Sample records for cardiac excitation-contraction coupling

  1. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias.

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D; Huke, Sabine; Akin, Brandy; Cattolica, Robert A; Perez, Claudio F; Hlaing, Thinn; Knollmann-Ritschel, Barbara E C; Jones, Larry R; Pessah, Isaac N; Allen, Paul D; Franzini-Armstrong, Clara; Knollmann, Björn C


    Heart muscle excitation-contraction (E-C) coupling is governed by Ca(2+) release units (CRUs) whereby Ca(2+) influx via L-type Ca(2+) channels (Cav1.2) triggers Ca(2+) release from juxtaposed Ca(2+) release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (Trdn(-/-)). The structure and protein composition of the cardiac CRU is significantly altered in Trdn(-/-) hearts. jSR proteins (RyR2, Casq2, junctin, and junctophilin 1 and 2) are significantly reduced in Trdn(-/-) hearts, whereas Cav1.2 and SERCA2a remain unchanged. Electron microscopy shows fragmentation and an overall 50% reduction in the contacts between jSR and T-tubules. Immunolabeling experiments show reduced colocalization of Cav1.2 with RyR2 and substantial Casq2 labeling outside of the jSR in Trdn(-/-) myocytes. CRU function is impaired in Trdn(-/-) myocytes, with reduced SR Ca(2+) release and impaired negative feedback of SR Ca(2+) release on Cav1.2 Ca(2+) currents (I(Ca)). Uninhibited Ca(2+) influx via I(Ca) likely contributes to Ca(2+) overload and results in spontaneous SR Ca(2+) releases upon beta-adrenergic receptor stimulation with isoproterenol in Trdn(-/-) myocytes, and ventricular arrhythmias in Trdn(-/-) mice. We conclude that triadin is critically important for maintaining the structural and functional integrity of the cardiac CRU; triadin loss and the resulting alterations in CRU structure and protein composition impairs E-C coupling and renders hearts susceptible to ventricular arrhythmias. PMID:19383796

  2. Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation

    Eleonora Grandi


    Full Text Available This review focuses on the (maladaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy.

  3. Fructose modulates cardiomyocyte excitation-contraction coupling and Ca²⁺ handling in vitro.

    Kimberley M Mellor

    Full Text Available BACKGROUND: High dietary fructose has structural and metabolic cardiac impact, but the potential for fructose to exert direct myocardial action is uncertain. Cardiomyocyte functional responsiveness to fructose, and capacity to transport fructose has not been previously demonstrated. OBJECTIVE: The aim of the present study was to seek evidence of fructose-induced modulation of cardiomyocyte excitation-contraction coupling in an acute, in vitro setting. METHODS AND RESULTS: The functional effects of fructose on isolated adult rat cardiomyocyte contractility and Ca²⁺ handling were evaluated under physiological conditions (37°C, 2 mM Ca²⁺, HEPES buffer, 4 Hz stimulation using video edge detection and microfluorimetry (Fura2 methods. Compared with control glucose (11 mM superfusate, 2-deoxyglucose (2 DG, 11 mM substitution prolonged both the contraction and relaxation phases of the twitch (by 16 and 36% respectively, p<0.05 and this effect was completely abrogated with fructose supplementation (11 mM. Similarly, fructose prevented the Ca²⁺ transient delay induced by exposure to 2 DG (time to peak Ca²⁺ transient: 2 DG: 29.0±2.1 ms vs. glucose: 23.6±1.1 ms vs. fructose +2 DG: 23.7±1.0 ms; p<0.05. The presence of the fructose transporter, GLUT5 (Slc2a5 was demonstrated in ventricular cardiomyocytes using real time RT-PCR and this was confirmed by conventional RT-PCR. CONCLUSION: This is the first demonstration of an acute influence of fructose on cardiomyocyte excitation-contraction coupling. The findings indicate cardiomyocyte capacity to transport and functionally utilize exogenously supplied fructose. This study provides the impetus for future research directed towards characterizing myocardial fructose metabolism and understanding how long term high fructose intake may contribute to modulating cardiac function.

  4. Activation and propagation of Ca(2+) release during excitation-contraction coupling in atrial myocytes.

    Kockskämper, J; Sheehan, K A; Bare, D.J.; Lipsius, S. L.; Mignery, G A; Blatter, L A


    Fast two-dimensional confocal microscopy and the Ca(2+) indicator fluo-4 were used to study excitation-contraction (E-C) coupling in cat atrial myocytes which lack transverse tubules and contain both subsarcolemmal junctional (j-SR) and central nonjunctional (nj-SR) sarcoplasmic reticulum. Action potentials elicited by field stimulation induced transient increases of intracellular Ca(2+) concentration ([Ca(2+)](i)) that were highly inhomogeneous. Increases started at distinct subsarcolemmal r...

  5. The role of proteases in excitation-contraction coupling failure in muscular dystrophy.

    Mázala, Davi A G; Grange, Robert W; Chin, Eva R


    Duchenne muscular dystrophy (DMD) is one of the most frequent types of muscular dystrophy. Alterations in intracellular calcium (Ca(2+)) handling are thought to contribute to the disease severity in DMD, possibly due to the activation of Ca(2+)-activated proteases. The purpose of this study was twofold: 1) to determine whether prolonged excitation-contraction (E-C) coupling disruption following repeated contractions is greater in animals lacking both dystrophin and utrophin (mdx/Utr(-/-)) compared with mice lacking only dystrophin (mdx); and 2) to assess whether protease inhibition can prevent E-C coupling failure following repeated tetani in these dystrophic mouse models. Excitation-contraction coupling was assessed using Fura-2 ratio, as an index of intracellular free Ca(2+) concentration, in response to electrical stimulation of single muscle fibers from the flexor digitorum brevis muscle. Resting Fura-2 ratio was higher in dystrophic compared with control (Con) fibers, but peak Fura-2 ratios during stimulation were similar in dystrophic and Con fibers. One hour after a series of repeated tetani, peak Fura-2 ratios were reduced by 30 ± 5.6%, 23 ± 2%, and 36 ± 3.1% in mdx, mdx/Utr(+/-), and mdx/Utr(-/-), respectively, with the greatest reduction in mdx/Utr(-/-) fibers (P < 0.05). Protease inhibition attenuated this decrease in peak Fura-2 ratio. These data indicate that E-C coupling impairment after repeated contractions is greatest in fibers lacking both dystrophin and utrophin and that prevention of protease activation can mitigate the prolonged E-C coupling impairment. These data further suggest that acute protease inhibition may be useful in reducing muscle weakness in DMD. PMID:25298424

  6. Excitation-contraction coupling and mechano-sensitivity in denervated skeletal muscles

    Fabio Francini


    Full Text Available Skeletal muscle atrophy can be defined as a wasting or decrease in muscle mass and muscle force generation owing lack of use, ageing, injury or disease. Thus, the etiology of atrophy can be different. Atrophy in denervated muscle is a consequence of two factors: 1 the complete lack of motoneuron activity inducing the deficiency of neurotransmitter release and 2 the muscles disuse. The balance of the muscular functions depends on extra- and intra-muscular signals. In the balance are involved the excitation-contraction coupling (ECC, local growth factors, Ca2+-dependent and independent intracellular signals, mechano-sensitivity and mechano-transduction that activate Ca2+-dependent signaling proteins and cytoskeleton- nucleus pathways to the nucleus, that regulate the gene expression. Moreover, retrograde signal from intracellular compartments and cytoskeleton to the sarcolemma are additional factors that regulate the muscle function. Proteolytic systems that operate in atrophic muscles progressively reduce the muscle protein content and so the sarcolemma, ECC and the force generation. In this review we will focus on the more relevant changes of the sarcolemma, excitation-contraction coupling, ECC and mechano-transduction evaluated by electrophysiological methods and observed from early- to long-term denervated skeletal muscles. This review put in particular evidence that long-term denervated muscle maintain a sub-population of fibers with ECC and contractile machinery able to be activated, albeit in lesser amounts, by electrical and mechanical stimulation. Accordingly, this provides a potential molecular explanation of the muscle recovery that occurs in response to rehabilitation strategy as transcutaneous electrical stimulation and passive stretching of denervated muscles, which wre developed as a result of empirical clinical observations.

  7. Calcium concentration and movement in the ventricular cardiac cell during an excitation-contraction cycle.

    Peskoff, A; Langer, G. A.


    This paper extends the model for Ca movement in the cardiac ventricular cell from the diadic cleft space to the entire sarcomere. The model predicts the following: 1) Shortly after SR release there is a [Ca] gradient >3 orders of magnitude from cleft center to M-line which, 50 ms after release, is still >30. Outside the cleft, 40 ms after cessation of release, the axial gradient from Z to M-line is >3. 2) At the end of SR release, >50% of the total Ca released is bound to low-affinity inner s...

  8. The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases.

    Froemming, G R; Ohlendieck, K


    The excitation-contraction-relaxation cycle of skeletal muscle fibres depends on the finely tuned interplay between the voltage-sensing dihydropyridine receptor, the junctional ryanodine receptor Ca2+-release channel and the sarcoplasmic reticulum Ca2+-ATPase. Inherited diseases of excitation-contraction coupling and muscle relaxation such as malignant hyperthermia, central core disease, hypokalemic periodic paralysis or Brody disease are caused by mutations in these Ca2+-regulatory elements. Over twenty different mutations in the Ca2+-release channel are associated with susceptibility to the pharmacogenetic disorder malignant hyperthermia. Other mutations in the ryanodine receptor trigger central core disease. Primary abnormalities in the alpha-1 subunit of the dihydropyridine receptor underlie the molecular pathogenesis of both hypokalemic periodic paralysis and certain forms of malignant hyperthermia. Some cases of the muscle relaxation disorder named Brody disease were demonstrated to be based on primary abnormalities in the Ca2+-ATPase. Since a variety of other sarcoplasmic reticulum proteins modulate the activity of the voltage sensor, Ca2+-release channel and ion-binding proteins, mutations in these Ca2+-regulatory muscle components might be the underlying cause for novel, not yet fully characterized, genetic muscle disorders. The cell biological analysis of knock-out mice has been helpful in evaluating the biomedical consequences of defects in ion-regulatory muscle proteins. PMID:11145921

  9. Defective excitation-contraction coupling is partially responsible for impaired contractility in hindlimb muscles of Stac3 knockout mice.

    Cong, Xiaofei; Doering, Jonathan; Grange, Robert W; Jiang, Honglin


    The Stac3 gene is exclusively expressed in skeletal muscle, and Stac3 knockout is perinatal lethal in mice. Previous data from Stac3-deleted diaphragms indicated that Stac3-deleted skeletal muscle could not contract because of defective excitation-contraction (EC) coupling. In this study, we determined the contractility of Stac3-deleted hindlimb muscle. In response to frequent electrostimulation, Stac3-deleted hindlimb muscle contracted but the maximal tension generated was only 20% of that in control (wild type or heterozygous) muscle (P < 0.05). In response to high [K(+)], caffeine, and 4-chloro-m-cresol (4-CMC), the maximal tensions generated in Stac3-deleted muscle were 29% (P < 0.05), 58% (P = 0.08), and 55% (P < 0.05) of those in control muscle, respectively. In response to 4-CMC or caffeine, over 90% of myotubes formed from control myoblasts contracted, but only 60% of myotubes formed from Stac3-deleted myoblasts contracted (P = 0.05). However, in response to 4-CMC or caffeine, similar increases in intracellular calcium concentration were observed in Stac3-deleted and control myotubes. Gene expression and histological analyses revealed that Stac3-deleted hindlimb muscle contained more slow type-like fibers than control muscle. These data together confirm a critical role of STAC3 in EC coupling but also suggest that STAC3 may have additional functions in skeletal muscle, at least in the hindlimb muscle. PMID:27184118

  10. Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: an old player and newcomers.

    Csernoch, Laszlo; Jacquemond, Vincent


    Since the postulate, 30 years ago, that phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P 2) as the precursor of inositol 1,4,5-trisphosphate (Ins(1,4,5)P 3) would be critical for skeletal muscle excitation-contraction (EC) coupling, the issue of whether phosphoinositides (PtdInsPs) may have something to do with Ca(2+) signaling in muscle raised limited interest, if any. In recent years however, the PtdInsP world has expanded considerably with new functions for PtdIns(4,5)P 2 but also with functions for the other members of the PtdInsP family. In this context, the discovery that genetic deficiency in a PtdInsP phosphatase has dramatic consequences on Ca(2+) homeostasis in skeletal muscle came unanticipated and opened up new perspectives in regards to how PtdInsPs modulate muscle Ca(2+) signaling under normal and disease conditions. This review intends to make an update of the established, the questioned, and the unknown regarding the role of PtdInsPs in skeletal muscle Ca(2+) homeostasis and EC coupling, with very specific emphasis given to Ca(2+) signals in differentiated skeletal muscle fibers. PMID:26377756

  11. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

    Pitake, Saumitra; Ochs, Raymond S


    The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation-contraction coupling. However, the mechanism for subsequent Ca(2+) release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca(2+) under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation-contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca(2+) from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca(2+) was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca(2+) concentration in the media. Ca(2+) entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca(2+) entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca(2+) release from the ryanodine receptor to the cytosol. PMID:26643865

  12. New insights into structure-function relationship of the DHPR beta1a subunit in skeletal muscle excitation-contraction coupling using zebrafish 'relaxed' as an expression system

    The paralyzed zebrafish strain relaxed carries a null mutation for the skeletal muscle dihydropyridine receptor (DHPR) [beta]1a subunit. The lack of [beta]1a not only impedes functional [alpha]1S membrane expression but also precludes the skeletal muscle-specific ultrastructural arrangement of DHPRs into tetrads opposite ryanodine receptor (RyR1), coherent with the absence of skeletal muscle excitation-contraction (EC) coupling. With the plethora of experimental approaches feasible with zebrafish model organism and importantly with the [beta]1-null mutation having a monogenetic inheritance and because of the survival of the relaxed larvae for some days, we were able to establish the zebrafish relaxed as an expression system. Linking in vitro to in vivo observations, a clear differentiation between the major functional roles of [beta] subunits in EC coupling was feasible. The skeletal muscle [beta]1a subunit was able to restore all parameters of EC coupling upon expression in relaxed myotubes and larvae. Expression of the phylogenetically closest isoform to [beta]1a, the cardiac/neuronal [beta]2a subunit or the most distant neuronal [beta]M from the housefly in relaxed myotubes and larvae was likewise able to fully restore [alpha]1S triad targeting and facilitate charge movement. However, efficient tetrad formation and thus intact DHPR-RyR1 coupling was exclusively promoted by the [beta]1a isoform. Consequently, we postulated a model according to which [beta]1a acts as a unique allosteric modifier of [alpha]1S conformation crucial for skeletal muscle EC coupling. Therefore, unique structural elements in [beta]1a must be present which endow it with this exclusive property. Earlier, a unique hydrophobic heptad repeat motif (LVV) in the [beta]1a C-terminus was postulated by others to be essential for skeletal muscle EC coupling. We wanted to address the question if the proposed [beta]1a heptad repeat motif could be an active element of the DHPR-RyR1 signal transduction

  13. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Genaro eBarrientos


    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  14. Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy – New hopes for treatment of musculoskeletal diseases

    Heather eManring


    Full Text Available Research over the last decade strengthened the understanding that skeletal muscles are not only the major tissue in the body from a volume point of view but also function as a master regulator contributing to optimal organismal health. These new contributions to the available body of knowledge triggered great interest in the roles of skeletal muscle beyond contraction. The World Health Organization, through its Global Burden of Disease (GBD report, recently raised further awareness about the key importance of skeletal muscles as the GDB reported musculoskeletal (MSK diseases have become the second greatest cause of disability, with more than 1.7 billion people in the globe affected by a diversity of MSK conditions. Besides their role in MSK disorders, skeletal muscles are also seen as principal metabolic organs with essential contributions to metabolic disorders, especially those linked to physical inactivity. In this review, we have focused on the unique function of new genes/proteins (i.e. MTMR14, MG29, sarcalumenin, KFL15 that during the last few years have helped provide novel insights about muscle function in health and disease, muscle fatigue, muscle metabolism, and muscle aging. Next, we provide an in depth discussion of how these genes/proteins converge into a common function of acting as regulators of intracellular calcium homeostasis. A clear link between dysfunctional calcium homeostasis is established and the special role of store-operated calcium entry is analyzed. The new knowledge that has been generated by the understanding of the roles of previously unknown modulatory genes of the skeletal muscle excitation-contraction coupling (ECC process brings exciting new possibilities for treatment of MSK diseases, muscle regeneration, and skeletal muscle tissue engineering. The next decade of skeletal muscle and MSK research is bound to bring to fruition applied knowledge that will hopefully offset the current heavy and sad burden of MSK

  15. Modulation of contractile apparatus Ca2+ sensitivity and disruption of excitation-contraction coupling by S-nitrosoglutathione in rat muscle fibres.

    Dutka, T L; Mollica, J P; Posterino, G S; Lamb, G D


    S-Nitrosoglutathione (GSNO) is generated in muscle and may S-glutathionylate and/or S-nitrosylate various proteins involved in excitation–contraction (EC) coupling, such as Na+-K+-ATPases, voltage-sensors (VSs) and Ca2+ release channels (ryanodine receptors,RyRs), possibly changing their properties. Using mechanically skinned fibres from rat extensor digitorum longus muscle, we sought to identify which EC coupling processes are most susceptible to GSNO-modulated changes and whether these changes could be important in muscle function and fatigue. For comparison, we examined the effect of other oxidation, nitrosylation, or glutathionylation treatments (S-nitroso-N-acetyl-penicillamine (SNAP), hydrogen peroxide,2,2-dithiodipyridine and reduced glutathione) on twitch and tetanic force, action potential (AP) repriming, sarcoplasmic reticulum (SR) Ca2+ loading and leakage, and contractile apparatus properties. None of the treatments detectably altered AP repriming, indicating that t-system excitability was relatively insensitive to such oxidative modification. Importantly, the overall effect on twitch and tetanic force of a given treatment was determined primarily by its action on Ca2+ sensitivity of the contractile apparatus. For example, S-nitrosylation with the NO• donor,SNAP, caused matching decreases in the contractile Ca2+ sensitivity and twitch response, and GSNO applied ∼10 min after preparation had very similar effects. The only exception was when GSNO was applied immediately after preparation, which resulted in irreversible decreases in twitch and tetanic responses even though it concomitantly increased Ca2+ sensitivity by∼0.1 pCaunits, the latter evidently due to S-glutathionylation of the contractile apparatus. This decrease in AP-mediated force responses was due to impaired VS–RyR coupling and was accompanied by increased Ca2+ leakage through RyRs. Such oxidation-related impairment of coupling could be responsible for prolonged low frequency

  16. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T;


    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with...

  17. Mitochondrial networks in cardiac myocytes reveal dynamic coupling behavior.

    Kurz, Felix T; Derungs, Thomas; Aon, Miguel A; O'Rourke, Brian; Armoundas, Antonis A


    Oscillatory behavior of mitochondrial inner membrane potential (ΔΨm) is commonly observed in cells subjected to oxidative or metabolic stress. In cardiac myocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated waves of ΔΨm depolarization as well as synchronized limit cycle oscillations of ΔΨm in the network. The functional impact of ΔΨm instability on cardiac electrophysiology, Ca(2+) handling, and even cell survival, is strongly affected by the extent of such intermitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different substrates affect mitochondrial coupling in cardiac cells, and we also determine the oscillatory coupling properties of mitochondria in ventricular cells in intact perfused hearts. The results show that the frequency of ΔΨm oscillations varies inversely with the size of the oscillating mitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling constants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochondrial coupling constants, which were significantly larger for glucose (7.78 × 10(-2) ± 0.98 × 10(-2) s(-1)) and pyruvate (7.49 × 10(-2) ± 1.65 × 10(-2) s(-1)) than lactate (4.83 × 10(-2) ± 1.25 × 10(-2) s(-1)) or β-hydroxybutyrate (4.11 × 10(-2) ± 0.62 × 10(-2) s(-1)). The findings indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and temporal oscillatory stability

  18. Overexpression of junctophilin-2 does not enhance baseline function but attenuates heart failure development after cardiac stress.

    Guo, Ang; Zhang, Xiaoying; Iyer, Venkat Ramesh; Chen, Biyi; Zhang, Caimei; Kutschke, William J; Weiss, Robert M; Franzini-Armstrong, Clara; Song, Long-Sheng


    Heart failure is accompanied by a loss of the orderly disposition of transverse (T)-tubules and a decrease of their associations with the junctional sarcoplasmic reticulum (jSR). Junctophilin-2 (JP2) is a structural protein responsible for jSR/T-tubule docking. Animal models of cardiac stresses demonstrate that down-regulation of JP2 contributes to T-tubule disorganization, loss of excitation-contraction coupling, and heart failure development. Our objective was to determine whether JP2 overexpression attenuates stress-induced T-tubule disorganization and protects against heart failure progression. We therefore generated transgenic mice with cardiac-specific JP2 overexpression (JP2-OE). Baseline cardiac function and Ca(2+) handling properties were similar between JP2-OE and control mice. However, JP2-OE mice displayed a significant increase in the junctional coupling area between T-tubules and the SR and an elevated expression of the Na(+)/Ca(2+) exchanger, although other excitation-contraction coupling protein levels were not significantly changed. Despite similar cardiac function at baseline, overexpression of JP2 provided significantly protective benefits after pressure overload. This was accompanied by a decreased percentage of surviving mice that developed heart failure, as well as preservation of T-tubule network integrity in both the left and right ventricles. Taken together, these data suggest that strategies to maintain JP2 levels can prevent the progression from hypertrophy to heart failure. PMID:25092313

  19. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.

    Cairns, Simeon P; Borrani, Fabio


    Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans. PMID:26400207

  20. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation–contraction coupling, and cardiac arrhythmias

    Chopra, Nagesh; Yang, Tao; Asghari, Parisa; Moore, Edwin D.; Huke, Sabine; Akin, Brandy; Cattolica, Robert A.; Perez, Claudio F.; Hlaing, Thinn; Knollmann-Ritschel, Barbara E. C.; Jones, Larry R.; Pessah, Isaac N; Allen, Paul D.; Franzini-Armstrong, Clara; Knollmann, Björn C.


    Heart muscle excitation–contraction (E-C) coupling is governed by Ca2+ release units (CRUs) whereby Ca2+ influx via L-type Ca2+ channels (Cav1.2) triggers Ca2+ release from juxtaposed Ca2+ release channels (RyR2) located in junctional sarcoplasmic reticulum (jSR). Although studies suggest that the jSR protein triadin anchors cardiac calsequestrin (Casq2) to RyR2, its contribution to E-C coupling remains unclear. Here, we identify the role of triadin using mice with ablation of the Trdn gene (...

