WorldWideScience

Sample records for carboxymethyl-kappacarrageenan hydrogels crosslinked

  1. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    Science.gov (United States)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  2. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  3. Multi-step carboxymethylation of kappa-Carrageenan

    International Nuclear Information System (INIS)

    Aranilla, Charito Tranquilan; Nagasawa, Naotsugu; Bayquen, Aristea V.

    2008-01-01

    Many polysaccharide derivatives have been prepared by carboxymethylation reactions in order to increase the range of potential applications of these natural polymers in the chemical, food, pharmaceutical and cosmetic industries. Carboxymethylation of kappa-carrageenan was attempted for the first time to synthesize derivatives with various degree of substitution. A multistep carboxymethylation was performed under heterogeneous reaction conditions, in isopropyl alcohol/water slurry medium, with aqueous sodium hydroxide solution for activation, and monochloroacetic acid for etherification. The derivatives obtained had average degree of substitutions from 1.20 to 1.92 as determined by potentiometric back-titration. Chemical and structural characterization were accomplished by Gel Permeation Chromatography, Elemental analysis, FT-IR Spectroscopy, 1 H N and 13 C NMR Spectroscopy. The relative reactivity of the hydroxyl groups in κ-carrageenan dimer unit proceeded in the order O-C2 G4S > O-C6 G4S >O-C2 AG at a ratio of 1:0.6:O.4. (author)

  4. Synthesis of superabsorbent hydrogel by radiation crosslinking of acrylic acid, semi-refined kappa-carrageenan and sugarcane bagasse blend

    International Nuclear Information System (INIS)

    Jizmundo, Leonie-Lou Dominguez

    2015-04-01

    Superabsorbent hydrogels have three-dimensional networks that enable it to exhibit great water absorption capacity leading to its promising applications. However, existing commercial hydrogels are mainly acrylic acid which causes environmental problems. In this study, the incorporation of agricultural waste as filler and polysaccharide from natural sources as binder for the production of superabsorbent hydrogel was done to reduce the use of acrylic acid as well as its environmental impact while adding value to the incorporated materials. A series of superabsorbent hydrogel with the blend of acrylic acid, semi-refined kappa carrageenan and sugarcane bagasse were synthesized by radiation crosslinking. The gel fraction and swelling capacity of the hydrogels were determined and studied. The characterizations were facilitated by Fourier transform infrared spectroscopy technique (FTIR) and Thermogravimetric Analysis (TGA). In the results obtained from analyses, the characteristic peaks of acrylic acid and sugarcane bagasse were observed in the FTIR spectra and the three step peaks if synthesized hydrogel in its TGA implies an improvement in thermal stability of the product. The synthesized superabsorbent hydrogel blends had exhibited comparable gel fraction to that of the polyacrylic acid hydrogel, had great swelling capacity, and achieved equilibrium degree of swelling within 72-96 hours. The optimum synthesized superabsorbent hydrogel is 3% semi-refined kappa-carrageenan, 3% sugarcane bagasse, 15% acrylic acid neutralize up to 50% and irradiated at 15kGy dose which exhibited a swelling of 599.53 and gel fraction of 39.73. (author)

  5. Improvement of mechanical properties of hydrogel by irradiation of polymers in aqueous solution with {kappa}-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, K.; Yoshii, F. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Aranilla, C.T. [Philippine Nuclear Research Institute, Diliman, Quezon (Philippines); Zhai, M. [Department of Technical Physics, Peking Univ., Beijing (China)

    2000-03-01

    Predominate radiation reaction of {kappa}-carrageenan (KC) hydrogel is the main chain scission of KC. The gel strength of KC hydrogel decreased with increasing irradiation dose. However, KC was found to enhances the radiation crosslinking of synthetic water-soluble polymer (SWSP) such as poly(ethylene oxide) (PEO) and poly(N-vinylpyrolidone) (PVP) in aqueous solution. The gel strength of SWSP hydrogel increased with increasing dose when KC was blended. Probably the radiation degraded KC radicals are recombined with radicals of PVP and PEO. The hydrogel thus prepared absorbs huge amounts of water due to the presence of strong hydrophilic -OSO{sub 3}{sup -} groups in KC. (author)

  6. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Young Chang

    2007-08-15

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  7. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    International Nuclear Information System (INIS)

    Noh, Young Chang

    2007-08-01

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  8. Study On Preparing Carboxymethyl Starch Hydrogel Radiation-Crosslinked On The Electron Beam Accelerator To Do The Moisturizing Material In Cosmetic

    International Nuclear Information System (INIS)

    Nguyen Thanh Duoc; Doan Binh; Pham Thi Thu Hong; Nguyen Anh Tuan

    2014-01-01

    Hydrogel of carboxymethyl starch (CMS) matrix was prepared by crosslinking of electron beam (EB) radiation on the EB linear accelerator UERL-10-15S2 (energy of 10 MeV, capacity of 15 kW, Russia) with support substances such as polyvinyl pyrrolidone (PVP), Kappa-Carragenan and Montmorillonit (MMT). The characteristic properties of hydrogel membrane such as gel content, degree of swelling, mechanical strength, adhesion force, water vapor transmission rate (WVTR) and skin allergy were experimented. This research will be firstly oriented in applications of CMS hydrogel material in cosmetic and personal care field such as facial mask for skin care, moisturizing membrane for skin and so on. (author)

  9. Hemostatic granules and dressing prepared from formulations of carboxymethyl cellulose, kappa-carrageenan and polyethylene oxide crosslinked by gamma radiation

    Science.gov (United States)

    Barba, Bin Jeremiah D.; Aranilla, Charito T.; Relleve, Lorna S.; Cruz, Veriza Rita C.; Vista, Jeanina Richelle; Abad, Lucille V.

    2018-03-01

    Uncontrolled hemorrhage remains a persistent problem especially in anatomical areas where compression and tourniquet cannot be applied. Hemostatic agents are materials which can achieve control of bleeding in acute, life-threatening traumatic coagulopathy. In this study, we prepared biocompatible hydrogel-based hemostat crosslinked by ionizing radiation. Granules made from carboxymethyl cellulose and dressing from kappa carrageenan and polyethylene oxide were characterized by FT-IR, SEM, and gel analysis. Gamma radiation with a dose of 25 kGy was used for sterilization process. Stability studies indicate that the products remain effective with a shelf life of up to 18 months based on accelerated aging. Both hemostatic agents were demonstrated to be effective in vitro blood clotting assays showing a low blood clotting index, high platelet adhesion capacity and accelerated clotting time. Hemostat granules and dressing were also used in a femoral artery rat bleeding model where hemorrhage control was achieved in 90 s without compression and resulted in 100% survival rate after a 7 and 14-day observation.

  10. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel

    International Nuclear Information System (INIS)

    Zhou Ying; Zhao Yinghui; Wang Lu; Xu Ling; Zhai Maolin; Wei Shicheng

    2012-01-01

    A series of antibacterial hydrogels were fabricated from an aqueous solution of AgNO 3 , gelatin and carboxymethyl chitosan (CM-chitosan) by radiation-induced reduction and crosslinking at ambient temperature. The nanosilver particles were in situ synthesized accompanying with the formation of gelatin/CM-chitosan hydrogel. Transmission Electron Microscope and UV–vis analysis have verified the formation and homogeneous distribution of nanosilver particles in the hydrogel matrix. The nanosilver/gelatin/CM-chitosan hydrogels possessed interconnected porous structure, had a compressive modulus of 44 to 56 kPa, and could absorb 62 to 108 times of deionized water to its dry weight. Furthermore, the hydrogels were found to have sound antibacterial effect on Escherichia coli (E. coli), and their antibacterial ability could be significantly enhanced by the increasing of AgNO 3 content. The comprehensive results of this study suggest that nanosilver/gelatin/CM-chitosan hydrogels have potential as an antibacterial wound dressing. - Highlights: ► Nanosilver/gelatin/CM-chitosan hydrogel was synthesized by radiation crosslinking. ► Nanosilver particles distributed homogeneously in the hydrogel. ► The size of nanosilver increased with the increase of AgNO 3 concentration. ► The nanosilver/gelatin/CM-chitosan hydrogel has antibacterial ability.

  11. Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: Influence of irradiation on gel fraction, entrapped drug and in vitro release

    International Nuclear Information System (INIS)

    Lam, Yi Lyn; Muniyandy, Saravanan; Kamaruddin, Hashim; Mansor, Ahmad; Janarthanan, Pushpamalar

    2015-01-01

    Carboxymethyl sago pulp (CMSP) with 0.4 DS, viscosity 184 dl/g and molecular weight 76,000 g/mol was synthesized from sago waste. 10 and 20% w/v solutions of CMSP were irradiated at 10–30 kGy to form hydrogels and were characterized by % gel fraction (GF). Irradiation of 20% CMSP using 25 kGy has produced stable hydrogels with the highest % GF and hence loaded with ciprofloxacin HCl. Drug-loaded hydrogels were produced by irradiating the mixture of drug and 20% CMSP solution at 25 kGy. After irradiation, the hydrogels were cut into circular discs with a diameter of 6±1 mm and evaluated for physicochemical properties as well as drug release kinetics. The ciprofloxacin loading in the disc was 14.7%±1 w/w with an entrapment efficiency of 73.5% w/w. The low standard deviation of drug-loaded discs indicated uniform thickness (1.5±0.3 mm). The unloaded discs were thinner (1±0.4 mm) and more brittle than the drug-loaded discs. FESEM, FT-IR, XRD, DSC and TGA analysis revealed the absence of polymer–drug interaction and transformation of crystalline to amorphous form of ciprofloxacin in the discs. The disc sustained the drug release in phosphate buffer pH 7.4 over 36 h in a first-order manner. The mechanism of the drug release was found to be swelling controlled diffusion and matrix erosion. The anti-bacterial effect of ciprofloxacin was retained after irradiation and CMSP disc could be a promising device for ocular drug delivery. - Highlights: • Carboxymethyl sago pulp (CMSP) with ciprofloxacin is irradiated to form hydrogels. • 20% CMSP at 25 kGy has produced stable hydrogels with the highest gel fraction. • Crystalline ciprofloxacin converted as amorphous during hydrogel formation. • Hydrogel in disc form sustained the drug release drug up to 36 h. • Irradiation cross-linked polymeric chain of CMSP resulted in controlled swelling

  12. Use of cross-linked carboxymethyl cellulose for soft-tissue augmentation: preliminary clinical studies

    Directory of Open Access Journals (Sweden)

    Mauro Leonardis

    2010-11-01

    Full Text Available Mauro Leonardis1, Andrea Palange2, Rodrigo FV Dornelles3, Felipe Hund41Department of Plastic Surgery, Salvator Mundi International Hospital, Roma, Italy; 2Department of Aesthetic Medicine, Fisiobios, Roma, Italy; 3Department of Plastic Surgery, Núcleo de Plástica Avançada, São Paulo, SP, Brazil; 4Department of Plastic Surgery, Consultorio de Cirurgia Plastica, Criciuma, SC, BrazilPurpose: The continual search for new products for soft-tissue augmentation has in recent years led to the introduction of long lasting alternatives to hyaluronic acids and collagen that are composed of other polymers able to improve clinical persistence over time. This is the first report in which sodium carboxymethyl cellulose (CMC has been chemically treated by the cross-linking process and thus used as a hydrogel for soft-tissue augmentation through injection with thin needles. The study evaluates, from a clinical point of view, the behavior of cross-linked carboxymethyl cellulose hydrogel used in the aesthetic field and its side effects so as to check the safety and performance of the polymer following intradermal injections.Patients and methods: This work shows the preliminary results of an ongoing clinical study conducted between 2006 and 2009, performed on 84 healthy volunteers (62 females, 22 males aged between 18 and 72 years, for the treatment of 168 nasolabial folds, 45 perioral wrinkles, and 39 lip volume.Results: Study results show an excellent correction of facial defects. Tolerance and aesthetic quality of the correction obtained indicate considerable safety features and absence of side effects. From a clinical point of view, hydrogel is gradually absorbed into the injection site without migration issues.Conclusion: Cross-linked CMC hydrogel proves to be an ideal agent for soft tissue augmentation with regard to safety and ease of application. It did not cause infection, extrusion, migration, or adverse reactions in the patients who have been

  13. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sabaa, Magdy W.; Abdallah, Heba M.; Mohamed, Nadia A.; Mohamed, Riham R., E-mail: rihamrashad@hotmal.com

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. - Highlights: • CMCh/PVA nanocomposites have been evaluated for activity against bacteria and fungi. • TEM showed that these hydrogels have size 3–19 nm. • Nanocomposites increased metal ion uptake and showed selectivity for cadmium ions. • Biodegradation increased as a function of incubation time in SBF solution. • Biodegradation increased with increase in CMCh and clay in nanocomposites.

  14. Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity.

    Science.gov (United States)

    Wahid, Fazli; Zhou, Ya-Ning; Wang, Hai-Song; Wan, Tong; Zhong, Cheng; Chu, Li-Qiang

    2018-04-07

    Injectable and self-healing hydrogels have found numerous applications in drug delivery, tissue engineering and 3D cell culture. Herein, we report an injectable self-healing carboxymethyl chitosan (CMCh) supramolecular hydrogels cross-linked by zinc ions (Zn 2+ ). Supramolecular hydrogels were obtained by simple addition of metal ions solution to CMCh solution at an appropriate pH value. The mechanical properties of these hydrogels were adjustable by the concentration of Zn 2+ . For example, the hydrogel with the highest concentration of Zn 2+ (CMCh-Zn4) showed strongest mechanical properties (storage modulus~11,000Pa) while hydrogel with the lowest concentration of Zn 2+ (CMCh-Zn1) showed weakest mechanical properties (storage modulus~220Pa). As observed visually and confirmed rheologically, the CMCh-Zn1 hydrogel with the lowest Zn 2+ concentration showed thixotropic property. CMCh-Zn1 hydrogel also presented injectable property. Moreover, the antibacterial properties of the prepared supramolecular hydrogels were studied against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by agar well diffusion method. The results revealed Zn 2+ dependent antibacterial properties against both kinds of strains. The inhibition zones were ranging from ~11-24mm and ~10-22mm against S. aureus and E. coli, respectively. We believe that the prepared supramolecular hydrogels could be used as a potential candidate in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering.

    Science.gov (United States)

    Jaikumar, Dhanya; Sajesh, K M; Soumya, S; Nimal, T R; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2015-03-01

    Injectable, biodegradable scaffolds are required for soft tissue reconstruction owing to its minimally invasive approach. Such a scaffold can mimic the native extracellular matrix (ECM), provide uniform distribution of cells and overcome limitations like donor site morbidity, volume loss, etc. So, here we report two classes of biocompatible and biodegradable hydrogel blend systems namely, Alginate/O-carboxymethyl chitosan (O-CMC) and Alginate/poly (vinyl alcohol) (PVA) with the inclusion of fibrin nanoparticles in each. The hydrogels were prepared by ionic cross-linking method. The developed hydrogels were compared in terms of its swelling ratio, degradation profile, compressive strength and elastic moduli. From these preliminary findings, it was concluded that Alginate/O-CMC formed a better blend for tissue engineering applications. The potential of the formed hydrogel as an injectable scaffold was revealed by the survival of adipose derived stem cells (ADSCs) on the scaffold by its adhesion, proliferation and differentiation into adipocytes. Cell differentiation studies of fibrin incorporated hydrogel scaffolds showed better differentiation was confirmed by Oil Red O staining technique. These injectable gels have potential in soft tissue regeneration. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    Science.gov (United States)

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    International Nuclear Information System (INIS)

    Doan Binh; Nguyen Thanh Duoc; Pham Thi Thu Hong

    2013-01-01

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  18. In Vitro Osteogenic and Odontogenic Differentiation of Human Dental Pulp Stem Cells Seeded on Carboxymethyl Cellulose-Hydroxyapatite Hybrid Hydrogel.

    Directory of Open Access Journals (Sweden)

    Gabriella eTeti

    2015-10-01

    Full Text Available Stem cells from human dental pulp have been considered as an alternative source of adult stem cells in tissue engineering because of their potential to differentiate into multiple cell lineages.Recently, polysaccharide based hydrogels have become especially attractive as matrices for the repair and regeneration of a wide variety of tissues and organs. The incorporation of inorganic minerals as hydroxyapatite nanoparticles can modulate the performance of the scaffolds with potential applications in tissue engineering. The aim of this study was to verify the osteogenic and odontogenic differentiation of dental pulp stem cells (DPSCs cultured on a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Human DPSCs were seeded on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel and on carboxymethyl cellulose hydrogel for 1, 3, 5, 7, 14 and 21 days. Cell viability assay and ultramorphological analysis were carried out to evaluate biocompatibility and cell adhesion. Real Time PCR was carried out to demonstrate the expression of osteogenic and odontogenic markers. Results showed a good adhesion and viability in cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel, while a low adhesion and viability was observed in cells cultured on carboxymethyl cellulose hydrogel. Real Time PCR data demonstrated a temporal up-regulation of osteogenic and odontogenic markers in dental pulp stem cells cultured on carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. In conclusion, our in vitro data confirms the ability of DPSCs to differentiate toward osteogenic and odontogenic lineages in presence of a carboxymethyl cellulose—hydroxyapatite hybrid hydrogel. Taken together, our results provide evidence that DPSCs and carboxymethyl cellulose—hydroxyapatite hybrid hydrogel could be considered promising candidates for dental pulp complex and periodontal tissue engineering.

  19. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    Science.gov (United States)

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini

    2016-09-01

    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  1. Formation of carboxymethyl cellulose hydrogel containing silver nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seok; Kuang, Jia; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-12-15

    Silver nanoparticles (AgNPs) can be used in the areas such as integrate circuit, cell electrode and antimicrobial deodorant. In this study, AgNPs have been prepared by using AgNO{sub 3} aqueous solution in the carboxymethyl cellulose (CMC) hydrogel. CMC powders were dissolved in deionized water, and then irradiated by a gamma-ray with a radiation dose of 50 kGy to make CMC hydrogel. CMC hydrogels were dipped into 1.0 x 10{sup -2} M AgNO{sub 3} solution for 1 hour. After that, the swollen hydrogels were irradiated by gamma-ray for the formation of AgNPs. The characteristics of silver nanoparticles in the CMC hydrogels were monitored by UV-Vis and the morphological study and dispersed coefficient of particles were investigated by FE-SEM/EDX. It was observed that the sodium salt in the CMC is crucial to the formation of silver nanoparticle. Finally, antibacterial tests indiacted that the hydrogel containing silver nanoparticle has antibacterial activity.

  2. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    Science.gov (United States)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  3. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan.

    Science.gov (United States)

    Wendling, Rian J; Christensen, Amanda M; Quast, Arthur D; Atzet, Sarah K; Mann, Brenda K

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30-40% modification. This was followed by an increase in viscosity around 45-50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions.

  4. Utilization of cross-linked carboxymethyl κ-carrageenan as adsorbent for hexavalent chromium (Cr+6) ion

    International Nuclear Information System (INIS)

    Antonio, Princess Joyce R.; Punzalan, Mark Emile H.; Saturno, Rochelle Anne B.; Bayquen, Aristea V.

    2009-01-01

    The sorption behavior of cross-linked carboxymethyl κ-carrageenan as an alternative adsorbent for hexavalent chromium was studies. The κ-carrageenan had been carboxymethylated three times with 40% NaOH and monochloroacetic acid (MCA) in 80% isopropyl alcohol at 40 0 C. Carboxymethylated κ-carrageenan was crosslinked using Co 60 irradiation facility at PNRI. Batch experiments were conducted using prepared stock solution of Cr 6+ (70 ppm) under different sorption parameters at room temperature. These parameters include effects of pH, initial metal ion concentration, and contact time. Carboxymethylation and cross-linking was successfully achieved under optimum parameters. It was observed that cross-linked carboxymethyl κ-carrageenan best adsorbs chromium (VI) ion at pH 6, removing 41.59% of the metal ions present in the solution. Freundlich isotherm gave the highest correlation, R 2 , which is equal to 0.9880. This suggests the existence of mutilayer adsorption of the hexavalent chromium ions. Maximum adsorption was found to be at contact time of 2.5 hours and the concentration of the solution remains almost constant after 5 hours. The adsorption kinetics could be approximated favorably by the Lagergren pseudo-second-order kinetic model giving a correlation, R 2 , of 0.9985 and adsorption capacity, qmax, equal to 27.88 mg g +1 . (author)

  5. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Magdy M., E-mail: magdysenna@hotmail.com [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt); Mostafa, Abo El-Khair B. [Chemistry Department, College for Girls, Ain Shams University, Cairo (Egypt); Mahdy, Sanna R.; El-Naggar, Abdel Wahab M. [Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2016-11-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  6. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    International Nuclear Information System (INIS)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-01-01

    Highlights: • Semi-interpenetrating (IPN) blend hydrogels were synthesized by EB irradiation. • The hydrogels were based on starch/cellulose acetate/carboxymethyl cellulose blends. • The gelation, swelling, thermal and mechanical properties of hydrogels were studied. • The thermal stability was studied by determining kinetic energy by different methods. - Abstract: Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  7. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  8. Peritoneal adhesion prevention with a biodegradable and injectable N,O-carboxymethyl chitosan-aldehyde hyaluronic acid hydrogel in a rat repeated-injury model

    Science.gov (United States)

    Song, Linjiang; Li, Ling; He, Tao; Wang, Ning; Yang, Suleixin; Yang, Xi; Zeng, Yan; Zhang, Wenli; Yang, Li; Wu, Qinjie; Gong, Changyang

    2016-11-01

    Postoperative peritoneal adhesion is one of the serious issues because it induces severe clinical disorders. In this study, we prepared biodegradable and injectable hydrogel composed of N,O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA), and assessed its anti-adhesion effect in a rigorous and severe recurrent adhesion model which is closer to clinical conditions. The flexible hydrogel, which gelated in 66 seconds at 37 °C, was cross-linked by the schiff base derived from the amino groups of NOCC and aldehyde groups in AHA. In vitro cytotoxicity test showed the hydrogel was non-toxic. In vitro and in vivo degradation examinations demonstrated the biodegradable and biocompatibility properties of the hydrogel. The hydrogel discs could prevent the invasion of fibroblasts, whereas fibroblasts encapsulated in the porous 3-dimensional hydrogels could grow and proliferate well. Furthermore, the hydrogel was applied to evaluate the anti-adhesion efficacy in a more rigorous recurrent adhesion model. Compared with normal saline group and commercial hyaluronic acid (HA) hydrogel, the NOCC-AHA hydrogel exhibited significant reduction of peritoneal adhesion. Compared to control group, the blood and abdominal lavage level of tPA was increased in NOCC-AHA hydrogel group. These findings suggested that NOCC-AHA hydrogel had a great potential to serve as an anti-adhesion candidate.

  9. Ionically crosslinked alginate–carboxymethyl cellulose beads for the delivery of protein therapeutics

    International Nuclear Information System (INIS)

    Kim, Min Sup; Park, Sang Jun; Gu, Bon Kang; Kim, Chun-Ho

    2012-01-01

    Highlights: ► We prepared Fe 3+ crosslinked alginate–carboxymethyl cellulose (AC) beads. ► Different surface and inner morphology of AC beads were observed on volume of CMC. ► AC beads showed minimum swelling degree in acidic condition. ► Protein release from AC beads was to control in gastrointestinal condition. - Abstract: We developed Fe 3+ -crosslinked alginate–carboxymethyl cellulose (AC) beads in various volume ratios by dropping an AC solution into a ferric chloride solution to form protein therapeutic carrier beads. Scanning electron microscopy revealed that the roughness and pore size of the crosslinked beads increased with the volume ratio of the carboxymethyl cellulose. Fourier transform-infrared analysis revealed the formation of a three-dimensional bonding structure between the anionic polymeric chains of AC and the Fe 3+ ions. The degree of swelling and the release profile of albumin from the beads were investigated under simulated gastrointestinal conditions (pH 1.2, 4.5, and 7.4). The Fe 3+ -crosslinked AC beads displayed different degrees of swelling and albumin release for the various AC volume ratios and under various pH conditions. An in vitro release test was used to monitor the controlled release of albumin from the AC beads under simulated gastrointestinal conditions over 24 h. The Fe 3+ -crosslinked AC beads protected and controlled the release of protein, demonstrating that such beads present a promising protein therapeutic carrier for the oral delivery.

  10. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    Science.gov (United States)

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-01-01

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity. PMID:29558424

  11. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Ahasan Habib

    2018-03-01

    Full Text Available Three-dimensional (3D bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  12. 3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel.

    Science.gov (United States)

    Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir

    2018-03-20

    Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity.

  13. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    Science.gov (United States)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  14. Biopolymer electrolytes based on blend of kappa-carrageenan and cellulose derivatives for potential application in dye sensitized solar cell

    International Nuclear Information System (INIS)

    Rudhziah, S.; Ahmad, A.; Ahmad, I.; Mohamed, N.S.

    2015-01-01

    In this work, carboxymethyl kappa-carrageenan was used as the principle host for developing new biopolymer electrolytes based on the blend of carboxymethyl kappa-carrageenan/carboxymethyl cellulose. The blending of carboxymethyl cellulose into carboxymethyl kappa-carragenan was found to be a promising strategy to improve the material properties such as conductive properties. The electrolyte samples were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, ionic transference number measurement and linear sweep voltammetry in order to investigate their structural, thermal and electrochemical properties. Impedance study showed that the ionic conductivity increased with the increment of ammonium iodide concentration. The highest room temperature ionic conductivity achieved was 2.41 × 10 −3 S cm −1 at 30 wt% of the salt. The increment of conductivity was due to the increase of formation of transient cross-linking between the carboxymethyl kappa-carrageenan/carboxymethyl cellulose chains and the doping salt as indicated the T g trend. The conductivity was also attributed by the increase in the number of charge carriers in the biopolymer electrolytes system. The interactions between polymers and salt were confirmed by FTIR study. The transference number measurements showed that the conductivity was predominantly ionic. Temperature dependent conductivity study showed that conductivity increased with the reciprocal of temperature. The conductivity-temperature plots suggested that the conductivity obeyed the Vogel–Tammann–Fulcher relation and the activation energy for the best conducting sample was 0.010 eV. This system was used for the fabrication of dye sensitized solar cells, FTO/TiO 2 -dye/CMKC/CMCE-NH 4 I + I 2 /Pt. The fabricated cell showed response under light intensity of 100 mW cm −2 with efficiency of 0.13% indicating that the blend biopolymer

  15. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release

    International Nuclear Information System (INIS)

    Mahdavinia, Gholam Reza; Etemadi, Hossein

    2014-01-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe 3 O 4 nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing–thawing technique and subsequent with K + solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions. - Highlights: • In situ synthesis of magnetic kappa-carrageenan/PVA nanocomposite hydrogel. • Low salt sensitivity of magnetic nanocomposite hydrogels was observed. • The release of diclofenac sodium from hydrogels was pH-dependent. • The release of diclofenac sodium from magnetic hydrogels was affected by external magnetic field. • The hydrogels containing carrageenan component showed high mucoadhesiveness

  16. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavinia, Gholam Reza, E-mail: grmnia@maragheh.ac.ir; Etemadi, Hossein

    2014-12-01

    In this work, the magnetic nanocomposite hydrogels that focused on targeted drug delivery were synthesized by incorporation of polyvinyl alcohol (PVA), kappa-carrageenan (Cara), and magnetite Fe{sub 3}O{sub 4} nanoparticles. The magnetic nanoparticles were obtained in situ in the presence of a mixture of polyvinyl alcohol/kappa-carrageenan (CaraPVA). The produced magnetite-polymers were cross-linked with freezing–thawing technique and subsequent with K{sup +} solution. The synthesized hydrogels were thoroughly characterized by transmittance electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. The dynamic swelling kinetic models of hydrogels were analyzed according to the first- and second-order kinetic models and were found that the experimental kinetics data followed the second-order model well. Drug loading and release efficiency were evaluated by diclofenac sodium (DS) as the model drug. The in vitro drug release studies from hydrogels exhibited significant behaviors on the subject of physiological simulated pHs and external magnetic fields. Investigation on the antibacterial activity revealed the ability of drug-loaded hydrogels to inactivate the Gram-positive Staphylococcus aureus (S. aureus) bacteria. The mucoadhesive properties of the hydrogels were studied and the hydrogels containing kappa-carrageenan showed good mucoadhesiveness in both simulated gastric and intestinal conditions. - Highlights: • In situ synthesis of magnetic kappa-carrageenan/PVA nanocomposite hydrogel. • Low salt sensitivity of magnetic nanocomposite hydrogels was observed. • The release of diclofenac sodium from hydrogels was pH-dependent. • The release of diclofenac sodium from magnetic hydrogels was affected by external magnetic field. • The hydrogels containing carrageenan component showed high

  17. Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth.

    Science.gov (United States)

    Tavakol, Moslem; Dehshiri, Saeedeh; Vasheghani-Farahani, Ebrahim

    2016-11-05

    In the present study, electron beam irradiation was applied to prepare a chemically crosslinked hydrogel based on tyramine conjugated gum tragacanth. Then, the gel content, swelling behavior and cytotoxicity of the hydrogels were evaluated. The gel content of the hydrogels was in the range of 75-85%. Equilibrium swelling degree of the hydrogels decreased from 51 to 14 with increasing polymer concentration and irradiation dose. Moisture retention capability of the hydrogels after 5h incubation at 37°C was in the range of 45-52 that is comparable with of commercial hydrogels. The cytotoxicity analysis showed the good biocompatibility of hydrogels. These results indicated that electron beam irradiation is a promising method to prepare chemically crosslinked tyramine conjugated gum tragacanth hydrogels for biomedical applications. Also, the versatility of electron beam irradiation for crosslinking of a variety of polymers possessing tyramine groups was demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Rakhshaei, Rasul [Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz (Iran, Islamic Republic of); Namazi, Hassan, E-mail: namazi@tabrizu.ac.ir [Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz (Iran, Islamic Republic of); Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz (Iran, Islamic Republic of)

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV–vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. - Highlights: • CMC nanocomposite hydrogel incorporated with TC loaded ZnO-MCM-41 nanoparticles have been prepared as active wound dressing. • Citric acid was used as cross linker to avoid conventional toxic crosslinkers. • CMC/ZnO-MCM-41

  19. Manual of radiation processing of cassava starch hydrogel

    International Nuclear Information System (INIS)

    Sonsuk, Manit

    2007-01-01

    The radiation processing of natural cassava starch (CS) is described for the improvement of its properties. A series of hydrogels were prepared from gelatinized CS and vinylpyrrolidone by radiation-induced graft copolymerization. Hydrogels were also synthesized from radiation-induced crosslinking of carboxymethyl CS. The optimum condition for the swelling ratio and gel fraction of the obtained hydrogels is irradiation at low dose. The polymeric chelating resins containing the hydroxamic acid groups were synthesized from the polymethyl acrylate (PMA)-grafted CS via gamma radiation. (M.H.)

