WorldWideScience

Sample records for cardiac activation mapping

  1. An efficient cardiac mapping strategy for radiofrequency catheter ablation with active learning.

    Science.gov (United States)

    Feng, Yingjing; Guo, Ziyan; Dong, Ziyang; Zhou, Xiao-Yun; Kwok, Ka-Wai; Ernst, Sabine; Lee, Su-Lin

    2017-07-01

    A major challenge in radiofrequency catheter ablation procedures is the voltage and activation mapping of the endocardium, given a limited mapping time. By learning from expert interventional electrophysiologists (operators), while also making use of an active-learning framework, guidance on performing cardiac voltage mapping can be provided to novice operators or even directly to catheter robots. A learning from demonstration (LfD) framework, based upon previous cardiac mapping procedures performed by an expert operator, in conjunction with Gaussian process (GP) model-based active learning, was developed to efficiently perform voltage mapping over right ventricles (RV). The GP model was used to output the next best mapping point, while getting updated towards the underlying voltage data pattern as more mapping points are taken. A regularized particle filter was used to keep track of the kernel hyperparameter used by GP. The travel cost of the catheter tip was incorporated to produce time-efficient mapping sequences. The proposed strategy was validated on a simulated 2D grid mapping task, with leave-one-out experiments on 25 retrospective datasets, in an RV phantom using the Stereotaxis Niobe ® remote magnetic navigation system, and on a tele-operated catheter robot. In comparison with an existing geometry-based method, regression error was reduced and was minimized at a faster rate over retrospective procedure data. A new method of catheter mapping guidance has been proposed based on LfD and active learning. The proposed method provides real-time guidance for the procedure, as well as a live evaluation of mapping sufficiency.

  2. Map-based model of the cardiac action potential

    International Nuclear Information System (INIS)

    Pavlov, Evgeny A.; Osipov, Grigory V.; Chan, C.K.; Suykens, Johan A.K.

    2011-01-01

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  3. Map-based model of the cardiac action potential

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, Evgeny A., E-mail: genie.pavlov@gmail.com [Department of Computational Mathematics and Cybernetics, Nizhny Novgorod State University, 23, Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation); Osipov, Grigory V. [Department of Computational Mathematics and Cybernetics, Nizhny Novgorod State University, 23, Gagarin Avenue, 603950 Nizhny Novgorod (Russian Federation); Chan, C.K. [Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan (China); Suykens, Johan A.K. [K.U. Leuven, ESAT-SCD/SISTA, Kasteelpark Arenberg 10, B-3001 Leuven (Heverlee) (Belgium)

    2011-07-25

    A simple computationally efficient model which is capable of replicating the basic features of cardiac cell action potential is proposed. The model is a four-dimensional map and demonstrates good correspondence with real cardiac cells. Various regimes of cardiac activity, which can be reproduced by the proposed model, are shown. Bifurcation mechanisms of these regimes transitions are explained using phase space analysis. The dynamics of 1D and 2D lattices of coupled maps which model the behavior of electrically connected cells is discussed in the context of synchronization theory. -- Highlights: → Recent experimental-data based models are complicated for analysis and simulation. → The simplified map-based model of the cardiac cell is constructed. → The model is capable for replication of different types of cardiac activity. → The spatio-temporal dynamics of ensembles of coupled maps are investigated. → Received data are analyzed in context of biophysical processes in the myocardium.

  4. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Hieu T Nim

    Full Text Available The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP, an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1 relevant to cardiac literature, and (2 differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10 are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  5. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts.

    Science.gov (United States)

    Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Kitano, Hiroaki; Rosenthal, Nadia A; Boyd, Sarah E

    2015-01-01

    The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research.

  6. Cardiac imaging in RASopathies/mitogen activated protein kinase syndromes

    Directory of Open Access Journals (Sweden)

    Rita Gravino

    2014-07-01

    Full Text Available RASopathies include a spectrum of disorders due to dysregulation of RAS/mitogen activated protein kinase pathway that plays an essential role in the control of the cell cycle and differentiation. As a consequence, its dysregulation has profound developmental consequences, in particular cardiac malformations. RASopathies with cardiac features are: Noonan syndrome, multiple lentigines syndrome, cardio-faciocutaneous syndrome, Costello syndrome, neurofibromatosis- 1, Legius syndrome, neurofibromatosis- Noonan syndrome. The former syndromes are associated with a high rate of cardiac involvement (60-85% and 12 genes: PTPN11, SOS1, RAF1, KRAS, HRAS, BRAF, MEK1/MAP2K1, MEK2/MAP2K2, NRAS, SHOC2, CBL and SPRED1. Although the majority of these diseases are readily distinguishable in clinical terms, an integrated imaging study of the cardiac condition associated to RASopathies helps to better define risk assessment, surveillance, and management of these patients.

  7. Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping.

    Science.gov (United States)

    Besio, W; Chen, T

    2007-05-01

    The electrocardiogram (ECG) provides useful global temporal assessment of the cardiac activity, but has limited spatial capabilities. The Laplacian electrocardiogram (LECG), an improvement over the ECG, provides high spatiotemporal distributed information about cardiac electrical activation. We designed and developed LECG tripolar concentric ring electrode active sensors based on the finite element algorithm 'nine-point method' (NPM). The active sensors were used in an array of 6 by 12 (72) locations to record bipolar and tripolar LECG from the body surface over the anterolateral chest. Compared to bipolar LECG, tripolar LECG showed significantly higher spatial selectivity which may be helpful in inferring information about cardiac activations detected on the body surface. In this study the moment of activation (MOA), an indicator of a depolarization wave passing below the active sensors, was used to surmise possible timing information of the cardiac electrical activation below the active sensors' recording sites. The MOA on the body surface was used to generate isochronal maps that may some day be used by clinicians in diagnosing arrhythmias and assessing the efficacy of therapies.

  8. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From Simultaneous Cardioneural Mapping.

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S; Chui, Ray W; Ajijola, Olujimi A; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam

    2017-04-01

    Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system, a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on intrinsic cardiac nervous system function in generating cardiac neuronal and electric instability using a novel cardioneural mapping approach. In a porcine model (n=8), neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli ( P <0.001). Compared with fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response ( P <0.05 versus short CI), particularly on convergent neurons ( P <0.05), as well as neurons receiving sympathetic ( P <0.05) and parasympathetic input ( P <0.05). The greatest cardiac electric instability was also observed after variable (short) CI PVCs. Variable CI PVCs affect critical populations of intrinsic cardiac nervous system neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling, leading to cardiomyopathy. © 2017 American Heart Association, Inc.

  9. Towards optical spectroscopic anatomical mapping (OSAM) for lesion validation in cardiac tissue (Conference Presentation)

    Science.gov (United States)

    Singh-Moon, Rajinder P.; Zaryab, Mohammad; Hendon, Christine P.

    2017-02-01

    Electroanatomical mapping (EAM) is an invaluable tool for guiding cardiac radiofrequency ablation (RFA) therapy. The principle roles of EAM is the identification of candidate ablation sites by detecting regions of abnormal electrogram activity and lesion validation subsequent to RF energy delivery. However, incomplete lesions may present interim electrical inactivity similar to effective treatment in the acute setting, despite efforts to reveal them with pacing or drugs, such as adenosine. Studies report that the misidentification and recovery of such lesions is a leading cause of arrhythmia recurrence and repeat procedures. In previous work, we demonstrated spectroscopic characterization of cardiac tissues using a fiber optic-integrated RF ablation catheter. In this work, we introduce OSAM (optical spectroscopic anatomical mapping), the application of this spectroscopic technique to obtain 2-dimensional biodistribution maps. We demonstrate its diagnostic potential as an auxiliary method for lesion validation in treated swine preparations. Endocardial lesion sets were created on fresh swine cardiac samples using a commercial RFA system. An optically-integrated catheter console fabricated in-house was used for measurement of tissue optical spectra between 600-1000nm. Three dimensional, Spatio-spectral datasets were generated by raster scanning of the optical catheter across the treated sample surface in the presence of whole blood. Tissue optical parameters were recovered at each spatial position using an inverse Monte Carlo method. OSAM biodistribution maps showed stark correspondence with gross examination of tetrazolium chloride stained tissue specimens. Specifically, we demonstrate the ability of OSAM to readily distinguish between shallow and deeper lesions, a limitation faced by current EAM techniques. These results showcase the OSAMs potential for lesion validation strategies for the treatment of cardiac arrhythmias.

  10. Optical mapping of optogenetically shaped cardiac action potentials

    Science.gov (United States)

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  11. Mechanical perturbation control of cardiac alternans

    Science.gov (United States)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  12. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights from Simultaneous Cardio-Neural Mapping

    Science.gov (United States)

    Hamon, David; Rajendran, Pradeep S.; Chui, Ray W.; Ajijola, Olujimi A.; Irie, Tadanobu; Talebi, Ramin; Salavatian, Siamak; Vaseghi, Marmar; Bradfield, Jason S.; Armour, J. Andrew; Ardell, Jeffrey L.; Shivkumar, Kalyanam

    2017-01-01

    Background Variability in premature ventricular contraction (PVC) coupling interval (CI) increases the risk of cardiomyopathy and sudden death. The autonomic nervous system regulates cardiac electrical and mechanical indices, and its dysregulation plays an important role in cardiac disease pathogenesis. The impact of PVCs on the intrinsic cardiac nervous system (ICNS), a neural network on the heart, remains unknown. The objective was to determine the effect of PVCs and CI on ICNS function in generating cardiac neuronal and electrical instability using a novel cardio-neural mapping approach. Methods and Results In a porcine model (n=8) neuronal activity was recorded from a ventricular ganglion using a microelectrode array, and cardiac electrophysiological mapping was performed. Neurons were functionally classified based on their response to afferent and efferent cardiovascular stimuli, with neurons that responded to both defined as convergent (local reflex processors). Dynamic changes in neuronal activity were then evaluated in response to right ventricular outflow tract PVCs with fixed short, fixed long, and variable CI. PVC delivery elicited a greater neuronal response than all other stimuli (P<0.001). Compared to fixed short and long CI, PVCs with variable CI had a greater impact on neuronal response (P<0.05 versus short CI), particularly on convergent neurons (P<0.05), as well as neurons receiving sympathetic (P<0.05) and parasympathetic input (P<0.05). The greatest cardiac electrical instability was also observed following variable (short) CI PVCs. Conclusions Variable CI PVCs affect critical populations of ICNS neurons and alter cardiac repolarization. These changes may be critical for arrhythmogenesis and remodeling leading to cardiomyopathy. PMID:28408652

  13. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    Langer, Oliver; Halldin, Christer

    2002-01-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[ 18 F]fluorodopamine, (-)-6-[ 18 F]fluoronorepinephrine and (-)-[ 11 C]epinephrine, and radiolabelled catecholamine analogues, such as [ 123 I]meta-iodobenzylguanidine, [ 11 C]meta-hydroxyephedrine, [ 18 F]fluorometaraminol, [ 11 C]phenylephrine and meta-[ 76 Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[ 18 F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  14. Coupled iterated map models of action potential dynamics in a one-dimensional cable of cardiac cells

    International Nuclear Information System (INIS)

    Wang Shihong; Xie Yuanfang; Qu Zhilin

    2008-01-01

    Low-dimensional iterated map models have been widely used to study action potential dynamics in isolated cardiac cells. Coupled iterated map models have also been widely used to investigate action potential propagation dynamics in one-dimensional (1D) coupled cardiac cells, however, these models are usually empirical and not carefully validated. In this study, we first developed two coupled iterated map models which are the standard forms of diffusively coupled maps and overcome the limitations of the previous models. We then determined the coupling strength and space constant by quantitatively comparing the 1D action potential duration profile from the coupled cardiac cell model described by differential equations with that of the coupled iterated map models. To further validate the coupled iterated map models, we compared the stability conditions of the spatially uniform state of the coupled iterated maps and those of the 1D ionic model and showed that the coupled iterated map model could well recapitulate the stability conditions, i.e. the spatially uniform state is stable unless the state is chaotic. Finally, we combined conduction into the developed coupled iterated map model to study the effects of coupling strength on wave stabilities and showed that the diffusive coupling between cardiac cells tends to suppress instabilities during reentry in a 1D ring and the onset of discordant alternans in a periodically paced 1D cable

  15. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    Science.gov (United States)

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  16. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    Science.gov (United States)

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.

  17. Identification of cardiac rhythm features by mathematical analysis of vector fields.

    Science.gov (United States)

    Fitzgerald, Tamara N; Brooks, Dana H; Triedman, John K

    2005-01-01

    Automated techniques for locating cardiac arrhythmia features are limited, and cardiologists generally rely on isochronal maps to infer patterns in the cardiac activation sequence during an ablation procedure. Velocity vector mapping has been proposed as an alternative method to study cardiac activation in both clinical and research environments. In addition to the visual cues that vector maps can provide, vector fields can be analyzed using mathematical operators such as the divergence and curl. In the current study, conduction features were extracted from velocity vector fields computed from cardiac mapping data. The divergence was used to locate ectopic foci and wavefront collisions, and the curl to identify central obstacles in reentrant circuits. Both operators were applied to simulated rhythms created from a two-dimensional cellular automaton model, to measured data from an in situ experimental canine model, and to complex three-dimensional human cardiac mapping data sets. Analysis of simulated vector fields indicated that the divergence is useful in identifying ectopic foci, with a relatively small number of vectors and with errors of up to 30 degrees in the angle measurements. The curl was useful for identifying central obstacles in reentrant circuits, and the number of velocity vectors needed increased as the rhythm became more complex. The divergence was able to accurately identify canine in situ pacing sites, areas of breakthrough activation, and wavefront collisions. In data from human arrhythmias, the divergence reliably estimated origins of electrical activity and wavefront collisions, but the curl was less reliable at locating central obstacles in reentrant circuits, possibly due to the retrospective nature of data collection. The results indicate that the curl and divergence operators applied to velocity vector maps have the potential to add valuable information in cardiac mapping and can be used to supplement human pattern recognition.

  18. Non invasive cardiac vein mapping: Role of multislice CT coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Malago, Roberto, E-mail: robertomalag@yahoo.it [Radiology Department, University Hospital Policlinico G.B.Rossi, P.le L.A. Scuro 10, 37134 Verona (Italy); Pezzato, Andrea; Barbiani, Camilla; Sala, Giuseppe; Zamboni, Giulia A. [Radiology Department, University Hospital Policlinico G.B.Rossi, P.le L.A. Scuro 10, 37134 Verona (Italy); Tavella, Domenico [Cardiology Service, University Hospital Policlinico G.B.Rossi, P.le L.A. Scuro 10, 37134 Verona (Italy); Mucelli, Roberto Pozzi [Radiology Department, University Hospital Policlinico G.B.Rossi, P.le L.A. Scuro 10, 37134 Verona (Italy)

    2012-11-15

    Purpose: Coronary venous anatomy is of primary importance when implanting a cardiac resynchronization therapy device, besides, the coronary sinus can be differently enlarged depending on chronic heart failure. The aim of this study is to evaluate the usefulness of Coronary CTA in describing the coronary venous tree and in particular the coronary sinus and detecting main venous system variants. Materials and methods: 301 consecutive patients (196 Male-Sign , mean age 63.74 years) studied for coronary artery disease with 64 slice Coronary CTA were retrospectively examined. The acquisition protocol was the standard acquisition one used for coronary artery evaluation but the cardiac venous system were visualized. The cardiac venous system was depicted using 3D, MPR, cMPR and MIP post-processing reconstructions on an off-line workstation. For each patient image quality, presence and caliber of the coronary sinus (CS), great cardiac vein (GCV), middle vein (MV), anterior interventricular vein (AIV), lateral cardiac vein (LCV), posterior cardiac vein (PCV), small cardiac vein (SCV) and presence of variant of the normal anatomy were examined and recorded. Results: CS, GCV, MV and AIV were visualized in 100% of the cases. The LCV was visualized in 255/301 (84%) patients, the PCV in 248/301 (83%) patients and the SCV in 69/301 (23%) patients. Mean diameter of the CS was 8.7 mm in 276/301 (91.7%) patients without chronic heart failure and 9.93 mm in 25/301 (8.3%) patients with chronic heart failure. Conclusions: Coronary CTA allows non invasive mapping of the cardiac venous system and may represent a useful presurgical tool for biventricular pacemaker devices implantation.

  19. Magnetic resonance evaluation of cardiac thrombi and masses by T1 and T2 mapping: an observational study.

    Science.gov (United States)

    Caspar, Thibault; El Ghannudi, Soraya; Ohana, Mickaël; Labani, Aïssam; Lawson, Aubrietia; Ohlmann, Patrick; Morel, Olivier; De Mathelin, Michel; Roy, Catherine; Gangi, Afshin; Germain, Philippe

    2017-04-01

    The purpose of this work was to evaluate CMR T1 and T2 mapping sequences in patients with intracardiac thrombi and masses in order to assess T1 and T2 relaxometry usefulness and to allow better etiological diagnosis. This observational study of patients scheduled for routine CMR was performed from September 2014 to August 2015. All patients referred to our department for a 1.5 T CMR were screened to participate. T1 mapping were acquired before and after Gadolinium injection; T2 mapping images were obtained before injection. 41 patients were included. 22 presented with cardiac thrombi and 19 with cardiac masses. The native T1 of thrombi was 1037 ± 152 ms (vs 1032 ± 39 ms for myocardium, p = 0.88; vs 1565 ± 88 ms for blood pool, p T2 were 74 ± 13 ms (vs 51 ± 3 ms for myocardium, p T2 consistently >70 ms. T1 and T2 mapping CMR sequences can be useful and represent a new approach for the evaluation of cardiac thrombi and masses.

  20. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-08-01

    Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  1. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    Science.gov (United States)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  2. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    LENUS (Irish Health Repository)

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient\\'s cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless

  3. RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts.

    Science.gov (United States)

    Leuner, Beatrice; Ruhs, Stefanie; Brömme, Hans-Jürgen; Bierhaus, Angelika; Sel, Saadettin; Silber, Rolf-Edgar; Somoza, Veronika; Simm, Andreas; Nass, Norbert

    2012-10-01

    Advanced glycation end products (AGEs) are stable compounds formed from initial Maillard reaction products. They are considered as markers for ageing and often associated with age-related, degenerative diseases. Bread crust represents an established model for nutritional compounds rich in AGEs and is able to induce antioxidative defense genes such as superoxide dismutases and vanins in cardiac cells. The aim of this study was to investigate to what extend the receptor for AGEs (RAGE) contributes to this response. Signal transduction in response to bread crust extract was analysed in cardiac fibroblasts derived from C57/B6-NCrl (RAGE +/+) and the corresponding RAGE-knock out C57/B6-NCrl mouse strain (RAGE -/-). Activation of superoxide dismutases in animals was then analysed upon bread crust feeding in these two mice strains. Cardiac fibroblasts from RAGE -/- mice did not express RAGE, but the expression of AGER-1 and AGER-3 was up-regulated, whereas the expression of SR-B1 was down-regulated. RAGE -/- cells were less sensitive to BCE in terms of MAP-kinase phosphorylation and NF-κB reporter gene activation. Bread crust extract induced mRNA levels of MnSOD and Vnn-1 were also reduced in RAGE -/- cells, whereas Vnn-3 mRNA accumulation seemed to be RAGE receptor independent. In bread crust feeding experiments, RAGE -/- mice did not exhibit an activation of MnSOD-mRNA and -protein accumulation as observed for the RAGE +/+ animals. In conclusion, RAGE was clearly a major factor for the induction of antioxidant defense signals derived from bread crust in cardiac fibroblast and mice. Nevertheless higher doses of bread crust extract could overcome the RAGE dependency in cell cultures, indicating that additional mechanisms are involved in BCE-mediated activation of SOD and vanin expression.

  4. Three-Dimensional Electroanatomic Mapping System-Enhanced Cardiac Resynchronization Therapy Device Implantation: Results From a Multicenter Registry.

    Science.gov (United States)

    Del Greco, Maurizio; Maines, Massimiliano; Marini, Massimiliano; Colella, Andrea; Zecchin, Massimo; Vitali-Serdoz, Laura; Blandino, Alessandro; Barbonaglia, Lorella; Allocca, Giuseppe; Mureddu, Roberto; Marenna, Biondino; Rossi, Paolo; Vaccari, Diego; Chianca, Roberto; Indiani, Stefano; DI Matteo, Irene; Angheben, Carlo; Zorzi, Alessandro

    2017-01-01

    Cardiac resynchronization therapy (CRT) device implantation guided by an electroanatomic mapping system (EAMS) is an emerging technique that may reduce fluoroscopy and angiography use and provide information on coronary sinus (CS) electrical activation. We evaluated the outcome of the EAMS-guided CRT implantation technique in a multicenter registry. During the period 2011-2014 we enrolled 125 patients (80% males, age 74 [71-77] years) who underwent CRT implantation by using the EnSite system to create geometric models of the patient's cardiac chambers, build activation mapping of the CS, and guide leads positioning. Two hundred and fifty patients undergoing traditional CRT implantation served as controls. Success and complication rates, fluoroscopy and total procedure times in the overall study population and according to center experience were collected. Centers that performed ≥10 were defined as highly experienced. Left ventricular lead implantation was successful in 122 (98%) cases and 242 (97%) controls (P = 0.76). Median fluoroscopy time was 4.1 (0.3-10.4) minutes in cases versus 16 (11-26) minutes in controls (P < 0.001). Coronary sinus angiography was performed in 33 (26%) cases and 208 (83%) controls (P < 0.001). Complications occurred in 5 (4%) cases and 17 (7%) controls (P = 0.28). Median fluoroscopy time (median 11 minutes vs. 3 minutes, P < 0.001) and CS angiography rate (55% vs. 21%, P < 0.001) were significantly higher in low experienced centers, while success rate and complications rate were similar. EAMS-guided CRT implantation proved safe and effective in both high- and low-experienced centers and allowed to reduce fluoroscopy use by ≈75% and angiography rate by ≈70%. © 2016 Wiley Periodicals, Inc.

  5. Evaluation of cardiac function in active and hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  6. Sarcopenia and physical activity in older male cardiac patients.

    Science.gov (United States)

    Izawa, Kazuhiro P; Watanabe, Satoshi; Oka, Koichiro; Kasahara, Yusuke; Morio, Yuji; Hiraki, Koji; Hirano, Yasuyuki; Omori, Yutaka; Suzuki, Norio; Kida, Keisuke; Suzuki, Kengo; Akashi, Yoshihiro J

    2016-11-01

    There is little information on the association of sarcopenia with physical activity in elderly cardiac patients. This study determined differences in physical activity and cutoff values for physical activity according to the presence or absence of sarcopenia in elderly male cardiac patients. Sixty-seven consecutive men aged ≥65 years with cardiac disease were enrolled. We defined sarcopenia using the European Working Group on Sarcopenia in Older People algorithm. Patients were divided into the sarcopenia group (n=25) and the non-sarcopenia group (n=42). In the patients with and without sarcopenia of physical activities were evaluated to determine cutoff values of physical activity. After adjusting for patient characteristics, both the average daily number of steps (3361.43±793.23 vs. 5991.55±583.57 steps, P=0.021) and the average daily energy expenditure of physical activity (71.84±22.19 vs. 154.57±16.18kcal, P=0.009) were significantly lower in the sarcopenia versus non-sarcopenia group. Receiver-operating characteristic analysis identified a cutoff value for steps of physical activity of 3551.80steps/day for 1 week, with a sensitivity of 0.73 and 1-specificity of 0.44 and a cutoff value for energy expenditure of physical activity of 85.17kcal/day for 1 week, with a sensitivity of 0.73 and 1-specificity of 0.27. Physical activity in the male cardiac patients with sarcopenia was significantly lower than that in those without sarcopenia. The cutoff values reported here may be useful values to aid in the identification of elderly male cardiac patients with sarcopenia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Characterization of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms.

    Directory of Open Access Journals (Sweden)

    Sébastien Roujol

    Full Text Available Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI and electro-anatomical voltage mapping (EAM is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques. Knowledge of cardiac and respiratory motion during EAM is thus required to enhance the fusion process. In this study, we propose a novel approach to characterize both cardiac and respiratory motion from EAM data using the temporal evolution of the 3D catheter location recorded from clinical EAM systems. Cardiac and respiratory motion components are extracted from the recorded catheter location using multi-band filters. Filters are calibrated for each EAM point using estimates of heart rate and respiratory rate. The method was first evaluated in numerical simulations using 3D models of cardiac and respiratory motions of the heart generated from real time MRI data acquired in 5 healthy subjects. An accuracy of 0.6-0.7 mm was found for both cardiac and respiratory motion estimates in numerical simulations. Cardiac and respiratory motions were then characterized in 27 patients who underwent LV mapping for treatment of ventricular tachycardia. Mean maximum amplitude of cardiac and respiratory motion was 10.2±2.7 mm (min = 5.5, max = 16.9 and 8.8±2.3 mm (min = 4.3, max = 14.8, respectively. 3D Cardiac and respiratory motions could be estimated from the recorded catheter location and the method does not rely on additional imaging modality such as X-ray fluoroscopy and can be used in conventional electrophysiology laboratory setting.

  8. Transcatheter radiofrequency ablation under the guidance of three-dimensional mapping for the treatment of complex cardiac arrhythmias

    International Nuclear Information System (INIS)

    Hong Lang; Wang Hong; Lai Hengli; Ying Qiulin; Chen Zhangqiang; Lu Linxiang; Qiu Yun; Xiao Chengwei

    2010-01-01

    Objective: To investigate the effectiveness and safety of transcatheter radiofrequency ablation guided by a three-dimensional mapping system (Ensite or Carto) for the treatment of complex cardiac arrhythmias. Methods: A cohort of 123 consecutive hospitalized inpatients during the period from February 2006 to December 2008 were selected for this study. These patients suffered from various arrhythmias, including paroxysmal atrial fibrillation (n = 58), persistent or permanent atrial fibrillation (n = 10), atrial flutter (n = 13), atrial tachycardia (n = 12) and ventricular tachycardia or frequent ventricular premature beats (n = 30). Transcatheter radiofrequency ablation for arrhythmias was performed under the guidance of an EnSite3000 / NavX or Array mapping system in 80 cases, and under the guidance of a CARTO mapping system in the remaining 43 cases. Results: Successful ablation of arrhythmias was obtained by single operation in 106 cases (86.18%), including 59 cases with atrial fibrillation, 11 cases with atrial flutter, 10 cases with atrial tachycardia, and 26 cases with ventricular tachycardia or premature ventricular beat.Ablation procedure was carried out and was successful in 10 cases with a successful rate of 94.31%, including 5 cases with atrial fibrillation, 1 case with recurred atrial flutter, 1 case with recurrent atrial tachycardia, and 3 cases with ventricular tachycardia or premature ventricular beat.After operation, complications occurred in 6 cases, including cardiac tamponade in 4 cases, distal embolism of the left anterior descending coronary artery in 1 case, and pulmonary embolism in 1 case. Conclusion: Three-dimensional mapping system can clearly and stereoscopically display the cardiac structures. Therefore, this technique is of great value in guiding the transcatheter radiofrequency ablation for complex arrhythmias, in improving the success rate of ablation and in increasing the safety of the procedure. (authors)

  9. Noninvasive cardiac activation imaging of ventricular arrhythmias during drug-induced QT prolongation in the rabbit heart.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; Zhou, Zhaoye; He, Bin

    2013-10-01

    Imaging myocardial activation from noninvasive body surface potentials promises to aid in both cardiovascular research and clinical medicine. To investigate the ability of a noninvasive 3-dimensional cardiac electrical imaging technique for characterizing the activation patterns of dynamically changing ventricular arrhythmias during drug-induced QT prolongation in rabbits. Simultaneous body surface potential mapping and 3-dimensional intracardiac mapping were performed in a closed-chest condition in 8 rabbits. Data analysis was performed on premature ventricular complexes, couplets, and torsades de pointes (TdP) induced during intravenous administration of clofilium and phenylephrine with combinations of various infusion rates. The drug infusion led to a significant increase in the QT interval (from 175 ± 7 to 274 ± 31 ms) and rate-corrected QT interval (from 183 ± 5 to 262 ± 21 ms) during the first dose cycle. All the ectopic beats initiated by a focal activation pattern. The initial beat of TdPs arose at the focal site, whereas the subsequent beats were due to focal activity from different sites or 2 competing focal sites. The imaged results captured the dynamic shift of activation patterns and were in good correlation with the simultaneous measurements, with a correlation coefficient of 0.65 ± 0.02 averaged over 111 ectopic beats. Sites of initial activation were localized to be ~5 mm from the directly measured initiation sites. The 3-dimensional cardiac electrical imaging technique could localize the origin of activation and image activation sequence of TdP during QT prolongation induced by clofilium and phenylephrine in rabbits. It offers the potential to noninvasively investigate the proarrhythmic effects of drug infusion and assess the mechanisms of arrhythmias on a beat-to-beat basis. © 2013 Heart Rhythm Society. All rights reserved.

  10. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    Science.gov (United States)

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P correlation coefficient between the young, healthy group and the other two groups. A significant difference (P correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  11. Cardiac functional mapping for thallium-201 myocardial perfusion, washout, wall motion and phase using single-photon emission computed tomography (SPECT)

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Taniguchi, Mitsuru; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi; Hirano, Takako; Wani, Hidenobu.

    1986-01-01

    A method for three-dimensional functional mapping of Tl-201 myocardial uptake, washout, wall motion and phase was developed using SPECT. Each parameter was mapped using polar display in the same format. Normal values were determined in Tl-201 exercise study in 16 patients. Myocardial counts were lower in the septum and inferior wall and the difference of counts between anterior and inferior walls were greater in man compared with the perfusion pattern in woman. Washout was slower at septum and inferior wall in man, and slightly slower at inferior wall in woman. In gated blood-pool tomography, length-based and count-based Fourier analyses were applied to calculate the parameters of contraction and phase. The results of both Fourier analyses generally agreed; however, the area of abnormality was slightly different. Phase maps were useful for the assessment of asynergy as well as in patients with conduction disorders. These cardiac functional maps using SPECT were considered to be effective for the understanding of three-dimensional informations of cardiac function. (author)

  12. Cardiac T2-mapping using a fast gradient echo spin echo sequence - first in vitro and in vivo experience

    OpenAIRE

    Baessler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C.

    2015-01-01

    Background: The aim of this study was the evaluation of a fast Gradient Spin Echo Technique (GraSE) for cardiac T2-mapping, combining a robust estimation of T2 relaxation times with short acquisition times. The sequence was compared against two previously introduced T2-mapping techniques in a phantom and in vivo. Methods: Phantom experiments were performed at 1.5 T using a commercially available cylindrical gel phantom. Three different T2-mapping techniques were compared: a Multi Echo Spin Ec...

  13. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment.

    Science.gov (United States)

    Torlasco, Camilla; Cassinerio, Elena; Roghi, Alberto; Faini, Andrea; Capecchi, Marco; Abdel-Gadir, Amna; Giannattasio, Cristina; Parati, Gianfranco; Moon, James C; Cappellini, Maria D; Pedrotti, Patrizia

    2018-01-01

    Iron overload-related heart failure is the principal cause of death in transfusion dependent patients, including those with Thalassemia Major. Linking cardiac siderosis measured by T2* to therapy improves outcomes. T1 mapping can also measure iron; preliminary data suggests it may have higher sensitivity for iron, particularly for early overload (the conventional cut-point for no iron by T2* is 20ms, but this is believed insensitive). We compared T1 mapping to T2* in cardiac iron overload. In a prospectively large single centre study of 138 Thalassemia Major patients and 32 healthy controls, we compared T1 mapping to dark blood and bright blood T2* acquired at 1.5T. Linear regression analysis was used to assess the association of T2* and T1. A "moving window" approach was taken to understand the strength of the association at different levels of iron overload. The relationship between T2* (here dark blood) and T1 is described by a log-log linear regression, which can be split in three different slopes: 1) T2* low, 30ms, weak relationship. All subjects with T2*20ms, 38% had low T1 with most of the subjects in the T2* range 20-30ms having a low T1. In established cardiac iron overload, T1 and T2* are concordant. However, in the 20-30ms T2* range, T1 mapping appears to detect iron. These data support previous suggestions that T1 detects missed iron in 1 out of 3 subjects with normal T2*, and that T1 mapping is complementary to T2*. The clinical significance of a low T1 with normal T2* should be further investigated.

  14. [Leisure-time sport activities and cardiac outpatient therapy in coronary patients].

    Science.gov (United States)

    Heitkamp, Hans-Christian; Schimpf, Thomas M; Hipp, Arno; Niess, Andreas

    2005-03-01

    Exercise intensity in coronary patients is controlled by heart rate measurements. Very few investigations have compared the maximum heart rate in cardiac outpatient groups, in leisure-time sport activities, and especially in swimming. Within different exercise conditions 21 coronary patients, nine in well-compensated cardiac condition joining a training group and twelve joining the exercise group with lower intensity, without signs of heart failure, engaged in an incremental bicycle ergometry. A six-lead ECG was derived at the same time with a 24-h ECG. The performance tolerance was measured by the pulse limit derived in 20 patients; one patient failed to show signs of subjective or objective ischemia. During a 24-h ECG monitoring, the patients took part in a 1-h standardized cardiac outpatient program, a standardized swimming program 4 x 25 m, and a typical self-selected leisure-time activity. The patients showed a peak work capacity of 2.2 W/kg and a symptom-free work capacity of 1.3 W/kg. The derived upper heart rate limit was passed during swimming by 19, during leisure-time activity by 16, and during cardiac outpatient program by two patients. The maximum of the mean overriding the limit occurred in leisure-time activity. Signs of ischemia occurred during ergometry in 15, during swimming training in ten patients, during leisure-time activity in eight, and during cardiac outpatient therapy in one. Arrhythmia leisure-time sport activity in 15, during cardiac outpatient therapy in 17, and during swimming in eight patients. Arrhythmia Lown IVa occurred in one patient each during ergometry, leisure sports, and during the night. Coronary patients are in danger to exercise beyond the pulse limit during swimming and other leisure-time sports and not during cardiac outpatient therapy. The upper heart rate limit should be observed during swimming and other endurance leisure-time activities, and is of little importance during cardiac outpatient therapy.

  15. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  16. Cardiovascular magnetic resonance myocardial T1 mapping to detect and quantify cardiac involvement in familial amyloid polyneuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro [Kumamoto University, Faculty of Life Sciences, Department of Diagnostic Radiology, Chuo-ku, Kumamoto (Japan); Utsunomiya, Daisuke; Nakaura, Takeshi; Yuki, Hideaki; Kidoh, Masafumi; Hirata, Kenichiro; Taguchi, Narumi; Tsuda, Noriko; Shiraishi, Shinya; Namimoto, Tomohiro; Yamashita, Yasuyuki [Kumamoto University, Faculty of Life Sciences, Department of Diagnostic Radiology, Chuo-ku, Kumamoto (Japan); Morita, Kosuke [Kumamoto University Hospital, Department of Central Radiology, Kumamoto (Japan); Hirakawa, Kyoko; Takashio, Seiji; Izumiya, Yasuhiro; Yamamuro, Megumi; Hokimoto, Seiji; Tsujita, Kenichi [Kumamoto University, Faculty of Life Sciences, Department of Cardiology, Kumamoto (Japan); Ueda, Mitsuharu; Yamashita, Taro; Ando, Yukio [Kumamoto University, Faculty of Life Sciences, Department of Neurology, Kumamoto (Japan)

    2017-11-15

    This study sought to explore the potential role of non-contrast T1 mapping for the detection and quantification of cardiac involvement in familial amyloid polyneuropathy (FAP). Japanese patients with FAP [n = 41, age 53.2 ± 13.9 years, genotype Val30Met (n = 25), non-Val30Met (n = 16)] underwent cardiac magnetic resonance imaging that included T1 mapping (saturation-recovery method) and late gadolinium-enhanced (LGE) imaging on a 3.0-T MR scanner. Their native T1 was measured on mid-ventricular short-axis images and compared with 30 controls. Of the 41 FAP patients 29 were LGE positive. The native T1 was significantly higher in FAP patients than in the controls (1,634.1 ± 126.3 ms vs. 1,432.4 ± 69.0 ms, p < 0.01), significantly higher in LGE-positive- than LGE-negative FAP patients (1,687.1 ± 104.4 ms vs. 1,505.4 ± 68.5 ms, p < 0.01), and significantly higher in LGE-negative FAP patients than the controls (p < 0.01). A native T1 cutoff value of 1,610 ms yielded 85.4% accuracy for identifying LGE-positive FAP. The native T1 significantly correlated with the interventricular septum wall thickness, the left ventricular mass, the LGE volume, the plasma B-type natriuretic peptide level, and the E/e{sup '} ratio (all p < 0.01). T1 mapping is of high diagnostic accuracy for the detection of LGE-positive FAP. The native myocardial T1 may be correlated with the severity of cardiac amyloid deposition. (orig.)

  17. Influence of mannan-binding lectin and MAp44 on outcome in comatose survivors of out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Thiel, Steffen

    2016-01-01

    as an endogenous inhibitor of MBL-mediated activities. The aim of this study was to investigate the possible association between MBL deficiency, MAp44 levels and outcome in comatose survivors of out-of-hospital cardiac arrest (OHCA). Methods: In a single center post hoc analysis of the prospective multicenter...... assessed by Cerebral Performance Category (CPC1-2) and modified Rankin Scale (mRS0-3) 180 days after OHCA. Results: Patients with MBL deficiency (defined as plasma levels ≤100 ng ml-1 at baseline) (n = 22) carried a 30-day mortality of 41% compared to 32% in MBL sufficient patient (n = 147), p = 0...

  18. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  19. Measure of synchrony in the activity of intrinsic cardiac neurons

    International Nuclear Information System (INIS)

    Longpré, Jean-Philippe; Salavatian, Siamak; Jacquemet, Vincent; Beaumont, Eric; Armour, J Andrew; Ardell, Jeffrey L

    2014-01-01

    Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way to the study of population dynamics of intrinsic cardiac neurons. These data provide critical insights into the role of local processing that these ganglia play in the regulation of cardiac function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and pulmonary systems and artifacts generated by myocardial activity create new constraints not present in brain recordings for which almost all neuronal analysis techniques have been developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust and computationally efficient tool for assessing the level and statistical significance of SI between cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and the phase in the cardiac and respiratory cycles. The method was validated on firing time series from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to 0.66, with 23 pairs of neurons with SI > 0.1. The estimated bias due to artifacts was typically <1%. Strongly cardiovascular- and pulmonary-related neurons (SI > 0.5) were found. Results support the use of jitter-based SI in the context of intrinsic cardiac neurons. (paper)

  20. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    International Nuclear Information System (INIS)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj; Schönberger, Tanja; Noegel, Angelika A.; Gawaz, Meinrad; Lang, Florian

    2014-01-01

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca 2+ signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7 −/− ) and wild-type mice (anxa7 +/+ ) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7 −/− mice than in anxa7 +/+ mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions

  1. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  2. The benefits of soluble non-bacterial fraction of kefir on blood pressure and cardiac hypertrophy in hypertensive rats are mediated by an increase in baroreflex sensitivity and decrease in angiotensin-converting enzyme activity.

    Science.gov (United States)

    Brasil, Girlandia Alexandre; Silva-Cutini, Mirian de Almeida; Moraes, Flávia de Souza Andrade; Pereira, Thiago de Melo Costa; Vasquez, Elisardo Corral; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Lima, Ewelyne Miranda; Biancardi, Vinícia Campana; Maia, June Ferreira; de Andrade, Tadeu Uggere

    We aimed to evaluate whether long-term treatment with the soluble non-bacterial fraction of kefir affects mean arterial pressure (MAP) and cardiac hypertrophy through the modulation of baroreflex sensitivity, ACE activity, and the inflammatory-to-anti-inflammatory cytokine ratio in spontaneously hypertensive rats (SHRs). SHRs were treated with the soluble non-bacterial kefir fraction (SHR-kefir) or with kefir vehicle (SHR-soluble fraction of milk). Normotensive control Wistar Kyoto animals received the soluble fraction of milk. All treatments were administered by gavage (0.3 mL/100g/body weight), once daily for eight weeks. At the end, after basal MAP and Heart Rate (HT) measurement, barorreflex sensitivity was evaluated through in bolus administrations of sodium nitroprusside and phenylephrine (AP 50 [arterial pressure 50%], the lower plateau, and HR range were measured). ACE activity and cytokines (TNF-α and IL-10) were evaluated by ELISA. Cardiac hypertrophy was analysed morphometrically. Compared to SHR control, SHR-kefir exhibited a significant decrease in both MAP (SHR: 184 ± 5; SHR-Kefir: 142 ± 8 mmHg), and HR (SHR: 360 ± 10; SHR-kefir: 310 ± 14 bpm). The non-bacterial fraction of kefir also reduced cardiac hypertrophy, TNF-α-to-IL10 ratio, and ACE activity in SHRs. SHR-kefir baroreflex sensitivity, resulted in a partial but significant recovery of baroreflex gain, as demonstrated by improvements in AP 50 , the lower plateau, and HR range. In summary, our results indicate that long-term administration of the non-bacterial fraction of kefir promotes a significant decrease in both MAP and HR, by improving baroreflex, and reduces cardiac hypertrophy in SHRs, likely via ACE inhibition, and reduction of the TNF-α-to-IL10 ratio. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  4. Cardiac angioscintigraphy in patients with arrhytmias

    International Nuclear Information System (INIS)

    Itti, R.; Bontemps, L.; Philippe, L.; Casset-Senon, D.; Cosnay, P.; Fauchier, J.P.

    1990-01-01

    The time course of ventricular activation can be characterized by the Fourier analysis of a dynamic series of cardiac images. Bi-ventricular activation mapping and quantitative phase histogram analysis may be useful for evaluation of patients with arrhythmias. Three clinical problems can benefit from the method: localization of the site of pre-excitation in the Wolff-Parkinson-White syndrom, assessment of an ectopic activation focus responsible for premature contraction in patients with ventricular tachycardia and diagnosis of an underlying organic disease when arrhytmogenic right ventricular dysplasia is suspected [fr

  5. Active Fire Mapping Program

    Science.gov (United States)

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  6. Cardiac autonomic profile in different sports disciplines during all-day activity.

    Science.gov (United States)

    Sztajzel, J; Jung, M; Sievert, K; Bayes De Luna, A

    2008-12-01

    Physical training and sport activity have a beneficial effect on cardiac autonomic activity. However, the exact impact of different types of sports disciplines on cardiac autonomic function is still unclear. The aim of this study was to evaluate the cardiac autonomic profile in different sports discplines and to determine their impact on cardiac autonomic function by using heart rate variability (HRV), a noninvasive electrocardiographic (ECG) analysis of the sympatho-vagal balance. Temporal and spectral HRV parameters determined from 24-hour continuous ECG monitoring were studied in 40 subjects, including 12 endurance athletes, 14 hockey players and 14 untrained male volunteers (control group). Each participant had to wear a Holter recorder during 24 hours and to continue his everyday activities. All HRV parameters were compared between the 3 study groups. All heart rate values were lower and all parasympathetic-related time domain indices, including root mean square of successive differences (RMSSD) and pNN50 (NN50 count divided by the total number of all NN intervals), were higher in both athletes groups as compared with controls (PHRV, were significantly higher only in endurance athletes (PHRV (higher SDNN), indicating thereby that this type sports discipline may have a more substantially favorable effect on the cardiac autonomic profile.

  7. Diagnosis of Acute Global Myocarditis Using Cardiac MRI with Quantitative T1 and T2 Mapping: Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul Hwan [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of); Choi, Eui-Young [Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720 (Korea, Republic of); Greiser, Andreas [Healthcare Sector, Siemens AG, Erlangen D-91052 (Germany); Paek, Mun Young [Siemens Ltd., Seoul 120-837 (Korea, Republic of); Hwang, Sung Ho; Kim, Tae Hoon [Department of Radiology and Research Institute of Radiological Science, Yonsei University Health System, Seoul 135-720 (Korea, Republic of)

    2013-07-01

    The diagnosis of myocarditis can be challenging given that symptoms, clinical exam findings, electrocardiogram results, biomarkers, and echocardiogram results are often non-specific. Endocardial biopsy is an established method for diagnosing myocarditis, but carries the risk of complications and false negative results. Cardiac magnetic resonance imaging (MRI) has become the primary non-invasive imaging tool in patients with suspected myocarditis. Myocarditis can be diagnosed by using three tissue markers including edema, hyperemia/capillary leak, and necrosis/fibrosis. The interpretation of cardiac MR findings can be confusing, especially when the myocardium is diffusely involved. Using T1 and T2 maps, the diagnosis of myocarditis can be made even in cases of global myocarditis with the help of quantitative analysis. We herein describe a case of acute global myocarditis which was diagnosed by using quantitative T1 and T2 mapping.

  8. Endogenous Natural Complement Inhibitor Regulates Cardiac Development

    DEFF Research Database (Denmark)

    Mortensen, Simon A; Skov, Louise L; Kjaer-Sorensen, Kasper

    2017-01-01

    mechanisms during fetal development and adult homeostasis. In this article, we describe the function of an endogenous complement inhibitor, mannan-binding lectin (MBL)-associated protein (MAp)44, in regulating the composition of a serine protease-pattern recognition receptor complex, MBL-associated serine...... of MAp44 caused impaired cardiogenesis, lowered heart rate, and decreased cardiac output. These defects were associated with aberrant neural crest cell behavior. We found that MAp44 competed with MASP-3 for pattern recognition molecule interaction, and knockdown of endogenous MAp44 expression could...... be rescued by overexpression of wild-type MAp44. Our observations provide evidence that immune molecules are centrally involved in the orchestration of cardiac tissue development....

  9. Exploration of flexible phenylpropylurea scaffold as novel cardiac myosin activators for the treatment of systolic heart failure.

    Science.gov (United States)

    Manickam, Manoj; Jalani, Hitesh B; Pillaiyar, Thanigaimalai; Sharma, Niti; Boggu, Pulla Reddy; Venkateswararao, Eeda; Lee, You-Jung; Jeon, Eun-Seok; Jung, Sang-Hun

    2017-07-07

    A series of flexible urea derivatives have been synthesized and demonstrated as selective cardiac myosin ATPase activator. Among them 1-phenethyl-3-(3-phenylpropyl)urea (1, cardiac myosin ATPase activation at 10 μM = 51.1%; FS = 18.90; EF = 12.15) and 1-benzyl-3-(3-phenylpropyl)urea (9, cardiac myosin ATPase activation = 53.3%; FS = 30.04; EF = 18.27) showed significant activity in vitro and in vivo. The change of phenyl ring with tetrahydropyran-4-yl moiety viz., 1-(3-phenylpropyl)-3-((tetrahydro-2H-pyran-4-yl)methyl)urea (14, cardiac myosin ATPase activation = 81.4%; FS = 20.50; EF = 13.10), and morpholine moiety viz., 1-(2-morpholinoethyl)-3-(3-phenylpropyl)urea (21, cardiac myosin ATPase activation = 44.0%; FS = 24.79; EF = 15.65), proved to be efficient to activate the cardiac myosin. The potent compounds 1, 9, 14 and 21 were found to be selective for cardiac myosin over skeletal and smooth myosins. Thus, these urea derivatives are potent scaffold to develop as a newer cardiac myosin activator for the treatment of systolic heart failure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Coi-wiz: An interactive computer wizard for analyzing cardiac optical signals.

    Science.gov (United States)

    Yuan, Xiaojing; Uyanik, Ilyas; Situ, Ning; Xi, Yutao; Cheng, Jie

    2009-01-01

    A number of revolutionary techniques have been developed for cardiac electrophysiology research to better study the various arrhythmia mechanisms that can enhance ablating strategies for cardiac arrhythmias. Once the three-dimensional high resolution cardiac optical imaging data is acquired, it is time consuming to manually go through them and try to identify the patterns associated with various arrhythmia symptoms. In this paper, we present an interactive computer wizard that helps cardiac electrophysiology researchers to visualize and analyze the high resolution cardiac optical imaging data. The wizard provides a file interface that accommodates different file formats. A series of analysis algorithms output waveforms, activation and action potential maps after spatial and temporal filtering, velocity field and heterogeneity measure. The interactive GUI allows the researcher to identify the region of interest in both the spatial and temporal domain, thus enabling them to study different heart chamber at their choice.

  11. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

    Science.gov (United States)

    Wengrowski, Anastasia M; Wang, Xin; Tapa, Srinivas; Posnack, Nikki Gillum; Mendelowitz, David; Kay, Matthew W

    2015-02-01

    Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  12. Effect of physical activity after a cardiac event on smoking habits and/or Quetelet index.

    Science.gov (United States)

    Huijbrechts, I P A M; Duivenvoorden, H J; Passchier, J; Deckers, J W; Kazemier, M; Erdman, R A M

    2003-02-01

    To further elucidate earlier findings, the present study investigated whether physical activity could serve as a positive stimulus to modify other changeable cardiac risk factors. Participants were 140 patients who had completed a cardiac rehabilitation programme focused on physical activity. Their present level of physical activity, smoking habits and Quetelet index were investigated as well as that before the cardiac event, in retrospect. Current feelings of anxiety and depression were also assessed. Participants were divided into two categories according to their present level of physical activity after finishing the rehabilitation programme, compared with that before the cardiac event. It appeared that the more physically active category contained more smokers. Although many of them had quitted smoking, significantly more persisted in their smoking habits compared with the patients who did not increase their physical activity. Significantly less depression was found in the more active patients. Although it could not be confirmed that physical activity stimulated a positive change in smoking and Quetelet index, the more active patients appeared to be less depressed.

  13. Effects of short-term food deprivation on interoceptive awareness, feelings and autonomic cardiac activity.

    Science.gov (United States)

    Herbert, Beate M; Herbert, Cornelia; Pollatos, Olga; Weimer, Katja; Enck, Paul; Sauer, Helene; Zipfel, Stephan

    2012-01-01

    The perception of internal bodily signals (interoception) plays a relevant role for emotion processing and feelings. This study investigated changes of interoceptive awareness and cardiac autonomic activity induced by short-term food deprivation and its relationship to hunger and affective experience. 20 healthy women were exposed to 24h of food deprivation in a controlled setting. Interoceptive awareness was assessed by using a heartbeat tracking task. Felt hunger, cardiac autonomic activity, mood and subjective appraisal of interoceptive sensations were assessed before and after fasting. Results show that short-term fasting intensifies interoceptive awareness, not restricted to food cues, via changes of autonomic cardiac and/or cardiodynamic activity. The increase of interoceptive awareness was positively related to felt hunger. Additionally, the results demonstrate the role of cardiac vagal activity as a potential index of emotion related self-regulation, for hunger, mood and the affective appraisal of interoceptive signals during acute fasting. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Model-based imaging of cardiac electrical function in human atria

    Science.gov (United States)

    Modre, Robert; Tilg, Bernhard; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Hintringer, Florian; Roithinger, Franz

    2003-05-01

    Noninvasive imaging of electrical function in the human atria is attained by the combination of data from electrocardiographic (ECG) mapping and magnetic resonance imaging (MRI). An anatomical computer model of the individual patient is the basis for our computer-aided diagnosis of cardiac arrhythmias. Three patients suffering from Wolff-Parkinson-White syndrome, from paroxymal atrial fibrillation, and from atrial flutter underwent an electrophysiological study. After successful treatment of the cardiac arrhythmia with invasive catheter technique, pacing protocols with stimuli at several anatomical sites (coronary sinus, left and right pulmonary vein, posterior site of the right atrium, right atrial appendage) were performed. Reconstructed activation time (AT) maps were validated with catheter-based electroanatomical data, with invasively determined pacing sites, and with pacing at anatomical markers. The individual complex anatomical model of the atria of each patient in combination with a high-quality mesh optimization enables accurate AT imaging, resulting in a localization error for the estimated pacing sites within 1 cm. Our findings may have implications for imaging of atrial activity in patients with focal arrhythmias.

  15. Seismic activity maps for the Armenian Highlands

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, N.K.; Manukyan, Zh.O.

    1976-01-01

    Seismic activity maps for the periods 1952 to 1967 and 1952 to 1968 were compiled for the Armenian Highlands in order to study the spatial distribution of earthquake recurrence and to construct maps in isolines of seismic activity. Diagrams are presented illustrating such seismic activity maps for the indicated periods. 4 references, 3 figures, 1 table.

  16. Effect of PPAR γ activators on hypertrophic cardiac myocytes in vitro

    International Nuclear Information System (INIS)

    Wu Shimin; Zhou Xin; Ye Ping; Wang Qiong; Gao Yue; Liu Yongxue

    2004-01-01

    Objective: To investigate the effects of peroxisome proliferator-activated receptor γ (PPAR γ) activators pioglitazone and 15-deoxy-Δ 12,14 prostaglandin J 2 (15d-PGJ 2 ) on hypertrophic cardiac myocytes (MC) of neonatal rats in vitro. Methods; With the stimulation of angiotensin II(Ang II), a model of hypertrophy of MC was established. With the method of reverse transcription-polymerase chain reaction (RT-PCR), mRNA expression of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was amplified; with the aid of NIH Image J software the surface area of MC was analyzed and with 3 H-leucine incorporation, the synthesizing rate of protein in MC was measured. Results: Increases in surface area of MC, mRNA expression of ANP and BNP and 3 H-leucine incorporation in MC were observed in the model of cardiac hypertrophy. Pioglitazone and 15d-PGJ 2 , two kinds of PPAR γ activators, inhibited the above changes in a dose-dependent manner. Conclusion: It is suggested that PPAR γ activators inhibit hypertrophy of cardiac myocytes and PPAR γ-dependent pathway be involved in the inhibitory course

  17. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations

    International Nuclear Information System (INIS)

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria; Kluge, Götz; Griefahn, Barbara

    2008-01-01

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean ± SD age 37.9 ± 13 years), 985 nights and 23 855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure–response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep

  18. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  19. FluView National Flu Activity Map

    Data.gov (United States)

    U.S. Department of Health & Human Services — The FluView National Flu Activity Map is a complementary widget to the state-by-state flu map widget introduced in the 2007-2008 flu season. This interactive map...

  20. Time delay between cardiac and brain activity during sleep transitions

    NARCIS (Netherlands)

    Long, X.; Arends, J.B.A.M.; Aarts, R.M.; Haakma, R.; Fonseca, P.; Rolink, J.

    2015-01-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by

  1. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review).

