H.; Tarp, Sven

    2017-01-01

    the often uncritical inclusion of too much data. This paper discusses the general term information overload and its lexicographical counterpart data overload. Different types of data overload are identified and the problems users have when retrieving the necessary information from dictionary articles...

  7. Relative iron "overload" in offspring of patients with type 2 diabetes mellitus: a new component in the conundrum of insulin resistance syndrome?

    Science.gov (United States)

    Psyrogiannis, Agathoklis; Kyriazopoulou, Venetsana; Symeonidis, Argiris; Leotsinidis, Michalis; Vagenakis, Apostolos G

    2003-01-01

    There are a few reports suggesting that subtle disturbances of iron metabolism are frequently found in patients with type 2 diabetes (DM2), but it is not known if these disturbances precede or accompany the diabetic state. We investigated the serum iron indices in 41 offspring of DM2 parents (group I) with normal glucose tolerance, and in 49 offspring whose parents had no history of DM2 and were matched for sex, age, body mass index (BMI), waist to hip ratio (WHR) and blood pressure (group II). Serum iron, ferritin, total iron binding capacity (TIBC), transferrin saturation, serum triglycerides, cholesterol, Apo-B, high density lipoprotein (HDL) and glucose and insulin values during an oral glucose tolerance test were measured. Insulin resistance was assessed using the homeostasis model assessment (HOMA - Insuline resistence index-IRI). In comparison to controls (group II), the offspring of DM2 subjects (group I) had higher fasting serum triglycerides (mean +/- SD 2.25+/-2.08 vs. 1.6+/-0.8 mmol/L, pinsulin in the Area Under the Curve (204.7+/-140.8 v. 153.1 +/- 63.0 microU/ml, pinsulin resistance. Hence, the relative iron "overload" in offspring of type 2 diabetics is present along with insulin resistance and might worsen the hepatic insulin insensitivity already present in these patients.

  8. The Impact of Polyether Chain Length on the Iron Clearing Efficiency and Physiochemical Properties of Desferrithiocin Analogues

    Science.gov (United States)

    Bergeron, Raymond J.; Bharti, Neelam; Wiegand, Jan; McManis, James S.; Singh, Shailendra; Abboud, Khalil A.

    2010-01-01

    (S)-2-(2,4-Dihydroxyphenyl)-4,5-dihydro-4-methyl-4-thiazolecarboxylic acid (2) was abandoned in clinical trials as an iron chelator for the treatment of iron overload disease because of its nephrotoxicity. However, subsequent investigations revealed that replacing the 4′-(HO) of 2 with a 3,6,9-trioxadecyloxy group, ligand 4, increased iron clearing efficiency (ICEa) and ameliorated the renal toxicity of 2. This compelled a closer look at additional polyether analogues, the subject of this work. The 3,6,9,12-tetraoxatridecyloxy analogue of 4, chelator 5, an oil, had twice the ICE in rodents of 4, although its ICE in primates was reduced relative to 4. The corresponding 3,6-dioxaheptyloxy analogue of 2, 6 (a crystalline solid), had high ICEs in both the rodent and primate models. It significantly decorporated hepatic, renal, and cardiac iron, with no obvious histopathologies. These findings suggest that polyether chain length has a profound effect on ICE, tissue iron decorporation, and ligand physiochemical properties. PMID:20232803

  9. MFehi adipose tissue macrophages compensate for tissue iron pertubations in mice.

    Science.gov (United States)

    Hubler, Merla J; Erikson, Keith M; Kennedy, Arion J; Hasty, Alyssa H

    2018-05-16

    Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess FFAs and regulation of extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe hi ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron handling genes. While studies have demonstrated iron homeostasis is important for adipocyte health, little is known about how MFe hi ATMs may respond to and influence AT iron availability. Two methodologies were used to address this question - dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe hi ATMs accumulated excess iron, while the iron content of MFe lo ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe hi ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe hi ATMs incorporated high levels of iron and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe hi ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe lo ATM incorporation into the MFe hi pool. The MFe hi ATM population maintained its low inflammatory profile and iron cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.

  10. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    International Nuclear Information System (INIS)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil

    1985-01-01

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  11. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1985-03-15

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  12. On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure

    Directory of Open Access Journals (Sweden)

    Carpenter JP

    2011-09-01

    Full Text Available Abstract Background Trials of iron chelator regimens have increased the treatment options for cardiac siderosis in beta-thalassemia major (TM patients. Treatment effects with improved left ventricular (LV ejection fraction (EF have been observed in patients without overt heart failure, but it is unclear whether these changes are clinically meaningful. Methods This retrospective study of a UK database of TM patients modelled the change in EF between serial scans measured by cardiovascular magnetic resonance (CMR to the relative risk (RR of future development of heart failure over 1 year. Patients were divided into 2 strata by baseline LVEF of 56-62% (below normal for TM and 63-70% (lower half of the normal range for TM. Results A total of 315 patients with 754 CMR scans were analyzed. A 1% absolute increase in EF from baseline was associated with a statistically significant reduction in the risk of future development of heart failure for both the lower EF stratum (EF 56-62%, RR 0.818, p Conclusion These data show that during treatment with iron chelators for cardiac siderosis, small increases in LVEF in TM patients are associated with a significantly reduced risk of the development of heart failure. Thus the iron chelator induced improvements in LVEF of 2.6% to 3.1% that have been observed in randomized controlled trials, are associated with risk reductions of 25.5% to 46.4% for the development of heart failure over 12 months, which is clinically meaningful. In cardiac iron overload, heart mitochondrial dysfunction and its relief by iron chelation may underlie the changes in LV function.

  13. Novel protective role of endogenous cardiac myocyte P2X4 receptors in heart failure.

    Science.gov (United States)

    Yang, Tiehong; Shen, Jian-bing; Yang, Ronghua; Redden, John; Dodge-Kafka, Kimberly; Grady, James; Jacobson, Kenneth A; Liang, Bruce T

    2014-05-01

    Heart failure (HF), despite continuing progress, remains a leading cause of mortality and morbidity. P2X4 receptors (P2X4R) have emerged as potentially important molecules in regulating cardiac function and as potential targets for HF therapy. Transgenic P2X4R overexpression can protect against HF, but this does not explain the role of native cardiac P2X4R. Our goal is to define the physiological role of endogenous cardiac myocyte P2X4R under basal conditions and during HF induced by myocardial infarction or pressure overload. Mice established with conditional cardiac-specific P2X4R knockout were subjected to left anterior descending coronary artery ligation-induced postinfarct or transverse aorta constriction-induced pressure overload HF. Knockout cardiac myocytes did not show P2X4R by immunoblotting or by any response to the P2X4R-specific allosteric enhancer ivermectin. Knockout hearts showed normal basal cardiac function but depressed contractile performance in postinfarct and pressure overload models of HF by in vivo echocardiography and ex vivo isolated working heart parameters. P2X4R coimmunoprecipitated and colocalized with nitric oxide synthase 3 (eNOS) in wild-type cardiac myocytes. Mice with cardiac-specific P2X4R overexpression had increased S-nitrosylation, cyclic GMP, NO formation, and were protected from postinfarct and pressure overload HF. Inhibitor of eNOS, L-N(5)-(1-iminoethyl)ornithine hydrochloride, blocked the salutary effect of cardiac P2X4R overexpression in postinfarct and pressure overload HF as did eNOS knockout. This study establishes a new protective role for endogenous cardiac myocyte P2X4R in HF and is the first to demonstrate a physical interaction between the myocyte receptor and eNOS, a mediator of HF protection. © 2014 American Heart Association, Inc.

  14. Vitamin D deficiency and its relationship with cardiac iron and function in patients with transfusion-dependent thalassemia at Chiang Mai University Hospital.

    Science.gov (United States)

    Dejkhamron, Prapai; Wejaphikul, Karn; Mahatumarat, Tuanjit; Silvilairat, Suchaya; Charoenkwan, Pimlak; Saekho, Suwit; Unachak, Kevalee

    2018-02-01

    Vitamin D deficiency is common in patients with thalassemia. Vitamin D deficiency could be related to cardiac dysfunction. Increased parathyroid hormone (PTH) is also known to be associated with heart failure. To determine the prevalence of Vitamin D deficiency and to explore the impact of Vitamin D deficiency on cardiac iron and function in patients with transfusion-dependent thalassemia. A cross-sectional study in patients with Transfusion-dependent thalassemia was conducted. Patients with liver disease, renal disease, type 1 diabetes, malabsorption, hypercortisolism, malignancy, and contraindication for MRI were excluded. Calcium, phosphate, PTH, vitamin D-25OH were measured. CardiacT2 * and liver iron concentration (LIC) and left ventricular ejection fraction (LVEF) were determined. Results Sixty-one (33M/28F) patients with Transfusion-dependent thalassemia were enrolled. The prevalence of Vitamin D deficiency was 50.8%. Patients with cardiac siderosis had tendency for lower D-25OH than those without siderosis (15.9 (11.7-20.0) vs. 20.2 (15.85-22.3) ng/mL); p = 0.06). Serum calcium, phosphate, PTH, LIC, cardiac T2 * , and LVEF were not different between the groups with or without Vitamin D deficiency. Patients with Vitamin D deficiency had significantly lower hemoglobin levels compared to those without Vitamin D deficiency (7.5 (6.93-8.33) vs. 8.1 (7.30-8.50) g/dL; p = 0.04). The median hemoglobin in the last 12 months was significantly correlated with D-25OH. Cardiac T2 * had significant correlation with PTH. Vitamin D deficiency is prevalent in patients with Transfusion-dependent thalassemia. Vitamin D level is correlated with hemoglobin level. Vitamin D status should be routinely assessed in these patients. Low PTH is correlated with increased cardiac iron. This study did not demonstrate an association between Vitamin D deficiency and cardiac iron or function in patients with Transfusion-dependent thalassemia.

  15. Plasma protein haptoglobin modulates renal iron loading

    DEFF Research Database (Denmark)

    Fagoonee, Sharmila; Gburek, Jakub; Hirsch, Emilio

    2005-01-01

    Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme...... distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting...... morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload....

  16. Pancreatic iron stores assessed by magnetic resonance imaging (MRI) in beta thalassemic patients

    International Nuclear Information System (INIS)

    Feitosa de Assis, Reijâne Alves; Ribeiro, Andreza Alice; Kay, Fernando Uliana; Rosemberg, Laércio Alberto; Nomura, Cesar Higa; Loggetto, Sandra Regina; Araujo, Aderson S.; Fabron Junior, Antonio; Pinheiro de Almeida Veríssimo, Mônica; Baldanzi, Giorgio Roberto; Espósito, Breno Pannia; Baroni, Ronaldo Hueb; Wood, John C.; Hamerschlak, Nelson

    2012-01-01

    Purpose: To assess the correlation between MRI findings of the pancreas with those of the heart and liver in patients with beta thalassemia; to compare the pancreas T2* MRI results with glucose and ferritin levels and labile plasma iron (LPI). Materials and methods: We retrospectively evaluated chronically transfused patients, testing glucose with enzymatic tests, serum ferritin with chemiluminescence, LPI with cellular fluorescence, and T2* MRI to assess iron content in the heart, liver, and pancreas. MRI results were compared with one another and with serum glucose, ferritin, and LPI. Liver iron concentration (LIC) was determined in 11 patients’ liver biopsies by atomic absorption spectrometry. Results: 289 MRI studies were available from 115 patients during the period studied. 9.4% of patients had overt diabetes and an additional 16% of patients had impaired fasting glucose. Both pancreatic and cardiac R2* had predictive power (p 2 = 0.20, p 2 = 0.09, p 2 = 0.14, p 2 = 0.03, p 2 of 0.91. Conclusions: Pancreatic iron overload can be assessed by MRI, but siderosis in other organs did not correlate significantly with pancreatic hemosiderosis.

  17. Iron overload and pregnancy outcome among Sudanese women ...

    African Journals Online (AJOL)

    The mean babies' birth weights were comparable among the IOL and the LSI groups but both were significantly lower than that among the NSI group. Conclusion: Iron supplementation to pregnant women must be rationalized so that women will benefit without developing undesirable effects. Key words: iron, oxidative stress ...

  18. Hepatic magnetic resonance imaging with T2* mapping of ovariectomized rats: correlation between iron overload and postmenopausal osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingshan; Peng, Xingui; Wang, Yuancheng; Wang, Yaling; Chen, Min; Wang, Qi; Jin, Jiyang [Zhongda Hospital of Southeast University, Department of Radiology, Nanjing (China); Zhu, Zhengqiu [Zhongda Hospital of Southeast University, Department of Endocrinology, Nanjing (China)

    2014-07-15

    To explore the correlation between liver iron overload and bone mineral density (BMD) in an ovariectomy (OVX) rat model, using liver magnetic resonance (MR)-T2* and dual-energy X-ray absorptiometry (DEXA). Sprague-Dawley rats received deferoxamine (DFO) or phosphate-buffered saline 3 months after bilateral OVX. MRI and DEXA were performed pre- and postoperatively. Five rats per group were killed every month for micro-CT, histopathology and biochemical examinations. Statistical analysis was performed with independent-samples t tests, box plots and Pearson's correlation analysis. At 2 months postoperatively, BMD was significantly lower in the OVX group than in the control group (P < 0.01), corresponding to the increased serum ferritin concentration (SFC; P < 0.01) and liver iron concentration (LIC; P < 0.01). Liver T2* values significantly differed between the two groups at 1 month postoperatively (P < 0.001) and improved 1 month after DFO injection (P < 0.05). These values were significantly and positively correlated with BMD in the control (r = 0.527, P < 0.001) and OVX (r = 0.456, P < 0.001) groups. Liver MRI T2* changed markedly earlier than BMD, LIC and SFC, and correlated well with osteoporosis; it may thus be a valuable early indicator of osteoporosis. (orig.)

  19. Transient upregulation of protein kinase C in pressure-overloaded neonatal rat myocardium

    Czech Academy of Sciences Publication Activity Database

    Hamplová, B.; Novák, F.; Kolář, František; Nováková, O.

    2010-01-01

    Roč. 59, č. 1 (2010), s. 25-33 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : protein kinase C * cardiac development * pressure overload Subject RIV: ED - Physiology Impact factor: 1.646, year: 2010

  20. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor

    Directory of Open Access Journals (Sweden)

    Zhang WW

    2017-10-01

    mmHg, p<0.05 and ejection fraction (82%±3% vs 60%±5%, p<0.05. Treatment with telmisartan provided a comparable level of protection as compared with edaravone in all the parameters measured. Taken together, edaravone treatment ameliorates cardiac fibrosis and improves left ventricular function in the pressure overload rat model, potentially via suppressing the AT1 receptor-mediated signaling pathways. These data indicate that edaravone might be selected in combination with other existing drugs in preventing progression of cardiac dysfunction in heart failure. Keywords: angiotensin II receptor, cardiac fibrosis, cardiac function, edaravone, heart failure

  1. Mapping and characterization of iron compounds in Alzheimer's tissue

    International Nuclear Information System (INIS)

    Collingwood, Joanna; Dobson, Jon

    2006-01-01

    Understanding the management of iron in the brain is of great importance in the study of neurodegeneration, where regional iron overload is frequently evident. A variety of approaches have been employed, from quantifying iron in various anatomical structures, to identifying genetic risk factors related to iron metabolism, and exploring chelation approaches to tackle iron overload in neurodegenerative disease. However, the ease with which iron can change valence state ensures that it is present in vivo in a wide variety of forms, both soluble and insoluble. Here, we review recent developments in approaches to locate and identify iron compounds in neurodegenerative tissue. In addition to complementary techniques that allow us to quantify and identify iron compounds using magnetometry, extraction, and electron microscopy, we are utilizing a powerful combined mapping/characterization approach with synchrotron X-rays. This has enabled the location and characterization of iron accumulations containing magnetite and ferritin in human Alzheimer's disease (AD) brain tissue sections in situ at micron-resolution. It is hoped that such approaches will contribute to our understanding of the role of unusual iron accumulations in disease pathogenesis, and optimise the potential to use brain iron as a clinical biomarker for early detection and diagnosis.

  2. Treating iron overload in patients with non-transfusion-dependent thalassemia

    Science.gov (United States)

    Taher, Ali T; Viprakasit, Vip; Musallam, Khaled M; Cappellini, M Domenica

    2013-01-01

    Despite receiving no or only occasional blood transfusions, patients with non-transfusion-dependent thalassemia (NTDT) have increased intestinal iron absorption and can accumulate iron to levels comparable with transfusion-dependent patients. This iron accumulation occurs more slowly in NTDT patients compared to transfusion-dependent thalassemia patients, and complications do not arise until later in life. It remains crucial for these patients' health to monitor and appropriately treat their iron burden. Based on recent data, including a randomized clinical trial on iron chelation in NTDT, a simple iron chelation treatment algorithm is presented to assist physicians with monitoring iron burden and initiating chelation therapy in this group of patients. Am. J. Hematol. 88:409–415, 2013. © 2013 Wiley Periodicals, Inc. PMID:23475638

  3. Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats

    International Nuclear Information System (INIS)

    Sun, Gui-bo; Sun, Hong; Meng, Xiang-bao; Hu, Jin; Zhang, Qiang; Liu, Bo; Wang, Min; Xu, Hui-bo; Sun, Xiao-bo

    2014-01-01

    Aconitine is a major bioactive diterpenoid alkaloid with high content derived from herbal aconitum plants. Emerging evidence indicates that voltage-dependent Na + channels have pivotal roles in the cardiotoxicity of aconitine. However, no reports are available on the role of Ca 2+ in aconitine poisoning. In this study, we explored the importance of pathological Ca 2+ signaling in aconitine poisoning in vitro and in vivo. We found that Ca 2+ overload lead to accelerated beating rhythm in adult rat ventricular myocytes and caused arrhythmia in conscious freely moving rats. To investigate effects of aconitine on myocardial injury, we performed cytotoxicity assay in neonatal rat ventricular myocytes (NRVMs), as well as measured lactate dehydrogenase level in the culture medium of NRVMs and activities of serum cardiac enzymes in rats. The results showed that aconitine resulted in myocardial injury and reduced NRVMs viability dose-dependently. To confirm the pro-apoptotic effects, we performed flow cytometric detection, cardiac histology, transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The results showed that aconitine stimulated apoptosis time-dependently. The expression analysis of Ca 2+ handling proteins demonstrated that aconitine promoted Ca 2+ overload through the expression regulation of Ca 2+ handling proteins. The expression analysis of apoptosis-related proteins revealed that pro-apoptotic protein expression was upregulated, and anti-apoptotic protein BCL-2 expression was downregulated. Furthermore, increased phosphorylation of MAPK family members, especially the P-P38/P38 ratio was found in cardiac tissues. Hence, our results suggest that aconitine significantly aggravates Ca 2+ overload and causes arrhythmia and finally promotes apoptotic development via phosphorylation of P38 mitogen-activated protein kinase. - Highlights: • Aconitine-induced Ca 2+ overload causes arrhythmia in rats

  4. Work Overload.

    Science.gov (United States)

    Bateman, Thomas S.

    1980-01-01

    To investigate managerial use of work (or role) overload to increase productivity, the author studied 77 nonclerical white-collar employees and found that work overload had negative effects on productivity, supervisors' ratings, employee attitudes, job satisfaction, and health. He recommends ways for managers and employees to reduce work overload.…

  5. Blood Transfusion, Serum Ferritin, and Iron in Hemodialysis Patients in Africa

    Science.gov (United States)

    Kouegnigan Rerambiah, Leonard; Essola Rerambiah, Laurence; Mbourou Etomba, Armel; Mouguiama, Rose Marlène; Issanga, Phanie Brunelle; Biyoghe, Axel Sydney; Batchilili, Batchelili; Akone Assembe, Sylvestre; Djoba Siawaya, Joel Fleury

    2015-01-01

    Background and Objectives. There is no data analyzing the outcome of blood transfusions and oral iron therapy in patients with kidneys failure in sub-Saharan Africa. The present study aimed to fill that gap and assess the value of ferritin in the diagnosis of iron overload and deficiency. Design. From January to February 2012, we prospectively studied 85 hemodialysis patients (78% of males and 22% of females aged 20 to 79 years) attending the Gabonese National Hemodialysis Centre. Results. Correlation studies showed (a) a strong positive linear relationship between the number of blood transfusions and high serum ferritin in hemodialysis patient (Spearman r : 0.74; P value: 0.0001); (b) a weak association between the number of blood transfusions and serum iron concentrations (Spearman r : 0.32; P value: 0.04); (c) a weak association between serum ferritin and serum iron (Spearman r : 0.32; P value: 0.003). Also, the strength of agreement beyond chance between the levels of ferritin and iron in the serum was poor (κ = 0.14). The prevalence of iron overload was 10.6%, whereas the prevalence of iron deficiency was 2.3%, comparing (1) patients with a maximum of one transfusion not on iron therapy; (2) patients with a maximum of one transfusion on iron therapy; (3) polytransfused patients not on iron therapy; and (4) polytransfused patients on oral iron therapy. The “Kruskal-Wallis test” showed that ferritin levels varied significantly between the groups (P value: 0.0001). Conclusion. Serum ferritin is not reliable as a marker of iron overload. For patients undergoing regular transfusion we recommend routine serum ferritin measurement and yearly measurement of LIC. PMID:25685597

  6. Aconitine-induced Ca{sup 2+} overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Hong; Meng, Xiang-bao [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Hu, Jin; Zhang, Qiang; Liu, Bo [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo, E-mail: xhb_6505@163.com [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Sun, Xiao-bo, E-mail: sun_xiaobo163@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2014-08-15

    Aconitine is a major bioactive diterpenoid alkaloid with high content derived from herbal aconitum plants. Emerging evidence indicates that voltage-dependent Na{sup +} channels have pivotal roles in the cardiotoxicity of aconitine. However, no reports are available on the role of Ca{sup 2+} in aconitine poisoning. In this study, we explored the importance of pathological Ca{sup 2+} signaling in aconitine poisoning in vitro and in vivo. We found that Ca{sup 2+} overload lead to accelerated beating rhythm in adult rat ventricular myocytes and caused arrhythmia in conscious freely moving rats. To investigate effects of aconitine on myocardial injury, we performed cytotoxicity assay in neonatal rat ventricular myocytes (NRVMs), as well as measured lactate dehydrogenase level in the culture medium of NRVMs and activities of serum cardiac enzymes in rats. The results showed that aconitine resulted in myocardial injury and reduced NRVMs viability dose-dependently. To confirm the pro-apoptotic effects, we performed flow cytometric detection, cardiac histology, transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The results showed that aconitine stimulated apoptosis time-dependently. The expression analysis of Ca{sup 2+} handling proteins demonstrated that aconitine promoted Ca{sup 2+} overload through the expression regulation of Ca{sup 2+} handling proteins. The expression analysis of apoptosis-related proteins revealed that pro-apoptotic protein expression was upregulated, and anti-apoptotic protein BCL-2 expression was downregulated. Furthermore, increased phosphorylation of MAPK family members, especially the P-P38/P38 ratio was found in cardiac tissues. Hence, our results suggest that aconitine significantly aggravates Ca{sup 2+} overload and causes arrhythmia and finally promotes apoptotic development via phosphorylation of P38 mitogen-activated protein kinase. - Highlights: • Aconitine-induced Ca

  7. Non-transferrin-bound iron (NTBI uptake by T lymphocytes: evidence for the selective acquisition of oligomeric ferric citrate species.

    Directory of Open Access Journals (Sweden)

    Joao Arezes

    Full Text Available Iron is an essential nutrient in several biological processes such as oxygen transport, DNA replication and erythropoiesis. Plasma iron normally circulates bound to transferrin. In iron overload disorders, however, iron concentrations exceed transferrin binding capacity and iron appears complexed with low molecular weight molecules, known as non-transferrin-bound iron (NTBI. NTBI is responsible for the toxicity associated with iron-overload pathologies but the mechanisms leading to NTBI uptake are not fully understood. Here we show for the first time that T lymphocytes are able to take up and accumulate NTBI in a manner that resembles that of hepatocytes. Moreover, we show that both hepatocytes and T lymphocytes take up the oligomeric Fe3Cit3 preferentially to other iron-citrate species, suggesting the existence of a selective NTBI carrier. These results provide a tool for the identification of the still elusive ferric-citrate cellular carrier and may also open a new pathway towards the design of more efficient iron chelators for the treatment of iron overload disorders.

  8. Significance of iron reduction for the therapy of chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Nožić Darko

    2005-01-01

    Full Text Available Background. It has been established that many patients with chronic hepatitis C have elevated serum iron, feritin levels and iron deposits in the liver. Therefore, the liver damage due to hepatitis C virus may be aggravated with iron overload. In many studies higher levels of iron in the blood and the liver were connected with the decreased response to interferon-alfa therapy for chronic viral hepatitis C. Recent introduction of pegylated interferons plus ribavirin has improved the therapeutic response, so it is now possible to cure more than 50% of the patients. Case report. Three patients with chronic hepatitis C and iron overload were presented. Iron reduction therapy using phlebotomy or eritrocytapheresis with plasmapheresis was done at different times in regard to specific antiviral therapy or as a sole therapy. Conclusion. It has been shown that iron reduction, sole or combined with antiviral therapy, led to the deacreased aminotransferase serum activity and might have slow down the evolution of chronic hepatitis C viral infection.

  9. HFE gene: Structure, function, mutations, and associated iron abnormalities.

    Science.gov (United States)

    Barton, James C; Edwards, Corwin Q; Acton, Ronald T

    2015-12-15

    The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Liver iron concentration quantification by MRI: are recommended protocols accurate enough for clinical practice?

    International Nuclear Information System (INIS)

    Castiella, Agustin; Zapata, Eva Mia; Alustiza, Jose M.; Emparanza, Jose I.; Costero, Belen; Diez, Maria I.

    2011-01-01

    To assess the accuracy of quantification of liver iron concentration (LIC) by MRI using the Rennes University (URennes) algorithm. In the overall study period 1999-2006 the LIC in 171 patients was calculated with the URennes model and the results were compared with LIC measured by liver biopsy. The biopsy showed that 107 patients had no overload, 38 moderate overload and 26 high overload. The correlation between MRI and biopsy was r = 0.86. MRI correctly classified 105 patients according to the various levels of LIC. Diagnostic accuracy was 61.4%, with a tendency to overestimate overload: 43% of patients with no overload were diagnosed as having overload, and 44.7% of patients with moderate overload were diagnosed as having high overload. The sensitivity of the URennes method for high overload was 92.3%, and the specificity for the absence of overload was 57.0%. MRI values greater than 170 μmol Fe/g revealed a positive predictive value (PPV) for haemochromatosis of 100% (n = 18); concentrations below 60 μmol Fe/g had a negative predictive value (NPV) of 100% for haemochromatosis (n = 101). The diagnosis in 44 patients with intermediate values remained uncertain. The assessment of LIC with the URennes method was useful in 74.3% of the patients to rule out or to diagnose high iron overload. The method has a tendency to overestimate overload, which limits its diagnostic performance. (orig.)

  11. Liver iron concentration quantification by MRI: are recommended protocols accurate enough for clinical practice?

    Energy Technology Data Exchange (ETDEWEB)

    Castiella, Agustin; Zapata, Eva M. [Mendaro Hospital, Gastroenterology Service, Mendaro (Spain); Alustiza, Jose M. [Osatek Donostia, Radiology Service, Donostia (Spain); Emparanza, Jose I. [Donostia Hospital CASPe, CIBER-ESP, Clinical Epidemiology Unit, Donostia (Spain); Costero, Belen [Principe de Asturias Hospital, Gastroenterology Service, Alcala de Henares (Spain); Diez, Maria I. [Principe de Asturias Hospital, Radiology Service, Alcala de Henares (Spain)

    2011-01-15

    To assess the accuracy of quantification of liver iron concentration (LIC) by MRI using the Rennes University (URennes) algorithm. In the overall study period 1999-2006 the LIC in 171 patients was calculated with the URennes model and the results were compared with LIC measured by liver biopsy. The biopsy showed that 107 patients had no overload, 38 moderate overload and 26 high overload. The correlation between MRI and biopsy was r = 0.86. MRI correctly classified 105 patients according to the various levels of LIC. Diagnostic accuracy was 61.4%, with a tendency to overestimate overload: 43% of patients with no overload were diagnosed as having overload, and 44.7% of patients with moderate overload were diagnosed as having high overload. The sensitivity of the URennes method for high overload was 92.3%, and the specificity for the absence of overload was 57.0%. MRI values greater than 170 {mu}mol Fe/g revealed a positive predictive value (PPV) for haemochromatosis of 100% (n = 18); concentrations below 60 {mu}mol Fe/g had a negative predictive value (NPV) of 100% for haemochromatosis (n = 101). The diagnosis in 44 patients with intermediate values remained uncertain. The assessment of LIC with the URennes method was useful in 74.3% of the patients to rule out or to diagnose high iron overload. The method has a tendency to overestimate overload, which limits its diagnostic performance. (orig.)

  12. Correlation between T2* cardiovascular magnetic resonance with left ventricular function and mass in adolescent and adult major thalassemia patients with iron overload.

    Science.gov (United States)

    Djer, Mulyadi M; Anggriawan, Shirley L; Gatot, Djajadiman; Amalia, Pustika; Sastroasmoro, Sudigdo; Widjaja, Patricia

    2013-10-01

    to assess for a correlation between T2*CMR with LV function and mass in thalassemic patients with iron overload. a cross-sectional study on thalassemic patients was conducted between July and September 2010 at Cipto Mangunkusumo and Premier Hospitals, Jakarta, Indonesia. Clinical examinations, review of medical charts, electrocardiography, echocardiography, and T2*CMR were performed. Cardiac siderosis was measured by T2*CMR conduction time. Left ventricle diastolic and systolic functions, as well as LV mass index were measured using echocardiography. Correlations between T2*CMR and echocardiography findings, as well as serum ferritin were determined using Pearson's and Spearman's tests. thirty patients aged 13-41 years were enrolled, of whom two-thirds had -thalassemia major and one-third had HbE/-thalassemia. Diastolic dysfunction was identified in 8 patients, whereas systolic function was normal in all patients. Increased LV mass index was found in 3 patients. T2*CMR conduction times ranged from 8.98 to 55.04 ms and a value below 20 ms was demonstrated in 14 patients. There was a statistically significant moderate positive correlation of T2*CMR conduction time with E/A ratio (r = 0.471, P = 0.009), but no correlation was found with LV mass index (r=0.097, P=0.608). A moderate negative correlation was found between T2*CMR and serum ferritin (r = -0.514, P = 0.004), while a moderate negative correlation was found between serum ferritin and E/A ratio (r = -0.425, P = 0.019). T2*CMR myocardial conduction time has a moderate positive correlation with diastolic function, moderate negative correlation with serum ferritin, but not with LV mass index and systolic function.

  13. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload

    NARCIS (Netherlands)

    Koitabashi, Norimichi; Danner, Thomas; Zaiman, Ari L.; Pinto, Yigal M.; Rowell, Janelle; Mankowski, Joseph; Zhang, Dou; Nakamura, Taishi; Takimoto, Eiki; Kass, David A.

    2011-01-01

    The cardiac pathological response to sustained pressure overload involves myocyte hypertrophy and dysfunction along with interstitial changes such as fibrosis and reduced capillary density. These changes are orchestrated by mechanical forces and factors secreted between cells. One such secreted

  14. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    2015-10-01

    Full Text Available Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1 might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.