  20. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.

    Science.gov (United States)

    McGill, Meghan; Coburn, Jeannine M; Partlow, Benjamin P; Mu, Xuan; Kaplan, David L

    2017-11-01

    Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods

  1. Cross-Linked Hydrogel for Pharmaceutical Applications: A Review

    Directory of Open Access Journals (Sweden)

    Rabinarayan parhi

    2017-12-01

    Full Text Available Hydrogels are promising biomaterials because of their important qualities such as biocompatibility, biodegradability, hydrophilicity and non-toxicity. These qualities make hydrogels suitable for application in medical and pharmaceutical field. Recently, a tremendous growth of hydrogel application is seen, especially as gel and patch form, in transdermal drug delivery. This review mainly focuses on the types of hydrogels based on cross-linking and; secondly to describe the possible synthesis methods to design hydrogels for different pharmaceutical applications. The synthesis and chemistry of these hydrogels are discussed using specific pharmaceutical examples. The structure and water content in a typical hydrogel have also been discussed.

  2. Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels

    Directory of Open Access Journals (Sweden)

    Rachel Shet Hui Wong

    2015-09-01

    Full Text Available Novel polyethylene oxide (PEO hydrogel films were synthesized via UV crosslinking with varying concentrations of pentaerythritol tetra-acrylate (PETRA as crosslinking agent. The aim was to study the effects of the crosslinking agent on the material properties of hydrogel films intended for dermatological applications. Fabricated film samples were characterized using swelling studies, scanning electron microscopy, tensile testing and rheometry. Films showed rapid swelling and high elasticity. The increase of PETRA concentration resulted in significant increase in the gel fraction and crosslinking density (ρc, while causing a significant decrease in the equilibrium water content (EWC, average molecular weight between crosslinks (\\({\\overline{M}}_{c}\\, and mesh size (ζ of films. From the scanning electron microscopy, cross-linked PEO hydrogel network appeared as cross-linked mesh-like structure with interconnected micropores. Rheological studies showed PEO films required a minimum of 2.5% w/w PETRA to form stable viscoelastic solid gels. Preliminary studies concluded that a minimum of 2.5% w/w PETRA is required to yield films with desirable properties for skin application.

  3. Fluorescence Imaging in Genipin Crosslinked Chitosan–Poly(vinyl pyrrolidone Hydrogels

    Directory of Open Access Journals (Sweden)

    Simon Matcham

    2016-10-01

    Full Text Available Recent research has identified genipin as a promising natural crosslinking agent for biocompatible hydrogels as genipin is significantly less cytotoxic than current synthetic crosslinking agents, such as glutaraldehyde. Conveniently, fluorophores can be produced when genipin crosslinks. In this study, fluorescence intensity measurements of genipin crosslinked chitosan-poly(vinyl pyrrolidone hydrogels have been explored as a dynamic, in situ method for tracing sol-gel transition. These pH-responsive smart materials have a future in medical applications, in particular in tissue engineering and drug delivery, where methods to follow the process in situ and in real-time are crucial for future advancement. Samples were prepared using deionised water, pH 4, and pH 10 solutions, and studied at 24 and 37 °C over a 24 h period. Both temperature and pH have been found to affect sol-gel transition in the hydrogels studied. The transition from acidic (pH 4 to basic (pH 10 solution resulted in reduced fluorescence intensity suggesting that, under more basic conditions, genipin molecules self-polymerise, reducing the number of molecules available for reaction with the amino groups of chitosan. Three-dimensional representations of the fluorescence present in a hydrogel sample have also been produced from the data, enabling the visualisation of variation in fluorescence with time at the surface of the hydrogel.

  4. Cross-linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering.

    Science.gov (United States)

    Liu, Xifeng; Miller, A Lee; Waletzki, Brian E; Lu, Lichun

    2018-05-01

    Graphene oxide (GO) is an attractive material that can be utilized to enhance the modulus and conductivities of substrates and hydrogels. To covalently cross-link graphene oxide sheets into hydrogels, abundant cross-linkable double bonds were introduced to synthesize the graphene-oxide-tris-acrylate sheet (GO-TrisA). Polyacrylamide (PAM) nanocomposite hydrogels were then fabricated with inherent covalently and permanently cross-linked GO-TrisA sheets. Results showed that the covalently cross-linked GO-TrisA/PAM nanocomposite hydrogel had enhanced mechanical strength, thermo stability compared with GO/PAM hydrogel maintained mainly by hydrogen bonding between PAM chains and GO sheets. In vitro cell study showed that the covalently cross-linked rGO-TrisA/PAM nanocomposite hydrogel had excellent cytocompatibility after in situ reduction. These results suggest that rGO-TrisA/PAM nanocomposite hydrogel holds great potential for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1247-1257, 2018. © 2018 Wiley Periodicals, Inc.

  5. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel.

    Directory of Open Access Journals (Sweden)

    Bapi Sarker

    Full Text Available Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration.

  6. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  7. UV-crosslinkable photoreactive self-adhesive hydrogels based on acrylics

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew

    2016-06-01

    Full Text Available Hydrogels are a unique class of macromolecular networks that can hold a large fraction of an aqueous solvent within their structure. They are suitable for biomedical area including controlled drug delivery and for technical applications as self-adhesive materials for bonding of wet surfaces. This paper describes photoreactive self-adhesive hydrogels based on acrylics crosslinked using UV radiation. They are prepared in ethyl acetate through radical polymerization of monomers mixture containing 2-ethylhexyl acrylate (2-EHA, butyl acrylate (BA, acrylic acid (AA and copolymerizable photoinitiator 4-acryloyloxy benzophenone (ABP at presence of radical starter 2.2’-azobis-diisobutyronitrile AIBN. The synthesized acrylic copolymers were determined by viscosity and GPC analysis and later modified using ethoxylated amines. 4-acryloyloxy benzophenone (ABP was used as crosslinking monomer. After UV crosslinking the properties of these novel synthesized hydrogels, such as tack, peel adhesion, shears strength, elongation and water adsorption were also studied.

  8. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Science.gov (United States)

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels.

  9. Development of sago starch hydrogel for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin Hashim; Khairul Zaman HJ. Mohd Dahlan; Kamarudin Bahari [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  10. Development of sago starch hydrogel for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman HJ Mohd Dahlan; Kamarudin Bahari; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  11. Experimental design of mixture applied to study PVP hydrogels properties crosslinked by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, Mara Tania S.; Lugao, Ademar B., E-mail: maratalcantara@uol.com.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Taqueda, Maria Elena S. [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Quimica

    2009-07-01

    Hydrogels are three dimensional hydrophilic crosslinked polymeric networks that have capacity to swell by absorbing water or biological fluids without dissolve. Hydrogels have been widely used in different application fields from agriculture, industry and in biomedicine. The properties of a hydrogel are extremely important in selecting which materials are suitable for a specific application. So mixtures can offer hydrogels with different properties to different applications. The PVP hydrogels were prepared by gamma radiation of an aqueous polymer solution and crosslinked by gamma ray, an effective and simple method for hydrogel formation that offers some advantages over the other techniques. In this work, a mixture experimental design was used to study the relationship between polymer cross-linking and swelling properties of PVP hydrogels with PEG as plasticizer and agar as gellifier. The gel fraction was measured for every mixture specified for the experiment D-optimal designs. (author)

  12. Experimental design of mixture applied to study PVP hydrogels properties crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Mara Tania S.; Lugao, Ademar B.; Taqueda, Maria Elena S.

    2009-01-01

    Hydrogels are three dimensional hydrophilic crosslinked polymeric networks that have capacity to swell by absorbing water or biological fluids without dissolve. Hydrogels have been widely used in different application fields from agriculture, industry and in biomedicine. The properties of a hydrogel are extremely important in selecting which materials are suitable for a specific application. So mixtures can offer hydrogels with different properties to different applications. The PVP hydrogels were prepared by gamma radiation of an aqueous polymer solution and crosslinked by gamma ray, an effective and simple method for hydrogel formation that offers some advantages over the other techniques. In this work, a mixture experimental design was used to study the relationship between polymer cross-linking and swelling properties of PVP hydrogels with PEG as plasticizer and agar as gellifier. The gel fraction was measured for every mixture specified for the experiment D-optimal designs. (author)

  13. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration.

    Science.gov (United States)

    Zheng, Jiafu; Zhao, Fujian; Zhang, Wen; Mo, Yunfei; Zeng, Lei; Li, Xian; Chen, Xiaofeng

    2018-08-01

    In recent years, gelatin-based composites hydrogels have been intensively investigated because of their inherent bioactivity, biocompatibility and biodegradability. Herein, we fabricated photocrosslinkable biomimetic composites hydrogels from bioactive glass (BG) and gelatin methacryloyl (GelMA) by a sequential physical and chemical crosslinking (gelation + UV) approach. The results showed that the compressive modulus of composites hydrogels increased significantly through the sequential crosslinking approach. The addition of BG resulted in a significant increase in physiological stability and apatite-forming ability. In vitro data indicated that BG/GelMA composites hydrogels promoted cell attachment, proliferation and differentiation. Overall, the BG/GelMA composites hydrogels combined the advantages of good biocompatibility and bioactivity, and had potential applications in bone regeneration. Copyright © 2018. Published by Elsevier B.V.

  14. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiankang, E-mail: jiankanghe@mail.xjtu.edu.cn; Chen, Ruomeng; Lu, Yongjie; Zhan, Li; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2016-02-01

    It is a huge challenge to engineer vascular networks in vital organ tissue engineering. Although the incorporation of artificial microfluidic network into thick tissue-engineered constructs has shown great promise, most of the existing microfluidic strategies are limited to generate rectangle cross-sectional channels rather than circular vessels in soft hydrogels. Here we present a facile approach to fabricate branched microfluidic network with circular cross-sections in gelatin hydrogels by combining micromolding and enzymatically-crosslinking mechanism. Partially crosslinked hydrogel slides with predefined semi-circular channels were molded, assembled and in situ fully crosslinked to form a seamless and circular microfluidic network. The bonding strength of the resultant gelatin hydrogels was investigated. The morphology and the dimension of the resultant circular channels were characterized using scanning electron microscopy (SEM) and micro-computerized tomography (μCT). Computational fluid dynamic simulation shows that the fabrication error had little effect on the distribution of flow field but affected the maximum velocity in comparison with designed models. The microfluidic gelatin hydrogel facilitates the attachment and spreading of human umbilical endothelial cells (HUVECs) to form a uniform endothelialized layer around the circular channel surface, which successfully exhibited barrier functions. The presented method might provide a simple way to fabricate circular microfluidic networks in biologically-relevant hydrogels to advance various applications of in vitro tissue models, organ-on-a-chip systems and tissue engineering. - Highlights: • A facile method was proposed to build a circular fluidic network in gelatin hydrogel. • The fluidic network is mechanically robust and supports physiological flow. • HUVECs formed endothelialized layer around the channel to express barrier function.

  15. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery.

    Science.gov (United States)

    Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-10-15

    Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis of a biocopolymer carrageenan-g-poly(AAm-co-IA/ montmorilonite superabsorbent hydrogel composite

    Directory of Open Access Journals (Sweden)

    M. Sadeghi

    2012-06-01

    Full Text Available A novel superabsorbent hydrogel composite based on kappa-carrageenan (κC has been prepared via graft copolymerization of acrylamide (AAm and itaconic acid (IA monomers in the presence of montmorolonite clay powder, methylenebisacrylamide (MBA as the crosslinking agent and ammonium persulfate (APS as initiator. Evidence of grafting and montmorolonite interaction was obtained by comparison of FTIR and TGA spectra of the initial substrates and the superabsorbent composite. A new absorption band at 1722 cm-1 in the composite spectrum confirmed montmorolonite-organic polymer linkages. Moreover, the morphology of the samples was examined by scanning electron microscopy (SEM. The swelling of the superabsorbing hydrogels was also examined in solutions with pH values ranging between 1.0 and 13.0. Finally, the swelling behavior of these composite polymers was investigated in various salt solutions. Results indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. This behavior can be attributed to the charge screening effect of monovalent cations, as well as ionic crosslinking for multivalent cations.

  18. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

    Science.gov (United States)

    Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.

    2013-05-01

    Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

  19. Design and fabrication of a chitosan hydrogel with gradient structures via a step-by-step cross-linking process.

    Science.gov (United States)

    Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui

    2017-11-15

    The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.

  20. Dual Cross-Linked Biofunctional and Self-Healing Networks to Generate User-Defined Modular Gradient Hydrogel Constructs.

    Science.gov (United States)

    Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon

    2017-08-01

    Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    International Nuclear Information System (INIS)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z.

    2000-01-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  2. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z. [Radiation Processing Technology Division, Malaysian Institute Nuclear Technology Research Malaysia (MINT), Bangi, 43000 Kajang (Malaysia)

    2000-03-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  3. Angiogenic competency of biodegradable hydrogels fabricated from polyethylene glycol-crosslinked tyrosine-derived polycarbonates

    Directory of Open Access Journals (Sweden)

    HJ Sung

    2008-04-01

    Full Text Available Synthetic biomaterials can be used as instructive biological milieus to guide cellular behaviour and function. To further realize this application, we synthesized a series of structurally similar hydrogels and tested their ability to modulate angiogenesis. Hydrogels were synthesized from poly(DTE-co-x% DT carbonate crosslinked by y% poly(ethylene glycol (PEG. Hydrogel desaminotyrosyl tyrosine (DT contents (x% ranged from 10-100%, and crosslink densities (y% PEG-crosslinker ranged from 5-80%. The hydrogels were fashioned into porous scaffolds with highly interconnected macro- and micro-pore (>100 and <10 mm in diameter, respectively architecture using poly(DTE-co-10%DT carbonate crosslinked with 8% PEG. Under physiological conditions (in vitro, the hydrogels degraded into three major products: desaminotyrosyl-tyrosine ethyl ester (DTE, desaminotyrosyl tyrosine (DT, and poly(ethylene glycol-di-DT-hydrazide (PEG-di-DT hydrazide. Increasing either DT content or crosslink density brought quickened degradation. Because DT and DTE, two of the three major degradation products, have not demonstrated any noticeable cytotoxicity or angiogenic effect in previous studies, we measured the cytotoxicity of PEG-di-DT hydrazide, the third major degradation product. We found that PEG-di-DT hydrazide only displayed significant cytotoxicity at the high concentration of 100 mg/mL. Interestingly, PEG-di-DT hydrazide and its further degradation product PEG-dihydrazide stimulated in vitro endothelial cell migration and tubulogenesis, which is comparable to results found with FGF-beta treatment. Subcutaneous implantation of the PEG-crosslinked poly(DTE-co-10%DT carbonate scaffolds into the backs of rats elicited greater tissue growth over time and superior vascularization than poly(DTE carbonate implantation. These results show that this new class of biomaterials has a strong potential to modulate angiogenesis.

  4. Sodium Carboxymethyl Cellulose Using Acrylamide and Acrylic Acid and Investigation of Drug Delivery Properties

    Directory of Open Access Journals (Sweden)

    Mahdi Geramipour

    2016-07-01

    Full Text Available Hydrogels are three-dimensional polymer networks that can absorb and retain a huge amount of aqueous fluids even under certain pressure, but do not dissolve in water. They are responsive to environmental stimulants such as pH and ionic strength of the solution. In this study, a series of novel sodium carboxymethyl cellulose-based hydrogel nanocomposites were synthesized using acrylamide comonomer in the presence of iron magnetic as crosslinker and acrylic acid ammonium persulfate (APS comonomer as initiator. All reaction variables affecting the water absorbency of the hydrogel nanocomposite including the concentration of crosslinking agent and initiator, and comonomers ratio were optimized in order to achieve the maximum absorption capacity. The experimental data showed that the hydrogel nanocomposite exhibited improved swelling capacity compared to the nanoparticel-free hydrogel. In addition, optimized hydrogel nanocomposite showed a good water uptake ability and the equilibrium swelling capacity was achieved within the initial 10 min. In examining the quality of the synthesized hydrogel nanocomposite, the amount of absorption in saline solutions of different concentrations was measured. Furthermore, the swelling behavior of hydrogel nanocomposite in solutions with different pH values was evaluated. The chemical structure of the hydrogel nanocomposites was characterized by means of transmission electron microscopy (TEM, scanning electron microscopy (SEM, vibrating sample magnetometry (VSM, thermogravimetry analysis (TGA, derivative thermogravimetry (DTG and Fourier transform infrared spectroscopy (FTIR. In order to study the drug delivery and drug release behavior, the release of sodium diclofenac as a model drug from synthesized hydrogel nanocomposite was examined in two acidic and basic buffer environments. The results indicated that this hydrogel nanocomposite may be an appropriate alternative for drug release processes in human body.

  5. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network

    Science.gov (United States)

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-01-01

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246

  6. A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation

    International Nuclear Information System (INIS)

    Doan Binh; Pham Thi Thu Hong; Nguyen Ngoc Duy; Nguyen Thanh Duoc; Nguyen Nguyet Dieu

    2012-01-01

    The formation of carboxymethyl starch (CMS) nanogel with 50 nm less particle size was carried out through a radiation crosslinked process on the electron beam (EB) linear accelerator. Changes of intrinsic viscosities and weight averaged molecular weight in the CMS concentration, which ranged from 3 to 10 mg ml −1 in absorbed doses were investigated. There were some new peaks in the 1 H NMR spectra of CMS nanogel compared with those of CMS polymer. These results were anticipated that the predominant intramolecular crosslinking of dilute CMS aqueous solution occurred while being exposed to a short intense pulse of ionizing radiation. Hydrodynamic radius (often called particle size, R h ) and distribution of particle size were measured by a dynamic light scattering technique. The radiation yield of intermolecular crosslinking of CMS solution was calculated from the expression of G x (). The influence of the “size effect” was demonstrated by testing culture of Lactobacillus bacteria on MRS agar culture medium containing CMS nanogel and polymer. Results showed that the number of Lactobacillus bacteria growing on nanogel containing culture medium is about 170 cfu/ml and on polymer containing culture medium is only 6 cfu/ml. - Highlights: ► Carboxymethyl starch (CMS) nanogel consists of radiation intramolecular cross-linked polymeric particles, which are rather well dispersed and swollen in water. ► The nano-sized particles can be obtained from a high energy electron pulse triggered radiation process in a dilute CMS solution. ► Once Lactobacillus bacteria are cultured on a CMS nanogel containing medium, the “size effect” of the CMS nanogel will prove to be clearly superior to that of a CMS polymer.

  7. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    KAUST Repository

    Seow, Wei Yang

    2016-09-07

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing.

  8. Synthesis of silver nanoparticles in hydrogels crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Maria Tania S.; Oliani, Washington L.; Brant, Antonio J.C.; Oliveira, Maria Jose A. de; Riella, Humberto Gracher; Lugao, Ademar B.

    2013-01-01

    Hydrogel is defined as a polymeric material which exhibits the ability to swell and retain a significant fraction of water within its structure without dissolving the polymeric network. Silver nanoparticles (AgNPs) are used in a range of medicinal products based on hydrogels and diverse other products due to their antibacterial properties at low concentrations. The use of ionizing radiation in the production process of hydrogels of poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) in aqueous solutions enables the crosslinking of their polymer chains. If polymer solutions contain Ag + ions, these can be reduced radiolytically to nanocrystalline silver. The objective of this study was to investigate the reduction of Ag + ions by gamma-irradiation for the synthesis of AgNPs in hydrogels of PVA and PVP as main polymers and to make a comparison of the performance of the two polymeric matrices, chiefly focusing on the effect of the AgNPs' synthesis on the crosslinking of both polymers. The properties of the hydrogel matrices obtained were evaluated from tests of gel fraction, swelling in water, and stress-strain. The results of mechanical properties of PVA matrix were higher than those of PVP one whereas the latter exhibited a higher swelling degree. The reduction of silver ions was confirmed by UV-visible absorption spectrum, whose characteristics also indicated the formation of silver nanoparticles in both arrays. (author)

  9. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  10. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  11. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification.

    Science.gov (United States)

    Thombare, Nandkishore; Jha, Usha; Mishra, Sumit; Siddiqui, M Z

    2017-07-15

    With the aim to explore new adsorbents for water purification, guar gum based hydrogels were synthesized by cross-linking with borax at different percentage. The cross-linking was confirmed through characterization by FTIR spectroscopy, SEM morphology, thermal studies and water absorption capacity. To examine the adsorption/absorption performance of different grades of hydrogels, their flocculation efficiency was studied in kaolin suspension at different pH by standard jar test procedure. The flocculation efficiency of the test materials was compared with the commercially used coagulant, alum and also residues of Al and K left in the treated water were comparatively studied. The synthesized hydrogels were also tested for their efficiency of removing Aniline Blue dye by UV-vis spectrophotometer study. The best grade hydrogel outperformed alum, at extremely low concentration and also showed dye removing efficiency up to 94%. The single step synthesized green products thus exhibited great potential as water purifying agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Interactions of cross-linked and uncross-linked chitosan hydrogels ...

    African Journals Online (AJOL)

    The swelling equilibrium of Chitosan and sodium tripolyphosphate (NaTPP) cross-linked chitosan hydrogels in aqueous solutions of surfactants differing in structure and hydrophobicity at 250C is reported. Anionic surfactant sodium dodecylsulfate (SDS), the cationic surfactant hexadecyltrimethylammonium bromide (HTAB) ...

  13. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.

    Science.gov (United States)

    Suzuki, Atsushi; Sasaki, Saori

    2015-12-01

    Physically crosslinked poly(vinyl alcohol) gels are versatile biomaterials due to their excellent biocompatibility. In the past decades, physically crosslinked poly(vinyl alcohol) and poly(vinyl alcohol)-based hydrogels have been extensively studied for biomedical applications. However, these materials have not yet been implemented due to their mechanical strength. Physically crosslinked poly(vinyl alcohol) gels consist of a swollen amorphous network of poly(vinyl alcohol) physically crosslinked by microcrystallites. Although the mechanical properties can be improved to some extent by controlling the distribution of microcrystallites on the nano- and micro-scales, enhancing the mechanical properties while maintaining high water content remains very difficult. It may be technologically impossible to significantly improve the mechanical properties while keeping the gel's high water absorbance ability using conventional fabrication methods. Physical and chemical understandings of the swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) gels are considered here; some promising strategies for their practical applications are presented. This review focuses more on the recent studies on swelling and mechanical properties of poly(vinyl alcohol) hydrogels, prepared using only poly(vinyl alcohol) and pure water with no other chemicals, as potential biomedical materials. © IMechE 2015.

  14. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  15. Synthesis and Characterization of 5-Fluorouracil-Loaded Glutaraldehyde Crosslinked Chitosan Hydrogels

    Directory of Open Access Journals (Sweden)

    Zehra ÖZBAŞ

    2016-11-01

    Full Text Available In this work, the characterization and drug release behavior of 5-fluorouracil-loaded glutaraldehyde-crosslinked chitosan hydrogels have been studied. The structure of the hydrogels were investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, also their properties were compared with those of the drug-unloaded hydrogels. The equilibrium swelling studies and drug release profiles were determined at 37°C in two different pHs (2.1 and 7.4. The results indicated that increased chitosan concentration in the hydrogel decreased the swelling and drug release values and the hydrogels released nearly the same amount of 5-fluorouracil in both acidic (~59% and basic medium (~50%.

  16. Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels

    International Nuclear Information System (INIS)

    Zaragoza, J; Chang, A; Asuri, P

    2017-01-01

    Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials. (paper)

  17. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    Science.gov (United States)

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding.

    Science.gov (United States)

    Li, Shubin; Wang, Lu; Yu, Xuemei; Wang, Chengli; Wang, Zhenyu

    2018-01-01

    Hydrogels, promising biological materials, need to have both strong mechanical properties and also inherent self-healing properties. In this work a double cross-linked network (DN) hydrogel was designed and prepared by combining a Diels-Alder click reaction and coordination effects. This DN hydrogel had good thermodynamic properties, anti-EDTA performance and self-healing properties. In addition, the mechanical properties, swelling properties and surface morphology of DN hydrogels can be controlled by adjusting the ratio of Fe 3+ -catechol. The adjustment of pH value can change the color, crosslinking mode and mechanical properties of the DN hydrogel. This smart hydrogel created from DA click chemistry and coordination effects has significance for guiding the design of new hydrogels with good mechanical properties, self-healing properties and controlled cross-link density. Copyright © 2017. Published by Elsevier B.V.

  19. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    Science.gov (United States)

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    International Nuclear Information System (INIS)

    Haryanto,; Singh, Deepti; Han, Sung Soo; Son, Jun Hyuk; Kim, Seong Cheol

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks

  1. Mussel-Inspired Self-Healing Double-Cross-Linked Hydrogels by Controlled Combination of Metal Coordination and Covalent Cross-Linking

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    2018-01-01

    a catechol-based hydrogel design that allows for the degree of oxidative covalent cross-linking to be controlled. Double cross-linked hydrogels with tunable stiffness are constructed by adding the oxidizable catechol analogue, tannic acid, to an oxidation-resistant hydrogel construct held together...... by coordination of the dihydroxy functionality of 1-(2'-carboxyethyl)-2-methyl-3-hydroxy-4-pyridinone to trivalent metal ions. By varying the amount of tannic acid, the hydrogel stiffness can be customized to a given application while retaining the self-healing capabilities of the hydrogel's coordination chemical...

  2. Microfabrication of biocompatible hydrogels by proton beam writing

    Science.gov (United States)

    Nagasawa, Naotsugu; Kimura, Atsushi; Idesaki, Akira; Yamada, Naoto; Koka, Masashi; Satoh, Takahiro; Ishii, Yasuyuki; Taguchi, Mitsumasa

    2017-10-01

    Functionalization of biocompatible materials is expected to be widely applied in biomedical engineering and regenerative medicine fields. Hydrogel has been expected as a biocompatible scaffold which support to keep an organ shape during cell multiplying in regenerative medicine. Therefore, it is important to understanding a surface microstructure (minute shape, depth of flute) and a chemical characteristic of the hydrogel affecting the cell culture. Here, we investigate the microfabrication of biocompatible polymeric materials, such as the water-soluble polysaccharide derivatives hydroxypropyl cellulose and carboxymethyl cellulose, by use of proton beam writing (PBW). These polymeric materials were dissolved thoroughly in pure water using a planetary centrifugal mixer, and a sample sheet (1 mm thick) was formed on polyethylene terephthalate (PET) film. Crosslinking to form hydrogels was induced using a 3.0 MeV focused proton beam from the single-ended accelerator at Takasaki Ion Accelerators for Advanced Radiation Application. The aqueous samples were horizontally irradiated with the proton beam through the PET cover film, and then rinsed with deionized water. Microstructured hydrogels were obtained on the PET film using the PBW technique without toxic crosslinking reagents. Cell adhesion and proliferation on the microfabricated biocompatible hydrogels were investigated. Microfabrication of HPC and CMC by the use of PBW is expected to produce new biocompatible materials that can be applied in biological and medical applications.

  3. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    ; it is of great interest to control the degree of which these are present; i.e. controlling the degree of catechol oxidation. Here, we report hydrogels in which the catechols participating in reversible (oxidation resistant catechol-analogue6) and irreversible oxidation cross-links are separated, enabling one...... to predefine the ratio of the two by altering the composition. The oxidation-resistant catechol-analogue was grafted onto polyallylamine,4 while the oxidation cross-links are introduced by addition of tannic acid that has the same useful properties as catechols.5,7,8 This affords hydrogels that retain self......-healing abilities even at high pH but that can be stiffened at will by dialing in the required degree of covalent crosslinking. This dial-in method thus harnesses two aspects of catechol-type chemistries to yield double network hydrogels in a straightforward and highly controllable manner....

  4. In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan.

    Science.gov (United States)

    Fernández-Ferreiro, Anxo; González Barcia, Miguel; Gil-Martínez, María; Vieites-Prado, Alba; Lema, Isabel; Argibay, Barbara; Blanco Méndez, José; Lamas, Maria Jesus; Otero-Espinar, Francisco Javier

    2015-08-01

    Gellan gum, kappa-carrageenan and alginates are natural polysaccharides able to interact with different cations that can be used to elaborate ion-activated in situ gelling systems for different uses. The interaction between fluid solutions of these polysaccharides and cations presents into the tear made these biopolymers very interesting to elaborate ophthalmic drug delivery systems. The main purpose of this study is to evaluate the ability of mixtures of these polymers to obtain ion-activated ophthalmic in situ gelling systems with optimal properties for ocular use. To achieve this purpose different proportion of the biopolymers were analyzed using a mixture experimental design evaluating their transparency, mechanical properties and bioadhesion in the absence and presence of simulated tear fluid. Tear induces a rapid sol-to-gel phase transition in the mixtures forming a consistent hydrogel. The solution composed by 80% of gellan gum and 20% kappa-carrageenan showed the best mechanical and mucoadhesive properties. This mixture was evaluated for rheological behavior, microstructure, cytotoxicity, acute corneal irritancy, ex-vivo and in vivo ocular toxicity and in vivo corneal contact time using Magnetic Resonance Images (MRI) techniques. Result indicates that the system is safe at ophthalmic level and produces an extensive ocular permanence higher than 6h. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Rational Design, Synthesis and Evaluation of γ-CD-Containing Cross-Linked Polyvinyl Alcohol Hydrogel as a Prednisone Delivery Platform

    Directory of Open Access Journals (Sweden)

    Adolfo Marican

    2018-03-01

    Full Text Available This study describes the in-silico rational design, synthesis and evaluation of cross-linked polyvinyl alcohol hydrogels containing γ-cyclodextrin (γ-CDHSAs as platforms for the sustained release of prednisone (PDN. Through in-silico studies using semi-empirical quantum mechanical calculations, the effectiveness of 20 dicarboxylic acids to generate a specific cross-linked hydrogel capable of supporting different amounts of γ-cyclodextrin (γ-CD was evaluated. According to the interaction energies calculated with the in-silico studies, the hydrogel made from PVA cross-linked with succinic acids (SA was shown to be the best candidate for containing γ-CD. Later, molecular dynamics simulation studies were performed in order to evaluate the intermolecular interactions between PDN and three cross-linked hydrogel formulations with different proportions of γ-CD (2.44%, 4.76% and 9.1%. These three cross-linked hydrogels were synthesized and characterized. The loading and the subsequent release of PDN from the hydrogels were investigated. The in-silico and experimental results showed that the interaction between PDN and γ-CDHSA was mainly produced with the γ-CDs linked to the hydrogels. Thus, the unique structures and properties of γ-CDHSA demonstrated an interesting multiphasic profile that could be utilized as a promising drug carrier for controlled, sustained and localized release of PDN.