    Science.gov (United States)

    Belloum, Yassine; Rannou-Bekono, Françoise; Favier, François B

    2017-05-01

    Cachexia is a wasting syndrome observed in many patients suffering from several chronic diseases including cancer. In addition to the progressive loss of skeletal muscle mass, cancer cachexia results in cardiac function impairment. During the severe stage of the disease, patients as well as animals bearing cancer cells display cardiac atrophy. Cardiac energy metabolism is also impeded with disruption of mitochondrial homeostasis and reduced oxidative capacity, although the available data remain equivocal. The release of inflammatory cytokines by tumor is a key mechanism in the initiation of heart failure. Oxidative stress, which results from the combination of chemotherapy, inadequate antioxidant consumption and chronic inflammation, will further foster heart failure. Protein catabolism is due to the concomitant activation of proteolytic systems and inhibition of protein synthesis, both processes being triggered by the deactivation of the Akt/mammalian target of rapamycin pathway. The reduction in oxidative capacity involves AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1α dysregulation. The nuclear factor-κB transcription factor plays a prominent role in the coordination of these alterations. Physical exercise appears as an interesting non-pharmaceutical way to counteract cancer cachexia-induced-heart failure. Indeed, aerobic training has anti-inflammatory effects, increases anti-oxidant defenses, prevents atrophy and promotes oxidative metabolism. The present review points out the importance of better understanding the concurrent structural and metabolic changes within the myocardium during cancer and the protective effects of exercise against cardiac cachexia.

  2. Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension.

    Science.gov (United States)

    Donazzan, Luca; Mahfoud, Felix; Ewen, Sebastian; Ukena, Christian; Cremers, Bodo; Kirsch, Carl-Martin; Hellwig, Dirk; Eweiwi, Tareq; Ezziddin, Samer; Esler, Murray; Böhm, Michael

    2016-04-01

    To investigate, whether renal denervation (RDN) has a direct effect on cardiac sympathetic activity and innervation density. RDN demonstrated its efficacy not only in reducing blood pressure (BP) in certain patients, but also in decreasing cardiac hypertrophy and arrhythmias. These pleiotropic effects occur partly independent from the observed BP reduction. Eleven patients with resistant hypertension (mean office systolic BP 180 ± 18 mmHg, mean antihypertensive medications 6.0 ± 1.5) underwent I-123-mIBG scintigraphy to exclude pheochromocytoma. We measured cardiac sympathetic innervation and activity before and 9 months after RDN. Cardiac sympathetic innervation was assessed by heart to mediastinum ratio (H/M) and sympathetic activity by wash out ratio (WOR). Effects on office BP, 24 h ambulatory BP monitoring, were documented. Office systolic BP and mean ambulatory systolic BP were significantly reduced from 180 to 141 mmHg (p = 0.006) and from 149 to 129 mmHg (p = 0.014), respectively. Cardiac innervation remained unchanged before and after RDN (H/M 2.5 ± 0.5 versus 2.6 ± 0.4, p = 0.285). Cardiac sympathetic activity was significantly reduced by 67 % (WOR decreased from 24.1 ± 12.7 to 7.9 ± 25.3 %, p = 0.047). Both, responders and non-responders experienced a reduction of cardiac sympathetic activity. RDN significantly reduced cardiac sympathetic activity thereby demonstrating a direct effect on the heart. These changes occurred independently from BP effects and provide a pathophysiological basis for studies, investigating the potential effect of RDN on arrhythmias and heart failure.

  3. Effect of autogenic training on cardiac autonomic nervous activity in high-risk fire service workers for posttraumatic stress disorder.

    Science.gov (United States)

    Mitani, Satoko; Fujita, Masatoshi; Sakamoto, Satoko; Shirakawa, Taro

    2006-05-01

    We investigated the effect of autogenic training (AT) on cardiac autonomic nervous activity in fire services workers with the use of the questionnaire of the Japanese-language version of Impact of Event Scale-Revised (IES-R-J) and indexes of heart rate variability. We studied 22 male fire services workers who were divided into posttraumatic stress disorder (PTSD)-related stress group (n=10) and control group (n=12). They underwent AT twice or three times a week for 2 months. Posttraumatic stress disorder-related stress group showed a significantly higher cardiac sympathetic nervous activity and a significantly lower cardiac parasympathetic nervous activity than control group at baseline. Autogenic training significantly decreased cardiac sympathetic nervous activity and significantly increased cardiac parasympathetic nervous activity in both groups. These changes were accompanied by a significant decrease in the total points of IES-R-J. Autogenic training is effective for ameliorating the disturbance of cardiac autonomic nervous activity and psychological issues secondary to PTSD.

  4. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    International Nuclear Information System (INIS)

    Raffel, David M.; Wieland, Donald M.

    2001-01-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation

  5. Using a Combined Platform of Swarm Intelligence Algorithms and GIS to Provide Land Suitability Maps for Locating Cardiac Rehabilitation Defibrillators

    Science.gov (United States)

    KAFFASH-CHARANDABI, Neda; SADEGHI-NIARAKI, Abolghasem; PARK, Dong-Kyun

    2015-01-01

    Background: Cardiac arrest is a condition in which the heart is completely stopped and is not pumping any blood. Although most cardiac arrest cases are reported from homes or hospitals, about 20% occur in public areas. Therefore, these areas need to be investigated in terms of cardiac arrest incidence so that places of high incidence can be identified and cardiac rehabilitation defibrillators installed there. Methods: In order to investigate a study area in Petersburg, Pennsylvania State, and to determine appropriate places for installing defibrillators with 5-year period data, swarm intelligence algorithms were used. Moreover, the location of the defibrillators was determined based on the following five evaluation criteria: land use, altitude of the area, economic conditions, distance from hospitals and approximate areas of reported cases of cardiac arrest for public places that were created in geospatial information system (GIS). Results: The A-P HADEL algorithm results were more precise about 27.36%. The validation results indicated a wider coverage of real values and the verification results confirmed the faster and more exact optimization of the cost function in the PSO method. Conclusion: The study findings emphasize the necessity of applying optimal optimization methods along with GIS and precise selection of criteria in the selection of optimal locations for installing medical facilities because the selected algorithm and criteria dramatically affect the final responses. Meanwhile, providing land suitability maps for installing facilities across hot and risky spots has the potential to save many lives. PMID:26587471

  6. Self-reported physical activity and lung function two months after cardiac surgery--a prospective cohort study.

    Science.gov (United States)

    Jonsson, Marcus; Urell, Charlotte; Emtner, Margareta; Westerdahl, Elisabeth

    2014-03-28

    Physical activity has well-established positive health-related effects. Sedentary behaviour has been associated with postoperative complications and mortality after cardiac surgery. Patients undergoing cardiac surgery often suffer from impaired lung function postoperatively. The association between physical activity and lung function in cardiac surgery patients has not previously been reported. Patients undergoing cardiac surgery were followed up two months postoperatively. Physical activity was assessed on a four-category scale (sedentary, moderate activity, moderate regular exercise, and regular activity and exercise), modified from the Swedish National Institute of Public Health's national survey. Formal lung function testing was performed preoperatively and two months postoperatively. The sample included 283 patients (82% male). Two months after surgery, the level of physical activity had increased (p < 0.001) in the whole sample. Patients who remained active or increased their level of physical activity had significantly better recovery of lung function than patients who remained sedentary or had decreased their level of activity postoperatively in terms of vital capacity (94 ± 11% of preoperative value vs. 91 ± 9%; p = 0.03), inspiratory capacity (94 ± 14% vs. 88 ± 19%; p = 0.008), and total lung capacity (96 ± 11% vs. 90 ± 11%; p = 0.01). An increased level of physical activity, compared to preoperative level, was reported as early as two months after surgery. Our data shows that there could be a significant association between physical activity and recovery of lung function after cardiac surgery. The relationship between objectively measured physical activity and postoperative pulmonary recovery needs to be further examined to verify these results.

  7. Garlic activates SIRT-3 to prevent cardiac oxidative stress and mitochondrial dysfunction in diabetes.

    Science.gov (United States)

    Sultana, Md Razia; Bagul, Pankaj K; Katare, Parameshwar B; Anwar Mohammed, Soheb; Padiya, Raju; Banerjee, Sanjay K

    2016-11-01

    Cardiac complications are major contributor in the mortality of diabetic people. Mitochondrial dysfunctioning is a crucial contributor for the cardiac complications in diabetes, and SIRT-3 remains the major mitochondrial deacetylase. We hypothesized whether garlic has any role on SIRT-3 to prevent mitochondrial dysfunction in diabetic heart. Rats with developed hyperglycemia after STZ injection were divided into two groups; diabetic (Dia) and diabetic+garlic (Dia+Garl). Garlic was administered at a dose of 250mg/kg/day, orally for four weeks. An additional group was maintained to evaluate the effect of raw garlic administration on control rat heart. We have observed altered functioning of cardiac mitochondrial enzymes involved in metabolic pathways, and increased levels of cardiac ROS with decreased activity of catalase and SOD in diabetic rats. Cardiac mRNA expression of TFAM, PGC-1α, and CO1 was also altered in diabetes. In addition, reduced levels of electron transport chain complexes that observed in Dia group were normalized with garlic administration. This indicates the presence of increased oxidative stress with mitochondrial dysfunctioning in diabetic heart. We have observed reduced activity of SIRT3 and increased acetylation of MnSOD. Silencing SIRT-3 in cells also revealed the same. However, administration of garlic improved the SIRT-3 and MnSOD activity, by deacetylating MnSOD. Increased SOD activity was correlated with reduced levels of ROS in garlic-administered rat hearts. Collectively, our results provide an insight into garlic's protection to T1DM heart through activation of SIRT3-MnSOD pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    Science.gov (United States)

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  9. Does Cardiac Rehabilitation After an Acute Cardiac Syndrome Lead to Changes in Physical Activity Habits? Systematic Review

    NARCIS (Netherlands)

    ter Hoeve, Nienke; Huisstede, Bionka M. A.; Stam, Henk J.; van Domburg, Ron T.; Sunamura, Madoka; van den Berg-Emons, Rita J. G.

    Background. Optimal physical activity levels have health benefits for patients with acute coronary syndrome (ACS) and are an important goal of cardiac rehabilitation (CR). Purpose. The purpose of this study was to systematically review literature regarding short-term effects (= 6 months after

  10. Influences of lifestyle factors on cardiac autonomic nervous system activity over time

    NARCIS (Netherlands)

    Hu, Mandy Xian; Lamers, Femke; de Geus, Eco J C; Penninx, Brenda W J H

    Physical activity, alcohol use and smoking might affect cardiovascular disease through modifying autonomic nervous system (ANS) activity. We investigated: 1) whether there are consistent relationships between lifestyle factors and cardiac ANS activity over time, and 2) whether 2-year changes in

  11. Cardiac macrophages adopt profibrotic/M2 phenotype in infarcted hearts: Role of urokinase plasminogen activator.

    Science.gov (United States)

    Carlson, Signe; Helterline, Deri; Asbe, Laura; Dupras, Sarah; Minami, Elina; Farris, Stephen; Stempien-Otero, April

    2017-07-01

    Macrophages (mac) that over-express urokinase plasminogen activator (uPA) adopt a profibrotic M2 phenotype in the heart in association with cardiac fibrosis. We tested the hypothesis that cardiac macs are M2 polarized in infarcted mouse and human hearts and that polarization is dependent on mac-derived uPA. Studies were performed using uninjured (UI) or infarcted (MI) hearts of uPA overexpressing (SR-uPA), uPA null, or nontransgenic littermate (Ntg) mice. At 7days post-infarction, cardiac mac were isolated, RNA extracted and M2 markers Arg1, YM1, and Fizz1 measured with qrtPCR. Histologic analysis for cardiac fibrosis, mac and myofibroblasts was performed at the same time-point. Cardiac macs were also isolated from Ntg hearts and RNA collected after primary isolation or culture with vehicle, IL-4 or plasmin and M2 marker expression measured. Cardiac tissue and blood was collected from humans with ischemic heart disease. Expression of M2 marker CD206 and M1 marker TNFalpha was measured. Macs from WT mice had increased expression of Arg1 and Ym1 following MI (41.3±6.5 and 70.3±36, fold change vs UI, n=8, Padopt a M2 phenotype in association with fibrosis. Plasmin can induce an M2 phenotype in cardiac macs. However, M2 activation can occur in the heart in vivo in the absence of uPA indicating that alternative pathways to activate plasmin are present in the heart. Excess uPA promotes increased fibroblast density potentially via potentiating fibroblast migration or proliferation. Altering macrophage phenotype in the heart is a potential target to modify cardiac fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Whole-brain activity mapping onto a zebrafish brain atlas

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  13. Cardiac-specific activation of Cre expression at late fetal development

    International Nuclear Information System (INIS)

    Opherk, Jan P.; Yampolsky, Peter; Hardt, Stefan E.; Schoels, Wolfgang; Katus, Hugo A.; Koenen, Michael; Zehelein, Joerg

    2007-01-01

    In a first step towards dissecting molecular mechanisms that contribute to the development of cardiac diseases, we have generated transgenic mice that express a Cre-GFP fusion protein under the transcriptional control of a 4.3 kb murine cardiac Troponin I gene (cTnI) promoter. Cre-GFP expression, similar in three transgenic lines, is described in one line. In mouse embryos, transgenic for the Cre-GFP and ROSA lacZ reporter allele, first Cre-mediated recombination appeared at 16.5 dpc selectively at the heart. Like the endogenous cTnI gene, transgenic Cre expression showed a slow rise through fetal development that increased neonatally. Bitransgenic hearts, stained at 30 days of age, showed intense signals in ventricular and atrial myocytes while no recombination occurred in other tissues. The delayed onset of Cre activity in cTnI-Cre mice could provide a useful genetic tool to evaluate the function of loxP targeted cardiac genes without interference of recombination during early heart development

  14. SPECT Analysis of Cardiac Perfusion Changes After Whole-Breast/Chest Wall Radiation Therapy With or Without Active Breathing Coordinator: Results of a Randomized Phase 3 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Zellars, Richard, E-mail: zellari@jhmi.edu [Johns Hopkins Medical Institution, Baltimore, Maryland (United States); Bravo, Paco E. [University of Washington Medical Center, Seattle, Washington (United States); Tryggestad, Erik [Mayo Clinic, Rochester, Minnesota (United States); Hopfer, Kari [Hahnemann University, Philadelphia, Pennsylvania (United States); Myers, Lee; Tahari, Abdel; Asrari, Fariba; Ziessman, Harvey [Johns Hopkins Medical Institution, Baltimore, Maryland (United States); Garrett-Mayer, Elizabeth [Medical University of South Carolina, Charleston, South Carolina (United States)

    2014-03-15

    Purpose: Cardiac muscle perfusion, as determined by single-photon emission computed tomography (SPECT), decreases after breast and/or chest wall (BCW) irradiation. The active breathing coordinator (ABC) enables radiation delivery when the BCW is farther from the heart, thereby decreasing cardiac exposure. We hypothesized that ABC would prevent radiation-induced cardiac toxicity and conducted a randomized controlled trial evaluating myocardial perfusion changes after radiation for left-sided breast cancer with or without ABC. Methods and Materials: Stages I to III left breast cancer patients requiring adjuvant radiation therapy (XRT) were randomized to ABC or No-ABC. Myocardial perfusion was evaluated by SPECT scans (before and 6 months after BCW radiation) using 2 methods: (1) fully automated quantitative polar mapping; and (2) semiquantitative visual assessment. The left ventricle was divided into 20 segments for the polar map and 17 segments for the visual method. Segments were grouped by anatomical rings (apical, mid, basal) or by coronary artery distribution. For the visual method, 2 nuclear medicine physicians, blinded to treatment groups, scored each segment's perfusion. Scores were analyzed with nonparametric tests and linear regression. Results: Between 2006 and 2010, 57 patients were enrolled and 43 were available for analysis. The cohorts were well matched. The apical and left anterior descending coronary artery segments had significant decreases in perfusion on SPECT scans in both ABC and No-ABC cohorts. In unadjusted and adjusted analyses, controlling for pretreatment perfusion score, age, and chemotherapy, ABC was not significantly associated with prevention of perfusion deficits. Conclusions: In this randomized controlled trial, ABC does not appear to prevent radiation-induced cardiac perfusion deficits.

  15. SPECT Analysis of Cardiac Perfusion Changes After Whole-Breast/Chest Wall Radiation Therapy With or Without Active Breathing Coordinator: Results of a Randomized Phase 3 Trial

    International Nuclear Information System (INIS)

    Zellars, Richard; Bravo, Paco E.; Tryggestad, Erik; Hopfer, Kari; Myers, Lee; Tahari, Abdel; Asrari, Fariba; Ziessman, Harvey; Garrett-Mayer, Elizabeth

    2014-01-01

    Purpose: Cardiac muscle perfusion, as determined by single-photon emission computed tomography (SPECT), decreases after breast and/or chest wall (BCW) irradiation. The active breathing coordinator (ABC) enables radiation delivery when the BCW is farther from the heart, thereby decreasing cardiac exposure. We hypothesized that ABC would prevent radiation-induced cardiac toxicity and conducted a randomized controlled trial evaluating myocardial perfusion changes after radiation for left-sided breast cancer with or without ABC. Methods and Materials: Stages I to III left breast cancer patients requiring adjuvant radiation therapy (XRT) were randomized to ABC or No-ABC. Myocardial perfusion was evaluated by SPECT scans (before and 6 months after BCW radiation) using 2 methods: (1) fully automated quantitative polar mapping; and (2) semiquantitative visual assessment. The left ventricle was divided into 20 segments for the polar map and 17 segments for the visual method. Segments were grouped by anatomical rings (apical, mid, basal) or by coronary artery distribution. For the visual method, 2 nuclear medicine physicians, blinded to treatment groups, scored each segment's perfusion. Scores were analyzed with nonparametric tests and linear regression. Results: Between 2006 and 2010, 57 patients were enrolled and 43 were available for analysis. The cohorts were well matched. The apical and left anterior descending coronary artery segments had significant decreases in perfusion on SPECT scans in both ABC and No-ABC cohorts. In unadjusted and adjusted analyses, controlling for pretreatment perfusion score, age, and chemotherapy, ABC was not significantly associated with prevention of perfusion deficits. Conclusions: In this randomized controlled trial, ABC does not appear to prevent radiation-induced cardiac perfusion deficits

  16. T1 and T2 Mapping in Cardiology: "Mapping the Obscure Object of Desire".

    Science.gov (United States)

    Mavrogeni, Sophie; Apostolou, Dimitris; Argyriou, Panayiotis; Velitsista, Stella; Papa, Lilika; Efentakis, Stelios; Vernardos, Evangelos; Kanoupaki, Mikela; Kanoupakis, George; Manginas, Athanassios

    The increasing use of cardiovascular magnetic resonance (CMR) is based on its capability to perform biventricular function assessment and tissue characterization without radiation and with high reproducibility. The use of late gadolinium enhancement (LGE) gave the potential of non-invasive biopsy for fibrosis quantification. However, LGE is unable to detect diffuse myocardial disease. Native T1 mapping and extracellular volume fraction (ECV) provide knowledge about pathologies affecting both the myocardium and interstitium that is otherwise difficult to identify. Changes of myocardial native T1 reflect cardiac diseases (acute coronary syndromes, infarction, myocarditis, and diffuse fibrosis, all with high T1) and systemic diseases such as cardiac amyloid (high T1), Anderson-Fabry disease (low T1), and siderosis (low T1). The ECV, an index generated by native and post-contrast T1 mapping, measures the cellular and extracellular interstitial matrix (ECM) compartments. This myocyte-ECM dichotomy has important implications for identifying specific therapeutic targets of great value for heart failure treatment. On the other hand, T2 mapping is superior compared with myocardial T1 and ECM for assessing the activity of myocarditis in recent-onset heart failure. Although these indices can significantly affect the clinical decision making, multicentre studies and a community-wide approach (including MRI vendors, funding, software, contrast agent manufacturers, and clinicians) are still missing. © 2017 S. Karger AG, Basel.

  17. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    Science.gov (United States)

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

  18. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    Background -Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counter-regulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ co-receptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3 and further that neutralizing endoglin activity promotes BMP9 activity. Methods -We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We utilized the thoracic aortic constriction (TAC) induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. Results -BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates Type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and an siRNA approach. In BMP9 -/- mice subjected to TAC, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to TAC with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 compared to vehicle treated controls. Since endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to TAC induced heart failure limits collagen production, increases BMP9 protein levels, and increases

  19. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  20. MRI in cardiac sarcoidosis and amyloidosis; MRT bei kardialer Sarkoidose und Amyloidose

    Energy Technology Data Exchange (ETDEWEB)

    Bauner, K.U. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); Wintersperger, B. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany); University of Toronto, Department of Medical Imaging, Toronto General Hospital, Toronto, ON (Canada)

    2013-01-15

    Sarcoidosis and amyloidosis are both multisystem disorders, which may involve the heart; however, isolated cardiac disease is rare. Diagnosis of cardiac sarcoidosis and amyloidosis is crucial because the patient prognosis is dependent on cardiac involvement and early treatment. Echocardiography is the first line imaging modality in the diagnostic work-up of both diseases, possibly giving hints towards the correct diagnosis. Besides myocardial biopsy and radionuclide studies cardiac magnetic resonance imaging (MRI) is routinely performed in patients suspect of having infiltrative cardiomyopathy. The T1 mapping procedure is currently being evaluated as a new technique for detection and quantification of global myocardial enhancement, as seen in cardiac amyloidosis. Sensitivities and specificities for detection of cardiac sarcoidosis and amyloidosis can be significantly improved by MRI, especially with late gadolinium enhancement (LGE) imaging. In cardiac sarcoidosis the use of LGE is outcome-related while in amyloidosis analysis of T1-mapping may be of prognostic value. If cardiac involvement in sarcoidosis or amyloidosis is suspected cardiac MRI including LGE should be performed for establishing the diagnosis. (orig.) [German] Die Sarkoidose und Amyloidose sind Multisystemerkrankungen, in deren Verlauf es zu einer kardialen Beteiligung kommen kann. Bildgebend wird als primaeres Verfahren die Echokardiographie eingesetzt. Zur weiteren Diagnostik wird neben der Biopsie und nuklearmedizinischen Verfahren v. a. die MRT herangezogen. Als neuere Technik zur Darstellung globaler diffuser Kontrastmittelanreicherungen, wie sie im Rahmen der Amyloidose vorkommen, wird z. Z. das T1-Mapping evaluiert. Durch den Einsatz der MRT, insbesondere des Late-Gadolinium-Enhancements (LGE), koennen die Sensitivitaet und Spezifitaet in der Diagnostik der kardialen Sarkoidose und Amyloidose entscheidend verbessert werden. Bei der Sarkoidose stellt das Vorhandensein eines LGE einen

  1. Real-time MRI guidance of cardiac interventions.

    Science.gov (United States)

    Campbell-Washburn, Adrienne E; Tavallaei, Mohammad A; Pop, Mihaela; Grant, Elena K; Chubb, Henry; Rhode, Kawal; Wright, Graham A

    2017-10-01

    Cardiac magnetic resonance imaging (MRI) is appealing to guide complex cardiac procedures because it is ionizing radiation-free and offers flexible soft-tissue contrast. Interventional cardiac MR promises to improve existing procedures and enable new ones for complex arrhythmias, as well as congenital and structural heart disease. Guiding invasive procedures demands faster image acquisition, reconstruction and analysis, as well as intuitive intraprocedural display of imaging data. Standard cardiac MR techniques such as 3D anatomical imaging, cardiac function and flow, parameter mapping, and late-gadolinium enhancement can be used to gather valuable clinical data at various procedural stages. Rapid intraprocedural image analysis can extract and highlight critical information about interventional targets and outcomes. In some cases, real-time interactive imaging is used to provide a continuous stream of images displayed to interventionalists for dynamic device navigation. Alternatively, devices are navigated relative to a roadmap of major cardiac structures generated through fast segmentation and registration. Interventional devices can be visualized and tracked throughout a procedure with specialized imaging methods. In a clinical setting, advanced imaging must be integrated with other clinical tools and patient data. In order to perform these complex procedures, interventional cardiac MR relies on customized equipment, such as interactive imaging environments, in-room image display, audio communication, hemodynamic monitoring and recording systems, and electroanatomical mapping and ablation systems. Operating in this sophisticated environment requires coordination and planning. This review provides an overview of the imaging technology used in MRI-guided cardiac interventions. Specifically, this review outlines clinical targets, standard image acquisition and analysis tools, and the integration of these tools into clinical workflow. 1 Technical Efficacy: Stage 5 J

  2. Intercreativity: Mapping Online Activism

    Science.gov (United States)

    Meikle, Graham

    How do activists use the Internet? This article maps a wide range of activist practice and research by applying and developing Tim Berners-Lee's concept of ‘intercreativity' (1999). It identifies four dimensions of Net activism: intercreative texts, tactics, strategies and networks. It develops these through examples of manifestations of Net activism around one cluster of issues: support campaigns for refugees and asylum seekers.

  3. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels.

    Science.gov (United States)

    Weisbrod, David; Khun, Shiraz Haron; Bueno, Hanna; Peretz, Asher; Attali, Bernard

    2016-01-01

    The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.

  4. Patient-specific models of cardiac biomechanics

    Science.gov (United States)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  5. Myofibril ATPase activity of cardiac and skeletal muscle of exhaustively exercised rats.

    Science.gov (United States)

    Belcastro, A N; Turcotte, R; Rossiter, M; Secord, D; Maybank, P E

    1984-01-01

    The activation characteristics of Mg-ATP and Ca2+ on cardiac and skeletal muscle myofibril ATPase activity were studied in rats following a run to exhaustion. In addition, the effect of varying ionic strength was determined on skeletal muscle from exhausted animals. The exhausted group (E) ran at a speed of 25 m min-1 with an 8% incline. Myofibril ATPase activities for control (C) and E were determined with 1, 3 and 5 mM Mg-ATP and 1 and 10 microM Ca2+ at pH 7.0 and 30 degrees C. For control skeletal muscle, at 1 and 10 microM Ca2+, there was an increase in ATPase activity from 1 to 5 mM Mg-ATP (P less than 0.05). For E animals the myofibril ATPase activities at 10 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ and all Mg-ATP concentrations were similar to C (P greater than 0.05). At 1.0 microM Ca2+ the activities at 3 and 5 mM Mg-ATP were greater for the E animals (P less than 0.05). Increasing KCl concentrations resulted in greater inhibition for E animals. With cardiac muscle, the myofibril ATPase activities at 1.0 microM free Ca2+ were lower for E at all Mg-ATP levels (P less than 0.05). In contrast, at 10 microM Ca2+, the E group exhibited an elevated myofibril ATPase activity. The results indicate that Mg-ATP and Ca2+ activation of cardiac and skeletal muscle myofibril ATPase is altered with exhaustive exercise.

  6. Cardiac ablation

    Directory of Open Access Journals (Sweden)

    Kelly Ratheal

    2016-01-01

    Full Text Available Cardiac ablation is a procedure that uses either radiofrequency or cryothermal energy to destroy cells in the heart to terminate and/or prevent arrhythmias. The indications for cardiac catheter ablation include refractory, symptomatic arrhythmias, with more specific guidelines for atrial fibrillation in particular. The ablation procedure itself involves mapping the arrhythmia and destruction of the aberrant pathway in an effort to permanently prevent the arrhythmia. There are many types of arrhythmias, and they require individualized approaches to ablation based on their innately different electrical pathways. Ablation of arrhythmias, such as Wolff-Parkinson-White syndrome, AV nodal reentrant tachycardia, and atrial-fibrillation, is discussed in this review. Ablation has a high success rate overall and minimal complication rates, leading to improved quality of life in many patients.

  7. Cooperative activation of cardiac transcription through myocardin bridging of paired MEF2 sites

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Courtney M. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Hu, Jianxin [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Thomas, Reuben [Univ. of California, San Francisco, CA (United States). Gladstone Inst.; Gainous, T. Blair [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Celona, Barbara [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Sinha, Tanvi [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Dickel, Diane E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Genomics Division; Heidt, Analeah B. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Xu, Shan-Mei [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Bruneau, Benoit G. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Univ. of California, San Francisco, CA (United States). Gladstone Inst.; Pollard, Katherine S. [Univ. of California, San Francisco, CA (United States). Gladstone Inst.; Pennacchio, Len A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Genomics Division; Black, Brian L. [Univ. of California, San Francisco, CA (United States). Cardiovascular Research Inst.; Univ. of California, San Francisco, CA (United States). Dept. of

    2017-03-28

    Enhancers frequently contain multiple binding sites for the same transcription factor. These homotypic binding sites often exhibit synergy, whereby the transcriptional output from two or more binding sites is greater than the sum of the contributions of the individual binding sites alone. Although this phenomenon is frequently observed, the mechanistic basis for homotypic binding site synergy is poorly understood. Here in this paper, we identify a bona fide cardiac-specific Prkaa2 enhancer that is synergistically activated by homotypic MEF2 binding sites. We show that two MEF2 sites in the enhancer function cooperatively due to bridging of the MEF2C-bound sites by the SAP domain-containing co-activator protein myocardin, and we show that paired sites buffer the enhancer from integration site-dependent effects on transcription in vivo. Paired MEF2 sites are prevalent in cardiac enhancers, suggesting that this might be a common mechanism underlying synergy in the control of cardiac gene expression in vivo.

  8. Cardiac angioscintigraphy in patients with arrhytmias. l'angioscintigraphie cardiaque en rythmologie

    Energy Technology Data Exchange (ETDEWEB)

    Itti, R.; Bontemps, L. (Hopital Louis Pradel, 69 - Lyon (FR)); Philippe, L.; Casset-Senon, D.; Cosnay, P.; Fauchier, J.P. (Centre Hospitalier Universitaire Trousseau, 37 - Tours (FR))

    1990-01-01

    The time course of ventricular activation can be characterized by the Fourier analysis of a dynamic series of cardiac images. Bi-ventricular activation mapping and quantitative phase histogram analysis may be useful for evaluation of patients with arrhythmias. Three clinical problems can benefit from the method: localization of the site of pre-excitation in the Wolff-Parkinson-White syndrom, assessment of an ectopic activation focus responsible for premature contraction in patients with ventricular tachycardia and diagnosis of an underlying organic disease when arrhytmogenic right ventricular dysplasia is suspected.

  9. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    Science.gov (United States)

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  10. Cardiac cone-beam CT

    International Nuclear Information System (INIS)

    Manzke, Robert

    2005-01-01

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net

  11. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  12. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pourmoghaddas, Amir, E-mail: apour@ottawaheart.ca; Wells, R. Glenn [Physics Department, Carleton University, Ottawa, Ontario K1S 5B6, Canada and Cardiology, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada)

    2016-01-15

    Purpose: Recently, there has been increased interest in dedicated cardiac single photon emission computed tomography (SPECT) scanners with pinhole collimation and improved detector technology due to their improved count sensitivity and resolution over traditional parallel-hole cameras. With traditional cameras, energy-based approaches are often used in the clinic for scatter compensation because they are fast and easily implemented. Some of the cardiac cameras use cadmium-zinc-telluride (CZT) detectors which can complicate the use of energy-based scatter correction (SC) due to the low-energy tail—an increased number of unscattered photons detected with reduced energy. Modified energy-based scatter correction methods can be implemented, but their level of accuracy is unclear. In this study, the authors validated by physical phantom experiments the quantitative accuracy and reproducibility of easily implemented correction techniques applied to {sup 99m}Tc myocardial imaging with a CZT-detector-based gamma camera with multiple heads, each with a single-pinhole collimator. Methods: Activity in the cardiac compartment of an Anthropomorphic Torso phantom (Data Spectrum Corporation) was measured through 15 {sup 99m}Tc-SPECT acquisitions. The ratio of activity concentrations in organ compartments resembled a clinical {sup 99m}Tc-sestamibi scan and was kept consistent across all experiments (1.2:1 heart to liver and 1.5:1 heart to lung). Two background activity levels were considered: no activity (cold) and an activity concentration 1/10th of the heart (hot). A plastic “lesion” was placed inside of the septal wall of the myocardial insert to simulate the presence of a region without tracer uptake and contrast in this lesion was calculated for all images. The true net activity in each compartment was measured with a dose calibrator (CRC-25R, Capintec, Inc.). A 10 min SPECT image was acquired using a dedicated cardiac camera with CZT detectors (Discovery NM530c, GE

  13. Long-term cardiac memory in canine heart is associated with the evolution of a transmural repolarization gradient

    NARCIS (Netherlands)

    Coronel, Ruben; Opthof, Tobias; Plotnikov, Alexei N.; Wilms-Schopman, Francien J. G.; Shlapakova, Iryna N.; Danilo, Peter; Sosunov, Eugene A.; Anyukhovsky, Evgeny P.; Janse, Michiel J.; Rosen, Michael R.

    2007-01-01

    OBJECTIVE: The contribution of regional electrophysiologic heterogeneity to the T-wave changes of long-term cardiac memory (CM) is not known. We mapped activation and repolarization in dogs after induction of CM and in sham animals. METHODS AND RESULTS: CM was induced by three weeks of AV-sequential

  14. Dioxin-induced acute cardiac mitochondrial oxidative damage and increased activity of ATP-sensitive potassium channels in Wistar rats

    International Nuclear Information System (INIS)

    Pereira, Susana P.; Pereira, Gonçalo C.; Pereira, Cláudia V.; Carvalho, Filipa S.; Cordeiro, Marília H.; Mota, Paula C.; Ramalho-Santos, João; Moreno, António J.; Oliveira, Paulo J.

    2013-01-01

    The environmental dioxin 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a Group 1 human carcinogen and teratogenic agent. We hypothesize that TCDD-induced oxidative stress may also interfere with mitochondrial ATP-sensitive potassium channels (mitoKATP), which are known to regulate and to be regulated by mitochondrial redox state. We investigated the effects of an acute treatment of male Wistar rats with TCDD (50 μg/kg i.p.) and measured the regulation of cardiac mitoKATP. While the function of cardiac mitochondria was slightly depressed, mitoKATP activity was 52% higher in animals treated with TCDD. The same effects were not observed in liver mitochondria isolated from the same animals. Our data also shows that regulation of mitochondrial ROS production by mitoKATP activity is different in both groups. To our knowledge, this is the first report to show that TCDD increases mitoKATP activity in the heart, which may counteract the increased oxidative stress caused by the dioxin during acute exposure. -- Highlights: •Acute TCDD treatment of Wistar rats causes cardiac oxidative stress. •Acute TCDD treatment causes cardiac mitochondrial alterations. •Mitochondrial liver vs. heart alterations are distinct. •TCDD treatment resulted in altered activity of cardiac mitochondrial K-ATP channels. -- Dioxin alters the regulation of cardiac mitochondrial ATP-sensitive potassium channels and disturbs mitochondrial physiology

  15. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    Science.gov (United States)

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  16. Exercise-related cardiac arrest in cardiac rehabilitation - The ...

    African Journals Online (AJOL)

    Prescribed physical activity plays a major role in the rehabilitation of patients with coronary artery disease, and as with any other form of treatment its benefits must be weighed against its possible risks. This study attempted to establish the safety of cardiac rehabilitation as a medical intervention at the Johannesburg Cardiac ...

  17. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  18. A 3D active shape model driven by fuzzy inference : application to cardiac CT and MR

    NARCIS (Netherlands)

    Assen, van H.C.; Danilouchkine, M.G.; Dirksen, M.S.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2008-01-01

    Abstract—Manual quantitative analysis of cardiac left ventricular function using Multislice CT and MR is arduous because of the large data volume. In this paper, we present a 3-D active shape model (ASM) for semiautomatic segmentation of cardiac CT and MRvolumes, without the requirement of

  19. Cardiac regeneration by pharmacologically active microcarriers releasing growth factors and/or transporting adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Monia Savi

    2014-01-01

    Full Text Available We tested the hypothesis that cardiac regeneration through local delivery of adipose-derived stem cells (ASCs, activation of resident cardiac stem cells via growth factors (GFs [hepatocyte growth factor (HGF and insulin-like growth factor 1 (IGF-1:GFs] or both, are improved by pharmacologically active microcarriers (PAMs interacting with cells/molecules conveyed on their surface. Rats with one-month old myocardial infarction were treated with ASCs, ASCs+PAMs, GF-releasing PAMs, ASCs+GF-releasing PAMs or vehicle. Two weeks later, hemodynamic function and inducibility of ventricular arrhythmias (VAs were assessed. Eventually, the hearts were subjected to anatomical and immunohistochemical analyses. A significant ASCs engraftment and the largest improvement in cardiac mechanics occurred in ASC+GF-releasing PAM rats which by contrast were more vulnerable to VAs. Thus, PAMs may improve cell/GF-based cardiac regeneration although caution should be paid on the electrophysiological impact of their physical interaction with the myocardium.

  20. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT

    International Nuclear Information System (INIS)

    Lalush, D.S.; Tsui, B.M.W.; Cui, Lin

    1996-01-01

    We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these open-quotes most likelyclose quotes motion vectors. To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies

  1. Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    McQuaid, Sarah J; Hutton, Brian F

    2008-06-01

    Respiratory motion during myocardial perfusion imaging can cause artefacts in both positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images when mismatches between emission and transmission datasets arise. In this study, artefacts from different breathing motions were quantified in both modalities to assess key factors in attenuation-correction accuracy. Activity maps were generated using the NURBS-based cardiac-torso phantom for different respiratory cycles, which were projected, attenuation-corrected and reconstructed to form PET and SPECT images. Attenuation-correction was performed with maps at mismatched respiratory phases to observe the effect on the left-ventricular myocardium. Myocardial non-uniformity was assessed in terms of the standard deviation in scores obtained from the 17-segment model and changes in uniformity were compared for each mismatch and modality. Certain types of mismatch led to artefacts and corresponding increases in the myocardial non-uniformity. For each mismatch in PET, the increases in non-uniformity relative to an artefact-free image were as follows: (a) cardiac translation mismatch, 84% +/- 11%; (b) liver mismatch, 59% +/- 10%, (c) lung mismatch from diaphragm contraction, 28% +/- 8%; and (d) lung mismatch from chest-wall motion, 6% +/- 7%. The corresponding factors for SPECT were (a) 61% +/- 8%, (b) 34% +/- 8%, (c) -2% +/- 7)% and (d) -4% +/- 6%. Attenuation-correction artefacts were seen in PET and SPECT images, with PET being more severely affected. The most severe artefacts were produced from mismatches in cardiac and liver position, whereas lung mismatches were less critical. Both cardiac and liver positions must, therefore, be correctly matched during attenuation correction.

  2. Effect of Changes in Physical Activity on Risk for Cardiac Death in Patients With Coronary Artery Disease.

    Science.gov (United States)

    Lahtinen, Minna; Toukola, Tomi; Junttila, M Juhani; Piira, Olli-Pekka; Lepojärvi, Samuli; Kääriäinen, Maria; Huikuri, Heikki V; Tulppo, Mikko P; Kiviniemi, Antti M

    2018-01-15

    Leisure-time physical activity (LTPA) is associated with longevity in patients with coronary artery disease (CAD). However, less is known about prognostic significance of longitudinally assessed LTPA in patients with stable CAD. The present study assessed the relationship between changes in LTPA and cardiac mortality in patients with CAD. Patients with angiographically documented CAD (n = 1,746) underwent clinical examination and echocardiography at the baseline. Lifestyle factors, including LTPA (inactive, irregularly active, active, highly active), were surveyed at baseline and after 2 years' follow-up. Thereafter, the patients entered the follow-up (median: 4.5 years; first to third quartile: 3.4 to 5.8 years) during which cardiac deaths were registered (n = 68, 3.9%). The patients who remained inactive (n = 114, 18 events, 16%) and became inactive (n = 228, 18 events, 8%) had 7.6- (95% confidence interval [CI] 4.2 to 13.6) and 3.7-fold (95% CI 2.1 to 6.7) univariate risk for cardiac death compared with those who remained at least irregularly active (n = 1,351, 30 events, 2%), respectively. After adjustment for age, gender, body mass index, diabetes, previous myocardial infarction, left ventricular ejection fraction, angina pectoris grading, cardiovascular event during initial 2-year follow-up, smoking and alcohol consumption, the patients who remained inactive and became inactive still had 4.9- (95% CI 2.4 to 9.8, p active. In conclusion, LTPA has important prognostic value for cardiac death in patients with stable CAD. Even minor changes in LTPA over 2 years were related to the subsequent risk for cardiac death. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of renal sympathetic denervation on cardiac sympathetic activity and function in patients with therapy resistant hypertension

    NARCIS (Netherlands)

    van Brussel, Peter M.; Eeftinck Schattenkerk, Daan W.; Dobrowolski, Linn C.; de Winter, Robbert J.; Reekers, Jim A.; Verberne, Hein J.; Vogt, Liffert; van den Born, Bert-Jan H.

    2016-01-01

    Renal sympathetic denervation (RSD) is currently being investigated in multiple studies of sympathetically driven cardiovascular diseases such as heart failure and arrhythmias. Our aim was to assess systemic and cardiac sympatholytic effects of RSD by the measurement of cardiac sympathetic activity

  4. Effect of Atorvastatin vs. Rosuvastatin on cardiac sympathetic nerve activity in non-diabetic patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsutamoto, Takayoshi; Ibe, Kunihiro [Toyosato Hospital, Toyosato, Shiga (Japan); Sakai, Hiroshi; Yamaji, Masayuki; Kawahara, Chiho; Nakae, Ichiro; Fujii, Masanori; Yamamoto, Takashi; Horie, Minoru [Shiga Univ. of Medical Science, Faculty of Medicine, Otsu, Shiga (Japan)

    2011-08-15

    Effects of statin therapy on cardiac sympathetic nerve activity in patients with chronic heart failure (CHF) have not previously been evaluated. To compare the effects of lipophilic atorvastatin and hydrophilic rosuvastatin on cardiac sympathetic nerve activity in CHF patients with dilated cardiomyopathy (DCM), 63 stable outpatients with DCM, who were already receiving standard therapy for CHF, were randomized to atorvastatin (n=32) or rosuvastatin (n=31). We evaluated cardiac sympathetic nerve activity by cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and after 6 months of treatment. There were no differences in the baseline characteristics of the 2 groups. In the rosuvastatin group, there were no changes in MIBG parameters, left ventricular ejection fraction or plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) after 6 months of treatment. In contrast, the atorvastatin group showed a significant increase in the delayed heart/mediastinum count ratio (2.18{+-}0.4 vs. 2.36{+-}0.4, P<0.0001), and the washout rate was significantly decreased (34.8{+-}5.7 vs. 32.6{+-}6.3%, P=0.0001) after 6 months of treatment compared with the baseline values. The plasma NT-proBNP level was also significantly decreased (729{+-}858 vs. 558{+-}747 pg/ml, P=0.0139). Lipophilic atorvastatin but not hydrophilic rosuvastatin improves cardiac sympathetic nerve activity in CHF patients with DCM. (author)

  5. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    Science.gov (United States)

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  6. Network interactions within the canine intrinsic cardiac nervous system: implications for reflex control of regional cardiac function

    Science.gov (United States)

    Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L

    2013-01-01

    The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689

  7. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  8. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  9. Cardiac memory in patients with Wolff-Parkinson-White syndrome: noninvasive imaging of activation and repolarization before and after catheter ablation.

    Science.gov (United States)

    Ghosh, Subham; Rhee, Edward K; Avari, Jennifer N; Woodard, Pamela K; Rudy, Yoram

    2008-08-26

    Cardiac memory refers to a change in ventricular repolarization induced by and persisting for minutes to months after cessation of a period of altered ventricular activation (eg, resulting from pacing or preexcitation in patients with Wolff-Parkinson-White syndrome). ECG imaging (ECGI) is a novel imaging modality for noninvasive electroanatomic mapping of epicardial activation and repolarization. Fourteen pediatric patients with Wolff-Parkinson-White syndrome and no other congenital disease, were imaged with ECGI a day before and 45 minutes, 1 week, and 1 month after successful catheter ablation. ECGI determined that preexcitation sites were consistent with sites of successful ablation in all cases to within a 1-hour arc of each atrioventricular annulus. In the preexcited rhythm, activation-recovery interval (ARI) was the longest (349+/-6 ms) in the area of preexcitation leading to high average base-to-apex ARI dispersion of 95+/-9 ms (normal is approximately 40 ms). The ARI dispersion remained the same 45 minutes after ablation, although the activation sequence was restored to normal. ARI dispersion was still high (79+/-9 ms) 1 week later and returned to normal (45+/-6 ms) 1 month after ablation. The study demonstrates that ECGI can noninvasively localize ventricular insertion sites of accessory pathways to guide ablation and evaluate its outcome in pediatric patients with Wolff-Parkinson-White syndrome. Wolff-Parkinson-White is associated with high ARI dispersion in the preexcited rhythm that persists after ablation and gradually returns to normal over a period of 1 month, demonstrating the presence of cardiac memory. The 1-month time course is consistent with transcriptional reprogramming and remodeling of ion channels.

  10. Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus.

    Science.gov (United States)

    Brailoiu, Gabriela Cristina; Deliu, Elena; Rabinowitz, Joseph E; Tilley, Douglas G; Koch, Walter J; Brailoiu, Eugen

    2014-05-01

    Urotensin II (U-II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U-II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U-II and its receptor at this level. We report here that U-II produces an increase in cytosolic Ca(2+) concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptor; and (ii) Ca(2+) influx through P/Q-type Ca(2+) channels. In addition, U-II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U-II into nucleus ambiguus elicits dose-dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U-II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection. © 2014 International Society for Neurochemistry.

  11. Gated cardiac blood pool studies in arrhythmias

    International Nuclear Information System (INIS)

    Itti, R.; Casset, D.; Philippe, L.; Cosnay, P.; Fauchier, J.P.

    1988-01-01

    Biventricular phase analysis a gated blood pool studies may help to solve two fundamental questions raised by patients suffering from arrhythmias: localization of an electrical cardiac activation abnormality by means of contraction mapping and assesment of an underlying organic disease using the phase histograms and their standard deviations. Three groups of patients have been evaluated to demonstrate the usefulness of radioisotopic techniques in arrhythmias: 36 patients with a Wolff-Parkinson-White syndrom, 27 patients studied during a ventricular tachycardia attack and 32 patients suspected of arrhythmogenic ventricular dysplasia. Correlations with invasive electrophysiologic studies are presented and the diagnostic and therapeutic implications of these results are discussed [fr

  12. Gated cardiac blood pool studies in arrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Itti, R.; Casset, D.; Philippe, L.; Cosnay, P.; Fauchier, J.P.

    1988-01-01

    Biventricular phase analysis a gated blood pool studies may help to solve two fundamental questions raised by patients suffering from arrhythmias: localization of an electrical cardiac activation abnormality by means of contraction mapping and assesment of an underlying organic disease using the phase histograms and their standard deviations. Three groups of patients have been evaluated to demonstrate the usefulness of radioisotopic techniques in arrhythmias: 36 patients with a Wolff-Parkinson-White syndrom, 27 patients studied during a ventricular tachycardia attack and 32 patients suspected of arrhythmogenic ventricular dysplasia. Correlations with invasive electrophysiologic studies are presented and the diagnostic and therapeutic implications of these results are discussed.

  13. Localization of endocardial ectopic activity by means of noninvasive endocardial surface current density reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lai Dakun; Liu Chenguang; Eggen, Michael D; He Bin [Department of Biomedical Engineering, University of Minnesota, MN (United States); Iaizzo, Paul A, E-mail: binhe@umn.edu [Department of Surgery, University of Minnesota, MN (United States)

    2011-07-07

    Localization of the source of cardiac ectopic activity has direct clinical benefits for determining the location of the corresponding ectopic focus. In this study, a recently developed current-density (CD)-based localization approach was experimentally evaluated in noninvasively localizing the origin of the cardiac ectopic activity from body-surface potential maps (BSPMs) in a well-controlled experimental setting. The cardiac ectopic activities were induced in four well-controlled intact pigs by single-site pacing at various sites within the left ventricle (LV). In each pacing study, the origin of the induced ectopic activity was localized by reconstructing the CD distribution on the endocardial surface of the LV from the measured BSPMs and compared with the estimated single moving dipole (SMD) solution and precise pacing site (PS). Over the 60 analyzed beats corresponding to ten pacing sites (six for each), the mean and standard deviation of the distance between the locations of maximum CD value and the corresponding PSs were 16.9 mm and 4.6 mm, respectively. In comparison, the averaged distance between the SMD locations and the corresponding PSs was slightly larger (18.4 {+-} 3.4 mm). The obtained CD distribution of activated sources extending from the stimulus site also showed high consistency with the endocardial potential maps estimated by a minimally invasive endocardial mapping system. The present experimental results suggest that the CD method is able to locate the approximate site of the origin of a cardiac ectopic activity, and that the distribution of the CD can portray the propagation of early activation of an ectopic beat.

  14. Cardiac Events During Competitive, Recreational, and Daily Activities in Children and Adolescents With Long QT Syndrome.

    Science.gov (United States)

    Chambers, Kristina D; Beausejour Ladouceur, Virginie; Alexander, Mark E; Hylind, Robyn J; Bevilacqua, Laura; Mah, Douglas Y; Bezzerides, Vassilios; Triedman, John K; Walsh, Edward P; Abrams, Dominic J

    2017-09-21

    The 2005 Bethesda Conference Guidelines advise patients with long QT syndrome against competitive sports. We assessed cardiac event rates during competitive and recreational sports, and daily activities among treated long QT syndrome patients. Long QT syndrome patients aged ≥4 years treated with anti-adrenergic therapy were included. Demographics included mechanism of presentation, corrected QT interval pretreatment, symptom history, medication compliance, and administration of QT-prolonging medications. Corrected QT interval ≥550 ms or prior cardiac arrest defined high risk. Sports were categorized by cardiovascular demand per the 2005 Bethesda Conference Guidelines. Each was classified as recreational or competitive. One hundred seventy-two patients (90; 52% female) with median age 15.2 years (interquartile range 11.4, 19.4) were included. Evaluation was performed for family history (102; 59%), incidental finding (34; 20%), and symptoms (36; 21%). Median corrected QT interval was 474 ms (interquartile range 446, 496) and 14 patients (8%) were deemed high risk. Treatment included β-blockers (171; 99%), implantable cardioverter-defibrillator (27; 16%), left cardiac sympathetic denervation (7; 4%), and pacemaker (3; 2%). Sports participation was recreational (66; 38%) or competitive (106; 62%), with 92 (53%) exercising against the Bethesda Conference Guidelines. There were no cardiac events in competitive athletes and no deaths. There were 13 cardiac events in 9 previously symptomatic patients during either recreational exercise or activities of daily life. In this cohort of appropriately managed children with long QT syndrome, cardiac event rates were low and occurred during recreational but not competitive activities. This study further supports the need for increased assessment of arrhythmia risk during exercise in this patient population. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Acquiring Multiview C-Arm Images to Assist Cardiac Ablation Procedures

    Directory of Open Access Journals (Sweden)

    Fallavollita Pascal

    2010-01-01

    Full Text Available CARTO XP is an electroanatomical cardiac mapping system that provides 3D color-coded maps of the electrical activity of the heart; however it is expensive and it can only use a single costly magnetic catheter for each patient intervention. Our approach consists of integrating fluoroscopic and electrical data from the RF catheters into the same image so as to better guide RF ablation, shorten the duration of this procedure, increase its efficacy, and decrease hospital cost when compared to CARTO XP. We propose a method that relies on multi-view C-arm fluoroscopy image acquisition for (1 the 3D reconstruction of the anatomical structure of interest, (2 the robust temporal tracking of the tip-electrode of a mapping catheter between the diastolic and systolic phases and (3 the 2D/3D registration of color coded isochronal maps directly on the 2D fluoroscopy image that would help the clinician guide the ablation procedure much more effectively. The method has been tested on canine experimental data.

  16. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity.

    Science.gov (United States)

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2017-08-01

    Systolic time intervals (STIs) provide noninvasive insights into cardiac sympathetic neural activity (cSNA). As the effect of exercise intensity on postexercise STI recovery is unclear, this study investigated the STI recovery profile after different exercise intensities. Eleven healthy males cycled for 8 min at 3 separate intensities: LOW (40%-45%), MOD (75%-80%), and HIGH (90%-95%) of heart-rate (HR) reserve. Bio-impedance cardiography was used to assess STIs - primarily pre-ejection period (PEP; inversely correlated with cSNA), as well as left ventricular ejection time (LVET) and PEP:LVET - during 10 min seated recovery immediately postexercise. Heart-rate variability (HRV), i.e., natural-logarithm of root mean square of successive differences (Ln-RMSSD), was calculated as an index of cardiac parasympathetic neural activity (cPNA). Higher preceding exercise intensity elicited a slower recovery of HR and Ln-RMSSD (p return to baseline by 10 min following any intensity (p ≤ 0.009). Recovery of STIs was also slower following higher intensity exercise (p ≤ 0.002). By 30 s postexercise, higher preceding intensity resulted in a lower PEP (98 ± 14 ms, 75 ± 6 ms, 66 ± 5 ms for LOW, MOD, and HIGH, respectively, p fashion. While exercise intensity must be considered, acute recovery may be a valuable period during which to concurrently monitor these noninvasive indices, to identify potentially abnormal cardiac autonomic responses.

  17. Maps and plans reliability in tourism activities

    Directory of Open Access Journals (Sweden)

    Олександр Донцов

    2016-10-01

    Full Text Available The paper is devoted to creation of an effective system of mapping at all levels of tourist-excursion functioning that will boost the promotion of tourist product in a domestic and foreign tourist market. The State Scientific - Production Enterprise «Kartographia» actively participates in cartographic tourism provision by producing travel pieces, survey, large-scale, route maps, atlases, travel guides, city plans. They produce maps covering different content of the territory of Ukraine, its individual regions, cities interested in tourist excursions. The list and scope of cartographic products has been prepared for publication and released for the last five years. The development of new types of tourism encourages publishers to create various cartographic products for the needs of tourists guaranteeing high accuracy, reliability of information, ease of use. A variety of scientific and practical problems in tourism and excursion activities that are solved using maps and plans makes it difficult to determine the criteria for assessing their reliability. The author proposes to introduce the concept of «relevance» - as maps suitability to solving specific problems. The basis of the peer review is suitability of maps for the objective results release criteria: appropriateness of the target maps tasks (area, theme, destination; accuracy of given parameters (projection, scale, height interval; year according to the shooting of location or mapping; selection methods, methods of results measurement processing algorithm; availability of assistive devices (instrumentation, computer technology, simulation devices. These criteria provide the reliability and accuracy of the result as acceptable to consumers as possible. The author proposes a set of measures aimed at improving the content, quality and reliability of cartographic production.

  18. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  19. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    Science.gov (United States)

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  20. Risk and Protective Factors for Sudden Cardiac Death During Leisure Activities in the Mountains: An Update.