  15. Chronic activation of the low affinity site of β1-adrenoceptors stimulates haemodynamics but exacerbates pressure-overload cardiac remodelling

    Science.gov (United States)

    Kiriazis, Helen; Tugiono, Niquita; Xu, Qi; Gao, Xiao-Ming; Jennings, Nicole L; Ming, Ziqui; Su, Yidan; Klenowski, Paul; Summers, Roger J; Kaumann, Alberto; Molenaar, Peter; Du, Xiao-Jun

    2013-01-01

    BACKGROUND AND PURPOSE The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. EXPERIMENTAL APPROACH C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. KEY RESULTS (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. CONCLUSIONS AND IMPLICATIONS β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. PMID:23750586

  16. Genetic/metabolic effect of iron metabolism and rare anemias

    Directory of Open Access Journals (Sweden)

    Clara Camaschella

    2013-03-01

    Full Text Available Advances in iron metabolism have allowed a novel classification of iron disorders and to identify previously unknown diseases. These disorders include genetic iron overload (hemochromatosis and inherited iron-related anemias, in some cases accompanied by iron overload. Rare inherited anemias may affect the hepcidin pathway, iron absorption, transport, utilization and recycling. Among the genetic iron-related anemias the most common form is likely the iron-refractory iron-deficiency anemia (IRIDA, due to mutations of the hepcidin inhibitor TMPRSS6 encoding the serine protease matriptase-2. IRIDA is characterized by hepcidin up-regulation, decrease iron absorption and macrophage recycling and by microcytic- hypochromic anemia, unresponsive to oral iron. High serum hepcidin levels may suggest the diagnosis, which requires demonstrating the causal TMPRSS6 mutations by gene sequencing. Other rare microcytic hypochromic anemias associated with defects of iron transport-uptake are the rare hypotransferrinemia, and DMT1 and STEAP3 mutations. The degree of anemia is variable and accompanied by secondary iron overload even in the absence of blood transfusions. This is due to the iron-deficient or expanded erythropoiesis that inhibits hepcidin transcription, increases iron absorption, through the erythroid regulator, as in untransfused beta-thalassemia. Sideroblastic anemias are due to decreased mitochondrial iron utilization for heme or sulfur cluster synthesis. Their diagnosis requires demonstrating ringed sideroblasts by Perl’s staining of the bone marrow smears. The commonest X-linked form is due to deltaamino- levulinic-synthase-2-acid (ALAS2 mutations. The recessive, more severe form, affects SLC25A38, which encodes a potential mitochondrial importer of glycine, an amino acid essential for ALA synthesis and thus results in heme deficiency. Two disorders affect iron/sulfur cluster biogenesis: deficiency of the ATP-binding cassette B7 (ABCB7 causes X

  17. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression

    International Nuclear Information System (INIS)

    Li, Rujun; Lu, Kuiying; Wang, Yao; Chen, Mingxing; Zhang, Fengyu; Shen, Hui; Yao, Deshan; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Triptolide is the predominant active component of the Chinese herb Tripterygium wilfordii Hook F (TwHF) that has been widely used to treat several chronic inflammatory diseases due to its immunosuppressive, anti-inflammatory, and anti-proliferative properties. In the present study, we elucidated the cardioprotective effects of triptolide against cardiac dysfunction and myocardial remodeling in chronic pressure-overloaded hearts. Furthermore, the potential mechanisms of triptolide were investigated. For this purpose, C57/BL6 mice were anesthetized and subjected to transverse aortic constriction (TAC) or sham operation. Six weeks after the operation, all mice were randomly divided into 4 groups: sham-operated with vehicle group, TAC with vehicle group, and TAC with triptolide (20 or 100 μg/kg/day intraperitoneal injection) groups. Our data showed that the levels of NLRP3 inflammasome were significantly increased in the TAC group and were associated with increased inflammatory mediators and profibrotic factor production, resulting in myocardial fibrosis, cardiomyocyte hypertrophy, and impaired cardiac function. Triptolide treatment attenuated TAC-induced myocardial remodeling, improved cardiac diastolic and systolic function, inhibited the NLRP3 inflammasome and downstream inflammatory mediators (IL-1β, IL-18, MCP-1, VCAM-1), activated the profibrotic TGF-β1 pathway, and suppressed macrophage infiltration in a dose-dependent manner. Our study demonstrated that the protective effect of triptolide against pressure overload in the heart may act by inhibiting the NLRP3 inflammasome-induced inflammatory response and activating the profibrotic pathway. - Highlights: • Chronic pressure overload increases expression of NLRP3 inflammasome in the heart. • Triptolide attenuates chronic pressure overload-induced myocardial remodeling. • The mechanism appears to involve inhibition of NLRP3 inflammasome expression. • Triptolide is a therapeutic candidate for

  18. Estudo das mutações C282Y, H63D e S65C do gene HFE em doentes brasileiros com sobrecarga de ferro Study of C282Y, H63D and S65C mutations in the HFE gene in Brazilian patients with iron overload

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Cançado

    2007-12-01

    Full Text Available Hemocromatose é uma das doenças genéticas mais freqüentes no ser humano e uma das causas mais importantes de sobrecarga de ferro. Os objetivos deste estudo foram determinar a freqüência das mutações C282Y, H63D e S65C do gene HFE em doentes brasileiros com sobrecarga de ferro, verificar a coexistência de anemia hemolítica hereditária, hepatite C e consumo excessivo de bebida alcoólica nestes doentes e avaliar a influência destas variáveis sobre os depósitos de ferro do organismo. Saturação da transferrina, ferritina sérica e análise das mutações C282Y, H63D e S65C do gene HFE, pelo método da PCR, foram determinadas em cinqüenta doentes com sobrecarga de ferro atendidos no Hemocentro da Santa Casa de São Paulo entre janeiro de 2000 e maio de 2004. A freqüência de mutação do gene HFE nos doentes com sobrecarga de ferro foi de 76,0% (38/50. Saturação da transferrina e ferritina foram significativamente maiores nos doentes homozigotos para a mutação C282Y confirmando a correlação entre genótipo C282Y/C282Y e maior risco de sobrecarga de ferro. A coexistência de hepatite C, consumo excessivo de bebida alcoólica ou anemia hemolítica hereditária estão implicados em aumento dos estoques de ferro e constituem fator de risco adicional em pacientes com mutação do gene HFE para a condição de sobrecarga de ferro.Hemochromatosis is one of the most frequent genetic diseases in humans and one of the most important causes of iron overload. The aims of this study were to determine the frequency of C282Y, H63D and S65C mutations of the HFE gene in Brazilian patients with iron overload, to verify the coexistence of chronic hemolytic anemia, hepatitis C and excessive alcohol consumption and to evaluate the influence of these variables on body iron deposits. Transferrin saturation, serum ferritin and C282Y, H63D and S65C HFE gene mutations (by PCR method were determined in 50 patients with iron overload in the Hemocentro da

  19. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Wu

    Full Text Available Aortocaval fistula (AV in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX rats.Adult male Sprague-Dawley (SD rats were divided into Sham (n = 10, UNX (right kidney remove, n = 10, AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18 and UNX+AV (AV at one week after UNX, n = 22, respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements.UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats.Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals.

  20. [The efficacy of phlebotomy with a low iron diet in the management of pulmonary iron overload].

    Science.gov (United States)

    Fukuda, Tomoko; Kimura, Fumiaki; Watanabe, Yoichi; Yoshino, Tadasi; Kimura, Ikuro

    2003-05-01

    Numerous studies have shown that workers in ferriferous industries have an elevated risk of respiratory tract neoplasia and other airway diseases. Evidence is presented that iron is a carcinogenic and tissue toxic hazard as regarding the inhalation of ferriferous substances. Elimination of the inhaled iron and prevention from accumulation of iron in the lung seems to be very important. A 26-year-old man was admitted to our hospital complaining of right chest pain. He had worked as an arc welder for two years without a mask. A chest CT showed diffuse ground glass opacity in the bilateral lung fields. A transbronchial lung biopsy specimen showed numerous alveolar and interstitial iron-laden macrophages. A 200 ml phlebotomy was carried out biweekly in combination with a low iron diet (8 mg/day). When serum ferritin reached 20 ng/ml, phlebotomy was stopped. After that, serum ferritin level was kept at around 20 ng/ml with the low iron diet alone. A transbronchial lung biopsy was carried out again 7 months later and the specimen showed remarkable reduction in the number of iron-laden alveolar and interstitial macrophages. Phlebotomy in combination with a low iron diet might become a useful strategy in the management of pulmonary conditions associated with iron loading.

  1. Ascorbate status modulates reticuloendothelial iron stores and response to deferasirox iron chelation in ascorbate-deficient rats

    DEFF Research Database (Denmark)

    Brewer, Casey; Otto-Duessel, Maya; Lykkesfeldt, Jens

    2012-01-01

    Iron chelation is essential to patients on chronic blood transfusions to prevent toxicity from iron overload and remove excess iron. Deferasirox (DFX) is the most commonly used iron chelator in the United States; however, some patients are relatively refractory to DFX therapy. We postulated...... that vitamin C supplementation would improve the availability of transfusional iron to DFX treatment by promoting iron's redox cycling, increasing its soluble ferrous form and promoting its release from reticuloendothelial cells. Osteogenic dystrophy rats (n = 54) were given iron dextran injections for 10...... 12 weeks of sham chelation. Most importantly, ascorbate supplementation at 2250 ppm improved DFX efficiency, allowing DFX to remove 21% more hepatic iron than ascorbate supplementation with 900 ppm or 150 ppm (p vitamin C status modulates the release of iron from...

  2. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    Science.gov (United States)

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  4. MRI in haemochromatosis: pituitary versus testicular iron deposition in five patients with hypogonadism

    International Nuclear Information System (INIS)

    Miaux, Y.; Daurelle, P.; Zagdanski, A.M.; Passa, P.; Bourrier, P.; Frija, J.

    1995-01-01

    Haemochromatosis is a disease characterised by iron deposition in the liver and other organs. Hypogonadism is a commonly associated condition and may be either primary due to testicular lesions or secondary due to pituitary dysfunction. Hypogonadism secondary to pituitary dysfunction is more frequent and is thought to be related to iron deposition in the anterior pituitary. Increased iron content decreases signal intensity of spin-echo MRI images because T2 values are significantly shortened. Our purpose in this study was to evaluate by MRI iron deposition in the liver, testis and pituitary of 6 patients with haemochromatosis and severe hypogonadotrophic hypogonadism. Six subjects served as controls. There was a significant T2 shortening of the liver and pituitary in patients with haemochromatosis compared with control patients. Therefore MRI detected iron overload in the pituitary and no iron in the testis, supporting the hypothesis of hypogonadotrophic pituitary insufficiency due to cellular damage induced by iron overload in the anterior pituitary gland. (orig.)

  5. The role of iron in patients after bone marrow transplantation.

    NARCIS (Netherlands)

    Witte, T.J.M. de

    2008-01-01

    Haemopoietic stem cell transplantation (HSCT) is an important intervention for malignant and non-malignant blood diseases. However, HSCT is also associated with considerable morbidity and mortality, some of which may be related to iron overload. Levels of serum iron are elevated in patients

  6. The Prognostic Significance of Elevated Serum Ferritin Levels Prior to Transplantation in Patients With Lymphoma Who Underwent Autologous Hematopoietic Stem Cell Transplantation (autoHSCT): Role of Iron Overload.

    Science.gov (United States)

    Sivgin, Serdar; Karamustafaoglu, Mehmet Fatih; Yildizhan, Esra; Zararsiz, Gokmen; Kaynar, Leylagul; Eser, Bulent; Cetin, Mustafa; Unal, Ali

    2016-08-01

    Hematopoietic stem cell transplantation is a common and preferred treatment of lymphomas in many centers. Our goal was to determine the association between pretransplant iron overload and survival in patients who underwent autologous hematopoietic stem cell transplantation (autoHSCT). A total of 165 patients with lymphoma, who underwent autoHSCT between the years of 2007 and 2014, were included in this study. Ferritin levels were used to determine iron status; the cut-off value was 500 ng/mL. The relationship between iron overload and survival was assessed by statistical analysis. The median ferritin level in the normal ferritin (ferritin < 500) group was 118 ng/mL (range, 9-494 ng/mL) and in the high-ferritin group (ferritin ≥ 500), it was 908 ng/mL (range, 503-4549 ng/mL). A total of 64 (38.8%) patients died during follow-up. Of these patients that died, 52 (81.25%) were in the high-ferritin group, and 12 (18.75%) were in the normal ferritin group (P ≤ .001). Twelve (14.1%) of 85 patients died in the normal ferritin group, and 52 (65.0%) of 80 patients died in the high-ferritin group. The overall mortality was significantly higher in the high-ferritin group (P < .001). The median overall survival was 42 months (range, 25-56 months) in the normal-ferritin group and20 months (range, 5-46) in the high-ferritin group. The difference between the groups was statistically significant (P < .001). The median disease-free survival was 39 months (range, 16-56) in the normal ferritin group and 10 months (range, 3-29) in the high-ferritin group. The difference between the groups was statistically significant (P < .001). Elevated serum ferritin levels might predict poorer survival in autoHSCT recipients. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. [Clinical management of beta-thalassaemia].

    Science.gov (United States)

    Thuret, Isabelle

    2014-10-01

    Beta-thalassemia syndromes are autosomal recessive disorders related to the inability to produce beta-globin chains. Thalassemia major is by definition a transfusion dependent anemia and iron overload is the leading cause of death and morbidity. Beta-thalassemia is rarely encountered in France where patients mainly originated from Mediterranean countries and South East Asia. Recently, two major advances have substantially improved the disease management: oral iron chelation therapy and the introduction of cardiac MRI for monitoring cardiac iron. Hematopoietic stem cell transplantation remains, in clinical practice, the only curative approach and is proposed to children having an HLA-identical sibling. Diagnosis of thalassemia trait is important in order to propose genetic counseling to couples at risk. Thalassemia intermedia is a clinical entity where anemia is mild or moderate, requiring no or occasional transfusion. Clinical severity increases with age with a more severe anemia, thrombotic complications and extra-medullary hematopoiesis. Iron overload, optimally monitored with liver MRI, occurs in adult patients and is related to increased iron hyper-absorption.

  8. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion.

    Science.gov (United States)

    Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo

    2012-05-21

    Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Iron overload in HFE C282Y heterozygotes at first genetic testing: a strategy for identifying rare HFE variants.

    Science.gov (United States)

    Aguilar-Martinez, Patricia; Grandchamp, Bernard; Cunat, Séverine; Cadet, Estelle; Blanc, François; Nourrit, Marlène; Lassoued, Kaiss; Schved, Jean-François; Rochette, Jacques

    2011-04-01

    Heterozygotes for the p.Cys282Tyr (C282Y) mutation of the HFE gene do not usually express a hemochromatosis phenotype. Apart from the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele, other rare HFE mutations can be found in trans on chromosome 6. We performed molecular investigation of the genes implicated in hereditary hemochromatosis in six patients who presented with iron overload but were simple heterozygotes for the HFE C282Y mutation at first genetic testing. Functional impairment of new variants was deduced from computational methods including molecular modeling studies. We identified four rare HFE mutant alleles, three of which have not been previously described. One mutation is a 13-nucleotide deletion in exon 6 (c.1022_1034del13, p.His341_Ala345 > LeufsX119), which is predicted to lead to an elongated and unstable protein. The second one is a substitution of the last nucleotide of exon 2 (c.340G > A, p.Glu114Lys) which modifies the relative solvent accessibility in a loop interface. The third mutation, p.Arg67Cys, also lies in exon 2 and introduces a destabilization of the secondary structure within a loop of the α1 domain. We also found the previously reported c.548T > C (p.Leu183Pro) missense mutation in exon 3. No other known iron genes were mutated. We present an algorithm at the clinical and genetic levels for identifying patients deserving further investigation. Conclusions Our results suggest that additional mutations in HFE may have a clinical impact in C282Y carriers. In conjunction with results from previously described cases we conclude that an elevated transferrin saturation level and elevated hepatic iron index should indicate the utility of searching for further HFE mutations in C282Y heterozygotes prior to other iron gene studies.

  10. Fluid Overload and Cumulative Thoracostomy Output Are Associated With Surgical Site Infection After Pediatric Cardiothoracic Surgery.

    Science.gov (United States)

    Sochet, Anthony A; Nyhan, Aoibhinn; Spaeder, Michael C; Cartron, Alexander M; Song, Xiaoyan; Klugman, Darren; Brown, Anna T

    2017-08-01

    To determine the impact of cumulative, postoperative thoracostomy output, amount of bolus IV fluids and peak fluid overload on the incidence and odds of developing a deep surgical site infection following pediatric cardiothoracic surgery. A single-center, nested, retrospective, matched case-control study. A 26-bed cardiac ICU in a 303-bed tertiary care pediatric hospital. Cases with deep surgical site infection following cardiothoracic surgery were identified retrospectively from January 2010 through December 2013 and individually matched to controls at a ratio of 1:2 by age, gender, Risk Adjustment for Congenital Heart Surgery score, Society of Thoracic Surgeons-European Association for Cardiothoracic Surgery category, primary cardiac diagnosis, and procedure. None. Twelve cases with deep surgical site infection were identified and matched to 24 controls without detectable differences in perioperative clinical characteristics. Deep surgical site infection cases had larger thoracostomy output and bolus IV fluid volumes at 6, 24, and 48 hours postoperatively compared with controls. For every 1 mL/kg of thoracostomy output, the odds of developing a deep surgical site infection increase by 13%. By receiver operative characteristic curve analysis, a cutoff of 49 mL/kg of thoracostomy output at 48 hours best discriminates the development of deep surgical site infection (sensitivity 83%, specificity 83%). Peak fluid overload was greater in cases than matched controls (12.5% vs 6%; p operative characteristic curve analysis, a threshold value of 10% peak fluid overload was observed to identify deep surgical site infection (sensitivity 67%, specificity 79%). Conditional logistic regression of peak fluid overload greater than 10% on the development of deep surgical site infection yielded an odds ratio of 9.4 (95% CI, 2-46.2). Increased postoperative peak fluid overload and cumulative thoracostomy output were associated with deep surgical site infection after pediatric

  11. Role of Serum Iron in the Activation of Lipid Peroxidation in Critical Conditions

    Directory of Open Access Journals (Sweden)

    Yu. P. Orlov

    2006-01-01

    Full Text Available Twenty-four critically ill patients due to generalized purulent peritonitis, pancreatonecrosis, thermal skin injuries, and severe poisoning by acetic acid were examined. The general regularities of the effect of high serum iron concentrations on the health status of patients, on the activity of antioxidative enzymes, and on the initiation of lipid peroxidation (LPO processes, as supported by the values of Fe2+-induced chemiluminescence, were revealed. In critically ill patients, iron metabolism occurs with the overload of a transport protein, such as transferrin, which is caused by intravascular hemolysis and hemoglobin metabolism to ionized iron. The overload of proteins responsible for iron transport leads to the tissue accumulation of free (ferrous and ferric iron that is actively involved in the processes of LPO initiation with excess synthesis of cytotoxic radicals, which in turn accounts for the severity of endotoxicosis.

  12. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  13. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  14. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  15. Changes in right ventricular function assessed by echocardiography in dog models of mild RV pressure overload.

    Science.gov (United States)

    Morita, Tomoya; Nakamura, Kensuke; Osuga, Tatsuyuki; Yokoyama, Nozomu; Morishita, Keitaro; Sasaki, Noboru; Ohta, Hiroshi; Takiguchi, Mitsuyoshi

    2017-07-01

    The assessment of hemodynamic change by echocardiography is clinically useful in patients with pulmonary hypertension. Recently, mild elevation of the mean pulmonary arterial pressure (PAP) has been shown to be associated with increased mortality. However, changes in the echocardiographic indices of right ventricular (RV) function are still unknown. The objective of this study was to validate the relationship between echocardiographic indices of RV function and right heart catheterization variables under a mild RV pressure overload condition. Echocardiography and right heart catheterization were performed in dog models of mild RV pressure overload induced by thromboxane A 2 analog (U46619) (n=7). The mean PAP was mildly increased (19.3±1.1 mm Hg), and the cardiac index was decreased. Most echocardiographic indices of RV function were significantly impaired even under a mild RV pressure overload condition. Multivariate analysis revealed that the RV free wall longitudinal strain (RVLS), standard deviation of the time-to-peak longitudinal strain of RV six segments (RV-SD) by speckle-tracking echocardiography, and Tei index were independent echocardiographic predictors of the mean PAP (free wall RVLS, β=-0.60, P<.001; RV-SD, β=0.40, P=.011), pulmonary vascular resistance (free wall RVLS, β=-0.39, P=.020; RV-SD, β=0.47, P=.0086; Tei index, β=0.34, P=.047), and cardiac index (Tei index, β=-0.65, P<.001). Free wall RVLS, RV-SD, and Tei index are useful for assessing the hemodynamic change under a mild RV pressure overload condition. © 2017, Wiley Periodicals, Inc.

  16. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2015-01-01

    Full Text Available Mutations in the giant sarcomeric protein titin (TTN are a major cause for inherited forms of dilated cardiomyopathy (DCM. We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC in heterozygous (Het Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p<0.05, while wild-type (WT TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure.

  17. Study on the distribution of radioactive trace elements in vitamin D-overloaded rats using the multitracer technique

    International Nuclear Information System (INIS)

    Hirunuma, Rieko; Enomoto, Shuichi; Ambe, Fumitoshi; Endo, Kazutoyo; Ambe, Shizuko

    1999-01-01

    The uptake and distribution of radioisotopes of beryllium, calcium, scandium, vanadium, chromium, manganese, iron, cobalt, nickel, zinc, gallium, arsenic, strontium and barium in vitamin D (VD)-overloaded rats were investigated and compared with those in control rats, using the multitracer technique. Each element revealed its characteristic distribution among various organs in control and VD-overloaded rats. For some elements, such as cobalt and chromium, the distribution patterns in them were significantly different. These results are discussed in terms of the metabolism of the elements in rats

  18. Prospective evaluation of patient-reported outcomes during treatment with deferasirox or deferoxamine for iron overload in patients with beta-thalassemia.

    Science.gov (United States)

    Cappellini, Maria Domenica; Bejaoui, Mohamed; Agaoglu, Leyla; Porter, John; Coates, Thomas; Jeng, Michael; Lai, Maria Eliana; Mangiagli, Antonio; Strauss, Gabriele; Girot, Robert; Watman, Nora; Ferster, Alina; Loggetto, Sandra; Abish, Sharon; Cario, Holger; Zoumbos, Nicolaos; Vichinsky, Elliott; Opitz, Herbert; Ressayre-Djaffer, Catherine; Abetz, Linda; Rofail, Diana; Baladi, Jean-Francois

    2007-05-01

    Iron chelation therapy (ICT) with deferoxamine (DFO), the current standard for the treatment of iron overload in patients with transfusion-dependent disorders such as beta-thalassemia, requires regular subcutaneous or intravenous infusions. This can lead to reduced quality of life and poor adherence, resulting in increased morbidity and mortality in iron-overloaded patients with beta-thalassemia. Deferasirox is an orally administered iron chelator that has been approved for use in the United States, Switzerland, and other countries. This analysis was conducted to compare patient-reported outcomes (PROs) during receipt of DFO infusions or once-daily oral therapy with deferasirox (ICL670). PROs were prospectively evaluated as part of a randomized, Phase III study comparing the efficacy and safety profile of DFO 20 to 60 mg/kg per day with those of deferasirox 5 to 30 mg/kg per day in patients (age > or =2 years) with beta-thalassemia who were receiving regular transfusions and had a liver iron concentration of > or =2 mg/g dry weight. PRO questionnaires were completed by patients or a parent or legal guardian at baseline, week 4, week 24, and end of study (EOS). Patients assessed their level of satisfaction with study treatment (very satisfied, satisfied, neutral, dissatisfied, or very dissatisfied) and rated its convenience (very convenient, convenient, neutral, inconvenient, or very inconvenient). Time lost from normal activities due to ICT in the previous 4 weeks was recorded using a single global assessment. At week 4, patients who had previous experience with DFO were asked to indicate their preference for treatment (ICT received before the study, ICT received during the study, no preference, or no response) and the reason for that preference. At EOS, all patients were asked if they would be willing to continue using the ICT they had received during the study. All study analyses were performed in all patients who received at least 1 dose of study medication

  19. The role of genetic factors in patients with hepatocellular carcinoma and iron overload - a prospective series of 234 patients.

    Science.gov (United States)

    Funakoshi, Natalie; Chaze, Iphigénie; Alary, Anne-Sophie; Tachon, Gaëlle; Cunat, Séverine; Giansily-Blaizot, Muriel; Bismuth, Michael; Larrey, Dominique; Pageaux, Georges-Philippe; Schved, Jean-François; Donnadieu-Rigole, Hélène; Blanc, Pierre; Aguilar-Martinez, Patricia

    2016-05-01

    Iron overload (IO) in HFE-related hereditary haemochromatosis is associated with increased risk of liver cancer. This study aimed to investigate the role of other genes involved in hereditary IO among patients with hepatocellular carcinoma (HCC). Patients with HCC diagnosed in our institution were included in this prospective study. Those with ferritin levels ≥300 μg/L (males) or ≥200 μg/L (females) and/or transferrin saturation ≥50% (males) or ≥45% (females) had liver iron concentration (LIC) evaluated by MRI. HFE C282Y and H63D mutations were screened. Genetic analyses of genes involved in hereditary IO (HFE, HJV/HFE2, HAMP, TFR2, SLC40A1, GNPAT) were performed in patients with increased LIC. A total of 234 patients were included; 215 (92%) had common acquired risk factors of HCC (mainly alcoholism or chronic viral hepatitis). 119 patients had abnormal iron parameters. Twelve (5.1%) were C282Y homozygotes, three were compound C282Y/H63D heterozygotes. LIC was measured by MRI in 100 patients. Thirteen patients with a LIC>70 μmol/g were enrolled in further genetic analyses: two unrelated patients bore the HAMP:c.-153C>T mutation at the heterozygous state, which is associated with increased risk of IO and severe haemochromatosis. Specific haplotypes of SLC40A1 were also studied. Additional genetic risk factors of IO were found in 18 patients (7.7%) among a large series of 234 HCC patients. Screening for IO and the associated at-risk genotypes in patients who have developed HCC, is useful for both determining etiologic diagnosis and enabling family screening and possibly primary prevention in relatives. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Iron status in Danish women, 1984-1994: a cohort comparison of changes in iron stores and the prevalence of iron deficiency and iron overload

    DEFF Research Database (Denmark)

    Milman, N.; Byg, K.E.; Ovesen, Lars

    2003-01-01

    Background and objectives: From 1954 to 1986, flour in Denmark was fortified with 30 mg carbonyl iron per kilogram. This mandatory enrichment of cereal products was abolished in 1987. The aim was to evaluate iron status in the Danish female population before and after abolishment of iron...... fortification. Methods: Iron status, serum ferritin and haemoglobin, was assessed in population surveys in 1983-1984 comprising 1221 Caucasian women (1089 non-blood-donors, 130 donors) and in 1993-1994 comprising 1261 women (1155 non-blood-donors, 104 donors) equally distributed in age cohorts of 40, 50, 60......, postmenopausal women had median ferritin of 75 mug/L and in 1994 of 93 mug/L (P iron stores (ferritin iron stores (ferritin less...

  1. Pregnancy as a cardiac stress model

    Science.gov (United States)

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  2. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah

    2013-06-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  3. Can hydroxyurea serve as a free radical scavenger and reduce iron overload in β-thalassemia patients?

    Science.gov (United States)

    Italia, Khushnooma; Chandrakala, S; Ghosh, Kanjaksha; Colah, Roshan

    2016-09-01

    In this study, we hypothesize that hydroxyurea could provide an additional benefit as a free radical scavenger and/or iron chelator in β-thalassemia patients with iron overload. Twenty-one β-thalassemia intermedia patients who presented between 3 and 17 years but later required regular blood transfusions were enrolled for hydroxyurea therapy for a year. Fourteen patients responded to the therapy with hemoglobin levels maintained above 7.5 g/dl without transfusions. Hydroxyurea was discontinued after 6 months in seven patients who did not respond to the therapy and had to be continued on regular blood transfusions. We observed a statistically significant decrease in serum ferritin levels from 4194 ± 4850 ng/ml to 2129 ± 2380 ng/ml among the responders and from 2955 ± 2909 ng/ml to 2040 ± 2432 ng/ml among the non-responders and statistically significant decrease in labile iron pool from 18678.7 ± 10067.4 mean fluorescence intensity (MFI) to 14888.5 ± 5284.0 MFI among responders and from 17986.3 ± 9079.8 MFI to 15634.8 ± 8976.9 MFI among the non-responders after therapy. Phosphatidylserine externalization also showed a statistically significant decrease from 44.2 ± 22.2 MFI to 16.6 ± 6.7 MFI among the responders and from 46.9 ± 33.1 MFI to 39.8 ± 7.4 MFI among the non-responders along with a statistically significant decrease in the levels of reactive oxygen species from 72.8 ± 35.5 MFI to 29.0 ± 8.3 MFI among the responders and from 80.9 ± 41.4 MFI to 40.5 ± 15.8 MFI among the non-responders after therapy. A statistically significant increase in reduced glutathione levels was also observed from 430.8 ± 201.1 MFI to 715.5 ± 292.4 MFI among the responders and from 359.6 ± 165.6 MFI to 450.3 ± 279.5 MFI among the non-responders after therapy. This suggests the possible additional role of hydroxyurea as a free radical scavenger and

  4. Effect of anabolic steroids on overloaded and overloaded suspended skeletal muscle

    Science.gov (United States)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass, the subcellular protein content, and the myosin patterns of normal overloaded and suspended overloaded plantaris muscle in female rat was investigated, dividing rats into six groups: normal control (NC), overload (OV), OV steroid (OV-S), normal suspended (N-sus), OV suspended (OV-sus), and OV suspended steroid (OV-sus-S). Relative to control values, overload produced a sparing effect on the muscle weight of the OV-sus group as well as increases of muscle weight of the OV group; increased protein content; and an increased expression of slow myosin in both OV and OV-sus groups. Steroid treatment of OV animals did not after the response of any parameter analyzed for the OV group, but in the OV-sus group steroid treatment induced increases in muscle weight and in protein content of the OV-sus-S group. The treatment did not alter the pattern of isomyosin expression observed in the OV or the OV-sus groups. These result suggest that the steroid acts synergistically with functional overload only under conditions in which the effect of overload is minimized by suspension.

  5. Reversed association between aldosterone and mortality in hemodialysis patients: Role of volume overload.

    Science.gov (United States)

    Hung, Szu-Chun; Tarng, Der-Cherng

    2016-07-01

    The role of aldosterone has expanded from its genomic effects that involve renal sodium transport to nongenomic effects such as cardiac and renal fibrosis. Elevated aldosterone levels are associated with increased mortality in the general population. However, the association is reversed in patients with end-stage renal disease on maintenance hemodialysis. We have shown that the inverse association between aldosterone and mortality in hemodialysis patients is due to the confounding effect of volume overload. Volume overload, which is prevalent in patients with chronic kidney disease, is associated with both lower aldosterone concentrations and higher mortality. Our findings support salt and water restriction and treatment of hyperaldosteronemia in hemodialysis patients who have achieved strict volume control. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Metabolic alterations, HFE gene mutations and atherogenic lipoprotein modifications in patients with primary iron overload.

    Science.gov (United States)

    Meroño, Tomás; Brites, Fernando; Dauteuille, Carolane; Lhomme, Marie; Menafra, Martín; Arteaga, Alejandra; Castro, Marcelo; Saez, María Soledad; Ballerga, Esteban González; Sorroche, Patricia; Rey, Jorge; Lesnik, Philippe; Sordá, Juan Andrés; Chapman, M John; Kontush, Anatol; Daruich, Jorge

    2015-05-01

    Iron overload (IO) has been associated with glucose metabolism alterations and increased risk of cardiovascular disease (CVD). Primary IO is associated with mutations in the HFE gene. To which extent HFE gene mutations and metabolic alterations contribute to the presence of atherogenic lipoprotein modifications in primary IO remains undetermined. The present study aimed to assess small, dense low-density lipoprotein (LDL) levels, chemical composition of LDL and high-density lipoprotein (HDL) particles, and HDL functionality in IO patients. Eighteen male patients with primary IO and 16 sex- and age-matched controls were recruited. HFE mutations (C282Y, H63D and S65C), measures of insulin sensitivity and secretion (calculated from the oral glucose tolerance test), chemical composition and distribution profile of LDL and HDL subfractions (isolated by gradient density ultracentrifugation) and HDL functionality (as cholesterol efflux and antioxidative activity) were studied. IO patients compared with controls exhibited insulin resistance (HOMA-IR (homoeostasis model assessment-estimated insulin resistance): +93%, PHFE genotypes. C282Y homozygotes (n=7) presented a reduced β-cell function and insulin secretion compared with non-C282Y patients (n=11) (-58% and -73%, respectively, PHFE gene mutations are involved in the presence of atherogenic lipoprotein modifications in primary IO. To what extent such alterations could account for an increase in CVD risk remains to be determined.

  7. A phase 1/2, dose-escalation trial of deferasirox for the treatment of iron overload in HFE-related hereditary hemochromatosis.