  6. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels.

    Science.gov (United States)

    Garnica-Palafox, I M; Sánchez-Arévalo, F M

    2016-10-20

    The objective of this work was to correlate the physical and chemical properties of chitosan/poly(vinyl alcohol)/genipin (CS/PVA/GEN) and chitosan/poly(vinyl alcohol)/glutaraldehyde (CS/PVA/GA) hydrogels with their structural and mechanical responses. In addition, their molecular structures were determined and confirmed using FTIR spectroscopy. The results indicated that the hybrid hydrogels crosslinked with genipin showed similar crystallinity, thermal properties, elongation ratio and structural parameters as those crosslinked with glutaraldehyde. However, it was found that the elastic moduli of the two hybrid hydrogels were slightly different: 2.82±0.33MPa and 2.08±0.11MPa for GA and GEN, respectively. Although the hybrid hydrogels crosslinked with GEN presented a lower elastic modulus, the main advantage is that GEN is five to ten thousand times less cytotoxic than GA. This means that the structural and mechanical properties of hybrid hydrogels crosslinked with GEN can easily be tuned and could have potential applications in the tissue engineering, regenerative medicine, food, agriculture and environmental industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis and Characterization of Crosslinked Hydrogel Polyacrylamide (PAAM)-Co-Alginate Prepared by Gama Irradiation

    International Nuclear Information System (INIS)

    Erizal; Tita P; Dewi SP

    2008-01-01

    Crosslinked poly(acrylamide) (PAAM)-co-alginate hydrogels were prepared by gamma irradiation (γ-irradiation) and their conditions such as irradiation dose and alginate concentration were studied. PAAM-co-alginate was crosslinked to yield water sorption materials with various ability to absorb water (swelling) depending on the preparation conditions (e.g. γ-irradiation dosage>20 kGy) and alginate concentration (0.5 - 1 wt %). With an increase of γ-irradiation dosage and alginate concentration, the gels content and water absorption were increasing markedly. The swelling properties of hydrogel in urea and NaCl solution and the effect of temperature were also investigated. Intensity decreasing of functional goups of OH and NH 2 in the IR spectrum indicated that IPN (Interpenetreting Network) structure occured in the network of hydrogels. The ability of hydrogel to absorp and retain a large amount of water suggested their possible uses in health care and agriculture. (author)

  8. Bio-Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics and Biochemistry for Cell Encapsulation.

    Science.gov (United States)

    Madl, Christopher M; Katz, Lily M; Heilshorn, Sarah C

    2016-06-07

    Covalently-crosslinked hydrogels are commonly used as 3D matrices for cell culture and transplantation. However, the crosslinking chemistries used to prepare these gels generally cross-react with functional groups present on the cell surface, potentially leading to cytotoxicity and other undesired effects. Bio-orthogonal chemistries have been developed that do not react with biologically relevant functional groups, thereby preventing these undesirable side reactions. However, previously developed biomaterials using these chemistries still possess less than ideal properties for cell encapsulation, such as slow gelation kinetics and limited tuning of matrix mechanics and biochemistry. Here, engineered elastin-like proteins (ELPs) are developed that cross-link via strain-promoted azide-alkyne cycloaddition (SPAAC) or Staudinger ligation. The SPAAC-crosslinked materials form gels within seconds and complete gelation within minutes. These hydrogels support the encapsulation and phenotypic maintenance of human mesenchymal stem cells, human umbilical vein endothelial cells, and murine neural progenitor cells. SPAAC-ELP gels exhibit independent tuning of stiffness and cell adhesion, with significantly improved cell viability and spreading observed in materials containing a fibronectin-derived arginine-glycine-aspartic acid (RGD) domain. The crosslinking chemistry used permits further material functionalization, even in the presence of cells and serum. These hydrogels are anticipated to be useful in a wide range of applications, including therapeutic cell delivery and bioprinting.

  9. Carrageenan-based semi-IPN nanocomposite hydrogels: Swelling kinetic and slow release of sequestrene Fe 138 fertilizer

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Bahrami

    2016-09-01

    Full Text Available Nanocomposite hydrogels based on kappa-carrageenan were synthesized by incorporating natural sodium montmorillonite (Cloisite nanoclay. Acrylamide (AAm and methylenebisacrylamide (MBA were used as a monomer and a crosslinker, respectively. Effects of reaction variables on the swelling kinetics were studied. The results revealed that the rate of swelling for nanocomposites with high content of MBA was higher than those of nanocomposites consisting of low content of MBA. Similar to the effect of MBA, the rate of swelling enhanced as the carrageenan content was decreased. The influence of clay content on swelling rate was not remarkable. The experimental swelling data were evaluated by pseudo-first-order and pseudo-second-order kinetic models. The swelling data described well by pseudo-second-order kinetic model. Sequestrene Fe 138 (Sq as an agrochemical was loaded into nanocomposites and releasing of this active agent from nanocomposites was studied. The clay-free hydrogel released the whole loaded Sq; whereas the presence of clay restricted the release of Sq.

  10. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue.

    Science.gov (United States)

    Dai, Hongjie; Huang, Yue; Huang, Huihua

    2018-04-01

    Eco-friendly polyvinyl alcohol/carboxymethyl cellulose (isolated from pineapple peel) hydrogels reinforced with graphene oxide and bentonite were prepared as efficient adsorbents for methylene blue (MB). The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Introducing graphene oxide and bentonite into the hydrogels evidently enhanced the thermal stability, swelling ability and MB adsorption capacity. The effects of initial concentration of MB, pH, contact time and temperature on MB adsorption capacity of the prepared hydrogels were investigated. Adsorption kinetics and equilibrium adsorption isotherm fitted pseudo-second-order kinetic model and Langmuir isotherm model well, respectively. After introducing graphene oxide and bentonite into the hydrogels, the maximum adsorption capacity calculated from the Langmuir isotherm model reached 172.14 mg/g at 30 °C, obviously higher than the hydrogels prepared without these additions (83.33 mg/g). Furthermore, all the prepared hydrogels also displayed good reusability for the efficient removal of MB. Consequently, the prepared hydrogels could be served as eco-friendly, stable, efficient and reusable adsorbents for anionic dyes in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    Science.gov (United States)

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  12. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent

    Science.gov (United States)

    Anah, L.; Astrini, N.

    2017-03-01

    The major problem in heavy metal pollution is that these metals are not biodegradable and accordingly accumulate in the bodies of living organisms, causing dangerous diseases and serious cell disorder. According to World Health Organization (WHO), the long term exposure of Cr(VI) levels of over 0.1 ppm causes respiratory problems, liver and kidney damage, and carcinogenicity.Due to its easy operation and of various cheap adsorbents development, adsorption has been proved to be efficient and most economically attractive technique and feasible to the removal of toxic heavy metal from wastewater. The study aimed to report the removal of Cr(VI) ions from aqueous solutions through adsorption process using carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA) hydrogel as adsorbent.Effect of pH was studied to remove hexavalent chromium.Graft copolymerization of poly(acrylic acid) onto carboxymethyl cellulose was carried out in the presence of benzoyl peroxide redox initiator and methylenbisacrylamide as crosslinker agent. Batch experiments were carried out to investigate the effects ofinitial pH.The adsorption of Cr(VI) ions as a function of pH was conducted in the initial pH range of 1 to 8. The results indicated that acidic pH strongly favored the adsorption. The optimum pH for adsorption of Cr(VI) ranged from 1 to 3, and the maximum uptake of Cr(VI) from the solution was 6.53 mg/g at pH 1 and 30°C. FTIR spectroscopy, SEM analyses were performed on the adsorbent before and after Cr(VI) binding. All analyses confirmed the complexation of Cr(VI) ions on the adsorbent.

  13. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    Science.gov (United States)

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  14. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

    Science.gov (United States)

    Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Della Giustina, Gioia; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna

    2017-06-01

    Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures. The design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking is reported. Significantly, topological and mechanical conditions of polymerized gelatin structures were suitable for cell accommodation in the volume of the woodpiles, leading to a cell density per unit area comparable to the bare substrate. The fabricated structures, presenting micrometric features of high resolution, are actively deformed by cells, both in terms of cell invasion within rods and of cell attachment in-between contiguous woodpiles. Possible biological targets for this 3D approach are customized 3D tissue models, or studies of cell adhesion

  15. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Anwar, Muhammad Sabieh [Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Opposite Sector U, D.H.A., Lahore 54792 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2015-11-01

    This paper describes the development of a new crosslinking method for the synthesis of novel hydrogel films from chitosan and PVA for potential use in various biomedical applications. These hydrogel membranes were synthesized by blending different ratios of chitosan (CS) and poly(vinyl alcohol) (PVA) solutions and were crosslinked with 2.5% (w/v) triethyl orthoformate (TEOF) in the presence of 17% (w/v) sulfuric acid. The physical/chemical interactions and the presence of specific functional groups in the synthesized materials were evaluated by Fourier transform infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) proved that these crosslinked hydrogel films have good thermal stability which was decreased as the CS ratio was increased. Differential scanning calorimetry (DSC) exhibited that CS and PVA were present in the amorphous form. The solution absorption properties were performed in phosphate buffer saline (PBS) solution of pH 7.4. The 20% PVA–80% CS crosslinked hydrogel films showed a greater degree of solution absorption (183%) as compared to other compositions. The hydrogels with greater CS concentration (60% and 80%) demonstrated relatively more porous structure, better cell viability and proliferation and also revealed good blood clotting ability even after crosslinking. Based on the observed facts these hydrogels can be tailored for their potential utilization in wound healing and skin tissue engineering applications. - Highlights: • A new method for covalently crosslinking of chitosan and PVA. • Triethyl orthoformate (TEOF) a new polymer–polymer crosslinking agent. • Hydrogels displayed a good solution absorption capacity. • Hydrogels demonstrated good cytocompatibility. • Good blood clotting potential was shown by these scaffolds.

  16. Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: characterization and in vitro cytocompatibility analysis

    International Nuclear Information System (INIS)

    Yar, Muhammad; Shahzad, Sohail; Siddiqi, Saadat Anwar; Mahmood, Nasir; Rauf, Abdul; Anwar, Muhammad Sabieh; Chaudhry, Aqif Anwar; Rehman, Ihtesham ur

    2015-01-01

    This paper describes the development of a new crosslinking method for the synthesis of novel hydrogel films from chitosan and PVA for potential use in various biomedical applications. These hydrogel membranes were synthesized by blending different ratios of chitosan (CS) and poly(vinyl alcohol) (PVA) solutions and were crosslinked with 2.5% (w/v) triethyl orthoformate (TEOF) in the presence of 17% (w/v) sulfuric acid. The physical/chemical interactions and the presence of specific functional groups in the synthesized materials were evaluated by Fourier transform infrared (FT-IR) spectroscopy. The morphology, structure and pore size of the materials were investigated by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) proved that these crosslinked hydrogel films have good thermal stability which was decreased as the CS ratio was increased. Differential scanning calorimetry (DSC) exhibited that CS and PVA were present in the amorphous form. The solution absorption properties were performed in phosphate buffer saline (PBS) solution of pH 7.4. The 20% PVA–80% CS crosslinked hydrogel films showed a greater degree of solution absorption (183%) as compared to other compositions. The hydrogels with greater CS concentration (60% and 80%) demonstrated relatively more porous structure, better cell viability and proliferation and also revealed good blood clotting ability even after crosslinking. Based on the observed facts these hydrogels can be tailored for their potential utilization in wound healing and skin tissue engineering applications. - Highlights: • A new method for covalently crosslinking of chitosan and PVA. • Triethyl orthoformate (TEOF) a new polymer–polymer crosslinking agent. • Hydrogels displayed a good solution absorption capacity. • Hydrogels demonstrated good cytocompatibility. • Good blood clotting potential was shown by these scaffolds

  17. Effect of citric acid crosslinking cellulose-based hydrogels on osteogenic differentiation.

    Science.gov (United States)

    Raucci, M G; Alvarez-Perez, M A; Demitri, C; Giugliano, D; De Benedictis, V; Sannino, A; Ambrosio, L

    2015-06-01

    Understanding the relationships between material surface properties and cellular responses is essential to designing optimal material surfaces for implantation and tissue engineering. In this study, cellulose hydrogels were crosslinked using a non-toxic and natural component namely citric acid. The chemical treatment induces COOH functional groups that improve the hydrophilicity, roughness, and materials rheological properties. The physiochemical, morphological, and mechanical analyses were performed to analyze the material surface before and after crosslinking. This approach would help determine if the effect of chemical treatment on cellulose hydrogel improves the hydrophilicity, roughness, and rheological properties of the scaffold. In this study, it was demonstrated that the biological responses of human mesenchymal stem cell with regard to cell adhesion, proliferation, and differentiation were influenced in vitro by changing the surface chemistry and roughness. © 2014 Wiley Periodicals, Inc.

  18. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    Science.gov (United States)

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Study Of Calcium And Potassium Different Nature Strength Gel Kappa-Carrageenan

    Directory of Open Access Journals (Sweden)

    Петро Васильович Гурський

    2015-07-01

    Full Text Available The influence of certain organic and mineral salts of potassium and calcium for strength gel kappa-carrageenan. The influence of the mass concentration of individual calcium for strength gels with different content kappa-carrageenan. Grounded mass concentration of some calcium salts for use in the composition of the jelly for sweet and savory dishes based on kappa-carrageenan

  20. Evaluation of Gentamicin and Lidocaine Release Profile from Gum Acacia-crosslinked-poly(2-hydroxyethylmethacrylate)-carbopol Based Hydrogels.

    Science.gov (United States)

    Singh, Baljit; Dhiman, Abhishek

    2017-01-01

    No doubt, the prevention of infection is an indispensable aspect of the wound management, but, simultaneous wound pain relief is also required. Therefore, herein this article, incorporation of antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into hydrogel wound dressings, prepared by using acacia gum, carbopol and poly(2-hydroxyethylmethacrylate) polymers, has been carried out. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. Synthesis of hydrogel wound dressing was carried out by free radical polymerization technique. The drug loading was carried out by swelling equilibrium method and gel strength of hydrogels was measured by a texture analyzer. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. It is concluded that the pH of swelling medium has influenced the network structure of hydrogel i.e., molecular weight of the polymer chain between two neighboring cross links, crosslink density and the corresponding mesh size. A good correlation was established between gel strength and network parameters. Cryo-SEM images showed porous morphology of hydrogels. These hydrogels were found to be biodegradable and antimicrobial in nature. Drug release occurred through Fickian diffusion mechanism and release profile was best fitted in first order model. Overall it is concluded that modification in GA has led to formation of a porous hydrogels for wound dressing applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.

    Science.gov (United States)

    Valentin, Thomas M; Leggett, Susan E; Chen, Po-Yen; Sodhi, Jaskiranjeet K; Stephens, Lauren H; McClintock, Hayley D; Sim, Jea Yun; Wong, Ian Y

    2017-10-11

    3D printed biomaterials with spatial and temporal functionality could enable interfacial manipulation of fluid flows and motile cells. However, such dynamic biomaterials are challenging to implement since they must be responsive to multiple, biocompatible stimuli. Here, we show stereolithographic printing of hydrogels using noncovalent (ionic) crosslinking, which enables reversible patterning with controlled degradation. We demonstrate this approach using sodium alginate, photoacid generators and various combinations of divalent cation salts, which can be used to tune the hydrogel degradation kinetics, pattern fidelity, and mechanical properties. This approach is first utilized to template perfusable microfluidic channels within a second encapsulating hydrogel for T-junction and gradient devices. The presence and degradation of printed alginate microstructures were further verified to have minimal toxicity on epithelial cells. Degradable alginate barriers were used to direct collective cell migration from different initial geometries, revealing differences in front speed and leader cell formation. Overall, this demonstration of light-based 3D printing using non-covalent crosslinking may enable adaptive and stimuli-responsive biomaterials, which could be utilized for bio-inspired sensing, actuation, drug delivery, and tissue engineering.

  2. Gelatin-carboxymethyl tamarind gum biocomposites: In vitro characterization & anti-inflammatory pharmacodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Sougata, E-mail: janapharmacy@rediffmail.com; Banerjee, Abhisek; Sen, Kalyan Kumar; Maiti, Sabyasachi

    2016-12-01

    In this study, gelatin and carboxymethyl tamarind gum (CTG) were chemically cross-linked to control the delivery of aceclofenac from their interpenetrating network (IPNs). Infrared spectra, thermal and X-ray data supported that drug and polymer was compatible in the composite hydrogels. Irregularly shaped IPN microstructures were seen under field emission scanning electron microscope (FE-SEM). IPN system was capable of entrapping about 96% of the drug fed. CTG in IPN structures suppressed the drug release rate in HCl solution (pH 1.2); however extended the same in phosphate buffer solution (pH 6.8). The drug release was controlled by polymer chain relaxation/swelling and simple diffusion in vitro. The anti-inflammatory activity of drug-loaded biocomposites lasted over 7 h in albino rats, thus suggesting their potential as an anti-inflammatory therapeutics. - Highlights: • Novel gelatin-carboxymethyl tamarind gum biocomposites was synthesized. • FTIR, thermal and X-ray study ensured compatibility between drug and polymers. • FE-SEM image revealed irregular shape of the IPN microstructures. • In vivo anti-inflammatory pharmacodynamics in rat model was encouraging.

  3. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.-A.; Niconov, A.; Chmielewska, D.; Spadaro, G.

    2012-01-01

    PANI aqueous nanocolloids in their acid-doped, inherently conductive form were synthesised by means of suitable water soluble polymers used as stabilisers. In particular, poly(vinyl alcohol) (PVA) or chitosan (CT) was used to stabilise PANI nanoparticles, thus preventing PANI precipitation during synthesis and upon storage. Subsequently, e-beam irradiation of the PANI dispersions has been performed with a 12 MeV Linac accelerator. PVA-PANI nanocolloid has been transformed into a PVA-PANI hydrogel nanocomposite by radiation induced crosslinking of PVA. CT-PANI nanoparticles dispersion, in turn, was added to PVA to obtain wall-to-wall gels, as chitosan mainly undergoes chain scission under the chosen irradiation conditions. While the obtainment of uniform PANI particle size distribution was preliminarily ascertained with laser light scattering and TEM microscopy, the typical porous structure of PVA-based freeze dried hydrogels was observed with SEM microscopy for the hydrogel nanocomposites. UV−visible absorption spectroscopy demonstrates that the characteristic, pH-dependent and reversible optical absorption properties of PANI are conferred to the otherwise optically transparent PVA hydrogels. Selected formulations have been also subjected to MTT assays to prove the absence of cytotoxicity. - Highlights: ► PANI nanocolloids were chemically synthesised in the presence of PVA and chitosan. ► PANI dispersions were transformed into hydrogel nanocomposites by e-beam irradiation. ► Characteristic optical properties of PANI were shown by the nanocomposite hydrogels. ► Absence of cytotoxicity for the nanocomposite hydrogels is demonstrated. ► Results encourage developments for application in biosensing and smart drug delivery.

  4. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    -linking and as these impacts the abovementioned properties, it is of great interest to control the degree of which these are present; i.e. controlling the degree of catechol oxidation. Until now, the catechols participating in the two cross-linking types have been the same. This way the actual ratio between the two types...... cannot be either predefined or controlled, as it is determined by the oxidation rate within the hydrogel. Here, we report hydrogels in which the catechols participating in reversible (oxidation resistant catechol) and irreversible (classical catechol) cross-links are separated, enabling one to predefine...... the ratio of the two by altering the composition....

  5. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility.

    Science.gov (United States)

    Liu, Y; Vrana, N E; Cahill, P A; McGuinness, G B

    2009-08-01

    Polyvinyl alcohol (PVA) hydrogels have been considered potentially suitable for applications as engineered blood vessels because of their structure and mechanical properties. However, PVA's hydrophilicity hinders its capacity to act as a substrate for cell attachment. As a remedy, PVA was blended with chitosan, gelatin, or starch, and hydrogels were formed by subjecting the solutions to freeze-thaw cycles followed by coagulation bath immersion. The structure-property relationships for these hydrogels were examined by measurement of their swelling, rehydration, degradation, and mechanical properties. For the case of pure PVA hydrogels, the equilibrium swelling ratio was used to predict the effect of freeze thaw cycles and coagulation bath on average molecular weights between crosslinks and on mesh size. For all hydrogels, trends for the reswelling ratio, which is indicative of the crosslinked polymer fraction, were consistent with relative tensile properties. The coagulation bath treatment increased the degradation resistance of the hydrogels significantly. The suitability of each hydrogel for cell attachment and proliferation was examined by protein adsorption and bovine vascular endothelial cell culture experiments. Protein adsorption and cell proliferation was highest on the PVA/gelatin hydrogels. This study demonstrates that the potential of PVA hydrogels for artificial blood vessel applications can be improved by the addition of natural polymers, and that freeze-thawing and coagulation bath treatment can be utilized for fine adjustment of the physical characteristics.

  6. Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance.

    Science.gov (United States)

    Wang, Kai; Zhang, Xiong; Li, Chen; Sun, Xianzhong; Meng, Qinghai; Ma, Yanwei; Wei, Zhixiang

    2015-12-02

    A high-strength poly(vinyl alcohol) chemical hydrogel (PCH) film is prepared by coupling covalent crosslinking with a film-casting process. Conducting polyaniline (PANI) is then embedded in the PCH film by in situ growth to form a composite film with a PANI-hydrogel-PANI configuration, which leads to a new conceptual flexible supercapacitor with all-in-one configuration that exhibits superior electrochemical performance and mechanical flexibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture.

    Science.gov (United States)

    Bian, Shaoquan; He, Mengmeng; Sui, Junhui; Cai, Hanxu; Sun, Yong; Liang, Jie; Fan, Yujiang; Zhang, Xingdong

    2016-04-01

    Although the disulfide bond crosslinked hyaluronic acid hydrogels have been reported by many research groups, the major researches were focused on effectively forming hydrogels. However, few researchers paid attention to the potential significance of controlling the hydrogel formation and degradation, improving biocompatibility, reducing the toxicity of exogenous and providing convenience to the clinical operations later on. In this research, the novel controllable self-crosslinking smart hydrogels with in-situ gelation property was prepared by a single component, the thiolated hyaluronic acid derivative (HA-SH), and applied as a three-dimensional scaffold to mimic native extracellular matrix (ECM) for the culture of fibroblasts cells (L929) and chondrocytes. A series of HA-SH hydrogels were prepared depending on different degrees of thiol substitution (ranging from 10 to 60%) and molecule weights of HA (0.1, 0.3 and 1.0 MDa). The gelation time, swelling property and smart degradation behavior of HA-SH hydrogel were evaluated. The results showed that the gelation and degradation time of hydrogels could be controlled by adjusting the component of HA-SH polymers. The storage modulus of HA-SH hydrogels obtained by dynamic modulus analysis (DMA) could be up to 44.6 kPa. In addition, HA-SH hydrogels were investigated as a three-dimensional scaffold for the culture of fibroblasts cells (L929) and chondrocytes cells in vitro and as an injectable hydrogel for delivering chondrocytes cells in vivo. These results illustrated that HA-SH hydrogels with controllable gelation process, intelligent degradation behavior, excellent biocompatibility and convenient operational characteristics supplied potential clinical application capacity for tissue engineering and regenerative medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Formation Mechanism of Hydrogels.

    Science.gov (United States)

    Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang

    2017-06-12

    Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Structure formation in pH-sensitive hydrogels composed of sodium caseinate and N,O-carboxymethyl chitosan.

    Science.gov (United States)

    Wei, Yanxia; Xie, Rui; Lin, Yanbin; Xu, Yunfei; Wang, Fengxia; Liang, Wanfu; Zhang, Ji

    2016-08-01

    The pH-sensitive hydrogels composed of sodium caseinate (SC) and N,O-carboxymethyl chitosan (NOCC) were prepared and a new method to characterize the gelation process was presented in this work. Reological tests suggested that RSC/NOCC=3/7 (the weight ratio of SC and NOCC) was the best ratio of hydrogel. The well-developed three-dimensional network structures in the hydrogel were confirmed by AFM. Two structural parameters, tIS and tCS, denoted as the initial and critical structure formation time, respectively, were used to provide an exact determination of the start of structure formation and description of gelation process. The gelation process strongly depended on temperature changes, a high temperature resulted in an early start of gelation. The non-kinetic model suggested the higher activation energy in the higher temperatures was disadvantageous to structure formation, and vice versa. Due to the smart gel reported here was very stable at room temperature, we believed that the gel is required for applications in drug delivery or could be exploited in the development of potential application as molecular switches in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    Science.gov (United States)

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  11. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.

    Science.gov (United States)

    Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard

    2016-10-01

    The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of Swelling and Mechanical Analysis for the Determination of Crosslink Density of Acrylamide Based Hydrogels Prepared by Ionizing Radiation

    International Nuclear Information System (INIS)

    Sen, M.

    2006-01-01

    One of the basic parameters that describes the structure of a hydrogel network is the molecular weight between cross-links or cross-link density of highly swollen network. Several theories have been proposed to calculate the average molecular weight between cross-links. In the highly swollen state, the constrained junction theory indicates that a real network exhibits properties closer to those of the phantom network model and molecular weight between cross-links can be calculated easily by using swelling and polymer-solvent based parameters such as molar volume of the swelling agent, polymer-solvent interaction parameter, functionality, specific volume of the polymer and polymer volume fraction in the relaxed state. Molecular weight between cross-links (M c a ver.) and effective cross-linking density (V e ) of a hydrogel can also be determined from shear modulus data obtained from compression tests. Our previous studies indicated that simple compression analyses and equations derived from Phantom network theory can be used for the determination of effective cross-link density of hydrogels without needing some polymer-solvent based parameters as in the case of swelling based determinations. The M c a ver. and V e values calculated from mechanical tests were found to be very close to the values obtained from swelling experiments. Slight differences observed were attributed to the uncertainty on the value of the χ parameter used in the expression related to swelling data. In this study the uncertainty in the polymer based parameter χ on the M c a ver. was discussed. Poly(acrylamide/methacrylamide) P(AAm/MAAm) and Poly(acrylamide/hydroxyethylmeth acrylate) P(AAm/HEMA) hydrogels were prepared by gamma rays and used as model hydrogel systems. The uniaxial compression was applied to cylindrical samples using the Universal Testing Instrument in the swollen form at pH 7. Stress-strain curves of hydrogels were evaluated to calculate the shear modulus values. The M c a ver

  13. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    International Nuclear Information System (INIS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-01-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier

  14. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  15. Patterns of the adsorption of bovine serum albumin on carboxymethyl dextran and carboxymethyl cellulose films

    Science.gov (United States)

    Paribok, I. V.; Solomyanskii, A. E.; Zhavnerko, G. K.

    2016-02-01

    Patterns of the adsorption of bovine serum albumin on carboxymethyl dextran and carboxymethyl cellulose films are studied by means of microcontact printing, atomic force microscopy, and quartz crystal microbalance. It is shown that both the charge of polysaccharide macromolecules and the technique for deposition of their films onto the surface (via adsorption from a solution or covalent cross-linking) are factors that determine the degree of nonspecific adsorption of the protein on such films.

  16. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  17. Genipin Cross-Linked Chitosan-Polyvinylpyrrolidone Hydrogels: Influence of Composition and Postsynthesis Treatment on pH Responsive Behaviour

    Directory of Open Access Journals (Sweden)

    Chinyelumndu Jennifer Nwosu

    2015-01-01

    Full Text Available Understanding the factors that influence the pH responsive behaviour of biocompatible cross-linked hydrogel networks is essential when aiming to synthesise a mechanically stable and yet stimuli responsive material suitable for various applications including drug delivery and tissue engineering. In this study the behaviour of intelligent chitosan-polyvinylpyrrolidone-genipin cross-linked hydrogels is examined as a function of their composition and postsynthesis treatment. Hydrogels are synthesised with varying amounts of each component (chitosan, polyvinylpyrrolidone, and genipin and their response in a pH 2 buffer is measured optically. The influence of postsynthesis treatment on stability and smart characteristics is assessed using selected hydrogel samples synthesised at 30, 40, and 50°C. After synthesis, samples are exposed to either continuous freezing or three freeze-thaw cycles resulting in increased mechanical stability for all samples. Further morphological and mechanical characterisations have aided the understanding of how postsynthesis continual freezing or freeze-thaw manipulation affects network attributes.