    Science.gov (United States)

    Burtscher, Martin

    2017-08-01

    Annually, more than 100 million tourists with widely varying health and fitness status are attracted by the mountainous areas around the world. Whereas mountaineering activities may contribute to the well established beneficial effects of regular exercise, for certain individuals these activities are also associated with a relatively high risk of death. This manuscript presents an updated overview of risk and protective factors for sudden cardiac death during leisure activities in the mountains. Sudden cardiac death (SCD) has been proven to be the most frequent cause of non traumatic death in males aged over 34 years, e.g. during mountain hiking, cross country skiing or downhill skiing. Risk factors for cardiovascular diseases and, in particular, prior myocardial infarction, are the most important risk factors for SCD, predominantly relevant in downhill skiers. The unusual physical exertion on the first day at altitude, the late morning hours and the prolonged abstinence from food and fluid intake during exercise at altitude are most important triggers. Acute hypoxia may represent a trigger for SCD on the one hand but might also evoke beneficial effects by preconditioning on the other hand. The identification of high-risk subjects and SCD triggers, evidence-based therapy of treatable risk factors, the appropriate individual preparation by physical training, and considering behavioural aspects, especially at the beginning of the physically active altitude sojourn will help to prevent SCD and increase the health benefits generated by mountaineering activities. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  1. Mathematical cardiac electrophysiology

    CERN Document Server

    Colli Franzone, Piero; Scacchi, Simone

    2014-01-01

    This book covers the main mathematical and numerical models in computational electrocardiology, ranging from microscopic membrane models of cardiac ionic channels to macroscopic bidomain, monodomain, eikonal models and cardiac source representations. These advanced multiscale and nonlinear models describe the cardiac bioelectrical activity from the cell level to the body surface and are employed in both the direct and inverse problems of electrocardiology. The book also covers advanced numerical techniques needed to efficiently carry out large-scale cardiac simulations, including time and space discretizations, decoupling and operator splitting techniques, parallel finite element solvers. These techniques are employed in 3D cardiac simulations illustrating the excitation mechanisms, the anisotropic effects on excitation and repolarization wavefronts, the morphology of electrograms in normal and pathological tissue and some reentry phenomena. The overall aim of the book is to present rigorously the mathematica...

  2. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]-hydroxy-ephedrine and PET/CT

    International Nuclear Information System (INIS)

    Capitanio, Selene; Nanni, Cristina; Marini, Cecilia; Bonfiglioli, Rachele; Martignani, Cristian; Dib, Bassam; Fuccio, Chiara; Boriani, Giuseppe; Picori, Lorena; Boschi, Stefano; Morbelli, Silvia

    2015-01-01

    Introduction: Cardiac resynchronization therapy (CRT) is an accepted treatment in patients with end-stage heart failure. PET permits the absolute quantification of global and regional homogeneity in cardiac sympathetic innervation. We evaluated the variation of cardiac adrenergic activity in patients with idiopathic heart failure (IHF) disease (NYHA III–IV) after CRT using 11 C-hydroxyephedrine (HED) PET/CT. Methods: Ten IHF patients (mean age = 68; range = 55–81; average left ventricular ejection fraction 26 ± 4%) implanted with a resynchronization device underwent three HED PET/CT studies: PET 1 one week after inactive device implantation; PET 2, one week after PET 1 under stimulated rhythm; PET 3, at 3 months under active CRT. A dedicated software (PMOD 3.4 version) was used to estimate global and regional cardiac uptake of HED through 17 segment polar maps. Results: At baseline, HED uptake was heterogeneously distributed throughout the left ventricle with a variation coefficient of 18 ± 5%. This variable markedly decreased after three months CRT (12 ± 5%, p < 0.01). Interestingly, subdividing the 170 myocardial segments (17 segments of each patient multiplied by the number of patients) into two groups, according to the median value of tracer uptake expressed as % of maximal myocardial uptake (76%), we observed a different behaviour depending on baseline innervation: HED uptake significantly increased only in segments with “impaired innervation” (SUV 2.61 ± 0.92 at PET1 and 3.05 ± 1.67 at three months, p < 0.01). Conclusion: As shown by HED PET/CT uptake and distribution, improvement in homogeneity of myocardial neuronal function reflected a selective improvement of tracer uptake in regions with more severe neuronal damage. Advances in Knowledge: These finding supported the presence of a myocardial regional variability in response of cardiac sympathetic system to CRT and a systemic response involving remote tissues with rich adrenergic innervation

  3. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  4. Relationship between plasma xanthine oxidoreductase activity and left ventricular ejection fraction and hypertrophy among cardiac patients.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimura

    Full Text Available Xanthine oxidoreductase (XOR, which catalyzes purine catabolism, has two interconvertible forms, xanthine dehydrogenase and xanthine oxidase, the latter of which produces superoxide during uric acid (UA synthesis. An association between plasma XOR activity and cardiovascular and renal outcomes has been previously suggested. We investigated the potential association between cardiac parameters and plasma XOR activity among cardiology patients.Plasma XOR activity was measured by [13C2,15N2]xanthine coupled with liquid chromatography/triplequadrupole mass spectrometry. Among 270 patients who were not taking UA-lowering drugs, XOR activity was associated with body mass index (BMI, alanine aminotransferase (ALT, HbA1c and renal function. Although XOR activity was not associated with serum UA overall, patients with chronic kidney disease (CKD, those with higher XOR activity had higher serum UA among patients without CKD. Compared with patients with the lowest XOR activity quartile, those with higher three XOR activity quartiles more frequently had left ventricular hypertrophy. In addition, plasma XOR activity showed a U-shaped association with low left ventricular ejection fraction (LVEF and increased plasma B-type natriuretic peptide (BNP levels, and these associations were independent of age, gender, BMI, ALT, HbA1C, serum UA, and CKD stages.Among cardiac patients, left ventricular hypertrophy, low LVEF, and increased BNP were significantly associated with plasma XOR activity independent of various confounding factors. Whether pharmaceutical modification of plasma XOR activity might inhibit cardiac remodeling and improve cardiovascular outcome should be investigated in future studies.

  5. Secondary prevention through cardiac rehabilitation: physical activity counselling and exercise training: key components of the position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation

    DEFF Research Database (Denmark)

    Corrà, Ugo; Piepoli, Massimo F; Carré, François

    2010-01-01

    of a healthy lifestyle. These secondary prevention targets are included in the overall goal of cardiac rehabilitation (CR). Cardiac rehabilitation can be viewed as the clinical application of preventive care by means of a professional multi-disciplinary integrated approach for comprehensive risk reduction...... and global long-term care of cardiac patients. The CR approach is delivered in tandem with a flexible follow-up strategy and easy access to a specialized team. To promote implementation of cardiac prevention and rehabilitation, the CR Section of the EACPR (European Association of Cardiovascular Prevention...... and Rehabilitation) has recently completed a Position Paper, entitled 'Secondary prevention through cardiac rehabilitation: A condition-oriented approach'. Components of multidisciplinary CR for seven clinical presentations have been addressed. Components include patient assessment, physical activity counselling...

  6. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts

    Science.gov (United States)

    Markes, Alexander R.; Okundaye, Amenawon O.; Qu, Zhilin; Mende, Ulrike; Choi, Bum-Rak

    2018-01-01

    Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs) and/or cardiac fibroblasts (CFs) and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair. PMID:29715271

  7. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Tae Yun Kim

    Full Text Available Multicellular spheroids generated through cellular self-assembly provide cytoarchitectural complexities of native tissue including three-dimensionality, extensive cell-cell contacts, and appropriate cell-extracellular matrix interactions. They are increasingly suggested as building blocks for larger engineered tissues to achieve shapes, organization, heterogeneity, and other biomimetic complexities. Application of these tissue culture platforms is of particular importance in cardiac research as the myocardium is comprised of distinct but intermingled cell types. Here, we generated scaffold-free 3D cardiac microtissue spheroids comprised of cardiac myocytes (CMs and/or cardiac fibroblasts (CFs and used them as building blocks to form larger microtissues with different spatial distributions of CMs and CFs. Characterization of fusing homotypic and heterotypic spheroid pairs revealed an important influence of CFs on fusion kinetics, but most strikingly showed rapid fusion kinetics between heterotypic pairs consisting of one CF and one CM spheroid, indicating that CMs and CFs self-sort in vitro into the intermixed morphology found in the healthy myocardium. We then examined electrophysiological integration of fused homotypic and heterotypic microtissues by mapping action potential propagation. Heterocellular elongated microtissues which recapitulate the disproportionate CF spatial distribution seen in the infarcted myocardium showed that action potentials propagate through CF volumes albeit with significant delay. Complementary computational modeling revealed an important role of CF sodium currents and the spatial distribution of the CM-CF boundary in action potential conduction through CF volumes. Taken together, this study provides useful insights for the development of complex, heterocellular engineered 3D tissue constructs and their engraftment via tissue fusion and has implications for arrhythmogenesis in cardiac disease and repair.

  8. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  9. Desipramine increases cardiac parasympathetic activity via α2-adrenergic mechanism in rats.

    Science.gov (United States)

    Kawada, Toru; Akiyama, Tsuyoshi; Shimizu, Shuji; Fukumitsu, Masafumi; Kamiya, Atsunori; Sugimachi, Masaru

    2017-07-01

    Desipramine (DMI) is a blocker of neuronal norepinephrine (NE) uptake transporter. Although intravenous DMI has been shown to cause centrally-mediated sympathoinhibition and peripheral NE accumulation, its parasympathetic effect remains to be elucidated. We hypothesized that intravenous DMI activates the cardiac vagal nerve via an α 2 -adrenergic mechanism. Using a cardiac microdialysis technique, changes in myocardial interstitial acetylcholine (ACh) levels in the left ventricular free wall in response to intravenous DMI (1mg·kg -1 ) were examined in anesthetized rats. In rats with intact vagi (n=7), intravenous DMI increased ACh from 1.67±0.43 to 2.48±0.66nM (Padrenergic stimulation in experimental settings in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Noninvasive reconstruction of the three-dimensional ventricular activation sequence during pacing and ventricular tachycardia in the rabbit heart.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin

    2011-01-01

    Ventricular arrhythmias represent one of leading causes for sudden cardiac death, a significant problem in public health. Noninvasive imaging of cardiac electric activities associated with ventricular arrhythmias plays an important role in better our understanding of the mechanisms and optimizing the treatment options. The present study aims to rigorously validate a novel three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping during paced rhythm and ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous norepinephrine (NE). The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72 and a relative error of 0.30 averaged over all paced beats and NE-induced PVCs and VT beats. The averaged distance from imaged site of initial activation to measured site determined from intra-cardiac mapping was ∼5mm. These promising results suggest that 3-DCEI is feasible to non-invasively localize the origins and image activation sequence of focal ventricular arrhythmias.

  11. Participant-selected music and physical activity in older adults following cardiac rehabilitation: a randomized controlled trial.

    Science.gov (United States)

    Clark, Imogen N; Baker, Felicity A; Peiris, Casey L; Shoebridge, Georgie; Taylor, Nicholas F

    2017-03-01

    To evaluate effects of participant-selected music on older adults' achievement of activity levels recommended in the physical activity guidelines following cardiac rehabilitation. A parallel group randomized controlled trial with measurements at Weeks 0, 6 and 26. A multisite outpatient rehabilitation programme of a publicly funded metropolitan health service. Adults aged 60 years and older who had completed a cardiac rehabilitation programme. Experimental participants selected music to support walking with guidance from a music therapist. Control participants received usual care only. The primary outcome was the proportion of participants achieving activity levels recommended in physical activity guidelines. Secondary outcomes compared amounts of physical activity, exercise capacity, cardiac risk factors, and exercise self-efficacy. A total of 56 participants, mean age 68.2 years (SD = 6.5), were randomized to the experimental ( n = 28) and control groups ( n = 28). There were no differences between groups in proportions of participants achieving activity recommended in physical activity guidelines at Week 6 or 26. Secondary outcomes demonstrated between-group differences in male waist circumference at both measurements (Week 6 difference -2.0 cm, 95% CI -4.0 to 0; Week 26 difference -2.8 cm, 95% CI -5.4 to -0.1), and observed effect sizes favoured the experimental group for amounts of physical activity (d = 0.30), exercise capacity (d = 0.48), and blood pressure (d = -0.32). Participant-selected music did not increase the proportion of participants achieving recommended amounts of physical activity, but may have contributed to exercise-related benefits.

  12. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-β1 pathway.

    Science.gov (United States)

    Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli

    2018-02-01

    Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF-β 1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF-β 1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF-β 1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF-β 1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.

  13. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats.

    Science.gov (United States)

    Brailoiu, G Cristina; Deliu, Elena; Tica, Andrei A; Rabinowitz, Joseph E; Tilley, Douglas G; Benamar, Khalid; Koch, Walter J; Brailoiu, Eugen

    2013-09-01

    Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone. © 2013 International Society for Neurochemistry.

  14. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function.

  15. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase.

    Science.gov (United States)

    Dal-Secco, Daniela; DalBó, Silvia; Lautherbach, Natalia E S; Gava, Fábio N; Celes, Mara R N; Benedet, Patricia O; Souza, Adriana H; Akinaga, Juliana; Lima, Vanessa; Silva, Katiussia P; Kiguti, Luiz Ricardo A; Rossi, Marcos A; Kettelhut, Isis C; Pupo, André S; Cunha, Fernando Q; Assreuy, Jamil

    2017-07-01

    G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore

  16. A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase.

    Science.gov (United States)

    Fu, Zhiyao; Abou-Samra, Abdul B; Zhang, Ren

    2015-12-21

    Lipasin/Angptl8 is a feeding-induced hepatokine that regulates triglyceride (TAG) metabolism; its therapeutical potential, mechanism of action, and relation to the lipoprotein lipase (LPL), however, remain elusive. We generated five monoclonal lipasin antibodies, among which one lowered the serum TAG level when injected into mice, and the epitope was determined to be EIQVEE. Lipasin-deficient mice exhibited elevated postprandial activity of LPL in the heart and skeletal muscle, but not in white adipose tissue (WAT), suggesting that lipasin suppresses the activity of LPL specifically in cardiac and skeletal muscles. Consistently, mice injected with the effective antibody or with lipasin deficiency had increased postprandial cardiac LPL activity and lower TAG levels only in the fed state. These results suggest that lipasin acts, at least in part, in an endocrine manner. We propose the following model: feeding induces lipasin, activating the lipasin-Angptl3 pathway, which inhibits LPL in cardiac and skeletal muscles to direct circulating TAG to WAT for storage; conversely, fasting induces Angptl4, which inhibits LPL in WAT to direct circulating TAG to cardiac and skeletal muscles for oxidation. This model suggests a general mechanism by which TAG trafficking is coordinated by lipasin, Angptl3 and Angptl4 at different nutritional statuses.

  17. CAPSAICIN SUPPLEMENTATION FAILS TO MODULATE AUTONOMIC AND CARDIAC ELECTROPHYSIOLOGIC ACTIVITY DURING EXERCISE IN THE OBESE: WITH VARIANTS OF UCP2 AND UCP3 POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Ki Ok Shin

    2008-09-01

    Full Text Available We investigated the effects of capsaicin supplementation (150mg on alterations of autonomic nervous system (ANS activity associated with adverse effects of cardiac depolarization-repolarization intervals during aerobic exercise in obese humans. Nine obese males (26.1 ± 1.5 yrs volunteered between study designed. The cardiac ANS activities evaluated by means of heart rate variability of power spectral analysis and cardiac QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilation threshold (50%VTmax on stationary ergometer with placebo (CON or capsaicin (CAP oral administration chosen at random. The uncoupling protein (UCP 2 and UCP 3 genetic variants of the subjects were analyzed by noninvasive genotyping method from collecting buccal mucosa cells. The results indicated that there were no significant differences in cardiac ANS activities during rest and exercise between CON and CAP trials. Although no significant difference, A/A allele of UCP2 polymorphism showed a reduced sympathetic nervous system (SNS index activity compared to G/G + G/A allele during exercise intervention in our subjects. On the other hand, the data on cardiac QT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, our results suggest that capsaicin supplementation 1 h before exercise intervention has no effect on cardiac ANS activities and cardiac electrical stability during exercise in obese individuals. Further studies should also consider genetic variants for exercise efficacy against obesity

  18. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.

    Science.gov (United States)

    Islam, Mohammed A

    2010-01-01

    Despite the emerging new insights into our understandings of the cellular mechanisms underlying cardiac arrhythmia, medical therapy for this disease remains unsatisfactory. Atrial fibrillation (AF), the most prevalent arrhythmia, is responsible for significant morbidity and mortality. On the other hand, ventricular fibrillation results in sudden cardiac deaths in many instances. Prolongation of cardiac action potential (AP) is a proven principle of antiarrhythmic therapy. Class III antiarrhythmic agents prolong AP and QT interval by blocking rapidly activating delayed rectifier current (I(Kr)). However, I(Kr) blocking drugs carry the risk of life-threatening proarrhythmia. Recently, modulation of atrial-selective ultra-rapid delayed rectifier current (I(Kur)), has emerged as a novel therapeutic approach to treat AF. A number of I(Kur) blockers are being evaluated for the treatment of AF. The inhibition of slowly activating delayed rectifier current (I(Ks)) has also been proposed as an effective and safer antiarrhythmic approach because of its distinguishing characteristics that differ in remarkable ways from other selective class III agents. Selective I(Ks) block may prolong AP duration (APD) at rapid rates without leading to proarrhythmia. This article reviews the pathophysiological roles of I(Kur) and I(Ks) in cardiac repolarization and the implications of newly developed I(Kur) and I(Ks) blocking agents as promising antiarrhythmic approaches. Several recent patents pertinent to antiarrhythmic drug development have been discussed. Further research will be required to evaluate the efficacy and safety of these agents in the clinical setting.

  19. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    Science.gov (United States)

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  20. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    Science.gov (United States)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  1. Direct Cardiac Reprogramming: Advances in Cardiac Regeneration

    Directory of Open Access Journals (Sweden)

    Olivia Chen

    2015-01-01

    Full Text Available Heart disease is one of the lead causes of death worldwide. Many forms of heart disease, including myocardial infarction and pressure-loading cardiomyopathies, result in irreversible cardiomyocyte death. Activated fibroblasts respond to cardiac injury by forming scar tissue, but ultimately this response fails to restore cardiac function. Unfortunately, the human heart has little regenerative ability and long-term outcomes following acute coronary events often include chronic and end-stage heart failure. Building upon years of research aimed at restoring functional cardiomyocytes, recent advances have been made in the direct reprogramming of fibroblasts toward a cardiomyocyte cell fate both in vitro and in vivo. Several experiments show functional improvements in mouse models of myocardial infarction following in situ generation of cardiomyocyte-like cells from endogenous fibroblasts. Though many of these studies are in an early stage, this nascent technology holds promise for future applications in regenerative medicine. In this review, we discuss the history, progress, methods, challenges, and future directions of direct cardiac reprogramming.

  2. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells.

    Science.gov (United States)

    Sundnes, J; Lines, G T; Tveito, A

    2001-08-01

    The contraction of the heart is preceded and caused by a cellular electro-chemical reaction, causing an electrical field to be generated. Performing realistic computer simulations of this process involves solving a set of partial differential equations, as well as a large number of ordinary differential equations (ODEs) characterizing the reactive behavior of the cardiac tissue. Experiments have shown that the solution of the ODEs contribute significantly to the total work of a simulation, and there is thus a strong need to utilize efficient solution methods for this part of the problem. This paper presents how an efficient implicit Runge-Kutta method may be adapted to solve a complicated cardiac cell model consisting of 31 ODEs, and how this solver may be coupled to a set of PDE solvers to provide complete simulations of the electrical activity.

  3. Affective mapping: An activation likelihood estimation (ALE) meta-analysis.

    Science.gov (United States)

    Kirby, Lauren A J; Robinson, Jennifer L

    2017-11-01

    Functional neuroimaging has the spatial resolution to explain the neural basis of emotions. Activation likelihood estimation (ALE), as opposed to traditional qualitative meta-analysis, quantifies convergence of activation across studies within affective categories. Others have used ALE to investigate a broad range of emotions, but without the convenience of the BrainMap database. We used the BrainMap database and analysis resources to run separate meta-analyses on coordinates reported for anger, anxiety, disgust, fear, happiness, humor, and sadness. Resultant ALE maps were compared to determine areas of convergence between emotions, as well as to identify affect-specific networks. Five out of the seven emotions demonstrated consistent activation within the amygdala, whereas all emotions consistently activated the right inferior frontal gyrus, which has been implicated as an integration hub for affective and cognitive processes. These data provide the framework for models of affect-specific networks, as well as emotional processing hubs, which can be used for future studies of functional or effective connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  5. Cardiac anatomy and physiology: a review.

    Science.gov (United States)

    Gavaghan, M

    1998-04-01

    This article reviews the normal anatomy and physiology of the heart. Understanding the normal anatomic and physiologic relationships described in this article will help perioperative nurses care for patients who are undergoing cardiac procedures. Such knowledge also assists nurses in educating patients about cardiac procedures and about activities that can prevent, reverse, or improve cardiac illness.

  6. Older Adults' Music Listening Preferences to Support Physical Activity Following Cardiac Rehabilitation.

    Science.gov (United States)

    Clark, Imogen N; Baker, Felicity A; Taylor, Nicholas F

    2016-01-01

    Music listening during exercise is thought to increase physiological arousal and enhance subjective experience, and may support physical activity participation among older adults with cardiac disease. However, little is known about how music preferences, or perceptions of music during exercise, inform clinical practice with this population. Identify predominant musical characteristics of preferred music selected by older adults, and explore participants' music listening experiences during walking-based exercise following cardiac rehabilitation. Twenty-seven participants aged 60 years and older (21 men, 6 women; mean age = 67.3 years) selected music to support walking over a 6-month intervention period, and participated in post-intervention interviews. In this two-phase study, we first identified predominant characteristics of participant-selected music using the Structural Model of Music Analysis. Second, we used inductive thematic analysis to explore participant experiences. Predominant characteristics of participant-selected music included duple meter, consistent rhythm, major key, rounded melodic shape, legato articulation, predictable harmonies, variable volume, and episodes of tension with delayed resolution. There was no predominant tempo, with music selections ranging from slow through to medium and fast. Four themes emerged from thematic analysis of participant interviews: psycho-emotional responses, physical responses, influence on exercise behavior, and negative experiences. Findings are consistent with theory and research explaining influences from music listening on physiological arousal and subjective experience during exercise. Additionally, for older adults with cardiac disease, a holistic approach to music selection considering general well-being and adjustment issues, rather than just exercise performance, may improve long-term lifestyle changes and compliance with physical activity guidelines. © the American Music Therapy Association 2016. All

  7. Cardiac lipid content is unresponsive to a physical activity training intervention in type 2 diabetic patients, despite improved ejection fraction

    Directory of Open Access Journals (Sweden)

    Leiner Tim

    2011-05-01

    Full Text Available Abstract Background Increased cardiac lipid content has been associated with diabetic cardiomyopathy. We recently showed that cardiac lipid content is reduced after 12 weeks of physical activity training in healthy overweight subjects. The beneficial effect of exercise training on cardiovascular risk is well established and the decrease in cardiac lipid content with exercise training in healthy overweight subjects was accompanied by improved ejection fraction. It is yet unclear whether diabetic patients respond similarly to physical activity training and whether a lowered lipid content in the heart is necessary for improvements in cardiac function. Here, we investigated whether exercise training is able to lower cardiac lipid content and improve cardiac function in type 2 diabetic patients. Methods Eleven overweight-to-obese male patients with type 2 diabetes mellitus (age: 58.4 ± 0.9 years, BMI: 29.9 ± 0.01 kg/m2 followed a 12-week training program (combination endurance/strength training, three sessions/week. Before and after training, maximal whole body oxygen uptake (VO2max and insulin sensitivity (by hyperinsulinemic, euglycemic clamp was determined. Systolic function was determined under resting conditions by CINE-MRI and cardiac lipid content in the septum of the heart by Proton Magnetic Resonance Spectroscopy. Results VO2max increased (from 27.1 ± 1.5 to 30.1 ± 1.6 ml/min/kg, p = 0.001 and insulin sensitivity improved upon training (insulin stimulated glucose disposal (delta Rd of glucose improved from 5.8 ± 1.9 to 10.3 ± 2.0 μmol/kg/min, p = 0.02. Left-ventricular ejection fraction improved after training (from 50.5 ± 2.0 to 55.6 ± 1.5%, p = 0.01 as well as cardiac index and cardiac output. Unexpectedly, cardiac lipid content in the septum remained unchanged (from 0.80 ± 0.22% to 0.95 ± 0.21%, p = 0.15. Conclusions Twelve weeks of progressive endurance/strength training was effective in improving VO2max, insulin sensitivity

  8. Repetitive Transient Ischemia-Induced Cardiac Angiogenesis is Mediated by Camkii Activation

    Directory of Open Access Journals (Sweden)

    Zhuobin Chen

    2018-05-01

    Full Text Available Background/Aims: Coronary angiogenesis is an important protective mechanism in response to myocardial ischemia in coronary artery disease. However, the underlying mechanisms remain largely unclear. Here, we investigated the role of CaMKII activation in ischemia-induced cardiac angiogenesis. Methods: Repetitive transient ischemia model was established in C57/BL6 mice by daily multiple episodes (3 times/day of short time (5 min occlusion of the left anterior descending coronary artery for 7 days. Coronary angiogenesis was detected by immunofluorescent staining. RT-qPCR and Western blot analyses were used to detect the mRNA and protein levels of CaMKII, p-CaMKII and VEGF. Primary cardiac microvascular endothelial cells (CMECs were isolated to investigate the effects of KN93 on cell proliferation and migration in hypoxic condition. Results: We found that angiogenesis was induced in the ischemic myocardium and suppressed by chronic intraperitoneal injection of CaMKII inhibitor KN93. RT-qPCR and Western blot analyses showed that myocardial ischemia induced an increased expression and autophosphorylation of CaMKII. VEGF expression was increased in the ischemia model but blunted by KN93. Moreover, KN93 suppressed the proliferation and migration of cardiac endothelial cells in hypoxic condition in which the protein expression of CaMKII, p-CaMKII and VEGF was increased. Conclusion: CaMKII is an important mediator for the ischemia-induced coronary angiogenesis, in which CaMKII-triggered VEGF expression plays a key role.

  9. Cardiovascular responses to apneic facial immersion during altered cardiac filling.

    Science.gov (United States)

    Journeay, W Shane; Reardon, Francis D; Kenny, Glen P

    2003-06-01

    The hypothesis that reduced cardiac filling, as a result of lower body negative pressure (LBNP) and postexercise hypotension (PEH), would attenuate the reflex changes to heart rate (HR), skin blood flow (SkBF), and mean arterial pressure (MAP) normally induced by facial immersion was tested. The purpose of this study was to investigate the cardiovascular control mechanisms associated with apneic facial immersion during different cardiovascular challenges. Six subjects randomly performed 30-s apneic facial immersions in 6.0 +/- 1.2 degrees C water under the following conditions: 1) -20 mmHg LBNP, 2) +40 mmHg lower body positive pressure (LBPP), 3) during a period of PEH, and 4) normal resting (control). Measurements included SkBF at one acral (distal phalanx of the thumb) and one nonacral region of skin (ventral forearm), HR, and MAP. Facial immersion reduced HR and SkBF at both sites and increased MAP under all conditions (P filling during LBNP and PEH significantly attenuated the absolute HR nadir observed during the control immersion (P facial immersion can be attenuated when cardiac filling is compromised.

  10. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, Kensuke; Ayusawa, Mamoru; Noto, Nobutaka; Sumitomo, Naokata; Okada, Tomoo; Harada, Kensuke [Nihon Univ., Tokyo (Japan). School of Medicine

    2000-12-01

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5{+-}6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33{+-}0.22 in chronic heart failure class I, 2.50{+-}0.34 in class II, 1.95{+-}0.61 in class III, and 1.39{+-}0.29 in class IV (p<0.05). %WR was 24.8{+-}12.8% in chronic heart failure class I, 23.3{+-}10.2% in class II, 49.2{+-}24.5% in class III, and 66.3{+-}26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  11. Upper-body progressive resistance training improves strength and household physical activity performance in women attending cardiac rehabilitation.

    Science.gov (United States)

    Coke, Lola A; Staffileno, Beth A; Braun, Lynne T; Gulanick, Meg

    2008-01-01

    The purpose of this study was to examine the impact of moderate-intensity, progressive, upper-body resistance training (RT) on muscle strength and perceived performance of household physical activities (HPA) among women in cardiac rehabilitation. The 10-week, pretest-posttest, experiment randomized women to either usual care (UC) aerobic exercise or RT. Muscle strength for 5 upper-body RT exercises (chest press, shoulder press, biceps curl, lateral row, and triceps extension) was measured using the 1-Repetition Maximum Assessment. The RT group progressively increased weight lifted using 40%, 50%, and 60% of obtained 1-Repetition Maximum Assessment at 3-week intervals. Perceived performance of HPA was measured with the Kimble Household Activities Scale. The RT group (n = 16, mean age 64 +/- 11) significantly increased muscle strength in all 5 exercises in comparison with the UC group (n = 14, mean age 65 +/- 10) (chest press, 18% vs 11%; shoulder press, 24% vs 14%; biceps curl, 21% vs 12%; lateral row, 32% vs 9%; and triceps extension, 28% vs 20%, respectively). By study end, Household Activities Scale scores significantly increased (F = 13.878, P = .001) in the RT group (8.75 +/- 3.19 vs 11.25 +/- 2.14), whereas scores in the UC group decreased (8.60 +/- 3.11 vs 6.86 +/- 4.13). Progressive upper-body RT in women shows promise as an effective tool to increase muscle strength and improve the ability to perform HPA after a cardiac event. Beginning RT early after a cardiac event in a monitored cardiac rehabilitation environment can maximize the strengthening benefit.

  12. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  13. Sudden Cardiac Arrest during Participation in Competitive Sports.

    Science.gov (United States)

    Landry, Cameron H; Allan, Katherine S; Connelly, Kim A; Cunningham, Kris; Morrison, Laurie J; Dorian, Paul

    2017-11-16

    The incidence of sudden cardiac arrest during participation in sports activities remains unknown. Preparticipation screening programs aimed at preventing sudden cardiac arrest during sports activities are thought to be able to identify at-risk athletes; however, the efficacy of these programs remains controversial. We sought to identify all sudden cardiac arrests that occurred during participation in sports activities within a specific region of Canada and to determine their causes. In this retrospective study, we used the Rescu Epistry cardiac arrest database (which contains records of every cardiac arrest attended by paramedics in the network region) to identify all out-of-hospital cardiac arrests that occurred from 2009 through 2014 in persons 12 to 45 years of age during participation in a sport. Cases were adjudicated as sudden cardiac arrest (i.e., having a cardiac cause) or as an event resulting from a noncardiac cause, on the basis of records from multiple sources, including ambulance call reports, autopsy reports, in-hospital data, and records of direct interviews with patients or family members. Over the course of 18.5 million person-years of observation, 74 sudden cardiac arrests occurred during participation in a sport; of these, 16 occurred during competitive sports and 58 occurred during noncompetitive sports. The incidence of sudden cardiac arrest during competitive sports was 0.76 cases per 100,000 athlete-years, with 43.8% of the athletes surviving until they were discharged from the hospital. Among the competitive athletes, two deaths were attributed to hypertrophic cardiomyopathy and none to arrhythmogenic right ventricular cardiomyopathy. Three cases of sudden cardiac arrest that occurred during participation in competitive sports were determined to have been potentially identifiable if the athletes had undergone preparticipation screening. In our study involving persons who had out-of-hospital cardiac arrest, the incidence of sudden cardiac

  14. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise.

    Directory of Open Access Journals (Sweden)

    Elliott M McMillan

    Full Text Available Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY and spontaneously hypertensive rats (SHR were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG of hypertensive rats had higher (p<0.05 caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05 ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05 Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05 Beclin-1 and ATG7 protein, as well as decreased (p<0.05 caspase-3, calpain, and cathepsin activity. Left ventricle (LV of hypertensive rats had reduced (p<0.05 AMPKα and LC3II protein, as well as elevated (p<0.05 p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05 proteasome activity but reduced (p<0.05 caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.

  15. EMMPRIN mediates beta-adrenergic receptor-stimulated matrix metalloproteinase activity in cardiac myocytes.

    OpenAIRE

    Siwik Deborah A; Kuster Gabriela M; Brahmbhatt Jamin V; Zaidi Zaheer; Malik Julia; Ooi Henry; Ghorayeb Ghassan

    2008-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) expression is increased in myocardium from patients with dilated cardiomyopathy and animal models of heart failure. However little is known about the regulated expression or functional role of EMMPRIN in the myocardium. In rat cardiac cells EMMPRIN is expressed on myocytes but not endothelial cells or fibroblasts. Therefore we tested the hypothesis that EMMPRIN expression regulates matrix metalloproteinase (MMP) activity in rat ventricu...

  16. Imaging cardiac activation sequence during ventricular tachycardia in a canine model of nonischemic heart failure.

    Science.gov (United States)

    Han, Chengzong; Pogwizd, Steven M; Yu, Long; Zhou, Zhaoye; Killingsworth, Cheryl R; He, Bin

    2015-01-15

    Noninvasive cardiac activation imaging of ventricular tachycardia (VT) is important in the clinical diagnosis and treatment of arrhythmias in heart failure (HF) patients. This study investigated the ability of the three-dimensional cardiac electrical imaging (3DCEI) technique for characterizing the activation patterns of spontaneously occurring and norepinephrine (NE)-induced VTs in a newly developed arrhythmogenic canine model of nonischemic HF. HF was induced by aortic insufficiency followed by aortic constriction in three canines. Up to 128 body-surface ECGs were measured simultaneously with bipolar recordings from up to 232 intramural sites in a closed-chest condition. Data analysis was performed on the spontaneously occurring VTs (n=4) and the NE-induced nonsustained VTs (n=8) in HF canines. Both spontaneously occurring and NE-induced nonsustained VTs initiated by a focal mechanism primarily from the subendocardium, but occasionally from the subepicardium of left ventricle. Most focal initiation sites were located at apex, right ventricular outflow tract, and left lateral wall. The NE-induced VTs were longer, more rapid, and had more focal sites than the spontaneously occurring VTs. Good correlation was obtained between imaged activation sequence and direct measurements (averaged correlation coefficient of ∼0.70 over 135 VT beats). The reconstructed initiation sites were ∼10 mm from measured initiation sites, suggesting good localization in such a large animal model with cardiac size similar to a human. Both spontaneously occurring and NE-induced nonsustained VTs had focal initiation in this canine model of nonischemic HF. 3DCEI is feasible to image the activation sequence and help define arrhythmia mechanism of nonischemic HF-associated VTs. Copyright © 2015 the American Physiological Society.

  17. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    Directory of Open Access Journals (Sweden)

    Damián Sánchez-Quintana

    2015-01-01

    Full Text Available The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch’s triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists.

  18. Investigating patients' preferences for cardiac rehabilitation in Denmark

    DEFF Research Database (Denmark)

    Kjaer, Trine; Gyrd-Hansen, Dorte; Willaing, Ingrid

    2006-01-01

    the preferences for the offer of participation in various cardiac rehabilitation program activities: smoking cessation course, physical exercise program, personal meetings with cardiac nurse, group meetings managed by cardiac nurses, and nutritional counseling guidance. The questionnaire was sent to 742 former...

  19. Safety and efficacy of recombinant activated factor VII: a randomized placebo-controlled trial in the setting of bleeding after cardiac surgery

    DEFF Research Database (Denmark)

    Gill, Ravi; Herbertson, Mike; Vuylsteke, Alain

    2009-01-01

    BACKGROUND: Blood loss is a common complication of cardiac surgery. Evidence suggests that recombinant activated factor VII (rFVIIa) can decrease intractable bleeding in patients after cardiac surgery. Our objective was to investigate the safety and possible benefits of rFVIIa in patients who bleed...

  20. Active Bleeding after Cardiac Surgery: A Prospective Observational Multicenter Study.

    Directory of Open Access Journals (Sweden)

    Pascal H Colson

    Full Text Available To estimate the incidence of active bleeding after cardiac surgery (AB based on a definition directly related on blood flow from chest drainage; to describe the AB characteristics and its management; to identify factors of postoperative complications.AB was defined as a blood loss > 1.5 ml/kg/h for 6 consecutive hours within the first 24 hours or in case of reoperation for hemostasis during the first 12 postoperative hours. The definition was applied in a prospective longitudinal observational study involving 29 French centers; all adult patients undergoing cardiac surgery with cardiopulmonary bypass were included over a 3-month period. Perioperative data (including blood product administration were collected. To study possible variation in clinical practice among centers, patients were classified into two groups according to the AB incidence of the center compared to the overall incidence: "Low incidence" if incidence is lower and "High incidence" if incidence is equal or greater than overall incidence. Logistic regression analysis was used to identify risk factors of postoperative complications.Among 4,904 patients, 129 experienced AB (2.6%, among them 52 reoperation. Postoperative bleeding loss was 1,000 [820;1,375] ml and 1,680 [1,280;2,300] ml at 6 and 24 hours respectively. Incidence of AB varied between centers (0 to 16% but was independent of in-centre cardiac surgical experience. Comparisons between groups according to AB incidence showed differences in postoperative management. Body surface area, preoperative creatinine, emergency surgery, postoperative acidosis and red blood cell transfusion were risk factors of postoperative complication.A blood loss > 1.5 ml/kg/h for 6 consecutive hours within the first 24 hours or early reoperation for hemostasis seems a relevant definition of AB. This definition, independent of transfusion, adjusted to body weight, may assess real time bleeding occurring early after surgery.

  1. Active Bleeding after Cardiac Surgery: A Prospective Observational Multicenter Study.

    Science.gov (United States)

    Colson, Pascal H; Gaudard, Philippe; Fellahi, Jean-Luc; Bertet, Héléna; Faucanie, Marie; Amour, Julien; Blanloeil, Yvonnick; Lanquetot, Hervé; Ouattara, Alexandre; Picot, Marie Christine

    2016-01-01

    To estimate the incidence of active bleeding after cardiac surgery (AB) based on a definition directly related on blood flow from chest drainage; to describe the AB characteristics and its management; to identify factors of postoperative complications. AB was defined as a blood loss > 1.5 ml/kg/h for 6 consecutive hours within the first 24 hours or in case of reoperation for hemostasis during the first 12 postoperative hours. The definition was applied in a prospective longitudinal observational study involving 29 French centers; all adult patients undergoing cardiac surgery with cardiopulmonary bypass were included over a 3-month period. Perioperative data (including blood product administration) were collected. To study possible variation in clinical practice among centers, patients were classified into two groups according to the AB incidence of the center compared to the overall incidence: "Low incidence" if incidence is lower and "High incidence" if incidence is equal or greater than overall incidence. Logistic regression analysis was used to identify risk factors of postoperative complications. Among 4,904 patients, 129 experienced AB (2.6%), among them 52 reoperation. Postoperative bleeding loss was 1,000 [820;1,375] ml and 1,680 [1,280;2,300] ml at 6 and 24 hours respectively. Incidence of AB varied between centers (0 to 16%) but was independent of in-centre cardiac surgical experience. Comparisons between groups according to AB incidence showed differences in postoperative management. Body surface area, preoperative creatinine, emergency surgery, postoperative acidosis and red blood cell transfusion were risk factors of postoperative complication. A blood loss > 1.5 ml/kg/h for 6 consecutive hours within the first 24 hours or early reoperation for hemostasis seems a relevant definition of AB. This definition, independent of transfusion, adjusted to body weight, may assess real time bleeding occurring early after surgery.

  2. Insurance Applications of Active Fault Maps Showing Epistemic Uncertainty

    Science.gov (United States)

    Woo, G.

    2005-12-01

    Insurance loss modeling for earthquakes utilizes available maps of active faulting produced by geoscientists. All such maps are subject to uncertainty, arising from lack of knowledge of fault geometry and rupture history. Field work to undertake geological fault investigations drains human and monetary resources, and this inevitably limits the resolution of fault parameters. Some areas are more accessible than others; some may be of greater social or economic importance than others; some areas may be investigated more rapidly or diligently than others; or funding restrictions may have curtailed the extent of the fault mapping program. In contrast with the aleatory uncertainty associated with the inherent variability in the dynamics of earthquake fault rupture, uncertainty associated with lack of knowledge of fault geometry and rupture history is epistemic. The extent of this epistemic uncertainty may vary substantially from one regional or national fault map to another. However aware the local cartographer may be, this uncertainty is generally not conveyed in detail to the international map user. For example, an area may be left blank for a variety of reasons, ranging from lack of sufficient investigation of a fault to lack of convincing evidence of activity. Epistemic uncertainty in fault parameters is of concern in any probabilistic assessment of seismic hazard, not least in insurance earthquake risk applications. A logic-tree framework is appropriate for incorporating epistemic uncertainty. Some insurance contracts cover specific high-value properties or transport infrastructure, and therefore are extremely sensitive to the geometry of active faulting. Alternative Risk Transfer (ART) to the capital markets may also be considered. In order for such insurance or ART contracts to be properly priced, uncertainty should be taken into account. Accordingly, an estimate is needed for the likelihood of surface rupture capable of causing severe damage. Especially where a

  3. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  4. Detection of cardiac activity changes from human speech

    Science.gov (United States)

    Tovarek, Jaromir; Partila, Pavol; Voznak, Miroslav; Mikulec, Martin; Mehic, Miralem

    2015-05-01

    Impact of changes in blood pressure and pulse from human speech is disclosed in this article. The symptoms of increased physical activity are pulse, systolic and diastolic pressure. There are many methods of measuring and indicating these parameters. The measurements must be carried out using devices which are not used in everyday life. In most cases, the measurement of blood pressure and pulse following health problems or other adverse feelings. Nowadays, research teams are trying to design and implement modern methods in ordinary human activities. The main objective of the proposal is to reduce the delay between detecting the adverse pressure and to the mentioned warning signs and feelings. Common and frequent activity of man is speaking, while it is known that the function of the vocal tract can be affected by the change in heart activity. Therefore, it can be a useful parameter for detecting physiological changes. A method for detecting human physiological changes by speech processing and artificial neural network classification is described in this article. The pulse and blood pressure changes was induced by physical exercises in this experiment. The set of measured subjects was formed by ten healthy volunteers of both sexes. None of the subjects was a professional athlete. The process of the experiment was divided into phases before, during and after physical training. Pulse, systolic, diastolic pressure was measured and voice activity was recorded after each of them. The results of this experiment describe a method for detecting increased cardiac activity from human speech using artificial neural network.

  5. Assessment of cardiac sympathetic nerve activity in children with chronic heart failure using quantitative iodine-123 metaiodobenzylguanidine imaging

    International Nuclear Information System (INIS)

    Karasawa, Kensuke; Ayusawa, Mamoru; Noto, Nobutaka; Sumitomo, Naokata; Okada, Tomoo; Harada, Kensuke

    2000-01-01

    Cardiac sympathetic nerve activity in children with chronic heart failure was examined by quantitative iodine-123 metaiodobenzylguanidine (MIBG) myocardial imaging in 33 patients aged 7.5±6.1 years (range 0-18 years), including 8 with cardiomyopathy, 15 with congenital heart disease, 3 with anthracycrine cardiotoxicity, 3 with myocarditis, 3 with primary pulmonary hypertension and 1 with Pompe's disease. Anterior planar images were obtained 15 min and 3 hr after the injection of iodine-123 MIBG. The cardiac iodine-123 MIBG uptake was assessed as the heart to upper mediastinum uptake activity ratio of the delayed image (H/M) and the cardiac percentage washout rate (%WR). The severity of chronic heart failure was class I (no medication) in 8 patients, class II (no symptom with medication) in 9, class III (symptom even with medication) in 10 and class IV (late cardiac death) in 6. H/M was 2.33±0.22 in chronic heart failure class I, 2.50±0.34 in class II, 1.95±0.61 in class III, and 1.39±0.29 in class IV (p<0.05). %WR was 24.8±12.8% in chronic heart failure class I, 23.3±10.2% in class II, 49.2±24.5% in class III, and 66.3±26.5% in class IV (p<0.05). The low H/M and high %WR were proportionate to the severity of chronic heart failure. Cardiac iodine-123 MIBG showed cardiac adrenergic neuronal dysfunction in children with severe chronic heart failure. Quantitative iodine-123 MIBG myocardial imaging is clinically useful as a predictor of therapeutic outcome and mortality in children with chronic heart failure. (author)

  6. STEM promotion through museum exhibits on cardiac monitoring & cardiac rhythm management.

    Science.gov (United States)

    Countryman, Jordan D; Dow, Douglas E

    2014-01-01

    Formal education in science, technology, engineering and math (STEM) does not successfully engage all of the students who have potential to become skilled in STEM activities and careers. Museum exhibits may be able to reach and engage a broader range of the public. STEM Exhibits that are both understandable and capture the imagination of viewers may contribute toward increased interest in STEM activities. One such topic for such an exhibit could be cardiac pacemakers and cardioverter defibrillators that sustain life. Although museums have existed for centuries, the available types of exhibit designs has dramatically increased in recent decades due to innovations in technology. Science and technology museums have especially taken advantage of the progression of exhibit design to developed new ways to communicate to their viewers. These novel presentation tools allow museums to more effectively convey to and engage viewers. This paper examines the techniques employed by museums in exhibits and considers the practices of several museums with exhibits related to cardiac monitoring (CM) and cardiac rhythm management (CRM).

  7. Association of evening smartphone use with cardiac autonomic nervous activity after awakening in adolescents living in high school dormitories.

    Science.gov (United States)

    Nose, Yoko; Fujinaga, Rina; Suzuki, Maki; Hayashi, Ikuyo; Moritani, Toshio; Kotani, Kazuhiko; Nagai, Narumi

    2017-04-01

    Smartphones are prevalently used among adolescents; however, nighttime exposure to blue-enriched light, through electric devices, is known to induce delays of the circadian rhythm phases and poor morning somatic conditions. We therefore investigated whether evening smartphone use may affect sleep-wake cycle and cardiac autonomic nervous system (ANS) activity after awaking in dormitory students. The participants were high school students, living under dormitory rules regarding the curfew, study, meals, lights-out, and wake-up times. The students were forbidden from the use of both television and personal computer in their private rooms, and only the use of a smartphone was permitted. According to prior assessment of smartphone use, we chose age-, sex-, exercise time-matched long (n = 22, >120 min) and short (n = 14, ≤60 min) groups and compared sleep-wake cycle and physiological parameters, such as cardiac ANS activity, blood pressure, and intra-aural temperature. All measurements were performed during 6:30 to 7:00 a.m. in the dormitories. Compared with the short group, the long group showed a significantly lower cardiac ANS activity (2727 ± 308 vs. 4455 ± 667 ms 2 , p = 0.030) with a tendency toward a high heart rate, in addition to later bedtimes during weekdays and more delayed wake-up times over the weekend. Blood pressure and intra-aural temperature did not differ between the groups. In this population, evening smartphone use may be associated with altered sleep-wake cycle and a diminished cardiac ANS activity after awakening could be affecting daytime activities.

  8. Assessment of myocardial fibrosis with T1 mapping MRI

    International Nuclear Information System (INIS)

    Everett, R.J.; Stirrat, C.G.; Semple, S.I.R.; Newby, D.E.; Dweck, M.R.; Mirsadraee, S.

    2016-01-01

    Myocardial fibrosis can arise from a range of pathological processes and its presence correlates with adverse clinical outcomes. Cardiac magnetic resonance (CMR) can provide a non-invasive assessment of cardiac structure, function, and tissue characteristics, which includes late gadolinium enhancement (LGE) techniques to identify focal irreversible replacement fibrosis with a high degree of accuracy and reproducibility. Importantly the presence of LGE is consistently associated with adverse outcomes in a range of common cardiac conditions; however, LGE techniques are qualitative and unable to detect diffuse myocardial fibrosis, which is an earlier form of fibrosis preceding replacement fibrosis that may be reversible. Novel T1 mapping techniques allow quantitative CMR assessment of diffuse myocardial fibrosis with the two most common measures being native T1 and extracellular volume (ECV) fraction. Native T1 differentiates normal from infarcted myocardium, is abnormal in hypertrophic cardiomyopathy, and may be particularly useful in the diagnosis of Anderson–Fabry disease and amyloidosis. ECV is a surrogate measure of the extracellular space and is equivalent to the myocardial volume of distribution of the gadolinium-based contrast medium. It is reproducible and correlates well with fibrosis on histology. ECV is abnormal in patients with cardiac failure and aortic stenosis, and is associated with functional impairment in these groups. T1 mapping techniques promise to allow earlier detection of disease, monitor disease progression, and inform prognosis; however, limitations remain. In particular, reference ranges are lacking for T1 mapping values as these are influenced by specific CMR techniques and magnetic field strength. In addition, there is significant overlap between T1 mapping values in healthy controls and most disease states, particularly using native T1, limiting the clinical application of these techniques at present.

  9. Assessment of myocardial fibrosis with T1 mapping MRI.

    Science.gov (United States)

    Everett, R J; Stirrat, C G; Semple, S I R; Newby, D E; Dweck, M R; Mirsadraee, S

    2016-08-01

    Myocardial fibrosis can arise from a range of pathological processes and its presence correlates with adverse clinical outcomes. Cardiac magnetic resonance (CMR) can provide a non-invasive assessment of cardiac structure, function, and tissue characteristics, which includes late gadolinium enhancement (LGE) techniques to identify focal irreversible replacement fibrosis with a high degree of accuracy and reproducibility. Importantly the presence of LGE is consistently associated with adverse outcomes in a range of common cardiac conditions; however, LGE techniques are qualitative and unable to detect diffuse myocardial fibrosis, which is an earlier form of fibrosis preceding replacement fibrosis that may be reversible. Novel T1 mapping techniques allow quantitative CMR assessment of diffuse myocardial fibrosis with the two most common measures being native T1 and extracellular volume (ECV) fraction. Native T1 differentiates normal from infarcted myocardium, is abnormal in hypertrophic cardiomyopathy, and may be particularly useful in the diagnosis of Anderson-Fabry disease and amyloidosis. ECV is a surrogate measure of the extracellular space and is equivalent to the myocardial volume of distribution of the gadolinium-based contrast medium. It is reproducible and correlates well with fibrosis on histology. ECV is abnormal in patients with cardiac failure and aortic stenosis, and is associated with functional impairment in these groups. T1 mapping techniques promise to allow earlier detection of disease, monitor disease progression, and inform prognosis; however, limitations remain. In particular, reference ranges are lacking for T1 mapping values as these are influenced by specific CMR techniques and magnetic field strength. In addition, there is significant overlap between T1 mapping values in healthy controls and most disease states, particularly using native T1, limiting the clinical application of these techniques at present. Copyright © 2016 The Royal College

  10. Bringing MapReduce Closer To Data With Active Drives

    Science.gov (United States)

    Golpayegani, N.; Prathapan, S.; Warmka, R.; Wyatt, B.; Halem, M.; Trantham, J. D.; Markey, C. A.

    2017-12-01

    Moving computation closer to the data location has been a much theorized improvement to computation for decades. The increase in processor performance, the decrease in processor size and power requirement combined with the increase in data intensive computing has created a push to move computation as close to data as possible. We will show the next logical step in this evolution in computing: moving computation directly to storage. Hypothetical systems, known as Active Drives, have been proposed as early as 1998. These Active Drives would have a general-purpose CPU on each disk allowing for computations to be performed on them without the need to transfer the data to the computer over the system bus or via a network. We will utilize Seagate's Active Drives to perform general purpose parallel computing using the MapReduce programming model directly on each drive. We will detail how the MapReduce programming model can be adapted to the Active Drive compute model to perform general purpose computing with comparable results to traditional MapReduce computations performed via Hadoop. We will show how an Active Drive based approach significantly reduces the amount of data leaving the drive when performing several common algorithms: subsetting and gridding. We will show that an Active Drive based design significantly improves data transfer speeds into and out of drives compared to Hadoop's HDFS while at the same time keeping comparable compute speeds as Hadoop.

  11. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    Science.gov (United States)

    Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José

    2017-02-01

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  12. QUest for the Arrhythmogenic Substrate of Atrial fibRillation in Patients Undergoing Cardiac Surgery (QUASAR Study): Rationale and Design.

    Science.gov (United States)

    van der Does, Lisette J M E; Yaksh, Ameeta; Kik, Charles; Knops, Paul; Lanters, Eva A H; Teuwen, Christophe P; Oei, Frans B S; van de Woestijne, Pieter C; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S

    2016-06-01

    The heterogeneous presentation and progression of atrial fibrillation (AF) implicate the existence of different pathophysiological processes. Individualized diagnosis and therapy of the arrhythmogenic substrate underlying AF may be required to improve treatment outcomes. Therefore, this single-center study aims to identify the arrhythmogenic areas underlying AF by intra-operative, high-resolution, multi-site epicardial mapping in 600 patients with different heart diseases. Participants are divided into 12 groups according to the underlying heart diseases and presence of prior AF episodes. Mapping is performed with a 192-electrode array for 5-10 s during sinus rhythm and (induced) AF of the entire atrial surface. Local activation times are converted into activation and wave maps from which various electrophysiological parameters are derived. Postoperative cardiac rhythm registrations and a 5-year follow-up will show the incidence of postoperative and persistent AF. This project provides the first step in the development of a tool for individual AF diagnosis and treatment.

  13. Landslide Activity Maps Generation by Means of Persistent Scatterer Interferometry

    Directory of Open Access Journals (Sweden)

    Silvia Bianchini

    2013-11-01

    Full Text Available In this paper a methodology is proposed to elaborate landslide activity maps through the use of PS (Persistent Scatterer data. This is illustrated through the case study of Tramuntana Range in the island of Majorca (Spain, where ALOS (Advanced Land Observing Satellite images have been processed through a Persistent Scatterer Interferometry (PSI technique during the period of 2007–2010. The landslide activity map provides, for every monitored landslide, an assessment of the PS visibility according to the relief, land use, and satellite acquisition parameters. Landslide displacement measurements are projected along the steepest slope, in order to compare landslide velocities with different slope orientations. Additionally, a ground motion activity map is also generated, based on active PS clusters not included within any known landslide phenomenon, but even moving, potentially referred to unmapped landslides or triggered by other kinds of geomorphological processes. In the Tramuntana range, 42 landslides were identified as active, four as being potential to produce moderate damage, intersecting the road Ma-10, which represents the most important road of the island and, thus, the main element at risk. In order to attest the reliability of measured displacements to represent landslide dynamics, a confidence degree evaluation is proposed. In this test site, seven landslides exhibit a high confidence degree, medium for 93 of them, and low for 51. A low confidence degree was also attributed to 615 detected active clusters with a potential to cause moderate damage, as their mechanism of the triggering cause is unknown. From this total amount, 18 of them intersect the Ma-10, representing further potentially hazardous areas. The outcomes of this work reveal the usefulness of landslide activity maps for environmental planning activities, being exportable to other radar data and different geomorphological settings.

  14. Implementing a Cardiac Skills Orientation and Simulation Program.

    Science.gov (United States)

    Hemingway, Maureen W; Osgood, Patrice; Mannion, Mildred

    2018-02-01

    Patients with cardiac morbidities admitted for cardiac surgical procedures require perioperative nurses with a high level of complex nursing skills. Orienting new cardiac team members takes commitment and perseverance in light of variable staffing levels, high-acuity patient populations, an active cardiac surgical schedule, and the unpredictability of scheduling patients undergoing cardiac transplantation. At an academic medical center in Boston, these issues presented opportunities to orient new staff members to the scrub person role, but hampered efforts to provide active learning opportunities in a safe environment. As a result, facility personnel created a program to increase new staff members' skills, confidence, and proficiency, while also increasing the number of staff members who were proficient at scrubbing complex cardiac procedures. To address the safe learning requirement, personnel designed a simulation program to provide scrubbing experience, decrease orientees' supervision time, and increase staff members' confidence in performing the scrub person role. © AORN, Inc, 2018.