  1. Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes

    Hofgaard, Johannes P; Banach, Kathrin; Mollerup, Sarah;


    that agonist-induced changes in PIP(2) can result in a reduction of the functional coupling of cardiomyocytes and, consequently, in changes in conduction velocity. Intercellular coupling was measured by Lucifer Yellow dye transfer in cultured neonatal rat cardiomyocytes. Conduction velocity was...

  2. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction.

    Bers, Donald M


    Synchronized SR calcium (Ca) release is critical to normal cardiac myocyte excitation-contraction coupling, and ideally this release shuts off completely between heartbeats. However, other SR Ca release events are referred to collectively as SR Ca leak (which includes Ca sparks and waves as well as smaller events not detectable as Ca sparks). Much, but not all, of the SR Ca leak occurs via ryanodine receptors and can be exacerbated in pathological states such as heart failure. The extent of SR Ca leak is important because it can (a) reduce SR Ca available for release, causing systolic dysfunction; (b) elevate diastolic [Ca]i, contributing to diastolic dysfunction; (c) cause triggered arrhythmias; and (d) be energetically costly because of extra ATP used to repump Ca. This review addresses quantitative aspects and manifestations of SR Ca leak and its measurement, and how leak is modulated by Ca, associated proteins, and posttranslational modifications in health and disease. PMID:24245942

  3. Global coupling in excitable media provides a simplified description of mechanoelectrical feedback in cardiac tissue

    Alvarez-Lacalle, E.; Echebarria, B.


    Cardiac mechanoelectric feedback can play an important role in different heart pathologies. In this paper, we show that mechanoelectric models which describe both the electric propagation and the mechanic contraction of cardiac tissue naturally lead to close systems of equations with global coupling among the variables. This point is exemplified using the Nash-Panfilov model, which reduces to a FitzHugh-Nagumo-type equation with global coupling in the linear elastic regime. We explain the appearance of self-oscillatory regimes in terms of the system nullclines and describe the different dynamical attractors. Finally, we study their basin of attraction in terms of the system size and the strength of the stretch-induced currents.

  4. The other side of cardiac Ca2+ signaling: transcriptional control

    Alejandro eDomínguez-Rodríquez


    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  5. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich


    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  6. The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43.

    Wei, Ning; Mori, Yoichiro; Tolkacheva, Elena G


    Decreased and heterogeneous expression of connexin 43 (Cx43) are common features in animal heart failure models. Ephpatic coupling, which relies on the presence of junctional cleft space between the ends of adjacent cells, has been suggested to play a more active role in mediating intercellular electrical communication when gap junctions are reduced. To better understand the interplay of Cx43 expression and ephaptic coupling on cardiac conduction during heart failure, we performed numerical simulations on our model when Cx43 expression is reduced and heterogeneous. Under severely reduced Cx43 expression, we identified three new phenomena in the presence of ephaptic coupling: alternating conduction, in which ephaptic and gap junction-mediated mechanisms alternate; instability of planar fronts; and small amplitude action potential (SAP), which has a smaller potential amplitude than the normal action potential. In the presence of heterogeneous Cx43 expression, ephaptic coupling can either prevent or promote conduction block (CB) depending on the Cx43 knockout (Cx43KO) content. When Cx43KO content is relatively high, ephaptic coupling reduces the probabilities of CB. However, ephaptic coupling promotes CB when Cx43KO and wild type cells are mixed in roughly equal proportion, which can be attributed to an increase in current-to-load mismatch. PMID:26968493

  7. Image-Based Personalization of Cardiac Anatomy for Coupled Electromechanical Modeling.

    Crozier, A; Augustin, C M; Neic, A; Prassl, A J; Holler, M; Fastl, T E; Hennemuth, A; Bredies, K; Kuehne, T; Bishop, M J; Niederer, S A; Plank, G


    Computational models of cardiac electromechanics (EM) are increasingly being applied to clinical problems, with patient-specific models being generated from high fidelity imaging and used to simulate patient physiology, pathophysiology and response to treatment. Current structured meshes are limited in their ability to fully represent the detailed anatomical data available from clinical images and capture complex and varied anatomy with limited geometric accuracy. In this paper, we review the state of the art in image-based personalization of cardiac anatomy for biophysically detailed, strongly coupled EM modeling, and present our own tools for the automatic building of anatomically and structurally accurate patient-specific models. Our method relies on using high resolution unstructured meshes for discretizing both physics, electrophysiology and mechanics, in combination with efficient, strongly scalable solvers necessary to deal with the computational load imposed by the large number of degrees of freedom of these meshes. These tools permit automated anatomical model generation and strongly coupled EM simulations at an unprecedented level of anatomical and biophysical detail. PMID:26424476

  8. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons

    Oh, Yohan; Cho, Gun-Sik; Li, Zhe; Hong, Ingie; Zhu, Renjun; Kim, Min-Jeong; Kim, Yong Jun; Tampakakis, Emmanouil; Tung, Leslie; Huganir, Richard; Dong, Xinzhong; Kwon, Chulan; Lee, Gabsang


    Summary Neurons derived from human pluripotent stem cells (hPSCs) are powerful tools for studying human neural development and diseases. Robust functional coupling of hPSC-derived neurons with target tissues in vitro is essential for modeling intercellular physiology in a dish and to further translational studies, but has proven difficult to achieve. Here, we derive sympathetic neurons from hPSCs and show they can form physical and functional connections with cardiac muscle cells. Using multiple hPSC reporter lines, we recapitulated human autonomic neuron development in vitro and successfully isolated PHOX2B:eGFP+ neurons that exhibit sympathetic marker expression and electrophysiological properties, and norepinephrine secretion. Upon pharmacologic and optogenetic manipulation, PHOX:eGFP+ neurons controlled beating rates of cardiomyocytes, and the physical interactions between these cells increased neuronal maturation. This study provides a foundation for human sympathetic neuron specification and for hPSC-based neuronal control of organs in a dish. PMID:27320040

  9. Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy.

    Wessely, R; Klingel, K; L. F. Santana; Dalton, N.; Hongo, M; Jonathan Lederer, W; Kandolf, R; Knowlton, K U


    Numerous studies have implicated Coxsackievirus in acute and chronic heart failure. Although enteroviral nucleic acids have been detected in selected patients with dilated cardiomyopathy, the significance of such persistent nucleic acids is unknown. To investigate the mechanisms by which restricted viral replication with low level expression of Coxsackieviral proteins may be able to induce cardiomyopathy, we generated transgenic mice which express a replication-restricted full-length Coxsacki...

  10. Thermal sensitivity of excitation-contraction-coupling in a chill susceptible insect, Locusta migratoria

    Findsen, Anders; Pedersen, Thomas Holm; Overgaard, Johannes

    Many insect species enter a state of neuromuscular paralysis when their body temperature is lowered to a critical limit but the physiological and cellular processes underlying this chill coma are largely unknown. Previous studies on locusts show that muscle force production is highly depressed at...... saturating doses of Ca2+. However, preliminary results suggest that Ca2+ affinity is markedly decreased at low temperature. A reduction in Ca2+ sensitivity of the contractile filaments at low temperature could therefore explain loss of muscle function during chill coma....

  11. Quantification of avian embryonic cardiac outflow hemodynamics through 3D-0D coupling

    Lindsey, Stephanie; Vignon-Clementel, Irene; Butcher, Jonathan


    Outflow malformations account for over 20% of CHDs in the US. While the etiology of these malformations is poorly understood, most can be traced back to perturbations in the patterning of the pharyngeal arch arteries (PAAs), the precursors to the great vessels. Here, we examine the effects of normal and aberrant PAA flow, through the use of two computational models. A 0D electric analog model allows for rapid computation and global tuning of the embryo's vasculature relative to the arches. A second 3D-0D model replaces the electric analog representation of the arches with a 3D reconstruction, thereby leading to more extensive pressure and flow characterization. We obtain 3D arch artery reconstructions from nano-CT stacks and couple them to 0D outlets. In contrast to standard boundary conditions, such coupling maintains the physiologically desired cranial-caudal flow split in control embryos and predicts how this will change with vessel occlusion. We use flow inputs from Doppler velocity tracings to compute 0D and 3D-0D pulsatile hemodynamic simulations in HH18 (day 3), HH24 (day 4), and HH26 (day 5) geometries. We then calculate flow distributions and wall shear stress maps for control embryos. From here, we modify HH18 geometries to simulate varying levels of PAA occlusion. Pulsatile simulations are run in each geometry and results compared to that of controls. Results serve as a basis for examining flow-mediated growth and adaptation in cardiac outflow morphogenesis.

  12. Thyroid Hormone Control of Cardiac Substrate Metabolism

    Hyyti Villet, Outi


    Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction a...

  13. Combination of miRNA499 and miRNA133 exerts a synergic effect on cardiac differentiation.

    Pisano, Federica; Altomare, Claudia; Cervio, Elisabetta; Barile, Lucio; Rocchetti, Marcella; Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Copes, Francesco; Mura, Manuela; Danieli, Patrizia; Viarengo, Gianluca; Zaza, Antonio; Gnecchi, Massimiliano


    Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance, and differentiation. In particular, it has been shown that miRNA133, miRNA1, and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1, or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real-time polymerase chain reaction showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine, and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 was also able to induce the differentiation of human mesenchymal stromal cells toward the cardiac lineage. PMID:25534971

  14. Modeling Calcium Wave Based on Anomalous Subdiffusion of Calcium Sparks in Cardiac Myocytes

    Chen, Xi; Kang, Jianhong; Fu, Ceji; Tan, Wenchang


    sparks and waves play important roles in calcium release and calcium propagation during the excitation-contraction (EC) coupling process in cardiac myocytes. Although the classical Fick’s law is widely used to model sparks and waves in cardiac myocytes, it fails to reasonably explain the full-width at half maximum(FWHM) paradox. However, the anomalous subdiffusion model successfully reproduces sparks of experimental results. In this paper, in the light of anomalous subdiffusion of sparks, we develop a mathematical model of calcium wave in cardiac myocytes by using stochastic release of release units (CRUs). Our model successfully reproduces calcium waves with physiological parameters. The results reveal how concentration waves propagate from an initial firing of one CRU at a corner or in the middle of considered region, answer how large in magnitude of an anomalous spark can induce a wave. With physiological currents (2pA) through CRUs, it is shown that an initial firing of four adjacent CRUs can form a wave. Furthermore, the phenomenon of calcium waves collision is also investigated. PMID:23483894

  15. Modeling the Force Frequency Relation of a Cardiac Cell

    Le, Duy Manh; Dvornikov, Alexey V.; Lai, Pik-Yin; Chan, Chi-Keung


    Recent pacing experiments with hearts of rat have discovered that the contractile response of the hearts can have an unexpected slow non-monotonic response. This later observation cannot be explained by the existing excitation-contraction coupling model. A new discrete map model of the EC coupling is developed to understand these experimental findings. It is found that the biphasic response and the slow time scale can be reproduced when a calcium feedback based on calcium regulation mechanism of the cell is introduced. Furthermore, this model can also reproduce the nonlinear dynamical properties of the system; such as the period doubling in the response of the contractile forces during a step change in the pacing period. The force frequency relation curve generated by the model also compare well with previous published data. Our findings suggest that the feedback is really needed to understand the calcium transient when pacing frequency is changed and the calcium regulation is very important for the calcium handling of cardiac myocytes.

  16. Panic Disorder and Serotonin Reuptake Inhibitors Predict Coupling of Cortical and Cardiac Activity

    Mueller, Erik M; Panitz, Christian; Nestoriuc, Yvonne; Stemmler, Gerhard; Wacker, Jan


    Panic attacks, the cardinal symptom of panic disorder (PD), are characterized by intense physiological reactions including accelerated heart activity. Although cortical processes are thought to trigger and potentiate panic attacks, it is unknown whether individuals with PD have a general tendency to show elevated cortico–cardiac interactions, which could predispose them for brain-driven modulations of heart activity during panic. Consistent with this hypothesis, serotonin, a highly relevant n...

  17. A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network

    Vergara, Christian; Lange, Matthias; Palamara, Simone; Lassila, Toni; Frangi, Alejandro F.; Quarteroni, Alfio


    We present a model for the electrophysiology in the heart to handle the electrical propagation through the Purkinje system and in the myocardium, with two-way coupling at the Purkinje-muscle junctions. In both the subproblems the monodomain model is considered, whereas at the junctions a resistor element is included that induces an orthodromic propagation delay from the Purkinje network towards the heart muscle. We prove a sufficient condition for convergence of a fixed-point iterative algorithm to the numerical solution of the coupled problem. Numerical comparison of activation patterns is made with two different combinations of models for the coupled Purkinje network/myocardium system, the eikonal/eikonal and the monodomain/monodomain models. Test cases are investigated for both physiological and pathological activation of a model left ventricle. Finally, we prove the reliability of the monodomain/monodomain coupling on a realistic scenario. Our results underlie the importance of using physiologically realistic Purkinje-trees with propagation solved using the monodomain model for simulating cardiac activation.

  18. Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating

    Moskvin, A. S.; Iaparov, B. I.; Ryvkin, A. M.; Solovyova, O. E.; Markhasin, V. S.


    Temperature influences many aspects of cardiac excitation-contraction coupling, in particular, hypothermia increases the open probability ( P open) of cardiac sarcoplasmic reticulum (SR) Ca2+-release channels (ryanodine-sensitive RyR channels) rising the SR Ca2+ load in mammalian myocytes. However, to the best of our knowledge, no theoretical models are available for that effect. Traditional Markov chain models do not provide a reasonable molecular mechanistic insight on the origin of the temperature effects. Here in the paper we address a simple physically clear electron-conformational model to describe the RyR gating and argue that a synergetic effect of external thermal fluctuation forces (Gaussian-Markovian noise) and internal friction via the temperature stimulation/suppression of the open-close RyR tunneling probability can be considered as a main contributor to temperature effects on the RyR gating. Results of the computer modeling allowed us to successfully reproduce all the temperature effects observed for an isolated RyR gating in vitro under reducing the temperature: increase in P open and mean open time without any significant effect on mean closed

  19. Posttranslational modifications of cardiac ryanodine receptors: Ca2+ signaling and EC-coupling

    Niggli, Ernst; Ullrich, Nina D.; Gutierrez, D.; Kyrychenko, Sergii; Poláková, Eva; Shirokova, Natalia


    In cardiac muscle, a number of posttranslational protein modifications can alter the function of the Ca2+ release channel of the sarcoplasmic reticulum (SR), also known as the ryanodine receptor (RyR). During every heartbeat RyRs are activated by the Ca2+-induced Ca2+ release mechanism and contribute a large fraction of the Ca2+ required for contraction. Some of the posttranslational modifications of the RyR are known to affect its gating and Ca2+ sensitivity. Presently, research in a number of laboratories is focussed on RyR phosphorylation, both by PKA and CaMKII, or on RyR modifications caused by reactive oxygen and nitrogen species (ROS / RNS). Both classes of posttranslational modifications are thought to play important roles in the physiological regulation of channel activity, but are also known to provoke abnormal alterations during various diseases. Only recently it was realized that several types of posttranslational modifications are tightly connected and form synergistic (or antagonistic) feed-back loops resulting in additive and potentially detrimental downstream effects. This review summarizes recent findings on such posttranslational modifications, attempts to bridge molecular with cellular findings, and opens a perspective for future work trying to understand the ramifications of crosstalk in these multiple signaling pathways. Clarifying these complex interactions will be important in the development of novel therapeutic approaches, since this may form the foundation for the implementation of multi-pronged treatment regimes in the future. PMID:22960642

  20. Interest of 123I-mibg cardiac tomo-scintigraphy coupled with myocardial perfusion in diagnosis of multiple system atrophy

    Objective: The aim of this prospective study is to assess the pertinence of using 123I-mibg myocardial tomo-scintigraphy coupled with perfusion scintigraphy as a diagnostic tool, to discriminate between multiple system atrophy (M.S.A.) and idiopathic Parkinson's disease (P.D.) at first guided by clinical data and L-DOPA tests. Material and methods: Forty patients, aged from 43 to 78 years (median 62 years) with Parkinson's syndrome were studied. Nineteen had a diagnosis of P.D. (criteria of brain bank) and 21 A.M.S. (Gibbs criteria). All were given test to acute L-DOPA. Chest-centered planar imaging (128 x 128 matrix, 5 minutes of duration) is performed at 1 hour and 4 hours after injection of 220 MBq of 123I-mibg, in addition a non-synchronized tomo-scintigraphy (64 x 64 matrix, 32 images of 50 seconds, zoom 1.45) was performed after the 4. hour and 15 minutes after injection of 200 to 400 MBq of 99mTc-tetrofosmin. Besides neurological data, the parameters retained for comparison purposes with 123I-mibg cardiac tomo-scintigraphy were patients age, duration of disease and L-DOPA test results. Two regions of interest (R.O.I.) identical in size and in shape are used for 123I-mibg uptake quantifications (H/M and washout [W.o.]). The first one was placed in projection of mediastinum (M) and the other one in projection of heart (H). Results: We found an overall decreased uptake of the myocardial 123I-mibg without perfusion abnormality in 15 of 19 patients with P.D. and 11 among them were L-DOPA sensitive (L-DOPA test greater than 30%). Normal tracer uptake with 123I-mibg associated with an almost quite normal perfusion was seen in 15 of 21 patients with M.S.A. and they were little or not L-DOPA sensitive (L-DOPA test less than 30%). Therefore, 10 discordant cases (25%) between cardiac scintigraphy and clinical evolution of disease with also discordant L-DOPA tests were observed. In the P.D. group, quantification of data enhanced the diagnostic decision with low heart to

  1. Coupling primary and stem cell-derived cardiomyocytes in an in vitro model of cardiac cell therapy.

    Aratyn-Schaus, Yvonne; Pasqualini, Francesco S; Yuan, Hongyan; McCain, Megan L; Ye, George J C; Sheehy, Sean P; Campbell, Patrick H; Parker, Kevin Kit


    The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell-derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell-cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell-cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes. PMID:26858266

  2. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation.

    William, M; Hamilton, E J; Garcia, A; Bundgaard, H; Chia, K K M; Figtree, G A; Rasmussen, H H


    Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na(+)-K(+) pump, we examined whether atrial natriuretic peptide (ANP) regulates the pump. We voltage clamped rabbit ventricular myocytes and identified electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange and normalized for membrane capacitance) as the shift in membrane current induced by 100 micromol/l ouabain. Ten nanomoles per liter ANP stimulated the Na(+)-K(+) pump when the intracellular compartment was perfused with pipette solutions containing 10 mmol/l Na(+) but had no effect when the pump was at near maximal activation with 80 mmol/l Na(+) in the pipette solution. Stimulation was abolished by inhibition of cGMP-activated protein kinase with KT-5823, nitric oxide (NO)-activated guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), or NO synthase with N(G)-nitro-L-arginine methyl ester (L-NAME). Since synthesis of cGMP by NPR-A and NPR-B is not NO dependent or ODQ sensitive, we exposed myocytes to AP-811, a highly selective ligand for the NPR-C "clearance" receptor. It abolished ANP-induced pump stimulation. Conversely, the selective NPR-C agonist ANP(4-23) reproduced stimulation. The stimulation was blocked by l-NAME. To examine NO production in response to ANP(4-23), we loaded myocytes with the NO-sensitive fluorescent dye diacetylated diaminofluorescein-2 and examined them by confocal microscopy. ANP(4-23) induced a significant increase in fluorescence, which was abolished by L-NAME. We conclude that NPs stimulate the Na(+)-K(+) pump via an NPR-C and NO-dependent pathway. PMID:18272821

  3. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle.

    Murphy, R M; Dutka, T L; Horvath, D; Bell, J R; Delbridge, L M; Lamb, G D


    Excessive increases in intracellular [Ca(2+)] in skeletal muscle fibres cause failure of excitation-contraction coupling by disrupting communication between the dihydropyridine receptors in the transverse tubular system and the Ca(2+) release channels (RyRs) in the sarcoplasmic reticulum (SR), but the exact mechanism is unknown. Previous work suggested a possible role of Ca(2+)-dependent proteolysis in this uncoupling process but found no proteolysis of the dihydropyridine receptors, RyRs or triadin. Junctophilin-1 (JP1; ∼90 kDa) stabilizes close apposition of the transverse tubular system and SR membranes in adult skeletal muscle; its C-terminal end is embedded in the SR and its N-terminal associates with the transverse tubular system membrane. Exposure of skeletal muscle homogenates to precisely set [Ca(2+)] revealed that JP1 undergoes Ca(2+)-dependent proteolysis over the physiological [Ca(2+)] range in tandem with autolytic activation of endogenous μ-calpain. Cleavage of JP1 occurs close to the C-terminal, yielding a ∼75 kDa diffusible fragment and a fixed ∼15 kDa fragment. Depolarization-induced force responses in rat skinned fibres were abolished following 1 min exposure to 40 μm Ca(2+), with accompanying loss of full-length JP1. Supraphysiological stimulation of rat skeletal muscle in vitro by repeated tetanic stimulation in 30 mm caffeine also produced marked proteolysis of JP1 (and not RyR1). In dystrophic mdx mice, JP1 proteolysis is seen in limb muscles at 4 and not at 10 weeks of age. Junctophilin-2 in cardiac and skeletal muscle also undergoes Ca(2+)-dependent proteolysis, and junctophilin-2 levels are reduced following cardiac ischaemia-reperfusion. Junctophilin proteolysis may contribute to skeletal muscle weakness and cardiac dysfunction in a range of circumstances. PMID:23148318

  4. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.