    Science.gov (United States)

    Phatak, Pradyumna; Brissot, Pierre; Wurster, Mark; Adams, Paul C; Bonkovsky, Herbert L; Gross, John; Malfertheiner, Peter; McLaren, Gordon D; Niederau, Claus; Piperno, Alberto; Powell, Lawrie W; Russo, Mark W; Stoelzel, Ulrich; Stremmel, Wolfgang; Griffel, Louis; Lynch, Nicola; Zhang, Yiyun; Pietrangelo, Antonello

    2010-11-01

    Hereditary hemochromatosis (HH) is characterized by increased intestinal iron absorption that may result in iron overload. Although phlebotomy is widely practiced, it is poorly tolerated or contraindicated in patients with anemias, severe heart disease, or poor venous access, and compliance can vary. The once-daily, oral iron chelator, deferasirox (Exjade) may provide an alternative treatment option. Patients with HH carrying the HFE gene who were homozygous for the Cys282Tyr mutation, serum ferritin levels of 300-2000 ng/mL, transferrin saturation ≥ 45%, and no known history of cirrhosis were enrolled in this dose-escalation study to characterize the safety and efficacy of deferasirox, comprising a core and an extension phase (each 24 weeks). Forty-nine patients were enrolled and received starting deferasirox doses of 5 (n = 11), 10 (n = 15), or 15 (n = 23) mg/kg/day. Adverse events were generally dose-dependent, the most common being diarrhea, headache, and nausea (n = 18, n = 10, and n = 8 in the core and n = 1, n = 1, and n = 0 in the extension, respectively). More patients in the 15 mg/kg/day than in the 5 or 10 mg/kg/day cohorts experienced increases in alanine aminotransferase and serum creatinine levels during the 48-week treatment period; six patients had alanine aminotransferase > 3 × baseline and greater than the upper limit of normal range, and eight patients had serum creatinine > 33% above baseline and greater than upper limit of normal on two consecutive occasions. After receiving deferasirox for 48 weeks, median serum ferritin levels decreased by 63.5%, 74.8%, and 74.1% in the 5, 10, and 15 mg/kg/day cohorts, respectively. In all cohorts, median serum ferritin decreased to < 250 ng/mL. Deferasirox doses of 5, 10, and 15 mg/kg/day can reduce iron burden in patients with HH. Based on the safety and efficacy results, starting deferasirox at 10 mg/kg/day appears to be most appropriate for further study in this patient population.

  8. The Histological Effects of L-arginine on Ventricular Myocardium in Iron Treated Male Rats

    Directory of Open Access Journals (Sweden)

    M Sofiabadi

    2012-05-01

    Full Text Available

    Background and Objectives: Iron overload is detrimental for the body and can create damage to different body tissues, such as myocardium by producing oxidative stress. Therefore, the antioxidant factors can neutralize iron induced damages. According to available reports, L-arginine as a precursor nitric oxide production has antioxidant effects. This study was carried out to evaluate the histological effects of iron overload on ventricular muscle and preventive role of L-arginine in male rats.
    Methods: In this experiment, 40 male rats with weight range of 300-250g were divided at random into five equal groups including:1- Control, 2- Iron (10mg/kg, ip, 3- Iron(10mg/kg, ip+L-arginine (1mg/ml, po, 4- Iron (50mg/kg, ip and 5- Iron (50mg/kg,ip+L-arginine(1mg/ml,po. After treatment (6 weeks, the animals were anesthetized and the samples of left apical ventricular myocardium were taken out and morphological studies were done following fixation with 10% formalin and H&E staining. Microscopic parameters under study were cell swelling, vessel dilatation and hypercongestion, cell necrosis and tissue deformity. The type and severity of damage to the tissue were also noted. Data were analyzed using chi-square statistical procedure, and Pvalue≤0.05 were considered to be significant. 
    Results: The data showed moderate changes in the ventricular myocardium of group 2 that was significant in comparison to the control group (P<0.05. The ventricular myocardium of group 3 showed low changes and wasn't significant in comparison to control group (P=0.84. The ventricular myocardium of the group 4 showed severe changes in comparison to the control group (P<0.01. The low change showed in the ventricular myocardium of group 5 that wasn't significant in comparison to the control group.

    Conclusion: This study showed

  9. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  10. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  11. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Fader, Kelly A.; Nault, Rance [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Kirby, Mathew P.; Markous, Gena [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Matthews, Jason [Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo 0316 (Norway); Zacharewski, Timothy R., E-mail: tzachare@msu.edu [Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States)

    2017-04-15

    Persistent aryl hydrocarbon receptor (AhR) agonists elicit dose-dependent hepatic lipid accumulation, oxidative stress, inflammation, and fibrosis in mice. Iron (Fe) promotes AhR-mediated oxidative stress by catalyzing reactive oxygen species (ROS) production. To further characterize the role of Fe in AhR-mediated hepatotoxicity, male C57BL/6 mice were orally gavaged with sesame oil vehicle or 0.01–30 μg/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. Duodenal epithelial and hepatic RNA-Seq data were integrated with hepatic AhR ChIP-Seq, capillary electrophoresis protein measurements, and clinical chemistry analyses. TCDD dose-dependently repressed hepatic expression of hepcidin (Hamp and Hamp2), the master regulator of systemic Fe homeostasis, resulting in a 2.6-fold increase in serum Fe with accumulating Fe spilling into urine. Total hepatic Fe levels were negligibly increased while transferrin saturation remained unchanged. Furthermore, TCDD elicited dose-dependent gene expression changes in heme biosynthesis including the induction of aminolevulinic acid synthase 1 (Alas1) and repression of uroporphyrinogen decarboxylase (Urod), leading to a 50% increase in hepatic hemin and a 13.2-fold increase in total urinary porphyrins. Consistent with this heme accumulation, differential gene expression suggests that heme activated BACH1 and REV-ERBα/β, causing induction of heme oxygenase 1 (Hmox1) and repression of fatty acid biosynthesis, respectively. Collectively, these results suggest that Hamp repression, Fe accumulation, and increased heme levels converge to promote oxidative stress and the progression of TCDD-elicited hepatotoxicity. - Highlights: • TCDD represses hepatic hepcidin expression, leading to systemic iron overloading. • Dysregulation of heme biosynthesis is consistent with heme and porphyrin accumulation. • Heme-activated REV-ERBα/β repress circadian-regulated hepatic lipid metabolism. • Disruption of iron

  12. A Room Temperature Ultrasensitive Magnetoelectric Susceptometer for Quantitative Tissue Iron Detection

    Science.gov (United States)

    Xi, Hao; Qian, Xiaoshi; Lu, Meng-Chien; Mei, Lei; Rupprecht, Sebastian; Yang, Qing X.; Zhang, Q. M.

    2016-07-01

    Iron is a trace mineral that plays a vital role in the human body. However, absorbing and accumulating excessive iron in body organs (iron overload) can damage or even destroy an organ. Even after many decades of research, progress on the development of noninvasive and low-cost tissue iron detection methods is very limited. Here we report a recent advance in a room-temperature ultrasensitive biomagnetic susceptometer for quantitative tissue iron detection. The biomagnetic susceptometer exploits recent advances in the magnetoelectric (ME) composite sensors that exhibit an ultrahigh AC magnetic sensitivity under the presence of a strong DC magnetic field. The first order gradiometer based on piezoelectric and magnetostrictive laminate (ME composite) structure shows an equivalent magnetic noise of 0.99 nT/rt Hz at 1 Hz in the presence of a DC magnetic field of 0.1 Tesla and a great common mode noise rejection ability. A prototype magnetoelectric liver susceptometry has been demonstrated with liver phantoms. The results indicate its output signals to be linearly responsive to iron concentrations from normal iron dose (0.05 mg Fe/g liver phantom) to 5 mg Fe/g liver phantom iron overload (100X overdose). The results here open up many innovative possibilities for compact-size, portable, cost-affordable, and room-temperature operated medical systems for quantitative determinations of tissue iron.

  13. Assessment of cardiac function and hemodynamics in children and adults with right ventricular pressure overload: role of cardiac magnetic resonance imaging

    NARCIS (Netherlands)

    Romeih, Soha

    2014-01-01

    Accumulating evidence suggests that pressure overload on the right ventricle (RV) leads to RV dysfunction, with considerable morbidity and mortality. Therefore, appropriate RV evaluation is essential because timely intervention may preserve RV function and prevent irreversible RV damage. Currently,

  14. The overloaded right heart and ventricular interdependence.

    Science.gov (United States)

    Naeije, Robert; Badagliacca, Roberto

    2017-10-01

    The right and the left ventricle are interdependent as both structures are nested within the pericardium, have the septum in common and are encircled with common myocardial fibres. Therefore, right ventricular volume or pressure overloading affects left ventricular function, and this in turn may affect the right ventricle. In normal subjects at rest, right ventricular function has negligible interaction with left ventricular function. However, the right ventricle contributes significantly to the normal cardiac output response to exercise. In patients with right ventricular volume overload without pulmonary hypertension, left ventricular diastolic compliance is decreased and ejection fraction depressed but without intrinsic alteration in contractility. In patients with right ventricular pressure overload, left ventricular compliance is decreased with initial preservation of left ventricular ejection fraction, but with eventual left ventricular atrophic remodelling and altered systolic function. Breathing affects ventricular interdependence, in healthy subjects during exercise and in patients with lung diseases and altered respiratory system mechanics. Inspiration increases right ventricular volumes and decreases left ventricular volumes. Expiration decreases both right and left ventricular volumes. The presence of an intact pericardium enhances ventricular diastolic interdependence but has negligible effect on ventricular systolic interdependence. On the other hand, systolic interdependence is enhanced by a stiff right ventricular free wall, and decreased by a stiff septum. Recent imaging studies have shown that both diastolic and systolic ventricular interactions are negatively affected by right ventricular regional inhomogeneity and prolongation of contraction, which occur along with an increase in pulmonary artery pressure. The clinical relevance of these observations is being explored. Published on behalf of the European Society of Cardiology. All rights

  15. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies.

    Science.gov (United States)

    Hung, Szu-Chun; Lai, Yi-Shin; Kuo, Ko-Lin; Tarng, Der-Cherng

    2015-05-05

    Volume overload is frequently encountered and is associated with cardiovascular risk factors in patients with chronic kidney disease (CKD). However, the relationship between volume overload and adverse outcomes in CKD is not fully understood. A prospective cohort of 338 patients with stage 3 to 5 CKD was followed for a median of 2.1 years. The study participants were stratified by the presence or absence of volume overload, defined as an overhydration index assessed by bioimpedance spectroscopy exceeding 7%, the 90th percentile for the healthy population. The primary outcome was the composite of estimated glomerular filtration rate decline ≥50% or end-stage renal disease. The secondary outcome included a composite of morbidity and mortality from cardiovascular causes. Animal models were used to simulate fluid retention observed in human CKD. We found that patients with volume overload were at a higher risk of the primary and secondary end points in the adjusted Cox models. Furthermore, overhydration appears to be more important than hypertension in predicting an elevated risk. In rats subjected to unilateral nephrectomy and a high-salt diet, the extracellular water significantly increased. This fluid retention was associated with an increase in blood pressure, proteinuria, renal inflammation with macrophage infiltration and tumor necrosis factor-α overexpression, glomerular sclerosis, and cardiac fibrosis. Diuretic treatment with indapamide attenuated these changes, suggesting that fluid retention might play a role in the development of adverse outcomes. Volume overload contributes to CKD progression and cardiovascular diseases. Further research is warranted to clarify whether the correction of volume overload would improve outcomes for CKD patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  16. Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver.

    Science.gov (United States)

    Pardo-Andreu, Gilberto L; Barrios, Mariela Forrellat; Curti, Carlos; Hernández, Ivones; Merino, Nelson; Lemus, Yeny; Martínez, Ioanna; Riaño, Annia; Delgado, René

    2008-01-01

    In vivo preventive effects of a Mangifera indica L extract (Vimang) or its major component mangiferin on iron overload injury have been studied in rats given respectively, 50, 100, 250 mg kg(-1) body weight of Vimang, or 40 mg kg(-1) body weight of mangiferin, for 7 days prior to, and for 7 days following the administration of toxic amounts of iron-dextran. Both Vimang or mangiferin treatment prevented iron overload in serum as well as liver oxidative stress, decreased serum and liver lipid peroxidation, serum GPx activity, and increased serum and liver GSH, serum SOD and the animals overall antioxidant condition. Serum iron concentration was decreased although at higher doses, Vimang tended to increase it; percent tranferrin saturation, liver weight/body mass ratios, liver iron content was decreased. Treatment increased serum iron-binding capacity and decreased serum levels of aspartate-amine transferase (ASAT) and alanine-amine transferase (ALAT), as well as the number of abnormal Kupffer cells in iron-loaded livers. It is suggested that besides acting as antioxidants, Vimang extract or its mangiferin component decrease liver iron by increasing its excretion. Complementing earlier in vitro results from our group, it appears possible to support the hypothesis that Vimang and mangiferin present therapeutically useful effects in iron overload related diseases.

  17. Fob1 and Fob2 proteins are virulence determinants of Rhizopus oryzae via facilitating iron uptake from ferrioxamine

    Science.gov (United States)

    Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis. Although not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we de...

  18. Radial Ultrashort TE Imaging Removes the Need for Breath-Holding in Hepatic Iron Overload Quantification by R2* MRI.

    Science.gov (United States)

    Tipirneni-Sajja, Aaryani; Krafft, Axel J; McCarville, M Beth; Loeffler, Ralf B; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M

    2017-07-01

    The objective of this study is to evaluate radial free-breathing (FB) multiecho ultrashort TE (UTE) imaging as an alternative to Cartesian FB multiecho gradient-recalled echo (GRE) imaging for quantitative assessment of hepatic iron content (HIC) in sedated patients and subjects unable to perform breath-hold (BH) maneuvers. FB multiecho GRE imaging and FB multiecho UTE imaging were conducted for 46 test group patients with iron overload who could not complete BH maneuvers (38 patients were sedated, and eight were not sedated) and 16 control patients who could complete BH maneuvers. Control patients also underwent standard BH multiecho GRE imaging. Quantitative R2* maps were calculated, and mean liver R2* values and coefficients of variation (CVs) for different acquisitions and patient groups were compared using statistical analysis. FB multiecho GRE images displayed motion artifacts and significantly lower R2* values, compared with standard BH multiecho GRE images and FB multiecho UTE images in the control cohort and FB multiecho UTE images in the test cohort. In contrast, FB multiecho UTE images produced artifact-free R2* maps, and mean R2* values were not significantly different from those measured by BH multiecho GRE imaging. Motion artifacts on FB multiecho GRE images resulted in an R2* CV that was approximately twofold higher than the R2* CV from BH multiecho GRE imaging and FB multiecho UTE imaging. The R2* CV was relatively constant over the range of R2* values for FB multiecho UTE, but it increased with increases in R2* for FB multiecho GRE imaging, reflecting that motion artifacts had a stronger impact on R2* estimation with increasing iron burden. FB multiecho UTE imaging was less motion sensitive because of radial sampling, produced excellent image quality, and yielded accurate R2* estimates within the same acquisition time used for multiaveraged FB multiecho GRE imaging. Thus, FB multiecho UTE imaging is a viable alternative for accurate HIC assessment

  19. HFE gene variants affect iron in the brain.

    Science.gov (United States)

    Nandar, Wint; Connor, James R

    2011-04-01

    Iron accumulation in the brain and increased oxidative stress are consistent observations in many neurodegenerative diseases. Thus, we have begun examination into gene mutations or allelic variants that could be associated with loss of iron homeostasis. One of the mechanisms leading to iron overload is a mutation in the HFE gene, which is involved in iron metabolism. The 2 most common HFE gene variants are C282Y (1.9%) and H63D (8.9%). The C282Y HFE variant is more commonly associated with hereditary hemochromatosis, which is an autosomal recessive disorder, characterized by iron overload in a number of systemic organs. The H63D HFE variant appears less frequently associated with hemochromatosis, but its role in the neurodegenerative diseases has received more attention. At the cellular level, the HFE mutant protein resulting from the H63D HFE gene variant is associated with iron dyshomeostasis, increased oxidative stress, glutamate release, tau phosphorylation, and alteration in inflammatory response, each of which is under investigation as a contributing factor to neurodegenerative diseases. Therefore, the HFE gene variants are proposed to be genetic modifiers or a risk factor for neurodegenerative diseases by establishing an enabling milieu for pathogenic agents. This review will discuss the current knowledge of the association of the HFE gene variants with neurodegenerative diseases: amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and ischemic stroke. Importantly, the data herein also begin to dispel the long-held view that the brain is protected from iron accumulation associated with the HFE mutations.

  20. LABILE IRON IN CELLS AND BODY FLUIDS . Physiology, Pathology and Pharmacology

    Directory of Open Access Journals (Sweden)

    Zvi Ioav Cabantchik

    2014-03-01

    Full Text Available In living systems iron appears predominantly associated with proteins, but can also be detected in forms referred as labile iron, which denotes the combined redox properties of iron and its amenability to exchange between ligands, including chelators. The labile cell iron (LCI composition varies with metal concentration and substances with chelating groups but also with pH and the redox potential. Although physiologically in the lower µM range, LCI plays a key role in cell iron economy as cross-roads of metabolic pathways. LCI levels are continually regulated by an iron-responsive machinery that balances iron uptake versus deposition into ferritin. However, LCI rises aberrantly in some cell types due to faulty cell utilization pathways or infiltration by pathological iron forms that are found in hemosiderotic plasma. As LCI attains pathological levels, it can catalyze reactive O species (ROS formation that, at particular threshold, can surpass cellular anti-oxidant capacities and seriously damage its constituents. While in normal plasma and interstitial fluids, virtually all iron is securely carried by circulating transferrin (that renders iron essentially non-labile, in systemic iron overload (IO, the total plasma iron binding capacity is often surpassed by a massive iron influx from hyperabsorptive gut or from erythrocyte overburdened spleen and/or liver. As plasma transferrin approaches iron saturation, labile plasma iron (LPI emerges in forms that can infiltrate cells by unregulated routes and raise LCI to toxic levels. Despite the limited knowledge available on LPI speciation in different types and degrees of iron overload, LPI measurements can be and are in fact used for identifying systemic IO and for initiating/adjusting chelation regimens to attain full-day LPI protection. A recent application of labile iron assay is the detection of labile components in iv iron formulations per se as well as in plasma (LPI following parenteral iron

  1. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  2. Liver iron content determined by MRI. Spin-echo vs. gradient-echo

    Energy Technology Data Exchange (ETDEWEB)

    Juchems, M.S.; Wunderlich, A.P. [Universitaetskliniken Ulm (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Cario, H. [Universitaetskliniken Ulm (Germany). Klinik fuer Kinder- und Jugendmedizin; Schmid, M. [Stadtspital Triemli, Zuerich (Switzerland). Medizinische Onkologie und Haematologie

    2012-05-15

    Purpose: Liver iron content (LIC) measurement plays a central role in the management of patients with transfusional iron overload. Calculating the LIC with data obtained from standardized MRI sequences represents an attractive alternative diagnostic possibility. The purpose of this study was to compare the LIC measurement obtained with gradient-echo (GRE) sequences to the mean liver proton transverse relaxation (R2) acquired with SE sequences. Materials and Methods: 68 patients with iron overload (median age: 24, range: 3 - 88) underwent 1.5 T MRI for liver iron content measurement. All patients received spin-echo (SE) and gradient-echo (GRE) sequences. Results: The two MRI methods revealed different liver iron content results although a significant correlation was found (r = 0.85, p < 0.001). Values evaluated using GRE sequences (median: 260 {mu}mol/g dry weight [d.w.], range: 6 - 732) were generally higher than those obtained by SE examinations (median: 161 {mu}mol /g d.w., range: 5 - 830). Conclusion: In conclusion, our study revealed different results for both MRI measurements, which could lead to different decisions concerning the management of chelation therapy in individual patients. (orig.)

  3. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN).

    Science.gov (United States)

    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara

    2017-01-01

    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been clarified. We found the up-regulation of the ferrous iron transporter (-)IRE/Divalent Metal Transporter1 and down-regulation of Transferrin receptor in the fibroblasts of two BPAN affected patients with splicing mutations 235+1G>A (BPAN1) and 517_519ΔVal 173 (BPAN2). The BPAN patients showed a concomitant increase of intracellular ferrous iron after starvation. An altered pattern of iron transporters with iron overload is highlighted in BPAN human fibroblasts, supporting for a role of DMT1 in NBIA. We here present a novel element, about iron accumulation, to the existing knowledge in field of NBIA. Attention is focused to a starvation-dependent iron overload, possibly accounting for iron accumulation in the basal ganglia. Further investigation could clarify iron regulation in BPAN.

  4. Iron overload of human colon adenocarcinoma cells studied by synchrotron-based X-ray techniques

    NARCIS (Netherlands)

    Mihucz, Victor G.; Meirer, Florian; Polgári, Zsófia; Réti, Andrea; Pepponi, Giancarlo; Ingerle, Dieter; Szoboszlai, Norbert; Streli, Christina

    2016-01-01

    Fast- and slow-proliferating human adenocarcinoma colorectal cells, HT-29 and HCA-7, respectively, overloaded with transferrin (Tf), Fe(III) citrate, Fe(III) chloride and Fe(II) sulfate were studied by synchrotron radiation total-reflection X-ray spectrometry (TXRF), TXRF-X-ray absorption near edge

  5. The detrimental effects of iron on the joint : a comparison between haemochromatosis and haemophilia

    NARCIS (Netherlands)

    van Vulpen, Lize F D; Roosendaal, Goris; van Asbeck, B Sweder; Mastbergen, Simon C.; Lafeber, Floris P J G; Schutgens, Roger E G

    Joint damage due to (recurrent) joint bleeding in haemophilia causes major morbidity. Although the exact pathogenesis has not been fully elucidated, a central role for iron is hypothesised. Likewise, in hereditary haemochromatosis joint destruction is caused by iron overload. A comparison between

  6. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    Science.gov (United States)

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  7. Cardiac pathology in chronic alcoholics: A preliminary study

    Directory of Open Access Journals (Sweden)

    P Vaideeswar

    2014-01-01

    Full Text Available Background: Ethyl alcohol exerts both positive and negative effects on the cardiovascular system. Alcoholic cardiomyopathy, produced by direct or indirect mechanisms, is well-documented. An important, but seldom appreciated effect is an increase in iron deposition in the myocardium, which can add to the cardiac dysfunction. The present study was planned to document the pathological features and iron levels in the cardiac tissue of patients who were chronic alcoholics and correlate these characteristics with the liver pathology and iron content. Materials and Methods: An autopsy-based prospective study of 40 consecutive patients compared with ten age matched controls (no history of alcohol intake. Histopathological changes like the morphology of the cardiac myocytes, degree of fibrosis (interstitial, interfiber, perivascular, and replacement, presence of inflammatory cells, increased capillary network, and adipose tissue deposition were noted and graded. These were also correlated with the liver pathology. The iron content in the heart and liver were measured by using calorimetry. Results: All cases had increased epicardial adipose tissue with epicardial and endocardial fibrosis, prominence of interstitial and interfiber fibrosis, myofiber degeneration, and increased capillary network; this was particularly prominent in patients with cirrhosis. Elemental iron level in heart tissue was raised in the cases relative to controls. Conclusions: Alcohol produces subclinical changes in the myocardium, with an increased iron content, which may be the forerunner for subsequent clinical cardiac dysfunction.

  8. Iron nanoparticles increase 7-ketocholesterol-induced cell death, inflammation, and oxidation on murine cardiac HL1-NB cells

    Directory of Open Access Journals (Sweden)

    Edmond Kahn

    2010-03-01

    Full Text Available Edmond Kahn1, Mauhamad Baarine2, Sophie Pelloux3, Jean-Marc Riedinger4, Frédérique Frouin1, Yves Tourneur3, Gérard Lizard21INSE RM U678/UMR – S UPMC, IFR 14, CH U Pitié-Salpêtrière, 75634 Paris Cedex 13, France; 2Centre de Recherche INSE RM U866, Equipe Biochimie Métabolique et Nutritionnelle – Université de Bourgogne, Faculté des Sciences Gabriel, 6 Bd Gabriel, 21000 Dijon, France; 3Centre Commun de Quantimétrie, Université Lyon 1; Université de Lyon, Lyon, France; 4Département de Biologie et de Pathologie des Tumeurs, Centre Georges François-Leclerc, 21000 Dijon, FranceObjective: To evaluate the cytotoxicity of iron nanoparticles on cardiac cells and to determine whether they can modulate the biological activity of 7-ketocholesterol (7KC involved in the development of cardiovascular diseases. Nanoparticles of iron labeled with Texas Red are introduced in cultures of nonbeating mouse cardiac cells (HL1-NB with or without 7-ketocholesterol 7KC, and their ability to induce cell death, pro-inflammatory and oxidative effects are analyzed simultaneously.Study design: Flow cytometry (FCM, confocal laser scanning microscopy (CLSM, and subsequent factor analysis image processing (FAMIS are used to characterize the action of iron nanoparticles and to define their cytotoxicity which is evaluated by enhanced permeability to SYTOX Green, and release of lactate deshydrogenase (LDH. Pro-inflammatory effects are estimated by ELISA in order to quantify IL-8 and MCP-1 secretions. Pro-oxidative effects are measured with hydroethydine (HE.Results: Iron Texas Red nanoparticles accumulate at the cytoplasmic membrane level. They induce a slight LDH release, and have no inflammatory or oxidative effects. However, they enhance the cytotoxic, pro-inflammatory and oxidative effects of 7KC. The accumulation dynamics of SYTOX Green in cells is measured by CLSM to characterize the toxicity of nanoparticles. The emission spectra of SYTOX Green and

  9. Lack of evidence for the pathogenic role of iron and HFE gene mutations in Brazilian patients with nonalcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    M.M. Deguti

    2003-06-01

    Full Text Available The hypothesis of the role of iron overload associated with HFE gene mutations in the pathogenesis of nonalcoholic steatohepatitis (NASH has been raised in recent years. In the present study, biochemical and histopathological evidence of iron overload and HFE mutations was investigated in NASH patients. Thirty-two NASH patients, 19 females (59%, average 49.2 years, 72% Caucasians, 12% Mulattoes and 12% Asians, were submitted to serum aminotransferase and iron profile determinations. Liver biopsies were analyzed for necroinflammatory activity, architectural damage and iron deposition. In 31 of the patients, C282Y and H63D mutations were tested by PCR-RFLP. Alanine aminotransferase levels were increased in 30 patients, 2.42 ± 1.12 times the upper normal limit on average. Serum iron concentration, transferrin saturation and ferritin averages were 99.4 ± 31.3 g/dl, 33.1 ± 12.7% and 219.8 ± 163.8 µg/dl, respectively, corresponding to normal values in 93.5, 68.7 and 78.1% of the patients. Hepatic siderosis was observed in three patients and was not associated with architectural damage (P = 0.53 or with necroinflammatory activity (P = 0.27. The allelic frequencies (N = 31 found were 1.6 and 14.1% for C282Y and H63D, respectively, which were compatible with those described for the local population. In conclusion, no evidence of an association of hepatic iron overload and HFE mutations with NASH was found. Brazilian NASH patients comprise a heterogeneous group with many associated conditions such as hyperinsulinism, environmental hepatotoxin exposure and drugs, but not hepatic iron overload, and their disease susceptibility could be related to genetic and environmental features other than HFE mutations.

  10. Evaluation of tissue doppler echocardiography and T2* magnetic resonance imaging in iron load of patients with thalassemia major.

    Science.gov (United States)

    Saravi, Mehrdad; Tamadoni, Ahmad; Jalalian, Rozita; Mahmoodi-Nesheli, Hassan; Hojati, Mosatafa; Ramezani, Saeed

    2013-01-01

    Iron-mediated cardiomyopathy is the main complication of thalassemia major (TM) patients. Therefore, there is an important clinical need in the early diagnosis and risk stratification of patients. The aim of this study was to evaluate the efficacy of tissue doppler imaging (TDI) to study cardiac iron overload in patients with TM using T2* magnetic resonance (MR) as the gold-standard non-invasive diagnostic test. A total of 100 TM patients with the mean age of 19±7 years and 100 healthy controls 18.8±7 years were evaluated. Conventional echocardiography, TDI, and cardiac MRI T2* were performed in all subjects. TDI measures included myocardial systolic (Sm), early (Em) and late (Am) diastolic velocities at basal and middle segments of septal and lateral LV wall. The TM patients were also subgrouped according to those with iron load (T2* ≤ 20 ms) and those without (T2* > 20 ms), and also severe (T2* ≤ 10 ms) versus the non-severe (T2* ≤ 10 ms). Using T2* cardiovascular MR, abnormal myocardial iron load (T2* ≤ 20 ms) was detected in 84% of the patients and among these, 50% (42/84) had severe (T2* ≤ 10 ms) iron load. The mean T2* was 11.6±8.6 ms (5-36.7). A negative linear correlation existed between transfusion period of patients and T2* levels (r = -0.53, p=0.02). The following TDI measures were lower in patients than in controls: basal septal Am (p<0.05), mid-septal Em and Am (p<0.05), basal lateral Am (p<0.05), mid-lateral LV wall Sm (p<0.05) and Am (p<0.05). Tissue doppler imaging is helpful in predicting the presence of myocardial iron load in Thalassemia patients. Therefore, it can be used for screening of thalassemia major patients.

  11. Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    International Nuclear Information System (INIS)

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.

    1987-01-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine [ 131 I] to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine [ 131 I] and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4 hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine [ 131 I] scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine [ 123 I] scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients

  12. Bone marrow support of the heart in pressure overload is lost with aging.

    Science.gov (United States)

    Sopko, Nikolai A; Turturice, Benjamin A; Becker, Mitchell E; Brown, Chase R; Dong, Feng; Popović, Zoran B; Penn, Marc S

    2010-12-21

    Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response. To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging. Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice. BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.

  13. A novel germline PIGA mutation in Ferro-Cerebro-Cutaneous syndrome: a neurodegenerative X-linked epileptic encephalopathy with systemic iron-overload.

    Science.gov (United States)

    Swoboda, Kathryn J; Margraf, Rebecca L; Carey, John C; Zhou, Holly; Newcomb, Tara M; Coonrod, Emily; Durtschi, Jacob; Mallempati, Kalyan; Kumanovics, Attila; Katz, Ben E; Voelkerding, Karl V; Opitz, John M

    2014-01-01

    Three related males presented with a newly recognized x-linked syndrome associated with neurodegeneration, cutaneous abnormalities, and systemic iron overload. Linkage studies demonstrated that they shared a haplotype on Xp21.3-Xp22.2 and exome sequencing was used to identify candidate variants. Of the segregating variants, only a PIGA mutation segregated with disease in the family. The c.328_330delCCT PIGA variant predicts, p.Leu110del (or c.1030_1032delCTT, p.Leu344del depending on the reference sequence). The unaffected great-grandfather shared his X allele with the proband but he did not have the PIGA mutation, indicating that the mutation arose de novo in his daughter. A single family with a germline PIGA mutation has been reported; affected males had a phenotype characterized by multiple congenital anomalies and severe neurologic impairment resulting in infantile lethality. In contrast, affected boys in the family described here were born without anomalies and were neurologically normal prior to onset of seizures after 6 months of age, with two surviving to the second decade. PIGA encodes an enzyme in the GPI anchor biosynthesis pathway. An affected individual in the family studied here was deficient in GPI anchor proteins on granulocytes but not erythrocytes. In conclusion, the PIGA mutation in this family likely causes a reduction in GPI anchor protein cell surface expression in various cell types, resulting in the observed pleiotropic phenotype involving central nervous system, skin, and iron metabolism. © 2013 Wiley Periodicals, Inc.

  14. Effects of iron salts and haemosiderin from a thalassaemia patient on oxygen radical damage as measured in the comet assay

    NARCIS (Netherlands)

    Anderson, D.; Yardley-Jones, A.; Hambly, R.J.; Vives-Bauza, C.; Smykatz-Kloss, V.; Chua-anusorn, W.; Webb, J.

    2000-01-01

    Thalassaemia is a group of genetic diseases where haemoglobin synthesis is impaired. This chronic anaemia leads to increased dietary iron absorption, which develops into iron overload pathology. Treatment through regular transfusions increases oxygen capacity but also provides iron through the red

  15. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    Science.gov (United States)

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Addressing adherence to treatment: a longstanding concern. The health care professional

    Directory of Open Access Journals (Sweden)

    Farrukh Shah

    2014-12-01

    Full Text Available Today a patient born with thalassaemia major can expect to have a near normal life expectancy and remain free of complications of iron overload with good monitoring and excellent transfusion and chelation regimes. Unfortunately patients still develop complications as a consequence of iron overload including endocrinopathies and cardiac failure. The main reason behind this failure of effective treatment is inadequate treatment. This can be due to either clinician related factors, patient related factors or lack of adequate provision of medicines and services. In this short paper I will highlight where the challenges lie with regards adherence to treatment and suggest approaches to manage this.

  17. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  18. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Farah

    Full Text Available The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group: Sedentary control (SC, Trained control (TC, Sedentary Fructose (SF and Trained Fructose (TF. Training was performed on a treadmill (8 weeks, 40-60% of maximum exercise test. Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT weight, in myocardial performance index (MPI (SF:0.42±0.04 vs. SC:0.24±0.05 and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox. The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04, arterial pressure (118±2mmHg, sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training.