  15. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    Science.gov (United States)

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  16. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers.

    Science.gov (United States)

    Baeßler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C

    2015-11-01

    Previous studies showed that myocardial T2 relaxation times measured by cardiac T2-mapping vary significantly depending on sequence and field strength. Therefore, a systematic comparison of different T2-mapping sequences and the establishment of dedicated T2 reference values is mandatory for diagnostic decision-making. Phantom experiments using gel probes with a range of different T1 and T2 times were performed on a clinical 1.5T and 3T scanner. In addition, 30 healthy volunteers were examined at 1.5 and 3T in immediate succession. In each examination, three different T2-mapping sequences were performed at three short-axis slices: Multi Echo Spin Echo (MESE), T2-prepared balanced SSFP (T2prep), and Gradient Spin Echo with and without fat saturation (GraSEFS/GraSE). Segmented T2-Maps were generated according to the AHA 16-segment model and statistical analysis was performed. Significant intra-individual differences between mean T2 times were observed for all sequences. In general, T2prep resulted in lowest and GraSE in highest T2 times. A significant variation with field strength was observed for mean T2 in phantom as well as in vivo, with higher T2 values at 1.5T compared to 3T, regardless of the sequence used. Segmental T2 values for each sequence at 1.5 and 3T are presented. Despite a careful selection of sequence parameters and volunteers, significant variations of the measured T2 values were observed between field strengths, MR sequences and myocardial segments. Therefore, we present segmental T2 values for each sequence at 1.5 and 3T with the inherent potential to serve as reference values for future studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    Science.gov (United States)

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  18. Relationship between natriuretic peptides and inflammation: proteomic evidence obtained during acute cellular cardiac allograft rejection in humans.

    Science.gov (United States)

    Meirovich, Yael F; Veinot, John P; de Bold, Mercedes L Kuroski; Haddad, Haissam; Davies, Ross A; Masters, Roy G; Hendry, Paul J; de Bold, Adolfo J

    2008-01-01

    Cardiac natriuretic peptides (NPs) atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) are polypeptide hormones secreted by the heart. Previously, we found that BNP, but not ANF, plasma levels may increase during an acute cellular cardiac allograft rejection episode. In vitro, the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) produced a selective increase of BNP gene expression and secretion. Other pro-inflammatory cytokines had no such effects. We identified cytokines associated with the selective upregulation of BNP during cardiac allograft rejection using a proteomics approach to measure 120 cytokines and related substances in the plasma of 16 transplant patients before, during and after an acute rejection episode. The values obtained were correlated with BNP plasma levels. Cytokines identified as being significantly related to BNP plasma levels were tested in neonatal rat ventricular cardiocytes in culture for their ability to selectively promote BNP secretion. The signaling pathway related to this phenomenon was pharmacologically characterized. Regulated-on-activation, normal T-expressed and secreted (RANTES), neutrophil-activating protein-2 (NAP-2) and insulin growth factor binding protein-1 (IGFBP-1) had significant correlations with BNP plasma levels during Grade 3A (Grade 2 revised [2R]) or above rejection as diagnosed by endomyocardial biopsy score according to the International Society for Heart and Lung Transplantation (ISHLT) grading system. In rat neonatal ventricular cardiocyte cultures, IGFBP-1 and RANTES were capable of promoting BNP, but not ANF secretion, as observed in rejecting patients. The BNP-promoting secretion activity of the identified cytokines was abolished by SB203580, a specific p38 MAP kinase inhibitor. This work shows that cytokines other than pro-inflammatory cytokines correlate with BNP plasma levels observed during acute cardiac allograft rejection, and that

  19. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal.

    Science.gov (United States)

    Tong, Yunjie; Hocke, Lia M; Frederick, Blaise deB

    2014-11-01

    Recently developed simultaneous multislice echo-planar imaging (EPI) sequences permit imaging of the whole brain at short repetition time (TR), allowing the cardiac fluctuations to be fully sampled in blood-oxygen-level dependent functional MRI (BOLD fMRI). A novel low computational analytical method was developed to dynamically map the passage of the pulsation signal through the brain and visualize the whole cerebral vasculature affected by the pulse signal. This algorithm is based on a simple combination of fast BOLD fMRI and the scanner's own built-in pulse oximeter. Multiple, temporally shifted copies of the pulse oximeter data (with 0.08 s shifting step and coverage of a 1-s span) were downsampled and used as cardiac pulsation regressors in a general linear model based analyses (FSL) of the fMRI data. The resulting concatenated z-statistics maps show the voxels that are affected as the cardiac signal travels through the brain. Many voxels were highly correlated with the pulsation regressor or its temporally shifted version. The dynamic and static cardiac pulsation maps obtained from both the task and resting state scans, resembled cerebral vasculature. The results demonstrated: (i) cardiac pulsation significantly affects most voxels in the brain; (ii) combining fast fMRI and this analytical method can reveal additional clinical information to functional studies. Copyright © 2013 Wiley Periodicals, Inc.

  20. Mapping of brain activity by automated volume analysis of immediate early genes

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-01-01

    Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  1. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Jody Groenendyk

    Full Text Available Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function.We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER homeostasis, transient activation of the unfolded protein response (UPR pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA is sufficient to prevent cardiac fibrosis, and improved exercise tolerance.We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.

  2. Biobehavioral Triggers of Cardiac Arrhythmia during Daily Life: The Role of Emotion, Physical Activity, and Heart Rate Variability

    National Research Council Canada - National Science Library

    McCeney, Melissa K

    2004-01-01

    Biobehavioral factors, such as physical activity and emotions, have been associated with adverse cardiac outcomes, including myocardial ischemia and infarction, in individuals with coronary artery disease...

  3. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study.

    Directory of Open Access Journals (Sweden)

    Karin A M Janssens

    Full Text Available Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS. However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous system (ANS levels during a standardized stressful situation, and whether these associations are symptom-specific.We examined 715 adolescents (16.1 years, 51.3% girls from the Dutch cohort study Tracking Adolescents' Individual Lives Sample during the Groningen Social Stress Test (GSST. FSS were assessed by the Youth Self-Report, and clustered into a cluster of overtiredness, dizziness and musculoskeletal pain and a cluster of headache and gastrointestinal symptoms. Perceived stress levels (i.e. unpleasantness and arousal were assessed by the Self-Assessment Manikin, and cardiac ANS activity by assessing heart rate variability (HRV-HF and pre-ejection period (PEP. Perceived stress and cardiac ANS levels before, during, and after the GSST were studied as well as cardiac ANS reactivity. Linear regression analyses were used to examine the associations.Perceived arousal levels during (beta = 0.09, p = 0.04 and after (beta = 0.07, p = 0.047 the GSST, and perceived unpleasantness levels before (beta = 0.07, p = 0.048 and during (beta = 0.12, p = 0.001 the GSST were related to FSS during the past couple of months. The association between perceived stress and FSS was stronger for the FSS cluster of overtiredness, dizziness and musculoskeletal pain than for the cluster of headache and gastrointestinal symptoms. Neither ANS activity levels before, during, and after the GSST, nor maximal HF-HRV and PEP reactivity were related to FSS.This study suggests that perceived stress levels during social stress are related to FSS, whereas cardiac ANS activity and reactivity are not related to FSS.

  4. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  5. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  6. Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest.

    Science.gov (United States)

    Plaisance, Patrick; Lurie, Keith G; Vicaut, Eric; Martin, Dominique; Gueugniaud, Pierre-Yves; Petit, Jean-Luc; Payen, Didier

    2004-06-01

    The purpose of this multicentre clinical randomized controlled blinded prospective trial was to determine whether an inspiratory impedance threshold device (ITD), when used in combination with active compression-decompression (ACD) cardiopulmonary resuscitation (CPR), would improve survival rates in patients with out-of-hospital cardiac arrest. Patients were randomized to receive either a sham (n = 200) or an active impedance threshold device (n = 200) during advanced cardiac life support performed with active compression-decompression cardiopulmonary resuscitation. The primary endpoint of this study was 24 h survival. The 24 h survival rates were 44/200 (22%) with the sham valve and 64/200 (32%) with the active valve (P = 0.02). The number of patients who had a return of spontaneous circulation (ROSC), intensive care unit (ICU) admission, and hospital discharge rates was 77 (39%), 57 (29%), and 8 (4%) in the sham valve group versus 96 (48%) (P = 0.05), 79 (40%) (P = 0.02), and 10 (5%) (P = 0.6) in the active valve group. Six out of ten survivors in the active valve group and 1/8 survivors in the sham group had normal neurological function at hospital discharge (P = 0.1). The use of an impedance valve in patients receiving active compression-decompression cardiopulmonary resuscitation for out-of-hospital cardiac arrest significantly improved 24 h survival rates.

  7. GeoMapApp Learning Activities: Enabling the democratisation of geoscience learning

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) are step-by-step guided inquiry geoscience education activities that enable students to dictate the pace of learning. They can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is minimised which allows students to spend increased time analysing and understanding a broad range of geoscience data, content and concepts. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; a teacher's edition annotated worksheet containing teaching tips, additional content and suggestions for further work; quizzes for use before and after the activity to assess learning; and a multimedia tutorial. The activities can be used by anyone at any time in any place with an internet connection. In essence, GeoMapApp Learning Activities provide students with cutting-edge technology, research-quality geoscience data sets, and inquiry-based learning in a virtual lab-like environment. Examples of activities so far created are student calculation and analysis of the rate of seafloor spreading, and present-day evidence on the seafloor for huge ancient landslides around the Hawaiian islands. The activities are designed primarily for students at the community college, high school and introductory undergraduate levels, exposing students to content and concepts typically found in those settings.

  8. Left Ventricular Electromechanical Mapping: A Case Study of Functional Assessment in Coronary Intervention

    OpenAIRE

    Perin, Emerson C.; Silva, Guilherme V.; Sarmento-Leite, Rogerio

    2000-01-01

    Electromechanical mapping is a new diagnostic tool that can be used to identify viable myocardium. In the case reported here, the technique was used before intervention to map areas of viable myocardium; post-intervention mapping showed improved mechanical function of the revascularized areas. Electromechanical mapping offers the potential of assessing left ventricular function in the cardiac catheterization laboratory before and after interventional procedures.

  9. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang

    2015-04-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  10. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang; Zé licourt, Axel de; Boudsocq, Marie; Neubauer, Jorinde; Frei Dit Frey, Nicolas; Leonhardt, Nathalie; Pateyron, Sté phanie; Gwinner, Frederik; Tamby, Jean Philippe; Ortiz-Masià , Dolores; Marcote, Marí a Jesú s; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. Assessment of central chemosensitivity and cardiac sympathetic nerve activity using I-123 MIBG imaging in central sleep apnea syndrome in patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Meguro, Kentaro; Nagai, Ryozo; Toyama, Takuji; Adachi, Hitoshi; Ohshima, Shigeru; Taniguchi, Koichi

    2007-01-01

    Iodine-123 m-iodobenzylguanidine (MIBG) imaging has been used to study cardiac sympathetic function in various cardiac diseases. Central sleep apnea syndrome (CSAS) occurs frequently in patients with chronic heart failure (CHF) and is reported to be associated with a poor prognosis. One of the mechanisms of its poor prognosis may be related to impaired cardiac sympathetic activity. However, the relationship between chemosensitivity to carbon dioxide, which is reported to correlate with the severity of CSAS, and cardiac sympathetic activity has not been investigated. Therefore, this study was undertaken to assess cardiac sympathetic function and chemosensitivity to carbon dioxide in CHF patients. The oxygen desaturation index (ODI) was evaluated in 21 patients with dilated cardiomyopathy (male/female: 19/2, left ventricular ejection fraction (LVEF) 5 times/h underwent polysomnography. Patients with an apnea hypopnea index >15/h but without evidence of obstructive apnea were defined as having CSAS. Early (15 min) and delayed (4 hr) planar MIBG images were obtained from these patients. The mean counts in the whole heart and the mediastinum were obtained. The heart-to-mediastinum count ratio of the delayed image (H/M) and the corrected myocardial washout rate (WR) were also calculated. The central chemoreflex was assessed with the rebreathing method using a hypercapnic gas mixture (7% CO 2 and 93% O 2 ). Ten of the 21 patients had CSAS. The H/M ratio was similar in patients both with and without CSAS (1.57±0.18 vs. 1.59±0.14, p=0.82). However, the WR was higher in patients with CSAS than in patients without CSAS (40±8% vs. 30±12%, p<0.05). ODI significantly correlated with central chemosensitivity to carbon dioxide. Moreover, there was a highly significant correlation between WR and central chemosensitivity (r=0.65, p<0.05). However, there was no correlation between ODI and the WR (r=0.36, p=0.11). Cardiac sympathetic nerve activity in patients with CHF and CSAS is

  12. Cardiac muscarinic receptor overexpression in sudden infant death syndrome.

    Directory of Open Access Journals (Sweden)

    Angelo Livolsi

    Full Text Available BACKGROUND: Sudden infant death syndrome (SIDS remains the leading cause of death among infants less than 1 year of age. Disturbed expression of some neurotransmitters and their receptors has been shown in the central nervous system of SIDS victims but no biological abnormality of the peripheral vago-cardiac system has been demonstrated to date. The present study aimed to seek vago-cardiac abnormalities in SIDS victims. The cardiac level of expression of muscarinic receptors, as well as acetylcholinesterase enzyme activity were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Left ventricular samples and blood samples were obtained from autopsies of SIDS and children deceased from non cardiac causes. Binding experiments performed with [(3H]NMS, a selective muscarinic ligand, in cardiac membrane preparations showed that the density of cardiac muscarinic receptors was increased as shown by a more than doubled B(max value in SIDS (n = 9 SIDS versus 8 controls. On average, the erythrocyte acetylcholinesterase enzyme activity was also significantly increased (n = 9 SIDS versus 11 controls. CONCLUSIONS: In the present study, it has been shown for the first time that cardiac muscarinic receptor overexpression is associated with SIDS. The increase of acetylcholinesterase enzyme activity appears as a possible regulatory mechanism.

  13. Distinctive Left Ventricular Activations Associated With ECG Pattern in Heart Failure Patients.

    Science.gov (United States)

    Derval, Nicolas; Duchateau, Josselin; Mahida, Saagar; Eschalier, Romain; Sacher, Frederic; Lumens, Joost; Cochet, Hubert; Denis, Arnaud; Pillois, Xavier; Yamashita, Seigo; Komatsu, Yuki; Ploux, Sylvain; Amraoui, Sana; Zemmoura, Adlane; Ritter, Philippe; Hocini, Mélèze; Haissaguerre, Michel; Jaïs, Pierre; Bordachar, Pierre

    2017-06-01

    In contrast to patients with left bundle branch block (LBBB), heart failure patients with narrow QRS and nonspecific intraventricular conduction delay (NICD) display a relatively limited response to cardiac resynchronization therapy. We sought to compare left ventricular (LV) activation patterns in heart failure patients with narrow QRS and NICD to patients with LBBB using high-density electroanatomic activation maps. Fifty-two heart failure patients (narrow QRS [n=18], LBBB [n=11], NICD [n=23]) underwent 3-dimensional electroanatomic mapping with a high density of mapping points (387±349 LV). Adjunctive scar imaging was available in 37 (71%) patients and was analyzed in relation to activation maps. LBBB patients typically demonstrated (1) a single LV breakthrough at the septum (38±15 ms post-QRS onset); (2) prolonged right-to-left transseptal activation with absence of direct LV Purkinje activity; (3) homogeneous propagation within the LV cavity; and (4) latest activation at the basal lateral LV. In comparison, both NICD and narrow QRS patients demonstrated (1) multiple LV breakthroughs along the posterior or anterior fascicles: narrow QRS versus LBBB, 5±2 versus 1±1; P =0.0004; NICD versus LBBB, 4±2 versus 1±1; P =0.001); (2) evidence of early/pre-QRS LV electrograms with Purkinje potentials; (3) rapid propagation in narrow QRS patients and more heterogeneous propagation in NICD patients; and (4) presence of limited areas of late activation associated with LV scar with high interindividual heterogeneity. In contrast to LBBB patients, narrow QRS and NICD patients are characterized by distinct mechanisms of LV activation, which may predict poor response to cardiac resynchronization therapy. © 2017 American Heart Association, Inc.

  14. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  15. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  16. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Ingrid Kristine Ohm

    Full Text Available Altered cardiac Toll-like receptor 9 (TLR9 signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β. Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088 or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  17. Plasticity in developing brain: active auditory exposure impacts prelinguistic acoustic mapping.

    Science.gov (United States)

    Benasich, April A; Choudhury, Naseem A; Realpe-Bonilla, Teresa; Roesler, Cynthia P

    2014-10-01

    A major task across infancy is the creation and tuning of the acoustic maps that allow efficient native language processing. This process crucially depends on ongoing neural plasticity and keen sensitivity to environmental cues. Development of sensory mapping has been widely studied in animal models, demonstrating that cortical representations of the sensory environment are continuously modified by experience. One critical period for optimizing human language mapping is early in the first year; however, the neural processes involved and the influence of passive compared with active experience are as yet incompletely understood. Here we demonstrate that, while both active and passive acoustic experience from 4 to 7 months of age, using temporally modulated nonspeech stimuli, impacts acoustic mapping, active experience confers a significant advantage. Using event-related potentials (ERPs), we show that active experience increases perceptual vigilance/attention to environmental acoustic stimuli (e.g., larger and faster P2 peaks) when compared with passive experience or maturation alone. Faster latencies are also seen for the change discrimination peak (N2*) that has been shown to be a robust infant predictor of later language through age 4 years. Sharpening is evident for both trained and untrained stimuli over and above that seen for maturation alone. Effects were also seen on ERP morphology for the active experience group with development of more complex waveforms more often seen in typically developing 12- to 24-month-old children. The promise of selectively "fine-tuning" acoustic mapping as it emerges has far-reaching implications for the amelioration and/or prevention of developmental language disorders. Copyright © 2014 the authors 0270-6474/14/3413349-15$15.00/0.

  18. Profound regulation of Na/K pump activity by transient elevations of cytoplasmic calcium in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Deisl, Christine; Hilgemann, Donald W

    2016-09-14

    Small changes of Na/K pump activity regulate internal Ca release in cardiac myocytes via Na/Ca exchange. We now show conversely that transient elevations of cytoplasmic Ca strongly regulate cardiac Na/K pumps. When cytoplasmic Na is submaximal, Na/K pump currents decay rapidly during extracellular K application and multiple results suggest that an inactivation mechanism is involved. Brief activation of Ca influx by reverse Na/Ca exchange enhances pump currents and attenuates current decay, while repeated Ca elevations suppress pump currents. Pump current enhancement reverses over 3 min, and results are similar in myocytes lacking the regulatory protein, phospholemman. Classical signaling mechanisms, including Ca-activated protein kinases and reactive oxygen, are evidently not involved. Electrogenic signals mediated by intramembrane movement of hydrophobic ions, such as hexyltriphenylphosphonium (C6TPP), increase and decrease in parallel with pump currents. Thus, transient Ca elevation and Na/K pump inactivation cause opposing sarcolemma changes that may affect diverse membrane processes.

  19. Absence of rotational activity detected using 2-dimensional phase mapping in the corresponding 3-dimensional phase maps in human persistent atrial fibrillation.

    Science.gov (United States)

    Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Sanders, Prashanthan; Kistler, Peter M; Lee, Geoffrey

    2018-02-01

    Current phase mapping systems for atrial fibrillation create 2-dimensional (2D) maps. This process may affect the accurate detection of rotors. We developed a 3-dimensional (3D) phase mapping technique that uses the 3D locations of basket electrodes to project phase onto patient-specific left atrial 3D surface anatomy. We sought to determine whether rotors detected in 2D phase maps were present at the corresponding time segments and anatomical locations in 3D phase maps. One-minute left atrial atrial fibrillation recordings were obtained in 14 patients using the basket catheter and analyzed off-line. Using the same phase values, 2D and 3D phase maps were created. Analysis involved determining the dominant propagation patterns in 2D phase maps and evaluating the presence of rotors detected in 2D phase maps in the corresponding 3D phase maps. Using 2D phase mapping, the dominant propagation pattern was single wavefront (36.6%) followed by focal activation (34.0%), disorganized activity (23.7%), rotors (3.3%), and multiple wavefronts (2.4%). Ten transient rotors were observed in 9 of 14 patients (64%). The mean rotor duration was 1.1 ± 0.7 seconds. None of the 10 rotors observed in 2D phase maps were seen at the corresponding time segments and anatomical locations in 3D phase maps; 4 of 10 corresponded with single wavefronts in 3D phase maps, 2 of 10 with 2 simultaneous wavefronts, 1 of 10 with disorganized activity, and in 3 of 10 there was no coverage by the basket catheter at the corresponding 3D anatomical location. Rotors detected in 2D phase maps were not observed in the corresponding 3D phase maps. These findings may have implications for current systems that use 2D phase mapping. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  20. Comparison of volumetric and functional parameters in simultaneous cardiac PET/MR: feasibility of volumetric assessment with residual activity from prior PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, C.; Brenneis, B.; Grothoff, M.; Gutberlet, M. [University Leipzig - Heart Center, Department of Diagnostic and Interventional Radiology, Leipzig (Germany); Oppolzer, B.; Werner, P.; Jochimsen, T.; Sattler, B.; Barthel, H.; Sabri, O. [University Hospital Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Foldyna, B. [University Leipzig - Heart Center, Department of Diagnostic and Interventional Radiology, Leipzig (Germany); Massachusetts General Hospital - Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); Lurz, P. [University Leipzig - Heart Center, Clinic for Internal Medicine/Cardiology, Leipzig (Germany); Lehmkuhl, L. [Herz- und Gefaess-Klinik GmbH, Radiologische Klinik, Bad Neustadt (Germany)

    2017-12-15

    To compare cardiac left ventricular (LV) parameters in simultaneously acquired hybrid fluorine-18-fluorodeoxyglucose ([18F] FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) in patients with residual tracer activity of upstream PET/CT. Twenty-nine patients (23 men, age 58±17 years) underwent cardiac PET/MRI either directly after a non-cardiac PET/CT with homogenous cardiac [18F] FDG uptake (n=20) or for viability assessment (n=9). Gated cardiac [18F] FDG PET and cine MR sequences were acquired simultaneously and evaluated blinded to the cross-imaging results. Image quality (IQ), end-diastolic (LVEDV), end-systolic volume (LVESV), ejection fraction (LVEF) and myocardial mass (LVMM) were measured. Pearson correlation and intraclass correlation coefficient (ICC), regression and a Bland-Altman analysis were assessed. Except LVMM, volumetric and functional LV parameters demonstrated high correlations (LVESV: r=0.97, LVEDV: r=0.95, LVEF: r=0.91, LVMM: r=0.87, each p<0.05), but wide limits of agreement (LOA) for LVEDV (-25.3-82.5ml); LVESV (-33.1-72.7ml); LVEF (-18.9-14.8%) and LVMM (-78.2-43.2g). Intra- and interobserver reliability were very high (ICC≥0.95) for all parameters, except for MR-LVEF (ICC=0.87). PET-IQ (0-3) was high (mean: 2.2±0.9) with significant influence on LVMM calculations only. In simultaneously acquired cardiac PET/MRI data, LVEDV, LVESV and LVEF show good agreement. However, the agreement seems to be limited if cardiac PET/MRI follows PET/CT and only the residual activity is used. (orig.)

  1. Improving accuracy of simultaneously reconstructed activity and attenuation maps using deep learning.

    Science.gov (United States)

    Hwang, Donghwi; Kim, Kyeong Yun; Kang, Seung Kwan; Seo, Seongho; Paeng, Jin Chul; Lee, Dong Soo; Lee, Jae Sung

    2018-02-15

    Simultaneous reconstruction of activity and attenuation using the maximum likelihood reconstruction of activity and attenuation (MLAA) augmented by time-of-flight (TOF) information is a promising method for positron emission tomography (PET) attenuation correction. However, it still suffers from several problems, including crosstalk artifacts, slow convergence speed, and noisy attenuation maps (μ-maps). In this work, we developed deep convolutional neural networks (CNNs) to overcome these MLAA limitations, and we verified their feasibility using a clinical brain PET data set. Methods: We applied the proposed method to one of the most challenging PET cases for simultaneous image reconstruction ( 18 F-FP-CIT PET scans with highly specific binding to striatum of the brain). Three different CNN architectures (convolutional autoencoder (CAE), U-net, hybrid of CAE and U-net) were designed and trained to learn x-ray computed tomography (CT) derived μ-map (μ-CT) from the MLAA-generated activity distribution and μ-map (μ-MLAA). PET/CT data of 40 patients with suspected Parkinson's disease were employed for five-fold cross-validation. For the training of CNNs, 800,000 transverse PET slices and CTs augmented from 32 patient data sets were used. The similarity to μ-CT of the CNN-generated μ-maps (μ-CAE, μ-Unet, and μ-Hybrid) and μ-MLAA was compared using Dice similarity coefficients. In addition, we compared the activity concentration of specific (striatum) and non-specific binding regions (cerebellum and occipital cortex) and the binding ratios in the striatum in the PET activity images reconstructed using those μ-maps. Results: The CNNs generated less noisy and more uniform μ-maps than original μ-MLAA. Moreover, the air cavities and bones were better resolved in the proposed CNN outputs. In addition, the proposed deep learning approach was useful for mitigating the crosstalk problem in the MLAA reconstruction. The hybrid network of CAE and U-net yielded the

  2. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum.

    Science.gov (United States)

    Lupia, Enrico; Spatola, Tiziana; Cuccurullo, Alessandra; Bosco, Ornella; Mariano, Filippo; Pucci, Angela; Ramella, Roberta; Alloatti, Giuseppe; Montrucchio, Giuseppe

    2010-09-01

    Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.

  3. Sudden Cardiac Death During Sports Activities in the General Population.

    Science.gov (United States)

    Narayanan, Kumar; Bougouin, Wulfran; Sharifzadehgan, Ardalan; Waldmann, Victor; Karam, Nicole; Marijon, Eloi; Jouven, Xavier

    2017-12-01

    Regular exercise reduces cardiovascular and overall mortality. Participation in sports is an important determinant of cardiovascular health and fitness. Regular sports activity is associated with a smaller risk of sudden cardiac death (SCD). However, there is a small risk of sports-related SCD. Sports-related SCD accounts for approximately 5% of total SCD. SCD among athletes comprises only a fraction of all sports-related SCD. Sport-related SCD has a male predominance and an average age of affliction of 45 to 50 years. Survival is better than for other SCD. This review summarizes links between sports and SCD and discusses current knowledge and controversies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  5. Cardiac Magnetic Resonance Imaging in Myocarditis Reveals Persistent Disease Activity Despite Normalization of Cardiac Enzymes and Inflammatory Parameters at 3-Month Follow-Up.

    Science.gov (United States)

    Berg, Jan; Kottwitz, Jan; Baltensperger, Nora; Kissel, Christine K; Lovrinovic, Marina; Mehra, Tarun; Scherff, Frank; Schmied, Christian; Templin, Christian; Lüscher, Thomas F; Heidecker, Bettina; Manka, Robert

    2017-11-01

    There is a major unmet need to identify high-risk patients in myocarditis. Although decreasing cardiac and inflammatory markers are commonly interpreted as resolving myocarditis, this assumption has not been confirmed as of today. We sought to evaluate whether routine laboratory parameters at diagnosis predict dynamic of late gadolinium enhancement (LGE) as persistent LGE has been shown to be a risk marker in myocarditis. Myocarditis was diagnosed based on clinical presentation, high-sensitivity troponin T, and cardiac magnetic resonance imaging, after exclusion of obstructive coronary artery disease by angiography. Cardiac magnetic resonance imaging was repeated at 3 months. LGE extent was analyzed with the software GT Volume. Change in LGE >20% was considered significant. Investigated cardiac and inflammatory markers included high-sensitivity troponin T, creatine kinase, myoglobin, N-terminal B-type natriuretic peptide, C-reactive protein, and leukocyte count. Twenty-four patients were enrolled. Absolute levels of cardiac enzymes and inflammatory markers at baseline did not predict change in LGE at 3 months. Cardiac and inflammatory markers had normalized in 21 patients (88%). LGE significantly improved in 16 patients (67%); however, it persisted to a lesser degree in 17 of them (71%) and increased in a small percentage (21%) despite normalization of cardiac enzymes. This is the first study reporting that cardiac enzymes and inflammatory parameters do not sufficiently reflect LGE in myocarditis. Although a majority of patients with normalizing laboratory markers experienced improved LGE, in a small percentage LGE worsened. These data suggest that cardiac magnetic resonance imaging might add value to currently existing diagnostic tools for risk assessment in myocarditis. © 2017 American Heart Association, Inc.

  6. Cardiac regeneration therapy: connections to cardiac physiology.

    Science.gov (United States)

    Takehara, Naofumi; Matsubara, Hiroaki

    2011-12-01

    Without heart transplantation, a large number of patients with failing hearts worldwide face poor outcomes. By means of cardiomyocyte regeneration, cardiac regeneration therapy is emerging with great promise as a means for restoring loss of cardiac function. However, the limited success of clinical trials using bone marrow-derived cells and myoblasts with heterogeneous constituents, transplanted at a wide range of cell doses, has led to disagreement on the efficacy of cell therapy. It is therefore essential to reevaluate the evidence for the efficacy of cell-based cardiac regeneration therapy, focusing on targets, materials, and methodologies. Meanwhile, the revolutionary innovation of cardiac regeneration therapy is sorely needed to help the millions of people who suffer heart failure from acquired loss of cardiomyocytes. Cardiac regeneration has been used only in limited species or as a developing process in the rodent heart; now, the possibility of cardiomyocyte turnover in the human heart is being revisited. In the pursuit of this concept, the use of cardiac stem/progenitor stem cells in the cardiac niche must be focused to usher in a second era of cardiac regeneration therapy for the severely injured heart. In addition, tissue engineering and cellular reprogramming will advance the next era of treatment that will enable current cell-based therapy to progress to "real" cardiac regeneration therapy. Although many barriers remain, the prevention of refractory heart failure through cardiac regeneration is now becoming a realistic possibility.

  7. False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information.

    Science.gov (United States)

    Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa

    2015-02-09

    False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  8. Local activation time sampling density for atrial tachycardia contact mapping: how much is enough?

    Science.gov (United States)

    Williams, Steven E; Harrison, James L; Chubb, Henry; Whitaker, John; Kiedrowicz, Radek; Rinaldi, Christopher A; Cooklin, Michael; Wright, Matthew; Niederer, Steven; O'Neill, Mark D

    2018-02-01

    Local activation time (LAT) mapping forms the cornerstone of atrial tachycardia diagnosis. Although anatomic and positional accuracy of electroanatomic mapping (EAM) systems have been validated, the effect of electrode sampling density on LAT map reconstruction is not known. Here, we study the effect of chamber geometry and activation complexity on optimal LAT sampling density using a combined in silico and in vivo approach. In vivo 21 atrial tachycardia maps were studied in three groups: (1) focal activation, (2) macro-re-entry, and (3) localized re-entry. In silico activation was simulated on a 4×4cm atrial monolayer, sampled randomly at 0.25-10 points/cm2 and used to re-interpolate LAT maps. Activation patterns were studied in the geometrically simple porcine right atrium (RA) and complex human left atrium (LA). Activation complexity was introduced into the porcine RA by incomplete inter-caval linear ablation. In all cases, optimal sampling density was defined as the highest density resulting in minimal further error reduction in the re-interpolated maps. Optimal sampling densities for LA tachycardias were 0.67 ± 0.17 points/cm2 (focal activation), 1.05 ± 0.32 points/cm2 (macro-re-entry) and 1.23 ± 0.26 points/cm2 (localized re-entry), P = 0.0031. Increasing activation complexity was associated with increased optimal sampling density both in silico (focal activation 1.09 ± 0.14 points/cm2; re-entry 1.44 ± 0.49 points/cm2; spiral-wave 1.50 ± 0.34 points/cm2, P density (0.61 ± 0.22 points/cm2 vs. 1.0 ± 0.34 points/cm2, P = 0.0015). Optimal sampling densities can be identified to maximize diagnostic yield of LAT maps. Greater sampling density is required to correctly reveal complex activation and represent activation across complex geometries. Overall, the optimal sampling density for LAT map interpolation defined in this study was ∼1.0-1.5 points/cm2. Published on behalf of the European Society of

  9. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.

  10. Image based cardiac acceleration map using statistical shape and 3D+t myocardial tracking models; in-vitro study on heart phantom

    Science.gov (United States)

    Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.

    2013-03-01

    It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.

  11. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation

    Science.gov (United States)

    Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson’s trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR

  12. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation.

    Science.gov (United States)

    Wang, Bin; Xu, Ming; Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson's trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230

  13. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves

    Science.gov (United States)

    Longhurst, John C.; Tjen-A-Looi, Stephanie C.; Fu, Liang-Wu

    2016-01-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P < 0.05). The majority of these elPBN neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P < 0.05) after blockade of glutamate receptors with iontophoresis of kynurenic acid (Kyn, 25 mM). In separate cats, microinjection of Kyn (1.25 nmol/50 nl) into the elPBN reduced rVLM activity evoked by both bradykinin and electrical stimulation (n = 5, P < 0.05). Excitation of the elPBN with microinjection of dl-homocysteic acid (2 nmol/50 nl) significantly increased basal and CSAN-evoked rVLM activity. However, the enhanced rVLM activity induced by dl-homocysteic acid injected into the elPBN was reversed following iontophoresis of Kyn into the rVLM (n = 7, P < 0.05). These data suggest that cardiac sympathetic afferent stimulation activates cardiovascular neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. PMID:27225950

  14. Cardiac extrinsic apoptotic pathway is silent in young but activated in elder mice overexpressing bovine GH: interplay with the intrinsic pathway.

    Science.gov (United States)

    Bogazzi, Fausto; Russo, Dania; Raggi, Francesco; Bohlooly-Y, Mohammad; Tornell, Jan; Sardella, Chiara; Lombardi, Martina; Urbani, Claudio; Manetti, Luca; Brogioni, Sandra; Martino, Enio

    2011-08-01

    Apoptosis may occur through the mitochondrial (intrinsic) pathway and activation of death receptors (extrinsic pathway). Young acromegalic mice have reduced cardiac apoptosis whereas elder animals have increased cardiac apoptosis. Multiple intrinsic apoptotic pathways have been shown to be modulated by GH and other stimuli in the heart of acromegalic mice. However, the role of the extrinsic apoptotic pathways in acromegalic hearts is currently unknown. In young (3-month-old) acromegalic mice, expression of proteins of the extrinsic apoptotic pathway did not differ from that of wild-type animals, suggesting that this mechanism did not participate in the lower cardiac apoptosis levels observed at this age. On the contrary, the extrinsic pathway was active in elder (9-month-old) animals (as shown by increased expression of TRAIL, FADD, TRADD and increased activation of death inducing signaling complex) leading to increased levels of active caspase 8. It is worth noting that changes of some pro-apoptotic proteins were induced by GH, which seemed to have, in this context, pro-apoptotic effects. The extrinsic pathway influenced the intrinsic pathway by modulating t-Bid, the cellular levels of which were reduced in young and increased in elder animals. However, in young animals this effect was due to reduced levels of Bid regulated by the extrinsic pathway, whereas in elder animals the increased levels of t-Bid were due to the increased levels of active caspase 8. In conclusion, the extrinsic pathway participates in the cardiac pro-apoptotic phenotype of elder acromegalic animals either directly, enhancing caspase 8 levels or indirectly, increasing t-Bid levels and conveying death signals to the intrinsic pathway.

  15. Assessment of radiation maps during activated divertor moving in the ITER building

    International Nuclear Information System (INIS)

    Ying Dongchuan; Zeng Qin; Qiu Yuefeng; Dang Tongqiang; Wu Yican; Loughlin, Michael

    2011-01-01

    As the main interface components between plasma and vacuum vessel, the divertor is foreseen to be removed to the hot cell for refurbishment during the 20 years of ITER operation. During this process, the activated divertor will cause a large increase of radiation in the ITER building. 3D analysis has been performed to assess the radiation maps throughout the ITER building for assisting the shielding design for personnel and sensitive equipment. The activation of the divertor has been determined by coupled neutron transport and inventory calculations, radiation maps have been obtained from gamma transport calculations. The neutron and gamma transport calculations have been performed by MCNP5 code with FENDL2.1library. The inventory calculations have been performed by FISPACT2007 code with EAF-2007 library. The results of these 3D decay gamma radiation maps are presented by pictures in this paper, including the biological dose maps and maps of heat deposition in electronic equipment.

  16. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Grabner, Alexander; Hermann, Laura; Richter, Beatrice; Schmitz, Karin; Fischer, Dagmar-Christiane; Yanucil, Christopher; Faul, Christian; Haffner, Dieter

    2017-09-01

    Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  17. Importance of Calibration Method in Central Blood Pressure for Cardiac Structural Abnormalities.

    Science.gov (United States)

    Negishi, Kazuaki; Yang, Hong; Wang, Ying; Nolan, Mark T; Negishi, Tomoko; Pathan, Faraz; Marwick, Thomas H; Sharman, James E

    2016-09-01

    Central blood pressure (CBP) independently predicts cardiovascular risk, but calibration methods may affect accuracy of central systolic blood pressure (CSBP). Standard central systolic blood pressure (Stan-CSBP) from peripheral waveforms is usually derived with calibration using brachial SBP and diastolic BP (DBP). However, calibration using oscillometric mean arterial pressure (MAP) and DBP (MAP-CSBP) is purported to provide more accurate representation of true invasive CSBP. This study sought to determine which derived CSBP could more accurately discriminate cardiac structural abnormalities. A total of 349 community-based patients with risk factors (71±5years, 161 males) had CSBP measured by brachial oscillometry (Mobil-O-Graph, IEM GmbH, Stolberg, Germany) using 2 calibration methods: MAP-CSBP and Stan-CSBP. Left ventricular hypertrophy (LVH) and left atrial dilatation (LAD) were measured based on standard guidelines. MAP-CSBP was higher than Stan-CSBP (149±20 vs. 128±15mm Hg, P curve analyses, MAP-CSBP significantly better discriminated LVH compared with Stan-CSBP (area under the curve (AUC) 0.66 vs. 0.59, P = 0.0063) and brachial SBP (0.62, P = 0.027). Continuous net reclassification improvement (NRI) (P AUC 0.63 vs. 0.56, P = 0.005) and conventional brachial SBP (0.58, P = 0.006), whereas Stan-CSBP provided no better discrimination than conventional brachial BP (P = 0.09). CSBP is calibration dependent and when oscillometric MAP and DBP are used, the derived CSBP is a better discriminator for cardiac structural abnormalities. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Objectively measured daily physical activity related to cardiac size in young children

    DEFF Research Database (Denmark)

    Dencker, M; Thorsson, O; Karlsson, M K

    2009-01-01

    Training studies in children have suggested that endurance training can give enlargement of cardiac dimensions. This relationship has not been studied on a population-based level in young children with objective methods. A cross-sectional study was made of 248 children (140 boys and 108 girls...... activity per day (VPA) was calculated. Acceptable accelerometer and echocardiography measurements were obtained in 228 children (boys=127, girls=101). Univariate correlations between VPA and LVDD were indexed for BSA in boys (r=0.27, Pgirls (r=0.10, NS). Multiple regression analysis showed...

  19. Role of cardiac biomarkers (troponin I and CK-MB as predictors of quality of life and long-term outcome after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Bignami Elena

    2009-01-01

    Full Text Available Perioperative and postoperative morbidity and mortality associated with cardiac surgery affect both the outcome and quality of life. Markers such as troponin effectively predict short-term outcome. In a prospective cohort study in a University Hospital we assessed the role of cardiac biomarkers, also as predictors of long-term outcome and life quality after cardiac surgery with a three-year follow-up after conventional heart surgery. Patients were interviewed via phone calls with a structured questionnaire examining general health, functional status, activities of daily living, perception of life quality and need for hospital readmission. Descriptive statistics and multivariate analysis were performed. Out of 252 consecutive patients, 8 (3.2% died at the three years follow up: 7 for cardiac complications and 1 for cancer. Thirty-six patients (13.5% had hospital readmission for cardiac causes (mostly for atrial fibrillation or other arrhythmias (9.3%, but none needed cardiac surgical reintervention; 21 patients (7.9% were hospitalised for non-cardiac causes. No limitation in function activities of daily living was reported by most patients (94%, 92% perceived their general health as excellent, very good or good and none considered it insufficient; 80% were NYHA I, 17% NYHA II, 3% NYHA III and none NYHA IV. Multivariate analysis indicated preoperative treatment with digitalis or nitrates, and postoperative cardiac biomarkers release was independently associated to death. Elevated cardiac biomarker release and length of hospital stay were the only postoperative independent predictors of death in this study.

  20. Major life events as potential triggers of sudden cardiac arrest.

    Science.gov (United States)

    Wicks, April F; Lumley, Thomas; Lemaitre, Rozenn N; Sotoodehnia, Nona; Rea, Thomas D; McKnight, Barbara; Strogatz, David S; Bovbjerg, Viktor E; Siscovick, David S

    2012-05-01

    We investigated the risk of sudden cardiac arrest in association with the recent loss of, or separation from, a family member or friend. Our case-crossover study included 490 apparently healthy married residents of King County, Washington, who suffered sudden cardiac arrest between 1988 and 2005. We compared exposure to spouse-reported family/friend events occurring ≤ 1 month before sudden cardiac arrest with events occurring in the previous 5 months. We evaluated potential effect modification by habitual vigorous physical activity. Recent family/friend events were associated with a higher risk of sudden cardiac arrest (odds ratio [OR] = 1.6; 95% confidence interval [CI] = 1.1-2.4). ORs for cases with and without habitual vigorous physical activity were 1.1 (0.6-2.2) and 2.0 (1.2-3.1), respectively (interaction P = 0.02). These results suggest family/friend events may trigger sudden cardiac arrest and raise the hypothesis that habitual vigorous physical activity may lower susceptibility to these potential triggers.

  1. Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps

    Directory of Open Access Journals (Sweden)

    François Waldner

    2015-06-01

    Full Text Available Timely and accurate information on the global cropland extent is critical for applications in the fields of food security, agricultural monitoring, water management, land-use change modeling and Earth system modeling. On the one hand, it gives detailed location information on where to analyze satellite image time series to assess crop condition. On the other hand, it isolates the agriculture component to focus food security monitoring on agriculture and to assess the potential impacts of climate change on agricultural lands. The cropland class is often poorly captured in global land cover products due to its dynamic nature and the large variety of agro-systems. The overall objective was to evaluate the current availability of cropland datasets in order to propose a strategic planning and effort distribution for future cropland mapping activities and, therefore, to maximize their impact. Following a very comprehensive identification and collection of national to global land cover maps, a multi-criteria analysis was designed at the country level to identify the priority areas for cropland mapping. As a result, the analysis highlighted priority regions, such as Western Africa, Ethiopia, Madagascar and Southeast Asia, for the remote sensing community to focus its efforts. A Unified Cropland Layer at 250 m for the year 2014 was produced combining the fittest products. It was assessed using global validation datasets and yields an overall accuracy ranging from 82%–94%. Masking cropland areas with a global forest map reduced the commission errors from 46% down to 26%. Compared to the GLC-Share and the International Institute for Applied Systems Analysis-International Food Policy Research Institute (IIASA-IFPRI cropland maps, significant spatial disagreements were found, which might be attributed to discrepancies in the cropland definition. This advocates for a shared definition of cropland, as well as global validation datasets relevant for the

  2. Probability mapping of scarred myocardium using texture and intensity features in CMR images

    Science.gov (United States)

    2013-01-01

    Background The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium. Methods In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function. Results In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image. Conclusion The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardium). PMID:24053280

  3. [Cardiac cachexia].

    Science.gov (United States)

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  4. Effects of Intracerebroventricularly (ICV) Injected Ghrelin on Cardiac Inducible Nitric Oxide Synthase Activity/Expression in Obese Rats.

    Science.gov (United States)

    Sudar Milovanovic, E; Jovanovic, A; Misirkic-Marjanovic, M; Vucicevic, Lj; Janjetovic, K; Isenovic, E R

    2015-11-01

    The aim of this study was to examine the effects of ghrelin on regulation of cardiac inducible nitric oxide synthase (iNOS) activity/expression in high fat (HF), obese rats.For this study, male Wistar rats fed with HF diet (30% fat) for 4 weeks were injected every 24 h for 5 days intracerebroventricularly (ICV) with ghrelin (0.3 nmol/5 µl) or with an equal volume of phosphate buffered saline (PBS). Control rats were ICV injected with an equal volume of PBS. Glucose, insulin and nitric oxide (NO) concentrations were measured in serum, while arginase activity and citrulline concentrations were measured in heart lysate. Protein iNOS and regulatory subunit of nuclear factor-κB (NFκB-p65), phosphorylation of enzymes protein kinase B (Akt) at Ser(473), and extracellular signal-regulated kinases 1/2 (ERK1/2) at Tyr(202)/Tyr(204) were determined in heart lysate by Western blot. For gene expression of iNOS qRT-PCR was used.Results show significantly (parginase activity (pactivity of cardiac iNOS via Akt phosphorylation followed by NFκB activation in HF rats. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    Science.gov (United States)

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  6. Boosters and barriers for direct cardiac reprogramming.

    Science.gov (United States)

    Talkhabi, Mahmood; Zonooz, Elmira Rezaei; Baharvand, Hossein

    2017-06-01

    Heart disease is currently the most significant cause of morbidity and mortality worldwide, which accounts for approximately 33% of all deaths. Recently, a promising and alchemy-like strategy has been developed called direct cardiac reprogramming, which directly converts somatic cells such as fibroblasts to cardiac lineage cells such as cardiomyocytes (CMs), termed induced CMs or iCMs. The first in vitro cardiac reprogramming study, mediated by cardiac transcription factors (TFs)-Gata4, Tbx5 and Mef2C-, was not enough efficient to produce an adequate number of fully reprogrammed, functional iCMs. As a result, numerous combinations of cardiac TFs exist for direct cardiac reprogramming of mouse and human fibroblasts. However, the efficiency of direct cardiac reprogramming remains low. Recently, a number of cellular and molecular mechanisms have been identified to increase the efficiency of direct cardiac reprogramming and the quality of iCMs. For example, microgrooved substrate, cardiogenic growth factors [VEGF, FGF, BMP4 and Activin A], and an appropriate stoichiometry of TFs boost the direct cardiac reprogramming. On the other hand, serum, TGFβ signaling, activators of epithelial to mesenchymal transition, and some epigenetic factors (Bmi1 and Ezh2) are barriers for direct cardiac reprogramming. Manipulating these mechanisms by the application of boosters and removing barriers can increase the efficiency of direct cardiac reprogramming and possibly make iCMs reliable for cell-based therapy or other potential applications. In this review, we summarize the latest trends in cardiac TF- or miRNA-based direct cardiac reprogramming and comprehensively discuses all molecular and cellular boosters and barriers affecting direct cardiac reprogramming. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  8. Role of Nuclear Medicine in the cardiac resinchronization therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Giorgi, Maria Clementina Pinto; D' Orio, Silvana Angelina; Meneghetti, Jose Claudio [Instituto do Coracao (InCor/FM/USP), Sao Paulo, SP (Brazil)

    2011-10-15

    Cardiac resynchronization therapy (CRT) emerged as one of the most promising approaches in the treatment of cardiac dyssynchrony in heart failure patients' refractory to medical treatment. However, despite very promising clinical and functional results, individual response analyses show that a significant number of patients do not respond to treatment. The role of nuclear medicine and molecular imaging in the selection of CRT candidates by the assessment of cardiac dyssynchrony, myocardial viability, myocardial perfusion and blood flow and sympathetic cardiac activity has been discussed in this review. The potential utilization of this tool to improve the comprehension of detrimental effects of dyssynchrony on cardiac function and the evaluation and monitoring of the response to CRT were also considered. Other molecular targets that characterize glucose and fatty acid metabolism, apoptosis, angiotensin converting enzyme activity and angiogenesis that can be evaluated with this technique were described. (author)

  9. Halogenated anaesthetics and cardiac protection in cardiac and non-cardiac anaesthesia

    Directory of Open Access Journals (Sweden)

    Landoni Giovanni

    2009-01-01

    Full Text Available Volatile anaesthetic agents have direct protective properties against ischemic myocardial damage. The implementation of these properties during clinical anaesthesia can provide an additional tool in the treatment or prevention, or both, of ischemic cardiac dysfunction in the perioperative period. A recent meta-analysis showed that desflurane and sevoflurane reduce postoperative mortality and incidence of myocardial infarction following cardiac surgery, with significant advantages in terms of postoperative cardiac troponin release, need for inotrope support, time on mechanical ventilation, intensive care unit and overall hospital stay. Multicentre, randomised clinical trials had previously demonstrated that the use of desflurane can reduce the postoperative release of cardiac troponin I, the need for inotropic support, and the number of patients requiring prolonged hospitalisation following coronary artery bypass graft surgery either with and without cardiopulmonary bypass. The American College of Cardiology/American Heart Association Guidelines recommend volatile anaesthetic agents during non-cardiac surgery for the maintenance of general anaesthesia in patients at risk for myocardial infarction. Nonetheless, e vidence in non-coronary surgical settings is contradictory and will be reviewed in this paper together with the mechanisms of cardiac protection by volatile agents.

  10. Rapid tryptic mapping using enzymatically active mass spectrometer probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Dogruel, D.; Williams, P.; Nelson, R.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-12-01

    A method has been developed for rapid, sensitive, and accurate tryptic mapping of polypeptides using matrix-assisted laser desorption/ionization time-of-flight mass analysis. The technique utilizes mass spectrometer probe tips which have been activated through the covalent immobilization of trypsin. The enzymatically active probe tips were used for the tryptic mapping of chicken egg lysozyme and the results compared with those obtained using either free trypsin or agarose-immobilized trypsin. A significant increase in the overall sensitivity of the process was observed using the active probe tips, as well as the production of more characteristic proteolytic fragments and the elimination of background signals due to the autolysis of the trypsin. Further, probe tip digestions were found to be rapid and convenient. 19 refs., 6 figs., 2 tabs.

  11. False Alarm Reduction in BSN-Based Cardiac Monitoring Using Signal Quality and Activity Type Information

    Directory of Open Access Journals (Sweden)

    Tanatorn Tanantong

    2015-02-01

    Full Text Available False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs, the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  12. Physical activity measured by accelerometry and its associations with cardiac structure and vascular function in young and middle-aged adults

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Lyass, Asya; Larson, Martin G

    2015-01-01

    objective measures of moderate- to vigorous-intensity physical activity (MVPA, assessed by accelerometry) to cardiac and vascular indices in 2376 participants of the Framingham Heart Study third generation cohort (54% women, mean age 47 years). Using multivariable regression models, we related MVPA......BACKGROUND: Physical activity is associated with several health benefits, including lower cardiovascular disease risk. The independent influence of physical activity on cardiac and vascular function in the community, however, has been sparsely investigated. MEASURES AND RESULTS: We related...... to the following echocardiographic and vascular measures: left ventricular mass, left atrial and aortic root sizes, carotid-femoral pulse wave velocity, augmentation index, and forward pressure wave. Men and women engaged in MVPA 29.9±21.4 and 25.5±19.4 min/day, respectively. Higher values of MVPA (per 10-minute...

  13. The definition of exertion-related cardiac events.

    Science.gov (United States)

    Rai, M; Thompson, P D

    2011-02-01

    Vigorous physical activity increases the risk of sudden cardiac death (SCD) and acute myocardial infarction (AMI) but there is no standard definition as to what constitutes an exertion-related cardiac event, specifically the time interval between physical exertion and cardiac event. A systematic review of studies related to exertion-related cardiac events was performed and the time interval between exertion and the event or the symptoms leading to the event was looked for in all the articles selected for inclusion. A total of 12 of 26 articles "suggested" or "defined" exertion-related events as those events whose symptoms started during or within 1 h of exertion. Others used definitions of 0.5 h, 2 h, "during exertion", "during or immediately post exertion" and "during or within several hours after exertion". It is suggested, therefore, that the definition of an exertion-related cardiac event be established as a cardiac event in which symptoms started during or within 1 h of physical exertion.

  14. Mathematical Models of Cardiac Pacemaking Function

    Science.gov (United States)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  15. Activation of cAMP-dependent signaling induces oxidative modification of the cardiac Na+-K+ pump and inhibits its activity.

    Science.gov (United States)

    White, Caroline N; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Figtree, Gemma A; Rasmussen, Helge H

    2010-04-30

    Cellular signaling can inhibit the membrane Na(+)-K(+) pump via protein kinase C (PKC)-dependent activation of NADPH oxidase and a downstream oxidative modification, glutathionylation, of the beta(1) subunit of the pump alpha/beta heterodimer. It is firmly established that cAMP-dependent signaling also regulates the pump, and we have now examined the hypothesis that such regulation can be mediated by glutathionylation. Exposure of rabbit cardiac myocytes to the adenylyl cyclase activator forskolin increased the co-immunoprecipitation of NADPH oxidase subunits p47(phox) and p22(phox), required for its activation, and increased superoxide-sensitive fluorescence. Forskolin also increased glutathionylation of the Na(+)-K(+) pump beta(1) subunit and decreased its co-immunoprecipitation with the alpha(1) subunit, findings similar to those already established for PKC-dependent signaling. The decrease in co-immunoprecipitation indicates a decrease in the alpha(1)/beta(1) subunit interaction known to be critical for pump function. In agreement with this, forskolin decreased ouabain-sensitive electrogenic Na(+)-K(+) pump current (arising from the 3:2 Na(+):K(+) exchange ratio) of voltage-clamped, internally perfused myocytes. The decrease was abolished by the inclusion of superoxide dismutase, the inhibitory peptide for the epsilon-isoform of PKC or inhibitory peptide for NADPH oxidase in patch pipette solutions that perfuse the intracellular compartment. Pump inhibition was also abolished by inhibitors of protein kinase A and phospholipase C. We conclude that cAMP- and PKC-dependent inhibition of the cardiac Na(+)-K(+) pump occurs via a shared downstream oxidative signaling pathway involving NADPH oxidase activation and glutathionylation of the pump beta(1) subunit.