  18. Poly (vinyl alcohol-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available PVA-sodium alginate (SA hydrogel membranes containing sodium ampicillin as a topical antibiotic were developed using the freeze–thawing method for wound dressing application. Aqueous solution of sodium alginate has been blended in a certain ratio with PVA, followed by the crosslinking method has been conducted by freeze–thawing method as physical crosslinking instead of the use of traditional chemical crosslinking to avoid riskiness of chemical reagents and crosslinkers. The physicochemical properties of PVA-SA membranes e.g. gel fraction and water uptake % have been performed. Increased SA content with PVA decreased gel fraction, elasticity, and elongation to break of PVA-SA membranes. However, it resulted in an increase in swelling degree, protein adsorption, and roughness of membrane surface. High SA content in PVA membranes had apparently an impact on surface morphology structure of hydrogel membranes. Pore size and pore area distribution have been observed with addition of high SA concentration. However, high SA content had an insignificant effect on the release of ampicillin. The hydrolytic degradation of PVA-SA membranes has prominently increased with increasing SA content. Furthermore, hemolysis (% and in vitro inhibition (% for both Gram positive and negative bacteria have been sharply affected by addition of SA into PVA, indicating the improved blood hemocompatibility. Thus, PVA-SA hydrogel membrane based wound dressing system containing ampicillin could be a good polymeric membrane candidate in wound care.

  19. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    Science.gov (United States)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  20. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    International Nuclear Information System (INIS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-01-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  1. Radiation crosslinking of polymer materials and its functional properties

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2006-01-01

    It was found out that radiation crosslinking of biodegradable polymer such as poly (butylene succinate, PBS) and poly(ε-caprolactone, PCL) could be achieved by radiation in the presence of small amount of trimethallyl isocyanurate (TMAIC) or 1% triallyl isocyanurate (TAIC). Such modification is very effective to improve heat resistance for PBS and PCL. Poly (lactic acid, PLA) undergoes crosslinking effectively with 3% TAIC by radiation. Outstanding feature of these polymers is their biodegradability even after crosslinking. Radiation crosslinking of polysaccharide derivatives such as carboxymethyl-cellulose (CMC) is also achieved in aqueous solution at high concentration (paste-like state). The crosslinking behavior was largely affected by the degree of substitution (DS) and polymer concentration. After removal of water the dry CMC gel is used as water absorbent material. This dry gel is the most effective for removal of large amounts of water from organic wastes, resulting in the acceleration of their fermentation. Measurement of swelling ratio of the dry CMC gel in 0.9% NaCl aqueous solution was carried out to expand application fields for this material. Radiation crosslinked poly (vinyl alcohol) hydrogel was successfully commercialized from July 2004 as wound dressing for accelerated healing. Furthermore, this material was also used as gel protector to prevent shore sore and was further commercialized. (author)

  2. Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel

    International Nuclear Information System (INIS)

    Liu Pengfei; Peng Jing; Li Jiuqiang; Wu Jilan

    2005-01-01

    The slight radiation-crosslinked CMC-Na as a substitute for hydrogel was prepared by gamma irradiation below gelation dose. The effects of various parameters such as absorbed dose, concentration of inorganic salts, pH, swelling temperature and swelling time on the swelling ratio in water were investigated in detail. This kind of slight crosslinked CMC-Na showed good water absorption below 60 deg. C, whereas, it became solution when heated up to 70 deg. C. Such CMC-Na gel is different from the true gel that is insoluble in boiled water; nevertheless, it can be used as hydrogel at room temperature and produced at low dose. Due to its low cost, it might be useful for its application in agriculture or others

  3. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Gang Yang

    2016-09-01

    Full Text Available Gelatin hydrogel crosslinked by microbial transglutaminase (mTG exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery.

  4. Radiation synthesis of carboxymethyl cellulose hydrogel imprinted with β-estradiol for molecular recognition of endocrine disruptive chemicals

    International Nuclear Information System (INIS)

    Dela Cruz, Rafael Miguel M.; Estorque, Kit Joshua J.

    2015-03-01

    This study demonstrates the possibility of synthesizing molecularly imprinted polymers (MIP) using carboxymethyl cellulose in low concentration and pH, and intiated by γ-irradiation. The capability of the synthesized MIPs to absorb specific molecules was demonstrated using an NIP which adsorbing capability was successfully done. The selectivity of molecules is beyond the scope of this study. Right amount of monomer and solvents affects the capability of the imprinted polymer to be formed. It was also found out that it is important to acidify the CMC mixture to enable the cross-linking of CMC chains without using a cross-linker. It was confirmed that β-estradiol is soluble in acentonitrile by subjecting the mixture to UV-Vis spectrophotometry. The Incorporation of β-estradiol to CMC after γ-irradiation was also confirmed using FTIR-ATR. (author)

  5. In Situ Forming, Cytocompatible, and Self-Recoverable Tough Hydrogels Based on Dual Ionic and Click Cross-Linked Alginate.

    Science.gov (United States)

    Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein

    2018-05-14

    A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.

  6. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels.

    Science.gov (United States)

    Liu, Yurong; Geever, Luke M; Kennedy, James E; Higginbotham, Clement L; Cahill, Paul A; McGuinness, Garrett B

    2010-02-01

    Poly (vinyl alcohol)/Gelatin hydrogels are under active investigation as potential vascular cell culture biomaterials, tissue models and vascular implants. The PVA/Gelatin hydrogels are physically crosslinked by the freeze-thaw technique, which is followed by a coagulation bath treatment. In this study, the thermal behavior of the gels was examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Rheological measurement and uniaxial tensile tests revealed key mechanical properties. The role of polymer fraction in relation to these mechanical properties is explored. Gelatin has no significant effect on the thermal behavior of PVA, which indicates that no substantial change occurs in the PVA crystallite due to the presence of gelatin. The glass transition temperature, melting temperature, degree of crystallinity, polymer fraction, storage modulus (G') and ultimate strength of one freeze-thaw cycle (1FT) hydrogels are inferior to those of 3FT hydrogels. With coagulation, both 1FT and 3FT hydrogels shifted to a lower value of T(g), melting temperature and polymer fraction are further increased and the degree of crystallinity is depressed. The mechanical properties of 1FT, but not 3FT, were strengthened with coagulation treatment. This study gives a detailed investigation of the microstructure formation of PVA/Gelatin hydrogel in each stage of physical treatments which helps us to explain the role of physical treatments in tuning their physical properties for biomechanical applications. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. A photo-crosslinked poly(vinyl alcohol) hydrogel growth factor release vehicle for wound healing applications

    OpenAIRE

    Bourke, Sharon L.; Al-Khalili, Mohammad; Briggs, Tonye; Michniak, Bozena B.; Kohn, Joachim; Poole-Warren, Laura A.

    2003-01-01

    The objective of this study was to develop and evaluate a hydrogel vehicle for sustained release of growth factors for wound healing applications. Hydrogels were fabricated using ultraviolet photo-crosslinking of acrylamide-functionalized nondegradable poly(vinyl alcohol) (PVA). Protein permeability was initially assessed using trypsin inhibitor (TI), a 21 000 MW model protein drug. TI permeability was altered by changing the solids content of the gel and by adding hydrophilic PVA fillers. As...

  8. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications.

    Science.gov (United States)

    Capanema, Nádia S V; Mansur, Alexandra A P; Mansur, Herman S; de Jesus, Anderson C; Carvalho, Sandhra M; Chagas, Poliane; de Oliveira, Luiz C

    2017-08-28

    In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g -1 depending on the dye concentration (from 100 to 500 mg L -1 ), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L -1 , 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.

  9. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jiachuan [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Li, Zheng, E-mail: lizheng_nx@163.com [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Xia, Wen; Yang, Ning; Gong, Jixian [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Jianfei, E-mail: zhangjianfei1960@126.com [Key Laboratory of Advanced Textile Composites, Tianjin Polytechnic University, Ministry of Education, Tianjin 300387 (China); School of Textiles, Tianjin Polytechnic University, Tianjin 300387 (China); Qiao, Changsheng [Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457 (China)

    2016-04-01

    In this paper, a novel pH-sensitive poly (amino acid) hydrogel based on poly γ-glutamic acid (γ-PGA) and ε-polylysine (ε-PL) was prepared by carbodiimide (EDC) and N-hydroxysuccinimide (NHS) mediated polymerization. The influence of PGA/PL molar ratio and EDC/NHS concentration on the structure and properties was studied. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) proved that hydrogels were crosslinked through amide bond linkage, and the conversion rate of a carboxyl group could reach 96%. Scanning electron microscopy (SEM) results showed a regularly porous structure with 20 μm pore size in average. The gelation time in the crosslink process of PGA/PL hydrogels was within less than 5 min. PGA/PL hydrogels had excellent optical performance that was evaluated by a novel optotype method. Furthermore, PGA/PL hydrogels were found to be pH-sensitive, which could be adjusted to the pH of swelling media intelligently. The terminal pH of swelling medium could be controlled at 5 ± 1 after equilibrium when the initial pH was within 3–11. The swelling kinetics was found to follow a Voigt model in deionized water but a pseudo-second-order model in normal saline and phosphate buffer solution, respectively. The differential swelling degrees were attributed to the swelling theory based on the different ratio of –COOH/–NH{sub 2} and pore size in hydrogels. The results of mechanical property indicated that PGA/PL hydrogels were soft and elastic. Moreover, PGA/PL hydrogels exhibited excellent biocompatibility by cell proliferation experiment. PGA/PL hydrogels could be degraded in PBS solution and the degradation rate was decreased with the increase of the molar ratio of PL. Considering the simple preparation process and pH-sensitive property, these PGA/PL hydrogels might have high potential for use in medical and clinical fields. - Highlights: • We prepared a biocompatible and degradable poly amino acids hydrogel via EDC

  10. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial

    International Nuclear Information System (INIS)

    Kallukalam, B C; Jayabalan, M; Sankar, V

    2009-01-01

    Carboxy terminated-poly(propylene fumarate)-co-ethylene glycol) (CT-PPF-co-PEG) was prepared and set into crosslinked hydrogel material with acrylamide. The setting studies reveal that this copolymer system can be used as an injectable material. The hydrogel material exhibits a higher degree of swelling, good mechanical strength and flexibility. The hydrogel favours adhesion of L929 fibroblast cells without proliferation on the surface. However, cardiac fibroblast cells (isolated from new born rat (Wistar) hearts) adhere and proliferate on the hydrogel due to the formation of synergistic hydrophilic-hydrophobic surface-by-surface reorganization.

  11. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Kallukalam, B C; Jayabalan, M [Polymer Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012 (India); Sankar, V, E-mail: muthujayabalan@rediffmail.co [Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012 (India)

    2009-02-15

    Carboxy terminated-poly(propylene fumarate)-co-ethylene glycol) (CT-PPF-co-PEG) was prepared and set into crosslinked hydrogel material with acrylamide. The setting studies reveal that this copolymer system can be used as an injectable material. The hydrogel material exhibits a higher degree of swelling, good mechanical strength and flexibility. The hydrogel favours adhesion of L929 fibroblast cells without proliferation on the surface. However, cardiac fibroblast cells (isolated from new born rat (Wistar) hearts) adhere and proliferate on the hydrogel due to the formation of synergistic hydrophilic-hydrophobic surface-by-surface reorganization.

  12. Enzymatically crosslinked carboxymethyl-chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Debasish; Bhunia, Bibhas; Banerjee, Indranil [Department of Biotechnology, Indian Institute of Technology Kharagpur (India); Datta, Pallab; Dhara, Santanu [School of Medical Science and Technology, Indian Institute of Technology Kharagpur (India); Maiti, Tapas K., E-mail: maititapask@gmail.com [Department of Biotechnology, Indian Institute of Technology Kharagpur (India)

    2011-10-10

    Present study reports synthesis and characterization of an enzymatically crosslinked injectable gel (iGel) suitable for cell based bone tissue engineering application. The gel comprises of carboxymethyl-chitosan (CMC)/gelatin/nano-hydroxyapatite (nHAp) susceptible to tyrosinase/p-cresol mediated in situ gelling at physiological temperature. Study revealed that a combination of tyrosinase (60U) and p-cresol (2 mM) as crosslinking agents yield rigid gels at physiological temperature when applied to CMC/gelatin within 35 min in presence or absence of nHAp. Rheological study in conjugation with FT-IR analysis showed that an increase in CMC concentration in the gel leads to higher degree of crosslinking and higher strength. Scanning electron microscopy showed that pore sizes of iGels increased with higher gelatin concentration. In vitro study of osteoblast cell proliferation and differentiation showed that, although all iGels are supportive towards the growth of primary osteoblast cells, GC1:1 supported cellular differentiation to the maximum. Application of iGels in mice revealed that stability of the in situ formed gels depends on the degree of crosslinking and CMC concentration. In conclusion, the iGels may be used in treating irregular small bone defects with minimal clinical invasion as well as for bone cell delivery. - Research Highlights: {yields} Enzymatically crosslinked injectable gel made up of CM-chitosan (C)/gelatin (G)/nHAp. {yields} Tyrosinase/p-cresol used for crosslinking and in situ gelling of polymers at 37deg. C. {yields} 60U tyrosinase and 2mM p-cresol is needed for gelation in 35 min. {yields} Higher GC ratio manifests lower crosslinking and gel strength but higher porosity. {yields} GC1:1 shows maximum in vivo gel stability and in vitro osteoblast differentiation.

  13. Dual Cross-Linked Carboxymethyl Sago Pulp-Gelatine Complex Coacervates for Sustained Drug Delivery

    Directory of Open Access Journals (Sweden)

    Saravanan Muniyandy

    2015-06-01

    Full Text Available In the present work, we report for the first time the complex coacervation of carboxymethyl sago pulp (CMSP with gelatine for sustained drug delivery. Toluene saturated with glutaraldehyde and aqueous aluminum chloride was employed as cross-linkers. Measurements of zeta potential confirm neutralization of two oppositely charged colloids due to complexation, which was further supported by infrared spectroscopy. The coacervates encapsulated a model drug ibuprofen and formed microcapsules with a loading of 29%–56% w/w and an entrapment efficiency of 85%–93% w/w. Fresh coacervates loaded with drug had an average diameter of 10.8 ± 1.93 µm (n = 3 ± s.d.. The coacervates could encapsulate only the micronized form of ibuprofen in the absence of surfactant. Analysis through an optical microscope evidenced the encapsulation of the drug in wet spherical coacervates. Scanning electron microscopy revealed the non-spherical geometry and surface roughness of dried drug-loaded microcapsules. X-ray diffraction, differential scanning calorimetry and thermal analysis confirmed intact and crystalline ibuprofen in the coacervates. Gas chromatography indicated the absence of residual glutaraldehyde in the microcapsules. Dual cross-linked microcapsules exhibited a slower release than mono-cross-linked microcapsules and could sustain the drug release over the period of 6 h following Fickian diffusion.

  14. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via 'click' chemistry for controlled drug release.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Palomares, T; Alonso-Varona, A; Eceiza, A; Gabilondo, N

    2017-09-01

    A chemically cross-linked chitosan-based hydrogel was successfully synthesized through Diels-Alder (DA) reaction and characterized. The final product was obtained after different steps; on the one hand, furan-modified chitosan (Cs-Fu) was synthesized by the reaction of furfural with the free amino groups of chitosan. On the other hand, highlighting the novelty of the present research, maleimide-functionalized chitosan (Cs-AMI) was prepared by the reaction of a maleimide-modified aminoacid with the amino groups of chitosan through amide coupling. The two complementary chitosan derivatives were cross-linked to the final hydrogel network. Both modification reactions were confirmed by FTIR and 1 H NMR, obtaining a degree of substitution (DS) of 31% and 26% for Cs-Fu and Cs-AMI, respectively. The as-designed hydrogel was analyzed in terms of microstructure, swelling capacity and rheological behaviour. The hydrogel showed pH-sensitivity, biocompatibility and inhibitory bacterial activity, promising features for biomedical applications, particularly for targeted-drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    Science.gov (United States)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  16. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration.

    Science.gov (United States)

    Guaresti, O; García-Astrain, C; Aguirresarobe, R H; Eceiza, A; Gabilondo, N

    2018-03-01

    Stimuli-responsive chitosan-based hydrogels for biomedical applications using the Diels-Alder reaction were prepared. Furan modified chitosan (Cs-Fu) was cross-linked with polyetheramine derived bismaleimide at different equivalent ratios in order to determine the effect in the swelling and release properties on the final CsFu:BMI hydrogels. The Diels Alder cross-linking reaction was monitored by UV-vis spectroscopy and rheological measurements. Both the sol-gel transition value and the final storage modulus for the different formulations were similar and close to 40 min and 400 Pa, respectively. On the contrary, the swelling degree was found to be strongly dependent on the amount of bismaleimide, mainly in acidic medium, where the increased cross-linking reduced the swelling value in 25%, but maintaining the sustained drug release in the simulated gastrointestinal environment. Our study suggested that these DA-cross-linked chitosan hydrogels could be potential carriers for targeted drug administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gamma radiation synthesis of super absorbent hydrogels for different applications

    International Nuclear Information System (INIS)

    Marzouk, H.M.G.

    2015-01-01

    Super absorbent polymers (SAP) of carboxymethyl cellulose/acrylamide (CMC/PAM), carboxymethyl cellulose/acrylamide/Silica (CMC/AM/Si) and carboxymethyl cellulose/Polyvinyl alcohol (CMC/PVA) were synthesized by radiation-induced grafting using γ-irradiation technique. The effects of various parameters, such as irradiation dose, the content of CMC, PAM, PVA, and Silica gel on the swelling percent of produced hydrogels have been evaluated. The kinetic equilibrium swelling of the prepared copolymer hydrogels was studied, it was found that the maximum swelling percent was 5000 % for the CMC/PAM hydrogel, 12000 % for the CMC/PAM/Si composite hydrogel, and 6200 % for the CMC/PVA hydrogel. The gel fraction, equilibrium swelling and effect of ph on the swelling percent were also studied. The prepared copolymers were also characterized by FTIR spectral analysis, thermo gravimetric analysis (TGA), and scanning electron microscopy (SEM) techniques. In order to evaluate its controlled release potential, different prepared hydrogels were loaded with KNO 3 as an agrochemical model and its potential for controlled release of KNO 3 was studied and evaluated with respect to different parameters such as time of release, ph of the medium, and temperatures. The results obtained from swelling, loading of KNO 3 , and release behavior studies suggested and recommended the possible use of prepared hydrogels for enhancing the plantation of Linum Usitatissimum.

  18. A novel strategy for preparing mechanically robust ionically cross-linked alginate hydrogels

    International Nuclear Information System (INIS)

    Jejurikar, Aparna; Lawrie, Gwen; Groendahl, Lisbeth; Martin, Darren

    2011-01-01

    The properties of alginate films modified using two cross-linker ions (Ca 2+ and Ba 2+ ), comparing two separate cross-linking techniques (the traditional immersion (IM) method and a new strategy in a pressure-assisted diffusion (PD) method), are evaluated. This was achieved through measuring metal ion content, water uptake and film stability in an ionic solution ([Ca 2+ ] = 2 mM). Characterization of the internal structure and mechanical properties of hydrated films were established by cryogenic scanning electron microscopy and tensile testing, respectively. It was found that gels formed by the PD technique possessed greater stability and did not exhibit any delamination after 21 day immersion as compared to gels formed by the IM technique. The Ba 2+ cross-linked gels possessed significantly higher cross-linking density as reflected in lower water content, a more dense internal structure and higher Young's modulus compared to Ca 2+ cross-linked gels. For the Ca 2+ cross-linked gels, a large improvement in the mechanical properties was observed in gels produced by the PD technique and this was attributed to thicker pore walls observed within the hydrogel structure. In contrast, for the Ba 2+ cross-linked gels, the PD technique resulted in gels that had lower tensile strength and strain energy density and this was attributed to phase separation and larger macropores in this gel.

  19. 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior.

    Science.gov (United States)

    Karimi, Ali Reza; Tarighatjoo, Mahsa; Nikravesh, Golara

    2017-12-01

    In this work, 1,3,5-triazine-2,4,6-tribenzaldehyde was synthesized and chosen as the cross-linking agent for preparation of novel thermo- and pH-responsive hydrogels based on chitosan. The cross-linking proceeds through formation of imine bond by reaction of amino groups of chitosan with aldehyde groups of the cross-linker. The various amounts (6, 10, 14% w/w) of the cross-linker were used with respect to chitosan to produce three 1,3,5-triazine-2,4,6-tribenzaldehyde cross-linked chitosans. Then, their hydrogel nanocomposites were prepared by crosslinking of chitosan with 1,3,5-triazine-2,4,6-tribenzaldehyde in the presence of 0.1% and 0.3% (w/w) multi-walled carbon nanotubes (MWCNTs). The structure and properties of the hydrogels and their nanocomposites were characterized by FT-IR, 1 H NMR and scanning electron microscopy (SEM). The swelling behavior of prepared hydrogels and their nanocomposites at different pHs and temperatures was investigated. The results showed that they exhibit a pH and temperature-responsive swelling ratio. The swelling behavior of the prepared chitosan hydrogels was strongly dependent on the amounts of cross-linker and MWCNTs. In vitro controlled release behavior of metronidazole model drug was studied with prepared hydrogels and nanocomposite hydrogels. The pH, temperature and wt% of MWCNTs were found to strongly influence the drug release behavior of the hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  1. Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Tyrode, Eric

    2015-01-01

    Interactions between a silica surface and a surface coated with a grafted cross-linked hydrogel made from chitosan/PAA multilayers are investigated, utilizing colloidal probe atomic force microscopy. Attractive double-layer forces are found to dominate the long-range interaction over a broad range...... of pH and ionic strength conditions. The deduced potential at the hydrogel/aqueous interface is found to be very low. This situation is maintained in the whole pH-range investigated, even though the degree of protonation of chitosan changes significantly. This demonstrates that pH-variations change...

  2. E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles

    International Nuclear Information System (INIS)

    Dispenza, C.; Sabatino, M.A.; Niconov, A.; Chmieliewska, D.; Spadaro, G.

    2011-01-01

    Complete text of publication follows. Objective of this research is to develop a functional soft nanocomposites platform that combines the electro-optic properties of conjugated polymer nanoparticles with process flexibility, highly hydrophilic character, 3D structure and biocompatibility of hydrogels, to yield novel soft materials with multi-application potential in diagnostic, therapeutic and regenerative medicine. PANI aqueous nanocolloids in their acid doped, inherently conductive form, are synthesised by means of suitable polymeric stabilisers, i.e. water soluble polymers, that may prevent irreversible PANI particles coalescence and precipitation during synthesis and upon storage. Depending on the nature nad concentration of the polymeric stabiliser, e.g. polyvinyl pyrrolidone (PVP), polyvinylalcohol (PVA) or chitosan (CT), PANI has been synthesised in form of nanoscalar rods, spherical particles or rice grains, respectively. In the present work, e-beam irradiation with a 12 MeV Linac accelerator has been tested, in alternative to gamma-rays, as a viable industrial methodology to generate hydrogel nanocomposites via in-situ crosslinking of the polymers already used to stabilise polyaniline nanocolloids, at low temperature, with no recourse to further addition of molecular weight chemicals and in a few minutes. In these conditions nanoparticles morphology of PANI should be preserved and interesting electro-optical properties can be imparted. The swelling properties of the different hydrogel nanocomposites have been investigated at the variance of the chemical structure of the matrix material and of the pH of the swelling medium. UV-visible absorption and fluorescence spectroscopies demonstrate the retained optical activity of the dispersed PANI nanoparticles when incorporated in the hydrogels. Selected formulations have been also subjected to MTT assays and absence of cytotoxicity has been ascertained as the first necessary step to assess their biocompatibility.

  3. Preparation and Pb(II Adsorption Properties of Crosslinked Pectin-Carboxymethyl Chitosan Film

    Directory of Open Access Journals (Sweden)

    Budi Hastuti

    2015-11-01

    Full Text Available A modified pectin has been synthesized by reacting/combining -OH group among pectin and chitosan with BADGE (Bisphenol A diglycidyl ether crosslinker agent. The structure and morphology of the new material were characterized by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM and X-ray Diffraction (XRD analysis. Thermogravimetric studies showed an improvement in thermal characteristic. Adsorption experiments were performed in batch processes; sorption isotherms and kinetics were also studied. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Pb(II ion onto adsorbent pectin-carboxymethyl chitosan-BADGE (pec-CMC-BADGE. The dynamic study showed that the sorption process followed the second-order kinetic equation. Result indicated also that Pb(II ion uptake could be well described by the Langmuir and Freundlich adsorption model of pec-CMC-BADGE and CMC with DG° of 25.3 and 23.1 kJ mol-1,respectively, while that of pectin followed Freundlich isotherm with DG° of 16.6 kJ mol-1.

  4. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering.

    Science.gov (United States)

    Heo, Jiseung; Koh, Rachel H; Shim, Whuisu; Kim, Hwan D; Yim, Hyun-Gu; Hwang, Nathaniel S

    2016-04-01

    A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure. RF is a biocompatible vitamin B2 that showed minimal cytotoxicity compared to conventionally utilized photo-initiator. Furthermore, collagen photo-crosslinking with RF improved mechanical properties and delayed enzyme-triggered degradation of collagen scaffolds. RF-induced photo-crosslinked collagen scaffolds encapsulated with fibrochondrocytes resulted in reduced scaffold contraction and enhanced gene expression levels for the collagen II and aggrecan. Additionally, hyaluronic acid (HA) incorporation into photo-crosslinked collagen scaffold showed an increase in its retention. Based on these results, we demonstrate that photo-crosslinked collagen-HA hydrogels can be potentially applied in the scaffold-based meniscus tissue engineering.

  5. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.

    Science.gov (United States)

    De France, Kevin J; Chan, Katelyn J W; Cranston, Emily D; Hoare, Todd

    2016-02-08

    While injectable hydrogels have several advantages in the context of biomedical use, their generally weak mechanical properties often limit their applications. Herein, we describe in situ-gelling nanocomposite hydrogels based on poly(oligoethylene glycol methacrylate) (POEGMA) and rigid rod-like cellulose nanocrystals (CNCs) that can overcome this challenge. By physically incorporating CNCs into hydrazone cross-linked POEGMA hydrogels, macroscopic properties including gelation rate, swelling kinetics, mechanical properties, and hydrogel stability can be readily tailored. Strong adsorption of aldehyde- and hydrazide-modified POEGMA precursor polymers onto the surface of CNCs promotes uniform dispersion of CNCs within the hydrogel, imparts physical cross-links throughout the network, and significantly improves mechanical strength overall, as demonstrated by quartz crystal microbalance gravimetry and rheometry. When POEGMA hydrogels containing mixtures of long and short ethylene oxide side chain precursor polymers were prepared, transmission electron microscopy reveals that phase segregation occurs with CNCs hypothesized to preferentially locate within the stronger adsorbing short side chain polymer domains. Incorporating as little as 5 wt % CNCs results in dramatic enhancements in mechanical properties (up to 35-fold increases in storage modulus) coupled with faster gelation rates, decreased swelling ratios, and increased stability versus hydrolysis. Furthermore, cell viability can be maintained within 3D culture using these hydrogels independent of the CNC content. These properties collectively make POEGMA-CNC nanocomposite hydrogels of potential interest for various biomedical applications including tissue engineering scaffolds for stiffer tissues or platforms for cell growth.

  6. Novel Hydrogels from Renewable Resources

    Science.gov (United States)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  7. Preparation and Characterization of Breathable Hemostatic Hydrogel Dressings and Determination of Their Effects on Full-Thickness Defects

    Directory of Open Access Journals (Sweden)

    Hong Pan

    2017-12-01

    Full Text Available Hydrogel-based wound dressings provide a cooling sensation, a moist environment, and act as a barrier to microbes for wounds. In this study, a series of soft, flexible, porous non-stick hydrogel dressings were prepared through the simple repeated freeze-thawing of a poly(vinyl alcohol, human-like collagen (or and carboxymethyl chitosan mixed solution rather than chemical cross-linking and Tween80 was added as pore-forming agent for cutaneous wound healing. Some of their physical and chemical properties were characterized. Interestingly, hydrogel PVA-HLC-T80 and PVA-HLC-CS-T80 presented excellent swelling ratios, bacterial barrier activity, moisture vapor permeability, hemostasis activity and biocompatibility. Furthermore, in vivo evaluation of the healing capacity of these two hydrogels was checked by creating a full-thickness wound defect (1.3 cm × 1.3 cm in rabbit. Macroscopic observation and subsequent hematoxylin eosin staining (H&E staining and transmission electron microscopy (TEM analysis at regular time intervals for 18 days revealed that the hydrogels significantly enhanced wound healing by reducing inflammation, promoting granulation tissue formation, collagen deposition and accelerating re-epithelialization. Taken together, the obtained data strongly encourage the use of these multifunctional hydrogels for skin wound dressings.

  8. Biocompatible Porous Polyester-Ether Hydrogel Scaffolds with Cross-Linker Mediated Biodegradation and Mechanical Properties for Tissue Augmentation

    Directory of Open Access Journals (Sweden)

    Berkay Ozcelik

    2018-02-01

    Full Text Available Porous polyester-ether hydrogel scaffolds (PEHs were fabricated using acid chloride/alcohol chemistry and a salt templating approach. The PEHs were produced from readily available and cheap commercial reagents via the reaction of hydroxyl terminated poly(ethylene glycol (PEG derivatives with sebacoyl, succinyl, or trimesoyl chloride to afford ester cross-links between the PEG chains. Through variation of the acid chloride cross-linkers used in the synthesis and the incorporation of a hydrophobic modifier (poly(caprolactone (PCL, it was possible to tune the degradation rates and mechanical properties of the resulting hydrogels. Several of the hydrogel formulations displayed exceptional mechanical properties, remaining elastic without fracture at compressive strains of up to 80%, whilst still displaying degradation over a period of weeks to months. A subcutaneous rat model was used to study the scaffolds in vivo and revealed that the PEHs were infiltrated with well vascularised tissue within two weeks and had undergone significant degradation in 16 weeks without any signs of toxicity. Histological evaluation for immune responses revealed that the PEHs incite only a minor inflammatory response that is reduced over 16 weeks with no evidence of adverse effects.