    Tunwell, R E; Wickenden, C; Bertrand, B M; Shevchenko, V I; Walsh, M B; Allen, P D; Lai, F A


    Rapid Ca2+ efflux from intracellular stores during cardiac muscle excitation-contraction coupling is mediated by the ryanodine-sensitive calcium-release channel, a large homotetrameric complex present in the sarcoplasmic reticulum. We report here the identification, primary structure and topological analysis of the ryanodine receptor-calcium release channel from human cardiac muscle (hRyR-2). Consistent with sedimentation and immunoblotting studies on the hRyR-2 protein, sequence analysis of ten overlapping cDNA clones reveals an open reading frame of 14901 nucleotides encoding a protein of 4967 amino acid residues with a predicted molecular mass of 564 569 Da for hRyR-2. In-frame insertions corresponding to eight and ten amino acid residues were found in two of the ten cDNAs isolated, suggesting that novel, alternatively spliced transcripts of the hRyR-2 gene might exist. Six hydrophobic stretches, which are present within the hRyR-2 C-terminal 500 amino acids and are conserved in all RyR sequences, may be involved in forming the transmembrane domain that constitutes the Ca(2+)-conducting pathway, in agreement with competitive ELISA studies with a RyR-2-specific antibody. Sequence alignment of hRyR-2 with other RyR isoforms indicates a high level of overall identity within the RyR family, with the exception of two important regions that exhibit substantial variability. Phylogenetic analysis suggests that the RyR-2 isoform diverged from a single ancestral gene before the RyR-1 and RyR-3 isoforms to form a distinct branch of the RyR family tree. PMID:8809036

  5. Cardiac resynchronization therapy and phase resetting of the sinoatrial node: a conjecture.

    Cantini, Federico; Varanini, Maurizio; Macerata, Alberto; Piacenti, Marcello; Morales, Maria-Aurora; Balocchi, Rita


    Congestive heart failure is a severe chronic disease often associated with disorders that alter the mechanisms of excitation-contraction coupling that may result in an asynchronous left ventricular motion which may further impair the ability of the failing heart to eject blood. In recent years a therapeutic approach to resynchronize the ventricles (cardiac resynchronization therapy, CRT) has been performed through the use of a pacemaker device able to provide atrial-based biventricular stimulation. Atrial lead senses the spontaneous occurrence of cells depolarization and sends the information to the generator which, in turn, after a settled delay [atrioventricular (AV) delay], sends electrical impulses to both ventricles to stimulate their synchronous contraction. Recent studies performed on heart rate behavior of chronically implanted patients at different epochs after implantation have shown that CRT can lead to sustained overall improvement of heart function with a reduction in morbidity and mortality. At this moment, however, there are no studies about CRT effects on spontaneous heart activity of chronically implanted patients. We performed an experimental study in which the electrocardiographic signal of five subjects under chronic CRT was recorded during the activity of the pacemaker programmed at different AV delays and under spontaneous cardiac activity after pacemaker deactivation. The different behavior of heart rate variability during pacemaker activity and after pacemaker deactivation suggested the hypothesis of a phase resetting mechanism induced by the pacemaker stimulus on the sinoatrial (SA) node, a phenomenon already known in literature for aggregate of cardiac cells, but still unexplored in vivo. The constraints imposed by the nature of our study (in vivo tests) made it impossible to plan an experiment to prove our hypothesis directly. We therefore considered the best attainable result would be to prove the accordance of our data to the conjecture

  6. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  7. The effects of compensated cardiac hypertrophy on dihydropyridine and ryanodine receptors in rat, ferret and guinea-pig hearts.

    Rannou, F; Sainte-Beuve, C; Oliviero, P; Do, E; Trouvé, P; Charlemagne, D


    The number of dihydropyridine and ryanodine receptors (DHP-R and RyR) has been measured in control and hypertrophied ventricles from rats, guinea pigs and ferrets to determine whether these two channels contribute to the alterations in excitation-contraction coupling (ECC), and in Ca2+ transient during compensated cardiac hypertrophy. We found that ventricular hypertrophy did not change the density of DHP-R. Mild hypertrophy did not alter the density of RyR in the rat but decreased it in the guinea-pig and in the ferret (30% and 36%, respectively). Severe hypertrophy decreased the density of RyR by 20% in the rat and by 34% in the guinea-pig. Therefore, the decrease is greater in ferret and guinea-pig hearts than in rat heart. We conclude that the sarcoplasmic reticulum (SR) Ca2+ release channels but not the L-type Ca2+ channels could contribute to the slowing of intracellular Ca2+ movements and to the reduced velocity of shortening of the hypertrophied hearts. We suggest that, in the guinea pig and ferret hearts which express only the beta myosin heavy chain (MHC) isoform, the reduced velocity of shortening during hypertrophy is related to the decrease in RyR density, whereas in the rat, it is regulated primarily via a shift in the MHC isoform, except in severe hypertrophy in which the moderate decrease in RyR would also be involved. PMID:7473781

  8. CaMKII Regulation of Cardiac Ryanodine Receptors and Inositol Triphosphate Receptors

    Emmanuel eCamors


    Full Text Available Ryanodine receptors (RyRs and inositol triphosphate receptors (InsP3Rs are structurally related intracellular calcium release channels that participate in multiple primary or secondary amplified Ca2+ signals, triggering muscle contraction and oscillatory Ca2+ waves, or activating transcription factors. In the heart, RyRs play an indisputable role in the process of excitation-contraction coupling as the main pathway for Ca2+ release from sarcoplasmic reticulum (SR, and a less prominent role in the process of excitation-transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only, to contraction of the heart, and in more important ways to regulation of transcription factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening arrhythmogenic and/or remodeling Ca2+ signals, regulation of their activity is of paramount importance for normal cardiac function. Due to their structural similarity, many regulatory factors, accessory proteins, and posttranslational processes are equivalent for RyRs and InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation, but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful modulator of RyR and InsP3R activity but interestingly, some of the complexities and controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects of CaMKII on global cellular activity, such as SR Ca2+ leak or force-frequency potentiation, appear clear now, and this constrains the limits of the controversies and permits a more tractable approach to elucidate the effects of phosphorylation at the single channel level.

  9. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.

    Marks, A R


    Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation. PMID:11273716

  10. Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes.

    Bryant, Simon; Kimura, Tomomi E; Kong, Cherrie H T; Watson, Judy J; Chase, Anabelle; Suleiman, M Saadeh; James, Andrew F; Orchard, Clive H


    L-type Ca channels (LTCC), which play a key role in cardiac excitation-contraction coupling, are located predominantly at the transverse (t-) tubules in ventricular myocytes. Caveolae and the protein caveolin-3 (Cav-3) are also present at the t-tubules and have been implicated in localizing a number of signaling molecules, including protein kinase A (PKA) and β2-adrenoceptors. The present study investigated whether disruption of Cav-3 binding to its endogenous binding partners influenced LTCC activity. Ventricular myocytes were isolated from male Wistar rats and LTCC current (ICa) recorded using the whole-cell patch-clamp technique. Incubation of myocytes with a membrane-permeable peptide representing the scaffolding domain of Cav-3 (C3SD) reduced basal ICa amplitude in intact, but not detubulated, myocytes, and attenuated the stimulatory effects of the β2-adrenergic agonist zinterol on ICa. The PKA inhibitor H-89 also reduced basal ICa; however, the inhibitory effects of C3SD and H-89 on basal ICa amplitude were not summative. Under control conditions, myocytes stained with antibody against phosphorylated LTCC (pLTCC) displayed a striated pattern, presumably reflecting localization at the t-tubules. Both C3SD and H-89 reduced pLTCC staining at the z-lines but did not affect staining of total LTCC or Cav-3. These data are consistent with the idea that the effects of C3SD and H-89 share a common pathway, which involves PKA and is maximally inhibited by H-89, and suggest that Cav-3 plays an important role in mediating stimulation of ICa at the t-tubules via PKA-induced phosphorylation under basal conditions, and in response to β2-adrenoceptor stimulation. PMID:24412535

  11. End-Systolic Elastance and Ventricular-Arterial Coupling Reserve Predict Cardiac Events in Patients with Negative Stress Echocardiography

    Tonino Bombardini


    Full Text Available Background. A maximal negative stress echo identifies a low-risk subset for coronary events. However, the potentially prognostically relevant information on cardiovascular hemodynamics for heart-failure-related events is unsettled. Aim of this study was to assess the prognostic value of stress-induced variation in cardiovascular hemodynamics in patients with negative stress echocardiography. Methods. We enrolled 891 patients (593 males mean age 63±12, ejection fraction 48±17%, with negative (exercise 172, dipyridamole 482, and dobutamine 237 stress echocardiography result. During stress we assessed left ventricular end-systolic elastance index (ELVI, ventricular arterial coupling (VAC indexed by the ratio of the ELVI to arterial elastance index (EaI, systemic vascular resistance (SVR, and pressure-volume area (PVA. Changes from rest to peak stress (reserve were tested as predictors of main outcome measures: combined death and heart failure hospitalization. Results. During a median followup of 19 months (interquartile range 8–36, 50 deaths and 84 hospitalization occurred. Receiver-operating-characteristic curves identified as best predictors ELVI reserve for exercise (AUC = 0.871 and dobutamine (AUC = 0.848 and VAC reserve (AUC = 0.696 for dipyridamole. Conclusions. Patients with negative stress echocardiography may experience an adverse outcome, which can be identified by assessment of ELVI reserve and VAC reserve during stress echo.

  12. Cardiac developmental toxicity

    Mahler, Gretchen J.; Jonathan T Butcher


    Congenital heart disease is a highly prevalent problem with mostly unknown origins. Many cases of CHD likely involve an environmental exposure coupled with genetic susceptibility, but practical and ethical considerations make nongenetic causes of CHD difficult to assess in humans. The development of the heart is highly conserved across all vertebrate species, making animal models an excellent option for screening potential cardiac teratogens. This review will discuss exposures known to cause ...

  13. Research on the CICR mechanism during excitation-contraction coupling on skeletal muscle%骨骼肌兴奋收缩偶联时钙诱导钙释放机理的研究

    杨勇骥; 汤莹; 宋田斌; 吴越; 邰艳红; 沙继宏; 叶煦亭; 郑尊


    @@ 近年来,国外学者由生理学实验发现,在骨骼肌兴奋-收缩偶联过程中,不仅存在DCT假说,还存在钙诱导钙释放(Calcium Induced Calcium Release,简称CICR)假说(该假说一般用于解释心肌兴奋-收缩偶联时,肌浆网内的Ca2+释放机理).但因肌组织(包括骨骼肌与心肌)兴奋-收缩偶联发生时的变化时间极快,达到毫秒级水平,因此目前常规化学固定(固定时间以分钟计)制样法无法保留肌组织兴奋-收缩偶联发生瞬间时的超微结构形态及离子(包括Ca2+,Na\\++,K\\++等)浓度的变化.

  14. Cardiac rehabilitation

    ... attack or other heart problem. You might consider cardiac rehab if you have had: Heart attack Coronary heart disease (CHD) Heart failure Angina (chest pain) Heart or heart valve surgery Heart transplant Procedures such as angioplasty and stenting In some ...

  15. Cardiac Rehabilitation

    Cardiac rehabilitation (rehab) is a medically supervised program to help people who have A heart attack Angioplasty or coronary artery bypass grafting for coronary heart disease A heart valve repair or replacement A ...

  16. Cardiac sarcoidosis

    Costello BT; Nadel J.; Taylor AJ


    Benedict T Costello,1,2 James Nadel,3 Andrew J Taylor,1,21Department of Cardiovascular Medicine, The Alfred Hospital, 2Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, 3School of Medicine, University of Notre Dame, Sydney, NSW, Australia Abstract: Cardiac sarcoidosis is a rare but life-threatening condition, requiring a high degree of clinical suspicion and low threshold for investigation to make the diagnosis. The cardiac manifestations include heart failure, conducting syst...

  17. Proteomic analysis of age dependent nitration of rat cardiac proteins by solution isoelectric focusing coupled to nano-HPLC tandem mass spectrometry

    Hong, Sung Jung; Gokulrangan, Giridharan; Schöneich, Christian


    Protein nitration occurs as a result of oxidative stress induced by reactive oxygen (ROS) and reactive nitrogen species (RNS). Therefore, protein nitration serves as a hallmark for protein oxidation in vivo. We have previously reported on age dependent protein nitration in cardiac tissue of Fisher 344 BN-F1 rats analyzed by two-dimensional gel electrophoresis; however, only one specific nitration site was identified (Kanski et al., 2005a). In the present report, we used solution phase isoelec...

  18. Cardiac CT

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie


    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  19. Cardiac echinococcosis

    Ivanović-Krstić Branislava A.


    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  20. Cardiac sarcoidosis

    Smedema, J.P.; Zondervan, P.E.; van Hagen, P.; ten Cate, F.J.; Bresser, P.; Doubell, A.F.; Pattynama, P.; Hoogsteden, H.C.; Balk, A.H.M.M.


    Sarcoidosis is a multi-system granulomatous disorder of unknown aetiology. Symptomatic cardiac involvement occurs in approximately 5% of patients. The prevalence of sarcoidosis in the Netherlands is unknown, but estimated to be approximately 20 per 100,000 population (3200 patients). We report on five patients who presented with different manifestations of cardiac sarcoidosis, and give a brief review on the current management of this condition. Magnetic Resonance Imaging (MRI) can be of great help in diagnosing this condition as well as in the follow-up of the response to therapy. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:25696121

  1. Cardiac Pacemakers

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  2. Cardiac rhabdomyosarcoma

    Chlumský, Jaromír; Holá, Dana; Hlaváček, Karel; Michal, Michal; Švec, Alexander; Špatenka, Jaroslav; Dušek, Jan


    Cardiac sarcoma is a very rare neoplasm and is difficult to diagnose. The case of a 51-year-old man with a left atrial tumour, locally recurrent three months after its surgical removal, is presented. Computed tomography showed metastatic spread to the lung parenchyma. On revised histology, the mass extirpated was a sarcoma. Because of the metastatic spread, further therapy was symptomatic only; the patient died 15 months after the first manifestation of his problems. Immunohistochemical stain...

  3. Cardiac Calcification

    Morteza Joorabian


    Full Text Available There is a spectrum of different types of cardiac"ncalcifications with the importance and significance"nof each type of cardiac calcification, especially"ncoronary artery calcification. Radiologic detection of"ncalcifications within the heart is quite common. The"namount of coronary artery calcification correlates"nwith the severity of coronary artery disease (CAD."nCalcification of the aortic or mitral valve may indicate"nhemodynamically significant valvular stenosis."nMyocardial calcification is a sign of prior infarction,"nwhile pericardial calcification is strongly associated"nwith constrictive pericarditis. A spectrum of different"ntypes of cardiac calcifications (linear, annular,"ncurvilinear,... could be seen in chest radiography and"nother imaging modalities. So a carful inspection for"ndetection and reorganization of these calcifications"nshould be necessary. Numerous modalities exist for"nidentifying coronary calcification, including plain"nradiography, fluoroscopy, intravascular ultrasound,"nMRI, echocardiography, and conventional, helical and"nelectron-beam CT (EBCT. Coronary calcifications"ndetected on EBCT or helical CT can be quantifie,"nand a total calcification score (Cardiac Calcification"nScoring may be calculated. In an asymptomatic"npopulation and/or patients with concomitant risk"nfactors like diabetes mellitus, determination of the"npresence of coronary calcifications identifies the"npatients at risk for future myocardial infarction and"ncoronary artery disease. In patients without coronary"ncalcifications, future cardiovascular events could"nbe excluded. Therefore, detecting and recognizing"ncalcification related to the heart on chest radiography"nand other imaging modalities such as fluoroscopy, CT"nand echocardiography may have important clinical"nimplications.

  4. Cardiac tissue engineering



    Full Text Available We hypothesized that clinically sized (1-5 mm thick,compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3 can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of perfluorocarbons, or with electrical stimulation (continuous application of biphasic pulses, 2 ms, 5 V, 1 Hz. Tissue constructs cultured without perfusion or electrical stimulation served as controls. Medium perfusion and addition of perfluorocarbons resulted in compact, thick constructs containing physiologic density of viable, electromechanically coupled cells, in contrast to control constructs which had only a ~100 mm thick peripheral region with functionally connected cells. Electrical stimulation of cultured constructs resulted in markedly improved contractile properties, increased amounts of cardiac proteins, and remarkably well developed ultrastructure (similar to that of native heart as compared to non-stimulated controls. We discuss here the state of the art of cardiac tissue engineering, in light of the biomimetic approach that reproduces in vitro some of the conditions present during normal tissue development.

  5. Cardiac conduction system

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals ... to contract. The main components of the cardiac conduction system are the SA node, AV node, bundle ...

  6. Cardiac MRI in Athletes

    Luijkx, T.


    Cardiac magnetic resonance imaging (CMR) is often used in athletes to image cardiac anatomy and function and is increasingly requested in the context of screening for pathology that can cause sudden cardiac death (SCD). In this thesis, patterns of cardiac adaptation to sports are investigated with C

  7. Cardiac perception and cardiac control. A review.

    Carroll, D


    The evidence regarding specific cardiac perception and discrimination, and its relationship to voluntary cardiac control, is critically reviewed. Studies are considered in three sections, depending on the method used to assess cardiac perception: questionnaire assessment, discrimination procedures, and heartbeat tracking. The heartbeat tracking procedure would appear to suffer least from interpretative difficulties. Recommendations are made regarding the style of analysis used to assess heartbeat perception in such tracking tasks. PMID:348240

  8. What Is Cardiac Rehabilitation?

    ANSWERS by heart Treatments + Tests What Is Cardiac Rehabilitation? A cardiac rehabilitation (rehab) program takes place in a hospital or ... special help in making lifestyle changes. During your rehabilitation program you’ll… • Have a medical evaluation to ...

  9. Diffuse infiltrative cardiac tuberculosis

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  10. Satellite tagging and cardiac physiology reveal niche expansion in salmon sharks.

    Weng, Kevin C; Castilho, Pedro C; Morrissette, Jeffery M; Landeira-Fernandez, Ana M; Holts, David B; Schallert, Robert J; Goldman, Kenneth J; Block, Barbara A


    Shark populations are declining globally, yet the movements and habitats of most species are unknown. We used a satellite tag attached to the dorsal fin to track salmon sharks (Lamna ditropis) for up to 3.2 years. Here we show that salmon sharks have a subarctic-to-subtropical niche, ranging from 2 degrees to 24 degrees C, and they spend winter periods in waters as cold as 2 degrees to 8 degrees C. Functional assays and protein gels reveal that the expression of excitation-contraction coupling proteins is enhanced in salmon shark hearts, which may underlie the shark's ability to maintain heart function at cold temperatures and their niche expansion into subarctic seas. PMID:16210538

  11. Cardiac tumours in children

    Parsons Jonathan M


    Full Text Available Abstract Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT and Magnetic Resonance Imaging (MRI of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor.

  12. Map-based model of the cardiac action potential

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  13. Stem cells for cardiac repair: an introduction

    Bastiaan C du Pr(e); Pieter A Doevendans; Linda W van Laake


    Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.

  14. Stimulating endogenous cardiac regeneration

    Amanda eFinan


    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  15. Cardiac mitochondria exhibit dynamic functional clustering



    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  16. Preoperative cardiac risk management

    Vidaković Radosav; Poldermans Don; Nešković Aleksandar N.


    Approximately 100 million people undergo noncardiac surgery annually worldwide. It is estimated that around 3% of patients undergoing noncardiac surgery experience a major adverse cardiac event. Although cardiac events, like myocardial infarction, are major cause of perioperative morbidity or mortality, its true incidence is difficult to assess. The risk of perioperative cardiac complications depends mainly on two conditions: 1) identified risk factors, and 2) the type of the surgical p...

  17. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies

    Hollander, John M.; Thapa, Dharendra; Shepherd, Danielle L.


    Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial su...

  18. Blunt cardiac rupture.

    Martin, T D; Flynn, T C; Rowlands, B J; Ward, R E; Fischer, R P


    Blunt injury to the heart ranges from contusion to disruption. This report comprises 14 patients seen during a 6-year period with cardiac rupture secondary to blunt trauma. Eight patients were injured in automobile accidents, two patients were injured in auto-pedestrian accidents, two were kicked in the chest by ungulates, and two sustained falls. Cardiac tamponade was suspected in ten patients. Five patients presented with prehospital cardiac arrest or arrested shortly after arrival. All underwent emergency department thoracotomy without survival. Two patients expired in the operating room during attempted cardiac repair; both had significant extracardiac injury. Seven patients survived, three had right atrial injuries, three had right ventricular injuries, and one had a left atrial injury. Cardiopulmonary bypass was not required for repair of the surviving patients. There were no significant complications from the cardiac repair. The history of significant force dispersed over a relatively small area of the precordium as in a kicking injury from an animal or steering wheel impact should alert the physician to possible cardiac rupture. Cardiac rupture should be considered in patients who present with signs of cardiac tamponade or persistent thoracic bleeding after blunt trauma. PMID:6708151

  19. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster.

    Anthony Cammarato

    Full Text Available Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25% had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

  20. Biomaterials for cardiac regeneration

    Ruel, Marc


    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  1. Mathematical cardiac electrophysiology

    Colli Franzone, Piero; Scacchi, Simone


    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  2. [Cardiac evaluation before non-cardiac surgery].

    Menzenbach, Jan; Boehm, Olaf


    Before non-cardiac surgery, evaluation of cardiac function is no frequent part of surgical treatment. European societies of anesthesiology and cardiology published consensus-guidelines in 2014 to present a reasonable approach for preoperative evaluation. This paper intends to differentiate the composite of perioperative risk and to display the guidelines methodical approach to handle it. Features to identify patients at risk from an ageing population with comorbidities, are the classification of surgical risk, functional capacity and risk indices. Application of diagnostic means, should be used adjusted to this risk estimation. Cardiac biomarkers are useful to discover risk of complications or mortality, that cannot be assessed by clinical signs. After preoperative optimization and perioperative cardiac protection, the observation of the postoperative period remains, to prohibit complications or even death. In consideration of limited resources of intensive care department, postoperative ward rounds beyond intensive care units are considered to be an appropriate instrument to avoid or recognize complications early to reduce postoperative mortality. PMID:27479258

  3. Cardiac metabolism and arrhythmias

    Barth, Andreas S.; Tomaselli, Gordon F.


    Sudden cardiac death remains a leading cause of mortality in the Western world, accounting for up to 20% of all deaths in the U.S.1, 2 The major causes of sudden cardiac death in adults age 35 and older are coronary artery disease (70–80%) and dilated cardiomyopathy (10–15%).3 At the molecular level, a wide variety of mechanisms contribute to arrhythmias that cause sudden cardiac death, ranging from genetic predisposition (rare mutations and common polymorphisms in ion channels and structural...

  4. [Cardiac Rehabilitation 2015].

    Hoffmann, Andreas


    The goals of cardiac rehabilitation are (re-)conditioning and secondary prevention in patients with heart disease or an elevated cardiovascular risk profile. Rehabilitation is based on motivation through education, on adapted physical activity, instruction of relaxation techniques, psychological support and optimized medication. It is performed preferably in groups either in outpatient or inpatient settings. The Swiss working group on cardiac rehabilitation provides a network of institutions with regular quality auditing. Positive effects of rehabilitation programs on mortality and morbidity have been established by numerous studies. Although a majority of patients after cardiac surgery are being referred to rehabilitation, these services are notoriously underused after catheter procedures. PMID:26602848

  5. Comprehensive cardiac rehabilitation

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O;


    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed for...... uncertain and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  6. Molecular Basis of Cardiac Myxomas

    Pooja Singhal


    Full Text Available Cardiac tumors are rare, and of these, primary cardiac tumors are even rarer. Metastatic cardiac tumors are about 100 times more common than the primary tumors. About 90% of primary cardiac tumors are benign, and of these the most common are cardiac myxomas. Approximately 12% of primary cardiac tumors are completely asymptomatic while others present with one or more signs and symptoms of the classical triad of hemodynamic changes due to intracardiac obstruction, embolism and nonspecific constitutional symptoms. Echocardiography is highly sensitive and specific in detecting cardiac tumors. Other helpful investigations are chest X-rays, magnetic resonance imaging and computerized tomography scan. Surgical excision is the treatment of choice for primary cardiac tumors and is usually associated with a good prognosis. This review article will focus on the general features of benign cardiac tumors with an emphasis on cardiac myxomas and their molecular basis.