  16. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  17. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: Modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes

    International Nuclear Information System (INIS)

    Huang, Tom H.-W.; Yang Qinglin; Harada, Masaki; Uberai, Jasna; Radford, Jane; Li, George Q.; Yamahara, Johji; Roufogalis, Basil D.; Li Yuhao

    2006-01-01

    Excess cardiac triglyceride accumulation in diabetes and obesity induces lipotoxicity, which predisposes the myocytes to death. On the other hand, increased cardiac fatty acid (FA) oxidation plays a role in the development of myocardial dysfunction in diabetes. PPAR-α plays an important role in maintaining homeostasis of lipid metabolism. We have previously demonstrated that the extract from Salacia oblonga root (SOE), an Ayurvedic anti-diabetic and anti-obesity medicine, improves hyperlipidemia in Zucker diabetic fatty (ZDF) rats (a genetic model of type 2 diabetes and obesity) and possesses PPAR-α activating properties. Here we demonstrate that chronic oral administration of SOE reduces cardiac triglyceride and FA contents and decreases the Oil red O-stained area in the myocardium of ZDF rats, which parallels the effects on plasma triglyceride and FA levels. Furthermore, the treatment suppressed cardiac overexpression of both FA transporter protein-1 mRNA and protein in ZDF rats, suggesting inhibition of increased cardiac FA uptake as the basis for decreased cardiac FA levels. Additionally, the treatment also inhibited overexpression in ZDF rat heart of PPAR-α mRNA and protein and carnitine palmitoyltransferase-1, acyl-CoA oxidase and 5'-AMP-activated protein kinase mRNAs and restored the downregulated acetyl-CoA carboxylase mRNA. These results suggest that SOE inhibits cardiac FA oxidation in ZDF rats. Thus, our findings suggest that improvement by SOE of excess cardiac lipid accumulation and increased cardiac FA oxidation in diabetes and obesity occurs by reduction of cardiac FA uptake, thereby modulating cardiac PPAR-α-mediated FA metabolic gene transcription

  18. Cardiac Insulin Resistance and MicroRNA Modulators

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  19. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    2008-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0·1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0·12 ± 0·03 and 0·15 ± 0·03 μg/h per liter, 126 ± 5 and 130 ± 5 ng/l respectively) (means ± s.e.m.). Despite stabilization of the circulating renin–angiotensin system, thyroid hormone induced cardiac hypertrophy (5·0 ± 0·5 vs 3·5 ± 0·1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74 ± 2 vs 48 ± 2%, 6·5 ± 0·8 vs 3·8 ± 0·4 ng/h per g, 231 ± 30 vs 149 ± 2 pg/g respectively). These results indicate that the local renin–angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy. PMID:9854175

  20. KChIP2 regulates the cardiac Ca2+ transient and myocyte contractility by targeting ryanodine receptor activity.

    Directory of Open Access Journals (Sweden)

    Drew M Nassal

    Full Text Available Pathologic electrical remodeling and attenuated cardiac contractility are featured characteristics of heart failure. Coinciding with these remodeling events is a loss of the K+ channel interacting protein, KChIP2. While, KChIP2 enhances the expression and stability of the Kv4 family of potassium channels, leading to a more pronounced transient outward K+ current, Ito,f, the guinea pig myocardium is unique in that Kv4 expression is absent, while KChIP2 expression is preserved, suggesting alternative consequences to KChIP2 loss. Therefore, KChIP2 was acutely silenced in isolated guinea pig myocytes, which led to significant reductions in the Ca2+ transient amplitude and prolongation of the transient duration. This change was reinforced by a decline in sarcomeric shortening. Notably, these results were unexpected when considering previous observations showing enhanced ICa,L and prolonged action potential duration following KChIP2 loss, suggesting a disruption of fundamental Ca2+ handling proteins. Evaluation of SERCA2a, phospholamban, RyR, and sodium calcium exchanger identified no change in protein expression. However, assessment of Ca2+ spark activity showed reduced spark frequency and prolonged Ca2+ decay following KChIP2 loss, suggesting an altered state of RyR activity. These changes were associated with a delocalization of the ryanodine receptor activator, presenilin, away from sarcomeric banding to more diffuse distribution, suggesting that RyR open probability are a target of KChIP2 loss mediated by a dissociation of presenilin. Typically, prolonged action potential duration and enhanced Ca2+ entry would augment cardiac contractility, but here we see KChIP2 fundamentally disrupts Ca2+ release events and compromises myocyte contraction. This novel role targeting presenilin localization and RyR activity reveals a significance for KChIP2 loss that reflects adverse remodeling observed in cardiac disease settings.

  1. Automated detection of qualitative spatio-temporal features in electrocardiac activation maps.

    Science.gov (United States)

    Ironi, Liliana; Tentoni, Stefania

    2007-02-01

    This paper describes a piece of work aiming at the realization of a tool for the automated interpretation of electrocardiac maps. Such maps can capture a number of electrical conduction pathologies, such as arrhytmia, that can be missed by the analysis of traditional electrocardiograms. But, their introduction into the clinical practice is still far away as their interpretation requires skills that belongs to very few experts. Then, an automated interpretation tool would bridge the gap between the established research outcome and clinical practice with a consequent great impact on health care. Qualitative spatial reasoning can play a crucial role in the identification of spatio-temporal patterns and salient features that characterize the heart electrical activity. We adopted the spatial aggregation (SA) conceptual framework and an interplay of numerical and qualitative information to extract features from epicardial maps, and to make them available for reasoning tasks. Our focus is on epicardial activation isochrone maps as they are a synthetic representation of spatio-temporal aspects of the propagation of the electrical excitation. We provide a computational SA-based methodology to extract, from 3D epicardial data gathered over time, (1) the excitation wavefront structure, and (2) the salient features that characterize wavefront propagation and visually correspond to specific geometric objects. The proposed methodology provides a robust and efficient way to identify salient pieces of information in activation time maps. The hierarchical structure of the abstracted geometric objects, crucial in capturing the prominent information, facilitates the definition of general rules necessary to infer the correlation between pathophysiological patterns and wavefront structure and propagation.

  2. An Internet- and mobile-based tailored intervention to enhance maintenance of physical activity after cardiac rehabilitation: short-term results of a randomized controlled trial.

    Science.gov (United States)

    Antypas, Konstantinos; Wangberg, Silje C

    2014-03-11

    An increase in physical activity for secondary prevention of cardiovascular disease and cardiac rehabilitation has multiple therapeutic benefits, including decreased mortality. Internet- and mobile-based interventions for physical activity have shown promising results in helping users increase or maintain their level of physical activity in general and specifically in secondary prevention of cardiovascular diseases and cardiac rehabilitation. One component related to the efficacy of these interventions is tailoring of the content to the individual. Our trial assessed the effect of a longitudinally tailored Internet- and mobile-based intervention for physical activity as an extension of a face-to-face cardiac rehabilitation stay. We hypothesized that users of the tailored intervention would maintain their physical activity level better than users of the nontailored version. The study population included adult participants of a cardiac rehabilitation program in Norway with home Internet access and a mobile phone. The participants were randomized in monthly clusters to a tailored or nontailored (control) intervention group. All participants had access to a website with information regarding cardiac rehabilitation, an online discussion forum, and an online activity calendar. Those using the tailored intervention received tailored content based on models of health behavior via the website and mobile fully automated text messages. The main outcome was self-reported level of physical activity, which was obtained using an online international physical activity questionnaire at baseline, at discharge, and at 1 month and 3 months after discharge from the cardiac rehabilitation program. Included in the study were 69 participants. One month after discharge, the tailored intervention group (n=10) had a higher median level of overall physical activity (median 2737.5, IQR 4200.2) than the control group (n=14, median 1650.0, IQR 2443.5), but the difference was not significant

  3. Effect of heat stress on cardiac output and systemic vascular conductance during simulated hemorrhage to presyncope in young men

    DEFF Research Database (Denmark)

    Ganio, Matthew S; Overgaard, Morten; Seifert, Thomas

    2012-01-01

    During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due...... to a persistently high SVC and/or a low cardiac output. This study tested the hypothesis that an inadequate decrease in SVC is the primary contributing mechanism by which heat stress compromises blood pressure control during simulated hemorrhage. Simulated hemorrhage was imposed via lower body negative pressure...... normothermic is no longer adequate during a heat-stressed-simulated hemorrhage. The absence of a decrease in SVC at a time of profound reductions in MAP suggests that inadequate control of vascular conductance is a primary mechanism compromising blood pressure control during these conditions....

  4. Role of imaging in evaluation of sudden cardiac death risk in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Geske, Jeffrey B; Ommen, Steve R

    2015-09-01

    Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiomyopathy and is associated with sudden cardiac death (SCD) - an uncommon but devastating clinical outcome. This review is designed to assess the role of imaging in established risk factor assessment and its role in emerging SCD risk stratification. Recent publications have highlighted the crucial role of imaging in HCM SCD risk stratification. Left ventricular hypertrophy assessment remains the key imaging determinant of risk. Data continue to emerge on the role of systolic dysfunction, apical aneurysms, left atrial enlargement and left ventricular outflow tract obstruction as markers of risk. Quantitative assessment of delayed myocardial enhancement and T1 mapping on cardiac MRI continue to evolve. Recent multicenter trials have allowed multivariate SCD risk assessment in large HCM cohorts. Given aggregate risk with presence of multiple risk factors, a single parameter should not be used in isolation to determine implantable cardiac defibrillator candidacy. Use of all available imaging data, including cardiac magnetic resonance tissue characterization, allows a comprehensive approach to SCD stratification and implantable cardiac defibrillator decision-making.

  5. Cardiac integrins the ties that bind.

    Science.gov (United States)

    Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L

    1998-01-01

    An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.

  6. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance.

    Directory of Open Access Journals (Sweden)

    Chunhu Gu

    Full Text Available Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1 is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo and aged (22-24 mo mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2, SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05. Exogenous toxic aldehydes (4-HNE exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R injury, which could all be rescued by Alda-1 (ALDH2 activator (all P<0.05. However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05. The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1(+/- knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1(+/- hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.

  7. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Park, Jeong-Jun [University of Ulsan College of Medicine, Asan Medical Center, Department of Pediatric Cardiac Surgery, Seoul (Korea, Republic of); Kim, Ellen Ai-Rhan [University of Ulsan College of Medicine, Asan Medical Center, Division of Neonatology, Department of Pediatrics, Seoul (Korea, Republic of); Won, Hye-Sung [University of Ulsan College of Medicine, Asan Medical Center, Department of Obstetrics and Gynecology, Seoul (Korea, Republic of)

    2014-09-15

    Most thoracopagus twins present with cardiac fusion and associated congenital cardiac defects, and assessment of this anatomy is of critical importance in determining patient care and outcome. Cardiac CT with electrocardiographic triggering provides an accurate and quick morphological assessment of both intracardiac and extracardiac structures in newborns, making it the best imaging modality to assess thoracopagus twins during the neonatal period. In this case report, we highlight the diagnostic value of cardiac CT in thoracopagus twins with an interatrial channel and complex congenital cardiac defects. (orig.)

  8. From retinal waves to activity-dependent retinogeniculate map development.

    Science.gov (United States)

    Markowitz, Jeffrey; Cao, Yongqiang; Grossberg, Stephen

    2012-01-01

    A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+)-activated K(+) channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  9. Methods for geographical mapping of agricultural activities and the related environmental impact

    DEFF Research Database (Denmark)

    Dalgaard, Tommy; Jensen, Jørgen Dejgaard

    2011-01-01

    This study presents a three-step methodology to generate, map and simulate indicators of agricultural activity for use in landscape-scale analyses. Step one is the farm data set up combining digital agricultural registers and national statistics. Step two is the geographical mapping based discrete...

  10. One-year adherence to exercise in elderly patients receiving postacute inpatient rehabilitation after cardiac surgery.

    Science.gov (United States)

    Macchi, Claudio; Polcaro, Paola; Cecchi, Francesca; Zipoli, Renato; Sofi, Francesco; Romanelli, Antonella; Pepi, Liria; Sibilio, Maurizio; Lipoma, Mario; Petrilli, Mario; Molino-Lova, Raffaele

    2009-09-01

    Promoting an active lifestyle through an appropriate physical exercise prescription is one of the major targets of cardiac rehabilitation. However, information on the effectiveness of cardiac rehabilitation in promoting lifestyle changes in elderly patients is still scant. In 131 patients over the age of 65 yrs (86 men, and 45 women, mean age 75 yrs +/- 6 SD) who have attended postacute inpatient cardiac rehabilitation after cardiac surgery, we tested the 1-yr adherence to the physical exercise prescription received at the end of the cardiac rehabilitation by using a questionnaire on physical activity and the 6-min walk test. All of the 36 patients who reported an active lifestyle and 49 of the 95 patients who reported a sedentary lifestyle in the year preceding the cardiac operation reported at least 1 hr/day on 5 days each week of light regular physical activity in the year after the cardiac rehabilitation. Further, the distance walked at the follow-up 6-min walk test was significantly related to the physical activity score gathered from the questionnaire. Our data show that 65% of the elderly patients who have attended postacute inpatient cardiac rehabilitation after cardiac surgery are still capable of recovering or even increasing their regular physical activity and of maintaining these favorable lifestyle changes at least for 1 yr.

  11. Enhanced pyruvate dehydrogenase activity improves cardiac outcomes in a murine model of cardiac arrest.

    Directory of Open Access Journals (Sweden)

    Lin Piao

    Full Text Available Post-ischemic changes in cellular metabolism alter myocardial and neurological function. Pyruvate dehydrogenase (PDH, the limiting step in mitochondrial glucose oxidation, is inhibited by increased expression of PDH kinase (PDK during ischemia/reperfusion injury. This results in decreased utilization of glucose to generate cellular ATP. Post-cardiac arrest (CA hypothermia improves outcomes and alters metabolism, but its influence on PDH and PDK activity following CA are unknown. We hypothesized that therapeutic hypothermia (TH following CA is associated with the inhibition of PDK activity and increased PDH activity. We further hypothesized that an inhibitor of PDK activity, dichloroacetate (DCA, would improve PDH activity and post-CA outcomes.Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 12-minute KCl-induced CA followed by cardiopulmonary resuscitation. Compared to normothermic (37°C CA controls, administering TH (30°C improved overall survival (72-hour survival rate: 62.5% vs. 28.6%, P<0.001, post-resuscitation myocardial function (ejection fraction: 50.9±3.1% vs. 27.2±2.0%, P<0.001; aorta systolic pressure: 132.7±7.3 vs. 72.3±3.0 mmHg, P<0.001, and neurological scores at 72-hour post CA (9.5±1.3 vs. 5.4±1.3, P<0.05. In both heart and brain, CA increased lactate concentrations (1.9-fold and 3.1-fold increase, respectively, P<0.01, decreased PDH enzyme activity (24% and 50% reduction, respectively, P<0.01, and increased PDK protein expressions (1.2-fold and 1.9-fold, respectively, P<0.01. In contrast, post-CA treatment with TH normalized lactate concentrations (P<0.01 and P<0.05 and PDK expressions (P<0.001 and P<0.05, while increasing PDH activity (P<0.01 and P<0.01 in both the heart and brain. Additionally, treatment with DCA (0.2 mg/g body weight 30 min prior to CA improved both myocardial hemodynamics 2 hours post-CA (aortic systolic pressure: 123±3 vs. 96±4 mmHg, P<0.001 and 72-hour survival rates

  12. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans.

    Science.gov (United States)

    Melki, Lea; Costet, Alexandre; Konofagou, Elisa E

    2017-10-01

    Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin.

    Science.gov (United States)

    Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun

    2017-08-01

    Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.

  14. Wnt/β-Catenin Signaling during Cardiac Development and Repair

    Directory of Open Access Journals (Sweden)

    Jan W. Buikema

    2014-05-01

    Full Text Available Active Wnt/β-catenin signaling is essential for proper cardiac specification, progenitor expansion and myocardial growth. During development, the mass of the embryonic heart increases multiple times to achieve the dimensions of adult ventricular chambers. Cell division in the embryonic heart is fairly present, whereas cell turnover in the adult myocardium is extremely low. Understanding of embryonic cardiomyocyte cell-replication, therefore, could improve strategies for cardiac regenerative therapeutics. Here, we review which role Wnt signaling plays in cardiac development and highlight a selection of attempts that have been made to modulate Wnt signaling after cardiac ischemic injury to improve cardiac function and reduce infarct size.

  15. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  16. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  17. A system and method for online high-resolution mapping of gastric slow-wave activity.

    Science.gov (United States)

    Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2014-11-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.

  18. Long-term comparison of Kuparuk Watershed active layer maps, northern Alaska, USA

    Science.gov (United States)

    Nyland, K. E.; Queen, C.; Nelson, F. E.; Shiklomanov, N. I.; Streletskiy, D. A.; Klene, A. E.

    2017-12-01

    The active layer, or the uppermost soil horizon that thaws seasonally, is among the most dynamic components of the permafrost system. Evaluation of the thickness and spatial variation of the active layer is critical to many components of Arctic research, including climatology, ecology, environmental monitoring, and engineering. In this study we mapped active-layer thickness (ALT) across the 22,278 sq. km Kuparuk River basin on Alaska's North Slope throughout the summer of 2016. The Kuparuk River extends from the Brooks Range through the Arctic Foothills and across the Arctic Coastal Plain physiographic provinces, and drains into the Beaufort Sea. Methodology followed procedures used to produce an ALT map of the basin in 1995 accounting for the effects of topography, vegetation, topoclimate, and soils, using the same spatial sampling scheme for direct ALT and temperature measurement at representative locations and relating these parameters to vegetation-soil associations. A simple semi-empirical engineering solution was used to estimate thaw rates for the different associations. An improved lapse-rate formulation and a higher-resolution DEM were used to relate temperature to elevation. Three ALT maps were generated for the 2016 summer, combining measured thaw depth, temperature records, the 25 m ArcticDEM, high resolution remote sensed data, empirical laps rates, and a topoclimatic index through the thaw solution. These maps were used to track the spatial progression of thaw through the 2016 summer season and estimate a total volume of thawed soil. Maps produced in this study were compared to the 1995 map to track areas of significant geographic changes in patterns of ALT and total volume of thawed soil.

  19. Ugly duckling or Nosferatu? Cardiac injury in endurance sport - screening recommendations.

    Science.gov (United States)

    Leischik, R; Dworrak, B

    2014-01-01

    In the beginning sporting activity may be exhausting, but over time, physical activity turns out to have beneficial effects to the body and even extended cycling or running is an emotional and healthy enrichment in life. On the other hand, spectacular sudden deaths during marathon, football and, just recently, in the trend discipline triathlon seem to support the dark side of the sporting activity. Since years there are constantly appearing reports about a potential myocardial injury induced by intensive sporting activities. Cardiac hypertrophy is the heart's response to arterial hypertension and to physical activity, but can be associated with an unfavorable outcome - in worst case for example with sudden death. The question of the right dose of sporting activity, the question how to prevent cardiac death induced by physical activity and the question how to screen the athletes for the possible risk of sudden death or other cardiac complications during sporting activity are those that will be answered by this review article. In this review we summarize recent insights into the problem of endurance sport and possible negative cardiac remodeling as well as the question how to screen the athletes.

  20. From retinal waves to activity-dependent retinogeniculate map development.

    Directory of Open Access Journals (Sweden)

    Jeffrey Markowitz

    Full Text Available A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca(2+-activated K(+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops.

  1. Exercise and the cardiac patient-success is just steps away.

    Science.gov (United States)

    Coke, Lola A; Fletcher, Gerald F

    2010-01-01

    Physical activity is an essential lifestyle intervention for the patient with existing cardiovascular disease. National guidelines describe the importance of and define the minimal doses of daily physical activity including walking 10,000 steps a day (equivalent to 5 miles) or performing 30 minutes of moderate-intensity aerobic activity most days of the week in 10- to 15-minute bouts. However, cardiac patients are often fearful that increasing physical activity would be detrimental and cause chest pain or myocardial infarction. Research has shown that cardiac patients can perform a walking program safely. Patient education; development of a realistic plan; measurement of the frequency, intensity, duration, and type of physical activity attained; and consistent follow-up over time are key strategies. This article provides important information for healthcare providers to plan a safe and efficacious walking plan to increase physical activity in the cardiac patient.

  2. Acute leukaemoid reaction following cardiac surgery

    Directory of Open Access Journals (Sweden)

    Webb Stephen T

    2007-01-01

    Full Text Available Abstract Chronic myelomonocytic leukaemia is an atypical myeloproliferative disorder with a natural history of progression to acute myeloid leukaemia, a complex and poorly understood response by the bone marrow to stress. Cardiac surgery activates many inflammatory cascades and may precipitate a systemic inflammatory response syndrome. We present a case of undiagnosed chronic myelomonocytic leukaemia who developed rapidly fatal multi-organ dysfunction following cardiac surgery due to an acute leukaemoid reaction.

  3. Cardiac abnormality prediction using HMLP network

    Science.gov (United States)

    Adnan, Ja'afar; Ahmad, K. A.; Mat, Muhamad Hadzren; Rizman, Zairi Ismael; Ahmad, Shahril

    2018-02-01

    Cardiac abnormality often occurs regardless of gender, age and races but depends on the lifestyle. This problem sometimes does not show any symptoms and usually detected once it already critical which lead to a sudden death to the patient. Basically, cardiac abnormality is the irregular electrical signal that generate by the pacemaker of the heart. This paper attempts to develop a program that can detect cardiac abnormality activity through implementation of Hybrid Multilayer Perceptron (HMLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP and HMLP network by using Modified Recursive Prediction Error (MRPE) algorithm and to test the network performance.

  4. T2 mapping of muscle activity using ultrafast imaging

    International Nuclear Information System (INIS)

    Tawara, Noriyuki; Nitta, Osamu; Kuruma, Hironobu; Niitsu, Mamoru; Itoh, Akiyoshi

    2011-01-01

    Measuring exercise-induced muscle activity is essential in sports medicine. Previous studies proposed measuring transverse relaxation time (T 2 ) using muscle functional magnetic resonance imaging (mfMRI) to map muscle activity. However, mfMRI uses a spin-echo (SE) sequence that requires several minutes for acquisition. We evaluated the feasibility of T 2 mapping of muscle activity using ultrafast imaging, called fast-acquired mfMRI (fast-mfMRI), to reduce image acquisition time. The current method uses 2 pulse sequences, spin-echo echo-planar imaging (SE-EPI) and true fast imaging with steady precession (TrueFISP). SE-EPI images are used to calculate T 2 , and TrueFISP images are used to obtain morphological information. The functional image is produced by subtracting the image of muscle activity obtained using T 2 at rest from that produced after exercise. Final fast-mfMRI images are produced by fusing the functional images with the morphologic images. Ten subjects repeated ankle plantar flexion 200 times. In the fused images, the areas of activated muscle in the fast-mfMRI and SE-EPI images were identical. The geometric location of the fast-mfMRI did not differ between the morphologic and functional images. Morphological and functional information from fast-mfMRI can be applied to the human trunk, which requires limited scan duration. The difference obtained by subtracting T 2 at rest from T 2 after exercise can be used as a functional image of muscle activity. (author)

  5. Pedometer use and self-determined motivation for walking in a cardiac telerehabilitation program

    DEFF Research Database (Denmark)

    Thorup, Charlotte Brun; Grønkjær, Mette; Spindler, Helle

    2016-01-01

    research design consisting of observations, individual interviews and patient documents made the basis for a content analysis. Data was analysed deductively using Self Determination Theory as a frame for analysis and discussion, focusing on the psychological needs of autonomy, competence and relatedness......BACKGROUND: Exercise-based cardiac rehabilitation reduces morbidity and mortality. Walking is a convenient activity suitable for people with cardiac disease. Pedometers count steps, measure walking activity and motivate people to increase physical activity. In this study, patients participating...... in cardiac telerehabilitation were provided with a pedometer to support motivation for physical activity with the purpose of exploring pedometer use and self-determined motivation for walking experienced by patients and health professionals during a cardiac telerehabilitation program. METHODS: A qualitative...

  6. GeoMapApp Learning Activities: Grab-and-go inquiry-based geoscience activities that bring cutting-edge technology to the classroom

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    NSF-funded GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) provide self-contained learning opportunities that are centred around the principles of guided inquiry. The activities allow students to interact with and analyse research-quality geoscience data to explore and enhance student understanding of underlying geoscience content and concepts. Each activity offers ready-to-use step-by-step student instructions and answer sheets that can be downloaded from the web page. Also provided are annotated teacher versions of the worksheets that include teaching tips, additional content and suggestions for further work. Downloadable pre- and post- quizzes tied to each activity help educators gauge the learning progression of their students. Short multimedia tutorials and details on content alignment with state and national teaching standards round out the package of material that comprises each "grab-and-go" activity. GeoMapApp Learning Activities expose students to content and concepts typically found at the community college, high school and introductory undergraduate levels. The activities are based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool that allows students to access a wide range of geoscience data sets in a virtual lab-like environment. Activities that have so far been created under this project include student exploration of seafloor spreading rates, a study of mass wasting as revealed through geomorphological evidence, and an analysis of plate motion and hotspot traces. The step-by-step instructions and guided inquiry approach lead students through each activity, thus reducing the need for teacher intervention whilst also boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities

  7. β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

    Science.gov (United States)

    Karimi Galougahi, Keyvan; Liu, Chia-Chi; Garcia, Alvaro; Fry, Natasha A; Hamilton, Elisha J; Figtree, Gemma A; Rasmussen, Helge H

    2015-09-01

    Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. Copyright © 2015 the American Physiological Society.

  8. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Directory of Open Access Journals (Sweden)

    Takanobu Nagata

    Full Text Available Myocardial ischemia reperfusion injury (IRI adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS-3, an intrinsic negative feedback regulator of the Janus kinase (JAK-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO. The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1 was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.

  9. Cardiac Intensive Care Unit Management of Patients After Cardiac Arrest: Now the Real Work Begins.

    Science.gov (United States)

    Randhawa, Varinder K; Grunau, Brian E; Debicki, Derek B; Zhou, Jian; Hegazy, Ahmed F; McPherson, Terry; Nagpal, A Dave

    2018-02-01

    Survival with a good quality of life after cardiac arrest continues to be abysmal. Coordinated resuscitative care does not end with the effective return of spontaneous circulation (ROSC)-in fact, quite the contrary is true. Along with identifying and appropriately treating the precipitating cause, various components of the post-cardiac arrest syndrome also require diligent observation and management, including post-cardiac arrest neurologic injury and myocardial dysfunction, systemic ischemia-reperfusion phenomenon with potential consequent multiorgan failure, and the various sequelae of critical illness. There is growing evidence that an early invasive approach to coronary reperfusion with percutaneous coronary intervention, together with active targeted temperature management and optimization of hemodynamic, ventilator, and metabolic parameters, may improve survival and neurologic outcomes in cardiac arrest survivors. Neuroprognostication is complex, as are survivorship issues and long-term rehabilitation. Our paramedics, emergency physicians, and resuscitation specialists are all to be congratulated for ever-increasing success with ROSC… but now the real work begins. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  10. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  11. Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles.

    Science.gov (United States)

    Chiappini, Ciro; Campagnolo, Paola; Almeida, Carina S; Abbassi-Ghadi, Nima; Chow, Lesley W; Hanna, George B; Stevens, Molly M

    2015-09-16

    Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide-based Cathepsin B cleavable sensor over a large array of nano-needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cardiac tamponade: contrast reflux as an indicator of cardiac chamber equalization

    Directory of Open Access Journals (Sweden)

    Nauta Foeke Jacob

    2012-05-01

    Full Text Available Abstract Background Traumatic hemopericardium remains a rare entity; it does however commonly cause cardiac tamponade which remains a major cause of death in traumatic blunt cardiac injury. Objectives We present a case of blunt chest trauma complicated by cardiac tamponade causing cardiac chamber equalization revealed by reflux of contrast. Case report A 29-year-old unidentified male suffered blunt chest trauma in a motor vehicle collision. Computed tomography (CT demonstrated a periaortic hematoma and hemopericardium. Significant contrast reflux was seen in the inferior vena cava and hepatic veins suggesting a change in cardiac chamber pressures. After intensive treatment including cardiac massage this patient expired of cardiac arrest. Conclusion Reflux of contrast on CT imaging can be an indicator of traumatic cardiac tamponade.

  13. Living cardiac patch: the elixir for cardiac regeneration.

    Science.gov (United States)

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  14. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  15. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  16. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging.

    Science.gov (United States)

    Ma, Chi; Varghese, Tomy

    2012-04-01

    Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.

  17. Response of cardiac endothelial nitric oxide synthase to plasma viscosity modulation in acute isovolemic hemodilution

    Directory of Open Access Journals (Sweden)

    Kanyanatt Kanokwiroon

    2014-01-01

    Full Text Available Background: Endothelial nitric oxide synthase (eNOS is generally expressed in endocardial cells, vascular endothelial cells and ventricular myocytes. However, there is no experimental study elucidating the relationship between cardiac eNOS expression and elevated plasma viscosity in low oxygen delivery pathological conditions such as hemorrhagic shock-resuscitation and hemodilution. This study tested the hypothesis that elevated plasma viscosity increases cardiac eNOS expression in a hemodilution model, leading to positive effects on cardiac performance. Materials and Methods: Two groups of golden Syrian hamster underwent an acute isovolemic hemodilution where 40% of blood volume was exchanged with 2% (low-viscogenic plasma expander [LVPE] or 6% (high-viscogenic plasma expander [HVPE] of dextran 2000 kDa. In control group, experiment was performed without hemodilution. All groups were performed in awake condition. Experimental parameters, i.e., mean arterial blood pressure (MAP, heart rate, hematocrit, blood gas content and viscosity, were measured. The eNOS expression was evaluated by eNOS Western blot analysis. Results: After hemodilution, MAP decreased to 72% and 93% of baseline in the LVPE and HVPE, respectively. Furthermore, pO 2 in the LVPE group increased highest among the groups. Plasma viscosity in the HVPE group was significantly higher than that in control and LVPE groups. The expression of eNOS in the HVPE group showed higher intensity compared to other groups, especially compared with the control group. Conclusion: Our results demonstrated that cardiac eNOS has responded to plasma viscosity modulation with HVPE and LVPE. This particularly supports the previous studies that revealed the positive effects on cardiac function in animals hemodiluted with HVPE.

  18. A novel intra-operative, high-resolution atrial mapping approach.

    Science.gov (United States)

    Yaksh, Ameeta; van der Does, Lisette J M E; Kik, Charles; Knops, Paul; Oei, Frans B S; van de Woestijne, Pieter C; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S

    2015-12-01

    A new technique is demonstrated for extensive high-resolution intra-operative atrial mapping that will facilitate the localization of atrial fibrillation (AF) sources and identification of the substrate perpetuating AF. Prior to the start of extra-corporal circulation, a 8 × 24-electrode array (2-mm inter-electrode distance) is placed subsequently on all the right and left epicardial atrial sites, including Bachmann's bundle, for recording of unipolar electrograms during sinus rhythm and (induced) AF. AF is induced by high-frequency pacing at the right atrial free wall. A pacemaker wire stitched to the right atrium serves as a reference signal. The indifferent pole is connected to a steal wire fixed to subcutaneous tissue. Electrograms are recorded by a computerized mapping system and, after amplification (gain 1000), filtering (bandwidth 0.5-400 Hz), sampling (1 kHz) and analogue to digital conversion (16 bits), automatically stored on hard disk. During the mapping procedure, real-time visualization secures electrogram quality. Analysis will be performed offline. This technique was performed in 168 patients of 18 years and older, with coronary and/or structural heart disease, with or without AF, electively scheduled for cardiac surgery and a ventricular ejection fraction above 40 %. The mean duration of the entire mapping procedure including preparation time was 9 ± 2 min. Complications related to the mapping procedure during or after cardiac surgery were not observed. We introduce the first epicardial atrial mapping approach with a high resolution of ≥1728 recording sites which can be performed in a procedure time of only 9±2 mins. This mapping technique can potentially identify areas responsible for initiation and persistence of AF and hopefully can individualize both diagnosis and therapy of AF.

  19. Bull's-eye map of myocardial perfusion MR imaging. Comparison with SPECT

    International Nuclear Information System (INIS)

    Nomura, Yukihiro; Nanjo, Shuji; Yamazaki, Junichi; Yoshikawa, Kohki; Inoue, Yusuke

    2003-01-01

    When diagnosing heart disease, chest roentgenograms, ultrasonography, single-photon emission computed tomography (SPECT), and coronary arteriography are usually performed. Magnetic resonance (MR) imaging is not widely used for evaluating heart disease. Recent technological progress has allowed high quality images of the heart to be reliably obtained. A routine MR study taking about 30-40 minutes can provide a large amount of diagnostic information, such as cardiac structure, function, perfusion, and myocardial viability. The analysis software that can offer Bull's-eye maps from myocardial perfusion images has recently become commercially available. In this study, the characteristics of Bull's-eye mapping of MR imaging is compared with that of Bull's-eye mapping of SPECT using the same heart phantom. The difference in the image quality of the Bull's-eye maps was evaluated among the receiver coils of MR imaging. On Bull's-eye maps from both MR imaging and SPECT, decreased signal intensity was noted in the posterolateral wall. The degree of decrease in the signal of the MR imaging was more prominent than of SPECT. The decrease was severe for the general-purpose receive-only flexible (GPFLEX) coil, moderate for the cardiac and TORSO coil, and slight for the body coil. In the selection of a coil, it is necessary to take into consideration the trade-off between the distribution of signal intensity and the signal-to-noise ratio (SNR). (author)

  20. A study of reconstruction accuracy for a cardiac SPECT system with multi-segmental collimation

    International Nuclear Information System (INIS)

    Yu, D.C.; Chang, W.; Pan, T.S.

    1996-01-01

    To improve the geometric efficiency of cardiac SPECT imaging, we have previously proposed to use a ring geometry and a multi-segmental collimation. The proposed collimation consists of multiple parallel collimators with most of the segments focused on a small central region, where the patient heart should be positioned. This scheme provides an significantly increased detection efficiency for the central region, but at the expense of reduced efficiency for the surrounding background. We have used computer simulations to evaluate the implication of this scheme on the accuracy of the reconstructed cardiac images. Two imaging situations were simulated, one with the heart well placed in the center, the other with the heart shifted outward and partially outside the central region; a neighboring high uptake liver was also simulated. The images were reconstructed with ML-EM and OS-EM methods using a complete attenuation map. The results indicate the deviation caused by truncation is not significant and is not strongly dependent on the activity of the liver when the heart is well positioned within the central region. The distribution of activity in the myocardium reconstructed with ML-EM or OS-EM is not sensitive to the noisy projections sampled from the background. When the heart is positioned improperly, the image reconstructed from the hybrid emission (a combination of high-count projections through the central region and low-count background projections) can restore the activity for the myocardium with increased noise variances in the section outside the central region

  1. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    Science.gov (United States)

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  2. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  3. Advanced Cardiac Life Support.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  4. Initial Efficacy of a Cardiac Rehabilitation Transition Program: Cardiac TRUST

    Science.gov (United States)

    Zullo, Melissa; Boxer, Rebecca; Moore, Shirley M.

    2012-01-01

    Patients recovering from cardiac events are increasingly using postacute care, such as home health care and skilled nursing facility services. The purpose of this pilot study was to test the initial efficacy, feasibility, and safety of a specially designed postacute care transitional rehabilitation intervention for cardiac patients. Cardiac Transitional Rehabilitation Using Self- Management Techniques (Cardiac TRUST) is a family-focused intervention that includes progressive low-intensity walking and education in self-management skills to facilitate recovery following a cardiac event. Using a randomized two-group design, exercise self-efficacy, steps walked, and participation in an outpatient cardiac rehabilitation program were compared in a sample of 38 older adults; 17 who received the Cardiac TRUST program and 21 who received usual care only. At discharge from postacute care, the intervention group had a trend for higher levels of self-efficacy for exercise outcomes (X=39.1, SD=7.4) than the usual care group (X=34.5; SD=7.0) (t-test 1.9, p=.06). During the 6 weeks following discharge, compared with the usual care group, the intervention group had more attendance in out-patient cardiac rehabilitation (33% compared to 11.8%, F=7.1, p=.03) and a trend toward more steps walked during the first week (X=1,307, SD=652 compared to X=782, SD=544, t-test 1.8, p=.07). The feasibility of the intervention was better for the home health participants than for those in the skilled nursing facility and there were no safety concerns. The provision of cardiac-focused rehabilitation during postacute care has the potential to bridge the gap in transitional services from hospitalization to outpatient cardiac rehabilitation for these patients at high risk for future cardiac events. Further evidence of the efficacy of Cardiac TRUST is warranted. PMID:22084960

  5. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    Science.gov (United States)

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  6. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    Science.gov (United States)

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  7. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  8. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  9. Deletion of FoxO1 Leads to Shortening of QRS by Increasing Na+ Channel Activity through Enhanced Expression of both Cardiac NaV1.5 and β3 Subunit

    OpenAIRE

    Cai, Benzhi; Wang, Ning; Mao, Weike; You, Tao; Lu, Yan; Li, Xiang; Ye, Bo; Li, Faqian; Xu, Haodong

    2014-01-01

    Our in vitro studies revealed that a transcription factor, Forkhead box protein O1 (FoxO1), negatively regulates the expression of NaV1.5, a main α subunit of the cardiac Na+ channel, by altering the promoter activity of SCN5a in HL-1 cardiomyocytes. The in vivo role of FoxO1 in the regulation of cardiac NaV1.5 expression remains unknown. The present study aimed to define the role of FoxO1 in the regulation of NaV1.5 expression and cardiac Na+ channel activity in mouse ventricular cardiomyocy...

  10. Exercise improves cardiac autonomic function in obesity and diabetes.

    Science.gov (United States)

    Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul

    2013-05-01

    Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. In vivo cardiac role of migfilin during experimental pressure overload.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Moik, Daniel; Schuetz, Thomas; Reiner, Martin F; Voelkl, Jakob G; Streil, Katrin; Bader, Kerstin; Zhao, Lei; Scheu, Claudia; Mair, Johannes; Pachinger, Otmar; Metzler, Bernhard

    2015-06-01

    Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Inpatient cardiac rehabilitation programs' exercise therapy for patients undergoing cardiac surgery: National Korean Questionnaire Survey.

    Science.gov (United States)

    Seo, Yong Gon; Jang, Mi Ja; Park, Won Hah; Hong, Kyung Pyo; Sung, Jidong

    2017-02-01

    Inpatient cardiac rehabilitation (ICR) has been commonly conducted after cardiac surgery in many countries, and has been reported a lots of results. However, until now, there is inadequacy of data on the status of ICR in Korea. This study described the current status of exercise therapy in ICR that is performed after cardiac surgery in Korean hospitals. Questionnaires modified by previous studies were sent to the departments of thoracic surgery of 10 hospitals in Korea. Nine replies (response rate 90%) were received. Eight nurses and one physiotherapist completed the questionnaire. Most of the education on wards after cardiac surgery was conducted by nurses. On postoperative day 1, four sites performed sitting on the edge of bed, sit to stand, up to chair, and walking in the ward. Only one site performed that exercise on postoperative day 2. One activity (stairs up and down) was performed on different days at only two sites. Patients received education preoperatively and predischarge for preventing complications and reducing muscle weakness through physical inactivity. The results of the study demonstrate that there are small variations in the general care provided by nurses after cardiac surgery. Based on the results of this research, we recommended that exercise therapy programs have to conduct by exercise specialists like exercise physiologists or physiotherapists for patients in hospitalization period.

  13. Pharmacological targeting of CDK9 in cardiac hypertrophy.

    Science.gov (United States)

    Krystof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, Jirí

    2010-07-01

    Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.

  14. The characterisation of blood rotation in a human heart chamber based on statistical analysis of vorticity maps

    Science.gov (United States)

    Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Stephen G.; Sanders, Prashanthan; Mazumdar, Jagannath; Abbott, Derek

    2008-12-01

    Modelling of non-stationary cardiac structures is complicated by the complexity of their intrinsic and extrinsic motion. The first known study of haemodynamics due to the beating of heart was made by Leonardo Da Vinci, giving the idea of fluid-solid interaction by describing how vortices develop during cardiac structural interaction with the blood. Heart morphology affects in changes of cardio dynamics during the systolic and diastolic phrases. In a chamber of the heart, vortices are discovered to exist as the result of the unique morphological changes of the cardiac chamber wall by using flow-imaging techniques such as phase contrast magnetic resonance imaging. The first part of this paper attempts to quantify vortex characteristics by means of calculating vorticity numerically and devising two dimensional vortical flow maps. The technique relies on determining the properties of vorticity using a statistical quantification of the flow maps and comparison of these quantities based on different scenarios. As the characteristics of our vorticity maps vary depending on the phase of a cardiac cycle, there is a need for robust quantification method to analyse vorticity. In the second part of the paper, the approach is then utilised for examining vortices within the human right atrium. Our study has shown that a proper quantification of vorticity for the flow field can indicate the strength and number of vortices within a heart chamber.

  15. Biomarkers for cardiac cachexia: reality or utopia.

    Science.gov (United States)

    Martins, Telma; Vitorino, Rui; Amado, Francisco; Duarte, José Alberto; Ferreira, Rita

    2014-09-25

    Cardiac cachexia is a serious complication of chronic heart failure, characterized by significant weight loss and body wasting. Chronic heart failure-related muscle wasting results from a chronic imbalance in the activation of anabolic or catabolic pathways, caused by a series of immunological, metabolic, and neurohormonal processes. In spite of the high morbidity and mortality associated to this condition, there is no universally accepted definition or specific biomarkers for cardiac cachexia, which makes its diagnosis and treatment difficult. Several hormonal, inflammatory and oxidative stress molecules have been proposed as serological markers of prognosis in cardiac cachexia but with doubtful success. As individual biomarkers may have limited sensitivity and specificity, multimarker strategies involving mediators of the biological processes modulated by cardiac cachexia will strongly contribute for the diagnosis and management of the disease, as well as for the establishment of new therapeutic targets. An integrated analysis of the biomarkers proposed so far for cardiac cachexia is made in the present review, highlighting the biological processes to which they are related. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Alterations in cardiac autonomic control in spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan

    2018-01-01

    parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update...

  17. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Science.gov (United States)

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  18. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Fangyun Tian

    2018-02-01

    Full Text Available Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG and electroencephalogram (EEG signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  19. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  20. Chronic activation of the low affinity site of β1-adrenoceptors stimulates haemodynamics but exacerbates pressure-overload cardiac remodelling

    Science.gov (United States)

    Kiriazis, Helen; Tugiono, Niquita; Xu, Qi; Gao, Xiao-Ming; Jennings, Nicole L; Ming, Ziqui; Su, Yidan; Klenowski, Paul; Summers, Roger J; Kaumann, Alberto; Molenaar, Peter; Du, Xiao-Jun

    2013-01-01

    BACKGROUND AND PURPOSE The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. EXPERIMENTAL APPROACH C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. KEY RESULTS (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. CONCLUSIONS AND IMPLICATIONS β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. PMID:23750586

  1. Cardiac tumors: optimal cardiac MR sequences and spectrum of imaging appearances.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2012-02-01

    OBJECTIVE: This article reviews the optimal cardiac MRI sequences for and the spectrum of imaging appearances of cardiac tumors. CONCLUSION: Recent technologic advances in cardiac MRI have resulted in the rapid acquisition of images of the heart with high spatial and temporal resolution and excellent myocardial tissue characterization. Cardiac MRI provides optimal assessment of the location, functional characteristics, and soft-tissue features of cardiac tumors, allowing accurate differentiation of benign and malignant lesions.

  2. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    Science.gov (United States)

    Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.

    2015-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287

  3. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  4. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  5. Patient perceptions of experience with cardiac rehabilitation after isolated heart valve surgery

    DEFF Research Database (Denmark)

    Hansen, Tina B; Berg, Selina K; Sibilitz, Kirstine L

    2018-01-01

    in a cardiac rehabilitation programme, and none have analysed their experiences with it. AIMS: The purpose of this qualitative analysis was to gain insight into patients' experiences in cardiac rehabilitation, the CopenHeartVR trial. This trial specifically assesses patients undergoing isolated heart valve...... to take active personal responsibility for their health. Despite these benefits, participants experienced existential and psychological challenges and musculoskeletal problems. Participants also sought additional advice from healthcare professionals both inside and outside the healthcare system....... CONCLUSIONS: Even though the cardiac rehabilitation programme reduced insecurity and helped participants take active personal responsibility for their health, they experienced existential, psychological and physical challenges during recovery. The cardiac rehabilitation programme had several limitations...

  6. Study on incidence of pulmonary embolism in patients with cardiac pacemakers using lung perfusion mapping and ventilation scanning

    International Nuclear Information System (INIS)

    Yamashina, Hideki; Higo, Masanori; Sueda, Takashi

    1990-01-01

    We investigated pulmonary perfusion mapping and ventilation scanning employing 99mTC-MMA and 81mKr-Gas in patients with DDD and VVI cardiac pacemaker implantation. In 51 cases among 175 patients we observed some defects which matched the results from lung perfusion scanning in the pulmonary segments and sub-segments. These were diagnosed as pulmonary embolism after the possibility of other pulmonary diseases was rejected. The incidence rate of pulmonary embolism in patients with VVI (Ventricular pacing/sensing, inhibited type) pacemakers was 47 out of 138, or 34.1%, especially for those who received a pulmonary scanning examination whithin 6 months after pacemaker implantation. In contrast, those who were examined after 6 months had lower rates as well as chronological factors. The incidence rate of pulmonary embolism in 37 patients with DDD (Double chamber pacing/sensing, double modes of response) pacemakers was 10.8%, considerably lower than that for patients with VVI pacemakers. Therefore, one main factor of pulmonary embolism in patients with pacemakers could be the non-physiological phase of the contractions of both atria and ventricles. Other factors, such as the presence of foreign bodies in the endocardium, aging, and hypertension, could also promote pulmonary embolism. (author)

  7. C.A.U.S.E.: Cardiac arrest ultra-sound exam--a better approach to managing patients in primary non-arrhythmogenic cardiac arrest.

    Science.gov (United States)

    Hernandez, Caleb; Shuler, Klaus; Hannan, Hashibul; Sonyika, Chionesu; Likourezos, Antonios; Marshall, John

    2008-02-01

    Cardiac arrest is a condition frequently encountered by physicians in the hospital setting including the Emergency Department, Intensive Care Unit and medical/surgical wards. This paper reviews the current literature involving the use of ultrasound in resuscitation and proposes an algorithmic approach for the use of ultrasound during cardiac arrest. At present there is the need for a means of differentiating between various causes of cardiac arrest, which are not a direct result of a primary ventricular arrhythmia. Identifying the cause of pulseless electrical activity or asystole is important as the underlying cause is what guides management in such cases. This approach, incorporating ultrasound to manage cardiac arrest aids in the diagnosis of the most common and easily reversible causes of cardiac arrest not caused by primary ventricular arrhythmia, namely; severe hypovolemia, tension pneumothorax, cardiac tamponade, and massive pulmonary embolus. These four conditions are addressed in this paper using four accepted emergency ultrasound applications to be performed during resuscitation of a cardiac arrest patient with the aim of determining the underlying cause of a cardiac arrest. Identifying the underlying cause of cardiac arrest represents the one of the greatest challenges of managing patients with asystole or PEA and accurate determination has the potential to improve management by guiding therapeutic decisions. We include several clinical images demonstrating examples of cardiac tamponade, massive pulmonary embolus, and severe hypovolemia secondary to abdominal aortic aneurysm. In conclusion, this protocol has the potential to reduce the time required to determine the etiology of a cardiac arrest and thus decrease the time between arrest and appropriate therapy.

  8. A case of thyroid storm with cardiac arrest

    Directory of Open Access Journals (Sweden)

    Nakashima Y

    2014-05-01

    Full Text Available Yutaka Nakashima,1 Tsuneaki Kenzaka,2 Masanobu Okayama,3 Eiji Kajii31Department for Support of Rural Medicine, Yamaguchi Grand Medical Center, 2Division of General Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan; 3Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, JapanAbstract: A 23-year-old man became unconscious while jogging. He immediately received basic life support from a bystander and was transported to our hospital. On arrival, his spontaneous circulation had returned from a state of ventricular fibrillation and pulseless electrical activity. Following admission, hyperthyroidism led to a suspicion of thyroid storm, which was then diagnosed as a possible cause of the cardiac arrest. Although hyperthyroidism-induced cardiac arrest including ventricular fibrillation is rare, it should be considered when diagnosing the cause of treatable cardiac arrest.Keywords: hyperthyroidism, ventricular fibrillation, treatable cardiac arrest, cardiac arrest, cardiopulmonary arrest

  9. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  10. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  11. Intrinsic cardiac nervous system in tachycardia induced heart failure.

    Science.gov (United States)

    Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew

    2003-11-01

    The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to

  12. Mapping auroral activity with Twitter

    Science.gov (United States)

    Case, N. A.; MacDonald, E. A.; Heavner, M.; Tapia, A. H.; Lalone, N.

    2015-05-01

    Twitter is a popular, publicly accessible, social media service that has proven useful in mapping large-scale events in real time. In this study, for the first time, the use of Twitter as a measure of auroral activity is investigated. Peaks in the number of aurora-related tweets are found to frequently coincide with geomagnetic disturbances (detection rate of 91%). Additionally, the number of daily aurora-related tweets is found to strongly correlate with several auroral strength proxies (ravg≈0.7). An examination is made of the bias for location and time of day within Twitter data, and a first-order correction of these effects is presented. Overall, the results suggest that Twitter can provide both specific details about an individual aurora and accurate real-time indication of when, and even from where, an aurora is visible.

  13. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo.

    Science.gov (United States)

    Bueno, O F; De Windt, L J; Lim, H W; Tymitz, K M; Witt, S A; Kimball, T R; Molkentin, J D

    2001-01-19

    Mitogen-activated protein kinase (MAPK) signaling pathways are important regulators of cell growth, proliferation, and stress responsiveness. A family of dual-specificity MAP kinase phosphatases (MKPs) act as critical counteracting factors that directly regulate the magnitude and duration of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. Here we show that constitutive expression of MKP-1 in cultured primary cardiomyocytes using adenovirus-mediated gene transfer blocked the activation of p38, JNK1/2, and ERK1/2 and prevented agonist-induced hypertrophy. Transgenic mice expressing physiological levels of MKP-1 in the heart showed (1) no activation of p38, JNK1/2, or ERK1/2; (2) diminished developmental myocardial growth; and (3) attenuated hypertrophy in response to aortic banding and catecholamine infusion. These results provide further evidence implicating MAPK signaling factors as obligate regulators of cardiac growth and hypertrophy and demonstrate the importance of dual-specificity phosphatases as counterbalancing regulatory factors in the heart.

  14. Cardiac metaiodobenzylguanidine activity can predict the long-term efficacy of angiotensin-converting enzyme inhibitors and/or beta-adrenoceptor blockers in patients with heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Tomoaki; Wakabayashi, Takeru; Kyuma, Michifumi; Takahashi, Toru; Tsuchihashi, Kazufumi; Shimamoto, Kazuaki [Sapporo Medical University School of Medicine, Second Department of Internal Medicine (Cardiology), Sapporo (Japan)

    2005-02-01

    Although the benefits of treatment with angiotensin-converting enzyme (ACE) inhibitors and beta-blockers are well known, no method has as yet been established to predict the efficacy of drug therapy. This study tested whether cardiac{sup 123}I-metaiodobenzylguanidine (MIBG) activity is of prognostic value and can predict the improvement in heart failure patients resulting from treatment with ACE inhibitors and/or beta-blockers. Following quantification of the heart-to-mediastinum ratio (HMR) of MIBG activity, 88 patients with heart failure who were treated with ACE inhibitors and/or beta-blockers (treated group) and 79 patients with heart failure who were treated conventionally without the aforementioned agents, and who served as controls, were followed up for 43 months with a primary endpoint of cardiac death. The treated group had a significantly lower prevalence of cardiac death and a significantly lower mortality at 5 years compared with the control group (15% vs 37% and 21% vs 42%, p<0.05, respectively). Multivariate analysis revealed that significant predictors were HMR, age, nitrate use and ventricular tachycardia for the treated group, and HMR, nitrate use and NYHA class for the control group. The drug treatment significantly reduced mortality from 36% to 12% when HMR was 1.53 or more and from 53% to 37% when HMR was less than 1.53. The reduction in risk of mortality within 5 years in patients without a severe MIBG defect (67%) was twice that in patients with such a defect (32%) (p<0.05). The reduction in mortality risk achieved by using ACE inhibitors and/or beta-blockers is associated with the severity of impairment of cardiac MIBG uptake. Cardiac MIBG activity can consequently be of long-term prognostic value in predicting the effectiveness of such treatment in patients with heart failure. (orig.)

  15. Cardiac metaiodobenzylguanidine activity can predict the long-term efficacy of angiotensin-converting enzyme inhibitors and/or beta-adrenoceptor blockers in patients with heart failure

    International Nuclear Information System (INIS)

    Nakata, Tomoaki; Wakabayashi, Takeru; Kyuma, Michifumi; Takahashi, Toru; Tsuchihashi, Kazufumi; Shimamoto, Kazuaki

    2005-01-01

    Although the benefits of treatment with angiotensin-converting enzyme (ACE) inhibitors and beta-blockers are well known, no method has as yet been established to predict the efficacy of drug therapy. This study tested whether cardiac 123 I-metaiodobenzylguanidine (MIBG) activity is of prognostic value and can predict the improvement in heart failure patients resulting from treatment with ACE inhibitors and/or beta-blockers. Following quantification of the heart-to-mediastinum ratio (HMR) of MIBG activity, 88 patients with heart failure who were treated with ACE inhibitors and/or beta-blockers (treated group) and 79 patients with heart failure who were treated conventionally without the aforementioned agents, and who served as controls, were followed up for 43 months with a primary endpoint of cardiac death. The treated group had a significantly lower prevalence of cardiac death and a significantly lower mortality at 5 years compared with the control group (15% vs 37% and 21% vs 42%, p<0.05, respectively). Multivariate analysis revealed that significant predictors were HMR, age, nitrate use and ventricular tachycardia for the treated group, and HMR, nitrate use and NYHA class for the control group. The drug treatment significantly reduced mortality from 36% to 12% when HMR was 1.53 or more and from 53% to 37% when HMR was less than 1.53. The reduction in risk of mortality within 5 years in patients without a severe MIBG defect (67%) was twice that in patients with such a defect (32%) (p<0.05). The reduction in mortality risk achieved by using ACE inhibitors and/or beta-blockers is associated with the severity of impairment of cardiac MIBG uptake. Cardiac MIBG activity can consequently be of long-term prognostic value in predicting the effectiveness of such treatment in patients with heart failure. (orig.)

  16. Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure.