  9. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    Science.gov (United States)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  10. Synthesis and Characterization Pectin-Carboxymethyl Chitosan crosslinked PEGDE as biosorbent of Pb(II) ion

    Science.gov (United States)

    Hastuti, Budi; Siswanta, Dwi; Mudasir; Triyono

    2018-01-01

    Pectin and chitosan are biodegradable polymers, potentially applied as a heavy metal adsorbents. Unfortunately both biosorbents pectin and chitosan have a weakness in acidic media. For this purpose required modified pectin and chitosan. The modified adsorben is intended to obtain a stable adsorbent and resistance under acid. The research was done by experimental method in laboratory. The stages of this research are the synthesis of carboxymethyl chitosan (CMC), synthesis of Pec-CMC-PEGDE film adsorbent, stabily test under acid, the characterization of active group using FTIR, stability characterization of Pec-CMC-PEGDE powder adsorbent using XRD, termo stability using DTA-TGA. The results of the research have shown that: pectin and CMC can be cross-linked using PEGDE crosslinking agent, the film adsorbent was stable under HCl 1 M, the film adsorbent have active group comprise of carboxylate and amine groups. The result of characterization using XRD, shows that the adsorbent is semi-crystalline. Base on termo stability, the film adsorbent Pec-CMC-PEGDE stable up to 600°C. The film can be applied as an adsobent of Pb (II) ion remediation. The optimum pH of pec-CMC-PEGDE in adsorbed of Pb(II) was reached at pH 5 with 99.99% absorbent adsorbed and of and adsorption capacity was 46.11 mg/g.

  11. Radiation induced crosslinking of cellulose ethers

    International Nuclear Information System (INIS)

    Wach, A.R.; Mitomo, H.; Yoshii, F.; Kume, T.

    2002-01-01

    The effects of high-energy radiation on four ethers of cellulose: carboxymethyl (CMC); hydroxypropyl (HPC), hydroxyethyl (HEC) and methylcellulose (MC) were investigated. Polymers are irradiated in solid state and in aqueous solutions at various concentrations. Degree of substitution (DS) of the derivatives, the concentration of their aqueous solutions and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid state and in diluted aqueous solutions resulted in their degradation. However, it was found that for concentrated solutions gel formation occurred. Paste-like form of the initial material, when water plasticizes the bulk of polymer as well as the high dose rate, what prevents oxygen penetration of the polymer during irradiation, have been found favourable for hydrogel formation. Up to 95% of gel fraction was obtained from solutions of CMC with concentration over 50% irradiated by γ-rays or electron beam. It was pointed out that the ability to the formation of the three-dimensional network is related to the DS of anhydroglucose units and a type of chemical group introduced to main chain of cellulose. Produced hydrogels swelled markedly in water. Despite of the crosslinked structure they underwent degradation by the action of cellulase enzyme or microorganisms from compost, and can be included into the group of biodegradable materials. (author)

  12. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    International Nuclear Information System (INIS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Yoshii, Fumio; Kume, Tamikazu

    2001-01-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  13. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wach, Radoslaw A.; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  14. Effect of different plasticizers on poly(N-vinyl-2-pyrrolidone) hydrogels cross-linked by radiation

    International Nuclear Information System (INIS)

    Alcantara, Mara Tania S.; Giannini, Danielle R.; Brant, Antonio J.C.; Riella, Humberto G.; Lugao, Ademar B.

    2011-01-01

    The use of hydrogel membranes usually demands polymers capable of forming films with high elastic and flexible properties besides having high water absorption. In terms of improvements of polymer plasticity, addition of special plasticizers to polymers can do it with promising results, although within limits of concentrations. The objective of this study was to evaluate the different effects of poly(enthylene glycol) (PEG) and glycerol as plasticizers on hydrogel membranes synthesized from poly(N-vinyl-2-pyrrolidone) (PVP) as the main polymer in aqueous polymeric solutions. For that, hydrogels of PVP/agar/PEG, PVP/agar/glycerol and without agar or plasticizer were simultaneously synthesized and sterilized by irradiation of mixtures of such products in aqueous solutions, using gamma-rays from 60 Co source at a dose of 25 kGy. The results based on gel fraction, swelling in water, and some mechanical tests suggest that the degree of PVP cross-linking prevailed over the greater hydrophilicity of glycerol compared to that of PEG with regard to the degree of swelling of the hydrogels. (author)

  15. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  16. Preparation of Polyvinyl Pyrrolidone-Based Hydrogels by Radiation Induced Crosslinking with Potential Application as Wound Dressing

    International Nuclear Information System (INIS)

    Abd EI-Mohdy, H.L.; Hegazy, E.A.

    2009-01-01

    Polyvinyl pyrrolidone l polyethylene glycol hydrogels (PVP/ PEG) and PVP/ PEG/ Starch were prepared by irradiating the mixtures of aqueous solutions of PVP, PEG and starch with electron beam at different doses. Its properties were evaluated to identify their usability in wound dressing applications. Hydrogel dressing can protect injured skin and keep it appropriately moist to speed the healing process. The physical properties of the prepared hydrogels, such as gel content, swelling, water content and degree of water evaporation with varying composition and irradiation dose were examined to evaluate the usefulness of the hydrogels for wound dressing. The gel content increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. Mechanical experiments were conducted for both of PVP/PEG and PVP/PEG/ Starch. The adding of PEG and starch to PVP significantly improve elongation and tensile strength of prepared hydrogels. The crystallinity of prepared hydrogels was investigated with varying their components. XRD studies indicated that the crystallinity in the gel was mainly due to PVP and decreased with enhanced starch content. The prepared hydrogels had sufficient strength to be used as wound dressing and could be considered as a good barrier against microbes

  17. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction

    Science.gov (United States)

    Wu, Yu; Yuan, Liu; Sheng, Nai-an; Gu, Zi-qi; Feng, Wen-hao; Yin, Hai-yue; Morsi, Yosry; Mo, Xiu-mei

    2017-09-01

    Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (ASA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

  18. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications.

    Science.gov (United States)

    Rizwan, Muhammad; Peh, Gary S L; Ang, Heng-Pei; Lwin, Nyein Chan; Adnan, Khadijah; Mehta, Jodhbir S; Tan, Wui Siew; Yim, Evelyn K F

    2017-03-01

    Naturally-bioactive hydrogels like gelatin provide favorable properties for tissue-engineering but lack sufficient mechanical strength for use as implantable tissue engineering substrates. Complex fabrication or multi-component additives can improve material strength, but often compromises other properties. Studies have shown gelatin methacrylate (GelMA) as a bioactive hydrogel with diverse tissue growth applications. We hypothesize that, with suitable material modifications, GelMA could be employed for growth and implantation of tissue-engineered human corneal endothelial cell (HCEC) monolayer. Tissue-engineered HCEC monolayer could potentially be used to treat corneal blindness due to corneal endothelium dysfunction. Here, we exploited a sequential hybrid (physical followed by UV) crosslinking to create an improved material, named as GelMA+, with over 8-fold increase in mechanical strength as compared to regular GelMA. The presence of physical associations increased the subsequent UV-crosslinking efficiency resulting in robust materials able to withstand standard endothelium insertion surgical device loading. Favorable biodegradation kinetics were also measured in vitro and in vivo. We achieved hydrogels patterning with nano-scale resolution by use of oxygen impermeable stamps that overcome the limitations of PDMS based molding processes. Primary HCEC monolayers grown on GelMA+ carrier patterned with pillars of optimal dimension demonstrated improved zona-occludin-1 expression, higher cell density and cell size homogeneity, which are indications of functionally-superior transplantable monolayers. The hybrid crosslinking and fabrication approach offers potential utility for development of implantable tissue-engineered cell-carrier constructs with enhanced bio-functional properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thermal Transport in Soft PAAm Hydrogels

    Directory of Open Access Journals (Sweden)

    Ni Tang

    2017-12-01

    Full Text Available As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm−1K−1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25–40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.

  20. Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release

    Directory of Open Access Journals (Sweden)

    Syed Majid Hanif Bukhari

    2015-01-01

    Full Text Available This present work was aimed at synthesizing pH-sensitive cross-linked AA/Gelatin hydrogels by free radical polymerization. Ammonium persulfate and ethylene glycol dimethacrylate (EGDMA were used as initiator and as cross-linking agent, respectively. Different feed ratios of acrylic acid, gelatin, and EGDMA were used to investigate the effect of monomer, polymer, and degree of cross-linking on swelling and release pattern of the model drug. The swelling behavior of the hydrogel samples was studied in 0.05 M USP phosphate buffer solutions of various pH values pH 1.2, pH 5.5, pH 6.5, and pH 7.5. The prepared samples were evaluated for porosity and sol-gel fraction analysis. Pheniramine maleate used for allergy treatment was loaded as model drug in selected samples. The release study of the drug was investigated in 0.05 M USP phosphate buffer of varying pH values (1.2, 5.5, and 7.5 for 12 hrs. The release data was fitted to various kinetic models to study the release mechanism. Hydrogels were characterized by Fourier transformed infrared (FTIR spectroscopy which confirmed formation of structure. Surface morphology of unloaded and loaded samples was studied by surface electron microscopy (SEM, which confirmed the distribution of model drug in the gel network.

  1. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    Science.gov (United States)

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-12-21

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.

  2. HLC/pullulan and pullulan hydrogels: their microstructure, engineering process and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xian [College of chemistry & materials science, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Xue, Wenjiao [Shannxi provincial institute of microbiology, Xi’ an 710043 (China); Liu, Yannan; Li, Weina [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Zhu, Chenhui [Shaanxi Key Laboratory of Degradable Biomedical Materials, Department of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China); Wang, Yaoyu, E-mail: wyaoyu@nwu.edu.cn [College of chemistry & materials science, Northwest University, Taibai North Road 229, Xi’an, Shaanxi 710069 (China)

    2016-01-01

    New locally injectable biomaterials that are suitable for use as soft tissue fillers are needed to address a significant unmet medical need. In this study, we used pullulan and human-like collagen (HLC) based hydrogels with various molecular weights (MWs) in combination therapy against tissue defects. Briefly, pullulan was crosslinked with NaIO{sub 4} to form a pullulan hydrogel and then may coupled with HLC using the reaction between the –NH{sub 2} end-group of HLC and the –CHO group present on the aldehyde pullulan to form the HLC/pullulan hydrogel, wherein the NaIO{sub 4} acted as the crosslinking and oxidizing agent. The good miscibility of pullulan and HLC in the hydrogels was confirmed via Fourier transform infrared spectroscopy, scanning electron microscopy, compression testing, enzyme degradation testing, cell adhesions, live/dead staining and subcutaneous filling assays. Here, pullulan hydrogels with various MWs were fabricated and physicochemically characterized. Limitations of the pullulan hydrogels included inflammation, poor mechanical strength, and degradation. By contrast, the properties of the HLC/pullulan hydrogels strongly enhanced. The efficacy of these hydrogels was evaluated both in vitro and in vivo. Our results indicate that HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and delayed hydrogel degradation. - Graphical abstract: The HLC/pullulan hydrogels were prepared by dialysis, wet granulation and UV radiation after various MWs of pullulan and HLC were crosslinked with NaIO{sub 4}, and injected subcutaneously into Kunming mouse. The formation of HLC/pullulan hydrogels is due to the amide bond linkage with the amino group of HLC and the aldehyde groups in pullulan aqueous media after crosslinking by NaIO{sub 4}. HLC/pullulan hydrogels may have therapeutic value as efficient soft tissue fillers, with reduced inflammation, improved cell adhesion and

  3. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Duflot, Anastasia V.; Kitaeva, Natalia K.; Duflot, Vladimir R.

    2015-01-01

    This work reports the usage of method of radiation-chemical synthesis to prepare cross-linked hydrogels from poly(vinyl alcohol) modified with glycidyl methacrylate. Synthesis kinetics of modified poly(vinyl alcohol) and properties of hydrogels were studied. The gel fraction, swelling, mechanical properties, and water content of the hydrogels were measured. It was found that gel fraction increases with increasing radiation dose, concentration of modified poly(vinyl alcohol), and reaches 60%. It was established by differential scanning calorimetry that a fraction of the “bound” water in hydrogels is 50–70% and independent of gel fraction content. In addition to “bound” and “free” states, water in hydrogels is also present in the intermediate state. - Highlights: • The synthesis and the properties of poly(vinyl alcohol) hydrogels were studied. • PVA was modified by glycidyl methacrylate before gamma cross-linking. • The modification results in decreasing of PVA cross-linking dose by 3 orders lower. • The gel fraction and water content of the hydrogels were measured. • A fraction of the “bound” water in hydrogels is independent of gel fraction content

  4. The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions.

    Science.gov (United States)

    Kalliola, Simo; Repo, Eveliina; Srivastava, Varsha; Heiskanen, Juha P; Sirviö, Juho Antti; Liimatainen, Henrikki; Sillanpää, Mika

    2017-05-01

    In environmental applications the applied materials are required to be non-toxic and biodegradable. Carboxymethyl chitosan nanoparticles cross-linked with Ca 2+ ions (CMC-Ca) fulfill these requirements, and they are also renewable. These nanoparticles were applied to oil-spill treatment in our previous study and here we focused on enhancing their properties. It was found that while the divalent Ca 2+ ions are crucial for the formation of the CMC-Ca, the attractive interaction between NH 3 + and COO - groups contributed significantly to the formation and stability of the CMC-Ca. The stability decreased as a function of pH due to the deprotonation of the amino groups. Therefore, the nanoparticles were found to be fundamentally pH sensitive in solution, if the pH deviated from the pH (7-9) that was used in the synthesis of the nanoparticles. The pH sensitive CMC-Ca synthesized in pH 7 and 8 were most stable in the studied conditions and could find applications in oil-spill treatment or controlled-release of substances. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Synthesis, characterization and radiation processing of carboxymethyl-chitosan

    International Nuclear Information System (INIS)

    Kamarudin Bahari; Kamarolzaman Hussein; Kamaruddin Hashim; Khairul Zaman Mohd Dahlan

    2002-01-01

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial and anti-fungal agent, and it overcome the problem of bad smell using organic acid. (Author)

  6. Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium.

    Science.gov (United States)

    Arunbabu, Dhamodaran; Shahsavan, Hamed; Zhang, Wei; Zhao, Boxin

    2013-01-10

    Poly(acrylic acid-co-N,N'-methylenebisacrylamide) hydrogel films were synthesized by copolymerizing acrylic acid (AAc) with N,N'-methylenebisacrylamide (MBA) as a cross-linker via photo polymerization in the spacing confined between two glass plates. NMR spectroscopy was utilized to determine the cross-linking density. We found that the cross-linking density determined by NMR is higher than that expected from the feed concentrations of cross-linkers, suggesting that MBA is more reactive than AAc and the heterogeneous nature of the cross-linking. In addition to the swelling tests, indentation tests were performed on the hydrogel films under water to investigate effects of the cross-linking density on the adhesion and mechanical properties of the hydrogel films in terms of adhesive pull-off force and Hertz-type elastic modulus. As the cross-linker concentration increased, the effective elastic modulus of the hydrogel films increased dramatically at low cross-linking densities and reached a high steady-state value at higher cross-linking densities. The pull-off force decreased with increasing cross-linker concentration and reached a lower force plateau at high cross-linking densities. An optimal "trade-off" cross-linking density was determined to be 0.02 mol fraction of MBA in the hydrogel, where balanced elastic modulus and adhesive pull-off force can be obtained.

  7. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  8. Radiation synthesis and characterization of polyacrylic acid hydrogels

    International Nuclear Information System (INIS)

    Yang Mingcheng; Song Hongyan; Zhu Chengshen; He Suqin

    2007-01-01

    The pH-sensitive polyacrylic acid (PAA) hydrogels were synthesized by gamma-ray irradiation at an ambient temperature. The influences of dose, monomer concentration, cross-linking agent content, pH, and ionic strength on the swelling ratio (SR) of the PAA hydrogels were investigated in detail. The results show that the SR of the hydrogel decreases with an increase in the dose, monomer concentration, and cross-linking agent content. In alkaline solution, the SR of the hydrogels is much higher than that in acid solution. Also, the ionic strength can influence the SR of the hydrogels. The more the concentration, the lower the SR. (authors)

  9. Radiation synthesis of biocompatible hydrogels of dextran methacrylate

    International Nuclear Information System (INIS)

    Szafulera, Kamila; Wach, Radosław A.; Olejnik, Alicja K.; Rosiak, Janusz M.; Ulański, Piotr

    2018-01-01

    The aim of this work was to synthesize biocompatible dextran-based hydrogels through crosslinking initiated by ionizing radiation. A series of derivatives of dextran has been synthesized by coupling of methacrylated glycidyl to the structure of this polysaccharide, yielding dextran methacrylate (Dex-MA) of the degree of methacrylate substitution (DS) up to 1.13 as characterised by FTIR and NMR spectroscopy. Chemically crosslinked hydrogels were formed by electron-beam irradiation of Dex-MA in aqueous solution in the absence of low-molecular-weight additives such as catalysts, monomers or crosslinking agents. Crosslinking of Dex-MA in aqueous solutions of 20 g/l and above was an efficient process, the gels were formed at doses as low as 0.5 kGy (experiments conducted up to 100 kGy) and were characterised by high content of insoluble fraction (70–100%). Due to high crosslinking density the equilibrium degree of swelling of fabricated gels was controlled principally by the initial concentration of Dex-MA solution subjected to irradiation, and it was in the range of 20 to over 100 g of water absorbed by gram of gel. Cytocompatibility of hydrogels was examined using XTT assay through evaluation of the cell viability being in indirect contact with hydrogels. The results indicated that hydrogels of Dex-MA of the average DS below 1 were not cytotoxic. Altogether, our data demonstrate that irradiation of methacrylated dextran in aqueous solution is an efficient method of fabrication of biocompatible hydrogels, which applications in regeneration medicine are anticipated. - Highlights: • Synthesis of dextran methacrylate with various degrees of substitutions. • Synthesis of dextran-based hydrogels through radiation technique. • Gel faction (GF) and equilibrium degree of swelling (EDS) study. • Cytocompatibility of Dex-MA hydrogels demonstrated (XTT test).

  10. An Injectable Composite Gelatin Hydrogel with pH Response Properties

    Directory of Open Access Journals (Sweden)

    Baoguo Chen

    2017-01-01

    Full Text Available On account of minimally invasive procedure and of filling irregular defects of tissues, injectable hydrogels are increasingly attractive in biomedical fields. However, traditional hydrogel formed by simple physical interaction or in situ crosslinking had inevitably some drawbacks such as low mechanical strength and lack of multifunctional properties. Though many investigations had successfully modified traditional injectable hydrogel to obtain both mechanical and functional properties, an acetalated β-cyclodextrin (Ac-β-CD nanoparticle composite injectable hydrogel designed in the research was another effective and efficient choice to solve the drawbacks. First of all, gelatin derivative (G-AA and Ac-β-CD were synthesized to prepare hydrogel and nanoparticle, respectively. In order to ensure good compatibility between nanoparticle and macromonomer and provide crosslink points between nanoparticle and macromonomer, G-AA was simultaneously functionalized onto the surface of Ac-β-CD nanoparticle during the fabrication of Ac-β-CD nanoparticle using one-step method. Finally, injectable composite hydrogel was obtained by photoinitiated polymerization in situ. Hydrogel properties like gelation time and swelling ratio were investigated. The viscoelastic behavior of hydrogels confirmed that typical characteristics of crosslinked elastomer for all hydrogel and nanoparticle in hydrogel could improve the mechanical property of hydrogel. Moreover, the transparency with time had verified obvious acid-response properties of hydrogels.

  11. Synthesis and Characterization of Phosphated Konjac Glucomannan Hydrogels

    Institute of Scientific and Technical Information of China (English)

    Li Gui CHEN; Zhi Lan LIU; Ying Jun CHEN; Ren Xi ZHUO

    2005-01-01

    Konjac glucomannan (KGM) was crosslinked with sodium tripolyphosphate (STPP) to synthesize hydrogels. The crosslinking reaction was confirmed by FT-IR. The results of degradation test show that the hydrogels retain the enzymatic degradation character of KGM and can be degraded for 74.45% in 5 days by cellulase E0240.

  12. Synthesis and characterization of carboxymethyl chitosan hydrogel ...

    Indian Academy of Sciences (India)

    Local application of drug delivery system could be very. ∗. Author for ... In this study, chitosan was modified by car- ... C18 (250 × 4·6mm ID, 5 μm pore size) column with auto .... Some amount of drug was lost during washing of hydrogels.

  13. Preparation of hydrogel by radiation for the healing of diabetic ulcer

    International Nuclear Information System (INIS)

    Nho, Young-Chang; Park, Jong-Seok; Lim, Youn-Mook

    2014-01-01

    Honey has been used in wound care for thousands of years. The major advantage of honey in wound care is the high osmotic activity, which accelerates the debridement of necrotic tissue and procures an antibacterial effect. It has been reported that the ancient Greeks and Romans used honey as a topical antiseptic for sores and skin ulcers. The aims of this study were to evaluate the antibacterial activities and the healing effect for diabetic ulcers from carboxymethyl cellulose (CMC) hydrogel involving honey. Carboxymethyl cellulose (CMC) and honey were dissolved in deionized (DI) water, and then irradiated by a gamma-ray to make a honey hydrogel dressing. The physical properties such as gelation and swelling were examined to evaluate the hydrogel for wound dressing. The antibacterial activities were investigated in detail against the Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains. Antibacterial tests indicated that honey hydrogel dressings have a good antibacterial activity. Female db/db mice (weight between 18 and 24 g, aged 5 weeks) were given an in vivo wound healing assessment. The wound dressing was changed every 2 days, and the rate of wound contraction and microscopic observations were observed. The honey hydrogel dressings displayed a prominent healing effect for diabetic ulcers. - Highlights: • The CMC hydrogel involving chestnut honey was prepared by gamma radiation. • The physical properties such as swelling percent and gelation were examined. • The chestnut hydrogel dressings displayed a prominent healing effect for diabetic ulcers

  14. Radiation synthesis of biocompatible hydrogels of dextran methacrylate

    Science.gov (United States)

    Szafulera, Kamila; Wach, Radosław A.; Olejnik, Alicja K.; Rosiak, Janusz M.; Ulański, Piotr

    2018-01-01

    The aim of this work was to synthesize biocompatible dextran-based hydrogels through crosslinking initiated by ionizing radiation. A series of derivatives of dextran has been synthesized by coupling of methacrylated glycidyl to the structure of this polysaccharide, yielding dextran methacrylate (Dex-MA) of the degree of methacrylate substitution (DS) up to 1.13 as characterised by FTIR and NMR spectroscopy. Chemically crosslinked hydrogels were formed by electron-beam irradiation of Dex-MA in aqueous solution in the absence of low-molecular-weight additives such as catalysts, monomers or crosslinking agents. Crosslinking of Dex-MA in aqueous solutions of 20 g/l and above was an efficient process, the gels were formed at doses as low as 0.5 kGy (experiments conducted up to 100 kGy) and were characterised by high content of insoluble fraction (70-100%). Due to high crosslinking density the equilibrium degree of swelling of fabricated gels was controlled principally by the initial concentration of Dex-MA solution subjected to irradiation, and it was in the range of 20 to over 100 g of water absorbed by gram of gel. Cytocompatibility of hydrogels was examined using XTT assay through evaluation of the cell viability being in indirect contact with hydrogels. The results indicated that hydrogels of Dex-MA of the average DS below 1 were not cytotoxic. Altogether, our data demonstrate that irradiation of methacrylated dextran in aqueous solution is an efficient method of fabrication of biocompatible hydrogels, which applications in regeneration medicine are anticipated.

  15. Reentrant behaviour in polyvinyl alcohol-borax hydrogels

    Science.gov (United States)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2018-01-01

    Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.

  16. A large deformation viscoelastic model for double-network hydrogels

    Science.gov (United States)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  17. PENGARUH KONSUMSI KAPPA-KARAGENAN TERHADAP GLUKOSA DARAH TIKUS WISTAR (Ratus norvegicus DIABETES [The Effect of Kappa-Carrageenan Consumption on Blood Glucose Level of Diabetic Wistar Rat (Ratus norwegicus

    Directory of Open Access Journals (Sweden)

    Hardoko

    2006-04-01

    Full Text Available The effect of kappa-carrageenan consumption on blood glucose level were studied on diabetic male wistar rat (Ratus norvegicus.The rats were made diabetic by aloxan injection, and then were given that a ration contains 5, 10, 15, 20% (w/w kappa-carrageenan, standard ration (negative control, and parental glibenklamid (positive control. The results showed that the standard ration could not reduce blood glucose from hyperglycemic to normal level, while the ration contained kappacarrageenan could. The higher kappa-carrageenan seaweed level in the ration has higher capacity to decrease blood glucose level. The ration containing 20% and 15% kappa-carrageenan could reduce blood glucose in 18 and 21 days, respectively.The effect of this ration was similar to that of glibenklamid which reduced blood glucose to normal level in 18 days. The ration containing 5 and 10% kappa-carrageenan could reduce blood glucose level; Blood glucose leve return to normal on the 21st day.

  18. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    Science.gov (United States)

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  19. Microwave-Assisted Synthesis of kappa-Carrageenan Beads Containing Silver Nanoparticles with Dye Adsorption and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinzadeh

    2016-04-01

    Full Text Available In this work, we used a simple and totally green method for synthesizing silver nanoparticles using kappa-carrageenan as reducing and stabilizing agent. The beads were prepared in aqueous medium by microwave heating, and then followed by cross-linking with K+ cations without using any additional toxic and expensive chemical agents. The preparation method of the carrageenan-based beads is easy, fast, simple, effective, and safe. The synthesized beads loaded with were characterized by ultraviolet-visible absorbance spectra, transmition electron microscopy and X-Ray diffraction techniques. The as-prepared beads were evaluated to remove cationic crystal violet dye from aqueous solutions. The thermodynamic parameters shown that the sorption process was feasible, spontaneous and endothermic. The kinetics and isotherm of crystal violet adsorption were found to well fit to pseudo-second-order kinetic and Langmuir isotherm model, respectively. Moreover, the antibacterial activity of the obtained beads was examined using the nutrient agar disc diffusion method.

  20. Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers

    International Nuclear Information System (INIS)

    Lau, Ting Ting; Lee, Li Qi Priscilyn; Leong, Wenyan; Wang, Dong-An

    2012-01-01

    Primary hepatocyte is probably the preferred cell for cell therapy in liver regeneration. However, its non-ideal proliferation capacity and rapid loss of phenotype during 2D culture compromises the quality and quantity of the transplanted hepatocytes, resulting in variable success rates of this treatment. Many studies have shown that the formation of 3D hepatocellular spheroids aids in the maintenance of liver-specific functions in hepatocytes. However, many of the methodologies employed require a sophisticated set-up or specialized equipment which makes it uneconomical to scale up for clinical applications. In this study, we have developed dual-functioning genipin crosslinked gelatin microspheres that serve as cell carriers as well as porogens for delivering the model cells and also for creating cavities. The cells were first seeded onto genipin crosslinked gelatin microspheres for attachment, followed by encapsulation in alginate hydrogel. Collagenase, MMP-9, was introduced either in the culture media or mixed with alginate precursor solution to allow microsphere degradation for creating cavities within the gel bulk. Accordingly, the cells proliferate within the cavities, forming hepatocellular aggregates while the alginate hydrogel serves as a confinement, restricting the size and the shape of the aggregates to the size of the cavities. In addition, the final hepatocellular aggregates could be harvested from the system by removing the alginate hydrogel via citrate treatment. Therefore, this versatile platform not only has the advantage of injectability and simplicity, the cellular aggregates generated are in a controlled size and shape and can be extracted from the system. (paper)

  1. Sterculia crosslinked PVA and PVA-poly(AAm) hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties.

    Science.gov (United States)

    Singh, Baljit; Pal, Lok

    2012-05-01

    The present study deals with the synthesis and characterization of sterculia crosslinked PVA and PVA-AAm hydrogel wound dressings. The hydrogels have been characterized by SEMs, FTIR, TGA and swelling studies. This article also discusses comparison of swelling, drug release and biomedical properties such as blood compatibility, antimicrobial activity, mucoadhesion, tensile strength, burst strength, water vapour permeability, oxygen diffusion and microbial penetration of both hydrogel wound dressings. These polymeric films have absorbed 4.80 ± 0.15 and 6.32 ± 0.15 gram/g of gel of simulated wound fluid respectively and swelling occurred through Case II diffusion mechanism. The release of antibiotic drugs occurred through non-Fickian and Case II diffusion mechanisms, respectively. These polymeric films have been observed to be permeable for oxygen and water vapour but have shown impermeability to the micro-organism. Sterculia-PVA hydrogel wound dressing has shown more blood compatibility as compared to the other film. All these results indicate that these hydrogel films may be used as wound dressings for the slow release of antibiotic drug to the wound. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Controlled Aloin Release from Crosslinked Polyacrylamide Hydrogels: Effects of Mesh Size, Electric Field Strength and a Conductive Polymer

    Directory of Open Access Journals (Sweden)

    Anuvat Sirivat

    2013-10-01

    Full Text Available The aim of this paper is to investigate the effects of hydrogel mesh size, a conductive polymer, and electric field strength on controlled drug delivery phenomena using drug-loaded polyacrylamide hydrogels prepared at various crosslinking ratios both with and without a conductive polymer system. Poly(p-phenylene vinylene, PPV, as the model conductive polymer, was used to study its ability to control aloin released from aloin-doped poly(p-phenylene vinylene/polyacrylamide hydrogel (aloin-doped PPV/PAAM. In the passive release, the diffusion of aloin from five aloin-doped PPV/PAAM hydrogel systems each was delayed ranging from during the first three hours to during the first 14 h due to the ionic interaction between the anionic drug and PPV. After the delayed periods, aloin could diffuse continuously into the buffer solution through the PAAM matrix. The amount of aloin released from the aloin-doped PPV/PAAM rose with increasing electric field strength as a result of the three mechanisms: the expansion of PPV chains inside the hydrogel, iontophoresis, and the electroporation of the matrix pore size, combined. Furthermore, the conductive polymer and the electric field could be used in combination to regulate the amount of release drug to a desired level, to control the release rate, and to switch the drug delivery on/off.