  19. Exercise Training Prevents Cardiovascular Derangements Induced by Fructose Overload in Developing Rats

    Science.gov (United States)

    Farah, Daniela; Nunes, Jonas; Sartori, Michelle; Dias, Danielle da Silva; Sirvente, Raquel; Silva, Maikon B.; Fiorino, Patrícia; Morris, Mariana; Llesuy, Susana; Farah, Vera; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2016-01-01

    The risks of chronic diseases associated with the increasing consumption of fructose-laden foods are amplified by the lack of regular physical activity and have become a serious public health issue worldwide. Moreover, childhood eating habits are strongly related to metabolic syndrome in adults. Thus, we aimed to investigate the preventive role of exercise training undertaken concurrently with a high fructose diet on cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in male rats after weaning. Male Wistar rats were divided into 4 groups (n = 8/group): Sedentary control (SC), Trained control (TC), Sedentary Fructose (SF) and Trained Fructose (TF). Training was performed on a treadmill (8 weeks, 40–60% of maximum exercise test). Evaluations of cardiac function, hemodynamics, cardiovascular autonomic modulation and oxidative stress in plasma and in left ventricle (LV) were performed. Chronic fructose overload induced glucose intolerance and an increase in white adipose tissue (WAT) weight, in myocardial performance index (MPI) (SF:0.42±0.04 vs. SC:0.24±0.05) and in arterial pressure (SF:122±3 vs. SC:113±1 mmHg) associated with increased cardiac and vascular sympathetic modulation. Fructose also induced unfavorable changes in oxidative stress profile (plasmatic protein oxidation- SF:3.30±0.09 vs. SC:1.45±0.08 nmol/mg prot; and LV total antioxidant capacity (TRAP)- SF: 2.5±0.5 vs. SC:12.7±1.7 uM trolox). The TF group showed reduced WAT, glucose intolerance, MPI (0.35±0.04), arterial pressure (118±2mmHg), sympathetic modulation, plasmatic protein oxidation and increased TRAP when compared to SF group. Therefore, our findings indicate that cardiometabolic dysfunctions induced by fructose overload early in life may be prevented by moderate aerobic exercise training. PMID:27930685

  20. Haemochromatosis gene mutation H63D is a risk factor for iron ...

    African Journals Online (AJOL)

    Introduction: Iron overload is the main cause of morbidity and mortality in patients with β-thalassemia. The Aim: The aim of this study was to evaluate the prevalence of genetic markers (HFE mutations C282Y and H63D) among Egyptian β-thalassemic. Children and its effect on their iron status. Patients and Methods: 59 ...

  1. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, Tomi-Pekka; Loft, Steffen; Nyyssönen, Kristiina

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  2. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading

    OpenAIRE

    Makui, Hortence; Soares, Ricardo J.; Jiang, Wenlei; Constante, Marco; Santos, Manuela M.

    2005-01-01

    Hereditary hemochromatosis (HH), an iron overload disease associated with mutations in the HFE gene, is characterized by increased intestinal iron absorption and consequent deposition of excess iron, primarily in the liver. Patients with HH and Hfe-deficient (Hfe−/−) mice manifest inappropriate expression of the iron absorption regulator hepcidin, a peptide hormone produced by the liver in response to iron loading. In this study, we investigated the contribution of Hfe expression in macrophag...

  3. Effect of dietary iron loading on recognition memory in growing rats.

    Directory of Open Access Journals (Sweden)

    Murui Han

    Full Text Available While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet or iron-adequate control diet (50 mg/kg for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value than control rats (12% increase; P=0.047. Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002. Furthermore, levels of glutamate receptors (both NMDA and AMPA and nicotinic acetylcholine receptor (nAChR were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR. Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the

  4. The Aging of Iron Man

    Directory of Open Access Journals (Sweden)

    Azhaar Ashraf

    2018-03-01

    Full Text Available Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  5. The Aging of Iron Man.

    Science.gov (United States)

    Ashraf, Azhaar; Clark, Maryam; So, Po-Wah

    2018-01-01

    Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  6. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    Science.gov (United States)

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  7. NCOA4 Deficiency Impairs Systemic Iron Homeostasis

    Directory of Open Access Journals (Sweden)

    Roberto Bellelli

    2016-01-01

    Full Text Available The cargo receptor NCOA4 mediates autophagic ferritin degradation. Here we show that NCOA4 deficiency in a knockout mouse model causes iron accumulation in the liver and spleen, increased levels of transferrin saturation, serum ferritin, and liver hepcidin, and decreased levels of duodenal ferroportin. Despite signs of iron overload, NCOA4-null mice had mild microcytic hypochromic anemia. Under an iron-deprived diet (2–3 mg/kg, mice failed to release iron from ferritin storage and developed severe microcytic hypochromic anemia and ineffective erythropoiesis associated with increased erythropoietin levels. When fed an iron-enriched diet (2 g/kg, mice died prematurely and showed signs of liver damage. Ferritin accumulated in primary embryonic fibroblasts from NCOA4-null mice consequent to impaired autophagic targeting. Adoptive expression of the NCOA4 COOH terminus (aa 239–614 restored this function. In conclusion, NCOA4 prevents iron accumulation and ensures efficient erythropoiesis, playing a central role in balancing iron levels in vivo.

  8. The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body.

    Directory of Open Access Journals (Sweden)

    Christal A Worthen

    2014-03-01

    Full Text Available Fine tuning of body iron is required to prevent diseases such as iron-overload and anemia. The putative iron-sensor, transferrin receptor 2 (TfR2, is expressed in the liver and mutations in this protein result in the iron-overload disease Type III hereditary hemochromatosis (HH. With the loss of functional TfR2, the liver produces about two-fold less of the peptide hormone hepcidin, which is responsible for negatively regulating iron uptake from the diet. This reduction in hepcidin expression leads to the slow accumulation of iron in the liver, heart, joints, and pancreas and subsequent cirrhosis, heart disease, arthritis, and diabetes. TfR2 can bind iron-loaded transferrin in the bloodstream, and hepatocytes treated with transferrin respond with a two-fold increase in hepcidin expression through stimulation of the BMP-signaling pathway. Loss of functional TfR2 or its binding partner, the original HH protein (HFE, results in a loss of this transferrin-sensitivity. While much is known about the trafficking and regulation of TfR2, the mechanism of its transferrin-sensitivity through the BMP-signaling pathway is still not known.

  9. Effect of chronic ethanol administration on iron metabolism in the rat

    International Nuclear Information System (INIS)

    Sanchez, J.; Casas, M.; Rama, R.

    1988-01-01

    This study shows that the ingestion of ethanol provokes alterations in iron metabolism which may lead to iron overload. Impaired release of reticuloendothelial iron was shown by a decrease of the maximum red blood cell utilization when radioactive iron was supplied as colloidal iron. An impairment in the erythropoietic activity of ethanoltreated animals was also observed, as can be seen from the reduced plasma iron turnover and red blood cell utilization within 24 h of iron administration. A rise in marrow transit time was also observed. In ethanol-treated rats there was an increase in the amount of iron retained both in the liver and the spleen. This was observed in both sexes and also in the offspring from ethanol-treated mothers. (author)

  10. HFE MUTATIONS AND IRON OVERLOAD IN PATIENTS WITH ALCOHOLIC LIVER DISEASE

    Directory of Open Access Journals (Sweden)

    Luís COSTA-MATOS

    2013-03-01

    Full Text Available Context Alcoholic liver disease (ALD is generally associated with iron overload, which may contribute to its pathogenesis, through increased oxidative stress and cellular damage. There are conflicting reports in literature about hemochromatosis (HFE gene mutations and the severity of liver disease in alcoholic patients. Objectives To compare the prevalence of mutations in the hemochromatosis (HFE gene between patients with ALD and healthy controls; to assess the relation of HFE mutations with liver iron stores and liver disease severity. Methods Liver biopsy specimens were obtained from 63 ALD patients (during routine treatment and 52 healthy controls (during elective cholecystectomy. All individuals underwent routine liver function tests and HFE genotyping (to detect wild-type sequences and C282Y, H63D, S65C, E168Q, E168X, V59M, H63H, P160delC, Q127H, Q283P, V53M and W164X mutations. Associations between HFE mutations and risk of excessive liver iron stores, abnormal serum ferritin, liver fibrosis, or necroinflammatory activity were assessed by multivariate logistic regression analysis. Results ALD patients had significantly higher serum ferritin and transferrin saturation than controls (both P Contexto A doença hepática alcoólica (DHA está geralmente associada à sobrecarga de ferro, que pode contribuir para a sua patogênese, através do aumento do estresse oxidativo e dano celular. As descrições existentes na literatura sobre a associação entre mutações HFE e a gravidade da DHA nem sempre são concordantes. Objetivos Comparar a prevalência de mutações HFE entre um grupo de pacientes com DHA e uma população de controle. Avaliar a relação entre mutações HFE e os depósitos de ferro hepático. Avaliar se a presença dessas mutações está associada com a gravidade da DHA. Métodos Compararam-se 63 pacientes com DHA que efetuaram biopsia hepática com 52 controles saudáveis. A genotipagem HFE (wild type, C282Y, H63D, S65C, E

  11. Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse.

    Science.gov (United States)

    Cupesi, Mihaela; Yoshioka, Jun; Gannon, Joseph; Kudinova, Anastacia; Stewart, Colin L; Lammerding, Jan

    2010-06-01

    Inherited mutations cause approximately 30% of all dilated cardiomyopathy cases, with autosomal dominant mutations in the LMNA gene accounting for more than one third of these. The LMNA gene encodes the nuclear envelope proteins lamins A and C, which provide structural support to the nucleus and also play critical roles in transcriptional regulation. Functional deletion of a single allele is sufficient to trigger dilated cardiomyopathy in humans and mice. However, whereas Lmna(-/-) mice develop severe muscular dystrophy and dilated cardiomyopathy and die by 8 weeks of age, heterozygous Lmna(+/-) mice have a much milder phenotype, with changes in ventricular function and morphology only becoming apparent at 1 year of age. Here, we studied 8- to 20-week-old Lmna(+/-) mice and wild-type littermates in a pressure overload model to examine whether increased mechanical load can accelerate or exacerbate myocardial dysfunction in the heterozygotes. While overall survival was similar between genotypes, Lmna(+/-) animals had a significantly attenuated hypertrophic response to pressure overload as evidenced by reduced ventricular mass and myocyte size. Analysis of pressure overload-induced transcriptional changes suggested that the reduced hypertrophy in the Lmna(+/-) mice was accompanied by impaired activation of the mechanosensitive gene Egr-1. In conclusion, our findings provide further support for a critical role of lamins A and C in regulating the cellular response to mechanical stress in cardiomyocytes and demonstrate that haploinsufficiency of lamins A and C alone is sufficient to alter hypertrophic responses and cardiac function in the face of pressure overload in the heart. (c) 2009 Elsevier Ltd. All rights reserved.

  12. Effect of excess iron on oxidative stress and gluconeogenesis through hepcidin during mitochondrial dysfunction.

    Science.gov (United States)

    Lee, Hyo Jung; Choi, Joo Sun; Lee, Hye Ja; Kim, Won-Ho; Park, Sang Ick; Song, Jihyun

    2015-12-01

    Excessive tissue iron levels are a risk factor for insulin resistance and type 2 diabetes, which are associated with alterations in iron metabolism. However, the mechanisms underlying this association are not well understood. This study used human liver SK-HEP-1 cells to examine how excess iron induces mitochondrial dysfunction and how hepcidin controls gluconeogenesis. Excess levels of reactive oxygen species (ROS) and accumulated iron due to iron overload induced mitochondrial dysfunction, leading to a decrease in cellular adenosine triphosphate content and cytochrome c oxidase III expression, with an associated increase in gluconeogenesis. Disturbances in mitochondrial function caused excess iron deposition and unbalanced expression of iron metabolism-related proteins such as hepcidin, ferritin H and ferroportin during the activation of p38 mitogen-activated protein kinase (MAPK) and CCAAT/enhancer-binding protein alpha (C/EBPα), which are responsible for increased phosphoenolpyruvate carboxykinase expression. Desferoxamine and n-acetylcysteine ameliorated these deteriorations by inhibiting p38 MAPK and C/EBPα activity through iron chelation and ROS scavenging activity. Based on experiments using hepcidin shRNA and hepcidin overexpression, the activation of hepcidin affects ROS generation and iron deposition, which disturbs mitochondrial function and causes an imbalance in iron metabolism and increased gluconeogenesis. Repression of hepcidin activity can reverse these changes. Our results demonstrate that iron overload is associated with mitochondrial dysfunction and that together they can cause abnormal hepatic gluconeogenesis. Hepcidin expression may modulate this disorder by regulating ROS generation and iron deposition. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. [Iron and invasive fungal infection].

    Science.gov (United States)

    Álvarez, Florencio; Fernández-Ruiz, Mario; Aguado, José María

    2013-01-01

    Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine -the first approved iron chelator- paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. Quantitating Iron in Serum Ferritin by Use of ICP-MS

    Science.gov (United States)

    Smith, Scott M.; Gillman, Patricia L.

    2003-01-01

    A laboratory method has been devised to enable measurement of the concentration of iron bound in ferritin from small samples of blood (serum). Derived partly from a prior method that depends on large samples of blood, this method involves the use of an inductively-coupled-plasma mass spectrometer (ICP-MS). Ferritin is a complex of iron with the protein apoferritin. Heretofore, measurements of the concentration of serum ferritin (as distinguished from direct measurements of the concentration of iron in serum ferritin) have been used to assess iron stores in humans. Low levels of serum ferritin could indicate the first stage of iron depletion. High levels of serum ferritin could indicate high levels of iron (for example, in connection with hereditary hemochromatosis an iron-overload illness that is characterized by progressive organ damage and can be fatal). However, the picture is complicated: A high level of serum ferritin could also indicate stress and/or inflammation instead of (or in addition to) iron overload, and low serum iron concentration could indicate inflammation rather than iron deficiency. Only when concentrations of both serum iron and serum ferritin increase and decrease together can the patient s iron status be assessed accurately. Hence, in enabling accurate measurement of the iron content of serum ferritin, the present method can improve the diagnosis of the patient s iron status. The prior method of measuring the concentration of iron involves the use of an atomic-absorption spectrophotometer with a graphite furnace. The present method incorporates a modified version of the sample- preparation process of the prior method. First, ferritin is isolated; more specifically, it is immobilized by immunoprecipitation with rabbit antihuman polyclonal antibody bound to agarose beads. The ferritin is then separated from other iron-containing proteins and free iron by a series of centrifugation and wash steps. Next, the ferritin is digested with nitric acid

  15. New Insights on Iron Study in Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Noha M. El Husseiny

    2014-12-01

    Full Text Available OBJECTIVE: Hepcidin plays a pivotal role in iron homeostasis. It is predominantly produced by hepatocytes and inhibits iron release from macrophages and iron uptake by intestinal epithelial cells. Competitive ELISA is the current method of choice for the quantification of serum hepcidin because of its lower detection limit, low costs, and high throughput. This study aims to discuss the role of hepcidin in the pathogenesis of iron overload in recently diagnosed myelodysplasia (MDS cases. METHODS: The study included 21 recently diagnosed MDS patients and 13 healthy controls. Ferritin, hepcidin, and soluble transferrin receptor (sTFR were measured in all subjects. RESULTS: There were 7 cases of hypocellular MDS, 8 cases of refractory cytopenia with multilineage dysplasia, and 6 cases of refractory anemia with excess blasts. No difference was observed among the 3 MDS subtypes in terms of hepcidin, sTFR, and ferritin levels (p>0.05. Mean hepcidin levels in the MDS and control groups were 55.8±21.5 ng/mL and 19.9±2.6 ng/ mL, respectively. Mean sTFR was 45.7±8.8 nmol/L in MDS patients and 31.1±5.6 nmol/L in the controls. Mean ferritin levels were significantly higher in MDS patients than in controls (539.14±83.5 ng/mL vs. 104.6±42.9 ng/mL, p0.05. CONCLUSION: Hepcidin may not be the main cause of iron overload in MDS. Further studies are required to test failure of production or peripheral unresponsiveness to hepcidin in MDS cases.

  16. The Battle for Iron between Humans and Microbes.

    Science.gov (United States)

    Carver, Peggy L

    2018-01-01

    Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  18. Iron status in 358 apparently healthy 80-year-old Danish men and women: relation to food composition and dietary and supplemental iron intake

    DEFF Research Database (Denmark)

    Milman, Nils; Pedersen, Agnes Nadelmann; Ovesen, Lars

    2004-01-01

    of age from a 1914 cohort study. Blood samples included serum ferritin and hemoglobin (Hb). A dietary survey was performed in 232 subjects (120 men, 112 women) using a dietary history method. Median serum ferritin was 100 mug/l in men and 78 mug/l in women (p300 mug/l (i.e., iron overload) were found......In Denmark, the intake of dietary iron has decreased since 1987, when the mandatory iron fortification of flour (30 mg carbonyl iron/kg) was stopped. Since there have been no studies of iron status in elderly Danes after the abolishment of iron fortification, there is a need to assess actual iron...... status in the elderly population. The objective was to evaluate iron status and the relationship with food composition and dietary and supplemental iron intake in an elderly population in Copenhagen County. Participants in this health examination survey were 358 subjects (171 men, 187 women) 80 years...

  19. Studies on high iron content in water resources of Moradabad district (UP, India

    Directory of Open Access Journals (Sweden)

    Vipin Kumar

    2017-04-01

    The overload of iron may cause severe health problems such as liver cancer, diabetes, cirrhosis of liver, diseases related to heart and central nervous system, infertility etc. The presence of high concentration of iron leads to adverse changes in colour, odour and taste of water and it also stains clothes and utensils. However, the local health authority's records are not available.

  20. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism

    Directory of Open Access Journals (Sweden)

    Lars Stechemesser

    2017-01-01

    Full Text Available Objective: Elevated serum ferritin has been linked to type 2 diabetes (T2D and adverse health outcomes in subjects with the Metabolic Syndrome (MetS. As the mechanisms underlying the negative impact of excess iron have so far remained elusive, we aimed to identify potential links between iron homeostasis and metabolic pathways. Methods: In a cross-sectional study, data were obtained from 163 patients, allocated to one of three groups: (1 lean, healthy controls (n = 53, (2 MetS without hyperferritinemia (n = 54 and (3 MetS with hyperferritinemia (n = 56. An additional phlebotomy study included 29 patients with biopsy-proven iron overload before and after iron removal. A detailed clinical and biochemical characterization was obtained and metabolomic profiling was performed via a targeted metabolomics approach. Results: Subjects with MetS and elevated ferritin had higher fasting glucose (p < 0.001, HbA1c (p = 0.035 and 1 h glucose in oral glucose tolerance test (p = 0.002 compared to MetS subjects without iron overload, whereas other clinical and biochemical features of the MetS were not different. The metabolomic study revealed significant differences between MetS with high and low ferritin in the serum concentrations of sarcosine, citrulline and particularly long-chain phosphatidylcholines. Methionine, glutamate, and long-chain phosphatidylcholines were significantly different before and after phlebotomy (p < 0.05 for all metabolites. Conclusions: Our data suggest that high serum ferritin concentrations are linked to impaired glucose homeostasis in subjects with the MetS. Iron excess is associated to distinct changes in the serum concentrations of phosphatidylcholine subsets. A pathway involving sarcosine and citrulline also may be involved in iron-induced impairment of glucose metabolism. Author Video: Author Video Watch what authors say about their articles Keywords: Metabolomics, Hyperferritinemia, Iron overload, Metabolic

  1. Effects of Protein-Iron Complex Concentrate Supplementation on Iron Metabolism, Oxidative and Immune Status in Preweaning Calves

    Directory of Open Access Journals (Sweden)

    Robert Kupczyński

    2017-07-01

    Full Text Available The objective of this study was to determine the effects of feeding protein-iron complex (PIC on productive performance and indicators of iron metabolism, hematology parameters, antioxidant and immune status during first 35 days of a calf’s life. Preparation of the complex involved enzymatic hydrolysis of milk casein (serine protease from Yarrowia lipolytica yeast. Iron chloride was then added to the hydrolyzate and lyophilizate. Calves were divided into treated groups: LFe (low iron dose 10 g/day calf of protein-iron complex, HFe (height iron dose 20 g/day calf, and control group. Dietary supplements containing the lower dose of concentrate had a significant positive effect on iron metabolism, while the higher dose of concentrate resulted in increase of total iron binding capacity (TIBC, saturation of transferrin and decrease of and unsaturated iron binding capacity (UIBC, which suggest iron overload. Additionally, treatment with the lower dose of iron remarkably increased the antioxidant parameters, mainly total antioxidant (TAS and glutathione peroxidase activity (GPx. Higher doses of PIC were related to lower total antioxidant status. IgG, IgM, insulin, glucose, TNFα and IGF-1 concentration did not change significantly in either group after supplementation. In practice, the use of protein-iron complex concentrate requires taking into account the iron content in milk replacers and other feedstuffs.

  2. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    Science.gov (United States)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  3. Noninvasive measurement of liver iron concentration at MRI in children with acute leukemia: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Vag, Tibor; Krumbein, Ines; Reichenbach, Juergen R.; Lopatta, Eric; Stenzel, Martin; Kaiser, Werner A.; Mentzel, Hans-Joachim [Friedrich Schiller University Jena, Institute of Diagnostic and Interventional Radiology, Jena (Germany); Kentouche, Karim; Beck, James [Friedrich Schiller University Jena, Department of Pediatrics, Jena (Germany); Renz, Diane M. [Charite University Medicine Berlin, Department of Radiology, Campus Virchow Clinic, Berlin (Germany)

    2011-08-15

    Routine assessment of body iron load in patients with acute leukemia is usually done by serum ferritin (SF) assay; however, its sensitivity is impaired by different conditions including inflammation and malignancy. To estimate, using MRI, the extent of liver iron overload in children with acute leukemia and receiving blood transfusions, and to examine the association between the degree of hepatic iron overload and clinical parameters including SF and the transfusion iron load (TIL). A total of 25 MRI measurements of the liver were performed in 15 children with acute leukemia (mean age 9.75 years) using gradient-echo sequences. Signal intensity ratios between the liver and the vertebral muscle (L/M ratio) were calculated and compared with SF-levels. TIL was estimated from the cumulative blood volume received, assuming an amount of 200 mg iron per transfused red blood cell unit. Statistical analysis revealed good correlation between the L/M SI ratio and TIL (r = -0.67, P = 0.002, 95% confidence interval CI = -0.83 to -0.34) in patients with acute leukemia as well as between L/M SI ratio and SF (r = -0.76, P = 0.0003, 95% CI = -0.89 to -0.52). SF may reliably reflect liver iron stores as a routine marker in patients suffering from acute leukemia. (orig.)

  4. Quantitative evaluation of right ventricular overload with thallium-201 myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Watanabe, Toshiya; Miyakoda, Hiroyuki; Koike, Yoshihiro; Itatsu, Hidetaka; Kawai, Naoki; Sotobata, Iwao.

    1983-01-01

    Thallium-201 myocardial perfusion scintigraphy and right-heart catheterization were performed on patients with right ventricular pressure overload (RVPO) or right ventricular volume overload (RVVO). In 18 patients with RVPO, right ventricular systolic pressure correlated significantly both with the RV/LV wall thallium-201 uptake ratios (r=0.54, p<0.02) and the RV wall/background thallium-201 uptake ratios (r=0.70, p<0.01). RV/LV work ratios also significantly correlated with RV/LV wall thallium-201 uptake ratios (r=0.57, p<0.02). In 19 patients with RVVO, Qp/Qs and RV/LV work ratios both significantly correlated with RV/LV wall thallium-201 uptake ratios (r=0.78 and 0.87, respectively; p<0.001 for both) and RV wall/background thallium-201 uptake ratios (r=0.69, p<0.01 for both parameters). Right ventricular systolic pressure also correlated with RV/LV wall thallium-201 uptake ratios (r=0.57, p<0.02). Feasibility of the differentiation between RVPO and RVVO was suggested with use of ''transitional view angle'' and RV/LV diameter ratios obtained from the scintigram. In patients who underwent cardiac surgery, post-operative alleviations of the right ventricular overload were evaluated. There was a significant decrease in RV/LV wall thallium-201 uptake ratios, but no significant decrease in RV wall/background thallium-201 uptake ratios in patients with RVPO. On the other hand, there was a significant decrease both in RV/LV wall thallium-201 uptake ratios and RV wall/background thallium-201 uptake ratios in patients with RVVO. No significant changes were observed between the scintigraphic measurements obtained 1 month and 1 year after the surgery, irrespective of the type of right ventricular overloading. (J.P.N.)

  5. The interaction of iron and the genome: For better and for worse.

    Science.gov (United States)

    Troadec, Marie-Bérengère; Loréal, Olivier; Brissot, Pierre

    2017-10-01

    Iron, as an essential nutrient, and the DNA, as the carrier of genetic information which is physically compacted into chromosomes, are both needed for normal life and well-being. Therefore, it is not surprising that close interactions exist between iron and the genome. On the one hand, iron, especially when present in excess, may alter genome stability through oxidative stress, and may favor cell cycle abnormalities and the development of malignant diseases. The genome also receives a feedback signal from the systemic iron status, leading to promotion of expression of genes that regulate iron metabolism. Conversely, on the other hand, DNA mutations may cause genetic iron-related diseases such as hemochromatosis, archetype of iron-overload diseases, or refractory iron deficiency anemia (IRIDA). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An Antioxidant Extract of the Insectivorous Plant Drosera burmannii Vahl. Alleviates Iron-Induced Oxidative Stress and Hepatic Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Nikhil Baban Ghate

    Full Text Available Free iron typically leads to the formation of excess free radicals, and additional iron deposition in the liver contributes to the oxidative pathologic processes of liver disease. Many pharmacological properties of the insectivorous plant Drosera burmannii Vahl. have been reported in previous studies; however, there is no evidence of its antioxidant or hepatoprotective potential against iron overload. The antioxidant activity of 70% methanolic extract of D. burmannii (DBME was evaluated. DBME showed excellent DPPH, hydroxyl, hypochlorous, superoxide, singlet oxygen, nitric oxide, peroxynitrite radical and hydrogen peroxide scavenging activity. A substantial iron chelation (IC50 = 40.90 ± 0.31 μg/ml and supercoiled DNA protection ([P]50 = 50.41 ± 0.55 μg were observed. DBME also displayed excellent in vivo hepatoprotective activity in iron-overloaded Swiss albino mice compared to the standard desirox treatment. Administration of DBME significantly normalized serum enzyme levels and restored liver antioxidant enzymes levels. DBME lowered the raised levels of liver damage parameters, also reflected from the morphological analysis of the liver sections. DBME also reduced liver iron content by 115.90% which is also seen by Perls' staining. A phytochemical analysis of DBME confirms the presence of various phytoconstituents, including phenols, flavonoids, carbohydrates, tannins, alkaloids and ascorbic acid. Alkaloids, phenols and flavonoids were abundantly found in DBME. An HPLC analysis of DBME revealed the presence of purpurin, catechin, tannic acid, reserpine, methyl gallate and rutin. Purpurin, tannic acid, methyl gallate and rutin displayed excellent iron chelation but exhibited cytotoxicity toward normal (WI-38 cells; while DBME found to be non-toxic to the normal cells. These findings suggest that the constituents present in DBME contributed to its iron chelation activity. Additional studies are needed to determine if DBME can be used as a

  7. Current understanding of iron homeostasis.

    Science.gov (United States)

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  8. Stainable hepatic iron in 341 African American adults at coroner/medical examiner autopsy

    Directory of Open Access Journals (Sweden)

    Acton Ronald T

    2005-01-01

    Full Text Available Abstract Background Results of previous autopsy studies indicate that increased hepatic iron stores or hepatic iron overload is common in African Americans dying in hospitals, but there are no reports of hepatic iron content in other cohorts of African Americans. Methods We investigated the prevalence of heavy liver iron deposition in African American adults. Using established histochemical criteria, we graded Perls' acid ferrocyanide-reactive iron in the hepatocytes and Kupffer cells of 341 consecutive African American adults who were autopsied in the coroner/medical examiner office. Heavy staining was defined as grade 3 or 4 hepatocyte iron or grade 3 Kupffer cell iron. Results There were 254 men and 85 women (mean age ± 1 SD: 44 ± 13 y vs. 48 ± 14 y, respectively; p = 0.0255; gender was unstated or unknown in two subjects. Approximately one-third of subjects died of natural causes. Heavy staining was observed in 10.2% of men and 4.7% of women. 23 subjects had heavy hepatocyte staining only, six had heavy Kupffer cell staining only, and one had a mixed pattern of heavy staining. 15 subjects had histories of chronic alcoholism; three had heavy staining confined to hepatocytes. We analyzed the relationships of three continuous variables (age at death in years, hepatocyte iron grade, Kupffer cell iron grade and two categorical variables (sex, cause of death (natural and non-natural causes in all 341 subjects using a correlation matrix with Bonferroni correction. This revealed two positive correlations: hepatocyte with Kupffer cell iron grades (p Conclusions The present results confirm and extend previous observations that heavy liver iron staining is relatively common in African Americans. The pertinence of these observations to genetic and acquired causes of iron overload in African Americans is discussed.

  9. Hepcidin Protects Neuron from Hemin-Mediated Injury by Reducing Iron

    Directory of Open Access Journals (Sweden)

    Yu-Fu Zhou

    2017-05-01

    Full Text Available Hemin plays a key role in mediating secondary neuronal injury after intracerebral hemorrhage (ICH and the cell toxicity of hemin is thought to be due to iron that is liberated when hemin is degraded. In a recent study, we demonstrated the iron regulatory hormone hepcidin reduces brain iron in iron-overloaded rats. Therefore, we hypothesized that hepcidin might be able to reduce iron and then protect neurons from hemin or iron-mediated neurotoxicity in hemin-treated neuronal cells. Here, we tested the hypothesis and demonstrated that ad-hepcidin and hepcidin peptide both have the ability to suppress the hemin-induced increase in LDH release and apoptotic cell numbers, to reduce cell iron and ferritin contents, and to inhibit expression of transferrin receptor 1, divalent metal transporter 1, and ferroportin 1 in hemin-treated neurons. We conclude that hepcidin protects neuron from hemin-mediated injury by reducing iron via inhibition of expression of iron transport proteins.

  10. Iron deposition in skin of patients with haemochromatosis

    International Nuclear Information System (INIS)

    Pinheiro, T.; Silva, J.N.; Alves, L.C.; Filipe, P.

    2003-01-01

    Haemochromatosis is the most common inherited liver disease in Caucasians and the most common autosomal recessive genetic disorder. It is characterized by inappropriately high iron absorption resulting in progressive iron overload in parenchymal organs such as liver, heart, pancreas, pituitary, joints, and skin. Upon early detection, haemochromatosis can be a manageable chronic disease but, if undetected, is potentially fatal. Skin biopsies were obtained from patients and from healthy donors. Images of the elemental distributions in skin were obtained using nuclear microscopy techniques (nuclear microprobe, NMP). Elemental profiles along skin, and intra-, and extra-cellular iron concentrations, were determined. Results for patients with haemochromatosis were cross-examined with morphologic features and with data obtained for healthy skin. Skin iron content is much increased in patients with haemochromatosis when compared with healthy subjects. Extensive iron deposits are observed at dermis, at the dermo-epidermal interface, at upper epidermis layers and at stratum corneum. Iron deposition was observed preferentially at cell boundaries or at the interstitial matrix

  11. Iron content and acid phosphatase activity in hepatic parenchymal lysosomes of patients with hemochromatosis before and after phlebotomy treatment

    International Nuclear Information System (INIS)

    Cleton, M.I.; de Bruijn, W.C.; van Blokland, W.T.; Marx, J.J.; Roelofs, J.M.; Rademakers, L.H.