    Science.gov (United States)

    Yamada, Yuko; Kinoshita, Hideyuki; Kuwahara, Koichiro; Nakagawa, Yasuaki; Kuwabara, Yoshihiro; Minami, Takeya; Yamada, Chinatsu; Shibata, Junko; Nakao, Kazuhiro; Cho, Kosai; Arai, Yuji; Yasuno, Shinji; Nishikimi, Toshio; Ueshima, Kenji; Kamakura, Shiro; Nishida, Motohiro; Kiyonaka, Shigeki; Mori, Yasuo; Kimura, Takeshi; Kangawa, Kenji; Nakao, Kazuwa

    2014-10-01

    Dysregulation of autonomic nervous system activity can trigger ventricular arrhythmias and sudden death in patients with heart failure. N-type Ca(2+) channels (NCCs) play an important role in sympathetic nervous system activation by regulating the calcium entry that triggers release of neurotransmitters from peripheral sympathetic nerve terminals. We have investigated the ability of NCC blockade to prevent lethal arrhythmias associated with heart failure. We compared the effects of cilnidipine, a dual N- and L-type Ca(2+) channel blocker, with those of nitrendipine, a selective L-type Ca(2+) channel blocker, in transgenic mice expressing a cardiac-specific, dominant-negative form of neuron-restrictive silencer factor (dnNRSF-Tg). In this mouse model of dilated cardiomyopathy leading to sudden arrhythmic death, cardiac structure and function did not significantly differ among the control, cilnidipine, and nitrendipine groups. However, cilnidipine dramatically reduced arrhythmias in dnNRSF-Tg mice, significantly improving their survival rate and correcting the imbalance between cardiac sympathetic and parasympathetic nervous system activity. A β-blocker, bisoprolol, showed similar effects in these mice. Genetic titration of NCCs, achieved by crossing dnNRSF-Tg mice with mice lacking CACNA1B, which encodes the α1 subunit of NCCs, improved the survival rate. With restoration of cardiac autonomic balance, dnNRSF-Tg;CACNA1B(+/-) mice showed fewer malignant arrhythmias than dnNRSF-Tg;CACNA1B(+/+) mice. Both pharmacological blockade of NCCs and their genetic titration improved cardiac autonomic balance and prevented lethal arrhythmias in a mouse model of dilated cardiomyopathy and sudden arrhythmic death. Our findings suggest that NCC blockade is a potentially useful approach to preventing sudden death in patients with heart failure. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  17. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    Science.gov (United States)

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  18. Reversible blockade of complex I or inhibition of PKCβ reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia.

    Directory of Open Access Journals (Sweden)

    Meiying Yang

    Full Text Available Excess mitochondrial reactive oxygen species (mROS play a vital role in cardiac ischemia reperfusion (IR injury. P66Shc, a splice variant of the ShcA adaptor protein family, enhances mROS production by oxidizing reduced cytochrome c to yield H2O2. Ablation of p66Shc protects against IR injury, but it is unknown if and when p66Shc is activated during cardiac ischemia and/or reperfusion and if attenuating complex I electron transfer or deactivating PKCβ alters p66Shc activation during IR is associated with cardioprotection.Isolated guinea pig hearts were perfused and subjected to increasing periods of ischemia and reperfusion with or without amobarbital, a complex I blocker, or hispidin, a PKCβ inhibitor. Phosphorylation of p66Shc at serine 36 and levels of p66Shc in mitochondria and cytosol were measured. Cardiac functional variables and redox states were monitored online before, during and after ischemia. Infarct size was assessed in some hearts after 120 min reperfusion.Phosphorylation of p66Shc and its translocation into mitochondria increased during reperfusion after 20 and 30 min ischemia, but not during ischemia only, or during 5 or 10 min ischemia followed by 20 min reperfusion. Correspondingly, cytosolic p66Shc levels decreased during these ischemia and reperfusion periods. Amobarbital or hispidin reduced phosphorylation of p66Shc and its mitochondrial translocation induced by 30 min ischemia and 20 min reperfusion. Decreased phosphorylation of p66Shc by amobarbital or hispidin led to better functional recovery and less infarction during reperfusion.Our results show that IR activates p66Shc and that reversible blockade of electron transfer from complex I, or inhibition of PKCβ activation, decreases p66Shc activation and translocation and reduces IR damage. These observations support a novel potential therapeutic intervention against cardiac IR injury.

  19. Cardiac function and cognition in older community-dwelling cardiac patients.

    Science.gov (United States)

    Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A

    2017-11-01

    Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.

  20. Secondary prevention through cardiac rehabilitation: physical activity counselling and exercise training: key components of the position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation

    DEFF Research Database (Denmark)

    Corrà, Ugo; Piepoli, Massimo F; Carré, François

    2010-01-01

    , exercise training, diet/nutritional counselling, weight control management, lipid management, blood pressure monitoring, smoking cessation, and psychosocial management. Cardiac rehabilitation services are by definition multi-factorial and comprehensive, with physical activity counselling and exercise...... training as central components in all rehabilitation and preventive interventions. Many of the risk factor improvements occurring in CR can be mediated through exercise training programmes. This call-for-action paper presents the key components of a CR programme: physical activity counselling and exercise...

  1. Cardiac function and cognition in older community-dwelling cardiac patients

    NARCIS (Netherlands)

    Eggermont, Laura H.P.; Aly, Mohamed F.A.; Vuijk, Pieter J.; de Boer, Karin; Kamp, Otto; van Rossum, Albert C.; Scherder, Erik J.A.

    2017-01-01

    Background: Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older

  2. Cardiac sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Jacobson, M.S.; Ambudkar, I.S.; Young, E.P.; Naseem, S.M.; Heald, F.P.; Shamoo, A.E.

    1985-01-01

    The effect on the cardiac sarcoplasmic reticulum of an atherogenic (1% cholesterol) diet fed during the neonatal vs the juvenile period of life was studied in Yorkshire swine. Male piglets were randomly assigned at birth to 1 of 4 groups: group I (control), group II (lactation feeding), group III (juvenile period feeding) and group IV (lactation and juvenile feeding). All animals were killed at 55 weeks of age and cardiac sarcoplasmic reticulum (SR) isolated for assay of calcium uptake, Ca 2+ -Mg 2+ ATPase activity, and lipid analysis by thin-layer chromatography and gas chromatography. The amount of cholesterol/mg SR protein and the cholesterol/phospholipid ratio were higher in the animals fed during lactation (groups II and IV) and lower in those fed only during the juvenile period (group III). Phospholipid fatty acid patterns as measured by gas chromatography were unaltered in any group. Calcium uptake was markedly diminished in all experimental conditions: group II 47%, group III 65% and group IV 96%. Compared to the observed changes in calcium transport, the ATP hydrolytic activity was relatively less affected. Only in group IV a significant decrease (41%) was seen. Groups II and III show no change in ATP hydrolytic activity. The decrease in calcium uptake and altered cholesterol/phospholipid ratio without effect on ATP hydrolytic activity is consistent with an uncoupling of calcium transport related to the atherogenic diet in early life. (author)

  3. Pioglitazone reverses down-regulation of cardiac PPARγ expression in Zucker diabetic fatty rats

    International Nuclear Information System (INIS)

    Pelzer, Theo; Jazbutyte, Virginija; Arias-Loza, Paula Anahi; Segerer, Stephan; Lichtenwald, Margit; Law, Marilyn P.; Schaefers, Michael; Ertl, Georg; Neyses, Ludwig

    2005-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARγ in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARγ agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARγ, glucose transporter-4 and α-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARγ, glut-4, and α-MHC expression levels in diabetic ZDF rats. Cardiac [ 18 F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARγ agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARγ expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin

  4. Effect of the adjuvant milrinone therapy on cardiac function, myocardial remodeling and RAAS system activity in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2017-09-01

    Full Text Available Objective: To explore the effect of the adjuvant milrinone therapy on cardiac function, myocardial remodeling and RAAS system activity in patients with chronic heart failure. Methods: A total of 110 patients with chronic heart failure who were treated in the hospital between January 2015 and January 2017 were divided into control group (n=55 and observation group (n=55 by random number table method. Control group received conventional therapy for chronic heart failure, and the observation group received milrinone on the basis of conventional therapy. The differences in ultrasound cardiac function and myocardial remodeling index levels as well as serum RAAS index contents were compared between the two groups before and after treatment. Results: Before treatment, the differences in ultrasound cardiac function and myocardial remodeling index levels as well as serum RAAS index contents were not statistically significant between the two groups. After treatment, CO and SV levels of both groups of patients were significantly higher than those before treatment while LADd, LVEDd, LVPWT, IVST and LVMI levels as well as serum PRA, AngⅡ and ALD contents were significantly lower than those before treatment, and CO and SV levels of observation group were significantly higher than those of control group while LADd, LVEDd, LVPWT, IVST and LVMI levels as well as serum PRA, AngⅡ and ALD contents were significantly lower than those of control group. Conclusion: Adjuvant milrinone therapy can effectively enhance the cardiac function, inhibit the myocardial remodeling and decrease the RAAS system activity in patients with chronic heart failure.

  5. Endovascular brain intervention and mapping in a dog experimental model using magnetically-guided micro-catheter technology.

    Science.gov (United States)

    Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J

    2014-06-01

    Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.

  6. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  7. A case of delayed cardiac perforation of active ventricular lead

    Directory of Open Access Journals (Sweden)

    Hangyuan Guo

    2011-12-01

    Full Text Available A 65-year-old man was admitted as for one month of repetitive dizziness and one episode of syncope. Electrocardiogram showed sinus bradycardia and his Holter monitoring also showed sinus bradycardia with sinus arrest, sino-atrial block and a longest pause of 4.3 s. Then sick sinus syndrome and Adam-Stokes syndrome were diagnosed. Then a dual chamber pacemaker (Medtronic SDR303 was implanted and the parameters were normal by detection. The patient was discharged 1 week later with suture removed. Then 1.5 month late the patient was presented to hospital once again for sudden onset of chest pain with exacerbation after taking deep breath. Pacemaker programming showed both pacing and sensing abnormality with threshold of?5.0V and resistance of 1200?. Lead perforation was revealed by chest X-ray and confirmed by echocardiogram. Considering the fact that there was high risk to remove ventricular lead, spiral tip of previous ventricular lead was withdrew followed by implantation of a new ventricular active lead to the septum. Previous ventricular lead was maintained. As we know that the complications of lead perforation in the clinic was rare. Here we discuss the clinical management and the possible reasons for cardiac perforation of active ventricular lead.

  8. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead.

    Science.gov (United States)

    Huang, Tsai-Lien; Huang, Hao-Jen

    2008-04-01

    Lead (Pb2+) is a cytotoxic metal ion in plants, the mechanism of which is not yet established. The aim of this study is to investigate the signalling pathways that are activated by elevated concentrations of Pb2+ in rice roots. Root growth was stunted and cell death was accelerated when exposed to different dosages of Pb2+ during extended time periods. Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb2+ induced ROS production and Ca2+ accumulation, respectively. In addition, Pb2+ elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analysis, 40- and 42-kDa MBP kinases that were activated by Pb2+ were identified to be mitogen-activated protein (MAP) kinases. Pre-treatment of rice roots with an antioxidant and a NADPH oxidase inhibitor, glutathione (GSH) and diphenylene iodonium (DPI), effectively reduced Pb2+-induced cell death and MAP kinase activation. Moreover, calcium-dependent protein kinase (CDPK) antagonist, W7, attenuated Pb2+-induced cell death and MAP kinase activation. These results suggested that the ROS and CDPK may function in the Pb2+-triggered cell death and MAP kinase signalling pathway in rice roots.

  9. Activity and Life After Survival of a Cardiac Arrest (ALASCA and the effectiveness of an early intervention service: design of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Bakx Wilbert GM

    2007-08-01

    Full Text Available Abstract Background Cardiac arrest survivors may experience hypoxic brain injury that results in cognitive impairments which frequently remain unrecognised. This may lead to limitations in daily activities and participation in society, a decreased quality of life for the patient, and a high strain for the caregiver. Publications about interventions directed at improving quality of life after survival of a cardiac arrest are scarce. Therefore, evidence about effective rehabilitation programmes for cardiac arrest survivors is urgently needed. This paper presents the design of the ALASCA (Activity and Life After Survival of a Cardiac Arrest trial, a randomised, controlled clinical trial to evaluate the effects of a new early intervention service for survivors of a cardiac arrest and their caregivers. Methods/design The study population comprises all people who survive two weeks after a cardiac arrest and are admitted to one of the participating hospitals in the Southern part of the Netherlands. In a two-group randomised, controlled clinical trial, half of the participants will receive an early intervention service. The early intervention service consists of several consultations with a specialised nurse for the patient and their caregiver during the first three months after the cardiac arrest. The intervention is directed at screening for cognitive problems, provision of informational, emotional and practical support, and stimulating self-management. If necessary, referral to specialised care can take place. Persons in the control group will receive the care as usual. The primary outcome measures are the extent of participation in society and quality of life of the patient one year after a cardiac arrest. Secondary outcome measures are the level of cognitive, emotional and cardiovascular impairment and daily functioning of the patient, as well as the strain for and quality of life of the caregiver. Participants and their caregivers will be followed

  10. 76 FR 77208 - Affirmation of Vertical Datum for Surveying and Mapping Activities for the Islands of St. Croix...

    Science.gov (United States)

    2011-12-12

    ... Datum for Surveying and Mapping Activities for the Islands of St. Croix, St. John, and St. Thomas... datum for surveying and mapping activities for the islands of St. Croix, St. John, and St. Thomas of the... by other Federal surveying and mapping agencies on St. Croix, St. John, and St. Thomas, with the...

  11. Normal and abnormal electrical activation of the heart. Imaging patterns obtained by phase analysis of equilibrium cardiac studies

    International Nuclear Information System (INIS)

    Pavel, D.; Byrom, E.; Swiryn, S.; Meyer-Pavel, C.; Rosen, K.

    1981-01-01

    By using a temporal Fourier analysis of gated equilibrium cardiac studies, phase images were obtained. These functional images were analysed qualitatively and quantitatively to determine if specific patterns can be found for normal versus abnormal electrical activation of the heart. The study included eight subjects with normal cardiac function and 24 patients with abnormal electrical activation: eight with left bundle branch block (LBBB), two with right bundle branch block (RBBB), six with Wolff-Parkinson-White syndrome (WPW), one with junctional rhythm, one with spontaneous sustained ventricular tachycardia (VT) (all with normal wall motion), two with chronic transvenous pacemakers, and four with induced sustained VT (all with regional wall motion abnormalities). The results show that the two ventricals have the same mean phase (within +-9 0 ) in normals, but significantly different mean phases in all patients with bundle branch blocks. Of the six WPW patients, three had a distinctive abnormal pattern. The patient with junctional rhythm, those with transvenous pacemakers, and those with VT all had abnormal patterns on the phase image. The phase image is capable of showing differences between patients with electrical activation and a variety of electrical abnormalities. Within the latter category distinct patterns can be associated with each type of abnormality. (author)

  12. Lysophosphatidylcholine (LPC) metabolism and cardiac arrhythmias

    International Nuclear Information System (INIS)

    Giffin, D.M.; Man, R.Y.K.; Arthur, G.; Choy, P.C.

    1986-01-01

    The effect of LPC in the production of cardiac arrhythmias in isolated mammalian hearts has been well-documented. Cardiac arrhythmias are initiated by the accumulation of the lysolipid in the cardiac membrane. When isolated rat hearts were perfused in 10 μM LPC for 10 min, severe arrhythmias were observed in all experiments. In isolated guinea pig hearts that were perfused under identical conditions, the development of severe arrhythmias was never observed, and mild arrhythmias were produced in less than 50% of the hearts used. When the hearts of both species were perfused with [ 14 C-palmitate]-LPC, the labellings found in the microsomal fractions (expressed in mg protein) were similar. However, a higher amount of labelled LPC (2-fold) was found in rat heart microsomes, whereas a higher amount of labelled fatty acid was located in the guinea pig heart microsomes. Determination of lysophospholipase activities in these microsomal fractions revealed that the specific activity of the enzyme was much higher in the guinea pig heart than the rat heart. The authors conclude that the differential effect of LPC-induced arrhythmias between the rat and guinea pig heart may be a direct result of the lysophospholipase activities in these hearts. The ability to catabolize LPC more rapidly in the guinea pig heart may decrease the accumulation of LPC in the membrane, and hence, reduce the production of arrhythmias

  13. Rapid and low-invasive functional brain mapping by realtime visualization of high gamma activity for awake craniotomy.

    Science.gov (United States)

    Kamada, K; Ogawa, H; Kapeller, C; Prueckl, R; Guger, C

    2014-01-01

    For neurosurgery with an awake craniotomy, the critical issue is to set aside enough time to identify eloquent cortices by electrocortical stimulation (ECS). High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram (ECoG) is assumed to reflect localized cortical processing. In this report, we used realtime HGA mapping and functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Three patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. After the craniotomy, we recorded ECoG activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated realtime HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared to ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. The investigation times of HGA mapping was significantly shorter than that of ECS mapping. Specificities of the motor and language-fMRI, however, did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate functional mapping.

  14. The importance of daily physical activity for improved exercise tolerance in heart failure patients with limited access to centre-based cardiac rehabilitation.

    Science.gov (United States)

    Sato, Noriaki; Origuchi, Hideki; Yamamoto, Umpei; Takanaga, Yasuhiro; Mohri, Masahiro

    2012-09-01

    Supervised cardiac rehabilitation provided at dedicated centres ameliorates exercise intolerance in patients with chronic heart failure. To correlate the amount of physical activity outside the hospital with improved exercise tolerance in patients with limited access to centre-based programs. Forty patients (median age 69 years) with stable heart failure due to systolic left ventricular dysfunction participated in cardiac rehabilitation once per week for five months. Using a validated single-axial accelerometer, the number of steps and physical activity-related energy expenditures on nonrehabilitation days were determined. Median (interquartile range) peak oxygen consumption was increased from 14.4 mL/kg/min (range 12.9 mL/kg/min to 17.8 mL/kg/min) to 16.4 mL/kg/min (range 13.9 mL/kg/min to 19.1 mL/kg/min); Pdaily number of steps (Pexercise time per day and time spent for light (≤3 metabolic equivalents) exercise, but not with time spent for moderate/vigorous (>3 metabolic equivalents) exercise. The number of steps and energy expenditures outside the hospital were correlated with improved exercise capacity. An accelerometer may be useful for guiding home-based cardiac rehabilitation.

  15. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2

    Science.gov (United States)

    Coady, Michael J.; El Tarazi, Abdulah; Santer, René; Bissonnette, Pierre; Sasseville, Louis J.; Calado, Joaquim; Lussier, Yoann; Dumayne, Christopher; Bichet, Daniel G.

    2017-01-01

    The renal proximal tubule reabsorbs 90% of the filtered glucose load through the Na+-coupled glucose transporter SGLT2, and specific inhibitors of SGLT2 are now available to patients with diabetes to increase urinary glucose excretion. Using expression cloning, we identified an accessory protein, 17 kDa membrane-associated protein (MAP17), that increased SGLT2 activity in RNA-injected Xenopus oocytes by two orders of magnitude. Significant stimulation of SGLT2 activity also occurred in opossum kidney cells cotransfected with SGLT2 and MAP17. Notably, transfection with MAP17 did not change the quantity of SGLT2 protein at the cell surface in either cell type. To confirm the physiologic relevance of the MAP17–SGLT2 interaction, we studied a cohort of 60 individuals with familial renal glucosuria. One patient without any identifiable mutation in the SGLT2 coding gene (SLC5A2) displayed homozygosity for a splicing mutation (c.176+1G>A) in the MAP17 coding gene (PDZK1IP1). In the proximal tubule and in other tissues, MAP17 is known to interact with PDZK1, a scaffolding protein linked to other transporters, including Na+/H+ exchanger 3, and to signaling pathways, such as the A-kinase anchor protein 2/protein kinase A pathway. Thus, these results provide the basis for a more thorough characterization of SGLT2 which would include the possible effects of its inhibition on colocalized renal transporters. PMID:27288013

  16. Cardiac and Respiratory Patterns Synchronize between Persons during Choir Singing

    Science.gov (United States)

    Müller, Viktor; Lindenberger, Ulman

    2011-01-01

    Dyadic and collective activities requiring temporally coordinated action are likely to be associated with cardiac and respiratory patterns that synchronize within and between people. However, the extent and functional significance of cardiac and respiratory between-person couplings have not been investigated thus far. Here, we report interpersonal oscillatory couplings among eleven singers and one conductor engaged in choir singing. We find that: (a) phase synchronization both in respiration and heart rate variability increase significantly during singing relative to a rest condition; (b) phase synchronization is higher when singing in unison than when singing pieces with multiple voice parts; (c) directed coupling measures are consistent with the presence of causal effects of the conductor on the singers at high modulation frequencies; (d) the different voices of the choir are reflected in network analyses of cardiac and respiratory activity based on graph theory. Our results suggest that oscillatory coupling of cardiac and respiratory patterns provide a physiological basis for interpersonal action coordination. PMID:21957466

  17. Cost-consequence analysis of different active flowable hemostatic matrices in cardiac surgical procedures.

    Science.gov (United States)

    Makhija, D; Rock, M; Xiong, Y; Epstein, J D; Arnold, M R; Lattouf, O M; Calcaterra, D

    2017-06-01

    A recent retrospective comparative effectiveness study found that use of the FLOSEAL Hemostatic Matrix in cardiac surgery was associated with significantly lower risks of complications, blood transfusions, surgical revisions, and shorter length of surgery than use of SURGIFLO Hemostatic Matrix. These outcome improvements in cardiac surgery procedures may translate to economic savings for hospitals and payers. The objective of this study was to estimate the cost-consequence of two flowable hemostatic matrices (FLOSEAL or SURGIFLO) in cardiac surgeries for US hospitals. A cost-consequence model was constructed using clinical outcomes from a previously published retrospective comparative effectiveness study of FLOSEAL vs SURGIFLO in adult cardiac surgeries. The model accounted for the reported differences between these products in length of surgery, rates of major and minor complications, surgical revisions, and blood product transfusions. Costs were derived from Healthcare Cost and Utilization Project's National Inpatient Sample (NIS) 2012 database and converted to 2015 US dollars. Savings were modeled for a hospital performing 245 cardiac surgeries annually, as identified as the average for hospitals in the NIS dataset. One-way sensitivity analysis and probabilistic sensitivity analysis were performed to test model robustness. The results suggest that if FLOSEAL is utilized in a hospital that performs 245 mixed cardiac surgery procedures annually, 11 major complications, 31 minor complications, nine surgical revisions, 79 blood product transfusions, and 260.3 h of cumulative operating time could be avoided. These improved outcomes correspond to a net annualized saving of $1,532,896. Cost savings remained consistent between $1.3m and $1.8m and between $911k and $2.4m, even after accounting for the uncertainty around clinical and cost inputs, in a one-way and probabilistic sensitivity analysis, respectively. Outcome differences associated with FLOSEAL vs SURGIFLO

  18. Bidirectional Prospective Associations between Cardiac Autonomic Activity and Inflammatory Markers

    NARCIS (Netherlands)

    Hu, Mandy X; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-01-01

    OBJECTIVE: Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic

  19. IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB

    International Nuclear Information System (INIS)

    Maldonado, Carola; Cea, Paola; Adasme, Tatiana; Collao, Andres; Diaz-Araya, Guillermo; Chiong, Mario; Lavandero, Sergio

    2005-01-01

    Hyperosmotic stress stimulates a rapid and pronounced apoptosis in cardiac myocytes which is attenuated by insulin-like growth factor-1 (IGF-1). Because in these cells IGF-1 induces intracellular Ca 2+ increase, we assessed whether the cyclic AMP response element-binding protein (CREB) is activated by IGF-1 through Ca 2+ -dependent signalling pathways. In cultured cardiac myocytes, IGF-1 induced phosphorylation (6.5 ± 1.0-fold at 5 min), nuclear translocation (30 min post-stimulus) and DNA binding activity of CREB. IGF-1-induced CREB phosphorylation was mediated by MEK1/ERK, PI3-K, p38-MAPK, as well as Ca 2+ /calmodulin kinase and calcineurin. Exposure of cardiac myocytes to hyperosmotic stress (sorbitol 600 mOsm) decreased IGF-1-induced CREB activation Moreover, overexpression of a dominant negative CREB abolished the anti-apoptotic effects of IGF-1. Our results suggest that IGF-1 activates CREB through a complex signalling pathway, and this transcription factor plays an important role in the anti-apoptotic action of IGF-1 in cultured cardiac myocytes

  20. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    Science.gov (United States)

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  1. Detecting early cardiac dysfunction with radionuclide cardiac blood-pool imaging

    International Nuclear Information System (INIS)

    Wu Kegui; Chen Daguang; Lin Haoxue

    1992-01-01

    Cardiac function was measured by radionuclide cardiac blood-pool imaging in 15 normal persons, 19 cases of hypertension, 32 cases of coronary heart disease, 35 cases of coronary heart disease combined with hypertension and 44 cases of myocardial infarction. Significant differences have been found in indices of cardiac function between normal subjects and patients with coronary heart disease and coronary heart disease combined with hypertension, even though the patients were without any clinical sin of cardiac failure. Lowered regional EF and decreased ventricular was motion were found in 38.8% of patients, while 65.7%of patients revealed marked abnormality in MFR. The results indicate that latent cardiac dysfunction is common in patients with coronary heart disease. The earliest change is diastolic function abnormalities

  2. Extracorporeal life support in pediatric cardiac patients

    Directory of Open Access Journals (Sweden)

    Matteo Di NARDO

    2016-10-01

    Full Text Available Extracorporeal Life Support (ECLS is a valuable tool in the management of neonates and older children with severe cardiac or respiratory failure. In this review, we focus on ECLS when used for neonatal and pediatric cardiac disease. Strict selection of patients and timely deployment are necessary to optimize outcomes. Although every attempt should be made to deploy ECLS urgently rather than emergently, extracorporeal cardiopulmonary resuscitation (ECPR is being increasingly used and reasonable survival rates have been achieved after initiation of ECLS during active compressions of the chest following in-hospital cardiac arrest. Contraindications to ECLS are falling over time, although lethal chromosomal abnormalities, severe irreversible brain injury, and extremely low gestational age and weight (<32 weeks gestation or <1.5 kg remain firm contraindications.

  3. Macaque cardiac physiology is sensitive to the valence of passively viewed sensory stimuli.

    Directory of Open Access Journals (Sweden)

    Eliza Bliss-Moreau

    Full Text Available Autonomic nervous system activity is an important component of affective experience. We demonstrate in the rhesus monkey that both the sympathetic and parasympathetic branches of the autonomic nervous system respond differentially to the affective valence of passively viewed video stimuli. We recorded cardiac impedance and an electrocardiogram while adult macaques watched a series of 300 30-second videos that varied in their affective content. We found that sympathetic activity (as measured by cardiac pre-ejection period increased and parasympathetic activity (as measured by respiratory sinus arrhythmia decreased as video content changes from positive to negative. These findings parallel the relationship between autonomic nervous system responsivity and valence of stimuli in humans. Given the relationship between human cardiac physiology and affective processing, these findings suggest that macaque cardiac physiology may be an index of affect in nonverbal animals.

  4. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  5. Current role of cardiac and extra-cardiac pathologies in clinically indicated cardiac computed tomography with emphasis on status before pulmonary vein isolation

    Energy Technology Data Exchange (ETDEWEB)

    Sohns, J.M.; Lotz, J. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; German Center for Cardiovascular Research (DZHK), Goettingen (Germany); Menke, J.; Staab, W.; Fasshauer, M.; Kowallick, J.T.; Zwaka, P.A.; Schwarz, A. [Goettingen University Medical Center (Germany). Inst. for Diagnostic and Interventional Radiology; Spiro, J. [Koeln University Hospital (Germany). Radiology; Bergau, L.; Unterberg-Buchwald, C. [Goettingen University Medical Center (Germany). Cardiology and Pneumology

    2014-09-15

    Purpose: The aim of this study was to assess the incidence of cardiac and significant extra-cardiac findings in clinical computed tomography of the heart in patients with atrial fibrillation before pulmonary vein isolation (PVI). Materials and Methods: 224 patients (64 ± 10 years; male 63%) with atrial fibrillation were examined by cardiac 64-slice multidetector CT before PVI. Extra-cardiac findings were classified as 'significant' if they were recommended to additional diagnostics or therapy, and otherwise as 'non-significant'. Additionally, cardiac findings were documented in detail. Results: A total of 724 cardiac findings were identified in 203 patients (91% of patients). Additionally, a total of 619 extra-cardiac findings were identified in 179 patients (80% of patients). Among these extra-cardiac findings 196 (32%) were 'significant', and 423 (68%) were 'non-significant'. In 2 patients (1%) a previously unknown malignancy was detected (esophageal cancer and lung cancer, local stage, no metastasis). 203 additional imaging diagnostics followed to clarify the 'significant' findings (124 additional CT, costs 38,314.69 US dollars). Overall, there were 3.2 cardiac and 2.8 extra-cardiac findings per patient. Extra-cardiac findings appear significantly more frequently in patients over 60 years old, in smokers and in patients with a history of cardiac findings (p < 0.05). Conclusion: Cardiac CT scans before PVI should be screened for extracardiac incidental findings that could have important clinical implications for each patient. (orig.)

  6. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  7. Challenging the neuronal MIBG uptake by pharmacological intervention: effect of a single dose of oral amitriptyline on regional cardiac MIBG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Estorch, Montserrat; Carrio, Ignasi; Mena, Esther; Flotats, Albert; Camacho, Valle; Fuertes, Jordi [Autonomous University of Barcelona, Department of Nuclear Medicine, Hospital Sant Pau, Barcelona (Spain); Kulisewsky, Jaume [Autonomous University of Barcelona, Department of Neurology, Hospital Sant Pau, Barcelona (Spain); Narula, Jagat [Irvine College of Medicine, Division of Cardiology, University of California, Irvine, CA (United States)

    2004-12-01

    Imaging with metaiodobenzylguanidine (MIBG) is used for the assessment of neuronal dysfunction in various cardiovascular disorders. Although valuable information is obtained by resting MIBG imaging, it is conceivable that competitive interference with the re-uptake mechanism would exaggerate MIBG defects and might unmask subclinical neuronal dysfunction. Tricyclic antidepressants, such as amitriptyline, have been reported to significantly increase cardiac MIBG washout and inhibit uptake into presynaptic neurons. This study was undertaken to assess whether a single oral dose of amitriptyline could influence cardiac MIBG distribution. Six patients (aged 62-81 years; four males, two females) who had demonstrated a normal cardiac MIBG scan during work-up for movement disorders were studied. The patients underwent a second {sup 123}I-MIBG study after oral administration of 25 mg amitriptyline within 1 week. Single-photon emission computed tomography images were acquired at 4 h to assess the regional distribution of MIBG, after generation of polar maps and employing a 20-segment model. Mean percentage of peak activity was calculated for each segment at rest and after amitriptyline administration. After amitriptyline administration, there was a decrease in regional MIBG uptake in 10{+-}4 segments per patient [62/120 segments (52%): 37 segments with a 5-10% decrease, 25 segments with a >10% decrease]. This change was statistically significant in lateral (P=0.003), apical (P<0.0001) and inferior (P=0.03) regions. A single oral dose of amitriptyline can induce changes in the uptake and retention of cardiac MIBG, indicating the feasibility of use of pharmacological intervention in cardiac neurotransmission imaging. (orig.)

  8. Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest.

    Science.gov (United States)

    Plaisance, P; Lurie, K G; Payen, D

    2000-03-07

    Blood pressure is severely reduced in patients in cardiac arrest receiving standard cardiopulmonary resuscitation (CPR). Although active compression-decompression (ACD) CPR improves acute hemodynamic parameters, arterial pressures remain suboptimal with this technique. We performed ACD CPR in patients with a new inspiratory threshold valve (ITV) to determine whether lowering intrathoracic pressures during the "relaxation" phase of ACD CPR would enhance venous blood return and overall CPR efficiency. This prospective, randomized, blinded trial was performed in prehospital mobile intensive care units in Paris, France. Patients in nontraumatic cardiac arrest received ACD CPR plus the ITV or ACD CPR alone for 30 minutes during advanced cardiac life support. End tidal CO(2) (ETCO(2)), diastolic blood pressure (DAP) and coronary perfusion pressure, and time to return of spontaneous circulation (ROSC) were measured. Groups were similar with respect to age, gender, and initial rhythm. Mean maximal ETCO(2), coronary perfusion pressure, and DAP values, respectively (in mm Hg), were 13.1+/-0.9, 25.0+/-1.4, and 36.5+/-1.5 with ACD CPR alone versus 19.1+/-1.0, 43.3+/-1.6, and 56.4+/-1.7 with ACD plus valve (PCPR alone after 26.5+/-0.7 minutes versus 4 of 11 patients with ACD CPR plus ITV after 19.8+/-2.8 minutes (PCPR increases the efficiency of CPR, leading to diastolic arterial pressures of >50 mm Hg. The long-term benefits of this new CPR technology are under investigation.

  9. Methods of estimating the state of the mechanisms of regulation of cardiac activity for girls 9-10 years of age during physical training aimed at developing endurance

    Directory of Open Access Journals (Sweden)

    Samokih I.I.

    2012-02-01

    Full Text Available Are considered indicators of regulation of cardiac activity proposed D.N. Davidenko et al. (1984. It is established age-related indicators in girls from 9 to 10 years. It is shown that in the process of double-entry physical training with the implementation of priority endurance exercise significantly improves the efficiency of regulation of cardiac activity for girls. The expediency of the lessons of physical culture directed on the priority of development endurance to improve the physical health of school girls of primary school.

  10. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    Science.gov (United States)

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  11. Usefulness of emergency ultrasound in nontraumatic cardiac arrest.

    Science.gov (United States)

    Volpicelli, Giovanni

    2011-02-01

    Treatment of nontraumatic cardiac arrest in the hospital setting depends on the recognition of heart rhythm and differential diagnosis of the underlying condition while maintaining a constant oxygenated blood flow by ventilation and chest compression. Diagnostic process relies only on patient's history, physical findings, and active electrocardiography. Ultrasound is not currently scheduled in the resuscitation guidelines. Nevertheless, the use of real-time ultrasonography during resuscitation has the potential to improve diagnostic accuracy and allows the physician a greater confidence in deciding aggressive life-saving therapeutic procedures. This article reviews the current opinions and literature about the use of emergency ultrasound during resuscitation of nontraumatic cardiac arrest. Cardiac and lung ultrasound have a great potential in identifying the reversible mechanical causes of pulseless electrical activity or asystole. Brief examination of the heart can even detect a real cardiac standstill regardless of electrical activity displayed on the monitor, which is a crucial prognostic indicator. Moreover, ultrasound can be useful to verify and monitor the tracheal tube placement. Limitation to the use of ultrasound is the need to minimize the no-flow intervals during mechanical cardiopulmonary resuscitation. However, real-time ultrasound can be successfully applied during brief pausing of chest compression and first pulse-check. Finally, lung sonographic examination targeted to the detection of signs of pulmonary congestion has the potential to allow hemodynamic noninvasive monitoring before and after mechanical cardiopulmonary maneuvers. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.

    Science.gov (United States)

    Lin, Xudong; Wang, Shiqi; Yu, Xudong; Liu, Zhuguo; Wang, Fei; Li, Wai Tsun; Cheng, Shuk Han; Dai, Qiuyun; Shi, Peng

    2015-02-07

    The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.

  13. A New Transgenic Mouse Model of Heart Failure and Cardiac Cachexia Raised by Sustained Activation of Met Tyrosine Kinase in the Heart

    Directory of Open Access Journals (Sweden)

    Valentina Sala

    2016-01-01

    Full Text Available Among other diseases characterized by the onset of cachexia, congestive heart failure takes a place of relevance, considering the high prevalence of this pathology in most European countries and in the United States, and is undergoing a rapid increase in developing countries. Actually, only few models of cardiac cachexia exist. Difficulties in the recruitment and follow-up of clinical trials implicate that new reproducible and well-characterized animal models are pivotal in developing therapeutic strategies for cachexia. We generated a new model of cardiac cachexia: a transgenic mouse expressing Tpr-Met receptor, the activated form of c-Met receptor of hepatocyte growth factor, specifically in the heart. We showed that the cardiac-specific induction of Tpr-Met raises a cardiac hypertrophic remodelling, which progresses into concentric hypertrophy with concomitant increase in Gdf15 mRNA levels. Hypertrophy progresses to congestive heart failure with preserved ejection fraction, characterized by reduced body weight gain and food intake and skeletal muscle wasting. Prevention trial by suppressing Tpr-Met showed that loss of body weight could be prevented. Skeletal muscle wasting was also associated with altered gene expression profiling. We propose transgenic Tpr-Met mice as a new model of cardiac cachexia, which will constitute a powerful tool to understand such complex pathology and test new drugs/approaches at the preclinical level.

  14. Analysis of bedside entertainment services' effect on post cardiac surgery physical activity: a prospective, randomised clinical trial.

    Science.gov (United States)

    Papaspyros, Sotiris; Uppal, Shitansu; Khan, Shakeeb A; Paul, Sanjoy; O'Regan, David J

    2008-11-01

    A rising number of acute hospitals in the UK have been providing patients with bedside entertainment services (BES) since 1995. However, their effect on postoperative patient mobility has not been explored. The aim of this prospective randomised clinical trial was to compare the level of postoperative physical activity and length of in-hospital stay of patients undergoing cardiac surgery depending on whether they had access to BES or not. One hundred patients requiring elective cardiac surgery were randomised to receive access to BES (52 patients) or not (48 patients). Pedometers were used to quantify postoperative physical activity for 5 days. To assess the significance of the effect of intervention (TV off or on) on the pedometer counts over time a mixed effect Poisson regression model is used, with the time varying aspect as random component. The potential influence of gender difference and age on pedometer counts were assessed by incorporating these two factors as covariates in the Poisson model. On average, patients with no access to BES walked more than those with BES access. This difference ranged between 192 and 609 steps in favour of the first group for each individual postoperative day. Patients with no access to BES were 84% more likely (risk ratio: 1.84, 95% CI: 1.29-2.63) to walk higher number of steps than patients with access to BES. On average, participants with access to BES were likely to stay longer in hospital (median of 7 days with interquartile range 6-7 days), than participants with no access to BES (median of 6 days with interquartile range 5-7 days), however the difference did not reach statistical significance. We have demonstrated that the bedside entertainment systems may have an adverse effect on post cardiac surgery patient ambulation and may contribute to an increase in hospital stay.

  15. Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery

    Science.gov (United States)

    Gupta, Punkaj; Jacobs, Jeffrey P.; Pasquali, Sara K.; Hill, Kevin D.; Gaynor, J. William; O’Brien, Sean M.; He, Max; Sheng, Shubin; Schexnayder, Stephen M.; Berg, Robert A.; Nadkarni, Vinay M.; Imamura, Michiaki; Jacobs, Marshall L.

    2014-01-01

    Background Multicenter data regarding cardiac arrest in children undergoing heart operations are limited. We describe epidemiology and outcomes associated with postoperative cardiac arrest in a large multiinstitutional cohort. Methods Patients younger than 18 years in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2007 through 2012) were included. Patient factors, operative characteristics, and outcomes were described for patients with and without postoperative cardiac arrest. Multivariable models were used to evaluate the association of center volume with cardiac arrest rate and mortality after cardiac arrest, adjusting for patient and procedural factors. Results Of 70,270 patients (97 centers), 1,843 (2.6%) had postoperative cardiac arrest. Younger age, lower weight, and presence of preoperative morbidities (all p < 0.0001) were associated with cardiac arrest. Arrest rate increased with procedural complexity across common benchmark operations, ranging from 0.7% (ventricular septal defect repair) to 12.7% (Norwood operation). Cardiac arrest was associated with significant mortality risk across procedures, ranging from 15.4% to 62.3% (all p < 0.0001). In multivariable analysis, arrest rate was not associated with center volume (odds ratio, 1.06; 95% confidence interval, 0.71 to 1.57 in low- versus high-volume centers). However, mortality after cardiac arrest was higher in low-volume centers (odds ratio, 2.00; 95% confidence interval, 1.52 to 2.63). This association was present for both high- and low-complexity operations. Conclusions Cardiac arrest carries a significant mortality risk across the stratum of procedural complexity. Although arrest rates are not associated with center volume, lower-volume centers have increased mortality after cardiac arrest. Further study of mechanisms to prevent cardiac arrest and to reduce mortality in those with an arrest is warranted. PMID:25443018

  16. A mighty small heart: the cardiac proteome of adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Anthony Cammarato

    2011-04-01

    Full Text Available Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25% had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.

  17. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping

    Directory of Open Access Journals (Sweden)

    Carolina Alves Nicolau

    2018-02-01

    Full Text Available Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7 followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic, and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1 antimicrobial activity; (2 treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy; (3 treatment of cardiovascular diseases, and (4 anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.

  18. Comparison of yoga and walking-exercise on cardiac time intervals as a measure of cardiac function in elderly with increased pulse pressure.

    Science.gov (United States)

    Patil, Satish Gurunathrao; Patil, Shankargouda S; Aithala, Manjunatha R; Das, Kusal Kanti

    Arterial aging along with increased blood pressure(BP) has become the major cardiovascular(CV) risk in elderly. The aim of the study was to compare the effects of yoga program and walking-exercise on cardiac function in elderly with increased pulse pressure (PP). An open label, parallel-group randomized controlled study design was adopted. Elderly individuals aged ≥60 years with PP≥60mmHg were recruited for the study. Yoga (study) group (n=30) was assigned for yoga training and walking (exercise) group (n=30) for walking with loosening practices for one hour in the morning for 6days in a week for 3 months. The outcome measures were cardiac time intervals derived from pulse wave analysis and ECG: resting heart rate (RHR), diastolic time(DT), ventricular ejection time(LVET), upstroke time(UT), ejection duration index (ED%), pre-ejection period (PEP), rate pressure product (RPP) and percentage of mean arterial pressure (%MAP). The mean within-yoga group change in RHR(bpm) was 4.41 (p=0.031), PD(ms): -50.29 (p=0.042), DT(ms): -49.04 (p=0.017), ED%: 2.107 (p=0.001), ES(mmHg/ms): 14.62 (p=0.118), ET(ms): -0.66 (p=0.903), UT(ms): -2.54 (p=0.676), PEP(ms): -1.25 (p=0.11) and %MAP: 2.08 (p=0.04). The mean within-control group change in HR (bpm) was 0.35 (p=0.887), PD (ms): 11.15(p=0.717), DT (ms): 11.3 (p=0.706), ED%: -0.101 (p=0.936), ES (mmHg/ms): 0.75 (p=0.926), ET(ms): 2.2 (p=0.721), UT(ms):4.7(p=455), PEP (ms): 2.1(p=0.11), %MAP: 0.65 (p=0.451). A significant difference between-group was found in RHR (p=0.036), PD (p=0.02), ED% (p=0.049), LVET (p=0.048), DT (p=0.02) and RPP (p=0.001). Yoga practice for 3 months showed a significant improvement in diastolic function with a minimal change in systolic function. Yoga is more effective than walking in improving cardiac function in elderly with high PP. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  19. Level of complement activity predicts cardiac dysfunction after acute myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Haahr-Pedersen, Sune; Bjerre, Mette; Flyvbjerg, Allan

    2009-01-01

    BACKGROUND: The positive effect of reperfusion after ST-elevation myocardial infarction (STEMI) can be reduced by ischemic/reperfusion (I/R) injury.Mannose-binding-lectin (MBL) and soluble C5b-9 (membrane-attack-complex) are involved in complement-driven cell lysis and may play a role in human...... with increased risk of cardiac dysfunction in STEMI patients treated with pPCI, probably due to increased complement activity during the ischemic and reperfusion process. The predictive value of low peripheral plasma sC5b-9 may be explained by an accumulation and activation of sC5b-9 in the infarcted myocardium....

  20. The autocrine role of tryptase in pressure overload-induced mast cell activation, chymase release and cardiac fibrosis

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2016-03-01

    Results and conclusion: The results indicate the presence of PAR-2 on MCs and that tryptase inhibition and nedocromil prevented TAC-induced fibrosis and increases in MC density, activation, and chymase release. Tryptase also significantly increased chymase concentration in ventricular slice culture media, which was prevented by the tryptase inhibitor. Hydroxyproline concentration in culture media was significantly increased with tryptase incubation as compared to the control group and the tryptase group incubated with nafamostat mesilate or chymostatin. We conclude that tryptase contributes to TAC-induced cardiac fibrosis primarily via activation of MCs and the amplified release of chymase.

  1. 3-OST-7 regulates BMP-dependent cardiac contraction.

    Directory of Open Access Journals (Sweden)

    Shiela C Samson

    2013-12-01

    Full Text Available The 3-O-sulfotransferase (3-OST family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4 expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.

  2. Cost-effectiveness of a Population-based Lifestyle Intervention to Promote Healthy Weight and Physical Activity in Non-attenders of Cardiac Rehabilitation.

    Science.gov (United States)

    Cheng, Qinglu; Church, Jody; Haas, Marion; Goodall, Stephen; Sangster, Janice; Furber, Susan

    2016-03-01

    To evaluate the long-term cost-effectiveness of two home-based cardiac rehabilitation (CR) interventions (Healthy Weight (HW) and Physical Activity (PA)) for patients with cardiovascular disease (CVD), who had been referred to cardiac rehabilitation (CR) but had not attended. The interventions consisted of pedometer-based telephone coaching sessions on weight, nutrition and physical activity (HW group) or physical activity only (PA group) and were compared to a control group who received information brochures about physical activity. A cost-effectiveness analysis was conducted using data from two randomised controlled trials. One trial compared HW to PA (PANACHE study), and the second compared PA to usual care. A Markov model was developed which used one risk factor, body mass index (BMI) to determine the CVD risk level and mortality. Patient-level data from the trials were used to determine the transitions to CVD states and healthcare related costs. The model was run for separate cohorts of males and females. Univariate and probabilistic sensitivity analysis were conducted to test the robustness of the results. Given a willingness-to-pay threshold of $50,000/QALY, in the long run, both the HW and PA interventions are cost-effective compared with usual care. While the HW intervention is more effective, it also costs more than both the PA intervention and the control group due to higher intervention costs. However, the HW intervention is still cost-effective relative to the PA intervention for both men and women. Sensitivity analysis suggests that the results are robust. The results of this paper provide evidence of the long-term cost-effectiveness of home-based CR interventions for patients who are referred to CR but do not attend. Both the HW and PA interventions can be recommended as cost-effective home-based CR programs, especially for people lacking access to hospital services or who are unable to participate in traditional CR programs. Copyright © 2015

  3. Dynamic positional fate map of the primary heart-forming region.

    Science.gov (United States)

    Cui, Cheng; Cheuvront, Tracey J; Lansford, Rusty D; Moreno-Rodriguez, Ricardo A; Schultheiss, Thomas M; Rongish, Brenda J

    2009-08-15

    Here we show the temporal-spatial orchestration of early heart morphogenesis at cellular level resolution, in vivo, and reconcile conflicting positional fate mapping data regarding the primary heart-forming field(s). We determined the positional fates of precardiac cells using a precision electroporation approach in combination with wide-field time-lapse microscopy in the quail embryo, a warm-blooded vertebrate (HH Stages 4 through 10). Contrary to previous studies, the results demonstrate the existence of a "continuous" circle-shaped heart field that spans the midline, appearing at HH Stage 4, which then expands to form a wide arc of progenitors at HH Stages 5-7. Our time-resolved image data show that a subset of these cardiac progenitor cells do not overlap with the expression of common cardiogenic factors, Nkx-2.5 and Bmp-2, until HH Stage 10, when a tubular heart has formed, calling into question when cardiac fate is specified and by which key factors. Sub-groups and anatomical bands (cohorts) of heart precursor cells dramatically change their relative positions in a process largely driven by endodermal folding and other large-scale tissue deformations. Thus, our novel dynamic positional fate maps resolve the origin of cardiac progenitor cells in amniotes. The data also establish the concept that tissue motion contributes significantly to cellular position fate - i.e., much of the cellular displacement that occurs during assembly of a midline heart tube (HH Stage 9) is NOT due to "migration" (autonomous motility), a commonly held belief. Computational analysis of our time-resolved data lays the foundation for more precise analyses of how cardiac gene regulatory networks correlate with early heart tissue morphogenesis in birds and mammals.

  4. Composition and distribution of elements and ultrastructural topography of a human cardiac calculus.

    Science.gov (United States)

    Cheng, Ching-Li; Chang, Hsiao-Huang; Huang, Pei-Jung; Chu, Yu-Ting; Lin, Shan-Yang

    2013-04-01

    Trace elements (TEs) may contribute to the formation of calculi or stones or be involved in the aetiopathogenesis of stone diseases. The compositions and spatial distribution of elements from the inner nucleus to outer crust of the cardiac calculus were investigated by energy-dispersive X-ray fluorescence (EDXRF) spectrometer. The surface topograph, distribution map of elements, elemental and chemical compositions were also determined by environmental scanning electron microscope (ESEM)-energy-dispersive X-ray (EDX) analysis. Twenty-five elements were identifiable from 18 positions on the cardiac calculus by EDXRF spectrometer, in which the highest concentrations of toxic TEs (Ni, Pt, Hg, Sn, Pb, W, Au, Al, Si) and higher levels of essential TEs (Ca, Sr, Cr, P) were detected. A moderate positive Pearson's correlation between TEs concentrations of Mg, Ca or P and location differences from centre to periphery in the cardiac calculus was observed. A positive correlation was also found for Ca/Zn and Ca/Cu, indicating the gradual increase of calcium concentration from inner nucleus to outer crust of cardiac calculus. The drop-like nodules/crystals on the surface of petrous part of cardiac calculus were observed from ESEM analysis. ESEM-EDX analysis determined the calculus to be predominantly composed of calcium hydroxyapatite and cholesterol, as indicated by the petrous surface and drop-like nodules/crystals, respectively. This composition was confirmed using a portable Raman analyser. The spatial distribution analysis indicated a gradual increase in Mg, P and Ca concentrations from the inner nucleus to the outer crust of the cardiac calculus. The major chemical compositions of calcium hydroxyapatite and cholesterol were detected on this cardiac calculus.

  5. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system

    International Nuclear Information System (INIS)

    Chan, Chung; Sinusas, Albert J; Liu, Chi; Harris, Mark; Le, Max; Biondi, James; Grobshtein, Yariv; Liu, Yi-Hwa

    2014-01-01

    Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased

  6. Temperature effects on aerobic scope and cardiac performance of European perch (Perca fluviatilis).

    Science.gov (United States)

    Jensen, Denise Lyager; Overgaard, Johannes; Wang, Tobias; Gesser, Hans; Malte, Hans

    2017-08-01

    Several recent studies have highlighted how impaired cardiac performance at high temperatures and in hypoxia may compromise the capacity for oxygen transport. Thus, at high temperatures impaired cardiac capacity is proposed to reduce oxygen transport to a degree that lowers aerobic scope and compromises thermal tolerance (the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis). To investigate this hypothesis, we measured aerobic and cardiac performance of a eurythermal freshwater teleost, the European perch (Perca fluviatilis). Rates of oxygen consumption were measured during rest and activity at temperatures between 5°C and 27°C, and we evaluated cardiac function by in vivo measurements of heart rate and in vitro studies to determine contractility of myocardial strips. Aerobic scope increased progressively from 5°C to 21°C, after which it levelled off. Heart rate showed a similar response. We found little difference between resting and active heart rate at high temperature suggesting that increased cardiac scope during activity is primarily related to changes in stroke volume. To examine the effects of temperature on cardiac capacity, we measured isometric force development in electrically paced myocardial preparations during different combinations of temperature, pacing frequency, oxygenation and adrenergic stimulation. The force-frequency product increased markedly upon adrenergic stimulation at 21 and 27°C (with higher effects at 21°C) and the cardiac preparations were highly sensitive to hypoxia. These findings suggest that at (critically) high temperatures, cardiac output may diminish due to a decreased effect of adrenergic stimulation and that this effect may be further exacerbated if the heart becomes hypoxic. Hence cardiac limitations may contribute to the inability to increase aerobic scope at high temperatures in the European perch (Perca fluviatilis). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. GeoMapApp Learning Activities: A Virtual Lab Environment for Student-Centred Engagement with Geoscience Data

    Science.gov (United States)

    Kluge, S.; Goodwillie, A. M.

    2012-12-01

    As STEM learning requirements enter the mainstream, there is benefit to providing the tools necessary for students to engage with research-quality geoscience data in a cutting-edge, easy-to-use map-based interface. Funded with an NSF GeoEd award, GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) are being created to help in that endeavour. GeoMapApp Learning Activities offer step-by-step instructions within a guided inquiry approach that enables students to dictate the pace of learning. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; an educator's annotated worksheet containing teaching tips, additional content and suggestions for further work; and, quizzes for use before and after the activity to assess learning. Examples of activities so far created involve calculation and analysis of the rate of seafloor spreading; compilation of present-day evidence for huge ancient landslides on the seafloor around the Hawaiian islands; a study of radiometrically-dated volcanic rocks to help understand the concept of hotspots; and, the optimisation of contours as a means to aid visualisation of 3-D data sets on a computer screen. The activities are designed for students at the introductory undergraduate, community college and high school levels, and present a virtual lab-like environment to expose students to content and concepts typically found in those educational settings. The activities can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is reduced thus allowing students to spend more time analysing and understanding geoscience data, content and concepts. Each activity is freely available through the SERC-Carleton web site.

  8. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    Science.gov (United States)

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  9. Spinal cord motion. Influence of respiration and cardiac cycle

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, S. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Schoth, F. [RWTH Aachen University Hospital (Germany). Dept. of Diagnostic Radiology; Stolzmann, P. [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Krings, T. [Toronto Western Hospital, ON (Canada). Div. of Neuroradiology; Mull, M.; Wiesmann, M. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Stracke, C.P. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Alfried-Krupp-Hospital, Essen (Germany). Dept. of Neuroradiology

    2014-11-15

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  10. Spinal cord motion. Influence of respiration and cardiac cycle

    International Nuclear Information System (INIS)

    Winklhofer, S.; University Hospital Zurich; Schoth, F.; Stolzmann, P.; Krings, T.; Mull, M.; Wiesmann, M.; Stracke, C.P.; Alfried-Krupp-Hospital, Essen

    2014-01-01

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  11. Effects of renal denervation on cardiac oxidative stress and local activity of the sympathetic nervous system and renin-angiotensin system in acute myocardial infracted dogs.