  3. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.

    Science.gov (United States)

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2017-09-01

    An injectable dual redox responsive diselenide-containing poly(ethylene glycol) (PEG) hydrogel was successfully developed by combining the conceptions of injectable hydrogels and dual redox responsive diselenides. In the first step, four-armed PEG was modified with N-hydroxysuccinimide (NHS)-activated esters and thereafter, crosslinked by selenocystamine crosslinkers to form injectable hydrogels via the rapid reaction between NHS-activated esters and amino groups. The cross-sectional morphology, mechanical properties, and crosslinking modes of hydrogels were well characterized via scanning electron microscope (SEM), rheological measurements, and Fourier transform infrared spectra, respectively. In addition, the oxidation- and reduction-responsive degradation behaviors of hydrogels were observed and analyzed. The model drug, rhodamine B, was encapsulated in the hydrogel. The drug-loaded hydrogel exhibited a dual redox responsive release profile, which was consistent with the degradation experiments. The results of all experiments indicated that the formulated injectable dual redox responsive diselenide-containing PEG hydrogel can have potential applications in various biomedical fields such as drug delivery and stimuli-responsive drug release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2451-2460, 2017. © 2017 Wiley Periodicals, Inc.

  4. Influence of Irradiated Chitosan on Growth and Flower Quality of Gladiolus at Different Sowing Dates and Synthesis of Radiation Cross-Linked Poly(Acrylic Acid) Hydrogel for Agriculture Applications. Chapter 14

    Energy Technology Data Exchange (ETDEWEB)

    Habib, U.; Ahmed, N. [Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi (Pakistan); Zahid, S.; Yashin, T., E-mail: yasintariq@yahoo.com [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan)

    2014-07-15

    The plant growth promoter activity of irradiated chitosan on Gladiolus hortulanus cv. Amsterdam was studied. Chitosan was applied in the form of foliar spray at third leaf stage. Corms were sown at three different dates with 15-day intervals. Data on several parameters such as survival percentage, leaf area, plant height, number of florets per spike, and vase life were collected. Chitosan-treated plants showed superior results as compared to the control samples. Acrylic acid-based superabsorbent hydrogel was prepared using phenyltriethoxysilane (PTES) as cross-linker. Different amounts of PTES were incorporated and irradiated at different doses of up to a maximum of 30 kGy. The cross-linked acrylic acid showed hydrogel properties, and its swelling kinetics, gel fraction, and equilibrium degree of swelling (EDS) were studied. The swelling of hydrogel was also affected by pH, ionic strength, and temperature. These hydrogels can be further explored as a super water absorbent material in semi-arid and drought prone areas. (author)

  5. Novel cryomilled physically cross-linked biodegradable hydrogel microparticles as carriers for inhalation therapy.

    Science.gov (United States)

    El-Sherbiny, I M; Smyth, H D C

    2010-01-01

    In this study, novel biodegradable physically cross-linked hydrogel microparticles were developed and evaluated in-vitro as potential carriers for inhalation therapy. These hydrogel microparticles were prepared to be respirable (desired aerodynamic size) when dry and also designed to avoid the macrophage uptake (attain large swollen size once deposited in lung). The swellable microparticles, prepared using cryomilling, were based on Pluronic® F-108 in combination with PEG grafted onto both chitosan (Cs) and its N-phthaloyl derivative (NPHCs). Polymers synthesized in the study were characterized using EA, FTIR, 2D-XRD and DSC. Morphology, particle size, density, biodegradation and moisture content of the microparticles were quantified. Swelling characteristics for both drug-free and drug-loaded microparticles showed excellent size increases (between 700-1300%) and the release profiles indicated sustained release could be achieved for up to 20 days. The respirable microparticles showed drug loading efficiency up to 92%. The enzymatic degradation of developed microparticles started within the first hour and only ∼10% weights were remaining after 10 days. In conclusion, these respirable microparticles demonstrated promising in-vitro performance for potential sustained release vectors in pulmonary drug delivery.

  6. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface.

    Science.gov (United States)

    Kim, Seong Han; Opdahl, Aric; Marmo, Chris; Somorjai, Gabor A

    2002-04-01

    The surfaces of two types of soft contact lenses neutral and ionic hydrogels--were characterized by atomic force microscopy (AFM) and sum-frequency-generation (SFG) vibrational spectroscopy. AFM measurements in saline solution showed that the presence of ionic functional groups at the surface lowered the friction and adhesion to a hydrophobic polystyrene tip. This was attributed to the specific interactions of water and the molecular orientation of hydrogel chains at the surface. Friction and adhesion behavior also revealed the presence of domains of non-crosslinked polymer chains at the lens surface. SFG showed that the lens surface became partially dehydrated upon exposure to air. On this partially dehydrated lens surface, the non-crosslinked domains exhibited low friction and adhesion in AFM. Fully hydrated in saline solution, the non-crosslinked domains extended more than tens of nanometers into solution and were mobile.

  7. Effective utilization of agro-waste by application of CMC dry-gel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2008-01-01

    Radiation crosslinking, graft polymerization and degradation are useful technologies to improve polymer materials. Processability of radial tires and heat resistance of wire/cable is improved by crosslinking technology. Polysaccharides such as starch/cellulose of natural polymers and their derivatives are typical degradable polymers. Molecular weight of polysaccharides was remarkably reduced at lower dose, 50 kGy. To expand application field of polysaccharides, it is essential to obtain crosslinking structure. It was found that polysaccharide derivatives such as carboxymethyl cellulose (CMC) and carboxymethyl chitosan undergo crosslinking at past-like condition and form hydrogels. Concentration of past-like condition to induce crosslinking should be more than 10%. High molecular weight (Mw) and high degree of substitution (DS) is preferable for crosslinking of polysaccharide derivatives. In this paper, treatment of agro waste and improvement of Japanese traditional paper by addition of CMC dry gel is reported. (author)

  8. Chitosan-containing hydrogel wound dressings prepared by radiation technique

    International Nuclear Information System (INIS)

    Mozalewska, Wiktoria; Czechowska-Biskup, Renata; Olejnik, Alicja K.; Wach, Radoslaw A.; Ulański, Piotr; Rosiak, Janusz M.

    2017-01-01

    The aim of the study was to develop an antimicrobial hydrogel wound dressing by means of radiation-initiated crosslinking of hydrophilic polymers, i.e. by well-established technology comprising gel manufacturing and its sterilization in one process. The approach included admixture of chitosan of relatively low molecular weight dissolved in lactic acid (LA) into the initial regular components of the conventional hydrogel dressing based on poly(N-vinyl pyrrolidone) (PVP) and agar. Molecular weight of chitosan was regulated by radiation-initiated degradation in the range of 39–132 kg mol −1 . Optimum total concentration of LA in the resultant hydrogel dressing was evaluated as 0.05 mol dm −3 , that is ca. 0.5%. Presence of LA in the system influenced essential radiation and technological parameters of hydrogel manufacturing. The setting temperature of the pre-hydrogel mixture, resulting from agar ability to congeal, was reduced with LA concentration, yet remained significantly above the room temperature. 0.5% of chitosan was effectively dissolved in aqueous solution of lactic acid due to its pH (lower than 5.5). Radiation parameters of PVP crosslinking in the presence of LA, as determined with generalized Charlesby–Pinner equation, were reflected in slight reduction of the maximum gel fraction and increase in gelation dose and in the factor comparing yields of scission to crosslinking. Nevertheless, essentially physical characteristics of the hydrogel was not affected, except for somewhat increased water uptake capacity, what in turn improves functionality of the dressing as extensive exudate for the wound can be efficiently absorbed. Preliminary microbiological studies showed antimicrobial character of the chitosan-containing hydrogel towards Gram-positive bacterial strain. - Highlights: • Radiation synthesis of bioactive hydrogel wound dressing based on PVP. • Sol-gel analysis, radiation yield of crosslinking and degradation, gel fraction.

  9. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    Science.gov (United States)

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  10. Dextran/Albumin hydrogel sealant for Dacron(R) vascular prosthesis.

    Science.gov (United States)

    Lisman, Anna; Butruk, Beata; Wasiak, Iga; Ciach, Tomasz

    2014-05-01

    In this paper, the authors describe a novel type of hydrogel coating prepared from the copolymer of human serum albumin and oxidized dextran. The material was designed as a hydrogel sealant for polyester (Dacron®)-based vascular grafts. Dextran was chosen as a coating material due to its anti-thrombogenic properties. Prepared hydrogels were compared with similar, already known biomaterial made from gelatine with the same cross-linking agent. Obtained hydrogels, prepared from various ratios of oxidized dextran/albumin or oxidized dextran/gelatine, showed different cross-linking densities, which caused differences in swelling, degradation rate and mechanical properties. Permeability tests confirmed the complete tightness of the hydrogel-modified prosthesis. Results showed that application of the hydrogel coating provided leakage-free prosthesis and eliminated the need of pre-clotting.

  11. Studies of the stability of water-soluble polypeptoid helices and investigation of synthetic, biomimetic substrates for the development of a thermally triggered, enzymatically crosslinked hydrogel for biomedical applications

    Science.gov (United States)

    Sanborn, Tracy Joella

    Due to the unique 3D structures of proteins, these biopolymers are able to perform a myriad of vital functions and activities in vivo. Peptidomimetic oligomers are being synthesized to mimic the structure and function of natural peptides. We have examined the stability of secondary structure of a poly-N-substituted glycine (peptoid) and developed synthetic substrates for transglutaminase enzymes. We synthesized an amphipathic, helical, 36 residue peptoid to study the stability of peptoid secondary structure using circular dichroism. We saw no significant dependence of helical structure on concentration, solvent, or temperature. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role, of steric forces in their structural stabilization. The structured polypeptoids studied here have potential as robust mimics of helical polypeptides of therapeutic interest. The ability of transglutaminases to crosslink peptidomimetic substrates was also investigated. There is a medical need for robust, biocompatible hydrogels that can be rapidly crosslinked in situ, for application as surgical adhesives, bone-inductive materials, or for drug delivery. We have taken an enzymatic approach to the creation of a novel gelation system that fits these requirements, utilizing transglutaminase enzymes, thermo-responsive liposomes, and a biomimetic enzyme substrate based on a peptide-polymer conjugate. At room temperature, the hydrogel system is a solution. Upon heating to 37°C, the calcium-loaded liposomes release calcium that activates Factor XIII in the presence of thrombin, producing a gel within 9 minutes. Rheological studies demonstrated that the hydrogel behaves as a robust, elastic solid, while scanning electron microscopy studies revealed that the hydrogel has a very dense morphology overall. We also investigated the ability of transglutaminases to crosslink non-natural, peptoid-based substrates. The activity of five lysine

  12. Hemostatic foam from radiation-modified carboxymethyl derivative of chitosan

    International Nuclear Information System (INIS)

    Barba, Bin Jeremiah D.; Aranilla, Charito T.; Vista, Jeanina Richelle M.; Relleve, Lorna S.; Abad, Lucille V.

    2015-01-01

    A hemostatic agent or hemostat is intended to accelerate the blood clotting process when applied to a bleeding surface, such as those in military and civilian wound trauma or in surgery. Natural polymers like chitosan (Ch) has been previously used as raw material in developing hemostats owing to their bioavailability and biocompatibility. Hydrogels were made from its carboxymethylated derivate (CMCh) and were crosslinked by gamma irradiation at a dose of 30 kGy. Further processing was done by salt leaching with sodium chloride and lyophilization to produce the foam hemostat. The final products were then radiation-sterilized at 25 kGy. The use of gamma radiation for both the crosslinking and sterilization process preserves the biocompatibility of the product unlike conventional methods that may require the use of harmful and non-biocompatible chemicals. The hemostatic efficacy of the designed foam hemostats was compared to the commercially available foam hemostat, GELFOAM Sterile Compressed Sponge by Pfizer. The results showed a significantly higher efficiency of the designed products using in vitro test to determine blood clotting index and platelet adhesion capacity. Characterization by gel fraction, swelling capacity and SEM imaging indicated a hydrophilic three-dimensional network which can be attributed for the thrombogenicity of the foams produced. The foam structure can act as a physical matrix for platelet adhesion forming the mechanical plug and at the same time, rapidly absorb water thereby locally increasing the concentration of platelets and physiological coagulation factors that will contribute to quick and efficient hemostasis. The designed products will provide the healthcare and military sector with a local alternative to the commercial products which are both expensive (USD 85 per piece) and not readily accessible in the Philippine market. Further animal efficacy and biocompatibility studies are recommended to supplement the positive in vitro

  13. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.

    Science.gov (United States)

    Fairbanks, Benjamin D; Singh, Samir P; Bowman, Christopher N; Anseth, Kristi S

    2011-04-26

    Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm(2) at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.

  14. Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking.

    Science.gov (United States)

    Hashemi, Behnaz; Madadlou, Ashkan; Salami, Maryam

    2017-12-15

    Nanostructured lipid carriers (NLCs) with mean size of 347nm were fabricated and added into a heat-denatured whey protein solution. The subsequent crosslinking of proteins by citric acid or CaCl 2 resulted in the formation of cold-set hydrogels. Fourier transform infrared spectroscopy (FTIR) proposed formation of more hydrogen bonds in gel due to NLC loading or citric acid-mediated gelation. It was also found based on FITR spectroscopy that citric acid crosslinking disordered whey proteins. Scanning electron microscopy (SEM) imaging showed a non-porous and finely meshed microstructure for the crosslinked gels compared to non-crosslinked counterparts. Crosslinking also increased the firmness and water-holding capacity of gels. In pepsin-free fluid, a strong correlation existed between reduction in gel swellability and digestibility over periods up to 60min due to NLC loading and citric acid gelation. However, in peptic fluid, NLC loading and citric acid crosslinking brought about much higher decrease in digestibility than swellability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by radiation-induced crosslinking of homopolymers

    Science.gov (United States)

    Kadłubowski, Sławomir; Henke, Artur; Ulański, Piotr; Rosiak, Janusz M.

    2010-03-01

    pH-sensitive PVP-PAA hydrogels have been prepared by electron-beam-induced irradiation at pH close to pKa of carboxylic groups. Protonation of these groups promoted the formation of hydrogen bonds between the PAA and PVP segments within the crosslinked structure and caused interpolymer complex formation. To demonstrate possible future application of such gels, we tested them as simple chemical detectors. When loaded with glucose oxidase, the PAA-PVP gel's turbidity and shrinkage was triggered by the presence of glucose due to a drop in pH caused by the enzymatic reaction.

  16. Self-assembling hydrogels crosslinked solely by receptor-ligand interactions: tunability, rationalization of physical properties, and 3D cell culture.

    Science.gov (United States)

    Thompson, Michael S; Tsurkan, Mikhail V; Chwalek, Karolina; Bornhauser, Martin; Schlierf, Michael; Werner, Carsten; Zhang, Yixin

    2015-02-16

    We report a novel, noncovalent hydrogel system crosslinked solely by receptor-ligand interactions between biotin and avidin. The simple hydrogel synthesis and functionalization together with the widespread use of biotinylated ligands in biosciences make this versatile system suitable for many applications. The gels possess a range of tunable physical properties, including stiffness, lifetime, and swelling. The erosion rates, unexpectedly fast compared to the kinetic parameters for biotin-avidin, are explored in terms of stretching tensions on the polymers, a concept well-known on the single-molecule level, but largely unexplored in supramolecular systems. As proof of utility, the gels were functionalized with different peptide sequences to control human mesenchymal stromal cell morphology in 3D culture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery

    International Nuclear Information System (INIS)

    Singh, Baljit; Vashishtha, Manu

    2008-01-01

    In order to modify the sterculia gum polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared sterculia gum, 2-hydroxyethylmethacrylate (HEMA) and acrylic acid (AAc) based hydrogels by radiation-induced crosslinking polymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR,TGA and swelling studies which were carried out as a function monomers concentration, radiation dose, amount of sterculia contents in the polymer matrix and nature of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anti-diarrhea model drug ornidazole from the hydrogels to evaluation of swelling and drug release mechanism. Diffusion exponent 'n' have 0.73, 0.56 and 0.61 values and gel characteristic constant 'k' have 1.28 x 10 -2 , 2.95 x 10 -2 and 2.14 x 10 -2 values in distilled water, pH 2.2 buffer and pH 7.4 buffer. The release of drug from the polymer matrix occurred through non-Fickian diffusion mechanism. The values for the late time diffusion coefficients have been lower than the values of initial and average diffusion coefficients. It reflects that in the initial stages rate of release of drug from polymer matrix was higher as compared to the late stages, it means after certain time the drug release occurred in controlled manner

  18. Physically crosslinked poly(vinyl alcohol-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2014-07-01

    Full Text Available Poly(vinyl alcohol, PVA is a polymer of great importance because of its many appealing characteristics specifically for various pharmaceutical and biomedical applications. Physically crosslinked hydrogel membranes composed of different amounts of hydroxyethyl starch (HES in (PVA and ampicillin were prepared by applying freeze–thawing method. This freezing–thawing cycle was repeated for three consecutive cycles. Physicochemical properties of PVA–HES membrane gel such as gel fraction, swelling, morphology, elongation, tensile strength, and protein adsorption were investigated. Introducing HES into freeze–thawed PVA structure affected crystal size distribution of PVA; and hence physicochemical properties and morphological structure have been affected. Increased HES concentration decreased the gel fraction %, maximum strength and break elongation. Indeed it resulted into a significant incrementing of the swelling ability, amount of protein adsorption, broader pore size, and pore distribution of membrane morphological structure. Furthermore, an increase in HES concentration resulted in better and still lower thermal stability compared to virgin PVA and freeze–thawed PVA. The maximum weight loss of PVA–HES hydrogel membranes ranged between 18% and 60% according to HES content, after two days of degradation in phosphate buffer saline (PBS, which indicates they are biodegradable. Thus, PVA–HES hydrogel membranes containing ampicillin could be a novel approach for biomedical application e.g. wound dressing purposes.

  19. Dielectric spectroscopy investigation of proton transfer processes in carboxymethyl alpha-cyclodextrin polymer cross-linked by epichlorohydrin

    Science.gov (United States)

    Papaioannou, Panagoula K.; Karagianni, Chaido S.; Kakali, Glykeria; Charalampopoulos, Vasileios G.

    2018-03-01

    The carboxymethyl-α-cyclodextrin polymer (cross-linked by epichlorohydrin) is investigated by dielectric spectroscopy over a frequency range of 0.1-100 kHz and the temperature ranges of 137.2-297.6 K (cooling) and 137.2-472 K (heating). Upon cooling to 288.1 K, the ac-conductivity invariance is attributed to slight changes in the topology of the H-bonded chains. From 288.1 to 244.0 K, the ac-conductivity decreases abruptly (following the Arrhenius law with Eα = 0.40 eV), whereas below 244.0 K it presents no important variations. During heating from 137.2 to 302.6 K, no thermal hysteresis is observed. From 302.6 to 364.9 K, the ac-conductivity increases (Eα = 0.71 eV), whereas above 383 K it decreases up to 436.7 K since the dehydration process has been completed and the H-bonded chains can no longer be retained. From 436.7 to 472 K, the ac-conductivity increases again (Eα = 0.76 eV) indicating the formation of "new" H-bonded chains. Curve fitting of various relaxation processes is done by Havriliak-Negami equation at selective temperatures.

  20. Crosslinked hydrogels?a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    OpenAIRE

    Sun, Dajun D.; Lee, Ping I.

    2014-01-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a ...

  1. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Maznah [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Daik, Rusli [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Adam, Zainah [Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  2. Polypeptide based hydrogels

    OpenAIRE

    Hanay, Saltuk

    2018-01-01

    There is a need for biocompatible, biodegradable, 3-D printable and stable hydrogels especially in the areas of tissue engineering, drug delivery, bio-sensing technologies and antimicrobial coatings. The main aim of this Ph.D. work was to fabricate polypeptide based hydrogel which may find a potential application in those fields. Focusing on tyrosine or tryptophan-containing copolypeptides prepared by NCarboxyanhydride (NCA) polymerizations, three different crosslinking strategies have been t...

  3. Biomimetic hydrogels gate transport of calcium ions across cell culture inserts.

    Science.gov (United States)

    Kotanen, Christian N; Wilson, A Nolan; Wilson, Ann M; Ishihara, Kazuhiko; Guiseppi-Elie, Anthony

    2012-06-01

    Control of the in vitro spatiotemporal availability of calcium ions is one means by which the microenvironments of hematopoietic stem cells grown in culture may be reproduced. The effects of cross-linking density on the diffusivity of calcium ions through cell culture compatible poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based bioactive hydrogels possessing 1.0 mol% 2-methacryloyloxyethyl phosphorylcholine (MPC), 5 mol% N,N-(dimethylamino)ethylmethacrylate (DMAEMA) and ca. 17 mol% n-butyl acrylate (n-BA) have been investigated to determine if varying cross-link density is a viable approach to controlling transport of calcium across hydrogel membranes. Cross-linking density was varied by changing the composition of cross-linker, tetraethyleneglycol diacrylate (TEGDA). The hydrogel membranes were formed by sandwich casting onto the external surface of track-etched polycarbonate membranes (T = 10 μm, φ = 0.4 μm pores) of cell culture inserts, polymerized in place by UV light irradiation and immersed in buffered (0.025 HEPES, pH 7.4) 0.10 M calcium chloride solution. The transport of calcium ions across the hydrogel membrane was monitored using a calcium ion selective electrode set within the insert. Degree of hydration (21.6 ± 1.0%) and void fraction were found to be constant across all cross-linking densities. Diffusion coefficients, determined using time-lag analysis, were shown to be strongly dependent on and to exponentially decrease with increasing cross-linking density. Compared to that found in buffer (2.0-2.5 × 10⁻⁶ cm²/s), diffusion coefficients ranged from 1.40 × 10⁻⁶ cm²/s to 1.80 × 10⁻⁷ cm²/s and tortuosity values ranged from 1.7 to 10.0 for the 1 and 12 mol% TEGDA cross-linked hydrogels respectively. Changes in tortuosity arising from variations in cross-link density were found to be the primary modality for controlling diffusivity through novel n-BA containing poly(HEMA)-based bioactive hydrogels.

  4. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  5. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid–polyacrylonitrile copolymeric hydrogels

    International Nuclear Information System (INIS)

    Bera, Anuradha; Misra, R.K.; Singh, Shailendra K.

    2013-01-01

    Copolymeric hydrogels of polyacrylic acid (PAA) – polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60 Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off. - Highlights: • Polyacrylic acid – polyacrilonitrile copolymeric hydrogel has been radiolytically synthesized. • Trimethyloltrimethacrylate (TMPTMA) used as crosslinker. • Hydrogel has been characterized and tested for electroresponsive character. • Bending angles and bending speed were found dependent upon applied voltage

  6. Studies on the properties of poly (ethylene oxide) R-150 hydrogel films formed by irradiation graft

    International Nuclear Information System (INIS)

    Yang Zhanshan; Zhu Nankang; Yang Shuqin; Qiang Yizhong

    1999-01-01

    In order to improve the mechanical properties of poly (ethylene oxide) (PEO) hydrogel film was used as wound dressing. The chemical and physical properties of the PEO R-150 graft hydrogel film formed by blends of electron beam irradiated-PEO R-150 and poly(vinyl alcohol) (PVA) were studied. The experimental results showed that the crosslinking densities of the PEO R-150 graft hydrogel increased along with the increasing of the irradiation doses and decreased with the increasing of the blend concentrations. While the PVA graft proportions did not produce obvious effects on the crosslinking density of the graft hydrogel. The crosslinking density of the graft hydrogel were obviously lower than that of the pure PVA hydrogel. The equilibrium water content of the graft hydrogel decrease as the irradiation dose and the PVA graft proportion increased; but they increased as the blend concentration increased. The equilibrium water content of the graft hydrogel was obviously higher than those of the pure PVA hydrogel. The hardness of the PVA hydrogel film increased with the irradiation dose. The hardness of the graft hydrogel decreased with the blend concentration, whereas it increased with the PVA graft proportion. The results suggest the PVA produces a main effect on the crosslinking density of the graft hydrogel, the PEO R-150 produces a main effect on the equilibrium water content of the graft hydrogel, and the both polymers have double effects on the hardness of the graft hydrogel

  7. HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Erhan Bat

    2016-10-01

    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  8. Hydrogel based QCM aptasensor for detection of avian influenza virus.

    Science.gov (United States)

    Wang, Ronghui; Li, Yanbin

    2013-04-15

    The objective of this study was to develop a quartz crystal microbalance (QCM) aptasensor based on ssDNA crosslinked polymeric hydrogel for rapid, sensitive and specific detection of avian influenza virus (AIV) H5N1. A selected aptamer with high affinity and specificity against AIV H5N1 surface protein was used, and hybridization between the aptamer and ssDNA formed the crosslinker in the polymer hydrogel. The aptamer hydrogel was immobilized on the gold surface of QCM sensor using a self-assembled monolayer method. The hydrogel remained in the state of shrink if no H5N1 virus was present in the sample because of the crosslinking between the aptamer and ssDNA in the polymer network. When it exposed to target virus, the binding reaction between the aptamer and H5N1 virus caused the dissolution of the linkage between the aptamer and ssDNA, resulting in the abrupt swelling of the hydrogel. The swollen hydrogel was monitored by the QCM sensor in terms of decreased frequency. Three polymeric hydrogels with different ratio (100:1 hydrogel I, 10:1 hydrogel II, 1:1 hydrogel III) of acrylamide and the aptamer monomer were synthesized, respectively, and then were used as the QCM sensor coating material. The results showed that the developed hydrogel QCM aptasensor was capable of detecting target H5N1 virus, and among the three developed aptamer hydrogels, hydrogel III coated QCM aptasensor achieved the highest sensitivity with the detection limit of 0.0128 HAU (HA unit). The total detection time from sampling to detection was only 30 min. In comparison with the anti-H5 antibody coated QCM immunosensor, the hydrogel QCM aptasensor lowered the detection limit and reduced the detection time. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Novel ionically crosslinked acrylamide-grafted poly(vinyl alcohol)/sodium alginate/sodium carboxymethyl cellulose pH-sensitive microspheres for delivery of Alzheimer's drug donepezil hydrochloride: Preparation and optimization of release conditions.

    Science.gov (United States)

    Bulut, Emine; Şanlı, Oya

    2016-01-01

    In this work, the graft copolymer, poly(vinyl alcohol)-grafted polyacrylamide (PVA-g-PAAm), was synthesized and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and elemental analysis. Microspheres of PVA-g-PAAm/sodium alginate (NaAlg)/sodium carboxymethyl cellulose (NaCMC) were prepared by the emulsion-crosslinking method and used for the delivery of an Alzheimer's drug, donepezil hydrochloride (DP). The release of DP increased with the increase in drug/polymer ratio (d/p) and PVA-g-PAAm/NaAlg/NaCMC ratio, while it decreased with the increase in the extent of crosslinking. The optimum DP release was obtained as 92.9% for a PVA-g-PAAm/NaAlg/NaCMC ratio of 1/2/1, d/p ratio of 1/8, and FeCl3 concentration of 7% (w/v).

  10. [Thromboresistance of glucose-containing hydrogels].

    Science.gov (United States)

    Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A

    2013-01-01

    The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

  11. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Wei, Jun

    2016-09-30

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  12. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    International Nuclear Information System (INIS)

    Wang, Jingjing; Wei, Jun

    2016-01-01

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  13. Preparation and Characteristics of Corn Straw-Co-AMPS-Co-AA Superabsorbent Hydrogel

    Directory of Open Access Journals (Sweden)

    Wei-Min Cheng

    2015-11-01

    Full Text Available In this study, the corn straw after removing the lignin was grafted with 2-acrylamido-2-methylpropanesulfonic acid (AMPS to prepare sulfonated cellulose. The grafting copolymerization between the sulfonated cellulose and acrylic acid (AA was performed using potassium persulfate and N,N′-methylenebisacrylamide as the initiator and crosslinking agent, respectively, to prepare corn straw-co-AMPS-co-AA hydrogels. The structure and properties of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and dynamic rheometry. The effects of initiator, crosslinker, monomer neutralization degree, and temperature on the swelling ratio of the hydrogels were studied. The water retention, salt resistance, and recyclability of the corn straw-co-AMPS-co-AA hydrogels were also investigated. The optimum water absorptivity of the corn straw hydrogels was obtained at a polymerization temperature of 50 °C with 1.2% crosslinker, 1:7 ratio of the pretreated corn straw and AA, 2% initiator, and 50% neutralized AA.

  14. Gelam (Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing

    Science.gov (United States)

    Mohd Zohdi, Rozaini; Abu Bakar Zakaria, Zuki; Yusof, Norimah; Mohamed Mustapha, Noordin; Abdullah, Muhammad Nazrul Hakim

    2012-01-01

    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrogel dressings significantly enhanced (P < 0.05) wound closure and accelerated the rate of re-epithelialization as compared to control hydrogel and OpSite film dressing. A significant decrease in inflammatory response was observed in honey hydrogel treated wounds as early as 7 days after burn (P < 0.05). Semiquantitative analysis using RT-PCR revealed that treatment with honey hydrogel significantly (P < 0.05) suppressed the expression of proinflammatory cytokines (IL-1α, IL-1β, and IL-6). The present study substantiates the potential efficacy of honey hydrogel dressings in accelerating burn wound healing. PMID:21941590

  15. Effect of gamma radiation on polyvinylpyrrolidone hydrogels

    International Nuclear Information System (INIS)

    Oliveira, M.J.A.; Vásquez, P.A.S.; Alcântara, M.T.S.; Munhoz, M.M.L.; Lugão, A.B.