  7. Automatic Implantable Cardiac Defibrillator

    Full Text Available Automatic Implantable Cardiac Defibrillator February 19, 2009 Halifax Health Medical Center, Daytona Beach, FL Welcome to Halifax Health Daytona Beach, Florida. Over the next hour you' ...

  8. Sudden Cardiac Arrest

    ... scan, or MUGA, which shows how well your heart is pumping blood. Magnetic resonance imaging (MRI) which gives doctors detailed pictures of your heart. How is SCA treated? Sudden cardiac arrest should ...

  9. Sudden Cardiac Arrest

    ... Heart Risk Factors & Prevention Heart Diseases & Disorders Atrial Fibrillation (AFib) Sudden Cardiac Arrest (SCA) SCA: Who's At Risk? Prevention of SCA What Causes SCA? SCA Awareness Atrial Flutter Heart Block Heart Failure Sick Sinus Syndrome Substances & Heart Rhythm Disorders Symptoms & ...

  10. Sudden cardiac death

    Aranđelović Aleksandra Č.


    Full Text Available Sudden cardiac death in an athlete is rare and tragic event. An athlete's death draws high public attention given that athletes are considered the healthiest category of society. The vast majority of sudden cardiac death in young athletes is due to congenital cardiac malformations such as hypertrophie cardiomyopathy and various coronary artery anomalies. In athletes over age 35, the usual cause of sudden cardiac death is coronary artery disease. With each tragic death of a young athlete, there is a question why this tragedy has not been prevented. The American College of Sports Medicine and the American Heart Association recommend that a pre-participation exam should include a complete cardiovascular history and physical examination.

  11. Cardiac Risk Assessment

    ... to assess cardiac risk include: High-sensitivity C-reactive protein (hs-CRP) : Studies have shown that measuring ... LDL-C but does not respond to typical strategies to lower LDL-C such as diet, exercise, ...

  12. Cardiac arrest - cardiopulmonary resuscitation

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi


    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  13. Awareness in cardiac anesthesia.

    Serfontein, Leon


    Cardiac surgery represents a sub-group of patients at significantly increased risk of intraoperative awareness. Relatively few recent publications have targeted the topic of awareness in this group. The aim of this review is to identify areas of awareness research that may equally be extrapolated to cardiac anesthesia in the attempt to increase understanding of the nature and significance of this scenario and how to reduce it.

  14. Safety in cardiac surgery

    Siregar, S.


    The monitoring of safety in cardiac surgery is a complex process, which involves many clinical, practical, methodological and statistical issues. The objective of this thesis was to measure and to compare safety in cardiac surgery in The Netherlands using the Netherlands Association for Cardio-Thoracic Surgery (NVT) database. The safety of care is usually measured using patient outcomes. If outcomes are not available, the process and structure of care may be used. Outcomes should be adjusted ...

  15. Cardiac rehabilitation in Germany.

    Karoff, Marthin; Held, Klaus; Bjarnason-Wehrens, Birna


    The purpose of this review is to give an overview of the rehabilitation measures provided for cardiac patients in Germany and to outline its legal basis and outcomes. In Germany the cardiac rehabilitation system is different from rehabilitation measures in other European countries. Cardiac rehabilitation in Germany since 1885 is based on specific laws and the regulations of insurance providers. Cardiac rehabilitation has predominantly been offered as an inpatient service, but has recently been complemented by outpatient services. A general agreement on the different indications for offering these two services has yet to be reached. Cardiac rehabilitation is mainly offered after an acute cardiac event and bypass surgery. It is also indicated in severe heart failure and special cases of percutaneous coronary intervention. Most patients are men (>65%) and the age at which events occur is increasing. The benefits obtained during the 3-4 weeks after an acute event, and confirmed in numerous studies, are often later lost under 'usual care' conditions. Many attempts have been made by rehabilitation institutions to improve this deficit by providing intensive aftercare. One instrument set up to achieve this is the nationwide institution currently comprising more than 6000 heart groups with approximately 120000 outpatients. After coronary artery bypass grafting or acute coronary syndrome cardiac rehabilitation can usually be started within 10 days. The multidisciplinary rehabilitation team consists of cardiologists, psychologists, exercise therapists, social workers, nutritionists and nurses. The positive effects of cardiac rehabilitation are also important economically, for example, for the improvement of secondary prevention and vocational integration. PMID:17301623

  16. Ranolazine in Cardiac Arrhythmia.

    Saad, Marwan; Mahmoud, Ahmed; Elgendy, Islam Y; Richard Conti, C


    Ranolazine utilization in the management of refractory angina has been established by multiple randomized clinical studies. However, there is growing evidence showing an evolving role in the field of cardiac arrhythmias. Multiple experimental and clinical studies have evaluated the role of ranolazine in prevention and management of atrial fibrillation, with ongoing studies on its role in ventricular arrhythmias. In this review, we will discuss the pharmacological, experimental, and clinical evidence behind ranolazine use in the management of various cardiac arrhythmias. PMID:26459200

  17. Cardiac tumours in infancy

    Yadava, O.P.


    Cardiac tumours in infancy are rare and are mostly benign with rhabdomyomas, fibromas and teratomas accounting for the majority. The presentation depends on size and location of the mass as they tend to cause cavity obstruction or arrhythmias. Most rhabdomyomas tend to regress spontaneously but fibromas and teratomas generally require surgical intervention for severe haemodynamic or arrhythmic complications. Other relatively rare cardiac tumours too are discussed along with an Indian perspect...

  18. Cardiac Image Registration


    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  19. Cardiac Image Registration

    Jasbir Sra


    Full Text Available Long procedure time and somewhat suboptimal results hinder the widespread use of catheter ablation of complex arrhythmias such as atrial fibrillation (AF. Due to lack of contrast differentiation between the area of interest and surrounding structures in a moving organ like heart, there is a lack of proper intraprocedural guidance using current imaging techniques for ablation. Cardiac image registration is currently under investigation and is in clinical use for AF ablation. Cardiac image registration, which involves integration of two images in the context of the left atrium (LA, is intermodal, with the acquired image and the real-time reference image residing in different image spaces, and involves optimization, where one image space is transformed into the other. Unlike rigid body registration, cardiac image registration is unique and challenging due to cardiac motion during the cardiac cycle and due to respiration. This review addresses the basic principles of the emerging technique of registration and the inherent limitations as they relate to cardiac imaging and registration.

  20. Postoperative cardiac arrest due to cardiac surgery complications

    To examine the role of anesthetists in the management of cardiac arrest occurring in association with cardiac anesthesia. In this retrospective study we studied the potential performances for each of the relevant incidents among 712 patients undergoing cardiac operations at Golestan and Naft Hospitals Ahwaz between November 2006 and July 2008. Out of total 712 patients undergoing cardiac surgery, cardiac arrest occurred in 28 cases (3.9%) due to different postoperative complications. This included massive bleeding (50% of cardiac arrest cases, 1.9% of patients); pulseless supra ventricular tachycardia (28.5% of cardiac arrest cases, 1.1% of patients); Heart Failure (7% of cardiac arrest cases, 0.2% of patients); Aorta Arc Rapture (3.5% of cardiac arrest cases, 0.1% of patients); Tamponade due to pericardial effusion (3.5% of cardiac arrest cases, 0.1% of total patients); Right Atrium Rupture (3.5% of cardiac arrest cases, 0.1% of patients) were detected after cardiac surgery. Out of 28 cases 7 deaths occurred (25% of cardiac arrest cases, 0.1% of patients). The most prevalent reason for cardiac arrest during post operative phase was massive bleeding (50%) followed by pulseless supra ventricular tachycardia (28.5%). Six patients had some morbidity and the remaining 15 patients recovered. There are often multiple contributing factors to a cardiac arrest under cardiac anesthesia, as much a complete systematic assessment of the patient, equipment, and drugs should be completed. We also found that the diagnosis and management of cardiac arrest in association with cardiac anesthesia differs considerably from that encountered elsewhere. (author)

  1. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling

    Mureli, Shwetha; Gans, Christopher P.; Bare, Dan J; Geenen, David L.; Kumar, Nalin M.; Banach, Kathrin


    Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 ce...

  2. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study*

    Zhan, He-qing; Xia, Ling; Shou, Guo-fa; Zang, Yun-liang; Liu, Feng; Crozier, Stuart


    In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level...

  3. Pediatric cardiac postoperative care

    Auler Jr. José Otávio Costa


    Full Text Available The Heart Institute of the University of São Paulo, Medical School is a referral center for the treatment of congenital heart diseases of neonates and infants. In the recent years, the excellent surgical results obtained in our institution may be in part due to modern anesthetic care and to postoperative care based on well-structured protocols. The purpose of this article is to review unique aspects of neonate cardiovascular physiology, the impact of extracorporeal circulation on postoperative evolution, and the prescription for pharmacological support of acute cardiac dysfunction based on our cardiac unit protocols. The main causes of low cardiac output after surgical correction of heart congenital disease are reviewed, and methods of treatment and support are proposed as derived from the relevant literature and our protocols.

  4. Modelling the effects of cardiac pulsations in arterial spin labelling

    It has recently been demonstrated experimentally that cardiac pulsations seem significantly to affect the arterial spin labelling (ASL) signal. In this paper, we introduce a new theoretical model to examine this effect. Existing models of ASL do not take such effects into account since they model the transit of the ASL signal assuming uniform plug flow with a single transit delay. In this study, we model cardiac pulsations through the coupling of the Navier-Stokes equations with the three-dimensional mass transport equation. Our results complement the experimental findings and suggest that the ASL signal does depend on the timing of the onset of the cardiac cycle relative to the tagging and imaging locations. However, cardiac pulsatility only appears to have a small effect on the quantification of perfusion estimates.

  5. Role of external cardiac compression in truncal trauma.

    Mattox, K L; Feliciano, D V


    External cardiac compression (ECC) was originally developed for patients with nontraumatic cardiac conditions, but it is now used for a wide variety of emergency conditions. As an integral part of cardiopulmonary resuscitation (CPR), ECC coupled with forced pulmonary ventilation may NOT be applicable to cases of cardiac arrest following penetrating and blunt thoracic and abdominal trauma. Review of 100 patients with penetrating or blunt truncal trauma who received CPR and ECC more than 3 minutes prehospital revealed NO survivors despite continued aggressive resuscitative efforts in 49 of the patients upon arrival at a trauma center. Major cardiovascular disruption was found at thoracotomy or autopsy in all patients. In another 12 patients receiving forced ventilation and prehospital ECC, air embolism to the coronary arteries was the cause of death. CPR by paramedics, physicians, nurses, or lay persons does not appear to be of value in patients who have sustained cardiac arrest from truncal trauma. PMID:7143499

  6. Giant Cardiac Cavernous Hemangioma.

    Unger, Eric; Costic, Joseph; Laub, Glenn


    We report the case of an asymptomatic giant cardiac cavernous hemangioma in a 71-year-old man. The intracardiac mass was discovered incidentally during surveillance for his prostate cancer; however, the patient initially declined intervention. On presentation to our institution 7 years later, the lesion had enlarged significantly, and the patient consented to excision. At surgery, an 8 × 6.5 × 4.8 cm intracardiac mass located on the inferior heart border was excised with an intact capsule through a median sternotomy approach. The patient had an uneventful postoperative course. We discuss the diagnostic workup, treatment, and characteristics of this rare cardiac tumor. PMID:26140782

  7. Radiography in cardiology [cardiac disorders, cardiac insufficiency

    The diagnostic procedure in cardiology nearly always requires an X-ray examination of the thorax. This examination is very informative when it is correctly performed and interpreted. The radiographs need to be read precisely and comprehensively: this includes the evaluation of the silhouette of the heart (size, form and position) as well as the examination of extra-cardiac thoracic structures allowing among other things to search for signs of cardiac insufficiency. The conclusion of the X-ray examination can be drawn after having brought together information concerning the case history, the clinical examination and the study of the radiographs. The radiologist finds himself in one of three situations: (1) the information provided by the X-ray pictures is characteristic of a disease and permits a diagnosis, (2) the X-ray pictures indicate a group of hypotheses; further complementary tests could be useful and (3) the X-ray pictures provide ambiguous even contradictory information; it is necessary to complete the radiological examination by other techniques such as an ultrasonographic study of the heart

  8. Serum myoglobin after cardiac catheterisation.

    McComb, J. M.; McMaster, E A


    Study of 80 consecutive patients undergoing elective diagnostic cardiac catheterisation showed that after the procedure 25 (31%) developed myoglobinaemia. This was attributed to complications of the catheterisation in two. The remaining 23 had received premedication by intramuscular injection. In patients without intramuscular injections myoglobinaemia did not occur after uncomplicated cardiac catheterisation. The study did not support the proposition that cardiac catheterisation results in m...

  9. Cardiorespiratory Coupling in Health and Disease

    Garcia, Alfredo J.; Koschnitzky, Jenna E.; Dashevskiy, Tatiana; Ramirez, Jan-Marino


    Cardiac and respiratory activities are intricately linked both functionally as well as anatomically through highly overlapping brainstem networks controlling these autonomic physiologies that are essential for survival. Cardiorespiratory coupling (CRC) has many potential benefits creating synergies that promote healthy physiology. However, when such coupling deteriorates autonomic dysautonomia may ensue. Unfortunately there is still an incomplete mechanistic understanding of both normal and p...

  10. Hepato-cardiac disorders

    Yasser; Mahrous; Fouad; Reem; Yehia


    Understanding the mutual relationship between the liver and the heart is important for both hepatologists and cardiologists. Hepato-cardiac diseases can be classified into heart diseases affecting the liver, liver diseases affecting the heart, and conditions affecting the heart and the liver at the same time. Differential diagnoses of liver injury are extremely important in a cardiologist’s clinical practice calling for collaboration between cardiologists and hepatologists due to the many other diseases that can affect the liver and mimic haemodynamic injury. Acute and chronic heart failure may lead to acute ischemic hepatitis or chronic congestive hepatopathy. Treatment in these cases should be directed to the primary heart disease. In patients with advanced liver disease, cirrhotic cardiomyopathy may develop including hemodynamic changes, diastolic and systolic dysfunctions, reduced cardiac performance and electrophysiological abnormalities. Cardiac evaluation is important for patients with liver diseases especially before and after liver transplantation. Liver transplantation may lead to the improvement of all cardiac changes and the reversal of cirrhotic cardiomyopathy. There are systemic diseases that may affect both the liver and the heart concomitantly including congenital, metabolic and inflammatory diseases as well as alcoholism. This review highlights these hepatocardiac diseases

  11. Primary cardiac tumors

    Cardiac tumors happen to be among the less known pathologies without clear treatment standards. Even one decade ago most of the cardiac tumor diagnosis were made post mortem, and only reports of isolated cases could be found in the literature, showing the lack of interest in the investigation of these pathologies by cardiology and cardiovascular surgery specialists. With the development of echocardiography and of cardiovascular surgery, more cases of primary and metastatic cardiac tumors have been diagnosed. Many cases have been treated by palliative or curative surgical interventions, thus increasing the reports in the world literature and the experience in this field, and pointing out the real incidence of these pathologies, not being as bizarre as it had been considered. a revision of the literature will be made, in which the frequency and the suggested interventions will be reported, as well as the cases of cardiac pathology in two cardiovascular centers of the country known by the author. The echocardiographic, pathologic and histological characteristics of the representative cases will be presented, without a greater evidence level, due to the problem's incidence and the few cases reported by these centers

  12. Cardiac MRI tagging

    Cardiac MRI tagging is an original technique based upon the perturbation of the magnetization of determined regions of the myocardium (tags). The motion of the tags accurately reflects the deformation of the underlying tissue. Data analysis requires special techniques to reconstruct the 3D motion of the heart, and to evaluate the myocardial strain, locally and throughout the whole heart. (authors)

  13. Automatic Implantable Cardiac Defibrillator

    Full Text Available ... Over the next hour you'll see the implantation of an automated implantable cardiac defibrillator. The surgery ... evening we're going to be discussing the implantation of a defibrillator. It’s a battery-powered implantable ...

  14. Cardiac effects of vasopressin.

    Pelletier, Jean-Sébastien; Dicken, Bryan; Bigam, David; Cheung, Po-Yin


    Vasopressin is an essential hormone involved in the maintenance of cardiovascular homeostasis. It has been in use therapeutically for many decades, with an emphasis on its vasoconstrictive and antidiuretic properties. However, this hormone has a ubiquitous influence and has specific effects on the heart. Although difficult to separate from its powerful vascular effects in the clinical setting, a better understanding of vasopressin's direct cardiac effects could lead to its more effective clinical use for a variety of shock states by maximizing its therapeutic benefit. The cardiac-specific effects of vasopressin are complex and require further elucidation. Complicating our understanding include the various receptors and secondary messengers involved in vasopressin's effects, which may lead to various results based on differing doses and varying environmental conditions. Thus, there have been contradictory reports on vasopressin's action on the coronary vasculature and on its effect on inotropy. However, beneficial results have been found and warrant further study to expand the potential therapeutic role of vasopressin. This review outlines the effect of vasopressin on the coronary vasculature, cardiac contractility, and on hypertrophy and cardioprotection. These cardiac-specific effects of vasopressin represent an interesting area for further study for potentially important therapeutic benefits. PMID:24621650

  15. Cardiac pacemaker power sources

    A review of chemical and radioisotope batteries used in cardiac pacemakers is presented. The battery systems are examined in terms of longevity, reliability, cost, size and shape, energy density, weight, internal resistance versus time, end-of-life voltage, chemical compatibility, and potential failure mechanisms

  16. [Cardiac amyloidosis. General review].

    Laraki, R


    Cardiac amyloidosis, most often of AL type, is a non-exceptional disease as it represents 5 to 10% of non-ischemic cardiomyopathies. It realizes typically a restrictive cardiomyopathy. Nevertheless the wide diversity of possible presentation makes it a "big shammer" which must be evoked in front of every unexplained cardiopathy after the age of forty. If some associated manifestations can rapidly suggest the diagnosis, as a peripheric neuropathy especially a carpal tunnel syndrome or palpebral ecchymosis, cardiac involvement can also evolve in an apparently isolated way. The most suggestive paraclinic elements for the diagnosis are, in one hand, the increased myocardial echogenicity with a "granular sparkling" appearance seen throughout all walls of the left ventricle and, in the other hand, the association of a thickened left ventricle and a low voltage (electrocardiogram could also show pseudo-infarct Q waves). In front of such aspects, the proof of amyloidosis is brought by an extra-cardiac biopsy or by scintigraphy with labelled serum amyloid P component, so that the indications of endomyocardial biopsy are very limited today. The identification of the amyloid nature of a cardiopathy has an direct therapeutic implication: it contra-indicates the use of digitalis, calcium channel blockers and beta-blockers. The treatment of AL amyloidosis (chemotherapy with alkylant agents) remains very unsatisfactory especially in the cardiac involvement which is the most frequent cause of death (in AL amyloidosis). Last, cardiac amyloidosis is a bad indication for transplantation which results are burden by rapid progression of deposits especially in the gastro-intestinal tract and the nervous system. PMID:8059146

  17. Cardiac surgery outcomes.

    Halpin, Linda S; Barnett, Scott D; Beachy, Jim


    Accrediting organizations and payers are demanding valid and reliable data that demonstrate the value of services. Federal agencies, healthcare industry groups, and healthcare watchdog groups are increasing the demand for public access to outcomes data. A new and growing outcomes dynamic is the information requested by prospective patients in an increasingly consumer-oriented business. Patients demand outcomes, and resources are developing to meet these demands. Physicians are increasingly confronted with requests for information about their mortality and morbidity rates, malpractice suits, and disciplinary actions received. For example, in Virginia, prospective patients have access to data provided by the nonprofit group Virginia Health Information. After numerous resolutions by the Virginia Senate since 1999, the prospective Virginia medical consumer now has access to several annual publications: Virginia Hospitals: A Consumer's Guide, 1999 Annual Report and Strategic Plan Update, and the 1999 Industry Report: Virginia Hospitals and Nursing Facilities. Consumers have access to cardiac outcomes data stratified by hospital, gender, and cardiac service line (cardiac surgery, noninvasive cardiology, and invasive cardiology). This is particularly relevant to IHI because Virginia Health Information specifically targets cardiac care. IHI has a sizable investment in cardiovascular outcomes and has found outcomes measurement and research are key to providing quality care. IHI's goal is to move from an outcomes management model to a disease management model. The hope is to incorporate all aspects of the patient's continuum of care, from preoperative and diagnostic services through cardiac interventions to postoperative rehabilitation. Furthermore, every step along the way will be supported with functional status and quality of life assessments. Although these goals are ambitious and expensive, the return on investment is high. PMID:14618772

  18. Nitric oxide increases myocardial efficiency in the hypoxia-tolerant turtle Trachemys scripta

    Misfeldt, Mikkel; Fago, Angela; Gesser, Hans


    Nitric oxide (NO) may influence cardiac mechanical performance relative to O2 consumption by depressing respiration rate and by affecting the excitation-contraction coupling. Such effects of NO should be particularly important during hypoxia in species such as the hypoxia-tolerant turtle Trachemys....... This effect was particularly pronounced under O2 deficiency and may therefore contribute towards preserving cardiac function and to the overall excellent hypoxic tolerance of the turtle...

  19. Splanchnic and systemic hemodynamic derangement in decompensated cirrhosis

    Møller, S; Bendtsen, F; Henriksen, Jens Henrik Sahl


    significance to the low systemic vascular resistance and abnormal volume distribution of blood, which are important elements in the development of the concomitant cardiac dysfunction, recently termed 'cirrhotic cardiomyopathy'. Systolic and diastolic functions are impaired with direct relation to the degree of...... liver dysfunction. Significant pathophysiological mechanisms are reduced beta-adrenergic receptor signal transduction, defective cardiac excitation-contraction coupling and conductance abnormalities. Vasodilators such as nitric oxide and calcitonin gene-related peptide are among the candidates in...

  20. Risk factors and the effect of cardiac resynchronization therapy on cardiac and non-cardiac mortality in MADIT-CRT

    Perkiomaki, Juha S; Ruwald, Anne-Christine; Kutyifa, Valentina;


    causes, 108 (63.9%) deemed cardiac, and 61 (36.1%) non-cardiac. In multivariate analysis, increased baseline creatinine was significantly associated with both cardiac and non-cardiac deaths [hazard ratio (HR) 2.97, P ...AIMS: To understand modes of death and factors associated with the risk for cardiac and non-cardiac deaths in patients with cardiac resynchronization therapy with implantable cardioverter-defibrillator (CRT-D) vs. implantable cardioverter-defibrillator (ICD) therapy, which may help clarify...