    1988-01-01

    Lysosomal structures in liver parenchymal cells of 3 patients with iron overload and of 3 subjects without iron-storage disorders were investigated. A combination of enzyme cytochemistry--with cerium as a captive ion to demonstrate lysosomal acid phosphatase activity--and electron probe X-ray microanalysis (EPMA) was used. We were able (1) to define and quantify lysosomal structures as lysosomes, siderosomes, or residual bodies, (2) to quantify the amount of iron and cerium simultaneously in these structures, and (3) to evaluate a possible relation between iron storage and enzyme activity. With histopathologically increased iron storage, the number of siderosomes had increased at the cost of lysosomes, with a corresponding increase in acid phosphatase activity in both organelles. In histopahtologically severe iron overload, however, acid phosphatase activity was low or not detectable and most of the iron was stored in residual bodies. After phlebotomy treatment, the number of siderosomes had decreased in favor of the lysosomes, approaching values obtained in control subjects, and acid phosphatase activity was present in all iron-containing structures. In this way a relationship between iron storage and enzyme activity was established. The iron content of the individual lysosomal structures per unit area had increased with histopathologically increased iron storage and had decreased after phlebotomy treatment. From this observation, it is concluded that the iron status of the patient is not only reflected by the amount of iron-containing hepatocytes but, as well, by the iron content lysosomal unit area

  12. Oligofructose overload induces lameness in cattle.

    Science.gov (United States)

    Danscher, A M; Enemark, J M D; Telezhenko, E; Capion, N; Ekstrøm, C T; Thoefner, M B

    2009-02-01

    The aim was to describe the clinical orthopedic implications of oligofructose overload. A group of 8 nonpregnant dairy heifers were given an oral dose of oligofructose (17 g/kg of body weight). At predefined times during a period spanning 3 d before and 9 d after oligofructose overload, the heifers underwent a clinical examination including locomotion scoring, hoof-testing, and palpation of tarso-crural joints, as well as the collection of blood and ruminal fluid samples. Locomotion sessions were videotaped; subsequently, locomotion was blind-scored. Locomotion scores increased after oligofructose overload and declined toward the end of the study period. The greatest locomotion scores were recorded on d 3 to 5 (60 to 120 h) where 12 of 42 (29%) locomotion scores were 3 and 13 of 42 (32%) were score 2. Positive reactions to hoof-testing were observed from 30 h after oligofructose overload and reached a maximum on d 7 and 9 where 12 of 28 (43%) reactions were marked positive. Distension of the tarso-crural joints was observed from 24 h after oligofructose overload, with maximum distension being observed on d 2, in which 44 of 56 (79%) of observed joints were either moderately or severely distended. The heifers developed classic signs of acute ruminal and systemic acidosis after the oligofructose overload (ruminal pH 4.3 +/- 0.07, standard base excess -10.8 +/- 2.3 at 18 h). With few exceptions, clinical and laboratory variables returned to normal within 9 d of oligofructose overload. But, good body condition and previous feeding with grass apparently predisposed the heifers to more severe systemic affection. Oligofructose overload in dairy heifers induced ruminal and systemic acidosis, diarrhea, dehydration, and, subsequently, lameness, claw pain, and joint effusion, collectively interpreted as signs of acute laminitis. Oligofructose overload at 17 g/kg of body weight represented a relatively mild laminitis model in cattle, as demonstrated by a reasonably quick

  13. Physical activity behavior and role overload in mothers.

    Science.gov (United States)

    Lovell, Geoff P; Butler, Frances R

    2015-01-01

    We examined physical activity stages of change, physical activity behavior, and role overload in different stages of motherhood in a predominantly Australian sample. Neither physical activity behavior, stages of physical activity change, nor role overload significantly differed across motherhood groups. Role overload was significantly higher for mothers in the contemplation, planning, and action stages of physical activity than in the maintenance stage of change. Role overload had a weak, although significant, negative correlation with leisure-time physical activity. We conclude that strategies focused upon reducing role overload or perceived role overload have only limited potential to meaningfully increase leisure-time physical activity in mothers.

  14. Polysynovitis after oligofructose overload in dairy cattle.

    Science.gov (United States)

    Danscher, A M; Enemark, H L; Andersen, P H; Aalbaek, B; Nielsen, O L

    2010-01-01

    Acute bovine laminitis is a systemic disease with local manifestations primarily affecting the claws. However, distension of the tarsocrural joints has been observed after experimental oligofructose overload in dairy heifers as a part of the complex interpreted as acute, clinical laminitis. Therefore, the aim of the present study was to study bovine synovial joints and tendon sheaths after oligofructose overload. Ten dairy heifers received oral oligofructose overload (17 g/kg body weight); four were killed 24h after overload and six after 72 h. Six control heifers received tap water and were killed after 72 or 96 h. Clinical examination included locomotion scoring and palpation of the tarsocrural joints. Ruminal fluid and blood was collected for measurements of pH and hydration status. Total protein concentrations and white blood cell (WBC) counts were determined in synovial fluid collected from tarsocrural joints after death. Synovial joints and tendon sheaths were examined and synovial membranes were studied microscopically. Swabs taken from the synovial cavities were subject to bacteriological culture. Heifers with oligofructose overload developed signs of ruminal and systemic acidosis. Lameness was observed in three of ten heifers 24h after overload and in all remaining heifers after 72 h. Distension of tarsocrural joints was observed from 18 h after overload and peaked at 30 h when all examined joints were moderately or severely distended. The synovial fluid was turbid and protein content and WBC counts were increased at both 24 and 72 h compared with controls. Bacterial culture was negative. Synovial membranes 24 and 72 h after overload had a fibrinous and neutrophil inflammatory reaction that regressed in severity between 24 and 72 h after overload. Heifers subjected to oligofructose overload therefore developed generalized sterile neutrophilic polysynovitis. Focus on this aspect of bovine laminitis may shed new light on the pathogenesis of this complex

  15. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Chenoufi, N.; Loreal, O.; Cariou, S.; Hubert, N.; Lescoat, G. [Univ. Hospital Pontchaillou, Unite de Recherches Hepatologiques, INSERM U 49, Rennes (France); Drenou, B. [Univ. Hospital Pontchaillou, Lab. d`Hematologie et d`Immunologie, Rennes (France); Leroyer, P.; Brissot, P. [Univ. Hospital Pontchaillou, Clinique des Maladies du Foie, Rennes (France)

    1997-03-01

    Background/Aims: Hepatocellular carcinoma develops frequently in the course of genetic hemochromatosis, and a role of iron overload in hepatic carcinogenesis is strongly suggested. Methods: The aim of our study was to investigate the effect of iron exposure on DNA synthesis of adult rat hepatocytes maintained in primary culture stimulated or not by EGF/pyruvate and exposed to iron-citrate complex. Results: In EGF/pyruvate-stimulated cultures, the level of [{sup 3}H] methyl thymidine incorporation was strongly increased as compared to unstimulated cultures. The addition of iron to stimulated cultures increased [{sup 3}H] methyl thymidine incorporation. The mitotic index was also significantly higher at 72 h. However,the number of cells found in the cell layer was not significantly different from iron-citrate free culture. By flow cytometry, no difference in cell ploidy was found between iron-treated and untreated EGF/pyruvate-stimulated cultures. A significant increase in LDH leakage reflecting a toxic effect of iron was found in the cell medium 48 h after cell seeding. In addition, [{sup 3}H] methyl thymidine incorporation in the presence of hydroxyurea was increased in iron-treated compared to untreated cultures. Conclusions: Our results show that DNA synthesis is increased in the presence of iron in rat hepatocyte cultures stimulated by EGF/pyruvate, and they suggest that DNA synthesis is likely to be related both to cell proliferation and to DNA repair. These observations may allow better understanding of the role of iron overload in the development of hepatocellular carcinoma. (au) 61 refs.

  16. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

    Science.gov (United States)

    Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor

    2018-01-01

    Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reticulocyte Hemoglobin Content Helps Avoid Iron Overload in Hemodialysis Patients: A Retrospective Observational Study.

    Science.gov (United States)

    Capone, Domenico; Cataldi, Mauro; Vinciguerra, Mauro; Mosca, Teresa; Barretta, Salvatore; Ragosta, Annalisa; Sorrentino, Aniello; Vecchione, Alessandra; Barretta, Luca; Tarantino, Giovanni

    2017-01-01

    Anemia in patients suffering from end-stage renal failure is currently treated with Erythropoiesis-Stimulating Agents (ESA). This treatment needs sufficient iron supplementation to avoid an inadequate dosage of ESA. Nowadays modern analytical instruments allow to accurately calculate the content of Hemoglobin (Hb) in reticulocytes (CHr), that can be used as a guide for prescribing patients with the appropriate amount of iron. Patients, undergoing hemodialysis, were retrospectively selected from the database and were divided in two groups: group A received intravenous (IV) iron and subcutaneously ESA, and their dosages were adjusted on the basis of the following parameters: Hb, Mean corpuscular haemoglobin (MCH), CHr with consequent MCH/CHr ratio and reticulocyte count determined by the ADVIA 120 Hematology System of Siemens; group B patients were administered IV iron and ESA monitoring iron storage, Hb and ferritin. The aforementioned parameters and the administered amount of iron and ESA were monitored at baseline, four and eight months from the begining of the study. For ESA supplementation, no difference was observed between the groups at the various observed times. Despite similar Hb levels, the patients of group A needed significant lower doses of IV iron (-57.8%) avoiding risks of organ toxicity and obtaining consequent cost saving of nearly 1 €/patient/month. The use of CHr and its related parameters allows the avoidance of overdosage of IV iron, which can potentially damage organs, and the reduction of health care direct and indirect costs. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Obesity as an Emerging Risk Factor for Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Elmar Aigner

    2014-09-01

    Full Text Available Iron homeostasis is affected by obesity and obesity-related insulin resistance in a many-facetted fashion. On one hand, iron deficiency and anemia are frequent findings in subjects with progressed stages of obesity. This phenomenon has been well studied in obese adolescents, women and subjects undergoing bariatric surgery. On the other hand, hyperferritinemia with normal or mildly elevated transferrin saturation is observed in approximately one-third of patients with metabolic syndrome (MetS or nonalcoholic fatty liver disease (NAFLD. This constellation has been named the “dysmetabolic iron overload syndrome (DIOS”. Both elevated body iron stores and iron deficiency are detrimental to health and to the course of obesity-related conditions. Iron deficiency and anemia may impair mitochondrial and cellular energy homeostasis and further increase inactivity and fatigue of obese subjects. Obesity-associated inflammation is tightly linked to iron deficiency and involves impaired duodenal iron absorption associated with low expression of duodenal ferroportin (FPN along with elevated hepcidin concentrations. This review summarizes the current understanding of the dysregulation of iron homeostasis in obesity.

  19. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  20. Sensory overload: A concept analysis.

    Science.gov (United States)

    Scheydt, Stefan; Müller Staub, Maria; Frauenfelder, Fritz; Nielsen, Gunnar H; Behrens, Johann; Needham, Ian

    2017-04-01

    In the context of mental disorders sensory overload is a widely described phenomenon used in conjunction with psychiatric interventions such as removal from stimuli. However, the theoretical foundation of sensory overload as addressed in the literature can be described as insufficient and fragmentary. To date, the concept of sensory overload has not yet been sufficiently specified or analyzed. The aim of the study was to analyze the concept of sensory overload in mental health care. A literature search was undertaken using specific electronic databases, specific journals and websites, hand searches, specific library catalogues, and electronic publishing databases. Walker and Avant's method of concept analysis was used to analyze the sources included in the analysis. All aspects of the method of Walker and Avant were covered in this concept analysis. The conceptual understanding has become more focused, the defining attributes, influencing factors and consequences are described and empirical referents identified. The concept analysis is a first step in the development of a middle-range descriptive theory of sensory overload based on social scientific and stress-theoretical approaches. This specification may serve as a fundament for further research, for the development of a nursing diagnosis or for guidelines. © 2017 Australian College of Mental Health Nurses Inc.

  1. Overload protection system for power inverter

    Science.gov (United States)

    Nagano, S. (Inventor)

    1977-01-01

    An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.

  2. Associations between single nucleotide polymorphisms in iron-related genes and iron status in multiethnic populations.

    Directory of Open Access Journals (Sweden)

    Christine E McLaren

    Full Text Available The existence of multiple inherited disorders of iron metabolism suggests genetic contributions to iron deficiency. We previously performed a genome-wide association study of iron-related single nucleotide polymorphisms (SNPs using DNA from white men aged ≥ 25 y and women ≥ 50 y in the Hemochromatosis and Iron Overload Screening (HEIRS Study with serum ferritin (SF ≤ 12 µg/L (cases and controls (SF >100 µg/L in men, SF >50 µg/L in women. We report a follow-up study of white, African-American, Hispanic, and Asian HEIRS participants, analyzed for association between SNPs and eight iron-related outcomes. Three chromosomal regions showed association across multiple populations, including SNPs in the TF and TMPRSS6 genes, and on chromosome 18q21. A novel SNP rs1421312 in TMPRSS6 was associated with serum iron in whites (p = 3.7 × 10(-6 and replicated in African Americans (p = 0.0012.Twenty SNPs in the TF gene region were associated with total iron-binding capacity in whites (p<4.4 × 10(-5; six SNPs replicated in other ethnicities (p<0.01. SNP rs10904850 in the CUBN gene on 10p13 was associated with serum iron in African Americans (P = 1.0 × 10(-5. These results confirm known associations with iron measures and give unique evidence of their role in different ethnicities, suggesting origins in a common founder.

  3. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice.

    Science.gov (United States)

    Du, Peizhao; Chang, Yaowei; Dai, Fangjie; Wei, Chunyan; Zhang, Qi; Li, Jiming

    2018-08-15

    In order to explore the role of macrophages in HSF1-mediated alleviation of heart failure, mice model of pressure overload-induced heart failure was established using transverse aortic constriction (TAC). Changes in cardiac function and morphology were studied in TAC and SHAM groups using ultrasonic device, tissue staining, electron microscopy, real-time quantitative polymerase chain reaction (RT-QPCR), and Western blotting. We found that mice in the TAC group showed evidence of impaired cardiac function and aggravation of fibrosis on ultrasonic and histopathological examination when compared to those in the SHAM group. The expressions of HSF1, LC3II/LC3I, Becline-1 and HIF-1, as well as autophagosome formation in TAC group were greater than that in SHAM group. On sub-group analyses in the TAC group, improved cardiac function and alleviation of fibrosis was observed in the HSF1 TG subgroup as compared to that in the wild type subgroup. Expressions of LC3II/LC3I, Becline-1 and HIF-1, too showed an obvious increase; and increased autophagosome formation was observed on electron microscopy. Opposite results were observed in the HSF1 KO subgroup. These results collectively suggest that in the pressure overload heart failure model, HSF1 promoted formation of macrophages by inducing upregulation of HIF-1 expression, through which heart failure was ameliorated. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ogata

    Full Text Available Chronic left ventricular (LV pressure overload causes relative ischemia with resultant LV dysfunction. We have recently demonstrated that low-intensity pulsed ultrasound (LIPUS improves myocardial ischemia in a pig model of chronic myocardial ischemia through enhanced myocardial angiogenesis. In the present study, we thus examined whether LIPUS also ameliorates contractile dysfunction in LV pressure-overloaded hearts.Chronic LV pressure overload was induced with transverse aortic constriction (TAC in mice. LIPUS was applied to the whole heart three times in the first week after TAC and was repeated once a week for 7 weeks thereafter (n = 22. Animals in the control groups received the sham treatment without LIPUS (n = 23. At 8 weeks after TAC, LV fractional shortening was depressed in the TAC-Control group, which was significantly ameliorated in the TAC-LIPUS group (30.4±0.5 vs. 36.2±3.8%, P<0.05. Capillary density was higher and perivascular fibrosis was less in the LV in the TAC-LIPUS group than in the TAC-Control group. Myocardial relative ischemia evaluated with hypoxyprobe was noted in the TAC-Control group, which was significantly attenuated in the TAC-LIPUS group. In the TAC-LIPUS group, as compared with the control group, mRNA expressions of BNP and collagen III were significantly lower (both P<0.05 and protein expressions of VEGF and eNOS were significantly up-regulated associated with Akt activation (all P<0.05. No adverse effect related to the LIPUS therapy was noted.These results indicate that the LIPUS therapy ameliorates contractile dysfunction in chronically pressure-overloaded hearts through enhanced myocardial angiogenesis and attenuated perivascular fibrosis. Thus, the LIPUS therapy may be a promising, non-invasive treatment for cardiac dysfunction due to chronic pressure overload.

  5. Room-temperature susceptometry predicts biopsy-determined hepatic iron in patients with elevated serum ferritin.

    Science.gov (United States)

    Maliken, Bryan D; Avrin, William F; Nelson, James E; Mooney, Jody; Kumar, Sankaran; Kowdley, Kris V

    2012-01-01

    There is an ongoing clinical need for novel methods to measure hepatic iron content (HIC) noninvasively. Both magnetic resonance imaging (MRI) and superconducting quantum interference device (SQUID) methods have previously shown promise for estimation of HIC, but these methods can be expensive and are not widely available. Room-temperature susceptometry (RTS) represents an inexpensive alternative and was previously found to be strongly correlated with HIC estimated by SQUID measurements among patients with transfusional iron overload related to thalassemia. The goal of the current study was to examine the relationship between RTS and biochemical HIC measured in liver biopsy specimens in a more varied patient cohort. Susceptometry was performed in a diverse group of patients with hyperferritinemia due to hereditary hemochromatosis (HHC) (n = 2), secondary iron overload (n = 3), nonalcoholic fatty liver disease (NAFLD) (n = 2), and chronic viral hepatitis (n = 3) within one month of liver biopsy in the absence of iron depletion therapy. The correlation coefficient between HIC estimated by susceptometry and by biochemical iron measurement in liver tissue was 0.71 (p = 0.022). Variance between liver iron measurement and susceptometry measurement was primarily related to reliance on the patient's body-mass index (BMI) to estimate the magnetic susceptibility of tissue overlying the liver. We believe RTS holds promise for noninvasive measurement of HIC. Improved measurement techniques, including more accurate overlayer correction, may further improve the accuracy of liver susceptometry in patients with liver disease.

  6. Serum Iron Protects from Renal Postischemic Injury.

    Science.gov (United States)

    Vaugier, Céline; Amano, Mariane T; Chemouny, Jonathan M; Dussiot, Michael; Berrou, Claire; Matignon, Marie; Ben Mkaddem, Sanae; Wang, Pamella H M; Fricot, Aurélie; Maciel, Thiago T; Grapton, Damien; Mathieu, Jacques R R; Beaumont, Carole; Peraldi, Marie-Noëlle; Peyssonnaux, Carole; Mesnard, Laurent; Daugas, Eric; Vrtovsnik, François; Monteiro, Renato C; Hermine, Olivier; Ginzburg, Yelena Z; Benhamou, Marc; Camara, Niels O S; Flamant, Martin; Moura, Ivan C

    2017-12-01

    Renal transplants remain a medical challenge, because the parameters governing allograft outcome are incompletely identified. Here, we investigated the role of serum iron in the sterile inflammation that follows kidney ischemia-reperfusion injury. In a retrospective cohort study of renal allograft recipients ( n =169), increased baseline levels of serum ferritin reliably predicted a positive outcome for allografts, particularly in elderly patients. In mice, systemic iron overload protected against renal ischemia-reperfusion injury-associated sterile inflammation. Furthermore, chronic iron injection in mice prevented macrophage recruitment after inflammatory stimuli. Macrophages cultured in high-iron conditions had reduced responses to Toll-like receptor-2, -3, and -4 agonists, which associated with decreased reactive oxygen species production, increased nuclear localization of the NRF2 transcription factor, increased expression of the NRF2-related antioxidant response genes, and limited NF- κ B and proinflammatory signaling. In macrophage-depleted animals, the infusion of macrophages cultured in high-iron conditions did not reconstitute AKI after ischemia-reperfusion, whereas macrophages cultured in physiologic iron conditions did. These findings identify serum iron as a critical protective factor in renal allograft outcome. Increasing serum iron levels in patients may thus improve prognosis of renal transplants. Copyright © 2017 by the American Society of Nephrology.

  7. The effect of single overloading on stress corrosion cracking

    International Nuclear Information System (INIS)

    Ito, Yuzuru; Saito, Masahiro

    2008-01-01

    In the normal course of nuclear power plant operation in Japan, proof testing has been performed after periodic plant inspections. In this proof test procedure, the reactor pressure vessel and pipes of the primary coolant loop are subjected to a specified overload with a slightly higher hydraulic pressure than during normal operation. This specified overload is so called a single overload' in material testing. It is well known that the fatigue crack growth rate is decreased after a single overload has been applied to the specimen. However, it is not clear whether the stress corrosion cracking rate is also decreased after a single overload. In this study, the effect of a single overload on the stress corrosion cracking rate under simulated boiling water reactor environment was evaluated by examining a singly overloaded WOL (wedge opening load) specimen. The WOL specimen for the stress corrosion cracking test was machined from sensitized 304 type austenitic stainless steel. Since the crack extension length was 3.2% longer in the case of a more severely overloaded specimen, it was observed than the stress corrosion cracking rate is also decreased after the single overload has been applied to the specimen. (author)

  8. Molecular Diagnostic and Pathogenesis of Hereditary Hemochromatosis

    Directory of Open Access Journals (Sweden)

    Paulo C. J. L. Santos

    2012-02-01

    Full Text Available Hereditary hemochromatosis (HH is an autosomal recessive disorder characterized by enhanced intestinal absorption of dietary iron. Without therapeutic intervention, iron overload leads to multiple organ damage such as liver cirrhosis, cardiomyopathy, diabetes, arthritis, hypogonadism and skin pigmentation. Most HH patients carry HFE mutant genotypes: homozygosity for p.Cys282Tyr or p.Cys282Tyr/p.His63Asp compound heterozygosity. In addition to HFE gene, mutations in the genes that encode hemojuvelin (HJV, hepcidin (HAMP, transferrin receptor 2 (TFR2 and ferroportin (SLC40A1 have been associated with regulation of iron homeostasis and development of HH. The aim of this review was to identify the main gene mutations involved in the pathogenesis of type 1, 2, 3 and 4 HH and their genetic testing indication. HFE testing for the two main mutations (p.Cys282Tyr and p.His63Asp should be performed in all patients with primary iron overload and unexplained increased transferrin saturation and/or serum ferritin values. The evaluation of the HJV p.Gly320Val mutation must be the molecular test of choice in suspected patients with juvenile hemochromatosis with less than 30 years and cardiac or endocrine manifestations. In conclusion, HH is an example that genetic testing can, in addition to performing the differential diagnostic with secondary iron overload, lead to more adequate and faster treatment.

  9. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...... involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells...

  10. Effect of overloads on fatigue crack propagation rate

    International Nuclear Information System (INIS)

    Kogaev, V.P.; Bojtsov, B.V.; Petukhov, Yu.V

    1986-01-01

    An overload coefficient Q, the number of overload cycles Nsub(0), the value of the stress intensity coefficient swing of basic loading conditions ΔK are experimentally studied for their effect on the delay of the fatigue crack propagation Nsub(D) in 30KhGSNA steel. Results of the study are presented. It is shown that as a result of single overloads the value attains 60 - 10 thous. cycles. The delay Nsub(D) grows with the overload coefficient Q=Ksub(max)sup(0)/Ksub(max) and the number of the overload cycles Nsub(0). The regularity indicated is described by the equations valid within the limits of variation in Q and Nsub(0) values studied in the paper

  11. Non cardiopatic and cardiopatic beta thalassaemic patients: quantitative and qualitative cardiac iron deposition evaluation with MRI; Pazienti {beta} talassemici non cardiopatici e cardiopatici: valutazione quantitativa e qualitativa del deposito di ferro cardiaco con RM

    Energy Technology Data Exchange (ETDEWEB)

    Macarini, Luca; Marini, Stefania; Scardapane, Arnaldo [Bari Univ., Bari (Italy). DIMIMP-Sezione di Diagnostica per Immagini; Pietrapertosa, Anna [Bari Univ., Bari (Italy). MIDIM-Cattedra di Ematologia II; Ettore, Giovanni Carlo [Foggia Univ., Foggia (Italy). Cattedra di Radiologia

    2005-02-01

    Purpose: Cardiomyopathy is one of the major complications of {beta} thalassaemia major as a result of transfusion iron overload. The aim of our study is to evaluate with MR if there is any difference of iron deposition signal intensity (SI) or distribution between non-cardiopatic and cardiopatic thalassaemic patients in order to establish if there is a relationship between cardiopathy and iron deposition. Materials and methods: We studied 20 patients affected by {beta} thalassaemia major, of whom 10 cardiopatic and 10 non-cardiopatic, and 10 healthy volunteers as control group. Serum ferritin and left ventricular ejection fraction were calculated in thalassaemic patients. All patients were examinated using a 1.5 MR unit with ECG-gated GE cine-MR T2*-weighted, SE T1-weighted and GE T2*-weighted sequences. In all cases, using an adequate ROI, the myocardial and skeletal muscle signal intensity (SI), the myocardial/skeletal muscle signal intensity radio (SIR) and the SI average of the myocardium and skeletal muscle were calculated for every study group. The qualitative evaluation of iron deposition distribution was independently performed by three radiologists who analysed the extension, the site and the morphology of iron deposition on the MR images and reported their observations on the basis of a four-level rating scale: 0 (absent), 1 (limited), 2 (partial), 3 (widespread deposition). The results of quantitative and qualitative evaluation were analysed with statistical tests. Results: Cardiac iron deposition was found in 8/10 non-cardiopatic thalassaemic patients and in all cardiopatic thalassaemic patients. We noticed a significant SI difference (p>0.05) between the healthy volunteer control group and the thalassaemic patients with iron deposition, but no significant SI difference in iron deposition between non-cardiopatic thalassaemic patients in the areas evaluated. The qualitative evaluation revealed a different distribution of iron deposition between the two

  12. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron.

    Science.gov (United States)

    Lipinski, B; Pretorius, E

    2012-07-01

    Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.

  13. Fob1 and Fob2 Proteins Are Virulence Determinants of Rhizopus oryzae via Facilitating Iron Uptake from Ferrioxamine.

    Directory of Open Access Journals (Sweden)

    Mingfu Liu

    2015-05-01

    Full Text Available Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine. Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA, mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1 or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload.

  14. Cost effectiveness of once-daily oral chelation therapy with deferasirox versus infusional deferoxamine in transfusion-dependent thalassaemia patients: US healthcare system perspective.

    Science.gov (United States)

    Delea, Thomas E; Sofrygin, Oleg; Thomas, Simu K; Baladi, Jean-Francois; Phatak, Pradyumna D; Coates, Thomas D

    2007-01-01

    Deferasirox is a recently approved once-daily oral iron chelator that has been shown to reduce liver iron concentrations and serum ferritin levels to a similar extent as infusional deferoxamine. To determine the cost effectiveness of deferasirox versus deferoxamine in patients with beta-thalassaemia major from a US healthcare system perspective. A Markov model was used to estimate the total additional lifetime costs and QALYs gained with deferasirox versus deferoxamine in patients with beta-thalassaemia major and chronic iron overload from blood transfusions. Patients were assumed to be 3 years of age at initiation of chelation therapy and to receive prescribed dosages of deferasirox and deferoxamine that have been shown to be similarly effective in such patients. Compliance with chelation therapy and probabilities of iron overload-related cardiac disease and death by degree of compliance were estimated using data from published studies. Costs ($US, year 2006 values) of deferoxamine administration and iron overload-related cardiac disease were based on analyses of health insurance claims of transfusion-dependent thalassaemia patients. Utilities were based on a study of patient preferences for oral versus infusional chelation therapy, as well as published literature. Probabilistic and deterministic sensitivity analyses were employed to examine the robustness of the results to key assumptions. Deferasirox resulted in a gain of 4.5 QALYs per patient at an additional expected lifetime cost of $US126,018 per patient; the cost per QALY gained was $US28,255. The cost effectiveness of deferasirox versus deferoxamine was sensitive to the estimated costs of deferoxamine administration and the quality-of-life benefit associated with oral versus infusional therapy. Cost effectiveness was also relatively sensitive to the equivalent daily dose of deferasirox, and the unit costs of deferasirox and deferoxamine, and was more favourable in younger patients. Results of this analysis

  15. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Directory of Open Access Journals (Sweden)

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  16. Serum iron parameters in liver cirrhosis

    Science.gov (United States)

    Siregar, G. A.; Maail, W.

    2018-03-01

    The liver plays a fundamental role in iron homeostasis. Iron parameters change, especially ferritin, need to be evaluated in patients with liver cirrhosis. Serum ferritin could predict the prognosis of patients with decompensated cirrhosis since it reflects immunemediated and infectious stimuli. Ferritin could express the severity of liver disease and possible subsequent complications. Finally, it might reflect an iron overload condition resulting in significant morbidity and early mortality. 70 patients with decompensated liver cirrhosis divided into three Child-Pugh subgroups. Serum iron parameters include serum iron (SI), total iron binding capacity (TIBC) and ferritin was measured in these groups. From these 70 patients, 30 (42.9%) with HbsAg positive, 26 (37.1%) with anti-HCV positive and 14 (20%) with both HbsAg and anti-HCV positive. Of the 70 patients, 14 (20%) had CTP Class A cirrhosis, 17 (24.3%) had CTP Class B cirrhosis, and 39 (55.7%) had CTP C cirrhosis. The median (range) value of serum iron was 36 (10-345) μg/dl, TIBC was 160 (59-520) μg/dl, Ferritin was 253.5 (8-6078) ng/ml and the transferrin saturation was 22.9 (3.65-216.98) %.We found a significant difference in serum ferritin level with CTP score. Ferritin levels increased as Child-Pugh class progressed (p<0.001).

  17. Application of Chaos Theory in Trucks' Overloading Enforcement

    Directory of Open Access Journals (Sweden)

    Abbas Mahmoudabadi

    2013-01-01

    Full Text Available Trucks' overloading is considered as one of the most substantial concerns in road transport due to a possible road surface damage, as well as, are less reliable performance of trucks' braking system. Sufficient human resource and adequate time scheduling are to be planned for surveying trucks' overloading; hence, it seems required to prepare an all-around model to be able to predict the number of overloaded vehicles. In the present research work, the concept of chaos theory has been utilized to predict the ratio of trucks which might be guessed overloaded. The largest Lyapunov exponent is utilized to determine the presence of chaos using experimental data and concluded that the ratio of overloaded trucks reflects chaotic behavior. The prediction based on chaos theory is compared with the results of simple smoothing and moving average methods according to the well-known criterion of mean square errors. The results have also revealed that the chaotic prediction model would act more capably comparing the analogous methods including simple smoothing and moving average to predict the ratio of passing trucks to be possibly overloaded.

  18. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload

    NARCIS (Netherlands)

    Shimano, Masayuki; Ouchi, Noriyuki; Nakamura, Kazuto; van Wijk, Bram; Ohashi, Koji; Asaumi, Yasuhide; Higuchi, Akiko; Pimentel, David R.; Sam, Flora; Murohara, Toyoaki; van den Hoff, Maurice J. B.; Walsh, Kenneth

    2011-01-01

    Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial

  19. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, T.P.; Loft, Steffen Huitfeldt; Nyyssonen, K.

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration...... with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  20. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  1. Overload of iron in the skin of patients with varicose ulcers. Possible contributing role of iron accumulation in progression of the disease

    International Nuclear Information System (INIS)

    Ackerman, Z.; Seidenbaum, M.; Loewenthal, E.; Rubinow, A.

    1988-01-01

    The brown pigmentation of the skin associated with venous ulceration is caused by increased local iron deposition. Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for the noninvasive determination of iron levels in the skin of patients with venous ulceration. The mean (+/- SEM) iron concentration in the skin around the venous ulcer was elevated, compared with control values of nonulcerated skin (250 +/- 54 vs 128 +/- 39 micrograms) and compared with normal skin from the forearm (250 +/- 54 vs 14 +/- 2.5 micrograms). These data suggest that dermal iron deposition may not be an incidental by-product of increased venous pressure, but may actively perpetuate tissue damage in venous ulcerations

  2. In-situ Characterization and Mapping of Iron Compounds in Alzheimer's Tissue

    International Nuclear Information System (INIS)

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.; Batich, C.; Streit, W.J.; Terry, J.; Dobson, J.

    2005-01-01

    There is a well-established link between iron overload in the brain and pathology associated with neurodegeneration in a variety of disorders such as Alzheimer's (AD), Parkinson's (PD) and Huntington's (HD) diseases. This association was first discovered in AD by Goodman in 1953, where, in addition to abnormally high concentrations of iron in autopsy brain tissue, iron has also been shown to accumulate at sites of brain pathology such as senile plaques. However, since this discovery, progress in understanding the origin, role and nature of iron compounds associated with neurodegeneration has been slow. Here we report, for the first time, the location and characterization of iron compounds in human AD brain tissue sections. Iron fluorescence was mapped over a frontal-lobe tissue section from an Alzheimer's patient, and anomalous iron concentrations were identified using synchrotron X-ray absorption techniques at 5 (micro)m spatial resolution. Concentrations of ferritin and magnetite, a magnetic iron oxide potentially indicating disrupted brain-iron metabolism, were evident. These results demonstrate a practical means of correlating iron compounds and disease pathology in-situ and have clear implications for disease pathogenesis and potential therapies.