    2017-01-01

    Polyvinylpyrrolidone (PVP) hydrogels have been investigated as drug delivery matrices for the treatment of wounds, such as cutaneous leishmaniasis, and matrices with silver nanoparticles for chronic wounds and burns. The preparation of such hydrogels can occur by various cross-linking methods, such as gamma, chemical, physical, among others. The most feasible for wound dressings is gamma irradiation from cobalt-60, because gamma irradiation simultaneously promotes crosslinking and sterilization, leaving the wound dressing ready for use. The objective of this work was to investigate the effect on physico- chemical properties of gamma radiation on PVP hydrogel according to the radiation absorbed dose variation. The PVP hydrogels were irradiated with doses of 5, 15, 25, 35, 45, 55, 65, 75 and 95kGy at dose rate of 5 kGy/h and characterized by swelling, thermogravimetric and mechanical analysis. Results shown a favorable dose range window for processing of these hydrogels related to the application. The results showed that mechanical strength was affected at doses starting at 25 kGy. (author)

  16. Effect of gamma radiation on polyvinylpyrrolidone hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.J.A.; Vásquez, P.A.S.; Alcântara, M.T.S.; Munhoz, M.M.L.; Lugão, A.B., E-mail: mariajhho@yahoo.com.br, E-mail: pavsalva@ipen.br, E-mail: ablugao@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Polyvinylpyrrolidone (PVP) hydrogels have been investigated as drug delivery matrices for the treatment of wounds, such as cutaneous leishmaniasis, and matrices with silver nanoparticles for chronic wounds and burns. The preparation of such hydrogels can occur by various cross-linking methods, such as gamma, chemical, physical, among others. The most feasible for wound dressings is gamma irradiation from cobalt-60, because gamma irradiation simultaneously promotes crosslinking and sterilization, leaving the wound dressing ready for use. The objective of this work was to investigate the effect on physico- chemical properties of gamma radiation on PVP hydrogel according to the radiation absorbed dose variation. The PVP hydrogels were irradiated with doses of 5, 15, 25, 35, 45, 55, 65, 75 and 95kGy at dose rate of 5 kGy/h and characterized by swelling, thermogravimetric and mechanical analysis. Results shown a favorable dose range window for processing of these hydrogels related to the application. The results showed that mechanical strength was affected at doses starting at 25 kGy. (author)

  17. Type II collagen-hyaluronan hydrogel – a step towards a scaffold for intervertebral disc tissue engineering

    Directory of Open Access Journals (Sweden)

    L Calderon

    2010-09-01

    Full Text Available Intervertebral disc regeneration strategies based on stem cell differentiation in combination with the design of functional scaffolds is an attractive approach towards repairing/regenerating the nucleus pulposus. The specific aim of this study was to optimise a composite hydrogel composed of type II collagen and hyaluronic acid (HA as a carrier for mesenchymal stem cells. Hydrogel stabilisation was achieved by means of 1-ethyl-3(3-dimethyl aminopropyl carbodiimide (EDC and N-hydroxysuccinimide (NHS cross-linking. Optimal hydrogel properties were determined by investigating different concentrations of EDC (8mM, 24mM and 48mM. Stable hydrogels were obtained independent of the concentration of carbodiimide used. The hydrogels cross-linked by the lowest concentration of EDC (8mM demonstrated high swelling properties. Additionally, improved proliferation of seeded rat mesenchymal stem cells (rMSCs and hydrogel stability levels in culture were observed with this 8mM cross-linked hydrogel. Results from this study indicate that EDC/NHS (8mM cross-linked type II collagen/HA hydrogel was capable of supporting viability of rMSCs, and furthermore their differentiation into a chondrogenic lineage. Further investigations should be conducted to determine its potential as scaffold for nucleus pulposus regeneration/repair.

  18. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  19. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering.

    Science.gov (United States)

    Wu, Shu-Wei; Liu, Xifeng; Miller, A Lee; Cheng, Yu-Shiuan; Yeh, Ming-Long; Lu, Lichun

    2018-07-15

    In the present study, we fabricated non-toxic, injectable, and thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for introduction of disulfide cross-linking strategy. Previously, NIPAAm and chitosan copolymer has been proven to have excellent biocompatibility, biodegradability and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly limit their potential for biomedical fields. In order to overcome this issue, we incorporated thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties. After oxidation of thiols into disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4 kPa). Oscillatory frequency sweep showed a positive correlation between storage modulus and cross-liking density as well. Additionally, there was no cytotoxicity observed to mesenchymal stem cells, fibroblasts and osteoblasts. We suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for tissue regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Hydrogels in a historical perspective: From simple networks to smart materials

    NARCIS (Netherlands)

    Buwalda, S.J.; Boere, K.W.M.; Dijkstra, Pieter J.; Feijen, Jan; Vermonden, T.; Hennink, W.E.

    2014-01-01

    Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge

  1. Hydrogels in a historical perspective : From simple networks to smart materials

    NARCIS (Netherlands)

    Buwalda, Sytze J.|info:eu-repo/dai/nl/339146850; Boere, Kristel W M|info:eu-repo/dai/nl/338018093; Dijkstra, Pieter J.; Feijen, Jan; Vermonden, Tina|info:eu-repo/dai/nl/275124517; Hennink, Wim E.|info:eu-repo/dai/nl/070880409

    2014-01-01

    Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge

  2. Radiation modification of swollen and chemically modified cellulose

    International Nuclear Information System (INIS)

    Borsa, J.; Toth, T.

    2002-01-01

    Complete text of publication follows. Biodegradable hydrogel was produced by radiation-induced crosslinking of water soluble carboxymethyl cellulose. Mobility of the molecular chain was found to play an important role in the crosslinking reaction. In this work the role of cellulose chains' mobility in radiation-induced reactions of fibrous cellulose was studied. Mobility of chains was improved by swelling (in sodium hydroxide and tetramethylammonium hydroxide) and chemical modification (substitution of about 3 % of hydroxyl groups with carboxymethyl groups), respectively. All samples were neutralized after the treatments. Accessibility of cellulose characterized by water adsorption and retention was significantly improved by the treatments in the following order: sodium hydroxide < tetramethylammonium hydroxide < carboxymethylation. Less fibrillar structure of modified fibers was observed by electron microscope. Samples were irradiated in wet form in open air (10 kGy). Untreated sample coated with soluble CMC was also irradiated. Degree of polymerization, FTIR spectra, and water sorption of samples before and after irradiation are presented. Amount of water adsorbed on samples decreased after irradiation. It can be considered the consequence of crosslinks, which might improve the crease recovery ability of cotton fabric. High accessibility improved degradation rather than crosslinking of cellulose chains

  3. Synthesis of chitosan-PEO hydrogels via mesylation and regioselective Cu(I)-catalyzed cycloaddition.

    Science.gov (United States)

    Tirino, Pasquale; Laurino, Rosaria; Maglio, Giovanni; Malinconico, Mario; d'Ayala, Giovanna Gomez; Laurienzo, Paola

    2014-11-04

    In this work, a well-defined hydrogel was developed by coupling chitosan with PEO through "click chemistry". Azide functionalities were introduced onto chitosan, through mesylation of C-6 hydroxyl groups, and reacted with a di-alkyne PEO by a regioselective Cu(I)-catalyzed cycloaddition. This synthetic approach allowed us to obtain a hydrogel with a controlled crosslinking degree. In fact, the extent of coupling is strictly dependent on the amount of azido groups on chitosan, which in turn can be easily modulated. The obtained hydrogel, with a crosslinking degree of around 90%, showed interesting swelling properties. With respect to chitosan hydrogels reported in literature, a considerably higher equilibrium uptake was reached (940%). The possibility to control the crosslinking degree of hydrogel and its capability to rapidly absorb high amounts of water make this material suitable for several applications, such as controlled drug release and wound healing. Copyright © 2014. Published by Elsevier Ltd.

  4. Controlled 5-fluorouracil release from hydrogels of Poly (acrylamide-co-metacrylic acid) crosslinked by means Of gamma irradiation techniques

    International Nuclear Information System (INIS)

    Rapado, M.; Sainz, D.; Altanes, S.; Prado, S.; Padron, S.; Salivar, D.; Chong, B.

    1999-01-01

    This report present the results on entrapped a cytostatic 5-Fluorouracil (5-F) in polymeric matrixes named hydrogels of polyacrylamide co -metacrylic acid crosslinked by means of gamma radiation with doses of 10,30, and 30 kGy at 25 o C. The drug delivery was followed by HPLC. The behavior of 5 -Fu migration from polymeric network was analyze by Iguchi equation for plain structure systems. The diffusion coefficients were obtained and drug release was in accordance with Fickian behavior

  5. Characterization of A Am/MBA hydrogels prepared by radiation induced polymerization

    International Nuclear Information System (INIS)

    Mahmudi, N.; Rendevski, S.

    2012-01-01

    In this research the network structure of polyacrylamide hydrogels prepared by gamma radiation-induced polymerization has been investigated. The average molecular weight between cross-link junctions ‾M c and effective cross-link density of hydrogels were calculated from swelling data as well as shear modulus data. The mechanical tests showed that by increasing the amount of the cross linker methylenebisacrylamide (MBA) into hydrogels, the value of shear modulus G and cross-link density ν e increased, but the average molecular weight between cross-link junctions ‾M c , decreased. The ‾M c and the effective cross-link density ν e obtained from the mechanical characterization were significantly different than the values obtained from swelling experiments. These differences were attributed to the uncertainty on the value of the χ parameter used in the Flory-Rehner equations. The results have shown that simple compression analyses can be used for the determination of ν e without any need of polymer-solvent interaction parameter for its calculations from the swelling analysis. (Author)

  6. Supramolecular polyaniline hydrogel as a support for urease

    International Nuclear Information System (INIS)

    Słoniewska, Anna; Pałys, Barbara

    2014-01-01

    Supramolecular hydrogels of conducting polymers are successfully used in bioelectrochemistry because of their mechanical and swelling properties of gels added to the specific electron transport properties of conducting polymers. We have studied polyaniline-poly(styrene sulfonate) (PANI–PSS) hydrogel as a substrate for the urease. The hydrogels were synthesized at pH = 0 and pH = 5. PANI–PSS hydrogel is a supramolecular self-assembly material consisting of positively-charged PANI chains and negatively-charged PSS chains. The hydrogel was studied by cyclic voltammetry, infrared and Raman spectroscopy and Scanning Electron Microscopy (SEM). Raman spectra revealed presence of phenazine rings in the hydrogel structure. Phenazine rings form covalent cross-linkers contributing to the hydrogel mechanical stability. The covalent cross-linkers influence the cyclic voltammetry responses of the hydrogel in acidic media. We tested the activity of urease immobilized in the PANI–PSS hydrogel by the physical adsorption or by the covalent bonding with the carbodiimide reaction. The enzyme immobilized in hydrogels prepared at higher pH value reveals significantly higher sensitivity. The method of the enzyme immobilization has smaller impact on the sensitivity. All hydrogel sensors reveal largely higher sensitivity to urea comparing to urease immobilized in the typical electrochemically deposited PANI films. The sensitivity of urease covalently bond to the hydrogel obtained at pH = 5 was as high as 1693 μA/(mol dm 3 ). The sensor response was linear in the urea concentration range from 10 −4 to 7 × 10 −2 mol/dm 3

  7. Thermo-responsive hydrogels for intravitreal injection and biomolecule release

    Science.gov (United States)

    Drapala, Pawel

    In this dissertation, we develop an injectable polymer system to enable localized and prolonged release of therapeutic biomolecules for improved treatment of Age-Related Macular Degeneration (AMD). Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and cross-linked with poly(ethylene glycol) (PEG) poly(L-Lactic acid) (PLLA) copolymer were synthesized via free-radical polymerization. These materials were investigated for (a) phase change behavior, (b) in-vitro degradation, (c) capacity for controlled drug delivery, and (d) biocompatibility. The volume-phase transition temperature (VPTT) of the PNIPAAm- co-PEG-b-PLLA hydrogels was adjusted using hydrophilic and hydrophobic moieties so that it is ca. 33°C. These hydrogels did not initially show evidence of degradation at 37°C due to physical cross-links of collapsed PNIPAAm. Only after addition of glutathione chain transfer agents (CTA)s to the precursor did the collapsed hydrogels become fully soluble at 37°C. CTAs significantly affected the release kinetics of biomolecules; addition of 1.0 mg/mL glutathione to 3 mM cross-linker accelerated hydrogel degradation, resulting in 100% release in less than 2 days. This work also explored the effect of PEGylation in order to tether biomolecules to the polymer matrix. It was demonstrated that non-site-specific PEGylation can postpone the burst release of solutes (up to 10 days in hydrogels with 0.5 mg/mL glutathione). Cell viability assays showed that at least two 20-minute buffer extraction steps were needed to remove cytotoxic elements from the hydrogels. Clinically-used therapeutic biomolecules LucentisRTM and AvastinRTM were demonstrated to be both stable and bioactive after release form PNIPAAm-co-PEG-b-PLLA hydrogels. The thermo-responsive hydrogels presented here offer a promising platform for the localized delivery of proteins such as recombinant antibodies.

  8. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications.

    Science.gov (United States)

    García-Astrain, Clara; Avérous, Luc

    2018-06-15

    Environment-sensitive alginate-based hydrogels for drug delivery applications are receiving increasing attention. However, most work in this field involves traditional cross-linking strategies which led to hydrogels with poor long-term stability. Herein, a series of chemically cross-linked alginate hydrogels was synthesized via click chemistry using Diels-Alder reaction by reacting furan-modified alginate and bifunctional cross-linkers. Alginate was successfully functionalized with furfurylamine. Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees were achieved in order to study the effect of alginate modification and the cross-linking extent over the behaviour of the hydrogels. The ensuing hydrogels were analysed in terms of microstructure, swelling, structure modification and rheological behaviour. The materials response to external stimuli such as pH was also investigated, revealing a pulsatile behaviour in a large pH range (1-13) and a clear pH-dependent swelling. Finally, vanillin release studies were conducted to demonstrate the potential of these biobased materials for drug delivery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Development and Characterisation of the Imiquimod Poly(2-(2-methoxyethoxyethyl Methacrylate Hydrogel Dressing for Keloid Therapy

    Directory of Open Access Journals (Sweden)

    Wei-Chih Lin

    2017-11-01

    Full Text Available The imiquimod-poly(2-(2-methoxyethoxyethyl methacrylate hydrogel (poly(MEO2MA hydrogel dressing was developed for the keloid therapy application. Four groups of the hydrogels, including the imiquimod-poly(MEO2MA hydrogel, crosslinked with 0.2 mol %, 0.4 mol %, 0.6 mol %, and 0.8 mol % of di(ethylene glycol dimethacrylate cross-linker (DEGDMA, were synthesised and characterised for fabricating the imiquimod-poly(MEO2MA hydrogel pad. The lower critical solution temperature (LCST of the poly(MEO2MA hydrogel was measured at approximately 28 °C and was used as a trigger to control the imiquimod loading and release. The loaded amounts of the imiquimod in the poly(MEO2MA hydrogel, crosslinked with 0.2 mol % and 0.8 mol % of DEGDMA, were about 27.4 μg and 14.1 μg per 1 mm3 of the hydrogel, respectively. The imiquimod-release profiles of two samples were characterised in a phosphate buffered saline (PBS solution at 37 °C and the released imiquimod amount were about 45% and 46% of the total loaded imiquimod. The Cell Counting Kit-8 (CCK-8 assay was utilised to analyse the cell viability of keloid fibroblasts cultured on the samples of imiquimod-poly(MEO2MA hydrogel, crosslinked with 0.2 mol % and 0.8 mol % of DEGDMA. There was around a 34% decrease of the cell viabilities after 2 days, compared with the pure-poly(MEO2MA hydrogel samples. Therefore, the developed imiquimod-poly(MEO2MA hydrogel dressing can affect the proliferation of keloid fibroblasts. It should be possible to utilise the hydrogel dressing for the keloid therapy application.

  10. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    Science.gov (United States)

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing.

    Science.gov (United States)

    Martinez, Pamela Robles; Goyanes, Alvaro; Basit, Abdul W; Gaisford, Simon

    2017-10-30

    3D printing (3DP) technologies have been attracting much recent interest as new methods of fabricating medicines and medical devices. Of the many types of 3DP available, stereolithographic (SLA) printing offers the unique advantage of being able to fabricate objects by cross-linking resins to form networked polymer matrices. Because water can be entrapped in these matrices, it is possible in principle to fabricate pre-wetted, drug-loaded hydrogels and devices. Here, SLA printing was used to prepare ibuprofen-loaded hydrogels of cross-linked polyethylene glycol diacrylate. Hydrogels containing up to 30% w/w water, and 10% w/w ibuprofen, were successfully printed. Dissolution profiles showed that drug release rates were dependent on water content, with higher water content hydrogels releasing drug faster. The conclusion is that SLA 3DP offers a new manufacturing route to pharmaceutical hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Polysaccharides as Hydrogel and Bioplastics. Chapter 4

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Sarada Idris; Norzita Yacob; Maznah Mahmud

    2017-01-01

    The use of radiation technology in producing hydrogel is increasingly popular nowadays. The hydrogel which produce through the radiation method has it own advantages. For example, easy to operate, reduce the cost production and also decrease the harmful chemical usage such as monomer. The cross-linking bonds which has been produced this hydrogel during the irradiation process can be controlled by the radiation dosage even though using the same material and composition.

  13. Long-Chain Diacrylate Crosslinkers and Use of PEG Crosslinks in Poly(potassium acrylate-acrylic acid/Kaolin Composite Superabsorbents

    Directory of Open Access Journals (Sweden)

    Koroush Kabiri

    2013-01-01

    Full Text Available Long-chain diacrylate crosslinkers based on linear α,ω-diols were synthesized and characterized using FTIR and 1H NMR spectroscopy. The highest reaction yield (99.5% was due to polyethylene glycol diacrylate 1000 (PEGDA-1000. Then, kaolin-containing poly(potassium acrylate-acrylic acid superabsorbent composites and kaolin-free counterparts were synthesized using PEGDA-1000.The effect of the crosslinker concentration on swelling, rheological and thermo-mechanical properties was investigated. Absorption capacity of the composite hydrogels (having ~38% kaolin was unexpectedly higher than that of kaolin-free hydrogels. This was attributed to an interfering effect of kaolin during the polymerization. Glass transition temperature was increased with crosslinker concentration enhancement and addition of kaolin up to about 10oC and 28oC, respectively. Making such K-containing superabsorbents may be taken as an effective action to achieve more durable and cheaper superabsorbents for agricultural uses.

  14. PIXE investigation of in-vitro release of chloramphenicol across polyvinyl alcohol/ acrylamide hydrogel

    International Nuclear Information System (INIS)

    Rihawi, M.; Al-Zeer, A.; Allaf, A.

    2012-01-01

    Hydrogels based on polyvinyl alcohol (PVA) and different amounts of acrylamide monomer (AAm) were prepared by thermal crosslinking process in solid state. The PVA/AAm hydrogels were investigated for drug delivery system applications. Chloramphenicol was adopted as a model drug to study its release behaviour across the prepared hydrogels. Particle induced X-ray emission (PIXE) analytical technique was utilized to study the drug release behaviour across the hydrogels. A comparison study between PIXE and UV measurements was performed. FTIR measurements were carried out to perform the molecular characterization. The releasing behaviour of the drug across the hydrogels demonstrates a decrease and a subsequent increase in the drug release rate, as the AAm amount increases. The FTIR characterization of the prepared hydrogels has shown a competitive behaviour between the crosslinking of PVA with AAm monomer or oligomerized AAm, depending on the amount of AAm added to prepare the PVA/AAm hydrogels. (author)

  15. Technology transfer on radiation processing of natural polymer in Japan

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2007-01-01

    Carboxymethyl cellulose (CMC) crosslinked at paste-like condition forms hydrogel. The hydrogel was applied as a coolant to keep flesh of vegetables and fish at low temperature. Shochu (Japanese liquor of 25% alcohol content) residue produced by fermentation of rice and sweet potato was rapidly converted to animal feed by water absorption of CMC dry gel. Poly(lactic acid) crosslinked by irradiation in the presence of triallyl isocyanurate, TAIC was soaked in plasticizer to give softness. A maximum of 60 wt% plasticizer was incorporated in PLA resin and flexible PLA sheet was obtained. Growth of flowers was accelerated when sprayed with radiation degraded alginate shipment schedule of the flowers was advanced to one week. (author)

  16. PIXE investigation of in vitro release of chloramphenicol across polyvinyl alcohol/acrylamide hydrogel

    International Nuclear Information System (INIS)

    Rihawy, M.S.; Alzier, A.; Allaf, A.W.

    2011-01-01

    Hydrogels based on polyvinyl alcohol and different amounts of acrylamide monomer were prepared by thermal cross-linking in the solid state. The hydrogels were investigated for drug delivery system applications. Chloramphenicol was adopted as a model drug to study its release behavior. Particle induced X-ray emission was utilized to study the drug release behavior across the hydrogels and a comparison study with ultraviolet measurements was performed. Fourier Transform Infrared measurements were carried out for molecular characterization. The releasing behavior of the drug exhibits a decrease and a subsequent increase in the release rate, as the acrylamide monomer increases. Characterization of the hydrogels has shown a competitive behavior between crosslinking with AAm acrylamide monomer or oligomerized version, depending on the amount added to prepare the hydrogels.

  17. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator.

    Science.gov (United States)

    Huang, Min; Hou, Yi; Li, Yubao; Wang, Danqing; Zhang, Li

    2017-01-01

    A dual network hydrogel made up of polyvinylalcohol (PVA) crosslinked by borax and polyvinylpyrrolidone (PVP) was prepared by means of freezing-thawing circles. Here PVP was incorporated by linking with PVA to form a network structure, while the introduction of borax played the role of crosslinking PVA chains to accelerate the formation of a dual network structure in PVA/PVP composite hydrogel, thus endowing the hydrogel with high mechanical properties. The effects of both PVP and borax on the hydrogels were evaluated by comparing the two systems of PVA/PVP/borax and PVA/borax hydrogels. In the former system, adding 4.0% PVP not only increased the water content and the storage modulus but also enhanced the mechanical strength of the final hydrogel. But an overdose of PVP just as more than 4.0% tended to undermine the structure of hydrogels, and thus deteriorated hydrogels' properties because of the weakened secondary interaction between PVP and PVA. Likewise, increasing borax could promote the gel crosslinking degree, thus making gels show a decrease in water content and swelling ratio, meanwhile shrinking the pores inside the hydrogels and finally enhancing the mechanical strength of hydrogels prominently. The developed hydrogel with high performances holds great potential for applications in biomedical and industrial fields.

  18. Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation.

    Science.gov (United States)

    Xu, Qinghua; He, Chaoliang; Zhang, Zhen; Ren, Kaixuan; Chen, Xuesi

    2016-11-16

    Injectable hydrogels have been widely investigated in biomedical applications, and increasing demand has been proposed to achieve dynamic regulation of physiological properties of hydrogels. Herein, a new type of injectable and biomolecule-responsive hydrogel based on poly(l-glutamic acid) (PLG) grafted with disulfide bond-modified phloretic acid (denoted as PLG-g-CPA) was developed. The hydrogels formed in situ via enzymatic cross-linking under physiological conditions in the presence of horseradish peroxidase and hydrogen peroxide. The physiochemical properties of the hydrogels, including gelation time and the rheological property, were measured. Particularly, the triggered degradation of the hydrogel in response to a reductive biomolecule, glutathione (GSH), was investigated in detail. The mechanical strength and inner porous structure of the hydrogel were influenced by the addition of GSH. The polypeptide hydrogel was used as a three-dimensional (3D) platform for cell encapsulation, which could release the cells through triggered disruption of the hydrogel in response to the addition of GSH. The cells released from the hydrogel were found to maintain high viability. Moreover, after subcutaneous injection into rats, the PLG-g-CPA hydrogels with disulfide-containing cross-links exhibited a markedly faster degradation behavior in vivo compared to that of the PLG hydrogels without disulfide cross-links, implying an interesting accelerated degradation process of the disulfide-containing polypeptide hydrogels in the physiological environment in vivo. Overall, the injectable and biomolecule-responsive polypeptide hydrogels may serve as a potential platform for 3D cell culture and easy cell collection.

  19. DNA Hydrogel with Tunable pH-Responsive Properties Produced by Rolling Circle Amplification.

    Science.gov (United States)

    Xu, Wanlin; Huang, Yishun; Zhao, Haoran; Li, Pan; Liu, Guoyuan; Li, Jing; Zhu, Chengshen; Tian, Leilei

    2017-12-22

    Recently, smart DNA hydrogels, which are generally formed by the self-assembly of oligonucleotides or through the cross-linking of oligonucleotide-polymer hybrids, have attracted tremendous attention. However, the difficulties of fabricating DNA hydrogels limit their practical applications. We report herein a novel method for producing pH-responsive hydrogels by rolling circle amplification (RCA). In this method, pH-sensitive cross-linking sites were introduced into the polymeric DNA chains during DNA synthesis. As the DNA sequence can be precisely defined by its template, the properties of such hydrogels can be finely tuned in a very facile way through template design. We have investigated the process of hydrogel formation and pH-responsiveness to provide rationales for functional hydrogel design based on the RCA reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lima Bean Starch-Based Hydrogels | Oladebeye | Nigerian Journal ...

    African Journals Online (AJOL)

    Hydrogels were prepared by crosslinking native lima bean starch and polyvinyl alcohol (PVA) with glutaraldehyde (GA) at varying proportions in an acidic medium. The native starch (N-LBS) and hydrogels (L-GA (low glutaraldehyde) and H-GA (high glutaraldehyde)) were examined for their water absorption capacity (WAC) ...

  1. Carboxymethyl starch/montmorillonite composite microparticles: Properties and controlled release of isoproturon.

    Science.gov (United States)

    Wilpiszewska, Katarzyna; Spychaj, Tadeusz; Paździoch, Waldemar

    2016-01-20

    Preparation of novel high substituted carboxymethyl starch-based microparticles containing sodium montmorillonite (MMT) by crosslinking with Al(3+) was described. For preparing nanocomposite granules carboxymethyl starch (CMS) from native potato starch as well as CMS from amylopectin has been used. The hydrophilic CMS/MMT composite systems were used for herbicide, i.e. isoproturon encapsulation (ca. 75% encapsulation efficiency). The herbicide release rate from CMS/MMT composites in water was significantly reduced when compared to commercial isoproturon: 95% released after ca. 700 h and ca. 24h, respectively. Leaching in soil from composite systems was relatively slower than release in water. After a series of eight irrigations leached about 10% of isoproturon loaded. The CMS/MMT carriers could reduce the potential leaching of herbicide and beneficially reduce pollution of the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Incorporation of soft shaped hydrogel sheets into microfluidic systems using a simple adhesion masking process

    Science.gov (United States)

    Young, Dylan C.; Newsome, Isabel G.; Scrimgeour, Jan

    2017-12-01

    We report the use of simple adhesion masking in fabricating shaped, photo-polymerizable hydrogel sheets with very small elastic moduli on glass substrates. Direct ink masking of surface crosslinking groups allows for low cost hydrogel patterning that is compatible with materials where crosslinking is both photo- and chemically initiated. Mechanical removal of the unwanted polymerized material reveals the shaped hydrogel. The mechanical properties of the shaped hydrogels were characterized by exposure to well-defined shear flow inside the microfluidic device. We show that hydrogel sheets with elastic moduli down to 7.5 Pa can be shaped with millimeter feature sizes using this approach. The shaped hydrogels are suitable for applications such as the detection of shear flow, cell culture, and traction force microscopy.

  3. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  4. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  5. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    International Nuclear Information System (INIS)

    Khoerunnisa, Fitri; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi

    2016-01-01

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp"3, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  6. Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa, Fitri, E-mail: fitri.khoerunnisa@gmail.com; Hendrawan,; Sonjaya, Yaya; Putri, Oceu Dwi [Department of Chemistry, Indonesia University of Education, Setiabudi 229 Bandung, West Java, Indonesia 40154 (Indonesia)

    2016-04-19

    Superabsorbent hydrogels are cross-linked hydrophilic polymers that can absorb and retain a large volume of water, saline solution, or physiological fluids. A distinctive superabsorbent hydrogel composite based on cellulose/ poly (vinyl alcohol)/ carbon nanotubes was successfully synthesized via the graft bio-copolymerization in an aqueous medium with glutaraldehide as a crosslinking agent. The effect of carbon nanotubes (CNT) on water absorption capacity and mechanical properties of superabsorbent composite were particularly investigated. The Fourier transform infrared spectra showed the evidence of copolymerization of hydrogel precursors as well as the interaction of CNT filler with the hydrogel matrices, as indicated by the shifting of peak intensity and position of several functional groups (O-H, C-H sp{sup 3}, C=O, C-N, C-O). The modification of hydrogel surface morphology and porosity owing to CNT insertion was also confirmed by scanning electron microscopy images. The CNT insertion improved the mechanical strength of superabsorbent hydrogel composites. Moreover, insertion of CNT into hydrogel matrix remarkably increased the swelling capacity of superabsorbent composites up to 840%. This huge water absorption capacity of hydrogel composites offers promising applications in development of superabsorbent polymers.

  7. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    Science.gov (United States)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  8. Preparation and characterization of smart magnetic hydrogels and its use for drug release

    International Nuclear Information System (INIS)

    Liu, T.-Y.; Hu, S.-H.; Liu, K.-H.; Liu, D.-M.; Chen, S.-Y.

    2006-01-01

    The magnetic hydrogels were successfully fabricated by chemically cross-linking of gelatin hydrogels and Fe 3 O 4 nanoparticles (ca. 40-60 nm) through genipin (GP) as cross-linking agent. The cross-sectional SEM observation demonstrates that the Fe 3 O 4 nanoparticles were fairly uniformly distributed in the gelatin matrix. Moreover, in vitro release data reveal that drug release profile of the resulting hydrogels is controllable by switching on or off mode of a given magnetic field. While applying magnetic fields to the magnetic hydrogels, the release rate of vitamin B 12 of the hydrogels was considerably decreased as compared with those when the field was turned off, suggesting a close configuration of the hydrogels as a result of the aggregation of Fe 3 O 4 nanoparticles. Based on this on- and -off mechanism, the smart magnetic hydrogels based on the gelatin-ferrite hybrid composites can be potentially developed for application in novel drug delivery systems

  9. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications.