    Science.gov (United States)

    Feng, Qiaoli; Lu, Chengzhi; Wang, Li; Song, Lijun; Li, Chao; Uppada, Ravi Chandra

    2017-02-17

    This study sought to evaluate the therapeutic effects of renal denervation (RDN) on acute myocardial infarction (MI) in canines and explore its possible mechanisms of action. Eighteen healthy mongrel dogs were randomly assigned to either the control group, the MI group or the MI + RDN group. To assess cardiac function, left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD) and fraction shortening (FS) were recorded. Additionally, haemodynamic parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and heart rate (HR) were measured. Cardiac oxidative stress levels were evaluated based on the expression of p47 phox mRNA, malondialdehyde (MDA), anti-superoxide anion free radical (ASAFR) and activity of superoxide dismutase (SOD). To measure the local activity of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS), the levels of tyrosine hydroxylase (TH), angiotensin II (AngII), angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7) [Ang(1-7)] and Mas receptor (MasR) in myocardial tissues were recorded. The expression of TH in renal tissue and serum creatinine were used to assess the effectiveness of the RDN procedure and renal function, respectively. We found that MI deteriorated heart function and activated cardiac oxidative stress and the local neurohumoral system, while RDN partially reversed these changes. Compared with the control group, parameters including LVEDD, LVESD, LVEDP and the levels of ASAFR, MDA, p47 phox ,ACE2, Ang(1-7), MasR, AngII and TH-positive nerves were increased (all P < 0.05) in myocardial infracted dogs; meanwhile, LVEF, FS, LVSP and SOD expression were decreased (all P < 0.05). However, after RDN therapy, these changes were significantly improved (P < 0.05), except that there were no significant differences observed in FS or LVSP between the two groups (P = 0

  12. Cardiac mTORC1 Dysregulation Impacts Stress Adaptation and Survival in Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Daniel D. Child

    2018-04-01

    Full Text Available Summary: Huntington’s disease (HD is a dominantly inherited neurological disorder caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT. But in addition to the neurological disease, mutant HTT (mHTT, which is ubiquitously expressed, impairs other organ systems. Indeed, epidemiological and animal model studies suggest higher incidence of and mortality from heart disease in HD. Here, we show that the protein complex mTORC1 is dysregulated in two HD mouse models through a mechanism that requires intrinsic mHTT expression. Moreover, restoring cardiac mTORC1 activity with constitutively active Rheb prevents mortality and relieves the mHTT-induced block to hypertrophic adaptation to cardiac stress. Finally, we show that chronic mTORC1 dysregulation is due in part to mislocalization of endogenous Rheb. These data provide insight into the increased cardiac-related mortality of HD patients, with cardiac mHTT expression inhibiting mTORC1 activity, limiting heart growth, and decreasing the heart’s ability to compensate to chronic stress. : Child et al. demonstrate that mTORC1 dysregulation is a key molecular mechanism in the Huntington’s disease (HD heart phenotype. Impaired cardiac mTORC1 activity in HD mouse models requires intrinsic mHTT expression and explains the limited adaptation to cardiac stress. Keywords: Huntington’s disease, heart, mTOR, Rheb

  13. The other side of cardiac Ca2+ signaling: transcriptional control

    Directory of Open Access Journals (Sweden)

    Alejandro eDomínguez-Rodríquez

    2012-11-01

    Full Text Available Ca2+ is probably the most versatile signal transduction element used by all cell types. In the heart, it is essential to activate cellular contraction in each heartbeat. Nevertheless Ca2+ is not only a key element in excitation-contraction coupling (EC coupling, but it is also a pivotal second messenger in cardiac signal transduction, being able to control processes such as excitability, metabolism, and transcriptional regulation. Regarding the latter, Ca2+ activates Ca2+-dependent transcription factors by a process called excitation-transcription coupling (ET coupling. ET coupling is an integrated process by which the common signaling pathways that regulate EC coupling activate transcription factors. Although ET coupling has been extensively studied in neurons and other cell types, less is known in cardiac muscle. Some hints have been found in studies on the development of cardiac hypertrophy, where two Ca2+-dependent enzymes are key actors: Ca2+/Calmodulin kinase II (CaMKII and phosphatase calcineurin, both of which are activated by the complex Ca2+/ /Calmodulin. The question now is how ET coupling occurs in cardiomyocytes, where intracellular Ca2+ is continuously oscillating. In this focused review, we will draw attention to location of Ca2+ signaling: intranuclear ([Ca2+]n or cytoplasmic ([Ca2+]c, and the specific ionic channels involved in the activation of cardiac ET coupling. Specifically, we will highlight the role of the 1,4,5 inositol triphosphate receptors (IP3Rs in the elevation of [Ca2+]n levels, which are important to locally activate CaMKII, and the role of transient receptor potential channels canonical (TRPCs in [Ca2+]c, needed to activate calcineurin.

  14. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  15. Maps of surface activity of 137Cs of Slovakia on scale 1:200 000

    International Nuclear Information System (INIS)

    Gluch, A.

    2005-05-01

    The present set of maps (13 maps) arose from the geological project 'Re-ambulation of 137 Cs radioactivity map of Slovakia at scales 1:200 000 and 1:500 000' in phase of indicative geological survey of environmental factors. Maps document the state of contamination of the territory of Slovakia by one of the radioisotopes cesium-137 at the reference date 01.01.2005. In solving of geological tasks were used all available relevant data on measurements of 137 Cs activity from the whole territory of the Slovak Republic for the period from 1990 to 2003 from results of air and ground gamma spectrometric measurements. (authors)

  16. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  17. [Isolation, purification and primary culture of adult mouse cardiac fibroblasts].

    Science.gov (United States)

    Li, Rujun; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Objective To establish a method for primary culture of adult mouse cardiac fibroblasts. Methods Myocardial tissues from adult mice were digested with 1 g/L trypsin and 0.8 g/L collagenase IV by oscillating water bath for a short time repeatedly. Cardiac fibroblasts and myocardial cells were isolated with differential adhesion method. Immunofluorescence staining was used to assess the purity of cardiac fibroblasts. The cell morphology was observed under an inverted phase contrast microscope. The proliferation of cardiac fibroblasts was analyzed by growth curve and CCK-8 assay. The Smad2/3 phosphorylation induced by TGF-β1 was detected by Western blotting. Results After 90 minutes of differential adhesion, adherent fibroblasts formed spherical cell mass and after 3 days, cells were spindle-shaped and proliferated rapidly. Cells were confluent after 5 days and the growth curve presented nearly "S" shape. The positive expression rate of vimentin was 95%. CCK-8 assay showed that the optimal cell proliferating activity was found from day 3 to day 5. The level of phosphorylated Smad2/3 obviously increased at the second passage induced by TGF-β1. Conclusion This method is economical and stable to isolate cardiac fibroblasts with high activity and high purity from adult mice.

  18. Mapping brain activity with flexible graphene micro-transistors

    Science.gov (United States)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  19. A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion.

    Science.gov (United States)

    Bai, Wenjia; Shi, Wenzhe; de Marvao, Antonio; Dawes, Timothy J W; O'Regan, Declan P; Cook, Stuart A; Rueckert, Daniel

    2015-12-01

    Atlases encode valuable anatomical and functional information from a population. In this work, a bi-ventricular cardiac atlas was built from a unique data set, which consists of high resolution cardiac MR images of 1000+ normal subjects. Based on the atlas, statistical methods were used to study the variation of cardiac shapes and the distribution of cardiac motion across the spatio-temporal domain. We have shown how statistical parametric mapping (SPM) can be combined with a general linear model to study the impact of gender and age on regional myocardial wall thickness. Finally, we have also investigated the influence of the population size on atlas construction and atlas-based analysis. The high resolution atlas, the statistical models and the SPM method will benefit more studies on cardiac anatomy and function analysis in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    International Nuclear Information System (INIS)

    Uehara, Akihiko; Kurata, Chinori; Sugi, Toshihiko; Mikami, Tadashi; Shouda, Sakae

    1999-01-01

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. 123 I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  1. elPBN neurons regulate rVLM activity through elPBN-rVLM projections during activation of cardiac sympathetic afferent nerves.

    Science.gov (United States)

    Guo, Zhi-Ling; Longhurst, John C; Tjen-A-Looi, Stephanie C; Fu, Liang-Wu

    2016-08-01

    The external lateral parabrachial nucleus (elPBN) within the pons and rostral ventrolateral medulla (rVLM) contributes to central processing of excitatory cardiovascular reflexes during stimulation of cardiac sympathetic afferent nerves (CSAN). However, the importance of elPBN cardiovascular neurons in regulation of rVLM activity during CSAN activation remains unclear. We hypothesized that CSAN stimulation excites the elPBN cardiovascular neurons and, in turn, increases rVLM activity through elPBN-rVLM projections. Compared with controls, in rats subjected to microinjection of retrograde tracer into the rVLM, the numbers of elPBN neurons double-labeled with c-Fos (an immediate early gene) and the tracer were increased after CSAN stimulation (P neurons contain vesicular glutamate transporter 3. In cats, epicardial bradykinin and electrical stimulation of CSAN increased the activity of elPBN cardiovascular neurons, which was attenuated (n = 6, P neurons in the elPBN and rVLM sequentially through a monosynaptic (glutamatergic) excitatory elPBN-rVLM pathway. Copyright © 2016 the American Physiological Society.

  2. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  3. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  4. Beneficial effect of perindopril on cardiac sympathetic nerve activity and brain natriuretic peptide in patients with chronic heart failure. Comparison with enalapril

    International Nuclear Information System (INIS)

    Tsutamoto, Takayoshi; Tanaka, Toshinari; Sakai, Hiroshi

    2008-01-01

    In patients with chronic heart failure (CHF), it remains unclear whether perindopril is more cardioprotective than enalapril. Forty-five stable CHF outpatients undergoing conventional therapy including enalapril therapy were randomized to 2 groups [group I (n=24): continuous enalapril treatment; group II (n=21): enalapril was changed to perindopril]. Cardiac sympathetic nerve activity was evaluated using cardiac 123 I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and 6 months after treatment. There was no difference in baseline characteristics between the 2 groups. In group I, there were no changes in MIBG parameters, left ventricular ejection fraction (LVEF) or plasma level of brain natriuretic peptide (BNP). In contrast, in group II delayed heart/mediastinum count ratio was significantly increased (2.0±0.07 vs 2.15±0.07, p=0.013) and the washout rate was significantly decreased (33.0±1.4 vs 30.5±1.2, p=0.030) after 6 months compared with the baseline value. In addition, LVEF was significantly increased and the plasma BNP level was significantly decreased. These findings suggest that for the treatment of CHF, perindopril is superior to enalapril with respect of cardiac sympathetic nerve activity and BNP. (author)

  5. Cardiac parasympathetic reactivation following exercise: implications for training prescription.

    Science.gov (United States)

    Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin

    2013-12-01

    The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness

  6. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  7. Exercise training restores cardiac protein quality control in heart failure.

    Directory of Open Access Journals (Sweden)

    Juliane C Campos

    Full Text Available Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H₂O₂ release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H₂O₂ resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca²⁺-induced permeability transition and reduced H₂O₂ release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.

  8. Defining the Intrinsic Cardiac Risks of Operations to Improve Preoperative Cardiac Risk Assessments.

    Science.gov (United States)

    Liu, Jason B; Liu, Yaoming; Cohen, Mark E; Ko, Clifford Y; Sweitzer, Bobbie J

    2018-02-01

    Current preoperative cardiac risk stratification practices group operations into broad categories, which might inadequately consider the intrinsic cardiac risks of individual operations. We sought to define the intrinsic cardiac risks of individual operations and to demonstrate how grouping operations might lead to imprecise estimates of perioperative cardiac risk. Elective operations (based on Common Procedural Terminology codes) performed from January 1, 2010 to December 31, 2015 at hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program were studied. A composite measure of perioperative adverse cardiac events was defined as either cardiac arrest requiring cardiopulmonary resuscitation or acute myocardial infarction. Operations' intrinsic cardiac risks were derived from mixed-effects models while controlling for patient mix. Resultant risks were sorted into low-, intermediate-, and high-risk categories, and the most commonly performed operations within each category were identified. Intrinsic operative risks were also examined using a representative grouping of operations to portray within-group variation. Sixty-six low, 30 intermediate, and 106 high intrinsic cardiac risk operations were identified. Excisional breast biopsy had the lowest intrinsic cardiac risk (overall rate, 0.01%; odds ratio, 0.11; 95% CI, 0.02 to 0.25) relative to the average, whereas aorto-bifemoral bypass grafting had the highest (overall rate, 4.1%; odds ratio, 6.61; 95% CI, 5.54 to 7.90). There was wide variation in the intrinsic cardiac risks of operations within the representative grouping (median odds ratio, 1.40; interquartile range, 0.88 to 2.17). A continuum of intrinsic cardiac risk exists among operations. Grouping operations into broad categories inadequately accounts for the intrinsic cardiac risk of individual operations.

  9. Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.

    Science.gov (United States)

    Zablocki, Daniela; Sadoshima, Junichi

    2013-11-08

    A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.

  10. Pim-1 Kinase Phosphorylates Cardiac Troponin I and Regulates Cardiac Myofilament Function

    Directory of Open Access Journals (Sweden)

    Ni Zhu

    2018-03-01

    Full Text Available Background/Aims: Pim-1 is a serine/threonine kinase that is highly expressed in the heart, and exerts potent cardiac protective effects through enhancing survival, proliferation, and regeneration of cardiomyocytes. Its myocardial specific substrates, however, remain unknown. In the present study, we aim to investigate whether Pim-1 modulates myofilament activity through phosphorylation of cardiac troponin I (cTnI, a key component in regulating myofilament function in the heart. Methods: Coimmunoprecipitation and immunofluorescent assays were employed to investigate the interaction of Pim-1 with cTnI in cardiomyocytes. Biochemical, site directed mutagenesis, and mass spectrometric analyses were utilized to identify the phosphorylation sites of Pim1 in cTnI. Myofilament functional assay using skinned cardiac fiber was used to assess the effect of Pim1-mediated phosphorylation on cardiac myofilament activity. Lastly, the functional significance of Pim1-mediated cTnI in heart disease was determined in diabetic mice. Results: We found that Pim-1 specifically interacts with cTnI in cardiomyocytes and this interaction leads to Pim1-mediated cTnI phosphorylation, predominantly at Ser23/24 and Ser150. Furthermore, our functional assay demonstrated that Pim-1 induces a robust phosphorylation of cTnI within the troponin complex, thus leading to a decreased Ca2+ sensitivity. Insulin-like growth factor 1 (IGF-1, a peptide growth factor that has been shown to stimulate myocardial contractility, markedly induces cTnI phosphorylation at Ser23/24 and Ser150 through increasing Pim-1 expression in cardiomyocytes. In a high-fat diabetic mice model, the expression of Pim1 in the heart is significantly decreased, which is accompanied by a decreased phosphorylation of cTnI at Ser23/24 and Ser150, further implicating the pathological significance of the Pim1/cTnI axis in the development of diabetic cardiomyopathy. Conclusion: Our results demonstrate that Pim-1 is a

  11. Cardiac Aging - Benefits of Exercise, Nrf2 Activation and Antioxidant Signaling.

    Science.gov (United States)

    Narasimhan, Madhusudhanan; Rajasekaran, Namakkal-Soorappan

    2017-01-01

    Cardiovascular dysfunction and heart failure associated with aging not only impairs the cardiac function but also the quality of life eventually decreasing the life expectancy of the elderly. Notably, cardiac tissue can prematurely age under certain conditions such as genetic mutation, persistent redox stress and overload, aberrant molecular signaling, DNA damage, telomere attrition, and other pathological insults. While cardiovascular-related morbidity and mortality is on the rise and remains a global health threat, there has been only little to moderate improvements in its medical management. This is due to the fact that the lifestyle changes to molecular mechanisms underlying age-related myocardial structure and functional remodeling are multifactorial and intricately operate at different levels. Along these lines, the intrinsic redox mechanisms and oxidative stress (OS) are widely studied in the myocardium. The accumulation of reactive oxygen species (ROS) with age and the resultant oxidative damage has been shown to increase the susceptibility of the myocardium to multiple complications such as atherosclerosis, hypertension, ischemic heart disease, cardiac myopathy, and heart failure. There has been growing interest in trying to enhance the mechanisms that neutralize the ROS and curtailing OS as a possible anti-aging intervention and as a treatment for age-related disorders. Natural defense system to fight against OS involves a master transcription factor named nuclear erythroid-2-p45-related factor-2 (Nrf2) that regulates several antioxidant genes. Compelling evidence exists on the Nrf2 gain of function through pharmacological interventions in counteracting the oxidative damage and affords cytoprotection in several organs including but not limited to lung, liver, kidney, brain, etc. Nevertheless, thus far, only a few studies have described the potential role of Nrf2 and its non-pharmacological induction in cardiac aging. This chapter explores the effects of

  12. Abatement by Naringenin of Doxorubicin-Induced Cardiac Toxicity in Rats

    International Nuclear Information System (INIS)

    Arafa, H.M.; Abd-Ellah, M.F.; Hafez, H.F.

    2005-01-01

    Doxorubicin is one of the most active cytotoxic agents in current use. It has proven efficacy in various malignancies either alone or combined with other cytocidal agents. The clinical usefulness of the anthracycline drug has been precluded by cardiac toxicity. Many therapeutic interventions have been attempted to improve the therapeutic benefits of the drug. Few, however, have been efficacious in this setting. Purpose: We have addressed in the current study the possible protective effects of naringenin, a flavonoid known to have anti-oxidant properties, on doxorubicin induced cardiac toxicity in male Swiss albino rats. Methods: Forty male Swiss albino rats were used in this study. Naringenin (25 mg/kg body weight) was administered daily by gavage for 7 consecutive days before a cumulative single dose of doxorubicin (15 mg/kg body weight, ip). Doxorubicin induced marked biochemical alterations characteristic of cardiac toxicity including, elevated activities of serum total lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), enhanced lipid peroxidation measured as malonaldehyde (MDA). The anthracycline drug has also reduced the cardiac enzymatic activities of superoxide dismutase (SOD), glutathione-Stransferase (GST) and catalase (CAT). Besides, it reduced significantly the reduced glutathione (GSH) level, but it increased the total NO content in heart tissue. Prior administration of naringenin ahead of doxorubicin challenge ameliorated all these biochemical markers. Taken together, one could conclude that naringenin has a protective role in the abatement of doxorubicin-induced cardiac toxicity that resides, at least in part, on its anti-radical effects and regulatory role on NO production

  13. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a

  14. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    Science.gov (United States)

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-08

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. An augmented reality platform for planning of minimally invasive cardiac surgeries

    Science.gov (United States)

    Chen, Elvis C. S.; Sarkar, Kripasindhu; Baxter, John S. H.; Moore, John; Wedlake, Chris; Peters, Terry M.

    2012-02-01

    One of the fundamental components in all Image Guided Surgery (IGS) applications is a method for presenting information to the surgeon in a simple, effective manner. This paper describes the first steps in our new Augmented Reality (AR) information delivery program. The system makes use of new "off the shelf" AR glasses that are both light-weight and unobtrusive, with adequate resolution for many IGS applications. Our first application is perioperative planning of minimally invasive robot-assisted cardiac surgery. In this procedure, a combination of tracking technologies and intraoperative ultrasound is used to map the migration of cardiac targets prior to selection of port locations for trocars that enter the chest. The AR glasses will then be used to present this heart migration data to the surgeon, overlaid onto the patients chest. The current paper describes the calibration process for the AR glasses, their integration into our IGS framework for minimally invasive robotic cardiac surgery, and preliminary validation of the system. Validation results indicate a mean 3D triangulation error of 2.9 +/- 3.3mm, 2D projection error of 2.1 +/- 2.1 pixels, and Normalized Stereo Calibration Error of 3.3.

  16. Radionuclide Angiocardiographic Evaluation of Left-to-Right Cardiac Shunts: Analysis of Time-Active Curves

    International Nuclear Information System (INIS)

    Kim, Ok Hwa; Bahk, Yong Whee; Kim, Chi Kyung

    1987-01-01

    The noninvasive nature of the radionuclide angiocardiography provided a useful approach for the evaluation of left-to-right cardiac shunts (LRCS). While the qualitative information can be obtained by inspection of serial radionuclide angiocardiograms, the quantitative information of radionuclide angiocardiography can be obtained by the analysis of time-activity curves using advanced computer system. The count ratios method and pulmonary-to-systemic flow ratio (QP/QS) by gamma variate fit method were used to evaluate the accuracy of detection and localization of LRCS. One hundred and ten time-activity curves were analyzed. There were 46 LRCS (atrial septal defects 11, ventricular septal defects 22, patent ductus arteriosus 13) and 64 normal subjects. By computer analysis of time-activity curves of the right atriurn, ventricle and the lungs separately, the count ratios modified by adding the mean cardiac transit time were calculated in each anatomic site. In normal subjects the mean count ratios in the right atrium, ventricle and lungs were 0.24 on average. In atrial septal defects, the count ratios were high in the right atrium, ventricle and lungs, whereas in ventricular septal defects the count ratios were higher only in the right ventricle and lungs. Patent ductus arteriosus showed normal count ratios in the heart but high count ratios were obtained in the lungs. Thus, this count ratios method could be separated normal from those with intracardiac or extracardiac shunts, and moreover, with this method the localization of the shunt level was possible in LRCS. Another method that could differentiate the intracardiac shunts from extracardiac shunts was measuring QP/QS in the left and right lungs. In patent ductus arteriosus, the left lung QP/QS was higher than those of the right lung, whereas in atrial septal defects and ventricular septal defects QP/ QS ratios were equal in both lungs. From this study, it was found that by measuring QP/QS separately in the lungs

  17. Quantification of patterns of regional cardiac metabolism

    International Nuclear Information System (INIS)

    Lear, J.L.; Ackermann, R.F.

    1990-01-01

    To quantitatively map and compare patterns of regional cardiac metabolism with greater spatial resolution than is possible with positron emission tomography (PET), the authors developed autoradiographic techniques for use with combinations of radiolabeled fluorodeoxyglucose (FDG), glucose (GLU), and acetate (ACE) and applied the techniques to normal rats. Kinetic models were developed to compare GLU-based oxidative glucose metabolism with FDG-based total glucose metabolism (oxidative plus anaerobic) and to compare ACE-based overall oxidative metabolism with FDG-based total glucose metabolism. GLU-based metabolism generally paralleled FDG-based metabolism, but divergence occurred in certain structures such as the papillary muscles, where FDG-based metabolism was much greater. ACE-based metabolism also generally paralleled FDG-based metabolism, but again, the papillary muscles had relatively greater FDG-based metabolism. These discrepancies between FDG-based metabolism and GLU- or ACE-based metabolism suggest the presence of high levels of anaerobic glycolysis. Thus, the study indicates that anaerobic glycolysis, in addition to occurring in ischemic or stunned myocardium (as has been shown in recent PET studies), occurs normally in specific cardiac regions, despite the presence of abundant oxygen

  18. Cardiac contractility structure-activity relationship and ligand-receptor interactions; the discovery of unique and novel molecular switches in myosuppressin signaling.

    Directory of Open Access Journals (Sweden)

    Megan Leander

    Full Text Available Peptidergic signaling regulates cardiac contractility; thus, identifying molecular switches, ligand-receptor contacts, and antagonists aids in exploring the underlying mechanisms to influence health. Myosuppressin (MS, a decapeptide, diminishes cardiac contractility and gut motility. Myosuppressin binds to G protein-coupled receptor (GPCR proteins. Two Drosophila melanogaster myosuppressin receptors (DrmMS-Rs exist; however, no mechanism underlying MS-R activation is reported. We predicted DrmMS-Rs contained molecular switches that resembled those of Rhodopsin. Additionally, we believed DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 interactions would reflect our structure-activity relationship (SAR data. We hypothesized agonist- and antagonist-receptor contacts would differ from one another depending on activity. Lastly, we expected our study to apply to other species; we tested this hypothesis in Rhodnius prolixus, the Chagas disease vector. Searching DrmMS-Rs for molecular switches led to the discovery of a unique ionic lock and a novel 3-6 lock, as well as transmission and tyrosine toggle switches. The DrmMS-DrmMS-R1 and DrmMS-DrmMS-R2 contacts suggested tissue-specific signaling existed, which was in line with our SAR data. We identified R. prolixus (RhpMS-R and discovered it, too, contained the unique myosuppressin ionic lock and novel 3-6 lock found in DrmMS-Rs as well as transmission and tyrosine toggle switches. Further, these motifs were present in red flour beetle, common water flea, honey bee, domestic silkworm, and termite MS-Rs. RhpMS and DrmMS decreased R. prolixus cardiac contractility dose dependently with EC50 values of 140 nM and 50 nM. Based on ligand-receptor contacts, we designed RhpMS analogs believed to be an active core and antagonist; testing on heart confirmed these predictions. The active core docking mimicked RhpMS, however, the antagonist did not. Together, these data were consistent with the unique ionic lock, novel 3-6 lock

  19. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso; Sá nchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2013-01-01

    gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology

  20. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  1. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    International Nuclear Information System (INIS)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P.

    1998-01-01

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  2. The effects of carbonated water upon gastric and cardiac activities and fullness in healthy young women.

    Science.gov (United States)

    Wakisaka, Shiori; Nagai, Hajime; Mura, Emi; Matsumoto, Takehiro; Moritani, Toshio; Nagai, Narumi

    2012-01-01

    Although previous reports suggested that carbonated water drinking was effective against gastrointestinal symptoms, there is little information about the effects of carbonated water on gastric and appetite sensation. We therefore investigated the effect of carbonated water on short-term fullness with respect to gastric and cardiac responses in 19 healthy young women. Each subject was tested on three separate days at approximately 9 a.m. after an overnight fast. Gastric motility, evaluated by electrogastrography (EGG) and heart rate (HR), was measured for 20 min in the fasting state and 40 min after ingestion of water. Preloads consisted of an equivalent amount (250 mL) of water (W) or carbonated water (CW) and no drinking (blank). Fullness scores were measured using visual analog scales. To determine gastric motility, we assessed the component of bradygastria (1-2 cycles/min [cpm]), normogastria (2-4 cpm), tachygastria (4-9 cpm), and dominant frequency of the EGG power spectrum. After ingestion of CW, significant increases in fullness scores were observed compared with W. All postprandial EGG powers were significantly greater than preprandial, but no group difference was found. However, a dominant frequency tended to shift toward a lower band after ingestion of W. A significantly higher HR was found following consumption of CW as opposed to W. Multiple regression analysis revealed that increased HR was a significant variable contributing to the variances in fullness after ingestion of CW at 40 min. Our data suggest that CW may induce a short-term, but significant, satiating effect through enhanced postprandial gastric and cardiac activities due possibly to the increased sympathetic activity and/or withdrawal of parasympathetic activity.

  3. Goal striving strategies and effort mobilization: When implementation intentions reduce effort-related cardiac activity during task performance.

    Science.gov (United States)

    Freydefont, Laure; Gollwitzer, Peter M; Oettingen, Gabriele

    2016-09-01

    Two experiments investigate the influence of goal and implementation intentions on effort mobilization during task performance. Although numerous studies have demonstrated the beneficial effects of setting goals and making plans on performance, the effects of goals and plans on effort-related cardiac activity and especially the cardiac preejection period (PEP) during goal striving have not yet been addressed. According to the Motivational Intensity Theory, participants should increase effort mobilization proportionally to task difficulty as long as success is possible and justified. Forming goals and making plans should allow for reduced effort mobilization when participants perform an easy task. However, when the task is difficult, goals and plans should differ in their effect on effort mobilization. Participants who set goals should disengage, whereas participants who made if-then plans should stay in the field showing high effort mobilization during task performance. As expected, using an easy task in Experiment 1, we observed a lower cardiac PEP in both the implementation intention and the goal intention condition than in the control condition. In Experiment 2, we varied task difficulty and demonstrated that while participants with a mere goal intention disengaged from difficult tasks, participants with an implementation intention increased effort mobilization proportionally with task difficulty. These findings demonstrate the influence of goal striving strategies (i.e., mere goals vs. if-then plans) on effort mobilization during task performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Antifibrinolytics in cardiac surgery

    Directory of Open Access Journals (Sweden)

    Achal Dhir

    2013-01-01

    Full Text Available Cardiac surgery exerts a significant strain on the blood bank services and is a model example in which a multi-modal blood-conservation strategy is recommended. Significant bleeding during cardiac surgery, enough to cause re-exploration and/or blood transfusion, increases morbidity and mortality. Hyper-fibrinolysis is one of the important contributors to increased bleeding. This knowledge has led to the use of anti-fibrinolytic agents especially in procedures performed under cardiopulmonary bypass. Nothing has been more controversial in recent times than the aprotinin controversy. Since the withdrawal of aprotinin from the world market, the choice of antifibrinolytic agents has been limited to lysine analogues either tranexamic acid (TA or epsilon amino caproic acid (EACA. While proponents of aprotinin still argue against its non-availability. Health Canada has approved its use, albeit under very strict regulations. Antifibrinolytic agents are not without side effects and act like double-edged swords, the stronger the anti-fibrinolytic activity, the more serious the side effects. Aprotinin is the strongest in reducing blood loss, blood transfusion, and possibly, return to the operating room after cardiac surgery. EACA is the least effective, while TA is somewhere in between. Additionally, aprotinin has been implicated in increased mortality and maximum side effects. TA has been shown to increase seizure activity, whereas, EACA seems to have the least side effects. Apparently, these agents do not differentiate between pathological and physiological fibrinolysis and prevent all forms of fibrinolysis leading to possible thrombotic side effects. It would seem prudent to select the right agent knowing its risk-benefit profile for a given patient, under the given circumstances.

  5. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.

    2017-03-17

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  6. Scalable BDDC Algorithms for Cardiac Electromechanical Coupling

    KAUST Repository

    Pavarino, L. F.; Scacchi, S.; Verdi, C.; Zampieri, E.; Zampini, Stefano

    2017-01-01

    The spread of electrical excitation in the cardiac muscle and the subsequent contraction-relaxation process is quantitatively described by the cardiac electromechanical coupling model. The electrical model consists of the Bidomain system, which is a degenerate parabolic system of two nonlinear partial differential equations (PDEs) of reaction-diffusion type, describing the evolution in space and time of the intra- and extracellular electric potentials. The PDEs are coupled through the reaction term with a stiff system of ordinary differential equations (ODEs), the membrane model, which describes the flow of the ionic currents through the cellular membrane and the dynamics of the associated gating variables. The mechanical model consists of the quasi-static finite elasticity system, modeling the cardiac tissue as a nearly-incompressible transversely isotropic hyperelastic material, and coupled with a system of ODEs accounting for the development of biochemically generated active force.

  7. Sexual counselling of cardiac patients : Nurses' perception of practice, responsibility and confidence

    NARCIS (Netherlands)

    Jaarsma, T.; Stromberg, A.; Fridlund, B.; De Geest, S.; Martensson, J.; Moons, P.; Norekval, T. M.; Smith, K.; Steinke, E.; Thompson, D. R.

    Background: Cardiac patients may experience problems with sexual activity as a result of their disease, medications or anxiety and nurses play an important role in sexual counselling. We studied the practice, responsibility and confidence of cardiac nurses in the sexual counselling of these

  8. What is needed to implement a web-based audit and feedback intervention with outreach visits to improve care quality: A concept mapping study among cardiac rehabilitation teams.

    Science.gov (United States)

    van Engen-Verheul, Mariëtte M; Peek, Niels; Haafkens, Joke A; Joukes, Erik; Vromen, Tom; Jaspers, Monique W M; de Keizer, Nicolette F

    2017-01-01

    Evidence on successful quality improvement (QI) in health care requires quantitative information from randomized clinical trials (RCTs) on the effectiveness of QI interventions, but also qualitative information from professionals to understand factors influencing QI implementation. Using a structured qualitative approach, concept mapping, this study determines factors identified by cardiac rehabilitation (CR) teams on what is needed to successfully implement a web-based audit and feedback (A&F) intervention with outreach visits to improve the quality of CR care. Participants included 49 CR professionals from 18 Dutch CR centres who had worked with the A&F system during a RCT. In three focus group sessions participants formulated statements on factors needed to implement QI successfully. Subsequently, participants rated all statements for importance and feasibility and grouped them thematically. Multi dimensional scaling was used to produce a final concept map. Forty-two unique statements were formulated and grouped into five thematic clusters in the concept map. The cluster with the highest importance was QI team commitment, followed by organisational readiness, presence of an adequate A&F system, access to an external quality assessor, and future use and functionalities of the A&F system. Concept mapping appeared efficient and useful to understand contextual factors influencing QI implementation as perceived by healthcare teams. While presence of a web-based A&F system and external quality assessor were seen as instrumental for gaining insight into performance and formulating QI actions, QI team commitment and organisational readiness were perceived as essential to actually implement and carry out these actions. These two sociotechnical factors should be taken into account when implementing and evaluating the success of QI implementations in future research. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Effect of a puzzle on the process of students' learning about cardiac physiology.

    Science.gov (United States)

    Cardozo, Lais Tono; Miranda, Aline Soares; Moura, Maria José Costa Sampaio; Marcondes, Fernanda Klein

    2016-09-01

    The aim of the present study was to evaluate the effects of using a puzzle to learn about cardiac physiology. Students were divided into control and game groups. In class 1, the control group had a 2-h theoretical class about cardiac physiology, including a detailed description of the phases of the cardiac cycle, whereas the game group had a 50-min theoretical class without the description of the cardiac cycle. In class 2, the control group did an assessment exercise before an activity with the cardiac puzzle and the game group answered questions after the above-mentioned activity. While solving the puzzle, the students had to describe the cardiac cycle by relating the concepts of heart morphology and physiology. To evaluate short-term learning, the number of wrong answers and grades in the assessment exercise were compared between the control and game groups. To evaluate medium-term learning, we compared the grades obtained by students of the control and game groups in questions about cardiac physiology that formed part of the academic exam. In the assessment exercise, the game group presented a lower number of errors and higher score compared with the control group. In the academic exam, applied after both groups had used the puzzle, there was no difference in the scores obtained by the control and game groups in questions about cardiac physiology. These results showed a positive effect of the puzzle on students' learning about cardiac physiology compared with those not using the puzzle. Copyright © 2016 The American Physiological Society.

  10. Simvastatin induces apoptosis by a Rho-dependent mechanism in cultured cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    Copaja, Miguel; Venegas, Daniel; Aranguiz, Pablo; Canales, Jimena; Vivar, Raul; Catalan, Mabel; Olmedo, Ivonne; Rodriguez, Andrea E.; Chiong, Mario; Leyton, Lisette; Lavandero, Sergio; Diaz-Araya, Guillermo

    2011-01-01

    Several clinical trials have shown the beneficial effects of statins in the prevention of coronary heart disease. Additionally, statins promote apoptosis in vascular smooth muscle cells, in renal tubular epithelial cells and also in a variety of cell lines; yet, the effects of statins on cardiac fibroblast and myofibroblast, primarily responsible for cardiac tissue healing are almost unknown. Here, we investigated the effects of simvastatin on cardiac fibroblast and myofibroblast viability and studied the molecular cell death mechanism triggered by simvastatin in both cell types. Methods: Rat neonatal cardiac fibroblasts and myofibroblasts were treated with simvastatin (0.1-10 μM) up to 72 h. Cell viability and apoptosis were evaluated by trypan blue exclusion method and by flow cytometry, respectively. Caspase-3 activation and Rho protein levels and activity were also determined by Western blot and pull-down assay, respectively. Results: Simvastatin induces caspase-dependent apoptosis of cardiac fibroblasts and myofibroblasts in a concentration- and time-dependent manner, with greater effects on fibroblasts than myofibroblasts. These effects were prevented by mevalonate, farnesylpyrophosphate and geranylgeranylpyrophosphate, but not squalene. These last results suggest that apoptosis was dependent on small GTPases of the Rho family rather than Ras. Conclusion: Simvastatin triggered apoptosis of cardiac fibroblasts and myofibroblasts by a mechanism independent of cholesterol synthesis, but dependent of isoprenilation of Rho protein. Additionally, cardiac fibroblasts were more susceptible to simvastatin-induced apoptosis than cardiac myofibroblasts. Thus simvastatin could avoid adverse cardiac remodeling leading to a less fibrotic repair of the damaged tissues. - Research Highlights: → Simvastatin decreases CF and CMF viability independent of cholesterol synthesis. → Simvastatin induces CF and CMF apoptosis in a caspase-dependent manner being CMF more resistant

  11. NEWBORNS OF HIGH RISK GROUPS AND ELECTROPHYSIOLOGICAL CARDIAC ACTIVITY DURING THE PERIOD OF EARLY ADAPTATION

    Directory of Open Access Journals (Sweden)

    T. S. Tumaeva

    2014-01-01

    Full Text Available Aim: to study characteristics of electrophysiological cardiac activity in children of risk groups and to assess possibilities of Holter-electrocardiography (H-ECG in revealing of cardiac dysfunction during the period of early adaptation. Patients and methods: 250 newborns were examined. The main group consisted of 200 children with cerebral ischemia (CI. This group was divided into 2 subgroups: 100 full-term and 100 premature (at various gestation age infants. Control group contained 50 children born at 38–40th weeks of gestation with physiological course of pregnancy and delivery, APGAR score of 8–9 points. Complex examination included H-ECG according the standard technic with evaluation of the hearth rate (HR during sleep and wakefulness; HRmin, HRmax; arrhythmias, conductivity disorders, duration of the intervals; rhythm variability. Results: according to the ECG children with CI, especially premature ones, and children delivered via Cesarean section more often had ST-T disturbances, arrhythmias (sinus tachycardia, less often — sinus bradycardia and conductivity disorders, Q-Tc prolongation. H-EGC revealed decrease of sleep HR, HRmin and HRmax in children with CI especially in delivered via Cesarean section. The most common arrhythmia was supraventricular extrasystole.  Pauses in rhythms and variability were the highest in premature children delivered via Cesarean section. Conclusions: hypoxia/ischemia is a trigger for development of cardiovascular dysfuncion in newborns. Premature and children delivered via Cesarean section form a group of high risk. H-ECG widens possibilities of revealing of symptoms of cardiac dysfunction (disturbances at the basal level of functioning, of adaptation resources of the sinus node, electric instability of the myocardium and heart rate variability in children of risk group for development of cardiovascular disorders. 

  12. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Suzuki, H; Takenaka, T; Miyashita, Y; Hayashi, M; Saruta, T

    1997-08-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.

  13. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  14. Association between dental caries and out-of-hospital cardiac arrests of cardiac origin in Japan.

    Science.gov (United States)

    Suematsu, Yasunori; Miura, Shin-Ichiro; Zhang, Bo; Uehara, Yoshinari; Ogawa, Masahiro; Yonemoto, Naohiro; Nonogi, Hiroshi; Nagao, Ken; Kimura, Takeshi; Saku, Keijiro

    2016-04-01

    Oral infection contributes to atherosclerosis and coronary heart disease. We hypothesized that dental caries may be associated with out-of-hospital cardiac arrests (OHCA) of cardiac origin, but not non-cardiac origin. We compared the age-adjusted incidence of OHCA (785,591 cases of OHCA: 55.4% of cardiac origin and 44.6% of non-cardiac origin) to the age-adjusted prevalence of dental caries between 2005 and 2011 in the 47 prefectures of Japan. In both the total population and males over 65 years, the number of cases of dental caries was significantly associated with the number of OHCA of total and cardiac origin from 2005 to 2011, but not those of non-cardiac origin. In the total population, the age-adjusted prevalence of dental caries was not significantly associated with the age-adjusted incidence of OHCA (total OHCA: r correlation coefficient=0.22, p=0.14; OHCA of cardiac origin: r=0.25, p=0.09; OHCA of non-cardiac origin: r=-0.002, p=0.99). Among male patients over 65 years, the age-adjusted prevalence of dental caries was significantly associated with OHCA of total and cardiac origin, but not non-cardiac origin (total OHCA: r=0.47, p<0.001; OHCA of cardiac origin: r=0.37, p=0.01; OHCA of non-cardiac origin: r=0.28, p=0.054). While oral hygiene is important in all age groups, it may be particularly associated with OHCAs of cardiac origin in males over 65 years. Copyright © 2015. Published by Elsevier Ltd.

  15. Principal tools for exploring the brain and mapping its activity

    International Nuclear Information System (INIS)

    Mazoyer, B.; Mashaal, M.

    1996-01-01

    The electro-encephalography (EEG), magneto-encephalography (MEG), scanner, positron computed tomography, single photon emission computed tomography (SPECT) and NMR imaging are the main methods used to explore human brain and to do a mapping of its activity. These methods are described into details (principle, visualization, uses, advantages, disadvantages). They can be useful to detect the possible anomalies of the human brain. (O.M.)

  16. Disagreement between splenic switch-off and myocardial T1-mapping after caffeine intake

    NARCIS (Netherlands)

    Kuijpers, Dirkjan; van Dijk, Randy; van Assen, Marly; Kaandorp, Theodorus A M; van Dijkman, Paul R M; Vliegenthart, Rozemarijn; van der Harst, Pim; Oudkerk, Matthijs

    Caffeine is an adenosine receptor antagonist and a possible cause of inadequate stress perfusion. Splenic switch-off (SSO) and splenic rest-stress T1-mapping have been proposed as indicators of stress adequacy during perfusion cardiac magnetic resonance (CMR). We compared myocardial rest-stress

  17. Sudden cardiac death

    Directory of Open Access Journals (Sweden)

    Neeraj Parakh

    2015-01-01

    Full Text Available Sudden cardiac death is one of the most common cause of mortality worldwide. Despite significant advances in the medical science, there is little improvement in the sudden cardiac death related mortality. Coronary artery disease is the most common etiology behind sudden cardiac death, in the above 40 years population. Even in the apparently healthy population, there is a small percentage of patients dying from sudden cardiac death. Given the large denominator, this small percentage contributes to the largest burden of sudden cardiac death. Identification of this at risk group among the apparently healthy individual is a great challenge for the medical fraternity. This article looks into the causes and methods of preventing SCD and at some of the Indian data. Details of Brugada syndrome, Long QT syndrome, Genetics of SCD are discussed. Recent guidelines on many of these causes are summarised.

  18. Quantification of left ventricular volumes from cardiac cine MRI using active contour model combined with gradient vector flow

    International Nuclear Information System (INIS)

    Tanki, Nobuyoshi; Murase, Kenya; Kumashiro, Masayuki; Momoi, Risa; Yang, Xiaomei; Tabuchi, Takashi; Nagayama, Masako; Watanabe, Yuji

    2005-01-01

    We investigated the feasibility of combining the active contour model with gradient vector flow (Snakes-GVF) to estimate left ventricular (LV) volumes from cardiac cine magnetic resonance imaging (MRI). MRI data were acquired from 27 patients, including 14 adults (9 men, 5 women, 55.0±23.3 years) and 13 children (10 boys, 3 girls, 2.7±2.1 years) using Gyroscan Intera (1.5 Tesla, Philips Medical Systems). LV volumes were calculated by adding the areas surrounded by the contour extracted by Snakes-GVF and compared with volumes estimated by manual tracing. Those estimated by Snakes-GVF [y (mL)] correlated well with those estimated by manual tracing [x (mL)]. In adult cases, the regression equation and correlation coefficient were y=1.008x-0.517 and 0.996, respectively. In pediatric cases, they were y=1.174x-2.542 and 0.992, respectively. In conclusion, Snakes-GVF is a powerful and useful tool for quantifying LV volumes using cardiac MRI. (author)

  19. Frequency Count Attribute Oriented Induction of Corporate Network Data for Mapping Business Activity

    Directory of Open Access Journals (Sweden)

    Tanutama Lukas

    2014-03-01

    Full Text Available Companies increasingly rely on Internet for effective and efficient business communication. As Information Technology infrastructure backbone for business activities, corporate network connects the company to Internet and enables its activities globally. It carries data packets generated by the activities of the users performing their business tasks. Traditionally, infrastructure operations mainly maintain data carrying capacity and network devices performance. It would be advantageous if a company knows what activities are running in its network. The research provides a simple method of mapping the business activity reflected by the network data. To map corporate users’ activities, a slightly modified Attribute Oriented Induction (AOI approach to mine the network data was applied. The frequency of each protocol invoked were counted to show what the user intended to do. The collected data was samples taken within a certain sampling period. Samples were taken due to the enormous data packets generated. Protocols of interest are only Internet related while intranet protocols are ignored. It can be concluded that the method could provide the management a general overview of the usage of its infrastructure and lead to efficient, effective and secure ICT infrastructure.

  20. Frequency Count Attribute Oriented Induction of Corporate Network Data for Mapping Business Activity

    Science.gov (United States)

    Tanutama, Lukas

    2014-03-01

    Companies increasingly rely on Internet for effective and efficient business communication. As Information Technology infrastructure backbone for business activities, corporate network connects the company to Internet and enables its activities globally. It carries data packets generated by the activities of the users performing their business tasks. Traditionally, infrastructure operations mainly maintain data carrying capacity and network devices performance. It would be advantageous if a company knows what activities are running in its network. The research provides a simple method of mapping the business activity reflected by the network data. To map corporate users' activities, a slightly modified Attribute Oriented Induction (AOI) approach to mine the network data was applied. The frequency of each protocol invoked were counted to show what the user intended to do. The collected data was samples taken within a certain sampling period. Samples were taken due to the enormous data packets generated. Protocols of interest are only Internet related while intranet protocols are ignored. It can be concluded that the method could provide the management a general overview of the usage of its infrastructure and lead to efficient, effective and secure ICT infrastructure.

  1. Cardiac glycosides induce cell death in human cells by inhibiting general protein synthesis.

    Directory of Open Access Journals (Sweden)

    Andrea Perne

    2009-12-01

    Full Text Available Cardiac glycosides are Na(+/K(+-pump inhibitors widely used to treat heart failure. They are also highly cytotoxic, and studies have suggested specific anti-tumor activity leading to current clinical trials in cancer patients. However, a definitive demonstration of this putative anti-cancer activity and the underlying molecular mechanism has remained elusive.Using an unbiased transcriptomics approach, we found that cardiac glycosides inhibit general protein synthesis. Protein synthesis inhibition and cytotoxicity were not specific for cancer cells as they were observed in both primary and cancer cell lines. These effects were dependent on the Na(+/K(+-pump as they were rescued by expression of a cardiac glycoside-resistant Na(+/K(+-pump. Unlike human cells, rodent cells are largely resistant to cardiac glycosides in vitro and mice were found to tolerate extremely high levels.The physiological difference between human and mouse explains the previously observed sensitivity of human cancer cells in mouse xenograft experiments. Thus, published mouse xenograft models used to support anti-tumor activity for these drugs require reevaluation. Our finding that cardiac glycosides inhibit protein synthesis provides a mechanism for the cytotoxicity of CGs and raises concerns about ongoing clinical trials to test CGs as anti-cancer agents in humans.

  2. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    Science.gov (United States)

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Changes in cardiac activity, oxygen uptake and perfusion indices in Carcinus maenas (L. ) exposed to crude oil and dispersant

    Energy Technology Data Exchange (ETDEWEB)

    Depledge, M.H.

    1984-01-01

    Cardiac activity and oxygen consumption increased when C. maenas were exposed to a 20% solution of the water-soluble fraction of Fortes crude oil, a 10% solution of the dispersant BP1100WD or a combination of both. Normal feeding behaviour was disrupted. Perfusion indices (Q/VO2) decreased as locomotor activity increased following exposure to crude oil. However, exposure to dispersant or dispersant + crude oil resulted in elevation of perfusion index despite crabs becoming active. All test animals survived for at least 6 weeks following exposure to the pollutants. The acute, sublethal effects of dispersant and dispersant + crude oil were more severe than the effects of crude oil alone.

  4. Effect of endurance swimming on rat cardiac myofibrillar ATPase with experimental diabetes.

    Science.gov (United States)

    Belcastro, A N; Maybank, P; Rossiter, M; Secord, D

    1985-09-01

    Diabetes is characterized by depressed cardiac functional properties attributed to Ca2+-activated ATPase activity. In contrast, endurance swimming enhances the cardiac functional properties and Ca2+-activated myofibril ATPase. Thus, the purpose of this study was to observe if the changes associated with experimental diabetes can be ameliorated with training. Diabetes was induced with a single i.v. injection of streptozotocin (60 mg/kg). Blood and urine glucose concentrations were 802 +/- 44 and 6965 +/- 617 mg/dL, respectively. The training control and training diabetic animals were made to swim (+/- 2% body weight) 4 days/week for 8 weeks. Cardiac myofibril, at 10 microM free Ca2+ concentration was reduced by 54% in the sedentary diabetics compared with sedentary control animals (p less than 0.05). Swim training enhanced the Ca2+-activated myofibril ATPase activities for the normal animals. The diabetic animals, which swam for 8 weeks, had further reduced their Ca2+-activated myofibril ATPase activity when compared with sedentary diabetics (p less than 0.05). Similarly, the Mg2+-stimulated myofibril ATPase activity was depressed by 31% in diabetics following endurance swimming. It is concluded that the depressed Ca2+-activated myofibril ATPase activity of diabetic hearts is not reversible with endurance swimming.

  5. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  6. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    Science.gov (United States)

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  7. Cost-Utility Analysis of a Cardiac Telerehabilitation Program

    DEFF Research Database (Denmark)

    Kidholm, Kristian; Rasmussen, Maja Kjær; Andreasen, Jan Jesper

    2016-01-01

    Background: Cardiac rehabilitation can reduce mortality of patients with cardiovascular disease, but a frequently low participation rate in rehabilitation programs has been found globally. The objective of the Teledialog study was to assess the cost-utility (CU) of a cardiac telerehabilitation (CTR...... was higher in the intervention group, but the difference was not statistically significant. The incremental CU ratio was more than (sic)400,000 per QALY gained. Conclusions: Even though the rehabilitation activities increased, the program does not appear to be cost-effective. The intervention itself...

  8. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    Science.gov (United States)

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  9. Solving fatigue-related problems with cardiac arrest survivors living in the community.

    Science.gov (United States)

    Kim, Young Joo; Rogers, Joan C; Raina, Ketki D; Callaway, Clifton W; Rittenberger, Jon C; Leibold, Mary Lou; Holm, Margo B

    2017-09-01

    The aim was to describe fatigue-related problems reported by post-cardiac arrest adults with chronic fatigue and energy conservation strategies generated using an Energy Conservation plus Problem Solving Therapy intervention. Following an introduction to the intervention process outlined in a Participant Workbook, participants engaged in the telephone intervention by identifying one to two fatigue-related problems. They then brainstormed with the interventionist to identify potential strategies to reduce fatigue, tested them, and either modified the strategies or moved to the next problem over three to five sessions. Eighteen cardiac arrest survivors with chronic fatigue identified instrumental activities of daily living and leisure activities as fatigue-related activities more frequently than basic activities of daily living. Energy Conservation strategies used most frequently were: plan ahead, pace yourself, delegate to others, and simplify the task. Post-cardiac arrest adults living in the community with chronic fatigue can return to previous daily activities by using energy conservation strategies such as planning ahead, pacing tasks, delegating tasks, and simplifying tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    OpenAIRE

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, ...

  11. Factors influencing the cardiac MIBG accumulation

    International Nuclear Information System (INIS)

    Takatsu, Hisato; Fujiwara, Hisayoshi

    1997-01-01

    Following factors possibly influencing the cardiac MIBG accumulation were examined mainly in mice. 1. The specific activity of the MIBG (meta-iodo-benzyl guanidine) on the neuronal and non-neuronal fractions. 2. Motor restriction stress on MIBG accumulation and washout. 3. Loading and restriction of sodium chloride on the accumulation and effect of suppression of renin-angiotensin system. 4. Examinations in Dahl rats. 125I- or 131I-MIBG was intravenously administered to mice at 74 kBq. At 30 min or 4 hr after administration, mice were sacrificed and their left ventricles were dissected out for measurement of radioactivity in a liquid scintillation counter. Salt-sensitive and -resistant Dahl rats were given with 37 MBq of 123I-MIBG and cardiac radioactivity was measured externally for calculation of washout. Factors examined were found highly correlated with the accumulation of MIBG and measurement of its washout was considered useful for evaluating sympathetic activity. (K.H.)

  12. Recurrent late cardiac tamponade following cardiac surgery : a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Background - Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. Case report - We present a case of recurrent cardiac tamponade following valve surgery. At first presentation,

  13. Cardiac effects of electrically induced intrathoracic autonomic reflexes.

    Science.gov (United States)

    Armour, J A

    1988-06-01

    Electrical stimulation of the afferent components in one cardiopulmonary nerve (the left vagosympathetic complex at a level immediately caudal to the origin of the left recurrent laryngeal nerve) in acutely decentralized thoracic autonomic ganglionic preparations altered cardiac chronotropism and inotropism in 17 of 44 dogs. Since these neural preparations were acutely decentralized, the effects were mediated presumably via intrathoracic autonomic reflexes. The lack of consistency of these reflexly generated cardiac responses presumably were due in part to anatomical variation of afferent axons in the afferent nerve stimulated. As stimulation of the afferent components in the same neural structure caudal to the heart (where cardiopulmonary afferent axons are not present) failed to elicit cardiac responses in any dog, it is presumed that when cardiac responses were elicited by the more cranially located stimulations, these were due to activation of afferent axons arising from the heart and (or) lungs. When cardiac responses were elicited, intramyocardial pressures in the right ventricular conus as well as the ventral and lateral walls of the left ventricle were augmented. Either bradycardia or tachycardia was elicited. Following hexamethonium administration no responses were produced, demonstrating that nicotonic cholinergic synaptic mechanisms were involved in these intrathoracic cardiopulmonary-cardiac reflexes. In six of the animals, when atropine was administered before hexamethonium, reflexly generated responses were attenuated. The same thing occurred when morphine was administered in four animals. In contrast, in four animals following administration of phentolamine, the reflexly generated changes were enhanced.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Knowledge Activation versus Sentence Mapping When Representing Fictional Characters' Emotional States.

    Science.gov (United States)

    Gernsbacher, Morton Ann; Robertson, Rachel R. W.

    1992-01-01

    In a study of knowledge activation and sentence mapping, subjects read stories that described concrete actions, and then the content of the stories was manipulated (i.e. stories were written that implied different emotional states). It is suggested that the more emotionally evoking situations one encounters the more memory traces are stored and…

  15. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice.

    Science.gov (United States)

    Choi, Geonho; Lee, Jeonghyeon; Kim, Hyeongeun; Jang, Jaemyung; Im, Changkyun; Jeon, Nooli; Jung, Woonggyu

    2018-03-01

    In this study, we introduce the novel image-guided recording system (IGRS) for efficient interpretation of neuronal activities in the brain slice. IGRS is designed to combine microelectrode array (MEA) and optical coherence tomography at the customized upright microscope. It allows to record multi-site neuronal signals and image of the volumetric brain anatomy in a single body configuration. For convenient interconnection between a brain image and neuronal signals, we developed the automatic mapping protocol that enables us to project acquired neuronal signals on a brain image. To evaluate the performance of IGRS, hippocampal signals of the brain slice were monitored, and corresponding with two-dimensional neuronal maps were successfully reconstructed. Our results indicated that IGRS and mapping protocol can provide the intuitive information regarding long-term and multi-sites neuronal signals. In particular, the temporal and spatial mapping capability of neuronal signals would be a very promising tool to observe and analyze the massive neuronal activity and connectivity in MEA-based electrophysiological studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation on Hot Workability of Homogenized Al-Zn-Mg-Cu Alloy Based on Activation Energy and Processing Map

    Science.gov (United States)

    Peng, Xiaoyan; Su, Wusen; Xiao, Dan; Xu, Guofu

    2018-06-01

    Hot deformation behaviors of the homogenized Al-Zn-Mg-Cu alloy were studied by uniaxial compression tests carried out at 623-743 K and strain rates of 0.01-10 s-1. The constitutive equation was developed for the activation energy, and thus the activation energy map was constructed. During the hot deformation, the dominated softening mechanisms were the dynamic recovery and dynamic recrystallization, which were most likely to be driven with increasing temperature and decreasing activation energy. Based on the superposition of the activation energy map and the processing map, together with the microstructure characteristics, the optimized hot workability of the alloy was proposed at the domain (670-743 K and 0.01-0.16 s-1), where the peak efficiency was 0.39 and the activation energy range was 196-260 kJ mol-1.