  3. Pressure overload-induced mild cardiac hypertrophy reduces leftventricular transmural differences in mitochondrial respiratory chainactivity and increases oxidative stress

    Directory of Open Access Journals (Sweden)

    Michel eKINDO

    2012-08-01

    Full Text Available Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi and whether pressure overload-induced left ventricular hypertrophy (LVH might modulate transmural gradients through increased reactive oxygen species (ROS production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n=10 for each group. Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilised fibres, Amplex Red fluorescence and citrate synthase activity.Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P<0.01 and complex IV activity (-57.4%, P<0.05. Mitochondrial hydrogen peroxide (H2O2 production was similar in both LV layers.Aortic banding induced mild LVH (+31.7% LV mass, associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%, increased mitochondrial H2O2 production (+86.9 and +73.1%, free radical leak (+27.2% and +36.3% and citrate synthase activity (+27.2% and +36.3% in Endo and Epi, respectively.Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs –12.2%; P=0.02. Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

  4. Serum levels of iron in Sør-Varanger, Northern Norway--an iron mining municipality.

    Science.gov (United States)

    Broderstad, Ann R; Smith-Sivertsen, Tone; Dahl, Inger Marie S; Ingebretsen, Ole Christian; Lund, Eiliv

    2006-12-01

    The purpose of this study was to investigate iron status in a population with a high proportion of miners in the northernmost part of Norway. Cross-sectional, population-based study performed in order to investigate possible health effects of pollution in the population living on both sides of the Norwegian-Russian border. All individuals living in the community of Sør-Varanger were invited for screening in 1994. In 2000, blood samples from 2949 participants (response rate 66.8 %), age range 30-69 years, were defrosted. S-ferritin and transferrin saturation were analysed in samples from 1548 women and 1401 men. About 30 % (n = 893) were employed in the iron mining industry, 476 of whom were miners and 417 had other tasks in the company. Type and duration of employment and time since last day of work at the company were used as indicators of exposure. Both s-ferritin levels and transferrin saturation were higher in men than in women. S-ferritin increased with increasing age in women, while the opposite was true for men. Iron deficiency occurred with higher frequencies in women (16 %) than in men (4 %). Iron overload was uncommon in both sexes. Adjustment for smoking and self-reported pulmonary diseases did not show any effect on iron levels. Miners had non-significant higher mean s-ferritin and transferrin saturation than non-miners. Neither duration, nor time since employment in the mine, had any impact on iron status. Our analyses did not show any associations between being a miner in the iron mining industry and serum iron levels compared to the general population.

  5. Left ventricular function in right ventricular overload

    International Nuclear Information System (INIS)

    Iwanaga, Shiro; Handa, Shunnosuke; Abe, Sumihisa; Onishi, Shohei; Nakamura, Yoshiro; Kunieda, Etsuo; Ogawa, Koichi; Kubo, Atsushi

    1989-01-01

    This study clarified regional and global functions of the distorted left ventricle due to right ventricular overload by gated radionuclide ventriculography (RNV). Cardiac catheterization and RNV were performed in 13 cases of atrial septal defect (ASD), 13 of pure mitral stenosis (MS), 10 of primary pulmonary hypertension (PPH), and 10 of normal subjects (NL). Right ventricular systolic pressure (RVSP) was 32.9±13.9, 45.0±12.2, 88.3±17.1, and 21.2±4.5 mmHg, respectively. The end-systolic LAO view of the left ventricle was halved into septal and free-wall sides. The end-diastolic halves were determined in the same plane. Ejection fractions of the global left ventricle (LVEF), global right ventricle (RVEF), the septal half of the left ventricle (SEPEF), and the free-wall half of the left ventricle (FWEF) were obtained. LVEF was 56.8±9.8% in NL, 52.8±10.5% in ASD, and 49.5±12.9% in PPH. In MS, LVEF (47.0±13.0%) was smaller than those in the other groups. RVEF was 37.0±5.2% in NL, 43.7±15.5% in ASD, and 32.8±11.5% in MS. In PPH, RVEF (25.0±10.6%) was smaller than those in the other groups. SEPEF was smaller in ASD (42.5±13.2%), MS (40.4±13.1%), PPH (40.5±12.5%) than in NL (53.5±8.5%). Systolic function of the septal half of the left ventricle was disturbed by right ventricular overload. RVEF (r=-0.35, p<0.05) and SEPEF (r=-0.51, p<0.01) had negative correlations with RVSP. As RVSP rose, systolic function of the septal half of the left ventricle was more severely disturbed. FWEF was the same among the four groups; NL (57.0±12.6%), ASD (48.6±15.2%), MS (50.5±12.0%), and PPH (51.1±12.3%). There was a good correlation between SEPEF and LVEF in NL (r=0.81), although in PPH this correlation was poor (r=0.64). These data showed that the distorted left ventricular due to right ventricular overload maintains its global function with preserved function of the free-wall side. (J.P.N.)

  6. Mitochondrial iron accumulation exacerbates hepatic toxicity caused by hepatitis C virus core protein

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Shuichi; Ito, Konomi; Watanabe, Haruna; Nakano, Takafumi [Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 (Japan); Moriya, Kyoji; Shintani, Yoshizumi; Fujie, Hajime; Tsutsumi, Takeya; Miyoshi, Hideyuki; Fujinaga, Hidetake; Shinzawa, Seiko; Koike, Kazuhiko [Department of Internal Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Horie, Toshiharu, E-mail: t.horie@thu.ac.jp [Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 (Japan)

    2015-02-01

    Patients with long-lasting hepatitis C virus (HCV) infection are at major risk of hepatocellular carcinoma (HCC). Iron accumulation in the livers of these patients is thought to exacerbate conditions of oxidative stress. Transgenic mice that express the HCV core protein develop HCC after the steatosis stage and produce an excess of hepatic reactive oxygen species (ROS). The overproduction of ROS in the liver is the net result of HCV core protein-induced dysfunction of the mitochondrial respiratory chain. This study examined the impact of ferric nitrilacetic acid (Fe-NTA)-mediated iron overload on mitochondrial damage and ROS production in HCV core protein-expressing HepG2 (human HCC) cells (Hep39b cells). A decrease in mitochondrial membrane potential and ROS production were observed following Fe-NTA treatment. After continuous exposure to Fe-NTA for six days, cell toxicity was observed in Hep39b cells, but not in mock (vector-transfected) HepG2 cells. Moreover, mitochondrial iron ({sup 59}Fe) uptake was increased in the livers of HCV core protein-expressing transgenic mice. This increase in mitochondrial iron uptake was inhibited by Ru360, a mitochondrial Ca{sup 2+} uniporter inhibitor. Furthermore, the Fe-NTA-induced augmentation of mitochondrial dysfunction, ROS production, and cell toxicity were also inhibited by Ru360 in Hep39b cells. Taken together, these results indicate that Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates hepatocyte toxicity caused by the HCV core protein. - Highlights: • Iron accumulation in the livers of patients with hepatitis C virus (HCV) infection is thought to exacerbate oxidative stress. • The impact of iron overload on mitochondrial damage and ROS production in HCV core protein-expressing cells were examined. • Mitochondrial iron uptake was increased in the livers of HCV core protein-expressing transgenic mice. • Ca{sup 2+} uniporter-mediated mitochondrial accumulation of iron exacerbates

  7. Application of nuclear resonance scattering for in vivo measurements

    International Nuclear Information System (INIS)

    Wielopolski, L.; Vartsky, D.; Cohn, S.H.

    1983-01-01

    Nuclear resonance scattering is applied in our laboratory to measure hepatic and cardiac iron overload. For iron analysis, a gaseous source of 4 mg MnCl 2 is introduced into an evacuated quartz vial. Following irradiation in a nuclear reactor, 56 Mn decays by beta emission to the 847-keV level of 56 Fe, which subsequently decays to the ground state of 56 Fe with a 7 ps half-life. The principal aim of this work is to evaluate the efficacy of the iron chelation therapy. Serial measurements over a time period of 6 to 12 months of a given patient will enable us to see how the iron is removed from the critical organs

  8. Hyperferritinemia and iron metabolism in Gaucher disease: Potential pathophysiological implications.

    Science.gov (United States)

    Regenboog, Martine; van Kuilenburg, André B P; Verheij, Joanne; Swinkels, Dorine W; Hollak, Carla E M

    2016-11-01

    Gaucher disease (GD) is characterized by large amounts of lipid-storing macrophages and is associated with accumulation of iron. High levels of ferritin are a hallmark of the disease. The precise mechanism underlying the changes in iron metabolism has not been elucidated. A systematic search was conducted to summarize available evidence from the literature on iron metabolism in GD and its potential pathophysiological implications. We conclude that in GD, a chronic low grade inflammation state can lead to high ferritin levels and increased hepcidin transcription with subsequent trapping of ferritin in macrophages. Extensive GD manifestations with severe anemia or extreme splenomegaly can lead to a situation of iron-overload resembling hemochromatosis. We hypothesize that specifically this latter situation carries a risk for the occurrence of associated conditions such as the increased cancer risk, metabolic syndrome and neurodegeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Therapeutic Depletion of Iron Stores Is Not Associated with a Reduced Hemoglobin Mass in a Hemochromatosis Patient

    Directory of Open Access Journals (Sweden)

    Nina Wrobel

    2016-08-01

    Full Text Available Introduction: Hereditary hemochromatosis features a dysregulated iron absorption leading to iron overload and organ damage. The regulation of total hemoglobin mass during depletion of iron deposits by therapeutic phlebotomy has not been studied. Case Presentation: The initial ferritin level of the 52-year-old male subject was 1,276 μg/l. Despite successful depletion of iron stores (ferritinmin: 53 μg/l through phlebotomies, total hemoglobin mass stabilized at the pretherapy level. However, regeneration of total hemoglobin mass was accelerated (up to 10.8 g/day. Conclusion: In this hemochromatosis patient, the total hemoglobin mass was not altered in the long term, but regeneration was accelerated, possibly due to elevated body iron content.

  10. Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome

    Directory of Open Access Journals (Sweden)

    Bradley D. Gelfand

    2015-06-01

    Full Text Available Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD. Iron toxicity is widely attributed to hydroxyl radical formation through Fenton’s reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs: Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of DICER1 via sequestration of the co-factor poly(C-binding protein 2 (PCBP2. These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.

  11. Beta-Thalassemia Major and Female Fertility: The Role of Iron and Iron-Induced Oxidative Stress

    Science.gov (United States)

    Roussou, Paraskevi; Tsagarakis, Nikolaos J.; Diamanti-Kandarakis, Evanthia

    2013-01-01

    Endocrine complications due to haemosiderosis are present in a significant number of patients with beta-thalassemia major (BTM) worldwide and often become barriers in their desire for parenthood. Thus, although spontaneous fertility can occur, the majority of females with BTM is infertile due to hypogonadotropic hypogonadism (HH) and need assisted reproductive techniques. Infertility in these women seems to be attributed to iron deposition and iron-induced oxidative stress (OS) in various endocrine organs, such as hypothalamus, pituitary, and female reproductive system, but also through the iron effect on other organs, such as liver and pancreas, contributing to the impaired metabolism of hormones and serum antioxidants. Nevertheless, the gonadal function of these patients is usually intact and fertility is usually retrievable. Meanwhile, a significant prooxidants/antioxidants imbalance with subsequent increased (OS) exists in patients with BTM, which is mainly caused by tissue injury due to overproduction of free radicals by secondary iron overload, but also due to alteration in serum trace elements and antioxidant enzymes. Not only using the appropriate antioxidants, essential trace elements, and minerals, but also regulating the advanced glycation end products, could probably reduce the extent of oxidative damage and related complications and retrieve BTM women's infertility. PMID:24396593

  12. Outcomes, utilization, and costs among thalassemia and sickle cell disease patients receiving deferoxamine therapy in the United States.

    Science.gov (United States)

    Delea, Thomas E; Hagiwara, May; Thomas, Simu K; Baladi, Jean-Francois; Phatak, Pradyumna D; Coates, Thomas D

    2008-04-01

    Deferoxamine mesylate (DFO) reduces morbidity and mortality associated with transfusional iron overload. Data on the utilization and costs of care among U.S. patients receiving DFO in typical clinical practice are limited however. This was a retrospective study using a large U.S. health insurance claims database spanning 1/97-12/04 and representing 40 million members in >70 health plans. Study subjects (n = 145 total, 106 sickle cell disease [SCD], 39 thalassemia) included members with a diagnosis of thalassemia or SCD, one or more transfusions (whole blood or red blood cells), and one or more claims for DFO. Mean transfusion episodes were 12 per year. Estimated mean DFO use was 307 g/year. Central venous access devices were required by 20% of patients. Cardiac disease was observed in 16% of patients. Mean total medical costs were $59,233 per year including $10,899 for DFO and $8,722 for administration of chelation therapy. In multivariate analyses, potential complications of iron overload were associated with significantly higher medical care costs. In typical clinical practice, use of DFO in patients with thalassemia and SCD receiving transfusions is low. Administration costs represent a large proportion of the cost of chelation therapy. Potential complications of iron overload are associated with increased costs. (c) 2007 Wiley-Liss, Inc.

  13. Intelligent Overload Control for Composite Web Services

    NARCIS (Netherlands)

    Meulenhoff, P.J.; Ostendorf, D.R.; Zivkovic, Miroslav; Meeuwissen, H.B.; Gijsen, B.M.M.

    2009-01-01

    In this paper, we analyze overload control for composite web services in service oriented architectures by an orchestrating broker, and propose two practical access control rules which effectively mitigate the effects of severe overloads at some web services in the composite service. These two rules

  14. Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress.

    Directory of Open Access Journals (Sweden)

    Remil Linggatong Galay

    Full Text Available Ticks are obligate hematophagous parasites that have successfully developed counteractive means against their hosts' immune and hemostatic mechanisms, but their ability to cope with potentially toxic molecules in the blood remains unclear. Iron is important in various physiological processes but can be toxic to living cells when in excess. We previously reported that the hard tick Haemaphysalis longicornis has an intracellular (HlFER1 and a secretory (HlFER2 ferritin, and both are crucial in successful blood feeding and reproduction. Ferritin gene silencing by RNA interference caused reduced feeding capacity, low body weight and high mortality after blood meal, decreased fecundity and morphological abnormalities in the midgut cells. Similar findings were also previously reported after silencing of ferritin genes in another hard tick, Ixodes ricinus. Here we demonstrated the role of ferritin in protecting the hard ticks from oxidative stress. Evaluation of oxidative stress in Hlfer-silenced ticks was performed after blood feeding or injection of ferric ammonium citrate (FAC through detection of the lipid peroxidation product, malondialdehyde (MDA and protein oxidation product, protein carbonyl. FAC injection in Hlfer-silenced ticks resulted in high mortality. Higher levels of MDA and protein carbonyl were detected in Hlfer-silenced ticks compared to Luciferase-injected (control ticks both after blood feeding and FAC injection. Ferric iron accumulation demonstrated by increased staining on native HlFER was observed from 72 h after iron injection in both the whole tick and the midgut. Furthermore, weak iron staining was observed after Hlfer knockdown. Taken together, these results show that tick ferritins are crucial antioxidant molecules that protect the hard tick from iron-mediated oxidative stress during blood feeding.

  15. Sodium Overload Due To a Persistent Current That Attenuates The Arrhythmogenic Potential of a Novel LQT3 Mutation

    Directory of Open Access Journals (Sweden)

    Adrien eMoreau

    2013-10-01

    Full Text Available Long QT syndrome (LQTS is a congenital abnormality of cardiac repolarization that manifests as a prolonged QT interval on 12-lead electrocardiograms. The syndrome may lead to syncope and sudden death from ventricular tachyarrhythmias known as torsades de pointes. An increased persistent Na+ current is known to cause a Ca2+ overload in case of ischemia for example. Such increased Na+ persistent current is also usually associated to the LQT3 syndrome. The purpose of this study was to investigate the pathological consequences of a novel mutation in a family affected by LQTS. The impact of biophysical defects on cellular homeostasis are also investigated.Genomic DNA was extracted from blood samples, and a combination of PCR and DNA sequencing of several LQTS-linked genes was used to identify mutations. The mutation was reproduced in vitro and was characterized using the patch clamp technique and in silico quantitative analysis.A novel mutation (Q1476R was identified on the SCN5A gene encoding the cardiac Na+ channel. Cells expressing the Q1476R mutation exhibited biophysical alterations, including a shift of SS inactivation and a significant increase in the persistent Na+ current. The in silico analysis confirmed the arrhythmogenic character of the Q1476R mutation. It further revealed that the increase in persistent Na+ current causes a frequency-dependent Na+ overload in cardiomyocytes co-expressing WT and mutant Nav1.5 channels, that, in turn, exerts a moderating effect on the lengthening of the action potential duration caused by the mutation.The Q1476R mutation in SCN5A results in a three-fold increase in the window current and a persistent inward Na+ current. These biophysical defects may expose the carrier of the mutation to arrhythmias that occur preferentially in the patient at rest or during tachycardia. However, the Na+ overload counterbalances the gain-of-function of the mutation and is beneficial in that it prevents severe arrhythmias at

  16. Regulation of transepithelial transport of iron by hepcidin

    Directory of Open Access Journals (Sweden)

    NATALIA P MENA

    2006-01-01

    Full Text Available Hepcidin (Hepc is a 25 amino acid cationic peptide with broad antibacterial and antifungal actions. A likely role for Hepc in iron metabolism was suggested by the observation that mice having disruption of the gene encoding the transcription factor USF2 failed to produce Hepc mRNA and developed spontaneous visceral iron overload. Lately, Hepc has been considered the "stores regulator," a putative factor that signals the iron content of the body to intestinal cells. In this work, we characterized the effect of Hepc produced by hepatoma cells on iron absorption by intestinal cells. To that end, human Hepc cDNA was cloned and overexpressed in HepG2 cells and conditioned media from Hepc-overexpressing cells was used to study the effects of Hepc on intestinal Caco-2 cells grown in bicameral inserts. The results indicate that Hepc released by HepG2 inhibited apical iron uptake by Caco-2 cells, probably by inhibiting the expression of the apical transporter DMT1. These results support a model in which Hepc released by the liver negatively regulates the expression of transporter DMT1 in the enterocyte

  17. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  18. DFT investigation on the selective complexation of Fe3+ and Al3+ with hydroxypyridinones used for treatment of the aluminium and iron overload diseases.

    Science.gov (United States)

    Kaviani, Sadegh; Izadyar, Mohammad; Housaindokht, Mohammad Reza

    2018-03-01

    The chelating agents for Al 3+ and Fe 3+ metal cations with therapeutic applications have been considered in the recent years. In designing of the hydroxypyridinones (HPOs) as the therapeutic chelating agents for iron and aluminium overload pathologies, quantum mechanical (QM) calculations are necessary for predicting the binding energies and thermodynamic parameters of the metal-HPO complexes. Three derivatives of the HPOs called 3-hydroxy-1,2-dimethylpyridin-4(1H)-one (DFP), 3-hydroxy-4(1H)-pyridinone (HOPO) and 5-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one (P1) were investigated for complexation with Fe 3+ and Al 3+ metal ions. Because of the maximum interaction between Fe 3+ and HPOs, all HPOs form stable complexes with Fe 3+ metal ion. Moreover, it was found that [Fe-P1] 2+ is a more stable complex than [Fe-DFP] 2+ and [Fe-3,4-HOPO] 2+ in the gas phase and water, confirming that P1 is the strongest selective iron chelator. The more stability of [Fe-P1] 2+ was attributed to an intramolecular hydrogen bond formation between the hydrogen atom of NH group and the oxygen atom of CH 2 OH chain. All complexes of the HPOs with Fe 3+ and Al 3+ were formed through the oxygen atoms of the CO and OH groups of the HPO. Natural bond orbital analysis showed that the interaction of the lone pair electrons of the oxygen atom of the chelator and antibonding orbitals of the Al 3+ and Fe 3+ are important in the complex formation. Topological parameters at the bond critical points confirmed the effective interaction between the Al 3+ and Fe 3+ metal ions and HPO as well as the nature of the metal-oxygen bonds. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Blood conservation in cardiac surgery.

    Science.gov (United States)

    Blaudszun, G; Butchart, A; Klein, A A

    2017-09-21

    This article aims at reviewing the currently available evidence about blood conservation strategies in cardiac surgery. Pre-operative anaemia and perioperative allogeneic blood transfusions are associated with worse outcomes after surgery. In addition, transfusions are a scarce and costly resource. As cardiac surgery accounts for a significant proportion of all blood products transfused, efforts should be made to decrease the risk of perioperative transfusion. Pre-operative strategies focus on the detection and treatment of anaemia. The management of haematological abnormalities, most frequently functional iron deficiency, is a matter for debate. However, iron supplementation therapy is increasingly commonly administered. Intra-operatively, antifibrinolytics should be routinely used, whereas the cardiopulmonary bypass strategy should be adapted to minimise haemodilution secondary to circuit priming. There is less evidence to recommend minimally invasive surgery. Cell salvage and point-of-care tests should also be a part of the routine care. Post-operatively, any unnecessary iatrogenic blood loss should be avoided. © 2017 British Blood Transfusion Society.

  20. Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Serai, Suraj D.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Quinn, Charles T. [Cincinnati Children' s Hospital Medical Center, Division of Hematology, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States); Podberesky, Daniel J. [Nemours Children' s Health System Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States)

    2015-10-15

    Serial surveillance of liver iron concentration (LIC) provides guidance for chelation therapy in patients with iron overload. The diagnosis of iron overload traditionally relies on core liver biopsy, which is limited by invasiveness, sampling error, cost and general poor acceptance by pediatric patients and parents. Thus noninvasive diagnostic methods such as MRI are highly attractive for quantification of liver iron concentration. To compare two MRI-based methods for liver iron quantification in children. 64 studies on 48 children and young adults (age range 4-21 years) were examined by gradient recalled echo (GRE) R2* and spin-echo R2 MRI at 1.5T to evaluate liver iron concentration. Scatter plots and Bland-Altman difference plots were generated to display and assess the relationship between the methods. With the protocols used in this investigation, Bland-Altman agreement between the methods is best when LIC is <20 mg/g dry tissue. Scatter plots show that all values with LIC <20 mg/g dry tissue fall within the 95% prediction limits. Liver iron concentration as determined by the R2* and R2 MR methods is statistically comparable, with no statistical difference between these methods for LIC <20 mg/g. (orig.)

  1. The Cardiac MR Images and Causes of Paradoxical Septal Motion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hun [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Choi, Sang Il; Chun, Eun Ju [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Choi, Sung Hun [Ulsan University Hospital, Ulsan (Korea, Republic of); Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2010-10-15

    Real-time cine MRI studies using the steady-state free precession (SSFP) technique are very useful for evaluating cardiac and septal motion. During diastole, the septum acts as a compliant membrane between the two ventricles, and its position and geometry respond to even small alterations in the trans-septal pressure gradients. Abnormal septal motion can be caused by an overload of the right ventricle, delayed ventricular filling and abnormal conduction. In this study, we illustrate, based on our experiences, the causes of abnormal septal motion such as corrective surgery for tetralogy of Fallot, an atrial septal defect, pulmonary thromboembolism, mitral stenosis, constrictive pericarditis and left bundle branch block. In addition, we discuss the significance of paradoxical septal motion in the context of cardiac MR imaging.

  2. The Cardiac MR Images and Causes of Paradoxical Septal Motion

    International Nuclear Information System (INIS)

    Kim, Dong Hun; Choi, Sang Il; Chun, Eun Ju; Choi, Sung Hun; Park, Jae Hyung

    2010-01-01

    Real-time cine MRI studies using the steady-state free precession (SSFP) technique are very useful for evaluating cardiac and septal motion. During diastole, the septum acts as a compliant membrane between the two ventricles, and its position and geometry respond to even small alterations in the trans-septal pressure gradients. Abnormal septal motion can be caused by an overload of the right ventricle, delayed ventricular filling and abnormal conduction. In this study, we illustrate, based on our experiences, the causes of abnormal septal motion such as corrective surgery for tetralogy of Fallot, an atrial septal defect, pulmonary thromboembolism, mitral stenosis, constrictive pericarditis and left bundle branch block. In addition, we discuss the significance of paradoxical septal motion in the context of cardiac MR imaging

  3. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence

    NARCIS (Netherlands)

    Kreeftenberg, HG; Mooyaart, EL; Sluiter, WJ; Kreeftenberg, HG; Huizenga, Reint

    Background: The aim of the study was to quantify hepatic iron by MRI for practical use. Methods: In twenty-three patients with various degrees of iron overload, measurements were carried out with a 1.5 Tesla MR unit. A combination of pulse sequences (T1, T2 and gradient echo) enabled us to quantify

  4. Prognostic value of depressed midwall systolic function in cardiac light-chain amyloidosis.

    Science.gov (United States)

    Perlini, Stefano; Salinaro, Francesco; Musca, Francesco; Mussinelli, Roberta; Boldrini, Michele; Raimondi, Ambra; Milani, Paolo; Foli, Andrea; Cappelli, Francesco; Perfetto, Federico; Palladini, Giovanni; Rapezzi, Claudio; Merlini, Giampaolo

    2014-05-01

    Cardiac amyloidosis represents an archetypal form of restrictive heart disease, characterized by profound diastolic dysfunction. As ejection fraction is preserved until the late stage of the disease, the majority of patients do fulfill the definition of diastolic heart failure, that is, heart failure with preserved ejection fraction (HFpEF). In another clinical model of HFpEF, that is, pressure-overload hypertrophy, depressed midwall fractional shortening (mFS) has been shown to be a powerful prognostic factor. To assess the potential prognostic role of mFS in cardiac light-chain amyloidosis with preserved ejection fraction, we enrolled 221 consecutive untreated patients, in whom a first diagnosis of cardiac light-chain amyloidosis was concluded between 2008 and 2010. HFpEF was present in 181 patients. Patients in whom cardiac involvement was excluded served as controls (n = 121). Prognosis was assessed after a median follow-up of 561 days. When compared with light-chain amyloidosis patients without myocardial involvement, cardiac light-chain amyloidosis was characterized by increased wall thickness (P model. In cardiac light-chain amyloidosis with normal ejection fraction, depressed circumferential mFS, a marker of myocardial contractile dysfunction, is a powerful predictor of survival.

  5. Salt-water imbalance and fluid overload in hemodialysis patients: a pivotal role of corin.

    Science.gov (United States)

    Ricciardi, Carlo Alberto; Lacquaniti, Antonio; Cernaro, Valeria; Bruzzese, Annamaria; Visconti, Luca; Loddo, Saverio; Santoro, Domenico; Buemi, Michele

    2016-08-01

    Natriuretic peptides (NP) play a key role in regulation of salt and water balance. Corin, a serine protease which activates NP, plays a key role in regulation of blood pressure and cardiac function. The aim of the study was to evaluate the involvement of corin in renal physiopathology, analyze its levels in dialyzed patients and evaluate its relation with fluid overload and comorbidities such as heart failure and blood hypertension. We studied serum corin in uremic patients (n = 20) undergoing hemodialysis therapy (HD) and in healthy subjects (HS). Corin levels in uremic patients were higher than in HS (p role of corin in kidney diseases and to define its diagnostic and prognostic role.

  6. Iron(III) citrate speciation in aqueous solution.

    Science.gov (United States)

    Silva, Andre M N; Kong, XiaoLe; Parkin, Mark C; Cammack, Richard; Hider, Robert C

    2009-10-28

    Citrate is an iron chelator and it has been shown to be the major iron ligand in the xylem sap of plants. Furthermore, citrate has been demonstrated to be an important ligand for the non-transferrin bound iron (NTBI) pool occurring in the plasma of individuals suffering from iron-overload. However, ferric citrate chemistry is complicated and a definitive description of its aqueous speciation at neutral pH remains elusive. X-Ray crystallography data indicates that the alcohol function of citrate (Cit4-) is involved in Fe(III) coordination and that deprotonation of this functional group occurs upon complex formation. The inability to include this deprotonation in the affinity constant calculations has been a major source of divergence between various reports of iron(III)-citrate affinity constants. However the recent determination of the alcoholic pKa of citric acid (H4Cit) renders the reassessment of the ferric citrate system possible. The aqueous speciation of ferric citrate has been investigated by mass spectrometry and EPR spectroscopy. It was observed that the most relevant species are a monoiron dicitrate species and dinuclear and trinuclear oligomeric complexes, the relative concentration of which depends on the solution pH value and the iron : citric acid molar ratio. Spectrophotometric titration was utilized for affinity constant determination and the formation constant for the biologically relevant [Fe(Cit)2]5- is reported for the first time.

  7. Monitoring body iron burden using X-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Farquharson, M.J.; Bagshaw, A.P.

    2001-01-01

    X-ray fluorescence, using Cu K alpha and K beta radiation, has been used to measure the Fe content of skin of two groups of rats, one Fe overloaded and one control group. These skin Fe levels were compared to the liver and heart Fe levels measured using colorimetry. Correlation coefficients of 0.86 and 0.88 respectively were found indicating that skin Fe levels may be a potential marker for body iron burden.

  8. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis.

    Science.gov (United States)

    Defrère, Sylvie; González-Ramos, Reinaldo; Lousse, Jean-Christophe; Colette, Sébastien; Donnez, Olivier; Donnez, Jacques; Van Langendonckt, Anne

    2011-08-01

    Endometriosis is a chronic pelvic inflammatory process. Local inflammation is known to play a role in pain and infertility associated with the disease, and may be extensively involved in molecular and cellular processes leading to endometriosis development. In this review, we focus on two inflammatory mediators clearly implicated in the pathogenesis of endometriosis, iron and NF-kappaB, and their potential association. Iron is essential for all living organisms, but excess iron results in toxicity and is linked to pathological disorders. In endometriosis patients, iron overload has been demonstrated in the different compartments of the peritoneal cavity (peritoneal fluid, endometriotic lesions, peritoneum and macrophages). This iron overload affects numerous mechanisms involved in endometriosis development. Moreover, iron can generate free radical species able to react with a wide range of cellular constituents, inducing cellular damage. Overproduction of reactive oxygen species also impairs cellular function by altering gene expression via regulation of redox-sensitive transcription factors such as NF-kappaB, which is clearly implicated in endometriosis. Indeed, NF-kappaB is activated in endometriotic lesions and peritoneal macrophages of endometriosis patients, which stimulates synthesis of proinflammatory cytokines, generating a positive feedback loop in the NF-kappaB pathway. NF-kappaB-mediated gene transcription promotes a variety of processes, including endometriotic lesion establishment, maintenance and development. In conclusion, iron and NF-kappaB appear to be linked and both are clearly involved in endometriosis development, making these pathways an attractive target for future treatment and prevention of this disease.

  9. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    levels of pSmad1, not pSmad3. Conclusions -Our results identify a novel functional role for BMP9 as an endogenous inhibitor of cardiac fibrosis due to LV pressure overload and further show that treatment with either recombinant BMP9 or disruption of endoglin activity promotes BMP9 activity and limits cardiac fibrosis in heart failure, thereby providing potentially novel therapeutic approaches for patients with heart failure.

  10. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic ß cell fate in response to cytokines

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Tonnesen, Morten Fog; Madsen, Andreas Nygaard

    2012-01-01

    Reactive oxygen species (ROS) contribute to target-cell damage in inflammatory and iron-overload diseases. Little is known about iron transport regulation during inflammatory attack. Through a combination of in vitro and in vivo studies, we show that the proinflammatory cytokine IL-1ß induces...... knockout islets is defective, highlighting a physiological role of iron and ROS in the regulation of insulin secretion. Dmt1 knockout mice are protected against multiple low-dose streptozotocin and high-fat diet-induced glucose intolerance, models of type 1 and type 2 diabetes, respectively. Thus, ß cells...

  11. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    Science.gov (United States)

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  12. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    Science.gov (United States)

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  13. Estimates of the effect on hepatic iron of oral deferiprone compared with subcutaneous desferrioxamine for treatment of iron overload in thalassemia major: a systematic review

    Directory of Open Access Journals (Sweden)

    Caro J

    2002-11-01

    Full Text Available Abstract Background Beta thalassemia major requires regular blood transfusions and iron chelation to alleviate the harmful accumulation of iron. Evidence on the efficacy and safety of the available agents, desferrioxamine and deferiprone, is derived from small, non-comparative, heterogeneous observational studies. This evidence was reviewed to quantitatively compare the ability of these chelators to reduce hepatic iron. Methods The literature was searched using Medline and all reports addressing the effect of either chelator on hepatic iron were considered. Data were abstracted independently by two investigators. Analyses were performed using reported individual patient data. Hepatic iron concentrations at study end and changes over time were compared using ANCOVA, controlling for initial iron load. Differences in the proportions of patients improving were tested using χ2. Results Eight of 11 reports identified provided patient-level data relating to 30 desferrioxamine- and 68 deferiprone-treated patients. Desferrioxamine was more likely than optimal dose deferiprone to decrease hepatic iron over the average follow-up of 45 months (odds ratio, 19.0, 95% CI, 2.4 to 151.4. The degree of improvement was also larger with desferrioxamine. Conclusions This analysis suggests that desferrioxamine is more effective than deferiprone in lowering hepatic iron. This comparative analysis – despite its limitations – should prove beneficial to physicians faced with the challenge of selecting the optimal treatment for their patients.