  1. A Fully Coupled Model for Electromechanics of the Heart

    Henian Xia; Kwai Wong; Xiaopeng Zhao


    We present a fully coupled electromechanical model of the heart. The model integrates cardiac electrophysiology and cardiac mechanics through excitation-induced contraction and deformation-induced current. Numerical schemes based on finite element were implemented in a supercomputer. Numerical examples were presented using a thin cardiac tissue and a dog ventricle with realistic geometry. Performance of the parallel simulation scheme was studied. The model provides a useful tool to understand...

  2. Calcium Sensing Receptor Promotes Cardiac Fibroblast Proliferation and Extracellular Matrix Secretion

    Xinying Zhang


    Full Text Available Aims: Calcium-sensing receptor (CaR acts as a G protein coupled receptor that mediates the increase of the intracellular Ca2+ concentration. The expression of CaR has been confirmed in various cell types, including cardiomyocytes, smooth muscle cells, neurons and vascular endothelial cells. However, whether CaR is expressed and functions in cardiac fibroblasts has remained unknown. The present study investigated whether CaR played a role in cardiac fibroblast proliferation and extracellular matrix (ECM secretion, both in cultured rat neonatal cardiac fibroblasts and in a model of cardiac hypertrophy induced by isoproterenol (ISO. Methods and Results: Immunofluorescence, immunohistochemistry and Western blot analysis revealed the presence of CaR in cardiac fibroblasts. Calcium and calindol, a specific activator of CaR, elevated the intracellular calcium concentration in cardiac fibroblasts. Pretreatment of cardiac fibroblasts with calhex231, a specific inhibitor of CaR, U73122 and 2-APB attenuated the calindol- and extracellular calcium-induced increase in intracellular calcium ([Ca2+]i. Cardiac fibroblast proliferation and migration were assessed by MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, cell count and the cell scratch assay. ECM production was detected by expression of matrix metalloproteinase-3 and -9 (MMP-3 and -9. Activation of CaR promoted cardiac fibroblast proliferation and migration and ECM secretion. More importantly, calhex231, suppressed cardiac fibroblast proliferation and migration and MMP-3 and -9 expression. To further investigate the effect of CaR on cardiac fibrosis, a model of ISO-induced cardiac hypertrophy was established. Pretreatment with calhex231 prevented cardiac fibrosis and decreased the expression of MMP-3 and -9 expression. Conclusions: Our results are the first report that CaR plays an important role in Ca2+ signaling involved in cardiac fibrosis through the phospholipase C- inositol 3

  3. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)


    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  4. Cardiac arrest in children

    Tress Erika


    Full Text Available Major advances in the field of pediatric cardiac arrest (CA were made during the last decade, starting with the publication of pediatric Utstein guidelines, the 2005 recommendations by the International Liaison Committee on Resuscitation, and culminating in multicenter collaborations. The epidemiology and pathophysiology of in-hospital and out-of-hospital CA are now well described. Four phases of CA are described and the term "post-cardiac arrest syndrome" has been proposed, along with treatment goals for each of its four phases: immediate post-arrest, early post-arrest, intermediate and recovery phase. Hypothermia is recommended to be considered as a therapy for post-CA syndrome in comatose patients after CA, and large multicenter prospective studies are underway. We reviewed landmark articles related to pediatric CA published during the last decade. We present the current knowledge of epidemiology, pathophysiology and treatment of CA relevant to pre-hospital and acute care health practitioners.

  5. Cardiac arrest in children.

    Tress, Erika E; Kochanek, Patrick M; Saladino, Richard A; Manole, Mioara D


    Major advances in the field of pediatric cardiac arrest (CA) were made during the last decade, starting with the publication of pediatric Utstein guidelines, the 2005 recommendations by the International Liaison Committee on Resuscitation, and culminating in multicenter collaborations. The epidemiology and pathophysiology of in-hospital and out-of-hospital CA are now well described. Four phases of CA are described and the term "post-cardiac arrest syndrome" has been proposed, along with treatment goals for each of its four phases: immediate post-arrest, early post-arrest, intermediate and recovery phase. Hypothermia is recommended to be considered as a therapy for post-CA syndrome in comatose patients after CA, and large multicenter prospective studies are underway. We reviewed landmark articles related to pediatric CA published during the last decade. We present the current knowledge of epidemiology, pathophysiology and treatment of CA relevant to pre-hospital and acute care health practitioners. PMID:20930971

  6. Socially differentiated cardiac rehabilitation

    Meillier, Lucette Kirsten; Nielsen, Kirsten Melgaard; Larsen, Finn Breinholt;


    recruitment and participation among low educated and socially vulnerable patients must be addressed to lower inequality in post-MI health. Our aim was to improve referral, attendance, and adherence rates among socially vulnerable patients by systematic screening and by offering a socially differentiated...... standard rehabilitation programme (SRP). If patients were identified as socially vulnerable, they were offered an extended version of the rehabilitation programme (ERP). Excluded patients were offered home visits by a cardiac nurse. Concordance principles were used in the individualised programme elements......%. Patients were equally distributed to the SRP and the ERP. No inequality was found in attendance and adherence among referred patients. Conclusions: It seems possible to overcome unequal referral, attendance, and adherence in cardiac rehabilitation by organisation of systematic screening and social...

  7. Cardiac metastases of osteosarcoma

    Osteosarcoma is a malignancy whose various sites of metastasis greatly modify its ultimate prognosis. We report a case of simultaneous pulmonary and cardiac metastases in a 41-year-old male patient with osteosarcoma of the tibia, presenting after more then one year of completion of adjuvant therapy with progressive dyspnea and cyanosis. Diagnosis was made on computerized tomogram and echocardiogram. The metastatic mass entirely occupying the right ventricle and the pulmonary artery proved fatal. (author)

  8. Cardiac Tissue Engineering



    We hypothesized that clinically sized (1-5 mm thick),compact cardiac constructs containing physiologically high density of viable cells (~108 cells/cm3) can be engineered in vitro by using biomimetic culture systems capable of providing oxygen transport and electrical stimulation, designed to mimic those in native heart. This hypothesis was tested by culturing rat heart cells on polymer scaffolds, either with perfusion of culture medium (physiologic interstitial velocity, supplementation of p...

  9. Penetrating Cardiac Injuries



    Objectives: To present our experience of penetrating cardiac injuries treated at Atatürk University hospital; in 17 years 38 patients were analyzed. Methods: Patients were classified into three groups: group A (stable), 12; group B (shock), 21; and group C (agonal), five. Five patients were treated by pericardial window and three by pericardiocentesis. Two patients in group C, 19 patients in group B and five patients in group A underwent median sternotomy or thoracotomy in the operating room...

  10. Benign cardiac tumours: cardiac CT and MRI imaging appearances

    Full text: Primary benign cardiac tumours are rarely found in clinical practice and are generally evaluated with echocardiography. However, with the increasing usage of helical multislice CT, the initial detection and evaluation of these masses may be made by the radiologist during routine daily practice for other indications. The echocardiographic, CT and cardiac MRI appearances of various benign cardiac tumours and masses are described and illustrated in this review

  11. Indeterminacy of Spatiotemporal Cardiac Alternans

    Zhao, Xiaopeng


    Cardiac alternans, a beat-to-beat alternation in action potential duration (at the cellular level) or in ECG morphology (at the whole heart level), is a marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of thousands of people in the US each year. Investigating cardiac alternans may lead to a better understanding of the mechanisms of cardiac arrhythmias and eventually better algorithms for the prediction and prevention of such dreadful diseases. In paced cardiac tissue, alternans develops under increasingly shorter pacing period. Existing experimental and theoretical studies adopt the assumption that alternans in homogeneous cardiac tissue is exclusively determined by the pacing period. In contrast, we find that, when calcium-driven alternans develops in cardiac fibers, it may take different spatiotemporal patterns depending on the pacing history. Because there coexist multiple alternans solutions for a given pacing period, the alternans pattern on a fiber becomes unpredictable. Usin...

  12. Biosynthesis of cardiac natriuretic peptides

    Goetze, Jens Peter


    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac p...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....... characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...

  13. Biosynthesis of cardiac natriuretic peptides

    Goetze, Jens Peter


    Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac...... inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly...... competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology....

  14. An overview of cardiac morphogenesis.

    Schleich, Jean-Marc; Abdulla, Tariq; Summers, Ron; Houyel, Lucile


    Accurate knowledge of normal cardiac development is essential for properly understanding the morphogenesis of congenital cardiac malformations that represent the most common congenital anomaly in newborns. The heart is the first organ to function during embryonic development and is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have allowed specification of the role of cellular precursors in the field of heart development. In this article we review the different steps of heart development, focusing on the processes of alignment and septation. We also show, as often as possible, the links between abnormalities of cardiac development and the main congenital heart defects. The development of animal models has permitted the unraveling of many mechanisms that potentially lead to cardiac malformations. A next step towards a better knowledge of cardiac development could be multiscale cardiac modelling. PMID:24138816

  15. Cardiac MRI for myocardial ischemia.

    Daly, Caroline


    Proper assessment of the physiologic impact of coronary artery stenosis on the LV myocardium can affect patient prognosis and treatment decisions. Cardiac magnetic resonance imaging (CMR) assesses myocardial perfusion by imaging the myocardium during a first-pass transit of an intravenous gadolinium bolus, with spatial and temporal resolution substantially higher than nuclear myocardial perfusion imaging. Coupled with late gadolinium enhancement (LGE) imaging for infarction during the same imaging session, CMR with vasodilating stress perfusion imaging can qualitatively and quantitatively assess the myocardial extent of hypoperfusion from coronary stenosis independent of infarcted myocardium. This approach has been validated experimentally, and multiple clinical trials have established its diagnostic robustness when compared to stress single-photon emission computed tomography. In specialized centers, dobutamine stress CMR has been shown to have incremental diagnostic value above stress echocardiography due to its high imaging quality and ability to image the heart with no restriction of imaging window. This paper reviews the technical aspects, diagnostic utility, prognostic values, challenges to clinical adaptation, and future developments of stress CMR imaging.

  16. Sudden Cardiac Death in Athletes.

    Wasfy, Meagan M; Hutter, Adolph M; Weiner, Rory B


    There are clear health benefits to exercise; even so, patients with cardiac conditions who engage in exercise and athletic competition may on rare occasion experience sudden cardiac death (SCD). This article reviews the epidemiology and common causes of SCD in specific athlete populations. There is ongoing debate about the optimal mechanism for SCD prevention, specifically regarding the inclusion of the ECG and/or cardiac imaging in routine preparticipation sports evaluation. This controversy and contemporary screening recommendations are also reviewed. PMID:27486488

  17. Cardiac Rehabilitation: Guidelines and Recommendations

    Catherine Monpere


    Cardiac rehabilitation has been shown to improve exercise tolerance and symptomatology in patients experiencing angina or heart failure and reduce long term mortality after myocardial infarction, with a good cost-effectiveness ratio. In addition to these `hard' endpoints, cardiac rehabilitation improves the patient's quality of life and risk factor profile through a multifactorial intervention. Indeed, cardiac rehabilitation is no longer restricted to physical reconditioning, but should now b...

  18. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness.

    Li, Dan; Paterson, David J


    Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are now recognized as important intracellular signalling molecules that modulate cardiac sympatho-vagal balance in the progression of heart disease. Recent studies have identified that a significant component of autonomic dysfunction associated with several cardiovascular pathologies resides at the end organ, and is coupled to impairment of cyclic nucleotide targeted pathways linked to abnormal intracellular calcium handling and cardiac neurotransmission. Emerging evidence also suggests that cyclic nucleotide coupled phosphodiesterases (PDEs) play a key role limiting the hydrolysis of cAMP and cGMP in disease, and as a consequence this influences the action of the nucleotide on its downstream biological target. In this review, we illustrate the action of nitric oxide-CAPON signalling and brain natriuretic peptide on cGMP and cAMP regulation of cardiac sympatho-vagal transmission in hypertension and ischaemic heart disease. Moreover, we address how PDE2A is now emerging as a major target that affects the efficacy of soluble/particulate guanylate cyclase coupling to cGMP in cardiac dysautonomia. PMID:26915722

  19. Signaling Pathways Involved in Cardiac Hypertrophy

    Tao Zewei; Li Longgui


    Cardiac hypertrophy is the heart's response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress.Traditionally, it has been considered a beneficial mechanism; however, sustained hypertrophy has been associated with a significant increase in the risk of cardiovascular disease and mortality. Delineating intracellular signaling pathways involved in the different aspects of cardiac hypertrophy will permit future improvements in potential targets for therapeutic intervention. Generally, there are two types of cardiac hypertrophies, adaptive hypertrophy, including eutrophy (normal growth) and physiological hypertrophy (growth induced by physical conditioning), and maladaptive hypertrophy, including pathologic or reactive hypertrophy (growth induced by pathologic stimuli) and hypertrophic growth caused by genetic mutations affecting sarcomeric or cytoskeletal proteins. Accumulating observations from animal models and human patients have identified a number of intracellular signaling pathways that characterized as important transducers of the hypertrophic response,including calcineurin/nuclear factor of activated Tcells, phosphoinositide 3-kinases/Akt (PI3Ks/Akt),G protein-coupled receptors, small G proteins,MAPK, PKCs, Gp130/STAT'3, Na+/H+ exchanger,peroxisome proliferator-activated receptors, myocyte enhancer factor 2/histone deacetylases, and many others. Furthermore, recent evidence suggests that adaptive cardiac hypertrophy is regulated in large part by the growth hormone/insulin-like growth factors axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive hypertrophy is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phosphorlipase C pathway, leading to an increase in cytosolic calcium and activation of PKC.

  20. Influence of vascular function and pulsatile hemodynamics on cardiac function.

    Bell, Vanessa; Mitchell, Gary F


    Interactions between cardiac and vascular structure and function normally are optimized to ensure delivery of cardiac output with modest pulsatile hemodynamic overhead. Aortic stiffening with age or disease impairs optimal ventricular-vascular coupling, increases pulsatile load, and contributes to left ventricular (LV) hypertrophy, reduced systolic function, and impaired diastolic relaxation. Aortic pulse pressure and timing of peak systolic pressure are well-known measures of hemodynamic ventricular-vascular interaction. Recent work has elucidated the importance of direct, mechanical coupling between the aorta and the heart. LV systolic contraction results in displacement of aortic and mitral annuli, thereby producing longitudinal stretch in the ascending aorta and left atrium, respectively. Force associated with longitudinal stretch increases systolic load on the LV. However, the resulting energy stored in the elastic elements of the proximal aorta during systole facilitates early diastolic LV recoil and rapid filling. This review discusses current views on hemodynamics and mechanics of ventricular-vascular coupling. PMID:26164466

  1. Diagnostic imaging of cardiac hypertrophy

    As imaging techniques for cardiac hypertrophy, the ultrasonic dimension gauze technique, echocardiography, ventriculography and the RI technique including emission RI tomography were outlined. (Chiba, N.)

  2. Cardiac manifestations of myotonic dystrophy type 1

    Petri, Helle; Vissing, John; Witting, Nanna; Bundgaard, Henning; Køber, Lars


    To estimate the degree of cardiac involvement regarding left ventricular ejection fraction, conduction abnormalities, arrhythmia, risk of sudden cardiac death (SCD) and the associations between cardiac involvement and cytosine-thymine-guanine (CTG)-repeat, neuromuscular involvement, age and gender...

  3. Antifibrinolytics in cardiac surgery

    Achal Dhir


    Full Text Available Cardiac surgery exerts a significant strain on the blood bank services and is a model example in which a multi-modal blood-conservation strategy is recommended. Significant bleeding during cardiac surgery, enough to cause re-exploration and/or blood transfusion, increases morbidity and mortality. Hyper-fibrinolysis is one of the important contributors to increased bleeding. This knowledge has led to the use of anti-fibrinolytic agents especially in procedures performed under cardiopulmonary bypass. Nothing has been more controversial in recent times than the aprotinin controversy. Since the withdrawal of aprotinin from the world market, the choice of antifibrinolytic agents has been limited to lysine analogues either tranexamic acid (TA or epsilon amino caproic acid (EACA. While proponents of aprotinin still argue against its non-availability. Health Canada has approved its use, albeit under very strict regulations. Antifibrinolytic agents are not without side effects and act like double-edged swords, the stronger the anti-fibrinolytic activity, the more serious the side effects. Aprotinin is the strongest in reducing blood loss, blood transfusion, and possibly, return to the operating room after cardiac surgery. EACA is the least effective, while TA is somewhere in between. Additionally, aprotinin has been implicated in increased mortality and maximum side effects. TA has been shown to increase seizure activity, whereas, EACA seems to have the least side effects. Apparently, these agents do not differentiate between pathological and physiological fibrinolysis and prevent all forms of fibrinolysis leading to possible thrombotic side effects. It would seem prudent to select the right agent knowing its risk-benefit profile for a given patient, under the given circumstances.

  4. Single ventricle cardiac defect

    Single ventricle heart is defined as a rare cardiac abnormality with a single ventricle chamber involving diverse functional and physiological defects. Our case is of a ten month-old baby boy who died shortly after admission to the hospital due to vomiting and diarrhoea. Autopsy findings revealed cyanosis of finger nails and ears. Internal examination revealed; large heart, weighing 60 grams, single ventricle, without a septum and upper membranous part. Single ventricle is a rare pathology, hence, this paper aims to discuss this case from a medico-legal point of view. (author)

  5. Hypokalemia and sudden cardiac death

    Kjeldsen, Keld


    Worldwide, approximately three million people suffer sudden cardiac death annually. These deaths often emerge from a complex interplay of substrates and triggers. Disturbed potassium homeostasis among heart cells is an example of such a trigger. Thus, hypokalemia and, also, more transient...... of fatal arrhythmia and sudden cardiac death a patient is, the more attention should be given to the potassium homeostasis....

  6. Atrial tumors in cardiac MRI

    Cardiac magnetic resonance imaging (MRI) is an important tool for the diagnosis of cardiac masses. Various cardiac tumors are predisposed to occurring in atrial structures. The aim of this review article is the description of atrial tumors and their morphological features in MRI. In general, cardiac tumors are rare: approximately 0.001-0.03% in autopsy studies. About 75% of them are benign. The most common cardiac tumor is the myxoma. They are predisposed to occur in the atria and show a characteristically strong hyperintense signal on T2-wieghted images in MRI. In other sequences a heterogeneous pattern reflects its variable histological appearance. Lipomas exhibit a signal behavior identical to fatty tissue with a typical passive movement in cine imaging. Fibroelastomas are the most common tumors of the cardiac valves. Consisting of avascular fibrous tissue, they often present with hypointense signal intensities. Thrombi attached to their surface can cause severe emboli even in small tumors. Amongst primary cardiac malignancies, sarcomas are most common and favor the atria. Secondary malignancies of the heart are far more common than primary ones (20-40 times). In case of known malignancies, approximately 10% of patients develop cardiac metastasis at the end of their disease. Lymphogenic metastases favor the pericardium, while hematogenic spread prefers the myocardium. Since they are not real atrial tumors, thrombi and anatomical structures of the atria have to be differentiated from other pathologies. (orig.)

  7. Cardiac arrest – cardiopulmonary resuscitation

    Basri Lenjani


    Conclusions: All survivors from cardiac arrest have received appropriate medical assistance within 10 min from attack, which implies that if cardiac arrest occurs near an institution health care (with an opportunity to provide the emergent health care the rate of survival is higher.

  8. Pneumothorax in cardiac pacing

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;


    AIM: To identify risk factors for pneumothorax treated with a chest tube after cardiac pacing device implantation in a population-based cohort.METHODS AND RESULTS: A nationwide cohort study was performed based on data on 28 860 patients from the Danish Pacemaker Register, which included all Danish...... patients who received their first pacemaker (PM) or cardiac resynchronization device from 1997 to 2008. Multiple logistic regression was used to estimate adjusted odds ratios (aOR) with 95% confidence intervals for the association between risk factors and pneumothorax treated with a chest tube. The median...... age was 77 years (25th and 75th percentile: 69-84) and 55% were male (n = 15 785). A total of 190 patients (0.66%) were treated for pneumothorax, which was more often in women [aOR 1.9 (1.4-2.6)], and in patients with age >80 years [aOR 1.4 (1.0-1.9)], a prior history of chronic obstructive pulmonary...

  9. Leadership in cardiac surgery.

    Rao, Christopher; Patel, Vanash; Ibrahim, Michael; Ahmed, Kamran; Wong, Kathie A; Darzi, Ara; von Segesser, Ludwig K; Athanasiou, Thanos


    Despite the efficacy of cardiac surgery, less invasive interventions with more uncertain long-term outcomes are increasingly challenging surgery as first-line treatment for several congenital, degenerative and ischemic cardiac diseases. The specialty must evolve if it is to ensure its future relevance. More importantly, it must evolve to ensure that future patients have access to treatments with proven long-term effectiveness. This cannot be achieved without dynamic leadership; however, our contention is that this is not enough. The demands of a modern surgical career and the importance of the task at hand are such that the serendipitous emergence of traditional charismatic leadership cannot be relied upon to deliver necessary change. We advocate systematic analysis and strategic leadership at a local, national and international level in four key areas: Clinical Care, Research, Education and Training, and Stakeholder Engagement. While we anticipate that exceptional individuals will continue to shape the future of our specialty, the creation of robust structures to deliver collective leadership in these key areas is of paramount importance. PMID:20884217

  10. Cardiac chamber scintiscanning

    The two methods of cardiac chamber scintiscanning, i.e. 'first pass' and 'ECG-triggered' examinations, are explained and compared. Two tables indicate the most significant radiation doses of the applied radio tracers, i.e. 99m-Tc-pertechnetate and 99m-Tc-HSA, to which a patient is exposed. These averaged values are calculated from various data given in specialised literature. On the basis of data given in literature, an effective half-life of approximately 5 hours in the intravascular space was calculated for the erythrocytes labelled with technetium 99m. On this basis, the radiation doses for the patients due to 99m-Tc-labelled erythrocytes are estimated. The advantages and disadvantages of the two methods applied for cardiac chamber scintiscanning are put into contrast and compared with the advantages and disadvantages of the quantitative X-ray cardiography of the left heart. The still existing problems connected with the assessment of ECG-triggered images are discussed in detail. The author performed investigations of his own, which concerned the above-mentioned problems. (orig./MG)

  11. Affect intensity and cardiac arousal.

    Blascovich, J; Brennan, K; Tomaka, J; Kelsey, R M; Hughes, P; Coad, M L; Adlin, R


    Relationships between affect intensity and basal, evoked, and perceived cardiac arousal were investigated in 3 experiments. Affect intensity was assessed using Larsen and Diener's (1987) Affect Intensity Measure (AIM). Cardiac arousal was evoked with exercise in the 1st study and with mental arithmetic in the 2nd and 3rd. Perceived cardiac arousal was measured under optimal conditions using a standard heartbeat discrimination procedure. Women as a group scored higher on the AIM. Affect intensity was unrelated to basal or evoked cardiac arousal and was negatively related to perceived cardiac arousal in all 3 studies. Data suggest that affect intensity, although unrelated to actual physiological arousal, is negatively related to the accuracy with which individuals perceive their own arousal. Results are discussed within the context of an expanded arousal-regulation model (Blascovich, 1990). PMID:1494983

  12. A 128-Channel Receive-Only Cardiac Coil for Highly Accelerated Cardiac MRI at 3 Tesla

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E; Polimeni, Jonathan R; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.