  17. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A [Hijiyanna Park, Hiroshima JP; Nakashima, N; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction; (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically; and apparently is not associated with any cardiac abnormality; and (3) focal cardiac myocytolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by non-bacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  18. Small cardiac lesions: fibrosis of papillary muscles and focal cardiac myocytolysis

    Energy Technology Data Exchange (ETDEWEB)

    Steer, A; Nakashima, T; Kawashima, T; Lee, K K; Danzig, M D; Robertson, T L; Dock, D S

    1977-11-01

    Three types of small cardiac lesions were described and illustrated: (1) focal type of papillary muscle fibrosis, evidently a healed infarct of the papillary muscle present in 13% of the autopsies, is a histologically characteristic lesion associated with coronary artery disease and healed myocardial infarction, (2) diffuse type of papillary muscle fibrosis, probably an aging change present in almost half of the autopsies, is associated with sclerosis of the arteries in the papillary muscle, is identifiable histologically, and apparently is not associated with any cardiac abnormality, and (3) focal cardiac myochtolysis, a unique histologic lesion, usually multifocal without predilection for any area of the heart, is associated with ischemic heart disease, death due to cancer complicated by nonbacterial thrombotic endocarditis and microthrombi in small cardiac arteries as well as with other diseases. Differentiation of the 2 types of papillary muscle fibrosis is important in the study of papillary muscle and mitral valve dysfunction. Focal cardiac myocytolysis may contribute to the fatal extension of myocardial infarcts.

  19. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  20. Recurrent late cardiac tamponade following cardiac surgery: a deceiving and potentially lethal complication

    NARCIS (Netherlands)

    Harskamp, Ralf E.; Meuzelaar, Jacobus J.

    2010-01-01

    Cardiac tamponade, characterized by inflow obstruction of the heart chambers by extracardiac compression, is a potentially lethal complication following cardiac surgery. We present a case of recurrent cardiac tamponade following valve surgery. At first presentation, diagnosis was delayed because of

  1. Clonidine, an alpha2-receptor agonist, diminishes GABAergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Philbin, Kerry E; Bateman, Ryan J; Mendelowitz, David

    2010-08-06

    In hypertension, there is an autonomic imbalance in which sympathetic activity dominates over parasympathetic control. Parasympathetic activity to the heart originates from cardiac vagal neurons located in the nucleus ambiguus. Presympathetic neurons that project to sympathetic neurons in the spinal cord are located in the ventral brainstem in close proximity to cardiac vagal neurons, and many of these presympathetic neurons are catecholaminergic. In addition to their projection to the spinal cord, many of these presympathetic neurons have axon collaterals that arborize into neighboring cardiorespiratory locations and likely release norepinephrine onto nearby neurons. Activation of alpha(2)-adrenergic receptors in the central nervous system evokes a diverse range of physiological effects, including reducing blood pressure. This study tests whether clonidine, an alpha(2)-adrenergic receptor agonist, alters excitatory glutamatergic, and/or inhibitory GABAergic or glycinergic synaptic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Cardiac vagal neurons were identified in an in vitro brainstem slice preparation, and synaptic events were recording using whole cell voltage clamp methodologies. Clonidine significantly inhibited GABAergic neurotransmission but had no effect on glycinergic or glutamatergic pathways to cardiac vagal neurons. This diminished inhibitory GABAergic neurotransmission to cardiac vagal neurons would increase parasympathetic activity to the heart, decreasing heart rate and blood pressure. The results presented here provide a cellular substrate for the clinical use of clonidine as a treatment for hypertension as well as a role in alleviating posttraumatic stress disorder by evoking an increase in parasympathetic cardiac vagal activity, and a decrease in heart rate and blood pressure. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Diffuse infiltrative cardiac tuberculosis

    International Nuclear Information System (INIS)

    Gulati, Gurpreet S; Kothari, Shyam S

    2011-01-01

    We present the cardiac magnetic resonance images of an unusual form of cardiac tuberculosis. Nodular masses in a sheet-like distribution were seen to infiltrate the outer myocardium and pericardium along most of the cardiac chambers. The lesions showed significant resolution on antitubercular therapy

  3. Sympathetic- and Parasympathetic-Linked Cardiac Function and Prediction of Externalizing Behavior, Emotion Regulation, and Prosocial Behavior among Preschoolers Treated for ADHD

    Science.gov (United States)

    Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Neuhaus, Emily; Chipman, Jane; Reid, M. Jamila; Webster-Stratton, Carolyn

    2013-01-01

    Objective: To evaluate measures of cardiac activity and reactivity as prospective biomarkers of treatment response to an empirically supported behavioral intervention for attention-deficit/hyperactivity disorder (ADHD). Method: Cardiac preejection period (PEP), an index of sympathetic-linked cardiac activity, and respiratory sinus arrhythmia…

  4. Small and large animal models in cardiac contraction research: advantages and disadvantages.

    Science.gov (United States)

    Milani-Nejad, Nima; Janssen, Paul M L

    2014-03-01

    The mammalian heart is responsible for not only pumping blood throughout the body but also adjusting this pumping activity quickly depending upon sudden changes in the metabolic demands of the body. For the most part, the human heart is capable of performing its duties without complications; however, throughout many decades of use, at some point this system encounters problems. Research into the heart's activities during healthy states and during adverse impacts that occur in disease states is necessary in order to strategize novel treatment options to ultimately prolong and improve patients' lives. Animal models are an important aspect of cardiac research where a variety of cardiac processes and therapeutic targets can be studied. However, there are differences between the heart of a human being and an animal and depending on the specific animal, these differences can become more pronounced and in certain cases limiting. There is no ideal animal model available for cardiac research, the use of each animal model is accompanied with its own set of advantages and disadvantages. In this review, we will discuss these advantages and disadvantages of commonly used laboratory animals including mouse, rat, rabbit, canine, swine, and sheep. Since the goal of cardiac research is to enhance our understanding of human health and disease and help improve clinical outcomes, we will also discuss the role of human cardiac tissue in cardiac research. This review will focus on the cardiac ventricular contractile and relaxation kinetics of humans and animal models in order to illustrate these differences. © 2013.

  5. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  6. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI

    Science.gov (United States)

    Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860

  7. The utilization of mesh meteorological data maps for agricultural activity in hilly and mountainous area

    International Nuclear Information System (INIS)

    Ueyama, H.

    2008-01-01

    Hilly and mountainous areas occupy approximately 70% of Japan, and the area of farmland in these regions is decreasing; these areas are defined as those from the outer plains to the mountains. The development of strategies for the revitalization of local agriculture in hilly and mountainous areas is therefore a significant problem in Japan. Systematic agriculture is efficient in hilly and mountainous areas, and distribution maps are effective planning tools for evaluating the meteorological conditions for individual farms in those areas where farms are small and interspersed. Public agricultural research centers in each prefecture of Japan have developed mesh meteorological data maps with some kilometers grid cell resolutions for local agriculture, and have been made many studies using mesh meteorological data maps. However, critical variations exist between estimated mesh data and actual meteorological condition within the area of each grid cell. To address this problem, methods of estimating air temperature and solar radiation on a 50 m mesh (latitude 1.5 sec x longitude 2.25 sec) were developed. While many studies with mesh meteorological data maps have been made, numbers of concrete examples of utility for agricultural activity in hilly and mountainous areas have been few. This paper presents therefore some studies for utilization facilitated of mesh meteorological data maps in hilly and mountainous areas. And furthermore, it is proposed some guides to utilize mesh meteorological data maps for the purpose of revitalizing an agricultural activity in hilly and mountainous area with concrete examples

  8. Epidural catheterization in cardiac surgery: The 2012 risk assessment

    Directory of Open Access Journals (Sweden)

    Thomas M Hemmerling

    2013-01-01

    Full Text Available Aims and Objectives: The risk assessment of epidural hematoma due to catheter placement in patients undergoing cardiac surgery is essential since its benefits have to be weighed against risks, such as the risk of paraplegia. We determined the risk of the catheter-related epidural hematoma in cardiac surgery based on the cases reported in the literature up to September 2012. Materials and Methods: We included all reported cases of epidural catheter placement for cardiac surgery in web and in literature from 1966 to September 2012. Risks of other medical and non-medical activities were retrieved from recent reviews or national statistical reports. Results: Based on our analysis the risk of catheter-related epidural hematoma is 1 in 5493 with a 95% confidence interval (CI of 1/970-1/31114. The risk of catheter-related epidural hematoma in cardiac surgery is similar to the risk in the general surgery population at 1 in 6,628 (95% CI 1/1,170-1/37,552. Conclusions: The present risk calculation does not justify not offering epidural analgesia as part of a multimodal analgesia protocol in cardiac surgery.

  9. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael

    2007-01-01

    that phosphorylates p90 Ribosomal S6 Kinase, a ubiquitous and versatile mediator of ERK1/2 signal transduction. Moreover, the beta-arrestin2-dependent ERK1/2 signal supports intact proliferation of cardiac myocytes. In contrast to G(q)-activated ERK1/2, and in keeping with its failure to translocate to the nucleus...

  10. Assessment of cardiac risk before non-cardiac surgery: brain natriuretic peptide in 1590 patients.

    Science.gov (United States)

    Dernellis, J; Panaretou, M

    2006-11-01

    To evaluate the predictive value of brain natriuretic peptide (BNP) for assessment of cardiac risk before non-cardiac surgery. Consecutively treated patients (947 men, 643 women) whose BNP was measured before non-cardiac surgery were studied. Clinical and ECG variables were evaluated to identify predictors of postoperative cardiac events. Events occurred in 6% of patients: 21 cardiac deaths, 20 non-fatal myocardial infarctions, 41 episodes of pulmonary oedema and 14 patients with ventricular tachycardia. All of these patients had raised plasma BNP concentrations (best cut-off point 189 pg/ml). The only independent predictor of postoperative events was BNP (odds ratio 34.52, 95% confidence interval (CI) 17.08 to 68.62, p 300 pg/ml); postoperative event rates were 0%, 5%, 12% and 81%, respectively. In this population of patients evaluated before non-cardiac surgery, BNP is an independent predictor of postoperative cardiac events. BNP > 189 pg/ml identified patients at highest risk.

  11. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach

    KAUST Repository

    Bueno-Orovio, Alfonso

    2013-05-15

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach.

    Science.gov (United States)

    Bueno-Orovio, Alfonso; Sánchez, Carlos; Pueyo, Esther; Rodriguez, Blanca

    2014-02-01

    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.

  13. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Marcelo F.; Yoo, Shi-Joon; Seed, Mike; Grosse-Wortmann, Lars [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics and Department of Diagnostic Imaging, Toronto (Canada); Redington, Andrew [The Hospital for Sick Children, University of Toronto, Labatt Family Heart Centre in the Department of Paediatrics, Toronto (Canada); Greiser, Andreas [Siemens AG Healthcare Sector, Erlangen (Germany)

    2014-04-15

    Adverse ventricular remodeling after tetralogy of Fallot (TOF) repair is associated with diffuse myocardial fibrosis. The goal of this study was to measure post-contrast myocardial T1 in pediatric patients after TOF repair as surrogates of myocardial fibrosis. Children after TOF repair who underwent cardiac magnetic resonance imaging with T1 mapping using the modified look-locker inversion recovery (MOLLI) sequence were included. In addition to routine volumetric and flow data, we measured post-contrast T1 values of the basal interventricular septum, the left ventricular (LV) lateral wall, and the inferior and anterior walls of the right ventricle (RV). Results were compared to data from age-matched healthy controls. The scans of 18 children who had undergone TOF repair and 12 healthy children were included. Post-contrast T1 values of the left ventricular lateral wall (443 ± 54 vs. 510 ± 77 ms, P = 0.0168) and of the right ventricular anterior wall (333 ± 62 vs. 392 ± 72 ms, P = 0.0423) were significantly shorter in children with TOF repair than in controls, suggesting a higher degree of fibrosis. In children with TOF repair, but not in controls, post-contrast T1 values were shorter in the right ventricle than the left ventricle and shorter in the anterior wall of the right ventricle than in the inferior segments. In the TOF group, post-contrast T1 values of the RV anterior wall correlated with the RV end-systolic volume indexed to body surface area (r = 0.54; r{sup 2} = 0.30; P = 0.0238). In children who underwent tetralogy of Fallot repair the myocardium of both ventricles appears to bear an abnormally high fibrosis burden. (orig.)

  14. Diffuse myocardial fibrosis following tetralogy of Fallot repair: a T1 mapping cardiac magnetic resonance study

    International Nuclear Information System (INIS)

    Kozak, Marcelo F.; Yoo, Shi-Joon; Seed, Mike; Grosse-Wortmann, Lars; Redington, Andrew; Greiser, Andreas

    2014-01-01

    Adverse ventricular remodeling after tetralogy of Fallot (TOF) repair is associated with diffuse myocardial fibrosis. The goal of this study was to measure post-contrast myocardial T1 in pediatric patients after TOF repair as surrogates of myocardial fibrosis. Children after TOF repair who underwent cardiac magnetic resonance imaging with T1 mapping using the modified look-locker inversion recovery (MOLLI) sequence were included. In addition to routine volumetric and flow data, we measured post-contrast T1 values of the basal interventricular septum, the left ventricular (LV) lateral wall, and the inferior and anterior walls of the right ventricle (RV). Results were compared to data from age-matched healthy controls. The scans of 18 children who had undergone TOF repair and 12 healthy children were included. Post-contrast T1 values of the left ventricular lateral wall (443 ± 54 vs. 510 ± 77 ms, P = 0.0168) and of the right ventricular anterior wall (333 ± 62 vs. 392 ± 72 ms, P = 0.0423) were significantly shorter in children with TOF repair than in controls, suggesting a higher degree of fibrosis. In children with TOF repair, but not in controls, post-contrast T1 values were shorter in the right ventricle than the left ventricle and shorter in the anterior wall of the right ventricle than in the inferior segments. In the TOF group, post-contrast T1 values of the RV anterior wall correlated with the RV end-systolic volume indexed to body surface area (r = 0.54; r 2 = 0.30; P = 0.0238). In children who underwent tetralogy of Fallot repair the myocardium of both ventricles appears to bear an abnormally high fibrosis burden. (orig.)

  15. 123I-MIBG imaging detects cardiac involvement and predicts cardiac events in Churg-Strauss syndrome

    International Nuclear Information System (INIS)

    Horiguchi, Yoriko; Morita, Yukiko; Tsurikisawa, Naomi; Akiyama, Kazuo

    2011-01-01

    In Churg-Strauss syndrome (CSS) it is important to detect cardiac involvement, which predicts poor prognosis. This study evaluated whether 123 I-metaiodobenzylguanidine (MIBG) scintigraphy could detect cardiac damage and predict cardiac events in CSS. 123 I-MIBG scintigraphy was performed in 28 patients with CSS, 12 of whom had cardiac involvement. The early and delayed heart to mediastinum ratio (early H/M and delayed H/M) and washout rate were calculated by using 123 I-MIBG scintigraphy and compared with those in control subjects. Early H/M and delayed H/M were significantly lower and the washout rate was significantly higher in patients with cardiac involvement than in those without and in controls (early H/M, p = 0.0024, p = 0.0001; delayed H/M, p = 0.0002, p = 0.0001; washout rate, p = 0.0012, p = 0.0052 vs those without and vs controls, respectively). Accuracy for detecting cardiac involvement was 86% for delayed H/M and washout rate and 79% for early H/M and B-type natriuretic peptide (BNP). Kaplan-Meier analysis showed significantly lower cardiac event-free rates in patients with early H/M ≤ 2.18 and BNP > 21.8 pg/ml than those with early H/M > 2.18 and BNP ≤ 21.8 pg/ml (log-rank test p = 0.006). Cardiac sympathetic nerve function was damaged in CSS patients with cardiac involvement. 123 I-MIBG scintigraphy was useful in detecting cardiac involvement and in predicting cardiac events. (orig.)

  16. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy.

    Science.gov (United States)

    Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Hiroshima, Satoru; Prueckl, Robert; Guger, Christoph

    2014-11-01

    Electrocortical stimulation (ECS) is the gold standard for functional brain mapping during an awake craniotomy. The critical issue is to set aside enough time to identify eloquent cortices by ECS. High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram is assumed to reflect localized cortical processing. In this report, we used real-time HGA mapping and functional neuronavigation integrated with functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Four patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. During the craniotomy, we recorded electrocorticogram activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated real-time HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared with ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. We found different HGA dynamics of language tasks in frontal and temporal regions. Specificities of the motor and language-fMRI did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate identification of motor and frontal language areas. Furthermore, real-time HGA mapping sheds light on underlying physiological mechanisms related to human brain functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. CARDIAC LYMPHOMA IN DOG

    Directory of Open Access Journals (Sweden)

    G. D. Cruz

    2016-11-01

    Full Text Available Lymphoma is a lymphoid tumor that originates in hematopoietic organs such as lymph node, spleen or liver. In dogs, the overall prevalence of cardiac tumors was estimated to be only 0.19% based on the results of the survey of a large database, and lymphomas accounts for approximately 2% of all cardiac tumors. In general, the involvement of the myocardium is rarely described in canine lymphoma. Currently, there is no evidence of a viral association with primary cardiac lymphoma in dogs, but other types of immunosuppression may contribute to abnormal events, such as involvement primary cardiac. The aim of this study was to analyze a case of sudden death of a bitch, SRD, aged 10, who had the final diagnosis of cardiac lymphoma.

  18. Complete cardiac regeneration in a mouse model of myocardial infarction.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Adamowicz-Brice, Martyna; Khadayate, Sanjay; Tiefenthaler, Viktoria; Metzler, Bernhard; Aitman, Tim; Penninger, Josef M

    2012-12-01

    Cardiac remodeling and subsequent heart failure remain critical issues after myocardial infarction despite improved treatment and reperfusion strategies. Recently, complete cardiac regeneration has been demonstrated in fish and newborn mice following resection of the cardiac apex. However, it remained entirely unclear whether the mammalian heart can also completely regenerate following a complex cardiac ischemic injury. We established a protocol to induce a severe heart attack in one-day-old mice using left anterior descending artery (LAD) ligation. LAD ligation triggered substantial cardiac injury in the left ventricle defined by Caspase 3 activation and massive cell death. Ischemia-induced cardiomyocyte death was also visible on day 4 after LAD ligation. Remarkably, 7 days after the initial ischemic insult, we observed complete cardiac regeneration without any signs of tissue damage or scarring. This tissue regeneration translated into long-term normal heart functions as assessed by echocardiography. In contrast, LAD ligations in 7-day-old mice resulted in extensive scarring comparable to adult mice, indicating that the regenerative capacity for complete cardiac healing after heart attacks can be traced to the first week after birth. RNAseq analyses of hearts on day 1, day 3, and day 10 and comparing LAD-ligated and sham-operated mice surprisingly revealed a transcriptional programme of major changes in genes mediating mitosis and cell division between days 1, 3 and 10 postnatally and a very limited set of genes, including genes regulating cell cycle and extracellular matrix synthesis, being differentially regulated in the regenerating hearts. We present for the first time a mammalian model of complete cardiac regeneration following a severe ischemic cardiac injury. This novel model system provides the unique opportunity to uncover molecular and cellular pathways that can induce cardiac regeneration after ischemic injury, findings that one day could be translated

  19. Neuroendocrine and Cardiac Metabolic Dysfunction and NLRP3 Inflammasome Activation in Adipose Tissue and Pancreas following Chronic Spinal Cord Injury in the Mouse

    Directory of Open Access Journals (Sweden)

    Gregory E. Bigford

    2013-08-01

    Full Text Available CVD (cardiovascular disease represents a leading cause of mortality in chronic SCI (spinal cord injury. Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immunohistochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin and increased NPY (neuropeptide-Y expression in the hypothalamic ARC (arcuate nucleus and PVN (paraventricular nucleus, 1-month post-SCI. Long-form leptin receptor (Ob-Rb, JAK2 (Janus kinase/STAT3 (signal transducer and activator of transcription 3/p38 and RhoA/ROCK (Rho-associated kinase signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3 inflammasome in VAT (visceral adipose tissue and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.

  20. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  1. Acute desensitization of acetylcholine and endothelin-1 activated inward rectifier K+ current in myocytes from the cardiac atrioventricular node.

    Science.gov (United States)

    Choisy, Stéphanie C M; James, Andrew F; Hancox, Jules C

    2012-07-06

    The atrioventricular node (AVN) is a vital component of the pacemaker-conduction system of the heart, co-ordinating conduction of electrical excitation from cardiac atria to ventricles and acting as a secondary pacemaker. The electrical behaviour of the AVN is modulated by vagal activity via activation of muscarinic potassium current, IKACh. However, it is not yet known if this response exhibits 'fade' or desensitization in the AVN, as established for the heart's primary pacemaker--the sinoatrial node. In this study, acute activation of IKACh in rabbit single AVN cells was investigated using whole-cell patch clamp at 37 °C. 0.1-1 μM acetylcholine (ACh) rapidly activated a robust IKACh in AVN myocytes during a descending voltage-ramp protocol. This response was inhibited by tertiapin-Q (TQ; 300 nM) and by the M2 muscarinic ACh receptor antagonist AFDX-116 (1 μM). During sustained ACh exposure the elicited IKACh exhibited bi-exponential fade (τf of 2.0 s and τs 76.9 s at -120 mV; 1 μM ACh). 10 nM ET-1 elicited a current similar to IKACh, which faded with a mono-exponential time-course (τ of 52.6 s at -120 mV). When ET-1 was applied following ACh, the ET-1 activated response was greatly attenuated, demonstrating that ACh could desensitize the response to ET-1. For neither ACh nor ET-1 was the rate of current fade dependent upon the initial response magnitude, which is inconsistent with K+ flux mediated changes in electrochemical driving force as the underlying mechanism. Collectively, these findings demonstrate that TQ sensitive inwardly rectifying K+ current in cardiac AVN cells, elicited by M2 muscarinic receptor or ET-1 receptor activation, exhibits fade due to rapid desensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Acute effects of firefighting on cardiac performance.

    Science.gov (United States)

    Fernhall, Bo; Fahs, Christopher A; Horn, Gavin; Rowland, Thomas; Smith, Denise

    2012-02-01

    This study examined standard echocardiographic measures of cardiac size and performance in response to a 3-h firefighting training exercise. Forty experienced male personnel completed a standardized 3 h live firefighting exercise. Before and after the firefighting activities, participants were weighed, height, heart rate, blood pressure and blood samples were obtained, and echocardiographic measurements were made. Firefighting produced significant decreases in left ventricular diastolic dimension, stroke volume, fractional shortening, and mitral E velocity, tachycardia, a rise in core temperature, and a reduction in calculated plasma volume. On tissue Doppler imaging, there were no changes in systolic contractile function, but a decreased lateral wall diastolic velocity was observed. These findings show that 3 h of live firefighting produced cardiac changes consistent with cardiac fatigue, coupled with a decrease in systemic arterial compliance. These data show that live firefighting produces significant cardiovascular changes and future work is needed to evaluate if these changes are related to the increase in cardiovascular risk during live firefighting.

  3. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  4. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors.

    Science.gov (United States)

    Reichman, David E; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P; Taketo, Makoto M; Rosenwaks, Zev; James, Daylon

    2018-01-08

    Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. © 2018. Published by The Company of Biologists Ltd.

  5. Exercise capacity in diabetes mellitus is predicted by activity status and cardiac size rather than cardiac function: a case control study.

    Science.gov (United States)

    Roberts, Timothy J; Burns, Andrew T; MacIsaac, Richard J; MacIsaac, Andrew I; Prior, David L; La Gerche, André

    2018-03-23

    The reasons for reduced exercise capacity in diabetes mellitus (DM) remains incompletely understood, although diastolic dysfunction and diabetic cardiomyopathy are often favored explanations. However, there is a paucity of literature detailing cardiac function and reserve during incremental exercise to evaluate its significance and contribution. We sought to determine associations between comprehensive measures of cardiac function during exercise and maximal oxygen consumption ([Formula: see text]peak), with the hypothesis that the reduction in exercise capacity and cardiac function would be associated with co-morbidities and sedentary behavior rather than diabetes itself. This case-control study involved 60 subjects [20 with type 1 DM (T1DM), 20 T2DM, and 10 healthy controls age/sex-matched to each diabetes subtype] performing cardiopulmonary exercise testing and bicycle ergometer echocardiography studies. Measures of biventricular function were assessed during incremental exercise to maximal intensity. T2DM subjects were middle-aged (52 ± 11 years) with a mean T2DM diagnosis of 12 ± 7 years and modest glycemic control (HbA 1c 57 ± 12 mmol/mol). T1DM participants were younger (35 ± 8 years), with a 19 ± 10 year history of T1DM and suboptimal glycemic control (HbA 1c 65 ± 16 mmol/mol). Participants with T2DM were heavier than their controls (body mass index 29.3 ± 3.4 kg/m 2 vs. 24.7 ± 2.9, P = 0.001), performed less exercise (10 ± 12 vs. 28 ± 30 MET hours/week, P = 0.031) and had lower exercise capacity ([Formula: see text]peak = 26 ± 6 vs. 38 ± 8 ml/min/kg, P accounting for age, sex and body surface area in a multivariate analysis, significant positive predictors of [Formula: see text]peak were cardiac size (LV end-diastolic volume, LVEDV) and estimated MET-hours, while T2DM was a negative predictor. These combined factors accounted for 80% of the variance in [Formula: see text

  6. SU-E-T-557: Measuring Neutron Activation of Cardiac Devices Irradiated During Proton Therapy Using Indium Foils

    Energy Technology Data Exchange (ETDEWEB)

    Avery, S; Christodouleas, J; Delaney, K; Diffenderfer, E; Brown, K [University of Pennsylvania, Sicklerville, NJ (United States)

    2014-06-01

    Purpose: Measuring Neutron Activation of Cardiac devices Irradiated during Proton Therapy using Indium Foils Methods: The foils had dimensions of 25mm x 25mm x 1mm. After being activated, the foils were placed in a Canberra Industries well chamber utilizing a NaI(Tl) scintillation detector. The resulting gamma spectrum was acquired and analyzed using Genie 2000 spectroscopy software. One activation foil was placed over the upper, left chest of RANDO where a pacemaker would be. The rest of the foils were placed over the midline of the patient at different distances, providing a spatial distribution over the phantom. Using lasers and BBs to align the patient, 200 MU square fields were delivered to various treatment sites: the brain, the pancreas, and the prostate. Each field was shot at least a day apart, giving more than enough time for activity of the foil to decay (t1=2 = 54.12 min). Results: The net counts (minus background) of the three aforementioned peaks were used for our measurements. These counts were adjusted to account for detector efficiency, relative photon yields from decay, and the natural abundance of 115-In. The average neutron flux for the closed multi-leaf collimator irradiation was measured to be 1.62 x 106 - 0.18 x 106 cm2 s-1. An order of magnitude estimate of the flux for neutrons up to 1 keV from Diffenderfer et al. gives 3 x 106 cm2 s-1 which does agree on the order of magnitude. Conclusion: Lower energy neutrons have higher interaction cross-sections and are more likely to damage pacemakers. The thermal/slow neutron component may be enough to estimate the overall risk. The true test of the applicability of activation foils is whether or not measurements are capable of predicting cardiac device malfunction. For that, additional studies are needed to provide clinical evidence one way or the other.

  7. Topographic mapping

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.

  8. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: relation to 123I-MIBG uptake

    International Nuclear Information System (INIS)

    Nomura, Yusuke; Kajinami, Kouji; Matsunari, Ichiro; Takamatsu, Hiroyuki; Murakami, Yoshihiro; Matsuya, Takahiro; Chen, Wei-Ping; Taki, Junichi; Nakajima, Kenichi; Nekolla, Stephan G.

    2006-01-01

    Although 11 C-hydroxyephedrine ( 11 C-HED) PET is used to map cardiac sympathetic innervation, no studies have shown the feasibility of quantitation of 11 C-HED PET in small- to medium-sized animals. Furthermore, its relation to 123 I-MIBG uptake, the most widely used sympathetic nervous tracer, is unknown. The aims of this study were to establish in vivo sympathetic nerve imaging in rabbits using 11 C-HED PET, and to compare the retention of 11 C-HED with that of 123 I-MIBG. Twelve rabbits were assigned to three groups; control (n=4), chemical denervation by 6-hydroxydopamine (6-OHDA) (n=4) and reserpine treated to inhibit vesicular uptake (n=4). After simultaneous injection of 11 C-HED and 123 I-MIBG, all animals underwent dynamic 11 C-HED PET for 40 min with arterial blood sampling. The 11 C-HED retention fraction and normalised 11 C-HED activity measured by tissue sampling were compared with those measured by PET. Both the 11 C-HED retention fraction and the normalised 11 C-HED activity measured by PET correlated closely with those measured by tissue sampling (R=0.96027, p 11 C-HED and 123 I-MIBG. Reserpine pretreatment reduced 11 C-HED retention by 50%, but did not reduce 123 I-MIBG retention at 40 min after injection. Non-invasive quantitation of cardiac sympathetic innervation using 11 C-HED PET is feasible and gives reliable estimates of cardiac sympathetic innervation in rabbits. Additionally, although both 11 C-HED and 123 I-MIBG are specific for sympathetic neurons, 11 C-HED may be more specific for intravesicular uptake than 123 I-MIBG in some situations, such as that seen in reserpine pretreatment. (orig.)

  10. Comprehensive cardiac rehabilitation

    DEFF Research Database (Denmark)

    Kruse, Marie; Hochstrasser, Stefan; Zwisler, Ann-Dorthe O

    2006-01-01

    OBJECTIVES: The costs of comprehensive cardiac rehabilitation are established and compared to the corresponding costs of usual care. The effect on health-related quality of life is analyzed. METHODS: An unprecedented and very detailed cost assessment was carried out, as no guidelines existed...... and may be as high as euro 1.877. CONCLUSIONS: Comprehensive cardiac rehabilitation is more costly than usual care, and the higher costs are not outweighed by a quality of life gain. Comprehensive cardiac rehabilitation is, therefore, not cost-effective....

  11. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  12. Evaluation of the low dose cardiac CT imaging using ASIR technique

    Science.gov (United States)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  13. Fatty old hearts: role of cardiac lipotoxicity in age-related cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Konstantinos Drosatos

    2016-08-01

    Full Text Available Age-related cardiomyopathy accounts for a significant part of heart failure cases. Imbalance of the energetic equilibrium of the heart along with mitochondrial dysfunction and impaired β-adrenergic receptor signaling contributes in the aggravation of cardiac function in the elderly. In this review article, studies that correlate cardiac aging with lipotoxicity are summarized. The involvement of inhibition of peroxisome proliferator-activated receptor-α, β-adrenergic receptor desensitization, and mitochondrial dysfunction as underlying mechanisms for the lipid-driven age-related cardiomyopathy are presented with the aim to indicate potential therapeutic targets for cardiac aging.

  14. Meso(topoclimatic maps and mapping

    Directory of Open Access Journals (Sweden)

    Ladislav Plánka

    2007-06-01

    Full Text Available The atmospheric characteristics can be studied from many points of view, most often we talk about time and spatial standpoint. Application of time standpoint leads either to different kinds of the synoptic and prognostic maps production, which presents actual state of atmosphere in short time section in the past or in the near future or to the climatic maps production which presents longterm weather regime. Spatial standpoint then differs map works according to natural phenomenon proportions, whereas the scale of their graphic presentation can be different. It depends on production purpose of each work.In the paper there are analysed methods of mapping and climatic maps production, which display longterm regime of chosen atmospheric features. These athmosphere features are formed in interaction with land surface and also have direct influence on people and their activities throughout the country. At the same time they’re influenced by anthropogenic intervention to the landscape.

  15. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways.

    Science.gov (United States)

    Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak

    2018-07-01

    The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.

  16. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  17. Sudden cardiac death in athletes

    Directory of Open Access Journals (Sweden)

    Fábio Camilo Pellegrino dos Santos

    2012-11-01

    Full Text Available ABSTRACT The most accepted definition of sudden cardiac death nowadays is an unexplained death occurred suddenly within one hour of symptom onset. If it was not witnessed, individuals need to had been observed for at least 24 hours before the event and should be discarded the possibility of non cardiac causes of sudden death, pulmonary embolism or extensive malignancy. The term athlete refers to individuals of any age who participate in collective or individual regular physical activity, as well as physical training program for regular competitions. The sudden death of a young athlete, whether amateur or professional, especially during competitions, is always dramatic, with strong negative social impact and in the media. The fact that sports are recommended as a formula for longevity and quality of life makes these events a cause for concern in sports and society in general.

  18. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures

    Directory of Open Access Journals (Sweden)

    Piero Colli Franzone

    2018-04-01

    Full Text Available We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1 the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2 the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3 the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4 the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.

  19. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension

    International Nuclear Information System (INIS)

    Dubois, E.A.; Kam, K.L.; Somsen, G.A.; Boer, G.J.; Bruin, K. de; Batink, H.D.; Pfaffendorf, M.; Royen, E.A. van; Zwieten, P.A. van

    1996-01-01

    The aim of the present study was to evaluate the use of the noradrenaline analogue iodine-123 metaiodobenzylguanidine ([ 123 I]MIBG) for the assessment of cardiac sympathetic activity in the presence of diabetes mellitus and/or hypertension in animal models. One model used Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) rendered diabetic at 12 weeks of age by an intravenous injection of streptozotocin (STZ). The other model used lean and obese Zucker rats. In all groups basic haemodynamic values were established and animals received an intravenous injection of 50 μCi [ 123 I]MIBG. Initial myocardial uptake and washout rates of [ 123 I]MIBG were measured scintigraphically during 4 h. After sacrifice, plasma noradrenaline and left cardiac ventricular β-adrenoceptor density was determined. The diabetic state, both in STZ-treated rats (direct induction) and in obese Zucker rats (genetic induction), appeared to induce a lower cardiac density of β-adrenoceptors, indicative of increased sympathetic activity. Cardiac [ 123 I]MIBG then showed increased washouts, thereby confirming enhanced noradrenergic activity. This parallism of results led to the conclusion that [ 123 I]MIBG wash-out measurements could provide an excellent tool to assess cardiac sympathetic activity noninvasively. However, in hypertension (WKY vs SHR), both parameters failed to show parallelism: no changes in β-adrenoceptor density were found, whereas [ 123 I]MIBG wash-out rate was increased. Thus, either [ 123 I]MIBG washout or β-adrenoceptor density may not be a reliable parameter under all circumstances to detect changes in the release of noradrenaline. (orig./MG)

  20. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  1. Cardiac function of the naked mole-rat: ecophysiological responses to working underground.

    Science.gov (United States)

    Grimes, Kelly M; Voorhees, Andrew; Chiao, Ying Ann; Han, Hai-Chao; Lindsey, Merry L; Buffenstein, Rochelle

    2014-03-01

    The naked mole-rat (NMR) is a strictly subterranean rodent with a low resting metabolic rate. Nevertheless, it can greatly increase its metabolic activity to meet the high energetic demands associated with digging through compacted soils in its xeric natural habitat where food is patchily distributed. We hypothesized that the NMR heart would naturally have low basal function and exhibit a large cardiac reserve, thereby mirroring the species' low basal metabolism and large metabolic scope. Echocardiography showed that young (2-4 yr old) healthy NMRs have low fractional shortening (28 ± 2%), ejection fraction (43 ± 2%), and cardiac output (6.5 ± 0.4 ml/min), indicating low basal cardiac function. Histology revealed large NMR cardiomyocyte cross-sectional area (216 ± 10 μm(2)) and cardiac collagen deposition of 2.2 ± 0.4%. Neither of these histomorphometric traits was considered pathological, since biaxial tensile testing showed no increase in passive ventricular stiffness. NMR cardiomyocyte fibers showed a low degree of rotation, contributing to the observed low NMR cardiac contractility. Interestingly, when the exercise mimetic dobutamine (3 μg/g ip) was administered, NMRs showed pronounced increases in fractional shortening, ejection fraction, cardiac output, and stroke volume, indicating an increased cardiac reserve. The relatively low basal cardiac function and enhanced cardiac reserve of NMRs are likely to be ecophysiological adaptations to life in an energetically taxing environment.

  2. Impact of malnutrition on cardiac autonomic modulation in children

    Directory of Open Access Journals (Sweden)

    Gláucia Siqueira Carvalho Barreto

    2016-11-01

    Conclusion: Malnourished children present changes in cardiac autonomic modulation, characterized by reductions in both sympathetic and parasympathetic activity, as well as increased heart rate and decreased blood pressure.

  3. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  4. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    activated the proapoptotic c-Jun-N-terminal kinase 1/2 stress signaling and triggered cell apoptosis by increasing the number of terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells (10.4 ± 2.2% of the type 2 diabetes mellitus group vs 3.8 ± 0.7% of the nondiabetic group, P type 2 diabetes mellitus induces cardiac hypertrophy in embryonic hearts. Adverse cardiac remodeling, including elevated collagen synthesis, suppressed fibronectin synthesis, profibrosis, and apoptosis, is implicated as the etiology of cardiac hypertrophy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Complement activation on the surface of cell-derived microparticles during cardiac surgery with cardiopulmonary bypass - is retransfusion of pericardial blood harmful?

    Science.gov (United States)

    Biró, E; van den Goor, J M; de Mol, B A; Schaap, M C; Ko, L-Y; Sturk, A; Hack, C E; Nieuwland, R

    2011-01-01

    To investigate whether cell-derived microparticles play a role in complement activation in pericardial blood of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) and whether microparticles in pericardial blood contribute to systemic complement activation upon retransfusion. Pericardial blood of 13 patients was retransfused in 9 and discarded in 4 cases. Microparticles were isolated from systemic blood collected before anesthesia (T1) and at the end of CPB (T2), and from pericardial blood. The microparticles were analyzed by flow cytometry for bound complement components C1q, C4 and C3, and bound complement activator molecules C-reactive protein (CRP), serum amyloid P-component (SAP), immunoglobulin (Ig)M and IgG. Fluid-phase complement activation products (C4b/c, C3b/c) and activator molecules were determined by ELISA. Compared with systemic T1 blood, pericardial blood contained increased C4b/c and C3b/c, and increased levels of microparticles with bound complement components. In systemic T1 samples, microparticle-bound CRP, whereas in pericardial blood, microparticle-bound SAP and IgM were associated with complement activation. At the end of CPB, increased C3b/c (but not C4b/c) was present in systemic T2 blood compared with T1, while concentrations of microparticles binding complement components and of those binding complement activator molecules were similar. Concentrations of fluid-phase complement activation products and microparticles were similar in patients whether or not retransfused with pericardial blood. In pericardial blood of patients undergoing cardiac surgery with CPB, microparticles contribute to activation of the complement system via bound SAP and IgM. Retransfusion of pericardial blood, however, does not contribute to systemic complement activation.

  6. Cardiac tumours: non invasive detection and assessment by gated cardiac blood pool radionuclide imaging

    International Nuclear Information System (INIS)

    Pitcher, D.; Wainwright, R.; Brennand-Roper, D.; Deverall, P.; Sowton, E.; Maisey, M.

    1980-01-01

    Four patients with cardiac tumours were investigated by gated cardiac blood pool radionuclide imaging and echocardiography. Contrast angiocardiography was performed in three of the cases. Two left atrial tumours were detected by all three techniques. In one of these cases echocardiography alone showed additional mitral valve stenosis, but isotope imaging indicated tumour size more accurately. A large septal mass was detected by all three methods. In this patient echocardiography showed evidence of left ventricular outflow obstruction, confirmed at cardiac catheterisation, but gated isotope imaging provided a more detailed assessment of the abnormal cardiac anatomy. In the fourth case gated isotope imaging detected a large right ventricular tumour which had not been identified by echocardiography. Gated cardiac blood pool isotope imaging is a complementary technique to echocardiography for the non-invasive detection and assessment of cardiac tumours. (author)

  7. Diet and sex modify exercise and cardiac adaptation in the mouse.

    Science.gov (United States)

    Konhilas, John P; Chen, Hao; Luczak, Elizabeth; McKee, Laurel A; Regan, Jessica; Watson, Peter A; Stauffer, Brian L; Khalpey, Zain I; Mckinsey, Timothy A; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A

    2015-01-15

    The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex.

  8. Diet and sex modify exercise and cardiac adaptation in the mouse

    Science.gov (United States)

    Chen, Hao; Luczak, Elizabeth; McKee, Laurel A.; Regan, Jessica; Watson, Peter A.; Stauffer, Brian L.; Khalpey, Zain I; Mckinsey, Timothy A.; Horn, Todd; LaFleur, Bonnie; Leinwand, Leslie A.

    2014-01-01

    The heart adapts to exercise stimuli in a sex-dimorphic manner when mice are fed the traditional soy-based chow. Females undergo more voluntary exercise (4 wk) than males and exhibit more cardiac hypertrophy per kilometer run (18, 32). We have found that diet plays a critical role in cage wheel exercise and cardiac adaptation to the exercise stimulus in this sex dimorphism. Specifically, feeding male mice a casein-based, soy-free diet increases daily running distance over soy-fed counterparts to equal that of females. Moreover, casein-fed males have a greater capacity to increase their cardiac mass in response to exercise compared with soy-fed males. To further explore the biochemical mechanisms for these differences, we performed a candidate-based RT-PCR screen on genes previously implicated in diet- or exercise-based cardiac hypertrophy. Of the genes screened, many exhibit significant exercise, diet, or sex effects but only transforming growth factor-β1 shows a significant three-way interaction with no genes showing a two-way interaction. Finally, we show that the expression and activity of adenosine monophosphate-activated kinase-α2 and acetyl-CoA carboxylase is dependent on exercise, diet, and sex. PMID:25398983

  9. Blunt thoracic trauma and cardiac injury in the athlete: contemporary management.

    Science.gov (United States)

    DE Gregorio, Cesare; Magaudda, Ludovico

    2017-09-29

    Commotion cordis and cardiac injuries are rare events usually following a chest blunt trauma during sports activities. Various aetiologies have been identified to cause electrical (commotion cordis) and/or structural (contusion and further injuries) damage, but high-velocity tools such as baseballs or hockey pucks (also called projectiles) have been chiefly identified. Clinical consequences are challenging, varying from uncomplicated supraventricular arrhythmias to cardiac wall rupture. Ventricular fibrillation is the most remarkable outcome leading to cardiac arrest in some individuals. In this article, up-to-date epidemiological and pathophysiological issues are discussed, along with the most suitable assistance protocols of the injured athlete in the sports arena. Current knowledge about traumatic sports injuries and ensuing cardiovascular sequelae made significant steps forwards than in the past. The majority of athletes (especially the youngest ones) wearing chest protectors are usually preserved from serious outcomes and sudden cardiac death, but further technical effort is encouraged to attain more satisfactory barriers against projectile's impact. Educational campaigns among students, closer team surveillance, implementation of the sports arenas with adequate rescue devices and medical assistance remain mandatory in every sports activity.

  10. Orthogonal electrode catheter array for mapping of endocardial focal site of ventricular activation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, J.M.; Nyo, H.; Vera, Z.; Seibert, J.A.; Vogelsang, P.J. (Division of Cardiovascular Medicine, University of California, School of Medicine, Davis (USA))

    1991-04-01

    Precise location of the endocardial site of origin of ventricular tachycardia may facilitate surgical and catheter ablation of this arrhythmia. The endocardial catheter mapping technique can locate the site of ventricular tachycardia within 4-8 cm2 of the earliest site recorded by the catheter. This report describes an orthogonal electrode catheter array (OECA) for mapping and radiofrequency ablation (RFA) of endocardial focal site of origin of a plunge electrode paced model of ventricular activation in dogs. The OECA is an 8 F five pole catheter with four peripheral electrodes and one central electrode (total surface area 0.8 cm{sup 2}). In eight mongrel dogs, mapping was performed by arbitrarily dividing the left ventricle (LV) into four segments. Each segment was mapped with OECA to find the earliest segment. Bipolar and unipolar electrograms were obtained. The plunge electrode (not visible on fluoroscopy) site was identified by the earliest wave front arrival times of -30 msec or earlier at two or more electrodes (unipolar electrograms) with reference to the earliest recorded surface ECG (I, AVF, and V1). Validation of the proximity of the five electrodes of the OECA to the plunge electrode was performed by digital radiography and RFA. Pathological examination was performed to document the proximity of the OECA to the plunge electrode and also for the width, depth, and microscopic changes of the ablation. To find the segment with the earliest LV activation a total of 10 {plus minus} 3 (mean {plus minus} SD) positions were mapped. Mean arrival times at the two earlier electrodes were -39 {plus minus} 4 msec and -35 {plus minus} 3 msec. Digital radiography showed the plunge electrode to be within the area covered by all five electrodes in all eight dogs. The plunge electrode was within 1 cm2 area of the region of RFA in all eight dogs.

  11. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI.

    Science.gov (United States)

    Fox, Michael D; Qian, Tianyi; Madsen, Joseph R; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-Cong; Groppe, David M; Mehta, Ashesh D; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. Copyright © 2015. Published by Elsevier Inc.

  12. Pregnancy as a cardiac stress model

    Science.gov (United States)

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  13. Regular physical exercise improves cardiac autonomic and muscle vasodilatory responses to isometric exercise in healthy elderly

    Science.gov (United States)

    Sarmento, Adriana de Oliveira; Santos, Amilton da Cruz; Trombetta, Ivani Credidio; Dantas, Marciano Moacir; Oliveira Marques, Ana Cristina; do Nascimento, Leone Severino; Barbosa, Bruno Teixeira; Dos Santos, Marcelo Rodrigues; Andrade, Maria do Amparo; Jaguaribe-Lima, Anna Myrna; Brasileiro-Santos, Maria do Socorro

    2017-01-01

    The objective of this study was to evaluate cardiac autonomic control and muscle vasodilation response during isometric exercise in sedentary and physically active older adults. Twenty healthy participants, 10 sedentary and 10 physically active older adults, were evaluated and paired by gender, age, and body mass index. Sympathetic and parasympathetic cardiac activity (spectral and symbolic heart rate analysis) and muscle blood flow (venous occlusion plethysmography) were measured for 10 minutes at rest (baseline) and during 3 minutes of isometric handgrip exercise at 30% of the maximum voluntary contraction (sympathetic excitatory maneuver). Variables were analyzed at baseline and during 3 minutes of isometric exercise. Cardiac autonomic parameters were analyzed by Wilcoxon and Mann–Whitney tests. Muscle vasodilatory response was analyzed by repeated-measures analysis of variance followed by Tukey’s post hoc test. Sedentary older adults had higher cardiac sympathetic activity compared to physically active older adult subjects at baseline (63.13±3.31 vs 50.45±3.55 nu, P=0.02). The variance (heart rate variability index) was increased in active older adults (1,438.64±448.90 vs 1,402.92±385.14 ms, P=0.02), and cardiac sympathetic activity (symbolic analysis) was increased in sedentary older adults (5,660.91±1,626.72 vs 4,381.35±1,852.87, P=0.03) during isometric handgrip exercise. Sedentary older adults showed higher cardiac sympathetic activity (spectral analysis) (71.29±4.40 vs 58.30±3.50 nu, P=0.03) and lower parasympathetic modulation (28.79±4.37 vs 41.77±3.47 nu, P=0.03) compared to physically active older adult subjects during isometric handgrip exercise. Regarding muscle vasodilation response, there was an increase in the skeletal muscle blood flow in the second (4.1±0.5 vs 3.7±0.4 mL/min per 100 mL, P=0.01) and third minute (4.4±0.4 vs 3.9±0.3 mL/min per 100 mL, P=0.03) of handgrip exercise in active older adults. The results indicate that

  14. Investigation of Compton scattering correction methods in cardiac SPECT by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Silva, A.M. Marques da; Furlan, A.M.; Robilotta, C.C.

    2001-01-01

    The goal of this work was the use of Monte Carlo simulations to investigate the effects of two scattering correction methods: dual energy window (DEW) and dual photopeak window (DPW), in quantitative cardiac SPECT reconstruction. MCAT torso-cardiac phantom, with 99m Tc and non-uniform attenuation map was simulated. Two different photopeak windows were evaluated in DEW method: 15% and 20%. Two 10% wide subwindows centered symmetrically within the photopeak were used in DPW method. Iterative ML-EM reconstruction with modified projector-backprojector for attenuation correction was applied. Results indicated that the choice of the scattering and photopeak windows determines the correction accuracy. For the 15% window, fitted scatter fraction gives better results than k = 0.5. For the 20% window, DPW is the best method, but it requires parameters estimation using Monte Carlo simulations. (author)

  15. Human technology after cardiac epigenesis. Artificial heart versus cardiac transplantation.

    Science.gov (United States)

    Losman, J G

    1977-09-24

    Cardiovascular disease is the chief cause of death in technologically advanced countries and accounts for more than 50% of all deaths in the USA. For a patient with end-stage cardiac failure the only treatment presently available is organ replacement, either by transplantation or by the use of a mechanical heart. Transplantation has demonstrated its value: survival of more than 8 years and restoration of a normal quality of life to patients who were in end-stage cardiac decompensation. However, the prospect of routine clinical application of an artificial heart remains distant. The development of a totally implantable artificial heart still presents a series of challenging engineering problems with regard to strict constraints of size, weight, blood-material compatibility, adaptability of output to demand, efficiency and reliability of the power supply, and safety if nuclear fuel is used. The totally artificial heart is presently not an alternative to the cardiac allograft, but could provide short-term support for patients awaiting cardiac transplantation.

  16. Marketing cardiac CT programs.

    Science.gov (United States)

    Scott, Jason

    2010-01-01

    There are two components of cardiac CT discussed in this article: coronary artery calcium scoring (CACS) and coronary computed tomography angiography (CCTA).The distinctive advantages of each CT examination are outlined. In order to ensure a successful cardiac CT program, it is imperative that imaging facilities market their cardiac CT practices effectively in order to gain a competitive advantage in this valuable market share. If patients receive quality care by competent individuals, they are more likely to recommend the facility's cardiac CT program. Satisfied patients will also be more willing to come back for any further testing.

  17. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells.

    Science.gov (United States)

    Wu, Qiong; Zhan, Jinxi; Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-03

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31- subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31- subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending.

  18. Cardiac fatty acid uptake and metabolism in the rat model of polycystic ovary syndrome.

    Science.gov (United States)

    Tepavčević, Snežana; Milutinović, Danijela Vojnović; Macut, Djuro; Stojiljković, Mojca; Nikolić, Marina; Božić-Antić, Ivana; Ćulafić, Tijana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran

    2015-09-01

    Polycystic ovary syndrome (PCOS) is associated with an altered plasma lipid profile and increased risk for cardiovascular diseases. We hypothesized that molecular mechanisms underlying cardiac pathology in PCOS involve changes in expression and subcellular localization of several key proteins involved in cardiac lipid transport and metabolism, such as fatty acid transporter CD36, lipin 1, peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1 (PGC1), and carnitine palmitoyltransferase 1 (CPT1). We used the animal model of PCOS obtained by treating female rats with dihydrotestosterone (DHT). Protein levels of CD36, lipin 1, PPARα, PGC1, and antioxidative enzymes were assessed by Western blot in different cardiac cell compartments. Cardiac triglycerides (TG) and lipid peroxidation were also measured. The content of CD36 was decreased in both the cardiac plasma membranes and intracellular pool. On the other hand, total content of cardiac lipin 1 in DHT-treated rats was elevated, in contrast to decreased microsomal lipin 1 content. An increase in nuclear content of lipin 1 was observed together with elevation of nuclear PPARα and PGC1, and an increase in CPT1 expression. However, lipid peroxidation was reduced in the heart, without alterations in antioxidative enzymes expression and cardiac TG content. The results indicate that treatment of female rats with DHT is accompanied by a decrease of fatty acid uptake and a reduction of lipid peroxidation in the heart. The observed elevation of lipin 1, PPARα, PGC1, and CPT1 expression suggests that cardiac fatty acid metabolism is shifted toward mitochondrial beta oxidation.

  19. Conceptualizing physical activity parenting practices using expert informed concept mapping analysis

    Directory of Open Access Journals (Sweden)

    Louise C. Mâsse

    2017-06-01

    Full Text Available Abstract Background Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engaged experts to develop an integrated conceptual framework for assessing parenting practices that influence multiple aspects of 5 to 12 year old children’s participation in physical activity. The ultimate goal of this study is to inform the development of an item bank (repository of calibrated items aimed at measuring physical activity parenting practices. Methods Twenty four experts from 6 countries (Australia, Canada, England, Scotland, the Netherlands, & United States (US sorted 77 physical activity parenting practice concepts identified from our previously published synthesis of the literature (74 measures and survey of Canadian and US parents. Concept Mapping software was used to conduct the multi-dimensional scaling (MDS analysis and a cluster analysis of the MDS solution of the Expert’s sorting which was qualitatively reviewed and commented on by the Experts. Results The conceptual framework includes 12 constructs which are presented using three main domains of parenting practices (neglect/control, autonomy support, and structure. The neglect/control domain includes two constructs: permissive and pressuring parenting practices. The autonomy supportive domain includes four constructs: encouragement, guided choice, involvement in child physical activities, and praises/rewards for their child’s physical activity. Finally, the structure domain includes six constructs: co-participation, expectations, facilitation, modeling, monitoring, and restricting physical activity for safety or academic concerns. Conclusion The concept mapping analysis provided a useful process to engage experts in re-conceptualizing physical activity

  20. Conceptualizing physical activity parenting practices using expert informed concept mapping analysis.

    Science.gov (United States)

    Mâsse, Louise C; O'Connor, Teresia M; Tu, Andrew W; Hughes, Sheryl O; Beauchamp, Mark R; Baranowski, Tom

    2017-06-14

    Parents are widely recognized as playing a central role in the development of child behaviors such as physical activity. As there is little agreement as to the dimensions of physical activity-related parenting practices that should be measured or how they should be operationalized, this study engaged experts to develop an integrated conceptual framework for assessing parenting practices that influence multiple aspects of 5 to 12 year old children's participation in physical activity. The ultimate goal of this study is to inform the development of an item bank (repository of calibrated items) aimed at measuring physical activity parenting practices. Twenty four experts from 6 countries (Australia, Canada, England, Scotland, the Netherlands, & United States (US)) sorted 77 physical activity parenting practice concepts identified from our previously published synthesis of the literature (74 measures) and survey of Canadian and US parents. Concept Mapping software was used to conduct the multi-dimensional scaling (MDS) analysis and a cluster analysis of the MDS solution of the Expert's sorting which was qualitatively reviewed and commented on by the Experts. The conceptual framework includes 12 constructs which are presented using three main domains of parenting practices (neglect/control, autonomy support, and structure). The neglect/control domain includes two constructs: permissive and pressuring parenting practices. The autonomy supportive domain includes four constructs: encouragement, guided choice, involvement in child physical activities, and praises/rewards for their child's physical activity. Finally, the structure domain includes six constructs: co-participation, expectations, facilitation, modeling, monitoring, and restricting physical activity for safety or academic concerns. The concept mapping analysis provided a useful process to engage experts in re-conceptualizing physical activity parenting practices and identified key constructs to include in