  14. The extrahepatic role of TFR2 in iron homeostasis

    Directory of Open Access Journals (Sweden)

    Laura eSilvestri

    2014-05-01

    Full Text Available Transferrin receptor 2 (TFR2, a protein homologous to the cell iron importer transferrin receptor 1 (TFR1, is expressed in the liver and erythroid cells and is reported to bind diferric transferrin, although at lower affinity than TFR1. TFR2 gene is mutated in type 3 hemochromatosis, a disorder characterized by iron overload and inability to upregulate hepcidin in response to iron. Liver TFR2 is considered a sensor of diferric transferrin, possibly in a complex with HFE. In erythroid cells TFR2 is a partner of erythropoietin receptor (EPOR and stabilizes the receptor on the cell surface. However, Tfr2 null mice as well as TFR2 hemochromatosis patients do not show defective erythropoiesis and tolerate repeated phlebotomy. The iron deficient Tfr2-Tmprss6 double knock out mice have higher red cells count and more severe microcytosis than the liver specific Tfr2 and Tmprss6 double knock out mice. TFR2 in the bone marrow might be a sensor of iron deficiency that protects against excessive microcytosis in a way that involves EPOR, although the mechanisms remain to be worked out.

  15. Possible role of rivaroxaban in attenuating pressure-overload-induced atrial fibrosis and fibrillation.

    Science.gov (United States)

    Kondo, Hidekazu; Abe, Ichitaro; Fukui, Akira; Saito, Shotaro; Miyoshi, Miho; Aoki, Kohei; Shinohara, Tetsuji; Teshima, Yasushi; Yufu, Kunio; Takahashi, Naohiko

    2018-03-01

    Coagulation factor Xa (FXa) promotes thrombus formation and exacerbates inflammation via activation of protease-activated receptor (PAR)-2. We tested the hypothesis of whether administration of direct oral anticoagulant, rivaroxaban, would attenuate transverse aortic constriction (TAC)-induced atrial inflammatory fibrosis and vulnerability to atrial fibrillation (AF) in mice. Ten-week-old male CL57/B6 mice were divided into a sham-operation (CNT) group and TAC-surgery group. These two groups were then subdivided into vehicle (VEH) and rivaroxaban (RVX) treatment (30μg/g/day) groups. We assessed PAR-2 expression in response to TAC-related stimulation using rat cultured cells. TAC-induced left atrial thrombus formation was not observed in the TAC-RVX group. Cardiac PAR-2 upregulation was observed in both TAC groups. In the quantitative analysis of mRNA levels, cardiac PAR-2 upregulation was attenuated in the TAC-RVX group compared to TAC-VEH group. In histological evaluation, the TAC-VEH group showed cardiac inhomogeneous interstitial fibrosis and abundant infiltration of macrophages, which were attenuated by RVX administration. Electrophysiological examination revealed that AF duration in the TAC group was shortened by RVX administration. TAC-induced protein overexpression of monocyte chemoattractant protein-1, and mRNA overexpression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6 in the left atrium was suppressed by RVX treatment. In cardiac fibroblasts, persistent intermittent stretch upregulated PAR-2, which was suppressed by RVX pre-incubation. These observations demonstrate that coagulation FXa inhibitor probably has a cardioprotective effect against pressure-overload-induced atrial remodeling. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  16. Study of the effect of HFE gene mutations on iron overload in ...

    African Journals Online (AJOL)

    Background: HFE gene mutations have been shown to be responsible for hereditary hemochromatosis. Their effect on iron load in β-thalassemia patients and carriers remains controversial. Objectives: We aimed to determine the prevalence of HFE gene mutations (C282Y and H63D) in β-thalassemia patients and carriers ...

  17. Reliability Analysis and Overload Capability Assessment of Oil-Immersed Power Transformers

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2016-01-01

    Full Text Available Smart grids have been constructed so as to guarantee the security and stability of the power grid in recent years. Power transformers are a most vital component in the complicated smart grid network. Any transformer failure can cause damage of the whole power system, within which the failures caused by overloading cannot be ignored. This research gives a new insight into overload capability assessment of transformers. The hot-spot temperature of the winding is the most critical factor in measuring the overload capacity of power transformers. Thus, the hot-spot temperature is calculated to obtain the duration running time of the power transformers under overloading conditions. Then the overloading probability is fitted with the mature and widely accepted Weibull probability density function. To guarantee the accuracy of this fitting, a new objective function is proposed to obtain the desired parameters in the Weibull distributions. In addition, ten different mutation scenarios are adopted in the differential evolutionary algorithm to optimize the parameter in the Weibull distribution. The final comprehensive overload capability of the power transformer is assessed by the duration running time as well as the overloading probability. Compared with the previous studies that take no account of the overloading probability, the assessment results obtained in this research are much more reliable.

  18. Effects of overload on the threshold stress intensity factor for SCC

    International Nuclear Information System (INIS)

    Takahashi, Koji; Ando, Kotoji; Miyazaki, Yuji; Hashikura, Yasuaki

    2009-01-01

    The effects of overload on the threshold stress intensity factor for stress corrosion crack (K ISCC ) of stainless steel were studied. Tensile overload was applied to a wedge opening loaded (WOL) specimen of SUS316. Then, SCC tests were carried out to determine the resultant K ISCC . As a result, the apparent value of K ISCC increases as increasing a stress intensity factor by tensile overload (K OV ). The effects of tensile overload on K ISCC and the threshold stress intensity factor range for fatigue (ΔK th ) were compared. It was found that the effects of tensile overload on K ISCC were larger than that on ΔK th . (author)

  19. Iron regulation of the major virulence factors in the AIDS-associated pathogen Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Won Hee Jung

    2006-11-01

    Full Text Available Iron overload is known to exacerbate many infectious diseases, and conversely, iron withholding is an important defense strategy for mammalian hosts. Iron is a critical cue for Cryptococcus neoformans because the fungus senses iron to regulate elaboration of the polysaccharide capsule that is the major virulence factor during infection. Excess iron exacerbates experimental cryptococcosis and the prevalence of this disease in Sub-Saharan Africa has been associated with nutritional and genetic aspects of iron loading in the background of the HIV/AIDS epidemic. We demonstrate that the iron-responsive transcription factor Cir1 in Cr. neoformans controls the regulon of genes for iron acquisition such that cir1 mutants are "blind" to changes in external iron levels. Cir1 also controls the known major virulence factors of the pathogen including the capsule, the formation of the anti-oxidant melanin in the cell wall, and the ability to grow at host body temperature. Thus, the fungus is remarkably tuned to perceive iron as part of the disease process, as confirmed by the avirulence of the cir1 mutant; this characteristic of the pathogen may provide opportunities for antifungal treatment.

  20. MRI of the liver and the pituitary gland in patients with {beta}-thalassemia major: Does hepatic siderosis predict pituitary iron deposition?

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I.; Efremidis, Stavros C. [Department of Radiology, Medical School, University of Ioannina, 45110 Ioannina (Greece); Kiortsis, Dimitrios N. [Laboratory of Physiology, Medical School, University of Ioannina, 45110 Ioannina (Greece)

    2003-01-01

    Our objective was to study, in thalassemic patients, if hepatic siderosis evaluated by MRI could predict the pituitary iron overload. In 36 thalassemic patients (age range 6-44 years, mean age 21.7 years) the liver/fat ratio (L/F), the pituitary/fat ratio (P/F), the liver and pituitary T2 relaxation times were evaluated, by using a multiecho spin-echo sequence. Serum ferritin levels were measured and an extensive endocrine evaluation was performed. The L/F, the P/F and pituitary T2 showed a good correlation with serum ferritin (r=-0.55, r=-0.55 and r=-0.53, respectively; p<0.01). Liver T2 did not show significant correlation with serum ferritin. The variability of L/F explained only the 10.8% of the variability of pituitary T2 and of the P/F. When ferritin was added to the model it predicted only the 26.85% and the 30.8% of the variability of pituitary T2 and of the P/F, respectively. The P/F and pituitary T2 were lower in patients with hypogonadotropic hypogonadism (group 1) compared with those without pituitary dysfunction (group 2). No significant differences of L/F were found between the two groups. Hepatic iron overload evaluated by MR is a poor predictor of pituitary siderosis. The MR studies of the pituitary gland might be necessary to evaluate the pituitary iron overload. (orig.)

  1. Rapidly Dissolving Microneedle Patches for Transdermal Iron Replenishment Therapy.

    Science.gov (United States)

    Maurya, Abhijeet; Nanjappa, Shivakumar H; Honnavar, Swati; Salwa, M; Murthy, S Narasimha

    2018-02-17

    The prevalence of iron deficiency anemia (IDA) is predominant in women and children especially in developing countries. The disorder affects cognitive functions and physical activity. Although oral iron supplementation and parenteral therapy remains the preferred choice of treatment, gastric side effects and risk of iron overload decreases adherence to therapy. Transdermal route is an established approach, which circumvents the side effects associated with conventional therapy. In this project, an attempt was made to investigate the use of rapidly dissolving microneedles loaded with ferric pyrophosphate (FPP) as a potential therapeutic approach for management of IDA. Microneedle array patches were made using the micromolding technique and tested in vitro using rat skin to check the duration required for dissolution/disappearance of needles. The ability of FPP-loaded microneedles to replenish iron was investigated in anemic rats. Rats were fed iron-deficient diet for 5 weeks to induce IDA following which microneedle treatment was initiated. Recovery of rats from anemic state was monitored by measuring hematological and biochemical parameters. Results from in vivo study displayed significant improvements in hemoglobin and serum iron levels after 2-week treatment with FPP-loaded microneedles. The study effectively demonstrated the potential of microneedle-mediated iron replenishment for treatment of IDA. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Using Pattern Recognition Techniques for Server Overload Detection

    NARCIS (Netherlands)

    Bezemer, C.P.; Cheplygina, V.; Zaidman, A.

    2011-01-01

    One of the key factors in customer satisfaction is application performance. To be able to guarantee good performance, it is necessary to take appropriate measures before a server overload occurs. While in small systems it is usually possible to predict server overload using a subjective human

  3. Overloaded and stressed: A case study of women working in the health care sector.

    Science.gov (United States)

    Stevenson, Maggie; Duxbury, Linda

    2018-04-23

    Although role overload has been shown to be prevalent and consequential, there has been little attempt to develop the associated theory. The fact that the consequences of role overload can be positive or negative implies that the relationship between role overload and perceived stress depends partly on the environment within which role overload is experienced (i.e., the perceived situation) and how the situation is evaluated (i.e., appraised). Guided by cognitive appraisal theory, this study applies qualitative methodology to identify the situation properties that contribute to variable stress reactions to role overload. In this in-depth examination, overloaded female hospital workers were asked to describe what makes role overload situations potentially stressful, to gain an insight into how role overload is appraised. A taxonomy listing 12 role overload situation properties was developed from the findings, providing the first known classification of the situation properties of role overload that can create the potential for stress. The results also reveal clues as to why some people suffer more stress during role overload than others, increase our understanding of the relationship between role overload and perceived stress, and provide a useful tool for examining the environment of role overload. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Effect of overreaching on cognitive performance and related cardiac autonomic control.

    Science.gov (United States)

    Dupuy, O; Lussier, M; Fraser, S; Bherer, L; Audiffren, M; Bosquet, L

    2014-02-01

    The purpose of this study was to characterize the effect of a 2-week overload period immediately followed by a 1-week taper period on different cognitive processes including executive and nonexecutive functions, and related heart rate variability. Eleven male endurance athletes increased their usual training volume by 100% for 2 weeks, and decreased it by 50% for 1 week. A maximal graded test, a constant speed test at 85% of peak treadmill speed, and a Stroop task with the measurement of heart rate variability were performed at each period. All participants were considered as overreached. We found a moderate increase in the overall reaction time to the three conditions of the Stroop task after the overload period (816 ± 83 vs 892 ± 117 ms, P = 0.03) followed by a return to baseline after the taper period (820 ± 119 ms, P = 0.013). We found no association between cognitive performance and cardiac parasympathetic control at baseline, and no association between changes in these measures. Our findings clearly underscore the relevance of cognitive performance in the monitoring of overreaching in endurance athletes. However, contrary to our hypothesis, we did not find any relationship between executive performance and cardiac parasympathetic control. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Universal iron fortification of foods: the view of a hematologist

    Directory of Open Access Journals (Sweden)

    José Murilo Martins

    2012-01-01

    Full Text Available With the objective of reducing the high incidence of iron deficiency anemia, the Brazilian National Health Surveillance Agency (ANVISA adopted Resolution 344 in December 2002, which made the addition of iron and folic acid to all industrialized wheat and maize flours in Brazil compulsory. After a series of doubts about this universal measure of food fortification, a review of case reports on long-term medicinal iron intake published in the medical literature was undertaken to investigate the clinical behavior of this hematological conduct. Long-term medicinal iron ingestion is an extremely rare and serious situation. The data suggest that there are cases of hemochromatosis in women whose illnesses were accelerated with this therapy. It is very difficult to determine the amount of iron ingested by Brazilian citizens in the current system of fortification, but there is evidence that there has been an appreciable increase. Although iron fortification of food has been recognized by some authors as a good strategy to combat iron deficiency, some nation shave abandoned this measure. The patient with hemochromatosis is the most affected by compulsory iron fortification and as this disease is now considered a public health problem, we believe that Resolution 344 of ANVISA should be reviewed in order to find a solution beneficial to all segments of the Brazilian population; one should not try to correct one condition (iron deficiency by exacerbating another (acceleration of iron overload cases.

  6. Thermal Characterization of the Overload Carbon Resistors

    Directory of Open Access Journals (Sweden)

    Ivana Kostić

    2013-01-01

    Full Text Available In many applications, the electronic component is not continuously but only intermittently overloaded (e.g., inrush current, short circuit, or discharging interference. With this paper, we provide insight into carbon resistors that have to hold out a rarely occurring transient overload. Using simple electrical circuit, the resistor is overheating with higher current than declared, and dissipation is observed by a thermal camera.

  7. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study

    International Nuclear Information System (INIS)

    Argyropoulou, Maria I.; Astrakas, Loukas; Metafratzi, Zafiria; Efremidis, Stavros C.; Kiortsis, Dimitrios N.; Chalissos, Nikolaos

    2007-01-01

    Thirty-seven patients with β-thalassemia major, including 14 adolescents (15.2 ± 3.0 years) and 23 adults (26.4 ± 6.9 years), were studied. T2 relaxation time (T2) of the liver, bone marrow, pancreas and pituitary gland was measured in a 1.5-Tesla magnetic resonance (MR) imager, using a multiecho spin-echo sequence (TR/TE 2,000/20, 40, 60, 80, 100, 120, 140, 160 ms). Pituitary gland height was evaluated in a midline sagittal scan of a spin-echo sequence (TR/TE, 500/20 ms). The T2 of the pituitary gland was higher in adolescents (59.4 ± 15 ms) than in adults (45.3 ± 10.4 ms), P < 0.05. The T2 of the pancreas was lower in adolescents (43.6 ± 10.3 ms) than in adults (54.4 ± 10.4 ms). No difference among groups was found in the T2 of the liver and bone marrow. There was no significant correlation of the T2 among the liver, pancreas, pituitary gland and bone marrow. There was no significant correlation between serum ferritin and T2 of the liver, pancreas and bone marrow. Pituitary T2 showed a significant correlation with pituitary gland height (adolescents: R = 0.63, adults: R = 0.62, P < 0.05) and serum ferritin (adolescents: R = -0.60, adults: R = -0.50, P < 0.05). In conclusion, iron overload evaluated by T2 is organ specific. After adolescence, age-related T2 changes are predominantly associated with pituitary siderosis and fatty degeneration of the pancreas. Pituitary size decreases with progressing siderosis. (orig.)

  8. Liver, bone marrow, pancreas and pituitary gland iron overload in young and adult thalassemic patients: a T2 relaxometry study

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I.; Astrakas, Loukas; Metafratzi, Zafiria; Efremidis, Stavros C. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Kiortsis, Dimitrios N. [University of Ioannina, Laboratory of Physiology, Medical School, Ioannina (Greece); Chalissos, Nikolaos [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); University of Ioannina, Laboratory of Physiology, Medical School, Ioannina (Greece)

    2007-12-15

    Thirty-seven patients with {beta}-thalassemia major, including 14 adolescents (15.2 {+-} 3.0 years) and 23 adults (26.4 {+-} 6.9 years), were studied. T2 relaxation time (T2) of the liver, bone marrow, pancreas and pituitary gland was measured in a 1.5-Tesla magnetic resonance (MR) imager, using a multiecho spin-echo sequence (TR/TE 2,000/20, 40, 60, 80, 100, 120, 140, 160 ms). Pituitary gland height was evaluated in a midline sagittal scan of a spin-echo sequence (TR/TE, 500/20 ms). The T2 of the pituitary gland was higher in adolescents (59.4 {+-} 15 ms) than in adults (45.3 {+-} 10.4 ms), P < 0.05. The T2 of the pancreas was lower in adolescents (43.6 {+-} 10.3 ms) than in adults (54.4 {+-} 10.4 ms). No difference among groups was found in the T2 of the liver and bone marrow. There was no significant correlation of the T2 among the liver, pancreas, pituitary gland and bone marrow. There was no significant correlation between serum ferritin and T2 of the liver, pancreas and bone marrow. Pituitary T2 showed a significant correlation with pituitary gland height (adolescents: R = 0.63, adults: R = 0.62, P < 0.05) and serum ferritin (adolescents: R = -0.60, adults: R = -0.50, P < 0.05). In conclusion, iron overload evaluated by T2 is organ specific. After adolescence, age-related T2 changes are predominantly associated with pituitary siderosis and fatty degeneration of the pancreas. Pituitary size decreases with progressing siderosis. (orig.)

  9. The evolution of crack-tip stresses during a fatigue overload event

    International Nuclear Information System (INIS)

    Steuwer, A.; Rahman, M.; Shterenlikht, A.; Fitzpatrick, M.E.; Edwards, L.; Withers, P.J.

    2010-01-01

    The mechanisms responsible for the transient retardation or acceleration of fatigue crack growth subsequent to overloading are a matter of intense debate. Plasticity-induced closure and residual stresses have often been invoked to explain these phenomena, but closure mechanisms are disputed, especially under conditions approximating to generalised plane strain. In this paper we exploit synchrotron radiation to report very high spatial resolution two-dimensional elastic strain and stress maps at maximum and minimum loading measured under plane strain during a normal fatigue cycle, as well as during and after a 100% overload event, in ultra-fine grained AA5091 aluminium alloy. These observations provide direct evidence of the material stress state in the vicinity of the crack-tip in thick samples. Significant compressive residual stresses were found both in front of and behind the crack-tip immediately following the overload event. The effective stress intensity at the crack-tip was determined directly from the local stress field measured deep within the bulk (plane strain) by comparison with linear elastic fracture mechanical theory. This agrees well with that nominally applied at maximum load and 100% overload. After overload, however, the stress fields were not well described by classical K fields due to closure-related residual stresses. Little evidence of overload closure was observed sometime after the overload event, in our case possibly because the overload plastic zone was very small.

  10. [Role of melatonin in calcium overload-induced heart injury].

    Science.gov (United States)

    Kong, Lingheng; Wei, Ming; Sun, Na; Zhu, Juanxia; Su, Xingli

    2017-06-28

    To investigate the role of melatonin in calcium overload-induced heart injury.
 Methods: Thirty-two rats were divided into 4 groups: a control group (Control), a melatonin control group (Mel), a calcium overload group (CaP), and a calcium overload plus melatonin group (Mel+CaP). Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Triphenyltetrazolium chloride staining was used to measure the infarct size of myocardium. Lactate dehydrogenase (LDH) activity in the coronary flow was determined. The expressions of caspase-3 and cytochrome c were determined by Western blot. The pathological morphological changes in myocardial fiber were analyzed by HE staining.
 Results: Compared with the control group, calcium overload significantly induced an enlarged infarct size (Poverload-induced heart injury.

  11. A new approach for primary overloads allowance in ratcheting evaluation

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Gatt, J.M.; Lejeail, Y.

    1995-01-01

    Seismic loading must be taken into account in ratchetting design analysis. In LMFBR structures it mainly produces primary overloads, which are characterised by severe magnitudes but a generally low number of occurrences. Other cases of several primary overloads can also observed in pipes during emptying operations for instance. In the RCC-MR design code rule, the maximum primary stress supported by a structure is considered as permanent. No allowance is made for temporary load. Experimental ratchetting tests conducted on different structures with and without overloads clearly point out that temporary overloads lead to less ratchetting effect. A method using the RCC-MR efficiency diagram framework is proposed. A general theoretical approach allows to extend its field of application of various cases of primary loading: constant or null primary loading or overloads. Experimental results are then used to check the validity of this new approach. (author). 2 refs., 2 figs., 2 tabs

  12. Interactions of Aging, Overload, and Creatine Supplementation in Rat Plantaris Muscle

    Directory of Open Access Journals (Sweden)

    Mark D. Schuenke

    2011-01-01

    Full Text Available Attenuation of age-related sarcopenia by creatine supplementation has been equivocal. In this study, plantaris muscles of young (Y; 5m and aging (A; 24m Fisher 344 rats underwent four weeks of either control (C, creatine supplementation (Cr, surgical overload (O, or overload plus creatine (OCr. Creatine alone had no effect on muscle fiber cross-sectional area (CSA or heat shock protein (HSP70 and increased myonuclear domain (MND only in young rats. Overload increased CSA and HSP70 content in I and IIA fibers, regardless of age, and MND in IIA fibers of YO rats. CSA and MND increased in all fast fibers of YOCr, and CSA increased in I and IIA fibers of AOCr. OCR did not alter HSP70, regardless of age. MND did not change in aging rats, regardless of treatment. These data indicate creatine alone had no significant effect. Creatine with overload produced no additional hypertrophy relative to overload alone and attenuated overload-induced HSP70 expression.

  13. NAD+ : A big player in cardiac and skeletal muscle remodeling and aging.

    Science.gov (United States)

    Chaturvedi, Pankaj; Tyagi, Suresh C

    2018-03-01

    In the past decade, NAD+ has gained importance for its beneficial effects as antioxidant and anti-aging molecule. A paper in science by Zhang et al. () has described that NAD+ when replenished, ameliorates muscle dystrophy in mice by improving mitochondrial function. NAD+ was also demonstrated by the authors to improve the life span of mice. Cox et al. () demonstrated the cardiac effects of NAD+ which mitigated chronic heart failure via mitochondrial redox state mechanism. Cox et al. () also demonstrated that NAD+ is provided in the drinking water, it improves cardiac relaxation in volume overload model of heart failure. Although NAD+ has a profound anti-aging and anti-oxidant effects, its effect on humans and use as a dietary supplement needs more exploration. © 2017 Wiley Periodicals, Inc.

  14. The role of fluid overload in the prediction of outcome in acute kidney injury.

    Science.gov (United States)

    Selewski, David T; Goldstein, Stuart L

    2018-01-01

    Our understanding of the epidemiology and the impact of acute kidney injury (AKI) and fluid overload on outcomes has improved significantly over the past several decades. Fluid overload occurs commonly in critically ill children with and without associated AKI. Researchers in pediatric AKI have been at the forefront of describing the impact of fluid overload on outcomes in a variety of populations. A full understanding of this topic is important as fluid overload represents a potentially modifiable risk factor and a target for intervention. In this state-of-the-art review, we comprehensively describe the definition of fluid overload, the impact of fluid overload on kidney function, the impact of fluid overload on the diagnosis of AKI, the association of fluid overload with outcomes, the targeted therapy of fluid overload, and the impact of the timing of renal replacement therapy on outcomes.

  15. Control over Permissible Short Emergency Overloads in Power Transformers

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2010-01-01

    Full Text Available The paper proposes a method for determination a permissible duration of short intermittent overloads of power transformers that permits to avoid non-permissible over-heating of winding insulation and fully utilize overloading transformer ability.

  16. Curcumin and Turmeric Modulate the Tumor-Promoting Effects of Iron In Vitro.

    Science.gov (United States)

    Messner, Donald J; Robinson, Todd; Kowdley, Kris V

    2017-04-01

    Free or loosely chelated iron has tumor-promoting properties in vitro. Curcumin, a polyphenol derived from the food spice turmeric (Curcuma longa), is a potent antioxidant that binds iron. The primary aim of this study was to investigate whether curcuminoids prevent tumor-promoting effects of iron in T51B cells, a non-neoplastic rat liver epithelial cell line. Purified curcuminoids (curcumin) or a standardized turmeric extract similarly reduced oxidative stress and cytotoxicity associated with iron overload (IC 50 values near 10 μM, P turmeric for 16 wk in culture; subsequently assayed by soft agar colony formation) was nearly complete at 20 μM of total curcuminoids (P turmeric extract were taken up better by cells, had a longer half-life, and appeared more effective in blocking tumor promotion (P < 0.01), suggesting enhanced curcuminoid delivery to cells in culture. The primary finding that curcuminoids can inhibit tumor promotion caused by iron in T51B cells is tempered by evidence for an underlying increase in neoplastic transformation at lower concentrations.

  17. Mechanism Research of Arch Dam Abutment Forces during Overload

    Directory of Open Access Journals (Sweden)

    Yu Xia

    2015-01-01

    Full Text Available This paper presents research on the abutment forces of a double-curvature arch dam during overload based on numerical calculation results obtained through finite element method by Ansys. Results show that, with an increase in elevation, the abutment forces and bending moment of the arch dam increase first and then decrease from the bottom to the top of the dam. Abutment forces and bending moment reach their maximum at the middle or middle-down portion of the dam. The distributions of abutment forces and moment do not change during overload. The magnitude of each arch layer’s forces and moment increases linearly during overload. This result indicates that each arch layer transmits bearing loads to the rocks of the left and right banks steadily. This research explains the operating mechanism of an arch dam under normal and overload conditions. It provides a simple method to calculate the distribution of forces Fx and Fy and a new method to calculate the overload factor of an arch dam through the estimation of arch layers based on the redistribution characteristic of arch abutment forces.

  18. Quantitative T2* magnetic resonance imaging for evaluation of iron deposition in the brain of β-thalassemia patients.

    Science.gov (United States)

    Akhlaghpoor, S; Ghahari, A; Morteza, A; Khalilzadeh, O; Shakourirad, A; Alinaghizadeh, M R

    2012-09-01

    Iron overload is a common clinical problem in patients with β-thalassemia major. The purpose of this study was to assess the presence of excess iron in certain areas of the brain (thalamus, midbrain, adenohypophysis and basal ganglia) in patients with β-thalassemia major and evaluate the association with serum ferritin and liver iron content. A cross-sectional study on 53 patients with β-thalassemia major and 40 healthy controls was carried out. All patients and healthy controls underwent magnetic resonance imaging (MRI) examinations of the brain and liver. Multiecho fast gradient echo sequence was used and T2* values were calculated based on the Brompton protocol. Correlations between T2* values in the brain with T2* values in the liver as well as serum ferritin levels were investigated. There were no significant differences between patients and healthy controls with respect to age and sex. Patients had significantly lower T2* values in basal ganglia (striatum), thalamus and adenohypophysis compared to controls while there were no differences in the midbrain (red nucleus). There were no significant correlations between liver T2* values or serum ferritin with T2* values of basal ganglia (striatum), thalamus and adenohypophysis in patients or healthy controls. There were no significant correlations between T2* values of adenohypophysis and thalamus or basal ganglia (striatum) while these variables were significantly correlated in healthy controls. Serum ferritin and liver iron content may not be good indicators of brain iron deposition in patients with β thalassemia major. Nevertheless, the quantitative T2* MRI technique is useful for evaluation of brain iron overload in β thalassemia major patients.

  19. MyD88 Adaptor Protein Is Required for Appropriate Hepcidin Induction in Response to Dietary Iron Overload in Mice

    Directory of Open Access Journals (Sweden)

    Antonio Layoun

    2018-03-01

    Full Text Available Iron homeostasis is tightly regulated to provide virtually all cells in the body, particularly red blood cells, with this essential element while defending against its toxicity. The peptide hormone hepcidin is central to the control of the amount of iron absorbed from the diet and iron recycling from macrophages. Previously, we have shown that hepcidin induction in macrophages following Toll-like receptor (TLR stimulation depends on the presence of myeloid differentiation primary response gene 88 (MyD88. In this study, we analyzed the regulation of iron metabolism in MyD88−/− mice to further investigate MyD88 involvement in iron sensing and hepcidin induction. We show that mice lacking MyD88 accumulate significantly more iron in their livers than wild-type counterparts in response to dietary iron loading as they are unable to appropriately control hepcidin levels. The defect was associated with inappropriately low levels of Smad4 protein and Smad1/5/8 phosphorylation in liver samples found in the MyD88−/− mice compared to wild-type mice. In conclusion, our results reveal a previously unknown link between MyD88 and iron homeostasis, and provide new insights into the regulation of hepcidin through the iron-sensing pathway.

  20. Information Overload and Viral Marketing: Countermeasures and Strategies

    Science.gov (United States)

    Cheng, Jiesi; Sun, Aaron; Zeng, Daniel

    Studying information diffusion through social networks has become an active research topic with important implications in viral marketing applications. One of the fundamental algorithmic problems related to viral marketing is the Influence Maximization (IM) problem: given an social network, which set of nodes should be considered by the viral marketer as the initial targets, in order to maximize the influence of the advertising message. In this work, we study the IM problem in an information-overloaded online social network. Information overload occurs when individuals receive more information than they can process, which can cause negative impacts on the overall marketing effectiveness. Many practical countermeasures have been proposed for alleviating the load of information on recipients. However, how these approaches can benefit viral marketers is not well understood. In our work, we have adapted the classic Information Cascade Model to incorporate information overload and study its countermeasures. Our results suggest that effective control of information overload has the potential to improve marketing effectiveness, but the targeting strategy should be re-designed in response to these countermeasures.

  1. Improved R2* liver iron concentration assessment using a novel fuzzy c-mean clustering scheme

    International Nuclear Information System (INIS)

    Saiviroonporn, Pairash; Viprakasit, Vip; Krittayaphong, Rungroj

    2015-01-01

    In thalassemia patients, R2* liver iron concentration (LIC) measurement is a common clinical tool for assessing iron overload and for determining necessary chelator dose and evaluating its efficacy. Despite the importance of accurate LIC measurement, existing methods suffer from LIC variability, especially at the severe iron overload range due to inclusion of vessel parts in LIC calculation. In this study, we build upon previous Fuzzy C-Mean (FCM) clustering work to formulate a scheme with superior performance in segmenting vessel pixels from the parenchyma. Our method (MIX-FCM) combines our novel 2D-FCM with the existing 1D-FCM algorithm. This study further assessed possible optimal clustering parameters (OP scheme) and proposed a semi-automatic (SA) scheme for routine clinical application. Segmentation of liver parenchyma and vessels was performed on T2* images and their LIC maps in 196 studies from 147 thalassemia major patients. We used manual segmentation as the reference. 1D-FCM clustering was performed on the acquired image alone and 2D-FCM used both the acquired image and its LIC data. To execute the MIX-FCM method, the best outcome (OP-MIX-FCM) was selected from the aforementioned methods and was compared to the SA-MIX-FCM scheme. We used the percent value of the normalized interquartile range (nIQR) to its median to evaluate the variability of all methods. 2D-FCM clustering is more effective than 1D-FCM clustering at the severe overload range only, but inferior for other ranges (where 1D-FCM provides suitable results). This complementary performance between the two methods allows MIX-FCM to improve results for all ranges. OP-MIX-FCM clustering error was 2.1 ± 2.3 %, compared with 10.3 ± 9.9 % and 7.0 ± 11.9 % from 1D- and 2D-FCM clustering, respectively. SA-MIX-FCM result was comparable to OP-MIX-FCM result, with both schemes showing ability to decrease overall nIQR by approximately 30 %. Our proposed 2D-FCM algorithm is not as superior to 1D-FCM as

  2. Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies.

    Science.gov (United States)

    Schröder, Nadja; Figueiredo, Luciana Silva; de Lima, Maria Noêmia Martins

    2013-01-01

    Over the last decades, studies from our laboratory and other groups using animal models have shown that iron overload, resulting in iron accumulation in the brain, produces significant cognitive deficits. Iron accumulation in the hippocampus and the basal ganglia has been related to impairments in spatial memory, aversive memory, and recognition memory in rodents. These results are corroborated by studies showing that the administration of iron chelators attenuates cognitive deficits in a variety of animal models of cognitive dysfunction, including aging and Alzheimer's disease models. Remarkably, recent human studies using magnetic resonance image techniques have also shown a consistent correlation between cognitive dysfunction and iron deposition, mostly in the hippocampus, cortical areas, and basal ganglia. These findings may have relevant implications in the light of the knowledge that iron accumulates in brain regions of patients suffering from neurodegenerative diseases. A better understanding of the functional consequences of iron dysregulation in aging and neurological diseases may help to identify novel targets for treating memory problems that afflict a growing aging population.

  3. Noninvasive analysis of skin iron and zinc levels in beta-thalassemia major and intermedia

    International Nuclear Information System (INIS)

    Gorodetsky, R.; Goldfarb, A.; Dagan, I.; Rachmilewitz, E.A.