    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a “clam-shell” geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compar...

  13. Cardiac potassium channel subtypes

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter


    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that...... they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The...

  14. Trends in Cardiac Pacemaker Batteries

    Venkateswara Sarma Mallela


    Full Text Available Batteries used in Implantable cardiac pacemakers-present unique challenges to their developers and manufacturers in terms of high levels of safety and reliability. In addition, the batteries must have longevity to avoid frequent replacements. Technological advances in leads/electrodes have reduced energy requirements by two orders of magnitude. Micro-electronics advances sharply reduce internal current drain concurrently decreasing size and increasing functionality, reliability, and longevity. It is reported that about 600,000 pacemakers are implanted each year worldwide and the total number of people with various types of implanted pacemaker has already crossed 3 million. A cardiac pacemaker uses half of its battery power for cardiac stimulation and the other half for housekeeping tasks such as monitoring and data logging. The first implanted cardiac pacemaker used nickel-cadmium rechargeable battery, later on zinc-mercury battery was developed and used which lasted for over 2 years. Lithium iodine battery invented and used by Wilson Greatbatch and his team in 1972 made the real impact to implantable cardiac pacemakers. This battery lasts for about 10 years and even today is the power source for many manufacturers of cardiac pacemakers. This paper briefly reviews various developments of battery technologies since the inception of cardiac pacemaker and presents the alternative to lithium iodine battery for the near future.

  15. Platelets and cardiac arrhythmia

    JonasSDe Jong


    Full Text Available Sudden cardiac death remains one of the most prevalent modes of death in industrialized countries, and myocardial ischemia due to thrombotic coronary occlusion is its primary cause. The role of platelets in the occurrence of SCD extends beyond coronary flow impairment by clot formation. Here we review the substances released by platelets during clot formation and their arrhythmic properties. Platelet products are released from three types of platelet granules: dense core granules, alpha-granules, and platelet lysosomes. The physiologic properties of dense granule products are of special interest as a potential source of arrhythmic substances. They are released readily upon activation and contain high concentrations of serotonin, histamine, purines, pyrimidines, and ions such as calcium and magnesium. Potential arrhythmic mechanisms of these substances, e.g. serotonin and high energy phosphates, include induction of coronary constriction, calcium overloading, and induction of delayed after-depolarizations. Alpha-granules produce thromboxanes and other arachidonic acid products with many potential arrhythmic effects mediated by interference with cardiac sodium, calcium and potassium channels. Alpha-granules also contain hundreds of proteins that could potentially serve as ligands to receptors on cardiomyocytes. Lysosomal products probably do not have an important arrhythmic effect. Platelet products and ischemia can induce coronary permeability, thereby enhancing interaction with surrounding cardiomyocytes. Antiplatelet therapy is known to improve survival after myocardial infarction. Although an important part of this effect results from prevention of coronary clot formation, there is evidence to suggest that antiplatelet therapy also induces anti-arrhythmic effects during ischemia by preventing the release of platelet activation products.

  16. Metoclopramide-induced cardiac arrest

    Martha M. Rumore


    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  17. Cardiac perioperative complications in noncardiac surgery

    Radovanović Dragana; Kolak Radmila; Stokić Aleksandar; Radovanović Zoran; Jovanović Gordana


    Anesthesiologists are confronted with an increasing population of patients undergoing noncardiac surgery who are at risk for cardiac complications in the perioperative period. Perioperative cardiac complications are responsible for significant mortality and morbidity. The aim of the present study was to determine the incidence of perioperative (operative and postoperative) cardiac complications and correlations between the incidence of perioperative cardiac complications and type of surgical ...

  18. GENERAL: Stochastic Alternating Dynamics for Synchronous EAD-Like Beating Rhythms in Cultured Cardiac Myocytes

    Zhang, Ning; Zhang, Hui-Min; Liu, Zhi-Qiang; Ding, Xue-Li; Yang, Ming-Hao; Gu, Hua-Guang; Ren, Wei


    Dissolved cardiac myocytes can couple together and generate synchronous beatings in culture. We observed a synchronized early after-depolarization(EAD)-like rhythm in cultured cardiac myocytes and reproduced the experimental observation in a network mathematical model whose dynamics are close to a Hopf bifurcation. The mechanism for this EAD-like rhythm is attributed to noised-induced stochastic alternatings between the focus and the limit cycle. These results provide novel understandings for pathological heart rhythms like the early immature beatings.

  19. Stochastic Alternating Dynamics for Synchronous EAD-Like Beating Rhythms in Cultured Cardiac Myocytes

    ZHANG Ning; ZHANG Hui-Min; LIU Zhi-Qiang; DING Xue-Li; YANG Ming-Hao; GU Hua-Guang; REN Wei


    Dissolved cardiac myocytes can couple together and generate synchronous beatings in culture. We observed a synchronized early after-depolarization(EAD)-like rhythm in cultured cardiac myocytes and reproduced the experimental observation in a network mathematical model whose dynamics are close to a Hopf bifurcation. The mechanism for this EAD-like rhythm is attributed to noised-induced stochastic alternatings between the focus and the limit cycle. These results provide novel understandings for pathological heart rhythms like the early immature beatings.

  20. Epigenetic regulation in cardiac fibrosis

    Li-Ming; Yu; Yong; Xu


    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  1. Application of HTS technology to cardiac dysrhythmia detection

    Sobel, A.L. [Sandia National Labs., Albuquerque, NM (United States); Avrin, W.F. [Quantum Magnetics, Inc., San Diego, CA (United States)


    This paper discusses the conceptual design considerations and challenges for development of a contactless, mobile, single channel biomagnetic sensor system based on High-Temperature Superconductor (HTS) Superconducting Quantum Interference Devices (SQUIDs) and employing the Three-SQUID Gradiometer (TSG) concept. Operating in magnetically unshielded environments, as are encountered in many medical scenarios, this instrument class would monitor cardiac electrical activity with minimal patient preparation and intrusiveness, and would notionally be coupled with a clinically adaptive human-system interface (HSI).

  2. Modelling the human cardiac fluid mechanics. 3rd ed.

    Oertel, Herbert; Krittian, Sebastian; Spiegel, Kathrin


    The third edition of this article on the modelling and simulation of the flow in human hearts supplements earlier editions. It discusses the flow-structure coupled heart model KAHMO FSI (Karlsruhe Heart Model) and examines patient-specific clinical application of the heart model for cardiac surgery. The KAHMO heart model can be used to predict flow losses and flow structures due to pathalogical ventricle defects. These are considered before and after surgery.

  3. Cardiac catheterization and angiography. Third edition

    This book discusses the papers on cardiac catheterization and angiography. The topics covered are: historical perspective and present practice of cardiac catheterization; angiography principles and utilization of radiologic and cineangiographic equipment; complications, incidence and prevention of side effects of cardiac catheterization; techniques; blood flow measurement of heart; pressure measurement; diagnostic techniques of angiography; special catheter techniques; coronary angiography, temporary and permanent pacemakers, potential role of lasers in the cardiac catheterization and evaluation of cardiac function

  4. Antifibrotic therapies to control cardiac fibrosis

    Fan, Zhaobo; Guan, Jianjun


    Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach curren...

  5. Robotic Applications in Cardiac Surgery

    Alan P. Kypson


    Full Text Available Traditionally, cardiac surgery has been performed through a median sternotomy, which allows the surgeon generous access to the heart and surrounding great vessels. As a paradigm shift in the size and location of incisions occurs in cardiac surgery, new methods have been developed to allow the surgeon the same amount of dexterity and accessibility to the heart in confined spaces and in a less invasive manner. Initially, long instruments without pivot points were used, however, more recent robotic telemanipulation systems have been applied that allow for improved dexterity, enabling the surgeon to perform cardiac surgery from a distance not previously possible. In this rapidly evolving field, we review the recent history and clinical results of using robotics in cardiac surgery.

  6. Mechanical communication in cardiac cell synchronized beating

    Nitsan, Ido; Drori, Stavit; Lewis, Yair E.; Cohen, Shlomi; Tzlil, Shelly


    Cell-cell communication, which enables cells to coordinate their activity and is essential for growth, development and function, is usually ascribed a chemical or electrical origin. However, cells can exert forces and respond to environment elasticity and to mechanical deformations created by their neighbours. The extent to which this mechanosensing ability facilitates intercellular communication remains unclear. Here we demonstrate mechanical communication between cells directly for the first time, providing evidence for a long-range interaction that induces long-lasting alterations in interacting cells. We show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate. Deformations are induced using an oscillatory mechanical probe that mimics the deformations generated by a beating neighbouring cardiac cell. Unlike electrical field stimulation, the probe-induced beating rate is maintained by the cell for an hour after the stimulation stops, implying that long-term modifications occur within the cell. These long-term alterations provide a mechanism for cells that communicate mechanically to be less variable in their electromechanical delay. Mechanical coupling between cells therefore ensures that the final outcome of action potential pacing is synchronized beating. We further show that the contractile machinery is essential for mechanical communication.

  7. Cardiac manifestations in systemic sclerosis

    Sevdalina; Lambova


    Primary cardiac involvement, which develops as a direct consequence of systemic sclerosis(SSc), may manifest as myocardial damage, fibrosis of the conduction system, pericardial and, less frequently, as valvular disease. In addition, cardiac complications in SSc may develop as a secondary phenomenon due to pulmonary arterial hypertension and kidney pathology. The prevalence of primary cardiac involvement in SSc is variable and difficult to determine because of the diversity of cardiac manifestations, the presence of subclinical periods, the type of diagnostic tools applied, and the diversity of patient populations. When clinically manifested, cardiac involvement is thought to be an important prognostic factor. Profound microvascular disease is a pathognomonic feature of SSc, as both vasospasm and structural alterations are present. Such alterations are thought to predict macrovascular atherosclerosis over time. There are contradictory reports regarding the prevalence of atherosclerosis in SSc. According to some authors, the prevalence of atherosclerosis of the large epicardial coronary arteries is similar to that of the general population, in contrast with other rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus. However, the level of inflammation in SSc is inferior. Thus, the atherosclerotic process may not be as aggressive and not easily detectable in smaller studies. Echocardiography(especially tissue Doppler imaging), single-photon emission computed tomography, magnetic resonance imaging and cardiac computed tomography are sensitive techniques for earlier detection of both structural and functional scleroderma-related cardiac pathologies. Screening for subclinical cardiac involvement via modern, sensitive tools provides an opportunity for early diagnosis and treatment, which is of crucial importance for a positive outcome.

  8. Computational Modeling of Cardiac Electromechanics

    Krishnamoorthi, Shankarjee


    Cardiac arrhythmias are a leading cause of death worldwide. Notably, the electrophysiologiy and microstructural requirements for a fatal ventricular arrhythmia remain incompletely understood, thereby the treatment remains largely empirical. Standard antiarrhythmic drug therapy has failed to reduce, and in some instances has increased, the incidence of Sudden Cardiac Death (SCD). Hence, a more complete understanding of the mechanisms that foment a fatal arrhythmia is needed and computational m...

  9. Cardiac Biomarkers in Hyperthyroid Cats

    Sangster, Jodi Kirsten


    Background: Hyperthyroidism has substantial effects on the circulatory system. The cardiac biomarkers NT-proBNP and troponin I (cTNI) have proven useful in identifying cats with myocardial disease but have not been as extensively investigated in hyperthyroidism.Hypothesis: Plasma NT-proBNP and cTNI concentrations are higher in cats with primary cardiac disease than in cats with hyperthyroidism and higher in cats with hyperthyroidism than in healthy control cats.Animals: Twenty-three hyperthyr...

  10. Current trends in cardiac rehabilitation

    Dafoe, W; Huston, P


    Cardiac rehabilitation can reduce mortality and morbidity for patients with many types of cardiac disease cost-effectively, yet is generally underutilized. Rehabilitation is helpful not only for patients who have had a myocardial infarction but also for those with stable angina or congestive heart failure or those who have undergone myocardial revascularization procedures, a heart transplant or heart valve surgery. The beneficial effects of rehabilitation include a reduction in the rate of de...

  11. An overview of cardiac morphogenesis.

    Schleich, Jean-Marc; Abdulla, Tariq; Summers, Ron; Houyel, Lucile


    International audience Accurate knowledge of normal cardiac development is essential for properly understanding the morphogenesis of congenital cardiac malformations that represent the most common congenital anomaly in newborns. The heart is the first organ to function during embryonic development and is fully formed at 8 weeks of gestation. Recent studies stemming from molecular genetics have allowed specification of the role of cellular precursors in the field of heart development. In th...

  12. Gastrointestinal Complications and Cardiac Surgery

    Allen, Sara J.


    Gastrointestinal (GI) complications are an uncommon but potentially devastating complication of cardiac surgery. The reported incidence varies between .3% and 5.5% with an associated mortality of .3–87%. A wide range of GI complications are reported with bleeding, mesenteric ischemia, pancreatitis, cholecystitis, and ileus the most common. Ischemia is thought to be the main cause of GI complications with hypoperfusion during cardiac surgery as well as systemic inflammation, hypothermia, drug ...

  13. Cardiac abnormalities after subarachnoid hemorrhage

    Bilt, I.A.C. van der


    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syndrome) that has been described after acute stress. It is a reversible cardiac dysfunction with distinct imaging features(the echocardiographic or left ventricular angiographic image resembles a Tak...

  14. Automatic Implantable Cardiac Defibrillator

    Full Text Available ... we have to worry about at couple of things. You're going to see further down the road where we pacing with a big difference, a great difference. But the issue, the heart is moved so much, we're ...

  15. Automatic Implantable Cardiac Defibrillator

    Full Text Available ... to do it is to talk to our doctor. You see a doctor. My heart is not pumping well, I have ... have any issue, any symptom, go to your doctor. Your doctor will do a couple of study ...

  16. Automatic Implantable Cardiac Defibrillator

    Full Text Available ... get access to that vein. It’s called coronary sinus. There’s multiple branch. One, we're looking for ... sorry, Dr. Stoner. I get in the coronary sinus. I get a couple of bridge here. I' ...

  17. Automatic Implantable Cardiac Defibrillator

    Full Text Available ... the telephone. Through the telephone. And there is company right now, this big company, they have a center. When the pacer realizes ... the device. We have a couple of patient, Medicare patient, live in nursing home or some assisted ...

  18. FGF21 and cardiac physiopathology

    Anna ePlanavila


    Full Text Available The heart is not traditionally considered either a target or a site of fibroblast growth factor-21 (FGF21 production. However, recent findings indicate that FGF21 can act as a cardiomyokine; that is, it is produced by cardiac cells at significant levels and acts in an autocrine manner on the heart itself. The heart is sensitive to the effects of FGF21, both systemic and locally generated, owing to the expression in cardiomyocytes of β-Klotho, the key co-receptor known to confer specific responsiveness to FGF21 action. FGF21 has been demonstrated to protect against cardiac hypertrophy, cardiac inflammation, and oxidative stress. FGF21 expression in the heart is induced in response to cardiac insults, such as experimental cardiac hypertrophy and myocardial infarction in rodents, as well as in failing human hearts. Intracellular mechanisms involving PPARα and Sirt1 mediate transcriptional regulation of the FGF21 gene in response to exogenous stimuli. In humans, circulating FGF21 levels are elevated in coronary heart disease and atherosclerosis, and are associated with a higher risk of cardiovascular events in patients with type 2 diabetes. These findings provide new insights into the role of FGF21 in the heart and may offer potential therapeutic strategies for cardiac disease.

  19. Physiological and pathological cardiac hypertrophy.

    Shimizu, Ippei; Minamino, Tohru


    The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy. PMID:27262674

  20. Cardiac MRI in suspected myocarditis

    Purpose: To evaluate the potential of ECG-gated breath-hold MRI in diagnosing acute myocardidits. Material and methods: Cardiac MRI was performed on 21 consecutive patients with suspected myocarditis. ECG-gated breath-hold T2-weighted images with fat suppression were acquired in 3 standard views. T1-weighted imaging (FLASH) was performed 10 min after IV administration of Gd-DTPA. Laboratory data included creatine kinase, troponin T and serological tests, ECG findings and echocardiography. Imaging findings were retrospectively compared to the discharge diagnoses. Signal alterations were semiquantitatively classified. Results: Acute myocarditis was diagnosed in 9 patients and cardiac sarcoidosis in 2 patients. Late enhancement was observed in 4 patients with acute myocarditis and in both patients with cardiac sarcoidosis. Semiquantitative evaluation revealed 9 true positive, 9 true negative, 1 false positive and 2 false negative results. Conclusion: Cardiac MRI has the potential to detect acute myocarditis and to diagnose cardiac sarcoidosis. Late enhancement of Gd-DTPA can be found in both viral myocarditis and cardiac sarcoidosis. (orig.)

  1. Cardiac imaging. A multimodality approach

    An excellent atlas on modern diagnostic imaging of the heart Written by an interdisciplinary team of experts, Cardiac Imaging: A Multimodality Approach features an in-depth introduction to all current imaging modalities for the diagnostic assessment of the heart as well as a clinical overview of cardiac diseases and main indications for cardiac imaging. With a particular emphasis on CT and MRI, the first part of the atlas also covers conventional radiography, echocardiography, angiography and nuclear medicine imaging. Leading specialists demonstrate the latest advances in the field, and compare the strengths and weaknesses of each modality. The book's second part features clinical chapters on heart defects, endocarditis, coronary heart disease, cardiomyopathies, myocarditis, cardiac tumors, pericardial diseases, pulmonary vascular diseases, and diseases of the thoracic aorta. The authors address anatomy, pathophysiology, and clinical features, and evaluate the various diagnostic options. Key features: - Highly regarded experts in cardiology and radiology off er image-based teaching of the latest techniques - Readers learn how to decide which modality to use for which indication - Visually highlighted tables and essential points allow for easy navigation through the text - More than 600 outstanding images show up-to-date technology and current imaging protocols Cardiac Imaging: A Multimodality Approach is a must-have desk reference for cardiologists and radiologists in practice, as well as a study guide for residents in both fields. It will also appeal to cardiac surgeons, general practitioners, and medical physicists with a special interest in imaging of the heart. (orig.)

  2. Cardiac involvement in myotonic dystrophy

    Lund, Marie; Diaz, Lars Jorge; Ranthe, Mattis Flyvholm;


    genetic testing for DM1. Information on incident cardiac diseases was obtained from the NPR. We estimated standardized incidence ratios (SIRs) of cardiac disease compared with the background population, overall and according to selected diagnostic subgroups (cardiomyopathy, heart failure, conduction...... disorders, arrhythmias, and device implantation). In the DM cohort, SIR for any cardiac disease was 3.42 [95% confidence interval (CI) 3.01-3.86]; for a cardiac disease belonging to the selected subgroups 6.91 (95% CI: 5.93-8.01) and for other cardiac disease 2.59 (95% CI: 2.03-3.25). For a cardiac disease...... belonging to the selected subgroups, the risk was particularly high in the first year after DM diagnosis [SIR 15.4 (95% CI: 10.9-21.3)] but remained significantly elevated in subsequent years [SIR 6.07 (95% CI: 5.11-7.16]). The risk was higher in young cohort members [e.g. 20-39 years: SIR 18.1 (95% CI: 12...

  3. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.

    Sundset, Rune; Cooper, Marie; Mikalsen, Svein-Ole; Ytrehus, Kirsti


    Ischemic preconditioning increases the heart's tolerance to a subsequent longer ischemic period. The purpose of this study was to investigate the role of gap junction communication in simulated preconditioning in cultured neonatal rat cardiac myofibroblasts. Gap junctional intercellular communication was assessed by Lucifer yellow dye transfer. Preconditioning preserved intercellular coupling after prolonged ischemia. An initial reduction in coupling in response to the preconditioning stimulus was also observed. This may protect neighboring cells from damaging substances produced during subsequent regional ischemia in vivo, and may preserve gap junctional communication required for enhanced functional recovery during subsequent reperfusion. PMID:16247851

  4. Cardiac output during exercise

    Siebenmann, C; Rasmussen, P.; Sørensen, H.;


    Several techniques assessing cardiac output (Q) during exercise are available. The extent to which the measurements obtained from each respective technique compares to one another, however, is unclear. We quantified Q simultaneously using four methods: the Fick method with blood obtained from the...... right atrium (Q(Fick-M)), Innocor (inert gas rebreathing; Q(Inn)), Physioflow (impedance cardiography; Q(Phys)), and Nexfin (pulse contour analysis; Q(Pulse)) in 12 male subjects during incremental cycling exercise to exhaustion in normoxia and hypoxia (FiO2  = 12%). While all four methods reported a...... progressive increase in Q with exercise intensity, the slopes of the Q/oxygen uptake (VO2) relationship differed by up to 50% between methods in both normoxia [4.9 ± 0.3, 3.9 ± 0.2, 6.0 ± 0.4, 4.8 ± 0.2 L/min per L/min (mean ± SE) for Q(Fick-M), Q(Inn), QP hys and Q(Pulse), respectively; P = 0.001] and...

  5. Coupled Cardiac Electrophysiology and Contraction using Finite Element

    Sarkar, Mainak


    The heart is a complex organ found in all vertebrates. It circulates blood throughout the body by cyclically contracting and relaxing. In an unhealthy heart, the pumping efficiency decreases, causing poor blood flow. What changes occur in a sick heart and how they affect its functioning is a subject of research. Much has been already understood about the electrophysiological changes that occurs in a sick heart. However, it is vastly unknown how these changes relate to mechanical dysfunction o...

  6. Quantification of 16 QT-prolonging Drugs and Metabolites in Human Postmortem Blood and Cardiac Tissue Using UPLC–MS-MS

    Mikkelsen, Christian Reuss; Jornil, Jakob; Vukelic Andersen, Ljubica; Banner, Jytte; Hasselstrøm, Jørgen Bo


    quantification of 16 QT-prolonging drugs (QTD) and metabolites in postmortem whole blood and postmortem cardiac tissue. Samples were prepared by protein precipitation and quantified using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Deuterated internal standards were used...... blood and cardiac tissue. To the best of the authors’ knowledge, this article presents the first fully validated method for quantification of QTD in cardiac tissue....