    1985-01-01

    Diagnostic x-ray spectrometry, a method based on x-ray fluorescence analysis, was used for noninvasive determination of iron and zinc in two distinct skin areas, representing predominantly dermal and epidermal tissues, in 56 patients with beta-thalassemia major and intermedia. The mean iron levels in the skin of patients with beta-thalassemia major and intermedia were elevated by greater than 200% and greater than 50%, respectively, compared with control values. The zinc levels of both skin areas examined were within the normal range. The data indicate that the rate and number of blood transfusions, which correlated well with serum ferritin levels (r . 0.8), are not the only factors that determine the amount of iron deposition in the skin (r less than 0.6). Other sources of iron intake contribute to the total iron load in the tissues, particularly in patients who are not given multiple transfusions. The noninvasive quantitation of skin levels may reflect the extent of iron deposition in major parenchymal organs. Repeated DXS examinations of the skin could monitor the clearance of iron from the tissues of patients with iron overload in the course of therapy with chelating agents

  4. Overload Control in a SIP Signaling Network

    OpenAIRE

    Masataka Ohta

    2007-01-01

    The Internet telephony employs a new type of Internet communication on which a mutual communication is realized by establishing sessions. Session Initiation Protocol (SIP) is used to establish sessions between end-users. For unreliable transmission (UDP), SIP message should be retransmitted when it is lost. The retransmissions increase a load of the SIP signaling network, and sometimes lead to performance degradation when a network is overloaded. The paper proposes an overload control for a S...

  5. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  6. MRI evaluation of tissue iron burden in patients with {beta}-thalassaemia major

    Energy Technology Data Exchange (ETDEWEB)

    Argyropoulou, Maria I.; Astrakas, Loukas [University of Ioannina, Radiology Department, Medical School, Ioannina (Greece)

    2007-12-15

    {beta}-Thalassaemia major is a hereditary haemolytic anaemia that is treated with multiple blood transfusions. A major complication of this treatment is iron overload, which leads to cell death and organ dysfunction. Chelation therapy, used for iron elimination, requires effective monitoring of the body burden of iron, for which serum ferritin levels and liver iron content measured in liver biopsies are used as markers, but are not reliable. MRI based on iron-induced T2 relaxation enhancement can be used for the evaluation of tissue siderosis. Various MR protocols using signal intensity ratio and mainstream relaxometry methods have been used, sometimes with discrepant results. Relaxometry methods using multiple echoes achieve better sampling of the time domain in which relaxation mechanisms take place and lead to more precise results. In several studies the MRI parameters of liver siderosis have failed to correlate with those of other affected organs, underlining the necessity for MRI iron evaluation in individual organs. Most studies have included children in the evaluated population, but MRI data on very young children are lacking. Wider application of relaxometry methods is indicated, with the establishment of universally accepted MRI protocols, and further studies, including young children, are needed. (orig.)

  7. Study of overload effects in bainitic steel by synchrotron X-ray diffraction

    Directory of Open Access Journals (Sweden)

    P. Lopez-Crespo

    2013-07-01

    Full Text Available This work presents an in-situ characterisation of crack-tip strain fields following an overload by means of synchrotron X-ray diffraction. The study is made on very fine grained bainitic steel, thus allowing a very high resolution so that small changes occurring around the crack-tip were captured along the crack plane at the mid-thickness of the specimen. We have followed the crack as it grew through the overload location. Once the crack-tip has progressed past the overload event there is strong evidence that the crack faces contact in the region of the overload event (though not in the immediate vicinity of the current locations of the crack tip at Kmin even when the crack has travelled 1mm beyond the overload location. It was also found that at Kmax the peak tensile strain ahead of the crack-tip decreases soon after the overload is applied and then gradually recovers as the crack grows past the compressive region created by the overload.

  8. Red Blood Cell Transfusion Independence Following the Initiation of Iron Chelation Therapy in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Maha A. Badawi

    2010-01-01

    Full Text Available Iron chelation therapy is often used to treat iron overload in patients requiring transfusion of red blood cells (RBC. A 76-year-old man with MDS type refractory cytopenia with multilineage dysplasia, intermediate-1 IPSS risk, was referred when he became transfusion dependent. He declined infusional chelation but subsequently accepted oral therapy. Following the initiation of chelation, RBC transfusion requirement ceased and he remained transfusion independent over 40 months later. Over the same time course, ferritin levels decreased but did not normalize. There have been eighteen other MDS patients reported showing improvement in hemoglobin level with iron chelation; nine became transfusion independent, nine had decreased transfusion requirements, and some showed improved trilineage myelopoiesis. The clinical features of these patients are summarized and possible mechanisms for such an effect of iron chelation on cytopenias are discussed.

  9. Lipocalin-2 induces NLRP3 inflammasome activation via HMGB1 induced TLR4 signaling in heart tissue of mice under pressure overload challenge.

    Science.gov (United States)

    Song, Erfei; Jahng, James Ws; Chong, Lisa P; Sung, Hye K; Han, Meng; Luo, Cuiting; Wu, Donghai; Boo, Stellar; Hinz, Boris; Cooper, Matthew A; Robertson, Avril Ab; Berger, Thorsten; Mak, Tak W; George, Isaac; Schulze, P Christian; Wang, Yu; Xu, Aimin; Sweeney, Gary

    2017-01-01

    Lipocalin-2 (also known as NGAL) levels are elevated in obesity and diabetes yet relatively little is known regarding effects on the heart. We induced pressure overload (PO) in mice and found that lipocalin-2 knockout (LKO) mice exhibited less PO-induced autophagy and NLRP3 inflammasome activation than Wt. PO-induced mitochondrial damage was reduced and autophagic flux greater in LKO mice, which correlated with less cardiac dysfunction. All of these observations were negated upon adenoviral-mediated restoration of normal lipocalin-2 levels in LKO. Studies in primary cardiac fibroblasts indicated that lipocalin-2 enhanced priming and activation of NLRP3-inflammasome, detected by increased IL-1β, IL-18 and Caspase-1 activation. This was attenuated in cells isolated from NLRP3-deficient mice or upon pharmacological inhibition of NLRP3. Furthermore, lipocalin-2 induced release of HMGB1 from cells and NLRP3-inflammasome activation was attenuated by TLR4 inhibition. We also found evidence of increased inflammasome activation and reduced autophagy in cardiac biopsy samples from heart failure patients. Overall, this study provides new mechanistic insight on the detrimental role of lipocalin-2 in the development of cardiac dysfunction.

  10. HFE Gene Mutations and Iron Status in 100 Healthy Polish Children.

    Science.gov (United States)

    Kaczorowska-Hac, Barbara; Luszczyk, Marcin; Antosiewicz, Jedrzej; Ziolkowski, Wieslaw; Adamkiewicz-Drozynska, Elzbieta; Mysliwiec, Malgorzata; Milosz, Ewa; Kaczor, Jan J

    2017-07-01

    Iron participates in oxygen transport, energetic, metabolic, and immunologic processes. There are 2 main causes of iron overload: hereditary hemochromatosis which is a primary cause, is a metabolic disorder caused by mutations of genes that control iron metabolism and secondary hemochromatosis caused by multitransfusions, chronic hemolysis, and intake of iron rich food. The most common type of hereditary hemochromatosis is caused by HFE gene mutation. In this study, we analyzed iron metabolism in 100 healthy Polish children in relation to their HFE gene status. The wild-type HFE gene was predominant being observed in 60 children (60%). Twenty-five children (25%), presented with heterozygotic H63D mutation, and 15 children (15%), presented with other mutations (heterozygotic C282Y and S65C mutation, compound heterozygotes C282Y/S65C, C282Y/H63D, H63D homozygote). The mean concentration of iron, the level of ferritin, and transferrin saturation were statistically higher in the group of HFE variants compared with the wild-type group. H63D carriers presented with higher mean concentration of iron, ferritin levels, and transferrin saturation compared with the wild-type group. Male HFE carriers presented with higher iron concentration, transferrin saturation, and ferritin levels than females. This preliminary investigation demonstrates allelic impact on potential disease progression from childhood.

  11. Overload road damage model

    CSIR Research Space (South Africa)

    Roux, MP

    2005-03-01

    Full Text Available Not only do overloaded vehicles pose an increased safety risk on the road (reduced stability and braking efficiency etc.), but they also accelerate the rate of deterioration of the road network and increase road maintenance costs, which in turn...

  12. Aldosterone and mortality in hemodialysis patients: role of volume overload.

    Science.gov (United States)

    Hung, Szu-Chun; Lin, Yao-Ping; Huang, Hsin-Lei; Pu, Hsiao-Fung; Tarng, Der-Cherng

    2013-01-01

    Elevated aldosterone is associated with increased mortality in the general population. In patients on dialysis, however, the association is reversed. This paradox may be explained by volume overload, which is associated with lower aldosterone and higher mortality. We evaluated the relationship between aldosterone and outcomes in a prospective cohort of 328 hemodialysis patients stratified by the presence or absence of volume overload (defined as extracellular water/total body water >48%, as measured with bioimpedance). Baseline plasma aldosterone was measured before dialysis and categorized as low (280 pg/mL). Overall, 36% (n = 119) of the hemodialysis patients had evidence of volume overload. Baseline aldosterone was significantly lower in the presence of volume overload than in its absence. During a median follow-up of 54 months, 83 deaths and 70 cardiovascular events occurred. Cox multivariate analysis showed that by using the low aldosterone as the reference, high aldosterone was inversely associated with decreased hazard ratios for mortality (0.49; 95% confidence interval, 0.25-0.76) and first cardiovascular event (0.70; 95% confidence interval, 0.33-0.78) in the presence of volume overload. In contrast, high aldosterone was associated with an increased risk for mortality (1.97; 95% confidence interval, 1.69-3.75) and first cardiovascular event (2.01; 95% confidence interval, 1.28-4.15) in the absence of volume overload. The inverse association of aldosterone with adverse outcomes in hemodialysis patients is due to the confounding effect of volume overload. These findings support treatment of hyperaldosteronemia in hemodialysis patients who have achieved strict volume control.

  13. Causes of iron overload in blood donors - a clinical study

    DEFF Research Database (Denmark)

    Laursen, A H; Bjerrum, O W; Friis-Hansen, L

    2018-01-01

    BACKGROUND AND OBJECTIVES: Despite the obligate iron loss from blood donation, some donors present with hyperferritinaemia that can result from a wide range of acute and chronic conditions including hereditary haemochromatosis (HH). The objective of our study was to investigate the causes...... of hyperferritinaemia in the blood donor population and explore the value of extensive HH mutational analyses. MATERIALS AND METHODS: Forty-nine consecutive donors (f = 6, m = 43) were included prospectively from the Capital Regional Blood Center. Inclusion criteria were a single ferritin value >1000 μg/l or repeated...... four donors had apparent alternative causes of hyperferritinaemia. CONCLUSION: HH-related mutations were the most frequent cause of hyperferritinaemia in a Danish blood donor population, and it appears that several different HH-genotypes can contribute to hyperferritinaemia. HH screening in blood...

  14. Iron deposits in the knee joints of a thalassemic patient

    Directory of Open Access Journals (Sweden)

    Charalambos P Economides

    2013-02-01

    Full Text Available The overall prognosis for patients with ß-thalassemia has improved considerably during the past decades mainly due to regular blood transfusions, improvements in chelation therapy, and enhanced surveillance with imaging studies examining iron overload and other clinical complications. However, the prolonged survival of these patients leads to the development of other health problems including degenerative diseases such as arthropathies, which require further attention since they have a significant impact on the quality of life. In the current case report, we present a 45-year-old white man with ß-thalassemia complaining of non-traumatic pain and restriction in the range of motion of both knees. Magnetic resonance imaging (MRI revealed a tear in the medial meniscus of the left knee as well as iron deposits in both knees. Histological findings confirmed the presence of hemosiderin in both joints. To our knowledge, this is the first reported case of macroscopically documented iron deposits in the knee joints of a patient with ß-thalassemia using MRI.

  15. Clinical studies on myocardial perfusion imaging in patients with right ventricular overload

    International Nuclear Information System (INIS)

    Abo, Kenji; Yamagata, Takashi; Nakajima, Masao; Fujita, Kimiaki; Morita, Nobuo

    1979-01-01

    Patients with heart disease which had been clinically diagnosed underwent 201 Tl myocardial perfusion imaging. The thickness of right ventricular wall measured from original images was directly proportional to systolic pressure of the right ventricle measured by cardiac catheterization, and 201 Tl activity in the right ventricle was more directly proportional to systolic pressure of the right ventricle. Imaging patterns of various diseases were also described. Images of patients with hypertrophic cardiomyopathy revealed that right ventricular wall was thin and right ventricular cavity was small, but the thickness of septal wall and left ventricular wall were maximal. Images of patients with mitral insufficiency revealed that the thickness of right ventricular wall, septal wall, and left ventricular wall was medium, and the right ventricular cavity was smaller than the left ventricular cavity. Images of patients with congestive cardiomyopathy and congestive cardiac failure showed that enlargement of both ventricular cavities was disproportionate to the thickness of each wall. Images of patients with arterial septal defect revealed that the thickness of each wall was comparatively normal, the right ventricular cavity was maximal, and the left ventricular cavity was minimal. Images of patients with primary pulmonary hypertention, pulmonary stenosis and tetralogy of Fallot in whom pressure overload was recognized revealed severe thickenings of right ventricular wall, moderate enlargement of the right ventricle, small left ventricle, and thin left ventricular wall. (Tsunoda, M.)

  16. Relationship between indices of iron status and metabolic syndrome in an Iranian population

    Directory of Open Access Journals (Sweden)

    Niloofar Tavakoli-Hoseini

    2014-11-01

    Full Text Available Introduction: Iron overload may contribute to the pathogenesis of metabolic syndrome (MS. A growing body of evidence indicates that the oxidative stress that results from excess tissue iron can leads to insulin resistance, tissue damage, and other complications observed in MS. The objective of this study was to investigate indices of iron status including serum ferritin, iron, total iron binding capacity (TIBC levels, and full blood cell count, together with demographic and anthropometric characteristics, lipid profile components, and other biochemical parameters in subjects with and with-out MS. Methods: A total of, 385 individuals (176 with and 209 subjects without MS according to the International Diabetes Federation’s (IDF criteria were recruited. Indices of iron status and other clinical and biochemical parameters were determined in MS patients and healthy controls using standard methods. Results: Higher serum iron and ferritin values were observed in subjects with MS in compared to healthy controls (P 0.050. Among the other indices, only red blood cell (RBC was associated considerably with the presence of MS (P < 0.050. Conclusion: Our data indicate that even in a country with a comparatively high prevalence of iron deficiency, serum iron and ferritin values in MS patients are higher than healthy controls. The reason why ferritin and iron are higher in MS patient may be related to dietary factors.

  17. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  18. On TCP-based Session Initiation Protocol (SIP) Server Overload Control

    OpenAIRE

    Shen, Charles; Schulzrinne, Henning

    2010-01-01

    The Session Initiation Protocol (SIP) server overload management has attracted interest since SIP is being widely deployed in the Next Generation Networks (NGN) as a core signaling protocol. Yet all existing SIP overload control work is focused on SIP-over-UDP, despite the fact that TCP is increasingly seen as the more viable choice of SIP transport. This paper answers the following questions: is the existing TCP flow control capable of handling the SIP overload problem? If not, why and how c...

  19. Glycolytic overload and the genesis of breast cancer.

    Science.gov (United States)

    Robson, J R

    1984-03-01

    It is suggested that the development of breast cancer is due to overloading of the glycolytic pathways. An excess of substrates or an excessive delivery rate of substrates to the Krebs Cycle is believed to result in the formation of acetyl CoA. Feedback mechanisms controlling the conversion of acetyl CoA to cholesterol may be overcome; the resulting high concentration of cholesterol induces the formation of pregnenolone which may then be converted into androgens, estrogens and progesterone. These steroids are in addition to those produced by gonads and adrenal glands. Glycolytic overload is also associated with an increase in fat stores which have been shown to be the site of interconversion of sex hormones. Excess sex hormones or abnormal sex hormones are believed to be the cause of breast cancer. The hypothesis presented links glycolytic overload with clinical biochemical phenomena and explains some of the anomalies observed in breast cancer experience in different ethnic groups. Changes in dietary habits during the history of man resulting in " gorging " and the consumption of highly refined sugars are possible causes of glycolytic overload. So, also, is impaired thermogenesis due to Brown Fat deficits in certain ethnic groups.

  20. Internal distribution of excess iron and sources of serum ferritin in patients with thalassemia

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, M; Bergamaschi, G; Dezza, L; Borgna-Pignatti, C C; De Stefano, P; Bongo, I G; Avato, F [Pavia Univ. (Italy)

    1983-01-01

    Liver and spleen iron concentrations, serum ferritin level and binding of S-ferritin to concanavalin A (Con A) were measured in 12 patients with thalassemia major or intermedia at the time of splenectomy. All these subjects had increased liver iron concentration, most of them had hepatic fibrosis but none of them had histological evidence of chronic hepatitis. No patient had ascorbic acid deficiency. Serum ferritin concentration was increased in all cases, ranging from 266 to 5504 ..mu..g/l. In all but 2 subjects most of the protein did not bind to Con A, thus behaving as tissue ferritin. There were highly significant correlations between serum ferritin concentration, amount of blood transfused and liver iron concentration. On the average, iron concentration in the liver was about 3 times that in the spleen. The findings obtained suggest that in patients with thalassemia major or intermedia most of the iron is deposited in parenchymal tissues and most of the S-ferritin derives by leakage from the cytosol of iron-loaded parenchymal cells. S-ferritin is a valid index of liver iron overload in thalassemic patients witout complications such as viral hepatitis and/or ascorbic acid defiency.

  1. Internal distribution of excess iron and sources of serum ferritin in patients with thalassaemia

    International Nuclear Information System (INIS)

    Cazzola, M.; Bergamaschi, G.; Dezza, L.; Borgna-Pignatti, C.C.; De Stefano, P.; Bongo, I.G.; Avato, F.

    1983-01-01

    Liver and spleen iron concentrations, serum ferritin level and binding of S-ferritin to concanavalin A (Con A) were measured in 12 patients with thalassaemia major or intermedia at the time of splenectomy. All these subjects had increased liver iron concentration, most of them had hepatic fibrosis but none of them had histological evidence of chronic hepatitis. No patient had ascorbic acid deficiency. Serum ferritin concentration was increased in all cases, ranging from 266 to 5504 μg/l. In all but 2 subjects most of the protein did not bind to Con A, thus behaving as tissue ferritin. There were highly significant correlations between serum ferritin concentration, amount of blood transfused and liver iron concentration. On the avarage, iron concentration in the liver was about 3 times that in the spleen. The findings obtained suggest that in patients with thalassaemia major or intermedia most of the iron is deposited in parenchymal tissues and most of the S-ferritin derives by leakage from the cytosol of iron-loaded parenchymal cells. S-ferritin is a valid index of liver iron overload in thalassaemic patients witout complications such as viral hepatitis and/or ascorbic acid defiency. (author)

  2. Determination of Permissible Short-Time Emergency Overloading of Turbo-Generators and Synchronous Compensators

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2011-01-01

    Full Text Available The paper shows that failure to take into account variable ratio of short-time emergency overloading of turbo-generators (synchronous compensators that can lead to underestimation of overloading capacity or impermissible insulation over-heating.A method has been developed for determination of permissible duration of short-time emergency over-loading that takes into account changes of over-loading ratio in case of a failure.

  3. Prion Protein Regulates Iron Transport by Functioning as a Ferrireductase

    Science.gov (United States)

    Singh, Ajay; Haldar, Swati; Horback, Katharine; Tom, Cynthia; Zhou, Lan; Meyerson, Howard; Singh, Neena

    2017-01-01

    Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP−/−). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP−/− mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP−/− mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP−/− mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP−/− BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates. PMID:23478311

  4. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.

    Science.gov (United States)

    Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V

    2017-10-01

    Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu 2+  ~ Al 3+  > Zn 2+  ≥ Ca 2+  ~ Mg 2+  ~ Mn 2+ (80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

  5. Increased lipid peroxidation in pregnant women after iron and vitamin C supplementation.

    Science.gov (United States)

    Lachili, B; Hininger, I; Faure, H; Arnaud, J; Richard, M J; Favier, A; Roussel, A M

    2001-11-01

    Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitamin E, (beta-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n = 27) was compared to a control group (n = 27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90 +/- 5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p cell antioxidant metalloenzymes. Furthermore, the alpha-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.

  6. Evaluation of iron deposits in the reticuloendothelial system using T2-relaxation rate of MRI. Relation with serum ferritin and Fe concentration

    International Nuclear Information System (INIS)

    Ootsuka, Kae; Togami, Izumi; Kitagawa, Takahiro

    1996-01-01

    MR imaging is a useful non-invasive technique to detect iron deposits in many organs, but it is difficult to evaluate quantitatively. This study was performed to determine the possibility whether T2 relaxation rate (1/T2) could quantify iron deposits in the reticuloendothelial system (liver, spleen and bone marrow) of 11 patients and four normal volunteers. A moderate correlation was obtained between T2-relaxation rate and the serum ferritin level. These results suggest that T2-relaxation rate may provide useful information for the repeated quantitative evaluation of patients with iron-overload-syndromes. (author)

  7. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    Science.gov (United States)

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  8. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    Science.gov (United States)

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  9. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2015-12-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  10. CHRONIC HEART FAILURE AND IRON-DEFICIENT ANEMIA

    Directory of Open Access Journals (Sweden)

    M. V. Melnik

    2007-01-01

    Full Text Available 62 chronic heart failure (CHF patients with iron-deficient anemia (IDA were studied. Standard CHF therapy (angiotensin converting enzyme inhibitors, β-blockers, diuretics, cardiac glycosides was accompanied with the correction of iron deficiency by intravenous injection of Venofer and subsequent Ferro-Folgamma prescription (average daily dose of iron 137,75±5mg. After treatment serum iron level increased by 95,5% and hemoglobin level – by 9,8%. Left ventricular ejection fraction increased by 32,2% and physical activity tolerance – by 47,6%. Before treatment 32 CHF patients with IDA (51,6% had III functional class (FC of CHF according to NYHA and 16 patients (25,8% – IV FC. After treatment I FC was observed in 18 CHF patients (29%, II FC – in 26 patients and only 18 patients demonstrated III FC of CHF.

  11. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload.

    Science.gov (United States)

    Washington, Tyrone A; Healey, Julie M; Thompson, Raymond W; Lowe, Larry L; Carson, James A

    2014-09-01

    Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (pyoung muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. I just want to be left alone: Daily overload and marital behavior.

    Science.gov (United States)

    Sears, Meredith S; Repetti, Rena L; Robles, Theodore F; Reynolds, Bridget M

    2016-08-01

    Stressful, busy days have been linked with increases in angry and withdrawn marital behavior. The process by which stressors in 1 domain, such as work, affect an individual’s behavior in another domain, such as the marital relationship, is known as spillover . Using 56 days of daily diary reports in a diverse sample of 47 wives and 39 husbands, this study examined associations between daily experiences of overload and 3 marital behaviors: overt expressions of anger, disregard of the spouse’s needs (“disregard”), and reductions in affection and disclosure (“distancing”). Two potential mechanisms by which daily overload spills over into marital behavior were examined: negative mood and the desire to avoid social interaction. Among husbands, negative mood mediated the association between overload and angry behavior. Associations between overload and wives’ angry behavior, as well as overload and husbands’ and wives’ disregard of their partners’ needs, were mediated by both negative mood and the desire to withdraw socially. Desire to withdraw, but not negative mood, mediated the association between overload and distancing behavior among husbands and wives. In addition, associations between marital satisfaction and spouses’ typical marital behavior, as well as behavioral responses to overload, were examined. Husbands’ and wives’ average levels of expressed anger and disregard, and husbands’ distancing, were associated with lower marital satisfaction in 1 or both partners. Both spouses reported lower marital satisfaction if husbands tended to express marital anger, disregard, or distancing on busy, overloaded days. PsycINFO Database Record (c) 2016 APA, all rights reserved

  13. Symmetrical and overloaded effect of diffusion in information filtering

    Science.gov (United States)

    Zhu, Xuzhen; Tian, Hui; Chen, Guilin; Cai, Shimin

    2017-10-01

    In physical dynamics, mass diffusion theory has been applied to design effective information filtering models on bipartite network. In previous works, researchers unilaterally believe objects' similarities are determined by single directional mass diffusion from the collected object to the uncollected, meanwhile, inadvertently ignore adverse influence of diffusion overload. It in some extent veils the essence of diffusion in physical dynamics and hurts the recommendation accuracy and diversity. After delicate investigation, we argue that symmetrical diffusion effectively discloses essence of mass diffusion, and high diffusion overload should be published. Accordingly, in this paper, we propose an symmetrical and overload penalized diffusion based model (SOPD), which shows excellent performances in extensive experiments on benchmark datasets Movielens and Netflix.

  14. Iron-independent specific protein expression pattern in the liver of HFE-deficient mice

    Czech Academy of Sciences Publication Activity Database

    Petrák, J.; Myslivcová, D.; Halada, Petr; Čmejla, R.; Čmejlová, J.; Vyoral, D.; Vulpe, D. Ch.

    2007-01-01

    Roč. 39, - (2007), s. 1006-1015 ISSN 1357-2725 R&D Projects: GA MŠk LC545 Grant - others:GA ČR(CZ) GA303/04/0003; GA ČR(CZ) GA204/07/0830; GA MZd(CZ) NR8930; GA MŠk(CZ) LC06044; CZ(CZ) 023736 Institutional research plan: CEZ:AV0Z50200510 Keywords : iron overload * hemochromatosis * proteomics Subject RIV: EE - Microbiology, Virology Impact factor: 4.009, year: 2007

  15. Functional and geometrical interference and interdependency between the right and left ventricle in cor pulmonale: an experimental study on simultaneous measurement of biventricular geometry of acute right ventricular pressure overload.

    Science.gov (United States)

    Yamashita, H; Onodera, S; Imamoto, T; Obara, A; Tanazawa, S; Takashio, T; Morimoto, H; Inoue, H

    1989-10-01

    To clarify the effects of right ventricular (RV) pressure overload on functional and geometrical interference and interdependency between the right and left ventricle, both ventricular internal diameters were measured by the microcrystal technique during lycopodium induced pulmonary embolization in the dog. By repeated embolization, RV systolic pressure was increased progressively until it reached a peak value of about 60-70 mmHg, then it began to fall. At the same time, the hemodynamics deteriorated progressively resulting in death. During the experiment, gradual leftward displacement of the interventricular septum (IVS) without any change in left ventricular (LV) free wall geometry was observed. In pulmonary embolic shock, which showed a fall in LV pressure to about 60 mmHg and cardiac output to about 40% of control, the leftward displacement of IVS became marked, and the cooperative movement of IVS to LV contraction disappeared. The IVS position during acute RV pressure overload was able to account for the transseptal pressure gradient. The importance of IVS position and motion in cardiac function during acute RV pressure overload was stressed. Furthermore, to establish the theoretical treatment in acute cardiopulmonary resuscitation, ligation of the descending aorta (AoL) or norepinephrine ("N") or isoproterenol ("I") administration were examined in a canine pulmonary embolic shock model. AoL or "N" improved the deteriorated hemodynamics with restoration of biventricular geometry. However, "I" did not restore the biventricular geometry despite the transiently improved hemodynamics, and the experimental animals were unable to survive. These results suggest the importance of the maintainance of systemic pressure for the restoration of failed RV function. Further integrated studies are required to understand biventricular interference and interdependency.

  16. Supplementation of iron in pulmonary hypertension: Rationale and design of a phase II clinical trial in idiopathic pulmonary arterial hypertension

    Science.gov (United States)

    Howard, Luke S.G.E.; Watson, Geoffrey M.J.; Wharton, John; Rhodes, Christopher J.; Chan, Kakit; Khengar, Rajeshree; Robbins, Peter A.; Kiely, David G.; Condliffe, Robin; Elliott, Charlie A.; Pepke-Zaba, Joanna; Sheares, Karen; Morrell, Nicholas W.; Davies, Rachel; Ashby, Deborah; Gibbs, J. Simon R.; Wilkins, Martin R.

    2013-01-01

    Our aim is to assess the safety and potential clinical benefit of intravenous iron (Ferinject) infusion in iron deficient patients with idiopathic pulmonary arterial hypertension (IPAH). Iron deficiency in the absence of anemia (1) is common in patients with IPAH; (2) is associated with inappropriately raised levels of hepcidin, the key regulator of iron homeostasis; and (3) correlates with disease severity and worse clinical outcomes. Oral iron absorption may be impeded by reduced absorption due to elevated hepcidin levels. The safety and benefits of parenteral iron replacement in IPAH are unknown. Supplementation of Iron in Pulmonary Hypertension (SIPHON) is a Phase II, multicenter, double-blind, randomized, placebo-controlled, crossover clinical trial of iron in IPAH. At least 60 patients will be randomized to intravenous ferric carboxymaltose (Ferinject) or saline placebo with a crossover point after 12 weeks of treatment. The primary outcome will be the change in resting pulmonary vascular resistance from baseline at 12 weeks, measured by cardiac catheterization. Secondary measures include resting and exercise hemodynamics and exercise performance from serial bicycle incremental and endurance cardiopulmonary exercise tests. Other secondary measurements include serum iron indices, 6-Minute Walk Distance, WHO functional class, quality of life score, N-terminal pro-brain natriuretic peptide (NT-proBNP), and cardiac anatomy and function from cardiac magnetic resonance. We propose that intravenous iron replacement will improve hemodynamics and clinical outcomes in IPAH. If the data supports a potentially useful therapeutic effect and suggest this drug is safe, the study will be used to power a Phase III study to address efficacy. PMID:23662181

  17. Effect of Iron Fortified Wheat Flour on the Biology and Physiology of Red Flour Beetle, (Herbst

    Directory of Open Access Journals (Sweden)

    Sohail Ahmed

    2010-01-01

    Full Text Available Iron overload in the fortified flour can influence the life stages and physiology of the insects. The present study was carried out to evaluate the effect of commercially available premix iron fortified flour as well as effect of different concentrations of post-mix iron fortified flour (30–5 ppm on biology of red flour beetle, Tribolium castaneum (Hebrst.. Larval and pupal duration, total developmental time, fecundity and larval weights in two consecutive generations of beetle were compared with control treatment. Amylase and protease activities of gut of the beetle were also measured in premix and postmix flours. Results showed that larval mortality increased in two sources of premix iron flour when compared with control. Larval weight was reduced in first generation only. The larval mortality was significantly higher in 30 ppm postmix iron fortified flour than in other postmix concentrations and control treatment. The larvae of T. castaneum fed on two sources of premix and in various concentrations of postmix iron fortified flour revealed an increase in amylases and decrease in protease activities.

  18. Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling

    Directory of Open Access Journals (Sweden)

    Shukuan Ling

    2018-01-01

    Full Text Available Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1 is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG and wild type mice were hindlimb-suspended (HU to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity.

  19. The role of adenosine in preconditioning by brief pressure overload in rats.

    Science.gov (United States)

    Huang, Cheng-Hsiung; Tsai, Shen-Kou; Chiang, Shu-Chiung; Lai, Chang-Chi; Weng, Zen-Chung

    2015-08-01

    Brief pressure overload of the left ventricle reduced myocardial infarct (MI) size in rabbits has been previously reported. Its effects in other species are not known. This study investigates effects of pressure overload and the role of adenosine in rats in this study. MI was induced by 40-minute occlusion of the left anterior descending coronary artery followed by 3-hour reperfusion. MI size was determined by triphenyl tetrazolium chloride staining. Brief pressure overload was induced by two 10-minute episodes of partial snaring of the ascending aorta. Systolic left ventricular pressure was raised 50% above the baseline value. Ischemic preconditioning was elicited by two 10-minute coronary artery occlusions. The MI size (mean ± standard deviation), expressed as percentage of area at risk, was significantly reduced in the pressure overload group as well as in the ischemic preconditioning group (17.4 ± 3.0% and 18.2 ± 1.5% vs. 26.6 ± 2.4% in the control group, p overload and ischemic preconditioning (18.3 ± 1.5% and 18.2 ± 2.0%, respectively, p overload of the left ventricle preconditioned rat myocardium against infarction. Because SPT did not significantly alter MI size reduction, our results did not support a role of adenosine in preconditioning by pressure overload in rats. Copyright © 2013. Published by Elsevier B.V.

  20. Can We Ever Escape from Data Overload? A Cognitive Systems Diagnosis

    National Research Council Canada - National Science Library

    Woods, David

    1998-01-01

    Data overload is a generic and tremendously difficult problem. In this report, we diagnose why this is the case and how intelligence analysis presents a particularly difficult version of data overload...