  7. Computed tomography of cardiac pseudotumors and neoplasms.

    Anavekar, Nandan S; Bonnichsen, Crystal R; Foley, Thomas A; Morris, Michael F; Martinez, Matthew W; Williamson, Eric E; Glockner, James F; Miller, Dylan V; Breen, Jerome F; Araoz, Philip A


    Important features of cardiac masses can be clearly delineated on cardiac computed tomography (CT) imaging. This modality is useful in identifying the presence of a mass, its relationship with cardiac and extracardiac structures, and the features that distinguish one type of mass from another. A multimodality approach to the evaluation of cardiac tumors is advocated, with the use of echocardiography, CT imaging and magnetic resonance imaging as appropriately indicated. In this article, various cardiac masses are described, including pseudotumors and true cardiac neoplasms, and the CT imaging findings that may be useful in distinguishing these rare entities are presented. PMID:20705174

  8. Cardiac output monitoring

    Mathews Lailu


    Full Text Available Minimally invasive and non-invasive methods of estimation of cardiac output (CO were developed to overcome the limitations of invasive nature of pulmonary artery catheterization (PAC and direct Fick method used for the measurement of stroke volume (SV. The important minimally invasive techniques available are: oesophageal Doppler monitoring (ODM, the derivative Fick method (using partial carbon dioxide (CO 2 breathing, transpulmonary thermodilution, lithium indicator dilution, pulse contour and pulse power analysis. Impedance cardiography is probably the only non-invasive technique in true sense. It provides information about haemodynamic status without the risk, cost and skill associated with the other invasive or minimally invasive techniques. It is important to understand what is really being measured and what assumptions and calculations have been incorporated with respect to a monitoring device. Understanding the basic principles of the above techniques as well as their advantages and limitations may be useful. In addition, the clinical validation of new techniques is necessary to convince that these new tools provide reliable measurements. In this review the physics behind the working of ODM, partial CO 2 breathing, transpulmonary thermodilution and lithium dilution techniques are dealt with. The physical and the physiological aspects underlying the pulse contour and pulse power analyses, various pulse contour techniques, their development, advantages and limitations are also covered. The principle of thoracic bioimpedance along with computation of CO from changes in thoracic impedance is explained. The purpose of the review is to help us minimize the dogmatic nature of practice favouring one technique or the other.

  9. Effects of clenbuterol on contractility and Ca2+ homeostasis of isolated rat ventricular myocytes

    Siedlecka, U.; Arora, M.; Kolettis, T; Soppa, G. K. R.; Lee, J.; Stagg, M. A.; Harding, S.E.; Yacoub, M. H.; Terracciano, C. M. N.


    Clenbuterol, a compound classified as a β2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomer...

  10. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure

    Gherghiceanu, Mihaela; Barad, Lili; Novak, Atara; Reiter, Irina; Itskovitz-Eldor, Joseph; Binah, Ofer; Popescu, LM


    Abstract Induced pluripotent stem cells (iPSC) are generated from fully differentiated somatic cells that were reprogrammed into a pluripotent state. Human iPSC which can be obtained from various types of somatic cells such as fibroblasts or keratinocytes can differentiate into cardiomyocytes (iPSC-CM), which exhibit cardiac-like transmembrane action potentials, intracellular Ca2+ transients and contractions. While major features of the excitation-contraction coupling of iPSC-CM have been wel...

  11. Animal models of cardiac cachexia.

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta


    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. PMID:27317993

  12. Vitamin D and Cardiac Differentiation.

    Kim, Irene M; Norris, Keith C; Artaza, Jorge N


    Calcitriol (1,25-dihydroxycholecalciferol or 1,25-D3) is the hormonally active metabolite of vitamin D. Experimental studies of vitamin D receptors and 1,25-D3 establish calcitriol to be a critical regulator of the structure and function of the heart. Clinical studies link vitamin D deficiency with cardiovascular disease (CVD). Emerging evidence demonstrates that calcitriol is highly involved in CVD-related signaling pathways, particularly the Wnt signaling pathway. Addition of 1,25-D3 to cardiomyocyte cells and examination of its effects on cardiomyocytes and mainly Wnt11 signaling allowed the specific characterization of the role of calcitriol in cardiac differentiation. 1,25-D3 is demonstrated to: (i) inhibit cell proliferation without promoting apoptosis; (ii) decrease expression of genes related to the regulation of the cell cycle; (iii) promote formation of cardiomyotubes; (iv) induce expression of casein kinase-1-α1, a negative regulator of the canonical Wnt signaling pathway; and (v) increase expression of noncanonical Wnt11, which has been recognized to induce cardiac differentiation during embryonic development and in adult cells. Thus, it appears that vitamin D promotes cardiac differentiation through negative modulation of the canonical Wnt signaling pathway and upregulation of noncanonical Wnt11 expression. Future work to elucidate the role(s) of vitamin D in cardiovascular disorders will hopefully lead to improvement and potentially prevention of CVD, including abnormal cardiac differentiation in settings such as postinfarction cardiac remodeling. PMID:26827957

  13. Cardiac factors in orthostatic hypotension

    Löllgen, H.; Dirschedl, P.; Koppenhagen, K.; Klein, K. E.

    Cardiac function is determined by preload, afterload, heart rate and contractility. During orthostatic stress, the footward blood shift is compensated for by an increase of afterload. LBNP is widely used to analyze effects of volume displacement during orthostatic stress. Comparisons of invasive ( right heart catheterization) and non-invasive approach (echocardiography) yielded similar changes. Preload and afterload change with graded LBNP, heart rate increases, and stroke volume and cardiac output decrease. Thus, the working point on the left ventricular function curve is shifted to the left and downward, similar to hypovolemia. However, position on the Frank-Starling curve, the unchanged ejection fraction, and the constant Vcf indicate a normal contractile state during LBNP. A decrease of arterial oxygen partial pressure during LBNP shwos impaired ventilation/perfusion ratio. Finally, LBNP induced cardiac and hemodynamic changes can be effectively countermeasured by dihydroergotamine, a potent venoconstrictor. Comparison of floating catheter data with that of echocardiography resulted in close correlation for cardiac output and stroke volume. In addition, cardiac dimensions changed in a similar way during LBNP. From our findings, echocardiography as a non-invasive procedure can reliably used in LBNP and orthostatic stress tests. Some informations can be obtained on borderline values indicating collaps or orthostatic syncope. Early fainters can be differentiated from late fainters by stroke volume changes.

  14. Cardiac Penetrating Injuries and Pseudoaneurysm

    CHEN Shifeng


    Objective To discuss the early diagnosis and treatment of cardiac penetrating injuries and pseudoaneurysm. Methods 18 cases of cardiac penetrating injuries, in which 2 cases were complicated with pseudoaneurysm, were diagnosed by emergency operation and color Doppler echocardiography between May 1973 and Dec. 2001 in our hospital. The basis for emergency operation is the injured path locating in cardiac dangerous zone, severe shock or pericardial tamponade. ResultsAmong 18 cases of this study, 17 cases underwent emergency operation. During the operation, 11 cases were found injured in right ventricle, 2 cases were found injured in right atrium, 1 case was found injured in pulmonary artery,4 cases were found injured in left ventricle, 2 cases were found complicated with pseudoaneurysm. 17cases underwent cardiac repair including 1 case of rupture of aneurysm. 1 case underwent elective aneurysm resection. In whole group, 15 cases survived(83.33% ), 3 cases died( 16.67%). The cause of death is mainly hemorrhagic shock. Conclusion Highly suspicious cardiac penetrating injuries or hemopericaridium should undergo direct operative exploration. Pseudoaneurysm should be resected early,which can prevent severe complications.

  15. CT diagnosis of cardiac lipoma

    Objective: To investigate the application of CT in the diagnosis of cardiac lipoma. Methods: Retrospective analysis of 6 patients with cardiac lipoma confirmed by operation and pathology was done. Four patients had singles slice electron beam CT plain and contrast and movie scan. Two patients had 64-slice CT plain and enhanced scan. Results: (1) One patient was isolated intracavitary lipoma in the right artrium, 1 patient was isolated intrapericardial lipoma and 4 patients were intramural lipomas. Of the 4 intramural lipoma, 2 were infiltrative lipomas located in the left ventricle wall or the right ventricle and septum, 2 patients were isolated in the atrio-ventricular septum. (2) CT and three-dimensional reconstruction could depict the location, shape, size, margin and characteristic fat density of lipoma, indicating the diagnosis and classifications. The displacement of coronary artery, pulmonary inflammation and effusions of pericardium and pleural cavity could also be revealed. Conclusion: Cardiac lipoma can be accurately diagnosed and classified by CT. (authors)

  16. Mechanical Regulation of Cardiac Development



    Full Text Available Mechanical forces are an essential contributor to and unavoidable component of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.

  17. Interactions between cardiac, respiratory, and brain activity in humans

    Musizza, Bojan; Stefanovska, Aneta


    The electrical activity of the heart (ECG), respiratory function and electric activity of the brain (EEG) were simultaneously recorded in conscious, healthy humans. Instantaneous frequencies of the heart beat, respiration and α-waves were then determined from 30-minutes recordings. The instantaneous cardiac frequency was defined as the inverse value of the time interval between two consecutive R-peaks. The instantaneous respiratory frequency was obtained from recordings of the excursions of thorax by application of the Hilbert transform. To obtain the instantaneous frequency of α-waves, the EEG signal recorded from the forehead was first analysed using the wavelet transform. Then the frequency band corresponding to α-waves was extracted and the Hilbert transform applied. Synchronization analysis was performed and the direction of coupling was ascertained, using pairs of instantaneous frequencies in each case. It is shown that the systems are weakly bidirectionally coupled. It was confirmed that, in conscious healthy humans, respiration drives cardiac activity. We also demonstrate from these analyses that α-activity drives both respiration and cardiac activity.

  18. Complications after cardiac implantable electronic device implantations

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard;


    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  19. How Is Sudden Cardiac Arrest Diagnosed?

    ... heart (a sign of CHD). MUGA Test or Cardiac MRI A MUGA (multiple gated acquisition) test shows how ... create pictures of many parts of your heart. Cardiac MRI (magnetic resonance imaging) is a safe procedure that ...

  20. An update on insertable cardiac monitors

    Olsen, Flemming J; Biering-Sørensen, Tor; Krieger, Derk W


    Continuous cardiac rhythm monitoring has undergone compelling progress over the past decades. Cardiac monitoring has emerged from 12-lead electrocardiograms being performed at the discretion of the treating physician to in-hospital telemetry, Holter monitoring, prolonged external event monitoring...

  1. Sudden Cardiac Arrest (SCA) Risk Assessment

    ... Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  2. Physiological roles of the transient outward current Ito in normal and diseased hearts.

    Cordeiro, Jonathan M; Calloe, Kirstine; Aschar-Sobbi, Roozbeh; Kim, Kyoung-Han; Korogyi, Adam; Occhipinti, Dona; Backx, Peter H; Panama, Brian K


    The Ca(2+)-independent transient outward K(+) current (I(to)) plays a critical role in underlying phase 1 of repolarization of the cardiac action potential and, as a result, is central to modulating excitation-contraction coupling and propensity for arrhythmia. Additionally, I(to) and its molecular constituents are consistently reduced in cardiac hypertrophy and heart failure. In this review, we discuss the physiological role of I(to) as well as the molecular basis of this current in human and canine hearts, in which I(to) has been thoroughly studied. In particular, we discuss the role of Ito; in the action potential and the mechanisms by which I(to) modulates excitation-contraction coupling. We also describe the effects of mutations in the subunits constituting the Ito channel as well as the role of I(to) in the failing myocardium. Finally, we review pharmacological modulation of I(to) and discuss the evidence supporting the hypothesis that restoration of I(to) in the setting of heart failure may be therapeutically beneficial by enhancing excitation-contraction coupling and cardiac function. PMID:26709904

  3. Cardiac Metastasis from Invasive Thymoma Via the Superior Vena Cava: Cardiac MRI Findings

    Cardiac tumors are rare, and metastatic deposits are more common than primary cardiac tumors. We present cardiac magnetic resonance imaging (MRI) findings of a 50-year-old woman with invasive thymoma. Cardiac MRI revealed a heterogeneous, lobulated anterior mediastinal mass invading the superior vena cava and extending to the right atrium. In cine images there was no invasion to the right atrial wall.

  4. Pregnancy as a cardiac stress model

    Chung, Eunhee; Leinwand, Leslie A.


    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women witho...

  5. Regulation of Cardiac Hypertrophy: the nuclear option

    Kuster, Diederik


    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, cardiac hypertrophy is an independent risk factor for the development of heart failure and is therefore called pathological hypertrophy. That hypertrophy is not bad per se, is illustrated by the hyp...

  6. Traumatic Tricuspid Regurgitation Following Cardiac Massage

    Na, Sungwon; Nam, Sang Beom; Lee, Yong Kyung; Oh, Young Jun; Kwak, Young-Lan


    We report a 66-yr-old male patient who developed tricuspid regurgitation secondary to internal cardiac massage. After uneventful off-pump coronary artery bypass surgery, the subject experienced cardiac arrest in the intensive care unit. External cardiac massage was initiated and internal cardiac massage was performed eventually. A transesophageal echocardiography revealed avulsion of the anterior papillary muscle and chordae to the anterior leaflet after successful cardiopulmonary resuscitati...

  7. [Cardiac output monitoring by impedance cardiography in cardiac surgery].

    Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A


    The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347

  8. Health Literacy Predicts Cardiac Knowledge Gains in Cardiac Rehabilitation Participants

    Mattson, Colleen C.; Rawson, Katherine; Hughes, Joel W.; Waechter, Donna; Rosneck, James


    Objective: Health literacy is increasingly recognised as a potentially important patient characteristic related to patient education efforts. We evaluated whether health literacy would predict gains in knowledge after completion of patient education in cardiac rehabilitation. Method: This was a re-post observational analysis study design based on…

  9. Childhood cancer survivors: cardiac disease & social outcomes

    E.A.M. Feijen


    The thesis is divided in two parts; Cardiac health problems and healthcare consumption & social outcomes in CCS. The general aims of part 1 creates optimal conditions for the evaluation of cardiac events in 5-year childhood cancer survivors, evaluation of the long term risk of cardiac events, and to

  10. MRI of cardiac rhabdomyoma in the fetus

    Kivelitz, Dietmar E.; Muehler, Matthias [Institut fuer Radiologie, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany); Rake, Annett; Chaoui, Rabih [Klinik fuer Gynaekologie und Geburtshilfe, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany); Scheer, Ianina [Klinik fuer Strahlenheilkunde, Abteilung Paediatrische Radiologie, Medizinische Fakultaet, Humboldt-Universitaet zu Berlin, Charite, Schumannstrasse 20/21, 10098, Berlin (Germany)


    Primary cardiac tumors are rarely diagnosed in utero and are usually seen on prenatal echocardiography. Cardiac rhabdomyomata can be associated with tuberous sclerosis. Prenatal MRI can be performed to assess associated malformations. This case report illustrates the ability of fetal MRI to image cardiac rhabdomyata and compares it with prenatal and postnatal echocardiography. (orig.)

  11. Telocytes in exercise-induced cardiac growth.

    Xiao, Junjie; Chen, Ping; Qu, Yi; Yu, Pujiao; Yao, Jianhua; Wang, Hongbao; Fu, Siyi; Bei, Yihua; Chen, Yan; Che, Lin; Xu, Jiahong


    Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise-induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet-derived growth factor (PDGF) receptor-α and CD34/PDGF receptor-β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal. PMID:26987685

  12. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S


    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial function. Therefore, this study examined mitochondrial respiratory rates in the smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscle. Cardiac, skele...

  13. Technique for producing cardiac radionuclide motion images

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  14. Regulation of Cardiac Hypertrophy: the nuclear option

    D.W.D. Kuster (Diederik)


    textabstractCardiac hypertrophy is the response of the heart to an increased workload. After myocardial infarction (MI) the surviving muscle tissue has to work harder to maintain cardiac output. This sustained increase in workload leads to cardiac hypertrophy. Despite its apparent appropriateness, c

  15. Abaqus/Standard-based quantification of human cardiac mechanical properties

    Genet, Martin; Kuhl, Ellen; Guccione, Julius


    Computational modeling can provide critical insight into existing and potential new surgical procedures, medical or minimally-invasive treatments for heart failure, one of the leading causes of deaths in the world that has reached epidemic proportions. In this paper, we present our Abaqus/Standard-based pipeline to create subject-specific left ventricular models. We first review our generic left ventricular model, and then the personalization process based on magnetic resonance images. Identification of subject-specific cardiac material properties is done by coupling Abaqus/Standard to the python optimization library NL-Opt. Compared to previous studies from our group, the emphasis is here on the fully implicit solving of the model, and the two-parameter optimization of the passive cardiac material properties.

  16. Activation of GPR30 inhibits cardiac fibroblast proliferation.

    Wang, Hao; Zhao, Zhuo; Lin, Marina; Groban, Leanne


    The incidence of left ventricular diastolic dysfunction significantly increases in postmenopausal women suggesting the association between estrogen loss and diastolic dysfunction. The in vivo activation of G protein-coupled estrogen receptor (GPR30) attenuates the adverse effects of estrogen loss on cardiac fibrosis and diastolic dysfunction in mRen2.Lewis rats. This study was designed to address the effects of GPR30 on cardiac fibroblast proliferation in rats. The expression of GPR30 in cardiac fibroblasts isolated from adult Sprague-Dawley rats was confirmed by RT-PCR, Western blot analysis, and immunofluorescence staining. Results from BrdU incorporation assays, cell counting, carboxyfluorescein diacetate succinimidyl ester labeling in conjunction with flow cytometry, and Ki-67 staining showed that treatment with G1, a specific agonist of GPR30, inhibited cardiac fibroblast proliferation in a dose-dependent manner, which was associated with decreases in CDK1 and cyclin B1 protein expressions. In the GPR30-KO cells, BrdU incorporation, and CDK1 and cyclin B1 expressions significantly increased when compared to GPR30-intact cells. G1 had no effect on BrdU incorporation, CDK1 and cyclin B1 mRNA levels in GPR30-KO cells. In vivo studies showed increases in CDK1 and cyclin B1 mRNA levels, Ki-67-positive cells, and the immunohistochemistry staining of vimentin, a fibroblast marker, in the left ventricles from ovariectomized mRen2.Lewis rats versus hearts from ovary-intact littermates; 2 weeks of G1 treatment attenuated these adverse effects of estrogen loss. This study demonstrates that GPR30 is expressed in rat cardiac fibroblasts, and activation of GPR30 limits proliferation of these cells likely via suppression of the cell cycle proteins, cyclin B1, and CDK1. PMID:25893735

  17. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    O'Donnell, David H


    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  18. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo


    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function. PMID:17284482

  19. Response to cardiac resynchronization therapy

    Versteeg, Henneke; Schiffer, Angélique A; Widdershoven, Jos W; Meine, Mathias M; Doevendans, Pieter A; Pedersen, Susanne S.


    Cardiac resynchronization therapy (CRT) is a promising treatment for a subgroup of patients with advanced congestive heart failure and a prolonged QRS interval. Despite the majority of patients benefiting from CRT, 10-40% of patients do not respond to this treatment and are labeled as nonresponders...

  20. Rejection in the cardiac transplant

    Standard chest radiography remains the most frequent applied method for monitoring post surgical cardiac transplant patients. Evidence suggests that after the 1st month cardiac enlargement is indeed a useful indicator of rejection, sometimes being caused by pericardial effusion and/or changes in left ventricular mass. Opportunistic infections, either pulmonary lesions or mediastinal abscesses, as well as malignant tumours may all occur and require evaluation or exclusion. Conventional computed transmission tomography is an excellent technique for surveying the entire thorax relatively non-invasively and is recommended whenever pulmonary, cardiac or mediastinal changes are unexplained. Coronary arteriography with or without digital subtraction remains the definitive method for examining the coronary arteries. Left ventricular function can be evaluated with either angiography or other non-invasive methods including such techniques as echocardiography and nuclear medicine. More recently monoclonal antibody labels for antimyosin show promise for identifying rejection. Ultrafast CT scanning is now available in a number of centres. It allows millisecond cross-sectional cine-tomography of the heart as well as of the whole chest, and also provides 3-D quantitative analyses of end-diastolic and systolic function including regional wall thickening dynamics and estimations of myocardial mass. Right, as well as left-sided cardiac chambers, are demonstrated routinely during the same ultrafast CT procedure. MRI, like ultrafast CT, is a new technique still being explored. MRI as well as MR spectroscopy are regarded as diagnostic radiology procedures. (author). 32 refs.; 3 figs.; 3 tabs

  1. Cardiac functional analysis with MRI

    Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Even in the 21st century CVD will still be the most frequent cause of morbidity and mortality. Precise evaluation of cardiac function is therefore mandatory for therapy planning and monitoring. In this article the contribution of MRI-based analysis of cardiac function will be addressed. Nowadays cine-MRI is considered as the standard of reference (SOR) in cardiac functional analysis. ECG-triggered steady-state free precession (SSFP) sequences are mainly used as they stand out due to short acquisition times and excellent contrast between the myocardium and the ventricular cavity. An indispensible requirement for cardiac functional analysis is an exact planning of the examination and based on that the coverage of the whole ventricle in short axial slices. By means of dedicated post-processing software, manual or semi-automatic segmentation of the endocardial and epicardial contours is necessary for functional analysis. In this way end-diastolic volume (EDV), end-systolic volume (ESV) and the ejection fraction (EF) are defined and regional wall motion abnormalities (RWMA) can be detected. (orig.)

  2. Molecular therapies for cardiac arrhythmias

    G.J.J. Boink


    Despite the ongoing advances in pharmacology, devices and surgical approaches to treat heart rhythm disturbances, arrhythmias are still a significant cause of death and morbidity. With the introduction of gene and cell therapy, new avenues have arrived for the local modulation of cardiac disease. Th

  3. The cardiac patient in Ramadan.

    Chamsi-Pasha, Majed; Chamsi-Pasha, Hassan


    Ramadan is one of the five fundamental pillars of Islam. During this month, the majority of the 1.6 billion Muslims worldwide observe an absolute fast from dawn to sunset without any drink or food. Our review shows that the impact of fasting during Ramadan on patients with stable cardiac disease is minimal and does not lead to any increase in acute events. Most patients with the stable cardiac disease can fast safely. Most of the drug doses and their regimen are easily manageable during this month and may need not to be changed. Ramadan fasting is a healthy nonpharmacological means for improving cardiovascular risk factors. Most of the Muslims, who suffer from chronic diseases, insist on fasting Ramadan despite being exempted by religion. The Holy Quran specifically exempts the sick from fasting. This is particularly relevant if fasting worsens one's illness or delays recovery. Patients with unstable angina, recent myocardial infarction, uncontrolled hypertension, decompensated heart failure, recent cardiac intervention or cardiac surgery or any debilitating diseases should avoid fasting. PMID:27144139

  4. Cardiac pacemakers and nuclear batteries

    Following the introduction giving the indications for cardiac pacemaker therapy with special regard to the use of pacemakers powered by nuclear batteries, reference is made to the resulting radiation exposure of the patient. The activities of the Federal Health Office in this field such as recommendations and surveys including the entire Federal Republic are outlined. (orig.)


    Premalatha; Jayaraman,


    : Heart transplantation has emerged as the definitive therapy for patients with end-stage cardiomyopathy. The two most common forms of cardiac disease that lead to transplantation are ischemic cardiomyopathy and dilated cardiomyopathy, which together comprise approximately 90% of cases. The other less common forms of heart disease include viral cardiomyopathy, infiltrative cardiomyopathy, postpartum cardiomyopathy, valvular heart disease and congenital heart disease

  6. Epidural analgesia for cardiac surgery

    V. Svircevic; M.M. Passier; A.P. Nierich; D. van Dijk; C.J. Kalkman; G.J. van der Heijden


    Background A combination of general anaesthesia (GA) with thoracic epidural analgesia (TEA) may have a beneficial effect on clinical outcomes by reducing the risk of perioperative complications after cardiac surgery. Objectives The objective of this review was to determine the impact of perioperativ

  7. Historical highlights in cardiac pacing.

    Geddes, L A


    The benchmarks in cardiac pacing are identified, beginning with F. Steiner (1871), who rhythmically stimulated the chloroform-arrested hearts of 3 horses, 1 donkey, 10 dogs, 14 cats, and 8 rabbits. The chloroform-arrested heart in human subjects was paced by T. Greene in the following year (1872) in the UK. In 1882, H. Ziemssen in Germany applied cardiac pacing to a 42-year old woman who had a large defect in the anterior left chest wall subsequent to resection of an enchondroma. Intentional cardiac pacing did not occur until 1932, when A.A. Hyman in the US demonstrated that cardiac pacing could be clinically practical. Hyman made a batteryless pacemaker for delivery in induction shock stimuli (60-120/min) to the atria. His pacemaker was powered by a hand-wound, spring-driven generator which provided 6 min of pacemaking without rewinding. Closed-chest ventricular pacing was introduced in the US in 1952 by P.M. Zoll et al. Zoll (1956) also introduced closed-chest ventricular defibrillation. W.L. Weirich et al. (1958) demonstrated that direct-heart stimulation in closed-chest patients could be achieved with slender wire electrodes. S. Furman and J.B. Schwedel (1959) developed a monopolar catheter electrode for ventricular pacing in man. In the same year, W. Greatbatch and W.M. Chardack developed the implantable pacemaker. PMID:18238328

  8. An integrated platform for image-guided cardiac resynchronization therapy

    Ma, Ying Liang; Shetty, Anoop K.; Duckett, Simon; Etyngier, Patrick; Gijsbers, Geert; Bullens, Roland; Schaeffter, Tobias; Razavi, Reza; Rinaldi, Christopher A.; Rhode, Kawal S.


    Cardiac resynchronization therapy (CRT) is an effective procedure for patients with heart failure but 30% of patients do not respond. This may be due to sub-optimal placement of the left ventricular (LV) lead. It is hypothesized that the use of cardiac anatomy, myocardial scar distribution and dyssynchrony information, derived from cardiac magnetic resonance imaging (MRI), may improve outcome by guiding the physician for optimal LV lead positioning. Whole heart MR data can be processed to yield detailed anatomical models including the coronary veins. Cine MR data can be used to measure the motion of the LV to determine which regions are late-activating. Finally, delayed Gadolinium enhancement imaging can be used to detect regions of scarring. This paper presents a complete platform for the guidance of CRT using pre-procedural MR data combined with live x-ray fluoroscopy. The platform was used for 21 patients undergoing CRT in a standard catheterization laboratory. The patients underwent cardiac MRI prior to their procedure. For each patient, a MRI-derived cardiac model, showing the LV lead targets, was registered to x-ray fluoroscopy using multiple views of a catheter looped in the right atrium. Registration was maintained throughout the procedure by a combination of C-arm/x-ray table tracking and respiratory motion compensation. Validation of the registration between the three-dimensional (3D) roadmap and the 2D x-ray images was performed using balloon occlusion coronary venograms. A 2D registration error of 1.2 ± 0.7 mm was achieved. In addition, a novel navigation technique was developed, called Cardiac Unfold, where an entire cardiac chamber is unfolded from 3D to 2D along with all relevant anatomical and functional information and coupled to real-time device detection. This allowed more intuitive navigation as the entire 3D scene was displayed simultaneously on a 2D plot. The accuracy of the unfold navigation was assessed off-line using 13 patient data sets

  9. Cardiac arrest: resuscitation and reperfusion.

    Patil, Kaustubha D; Halperin, Henry R; Becker, Lance B


    The modern treatment of cardiac arrest is an increasingly complex medical procedure with a rapidly changing array of therapeutic approaches designed to restore life to victims of sudden death. The 2 primary goals of providing artificial circulation and defibrillation to halt ventricular fibrillation remain of paramount importance for saving lives. They have undergone significant improvements in technology and dissemination into the community subsequent to their establishment 60 years ago. The evolution of artificial circulation includes efforts to optimize manual cardiopulmonary resuscitation, external mechanical cardiopulmonary resuscitation devices designed to augment circulation, and may soon advance further into the rapid deployment of specially designed internal emergency cardiopulmonary bypass devices. The development of defibrillation technologies has progressed from bulky internal defibrillators paddles applied directly to the heart, to manually controlled external defibrillators, to automatic external defibrillators that can now be obtained over-the-counter for widespread use in the community or home. But the modern treatment of cardiac arrest now involves more than merely providing circulation and defibrillation. As suggested by a 3-phase model of treatment, newer approaches targeting patients who have had a more prolonged cardiac arrest include treatment of the metabolic phase of cardiac arrest with therapeutic hypothermia, agents to treat or prevent reperfusion injury, new strategies specifically focused on pulseless electric activity, which is the presenting rhythm in at least one third of cardiac arrests, and aggressive post resuscitation care. There are discoveries at the cellular and molecular level about ischemia and reperfusion pathobiology that may be translated into future new therapies. On the near horizon is the combination of advanced cardiopulmonary bypass plus a cocktail of multiple agents targeted at restoration of normal metabolism and

  10. Optical coupling

    Bock, J J [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Gundersen, J [Department of Physics, University of Miami, Coral Gables, FL 33146 (United States); Lee, A T [Department of Physics, University of California, Berkeley CA 94720 Physics Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Richards, P L [Department of Physics, University of California, Berkeley CA 94720 (United States); Wollack, E, E-mail: James.Bock@jpl.nasa.go, E-mail:, E-mail: Adrian.Lee@berkeley.ed, E-mail: Richards@cosmology.berkeley.ed, E-mail: Edward.j.wollack@nasa.go [Observational Cosmology Laboratory, NASA/GSFC, Greenbelt, MD 20771 (United States)


    This paper describes contributions to the CMBpol Technology Study Workshop concerning optical coupling structures. These are structures in or near the focal plane which convert the free space wave to a superconducting microstrip on a SI wafer, or to the waveguide input to a HEMT receiver. In addition to an introduction and conclusions by the editor, this paper includes independent contributions by Bock on 'Planar Antenna-Coupled Bolometers for CMB Polarimetry', by Gunderson and Wollack on 'Millimeter-Wave Platlet Feeds', and by Lee on 'Multi-band Dual-Polarization Lens-coupled Planar Antennas for Bolometric CMB polarimetry.'

  11. Cardiac Electromechanical Models: From Cell to Organ

    Natalia A Trayanova


    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  12. Cardiac troponin: an emerging cardiac biomarker in animal health

    Vishal V. Undhad

    Full Text Available Analysis of cardiac troponin I (cTn I and T (cTnT are considered the “gold standard” for the non-invasive diagnosis of myocardial injury in human and animals. It has replaced traditionally used cardiac biomarkers such as myoglobin, lactate dehydrogenase (LDH, creatine kinase (CK and CK-MB due to its high sensitivity and specificity for the detection of myocardial injury. Cardiac troponins are proteins that control the calcium-mediated interaction between actin and myosin, allowing contraction at the sarcomere level. Concentration of the cTn can be correlated microscopic lesion and loss of immunolabeling in myocardium damage. Troponin concentration remains elevated in blood for 1-2wks so that wide window is available for diagnosis of myocardial damage. The cTn test has >95% specificity and sensitivity and test is less time consuming (10 to 15 minutes and less costly (INR 200 to INR 500. [Vet. World 2012; 5(8.000: 508-511

  13. Cardiac Arrest in a Heart Transplant Patient Receiving Dexmedetomidine During Cardiac Catheterization.

    Schwartz, Lawrence Israel; Miyamoto, Shelley D; Stenquist, Scott; Twite, Mark David


    Dexmedetomidine is an α-2 agonist with a sedative and cardiopulmonary profile that makes it an attractive anesthetic in pediatric cardiac patients. Cardiac transplant patients may suffer from acute cellular rejection of the cardiac conduction system and, therefore, are at an increased risk of the electrophysiological effect of dexmedetomidine. We present such a patient who had a cardiac arrest while receiving dexmedetomidine during cardiac catheterization. Because acute cellular rejection of the cardiac conduction system is difficult to diagnose, dexmedetomidine should be used with caution in pediatric heart transplant patients. PMID:26721807

  14. When did cardiac surgery begin?

    Shumacker, H B


    Heart surgery is generally regarded as having begun on September 10, 1896 when Ludwig Rehn sutured a myocardial laceration successfully. There are valid reasons, however, to believe that cardiac surgery had its origin nearly a century earlier with the operative drainage of the pericardium by the little known Spanish surgeon, Francisco Romero, and highly regarded Baron Dominique Jean Larrey. This procedure entailed making a thoracic incision and opening and draining the pericardium. It must necessarily be considered a cardiac operation. The pericardium is part of the heart; its epicardium continues as the serosal layer of the fibrous pericardium; the pericardium is fused to the heart's base and great vessels; all books on heart surgery include pericardial operations. When Romero first operated is unknown, but it antedated 1814 when his work was presented in Paris; Larrey's operation was performed in 1810. These contributions are presented, and their priority with regard to the later initial efforts to suture myocardial laceration is reviewed briefly. PMID:2651455

  15. Calcium and IP3 dynamics in cardiac myocytes: Experimental and computational perspectives and approaches

    Felix eHohendanner


    Full Text Available Calcium plays a crucial role in excitation-contraction coupling (ECC, but it is also a pivotal second messenger activating Ca2+-dependent transcription factors in a process termed excitation-transcription coupling (ETC. Evidence accumulated over the past decade indicates a pivotal role of inositol 1,4,5-trisphosphate receptor (IP3R-mediated Ca2+ release in the regulation of cytosolic and nuclear Ca2+ signals. IP3 is generated by stimulation of plasma membrane receptors that couple to phospholipase C (PLC, liberating IP3 from phosphatidylinositol 4,5-bisphosphate (PIP2. An intriguing aspect of IP3 signaling is the presence of the entire PIP2-PLC-IP3 signaling cascade as well as the presence of IP3Rs at the inner and outer membranes of the nuclear envelope (NE which functions as a Ca2+ store. The observation that the nucleus is surrounded by its own putative Ca2+ store raises the possibility that nuclear IP3-dependent Ca2+ release plays a critical role in ETC. This provides a potential mechanism of regulation that acts locally and autonomously from the global cytosolic Ca2+ signal underlying ECC. Moreover, there is evidence that: (i the sarcoplasmic reticulum (SR and NE are a single contiguous Ca2+ store; (ii the nuclear pore complex is the major gateway for Ca2+ and macromolecules to pass between the cytosol and the nucleoplasm; (iii the inner membrane of the NE hosts key Ca2+ handling proteins including the Na+/Ca2+ exchanger (NCX/GM1 complex, ryanodine receptors (RyRs, nicotinic acid adenine dinucleotide phosphate receptors (NAADPRs, Na+/K+ ATPase and Na+/H+ exchanger. Thus, it appears that the nucleus represents a Ca2+ signaling domain equipped with its own ion channels and transporters that allow for complex local Ca2+ signals. Many experimental and modeling approaches have been used for the study of intracellular Ca2+ signaling but the key to understanding of the dual role of Ca2+ mediating ECC and ECT lays in quantitative differences of

  16. Historical perspectives of cardiac electrophysiology.

    Lüderitz, Berndt


    The diagnosis and treatment of clinical electrophysiology has a long and fascinating history. From earliest times, no clinical symptom impressed the patient (and the physician) more than an irregular heart beat. Although ancient Chinese pulse theory laid the foundation for the study of arrhythmias and clinical electrophysiology in the 5th century BC, the most significant breakthrough in the identification and treatment of cardiac arrhythmias first occurred in this century. In the last decades, our knowledge of electrophysiology and pharmacology has increased exponentially. The enormous clinical significance of cardiac rhythm disturbances has favored these advances. On the one hand, patients live longer and thus are more likely to experience arrhythmias. On the other hand, circulatory problems of the cardiac vessels have increased enormously, and this has been identified as the primary cause of cardiac rhythm disorders. Coronary heart disease has become not just the most significant disease of all, based on the statistics for cause of death. Arrhythmias are the main complication of ischemic heart disease, and they have been directly linked to the frequently arrhythmogenic sudden death syndrome, which is now presumed to be an avoidable "electrical accident" of the heart. A retrospective look--often charming in its own right--may not only make it easier to sort through the copious details of this field and so become oriented in this universe of important and less important facts: it may also provide the observer with a chronological vantage point from which to view the subject. The study of clinical electrophysiology is no dry compendium of facts and figures, but rather a dynamic field of study evolving out of the competition between various ideas, intentions and theories. PMID:19196616

  17. Cardiac rehabilitation: a comprehensive review

    Lear Scott A; Ignaszewski Andrew


    Abstract Cardiac rehabilitation (CR) is a commonly used treatment for men and women with cardiovascular disease. To date, no single study has conclusively demonstrated a comprehensive benefit of CR. Numerous individual studies, however, have demonstrated beneficial effects such as improved risk-factor profile, slower disease progression, decreased morbidity, and decreased mortality. This paper will review the evidence for the use of CR and discuss the implications and limitations of these stu...

  18. Cardiac Biomarkers in Hyperthyroid Cats

    Sangster, J.K.; Panciera, D L; Abbott, J.A.; Zimmerman, K.C.; Lantis, A.C.


    Background Hyperthyroidism has substantial effects on the circulatory system. The cardiac biomarkers NT‐proBNP and troponin I (cTNI) have proven useful in identifying cats with myocardial disease but have not been extensively investigated in hyperthyroidism. Hypothesis Plasma NT‐proBNP and cTNI concentrations are higher in cats with primary myocardial disease than in cats with hyperthyroidism and higher in cats with hyperthyroidism than in healthy control cats. Animals Twenty‐three hyperthyro...

  19. Functiogenesis of cardiac pacemaker activity.

    Sakai, Tetsuro; Kamino, Kohtaro


    Throughout our investigations on the ontogenesis of the electrophysiological events in early embryonic chick hearts, using optical techniques to record membrane potential probed with voltage-sensitive dyes, we have introduced a novel concept of "functiogenesis" corresponding to "morphogenesis". This article gives an account of the framework of "functiogenesis", focusing on the cardiac pacemaker function and the functional organization of the pacemaking area. PMID:26719289

  20. Comparative Aspects of Cardiac Adaptation

    Ošťádal, Bohuslav

    New York : Springer, 2013 - (Ošťádal, B.; Dhalla, N.), s. 3-18 ISBN 978-1-4614-5202-7. - (Advances in Biochemistry in Health and Disease) R&D Projects: GA ČR(CZ) GAP302/11/1308 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : cardiac adaptation * poikilotherms * homeotherms Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  1. Cardiac Biomarkers and Cycling Race

    Caroline Le Goff, Jean-François Kaux, Sébastien Goffaux, Etienne Cavalier


    In cycling as in other types of strenuous exercise, there exists a risk of sudden death. It is important both to understand its causes and to see if the behavior of certain biomarkers might highlight athletes at risk. Many reports describe changes in biomarkers after strenuous exercise (Nie et al., 2011), but interpreting these changes, and notably distinguishing normal physiological responses from pathological changes, is not easy. Here we have focused on the kinetics of different cardiac bi...

  2. Cardiac involvement in tuberous sclerosis.

    Mühler, E G; Turniski-Harder, V; Engelhardt, W.; von Bernuth, G


    OBJECTIVE--To assess the incidence, importance, and history of cardiac involvement in infants and children with tuberous sclerosis. DESIGN--Prospective study; clinical examination, sector and Doppler echocardiography, standard and ambulatory electrocardiography. SETTING--A tertiary referral centre. PATIENTS--21 patients with tuberous sclerosis aged 1 day to 16 years (mean 6.3 years); follow up investigations were available in 14 cases (10 retrospective, 4 prospective; mean follow up 4.3 years...

  3. Cardiac MRI in restrictive cardiomyopathy

    Restrictive cardiomyopathy (RCM) is a specific group of heart muscle disorders characterized by inadequate ventricular relaxation during diastole. This leads to diastolic dysfunction with relative preservation of systolic function. Although short axis systolic function is usually preserved in RCM, the long axis systolic function may be severely impaired. Confirmation of diagnosis and information regarding aetiology, extent of myocardial damage, and response to treatment requires imaging. Importantly, differentiation from constrictive pericarditis (CCP) is needed, as only the latter is managed surgically. Echocardiography is the initial cardiac imaging technique but cannot reliably suggest a tissue diagnosis; although recent advances, especially tissue Doppler imaging and spectral tracking, have improved its ability to differentiate RCM from CCP. Cardiac catheterization is the reference standard, but is invasive, two-dimensional, and does not aid myocardial characterization. Cardiac magnetic resonance (CMR) is a versatile technique providing anatomical, morphological and functional information. In recent years, it has been shown to provide important information regarding disease mechanisms, and also been found useful to guide treatment, assess its outcome and predict patient prognosis. This review describes the CMR features of RCM, appearances in various diseases, its overall role in patient management, and how it compares with other imaging techniques.

  4. Cardiac MRI in restrictive cardiomyopathy

    Gupta, A. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Singh Gulati, G., E-mail: [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Seth, S. [Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India); Sharma, S. [Department of Cardiovascular Radiology, All India Institute of Medical Sciences, Ansari Nagar, Delhi (India)


    Restrictive cardiomyopathy (RCM) is a specific group of heart muscle disorders characterized by inadequate ventricular relaxation during diastole. This leads to diastolic dysfunction with relative preservation of systolic function. Although short axis systolic function is usually preserved in RCM, the long axis systolic function may be severely impaired. Confirmation of diagnosis and information regarding aetiology, extent of myocardial damage, and response to treatment requires imaging. Importantly, differentiation from constrictive pericarditis (CCP) is needed, as only the latter is managed surgically. Echocardiography is the initial cardiac imaging technique but cannot reliably suggest a tissue diagnosis; although recent advances, especially tissue Doppler imaging and spectral tracking, have improved its ability to differentiate RCM from CCP. Cardiac catheterization is the reference standard, but is invasive, two-dimensional, and does not aid myocardial characterization. Cardiac magnetic resonance (CMR) is a versatile technique providing anatomical, morphological and functional information. In recent years, it has been shown to provide important information regarding disease mechanisms, and also been found useful to guide treatment, assess its outcome and predict patient prognosis. This review describes the CMR features of RCM, appearances in various diseases, its overall role in patient management, and how it compares with other imaging techniques.

  5. Review Article of Cardiac Amyloidosis

    Jittiporn PURATTANAMAL


    Full Text Available Cardiac amyloidosis is a term that means the deposit of abnormal proteins in the myocardium leading to global thickening of the heart walls. The clinical character is that of infiltrative cardiomyopathy. AL amyloidosis is the most common type that involves cardiac failure. Cardiac amyloid precedes clinical congestive heart failure, especially right-sided heart failure. Laboratory investigations have identified the amyloid fibril proteins deposited in the organ tissues. Immunofixation tests are the most sensitive that recognize the paraprotein mean light chain protein or immunoglobulin subtype deposit. Prognosis is poor if AL amyloidosis is untreated. Treatment of systemic involvement in AL amyloidosis is via chemotherapy such as melphalan and prednisolone. UK experts have reported the results of treatment in AL amyloidosis. Regardless of the use of adjunctive chemotherapy, the five-year survival after heart transplantation was generally poorer for AL (20 % at five years, but similar for non-AL amyloidosis (64 % at five years, than heart transplants in other cases. Progression of the systemic disease contributed to increased mortality. A specific treatment that increases the chances of survival is unknown.

  6. Gastrointestinal complications and cardiac surgery.

    Allen, Sara J


    Gastrointestinal (GI) complications are an uncommon but potentially devastating complication of cardiac surgery. The reported incidence varies between .3% and 5.5% with an associated mortality of .3-87%. A wide range of GI complications are reported with bleeding, mesenteric ischemia, pancreatitis, cholecystitis, and ileus the most common. Ischemia is thought to be the main cause of GI complications with hypoperfusion during cardiac surgery as well as systemic inflammation, hypothermia, drug therapy, and mechanical factors contributing. Several nonischemic mechanisms may contribute to GI complications, including bacterial translocation, adverse drug reactions, and iatrogenic organ injury. Risk factors for GI complications are advanced age (>70 years), reoperation or emergency surgery, comorbidities (renal disease, respiratory disease, peripheral vascular disease, diabetes mellitus, cardiac failure), perioperative use of an intra-aortic balloon pump or inotrope therapy, prolonged surgery or cardiopulmonary bypass, and postoperative complications. Multiple strategies to reduce the incidence of GI complications exist, including risk stratification scores, targeted inotrope and fluid therapy, drug therapies, and modification of cardiopulmonary bypass. Currently, no single therapy has consistently proven efficacy in reducing GI complications. Timely diagnosis and treatment, while tailored to the specific complication and patient, is essential for optimal management and outcomes in this challenging patient population. PMID:25208431

  7. Prosthesis coupling

    Reswick, J. B.; Mooney, V.; Bright, C. W.; Owens, L. J. (Inventor)


    A coupling for use in an apparatus for connecting a prosthesis to the bone of a stump of an amputated limb is described which permits a bio-compatible carbon sleeve forming a part of the prosthesis connector to float so as to prevent disturbing the skin seal around the carbon sleeve. The coupling includes a flexible member interposed between a socket that is inserted within an intermedullary cavity of the bone and the sleeve. A lock pin is carried by the prosthesis and has a stem portion which is adapted to be coaxially disposed and slideably within the tubular female socket for securing the prosthesis to the stump. The skin around the percutaneous carbon sleeve is able to move as a result of the flexing coupling so as to reduce stresses caused by changes in the stump shape and/or movement between the bone and the flesh portion of the stump.

  8. Entrepreneurial Couples

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    We study possible motivations for co-entrepenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and postdissolution private and financial outcomes with......, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no evidence of...

  9. Entrepreneurial Couples

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    We study possible motivations for co-entrepenurial couples to start up a joint firm, us-ing a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... female, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound in-vestment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no...

  10. Entrepreneurial Couples


    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... female, are larger in co-entrepreneurial firms, both during the life of the business and post-dissolution. The start-up of co-entrepreneurial firms seems therefore a sound investment in the human capital of both spouses as well as in the reduction of income inequality in the household. We find no...