    Science.gov (United States)

    Cho, Ik Sung; Cho, Myeong Ok; Li, Zhengzheng; Nurunnabi, Md; Park, Sung Young; Kang, Sun-Woong; Huh, Kang Moo

    2016-06-25

    The major limitations of typical thermogelling polymers for practical applications are low gel stability and weak mechanical properties under physiological conditions. In this study, we have synthesized a new polysaccharide-based thermogelling polymer that can be photo-crosslinked by UV irradiation to form a mechanically resilient and elastic hydrogel. Methacrylated hexanoyl glycol chitosan (M-HGC), was synthesized by a series of chemical modifications, N-hexanoylation and N-methacrylation, of glycol chitosan (GC). Various M-HGC polymers with different methacryl group contents were synthesized and their thermogelling and photo-crosslinkable properties were evaluated. The M-HGCs demonstrated a thermo-reversible sol-gel transition behavior in aqueous solutions. The thermally-induced hydrogels could be chemically crosslinked by UV-triggered photo-crosslinking. From the cytotoxicity studies using MTT and the live/dead assay, the M-HGC hydrogels showed non-cytotoxicity. These photo-crosslinkable thermogelling M-HGC polymers may hold great promises for various biomedical applications, such as an injectable delivery system and 3D cell culture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery.

    Science.gov (United States)

    Smitha, K T; Sreelakshmi, M; Nisha, N; Jayakumar, R; Biswas, Raja

    2014-02-01

    This work reports the development of amidase encapsulated O-carboxymethyl chitosan nanoparticles (Ami-O-CMC NPs) of 300±50 nm size by ionic cross-linking method. The prepared Ami-O-CMC NPs had an encapsulation efficiency of 55.39%. Haemolysis assay and cytotoxicity studies proved the hemocompatibility and cytocompatibility of the prepared NPs. The sustained release of Ami from the NPs is expected to prolong its immunogenicity and in turn lead to development of better protective immunity against Staphylococcus aureus infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The influence of water quality on properties of hydrogel membranes prepared by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Mara Tania S.; Sisti, Cristina; Furusawa, Helio A.; Lugao, Ademar B.

    2009-01-01

    Insoluble hydrogels are crosslinked polymeric materials which have ability to absorb significant amounts of water in their three-dimensional polymeric matrix. Ionizing radiation has been used in hydrogels preparation allowing the structure formation and sterilization simultaneously in only one step without necessity to add any initiators crosslinkers. These advantages make irradiation an useful method for synthesis of hydrogels, especially for biomedical use. There are numerous applications of hydrogels such as contact lenses, drug delivery devices, wound dressings, etc. Poly(N-vinyl-2-pyrrolidone) (PVP) is a water soluble polymer, which exhibits a series of interactions in aqueous solutions. The aim of this work is to investigate the effect of ions present in distillated water to prepare PVP hydrogels because Hofmeister series ions have the capacity to change the water structure that represents the largest fraction of the system. Another reason is that the use of high purity water can be costly in large industrial production of these materials. Hydrogels with 12% and 20% of PVP were prepared using distillated and ultrapure water. The polymerization was induced by gamma radiation at 25 kGy. For the investigation of the distillated water effect, the ions present as impurities were identified by ion chromatography. Physical-chemical properties such as degree of crosslinking of hydrogels was determined using gel fraction methodology and swelling kinetic was studied in the prepared hydrogels. (author)

  12. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Sarika, P.R.; Cinthya, Kuriakose; Jayakrishnan, A.; Anilkumar, P.R.; James, Nirmala Rachel

    2014-01-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture

  13. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  14. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil.

    Science.gov (United States)

    Olad, Ali; Zebhi, Hamid; Salari, Dariush; Mirmohseni, Abdolreza; Reyhani Tabar, Adel

    2018-09-01

    In this study, new slow release fertilizer encapsulated by superabsorbent nanocomposite was prepared by in-situ graft polymerization of sulfonated-carboxymethyl cellulose (SCMC) with acrylic acid (AA) in the presence of polyvinylpyrrolidone (PVP), silica nanoparticles and nitrogen (N), phosphorous (P), and potassium (K) (NPK) fertilizer compound. The prepared materials were characterized by FT-IR, XRD and scanning electron microscopy (SEM) techniques. The incorporation of NPK fertilizer into hydrogel nanocomposite network was verified by results of these analyses. Also, the swelling behavior in various pH and saline solutions as well as water retention capability of the prepared hydrogel nanocomposite was evaluated. The fertilizer release behavior of the NPK loaded hydrogel nanocomposite was in good agreement with the standard of Committee of European Normalization (CEN), indicating its excellent slow release property. These good characteristics revealed that the hydrogel nanocomposite fertilizer formulation can be practically used in agricultural and horticultural applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. [Evaluation of the influence of sterilization method on the stability of carboxymethyl cellulose wound dressing].

    Science.gov (United States)

    Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš

    2013-04-01

    Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.

  16. Potential applications of radiation formed PVA/PVP hydrogel patches

    International Nuclear Information System (INIS)

    Zein, Z.; Hill, D.J.T.; Whittaker, A.K.

    2003-01-01

    It has been shown that radiation induced-polymerization and crosslinking is a very convenient method to produce hydrogels. The process is free of catalyst or initiator, which are mostly toxic, easy to control and allows sterilization simultaneously. In this sense, poly(vinyl alcohol) (PVA)/polyvinylpyrrolidone (PVP) hydrogel patches have been prepared by subjecting the polymer aqueous solutions to γ -irradiation. Under the action of ionizing radiation, the mechanism of hydrogel formation may be simplified into two main stages; formation of free radicals and their intermolecular combination. The five-line ESR spectra found following irradiation of PVP (powder) at 77 K and annealing up to 250 K suggests that free-radicals are mainly localized at tertiary carbon atoms. While for PVA, as the major component of the four-line ESR spectra at 77 K was a triplet and this was the only species observed at 298 K, so most radicals were formed through hydrogen abstraction from tertiary carbon atoms. If radicals localized on different molecular chains combine, new covalent bonds are formed. When a sufficiently high number of crosslinks form, an insoluble network (gel) appears. It was observed that the gel fraction for PVA/PVP hydrogels increased with increasing irradiation dose and it seems that the gel fraction never reaches 100%. This implies that upon irradiation of PVA/PVP aqueous solutions, chain scission also accompanies crosslinking. Based on a toxicity test, it was found that none of this chain scission products produce detectable toxicity. The physico-chemical and mechanical properties of the PVA/PVP hydrogel obtained by irradiation of PVA/PVP (8.0 %wt / 4.8 %wt) solution with a crosslinking dose of 25 kGy were shown to yield properties most suitable for ideal wound covering. Additionally, as the hydrogel has a high water content and a relatively moderate water diffusion coefficient, it offers potential for transdermal drug delivery systems as well as for cosmetic

  17. Characterization and improvement of PVAl/PVP/PEG hydrogels

    International Nuclear Information System (INIS)

    Oliveira, Maria Jose A.; Parra, Duclerc F.; Almeida, Monise F.; Lugao, Ademar B.

    2009-01-01

    The use of hydrogels matrices for particular drug release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-vinyl-2-pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. In this study it was compared the hydrogels reticulation for irradiation gamma O 2 and N 2 atmosphere. The characterization of the hydrogels was conducted and the toxicity was evaluated. The dried hydrogel was analyzed by differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel determinations. The membranes have no toxicity and gel content revealed the crosslinking degree. (author)

  18. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings

    International Nuclear Information System (INIS)

    Klinkajon, Wimonwan; Supaphol, Pitt

    2014-01-01

    The incorporation of a metal ion, with antimicrobial activity, into an alginate dressing is an attractive approach to minimize infection in a wound. In this work, copper (II) cross-linked alginate hydrogels were successfully prepared using a two-step cross-linking procedure. In the first step, solid alginate films were prepared using a solvent-casting method from soft gels of alginate solutions that had been lightly cross-linked using a copper (II) (Cu 2+ ) sulfate solution. In the second step, the films were further cross-linked in a corresponding Cu 2+ sulfate solution using a dipping method to further improve their dimensional stability. Alginate solution (at 2%w/v) and Cu 2+ sulfate solution (at 2%w/v) in acetate buffer at a low pH provided soft films with excellent swelling behavior. An increase in either Cu 2+ ion concentration or cross-linking time led to hydrogels with more densely-cross-linked networks that limited water absorption. The hydrogels clearly showed antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis and Streptococcus pyogenes, which was proportional to the Cu 2+ ion concentration. Blood coagulation studies showed that the tested copper (II) cross-linked alginate hydrogels had a tendency to coagulate fibrin, and possibly had an effect on pro-thrombotic coagulation and platelet activation. Conclusively, the prepared films are likely candidates as antibacterial wound dressings. (paper)

  19. Fabrication of chemically cross-linked porous gelatin matrices.

    Science.gov (United States)

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  20. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    International Nuclear Information System (INIS)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-01-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost

  1. Preparation and properties of GO-PVA composite hydrogel with oriented structure

    Science.gov (United States)

    Liu, Huanqing; Zhang, Gongzheng; Li, Huanjun

    2017-03-01

    We fabricated GO-PVA composite hydrogels with oriented structure by directional freezing and repeated freeze-thawing, which owned superior mechanical property and thermostability than PVA hydrogel. Due to physical interactions such as hydrogen bonding between surface of GO and PVA chains, GO-PVA composite hydrogel possessed higher crosslinking density and smaller pore size and can resist higher temperature and stronger force from outside than PVA hydrogel. These unique properties will endow GO-PVA hydrogel with greater potential application in biomedical materials.

  2. Preparation of crosslinked carboxymethylcellulose (CMC) by 60 Co γ-ray irradiation and its biodegradable properties

    International Nuclear Information System (INIS)

    Lim, Youn Mook; Lee, Joon Ho; Nho, Young Chang; Son, Tae Il

    2007-01-01

    Biodegradable and biocompatible carboxymethylcellulose (CMC) hydrogels for personal care products such as infants diapers and feminine hygiene products were prepared by a γ- irradiation crosslinking technique. Hydrogels were prepared as a function of the CMC concentration, total dose, and degree of substitution (DS), and their physical properties such as the gel fraction, swelling ratio, pH-responsibility and biodegradability were investigated. The irradiation of an aqueous CMC solution led to a gelation in an aqueous solution of more than 10 w%, and the gel percent increased as the CMC concentration, total dose and DS increased. The equilibrium swelling behaviors of the hydrogels prepared in various conditions were examined in an aqueous solution, and the pH-response at a pH of 1.2 and 6.8 was investigated. CMC hydrogels showed a high gelation at a high CMC concentration with DS 1.2. Lastly, the effects of the crosslinking degree of the CMC on the hydrolysis reaction were examined by cellulase from Trichoderma reseei. It was found that the degradable reaction depended on the degree of the crosslinking of the CMC. Intermolecular crosslinking reactions were confirmed by the ESR spectra

  3. Development of swellable local implants of a polyethyleneimine-poly(vinyl pyrrolidone) (PEI-PVP) hydrogel as a socket filler.

    Science.gov (United States)

    Chang, Ching-Wen; Ho, Hsiu-O; Lo, Yi-June; Lee, Sheng-Yang; Yang, You-Ren; Sheu, Ming-Thau

    2012-01-01

    In this study, hydrogels composed of polyethyleneimine (PEI) and poly(vinyl pyrrolidone) K90 (PVP) cross-linked with various concentrations (0, 0.125, 0.25 and 0.5%) of glutaraldehyde were evaluated as a hydrogel filler for the local delivery of lidocaine after tooth extraction. The drug-release kinetics, swellability, cytotoxicity and wound healing after tooth extraction of these non-cross-linked and cross-linked PEI-PVP hydrogels were examined in male beagles and compared to values using Spongostan(®). Results demonstrated that the extent of cross-linking influenced the swelling of the resulting hydrogel, but the drug-release rates were similar. No significant changes were observed in gingival fibroblasts in contact with the PEI- PVP hydrogels or Spongostan(®). In the in vivo study, PEI-PVP hydrogels showed good retention in the socket for 2 days and showed comparable wound-healing rates within 2 weeks with those of Spongostan(®). In conclusion, PEI-PVP hydrogels are suitable for use as socket-dressing materials, and the release of local anaesthesia from PEI-PVP hydrogels can be sustained for a desirable period of time to prevent pain after a tooth extraction.

  4. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability.

    Science.gov (United States)

    Darabi, Mohammad Ali; Khosrozadeh, Ali; Mbeleck, Rene; Liu, Yuqing; Chang, Qiang; Jiang, Junzi; Cai, Jun; Wang, Quan; Luo, Gaoxing; Xing, Malcolm

    2017-08-01

    The advent of conductive self-healing (CSH) hydrogels, a class of novel materials mimicking human skin, may change the trajectory of the industrial process because of their potential applications in soft robots, biomimetic prostheses, and health-monitoring systems. Here, the development of a mechanically and electrically self-healing hydrogel based on physically and chemically cross-linked networks is reported. The autonomous intrinsic self-healing of the hydrogel is attained through dynamic ionic interactions between carboxylic groups of poly(acrylic acid) and ferric ions. A covalent cross-linking is used to support the mechanical structure of the hydrogel. Establishing a fair balance between the chemical and physical cross-linking networks together with the conductive nanostructure of polypyrrole networks leads to a double network hydrogel with bulk conductivity, mechanical and electrical self-healing properties (100% mechanical recovery in 2 min), ultrastretchability (1500%), and pressure sensitivity. The practical potential of CSH hydrogels is further revealed by their application in human motion detection and their 3D-printing performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics

    DEFF Research Database (Denmark)

    Yucel Falco, Cigdem; Falkman, Peter; Risbo, Jens

    2017-01-01

    Physical and chemical (crosslinked with genipin) hydrogels based on chitosan and dextran sulfate were developed and characterized as novel bio-materials suitable for probiotic encapsulation. The swelling of the hydrogels was dependent on the composition and weakly influenced by the pH of the media...

  6. Effect of pH on chitosan hydrogel polymer network structure.

    Science.gov (United States)

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  7. Design properties of hydrogel tissue-engineering scaffolds

    Science.gov (United States)

    Zhu, Junmin; Marchant, Roger E

    2011-01-01

    This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626

  8. Poly(vinyl alcohol)-Tannic Acid Hydrogels with Excellent Mechanical Properties and Shape Memory Behaviors.

    Science.gov (United States)

    Chen, Ya-Nan; Peng, Lufang; Liu, Tianqi; Wang, Yaxin; Shi, Shengjie; Wang, Huiliang

    2016-10-12

    Shape memory hydrogels have promising applications in a wide variety of fields. Here we report the facile fabrication of a novel type of shape memory hydrogels physically cross-linked with both stronger and weaker hydrogen bonding (H-bonding). Strong multiple H-bonding formed between poly(vinyl alcohol) (PVA) and tannic acid (TA) leads to their coagulation when they are physically mixed at an elevated temperature and easy gelation at room temperature. The amorphous structure and strong H-bonding endow the PVA-TA hydrogels with excellent mechanical properties, as indicated by their high tensile strengths (up to 2.88 MPa) and high elongations (up to 1100%). The stronger H-bonding between PVA and TA functions as the "permanent" cross-link and the weaker H-bonding between PVA chains as the "temporary" cross-link. The reversible breakage and formation of the weaker H-bonding imparts the PVA-TA hydrogels with excellent temperature-responsive shape memory. Wet and dried hydrogel samples with a deformed or elongated shape can recover to their original shapes when immersed in 60 °C water in a few seconds or at 125 °C in about 2.5 min, respectively.

  9. Preparation of crosslinked carboxymethylcellulose (CMC) by {sup 60} Co γ-ray irradiation and its biodegradable properties

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Youn Mook; Lee, Joon Ho; Nho, Young Chang [Radiation Research Center for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Son, Tae Il [Dept. of Biotechnology, College of Industrial Science, Graduate School, Chung Ang University, Seoul (Korea, Republic of)

    2007-05-15

    Biodegradable and biocompatible carboxymethylcellulose (CMC) hydrogels for personal care products such as infants diapers and feminine hygiene products were prepared by a γ- irradiation crosslinking technique. Hydrogels were prepared as a function of the CMC concentration, total dose, and degree of substitution (DS), and their physical properties such as the gel fraction, swelling ratio, pH-responsibility and biodegradability were investigated. The irradiation of an aqueous CMC solution led to a gelation in an aqueous solution of more than 10 w%, and the gel percent increased as the CMC concentration, total dose and DS increased. The equilibrium swelling behaviors of the hydrogels prepared in various conditions were examined in an aqueous solution, and the pH-response at a pH of 1.2 and 6.8 was investigated. CMC hydrogels showed a high gelation at a high CMC concentration with DS 1.2. Lastly, the effects of the crosslinking degree of the CMC on the hydrolysis reaction were examined by cellulase from Trichoderma reseei. It was found that the degradable reaction depended on the degree of the crosslinking of the CMC. Intermolecular crosslinking reactions were confirmed by the ESR spectra.

  10. Properties and toughening mechanisms of PVA/PAM double-network hydrogels prepared by freeze-thawing and anneal-swelling.

    Science.gov (United States)

    Ou, Kangkang; Dong, Xia; Qin, Chengling; Ji, Xinan; He, Jinxin

    2017-08-01

    It is well known that preparation method of hydrogels has a significant effect on their properties. In this paper, freeze-thawing and anneal-swelling were applied to prepare poly(vinyl alcohol)/polyacrylamide (PVA/PAM) double-network hydrogels with covalently and physically cross-linked networks. The properties of these hydrogels were investigated and compared to control hydrogels. Results indicated that hydrogels fabricated by freeze-thawing show larger pores size and higher swelling capacity than those made by anneal-swelling and control hydrogels. Hydrogels prepared by anneal-swelling exhibit higher mechanical strength, energy dissipation, fracture energy, gel fraction and crystallinity than those made by freeze-thawing and control hydrogels. Physical cross-linking plays a key role in formation of physical-chemical double-network. The toughening mechanism of double-network hydrogel is related to their chain-fracture behavior and elasticity. The results also indicated that appropriate methods can endow hydrogels with specific microstructures and properties which would broaden current hydrogels research and applications in biomedical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Carboxymethylcellulose hydrogel crosslinked with citric acid for biomedical application

    International Nuclear Information System (INIS)

    Capanema, Nadia S.V.; Mansur, Alexandra A.P.; Mansur, Herman S.; Universidade Federal de Minas Gerais

    2016-01-01

    The carboxymethylcellulose (CMCel) has been extensively used in order application as flexible polymer membrane. Biopolymers crosslinked have been studied to optimize their performance in biomedical applications. In this work, CMCel films with a degree of substitution (DS = 0.77) were prepared by evaporation of solvent and crosslinked with different concentrations of citric acid (CA). The synthesized CMCel was characterized by Infrared Spectroscopy by Fourier Transform X-ray spectroscopy (FTIR), and morphology assessed by scanning electron microscopy (SEM). Morphological analysis performed using the SEM indicated the crosslinked CMCel and not crosslinked with a very smooth and uniform appearance. The FTIR results indicated the modification of existing bands and appearance of a new band 1715 cm"-"1 suggesting that there has been change in the structure of the crosslinked CMCel. (author)

  12. Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties.

    Science.gov (United States)

    Karimi, Ali Reza; Khodadadi, Azam

    2016-10-12

    Fabrication of hydrogels based on chitosan (CS) with superb self-healing behavior and high mechanical and electrical properties has become a challenging and fascinating topic. Most of the conventional hydrogels lack these properties at the same time. Our objectives in this research were to synthesize, characterize, and evaluate the general properties of chitosan covalently cross-linked with zinc phthalocyanine tetra-aldehyde (ZnPcTa) framework. Our hope was to access an unprecedented self-healable three-dimensional (3D) nanostructure that would harvest the superior mechanical and electrical properties associated with chitosan. The properties of cross-linker such as the structure, steric effect, and rigidity of the molecule played important roles in determining the microstructure and properties of the resulting hydrogels. The tetra-functionalized phthalocyanines favor a dynamic Schiff-base linkage with chitosan to form a 3D porous nanostructure. Based on this strategy, the self-healing ability, as demonstrated by rheological recovery and macroscopic and microscopic observations, is introduced through dynamic covalent Schiff-base linkage between NH 2 groups in CS and benzaldehyde groups at cross-linker ends. The hydrogel was characterized using FT-IR, NMR, UV/vis, and rheological measurements. In addition, cryogenic scanning electron microscopy (cryo-SEM) was employed as a technique to visualize the internal morphology of the hydrogels. Study of the surface morphology of the hydrogel showed a 3D porous nanostructure with uniform morphology. Furthermore, incorporating the conductive nanofillers, such as carbon nanotubes (CNTs), into the structure can modulate the mechanical and electrical properties of the obtained hydrogels. Interestingly, these hydrogel nanocomposites proved to have very good film-forming properties, high modulus and strength, acceptable electrical conductivity, and excellent self-healing properties at neutral pH. Such properties can be finely tuned

  13. The characterization of wound dressing poly (vinyl pyrrolidone) hydrogels using gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Talita C.; Pinheiro, Christiano J.G., E-mail: talitacolombi@yahoo.com, E-mail: christrieste@yahoo.it [Universidade Federal do Espirito Santo (CCA/UFES), Alegre, ES (Brazil). Programa de Pós-Graduação em Engenharia Química; Paula, Heberth D., E-mail: hdpaula@gmail.com [Universidade Federal do Espirito Santo, Alegre (UFES), ES (Brazil). Departamento de Farmácia; Morais, Pedro A.B., E-mail: pedmora2005@gmail.com [Universidade Federal do Espirito Santo (UFES), Alegre, ES (Brazil). Departamento de Química

    2017-07-01

    The first hydrogel for wound dressing processed by radiation was developed in Poland in 1986 by the inventor Janusz M. Rosiak and reached the local market in 1992. Laboratories of developing countries, which face all kinds of restrictions, were seduced by the simplicity of the process and low cost of its raw materials. It was a technological breakthrough due to its painless product characteristics and having improved healing properties such as absorbing a high water capacity, attached to healthy skin, and being easy to remove, plus its intelligent production process combining sterilization and crosslinking in a simultaneous operation. The use of hydrogels as biomaterials has increased recently. Hydrogel wound dressings were prepared using the gamma ray irradiation technique. Radiation was applied as a tool for crosslinking and sterilization of these materials. The hydrogels are composed of poly (N-vinyl-2-pyrrolidone) (PVP), poly (ethylene glycol) (PEG) and agar at radiation doses of 15, 20, 25, 30 kGy. The influence of some process parameters on their properties was investigated by: sterilization, gel fraction, swelling measures and mechanical properties. Hydrogels with less than 20 kGy of radiation were not properly sterilized. The gel fraction and swelling increased with increasing radiation dose due to increased crosslinking density, and at 25kGy, obtained optimum swelling. No significant differences were found for the test of mechanical properties but hydrogel matrices of different doses of gamma radiation. (author)

  14. The characterization of wound dressing poly (vinyl pyrrolidone) hydrogels using gamma radiation

    International Nuclear Information System (INIS)

    Rezende, Talita C.; Pinheiro, Christiano J.G.; Paula, Heberth D.; Morais, Pedro A.B.

    2017-01-01

    The first hydrogel for wound dressing processed by radiation was developed in Poland in 1986 by the inventor Janusz M. Rosiak and reached the local market in 1992. Laboratories of developing countries, which face all kinds of restrictions, were seduced by the simplicity of the process and low cost of its raw materials. It was a technological breakthrough due to its painless product characteristics and having improved healing properties such as absorbing a high water capacity, attached to healthy skin, and being easy to remove, plus its intelligent production process combining sterilization and crosslinking in a simultaneous operation. The use of hydrogels as biomaterials has increased recently. Hydrogel wound dressings were prepared using the gamma ray irradiation technique. Radiation was applied as a tool for crosslinking and sterilization of these materials. The hydrogels are composed of poly (N-vinyl-2-pyrrolidone) (PVP), poly (ethylene glycol) (PEG) and agar at radiation doses of 15, 20, 25, 30 kGy. The influence of some process parameters on their properties was investigated by: sterilization, gel fraction, swelling measures and mechanical properties. Hydrogels with less than 20 kGy of radiation were not properly sterilized. The gel fraction and swelling increased with increasing radiation dose due to increased crosslinking density, and at 25kGy, obtained optimum swelling. No significant differences were found for the test of mechanical properties but hydrogel matrices of different doses of gamma radiation. (author)

  15. Studies on radiation synthesis of polyethyleneimine/acrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Sanju [ISOMED, Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India); Varshney, Lalit [ISOMED, Radiation Technology Development Section, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)]. E-mail: lalitv@magnum.barc.ernet.in; Tirumalesh, K. [Isotope Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)

    2006-07-15

    Polyethyleneimine(PEI)/acrylamide(AAM) hydrogels were synthesized by {gamma}-radiation-induced polymerization/crosslinking of aqueous mixtures containing different ratios of PEI and AAM. The gel percentage and equilibrium degree of swelling (EDS) of the synthesized hydrogels were investigated. The compositions of the hydrogels produced were found to be different from the feed composition. Ion-chromatography technique was used to determine the amount of Pb (II) and Cd (II) absorbed by the hydrogel. The maximum binding capacity of the PEI/AAM hydrogels, for Pb and Cd was found to be 19 and 12.6 mg/g, respectively (at 100 ppm). PEI/AAM hydrogels had better metal uptake efficiency than the pure AAM hydrogel at concentrations less than 50 ppm. Pure PEI was observed to be highly degrading type polymer on exposure to gamma radiation. TGA and FT-IR techniques were used to characterize the prepared hydrogels.

  16. Characterisation and Radiation Modification of Carrageenan in the Solid State

    International Nuclear Information System (INIS)

    Gulrez, S.; Al-Assaf, S.; Phillips, G.O.

    2010-01-01

    This study reports the modification of kappa-carrageenan in the solid state using gamma radiation (in the dose range of 1-25kGy) in the presence of unsaturated alkyne gas. The results showed maximum production of hydrogel at 5kGy with nearly 80% of starting material being converted to hydrogel form in the absence of a gellin agent. Higher irradiation doses at 25kGy resulted in reducing the hydrogel proportion to ~40% due to degradation. The molecular weight and distribution was determined by GPC-MALLS and the results showed a decrease in the mass recovery and molecular weight of the soluble fraction at 60C. The molecular weight results were in agreement with hydrogel data determined from the filtration method. There was an optimum increase in the viscosity, elasticity and mechanical strength at 5kGy which was followed by a decrease in the gel strength at higher doses (25kGy). Our study demonstrates the potential production of novel hydrogel based carrageenan obtained by irradiation in the absence of metal ions with possible new applications. A mechanism for the radiation induced cross-linking to produce superhelical aggregates in the absence of a gelling agent is proposed. (author)

  17. 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels.

    Science.gov (United States)

    Leppiniemi, Jenni; Lahtinen, Panu; Paajanen, Antti; Mahlberg, Riitta; Metsä-Kortelainen, Sini; Pinomaa, Tatu; Pajari, Heikki; Vikholm-Lundin, Inger; Pursula, Pekka; Hytönen, Vesa P

    2017-07-05

    We describe herein a nanocellulose-alginate hydrogel suitable for 3D printing. The composition of the hydrogel was optimized based on material characterization methods and 3D printing experiments, and its behavior during the printing process was studied using computational fluid dynamics simulations. The hydrogel was biofunctionalized by the covalent coupling of an enhanced avidin protein to the cellulose nanofibrils. Ionic cross-linking of the hydrogel using calcium ions improved the performance of the material. The resulting hydrogel is suitable for 3D printing, its mechanical properties indicate good tissue compatibility, and the hydrogel absorbs water in moist conditions, suggesting potential in applications such as wound dressings. The biofunctionalization potential was shown by attaching a biotinylated fluorescent protein and a biotinylated fluorescent small molecule via avidin and monitoring the material using confocal microscopy. The 3D-printable bioactivated nanocellulose-alginate hydrogel offers a platform for the development of biomedical devices, wearable sensors, and drug-releasing materials.

  18. Study of induced cross-linking by ionizing radiation of polyvinylpyrrolidone (PVP)/carboxymethylcellulose (CMC)

    International Nuclear Information System (INIS)

    Alcantara, Mara T.S.; Chirinos, Hugo; Amaral, Renata H.; Rogero, Sizue O.; Lugao, Ademar B.

    2005-01-01

    The polymeric hydrogels are materials with capacity to absorb great amount of water. They present interesting characteristics for many applications in the industry and as biomaterials. The hydrogel membrane with PVP, poly ethylene glycol and agar, crosslinked and sterilized simultaneously by radiation was introduced in the European market and now it is reaching other regions. In this work the hydrogel studied was synthesized with PVP and CMC and crosslinked by gamma radiation. It was applied factorial planning methodology using the gel fraction as basic parameter. Antagonistic interaction was observed between PVP and CMC. High concentrations of PVP help the crosslinking and the opposite with CMC. On the other hand, for low concentrations of PVP the dose influences considerable the gel fraction what it does not happen for high concentrations. From these results it was made an analysis of response surface allowing the optimization of the concentrations of the variables PVP and CMC. (author)

  19. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    Science.gov (United States)

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System.

    Science.gov (United States)

    Mufamadi, Maluta S; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Iyuke, Sunny E; Pillay, Viness

    2017-04-01

    The purpose of this study was to explore the use of molecular bio-imaging systems and biomechanical dynamics to elucidate the fate of a nanocomposite hydrogel system prepared by merging FITC-labeled nanolipobubbles within a cross-linked hydrogel network. The nanocomposite hydrogel system was characterized by size distribution analysis and zeta potential as well as shears thinning behavior, elastic modulus (G'), viscous loss moduli (G"), TEM, and FTIR. In addition, molecular bio-imaging via Vevo ultrasound and Cell-viZio techniques evaluated the stability and distribution of the nanolipobubbles within the cross-linked hydrogel. FITC-labeled and functionalized nanolipobubbles had particle sizes between 135 and 158 nm (PdI = 0.129 and 0.190) and a zeta potential of -34 mV. TEM and ultrasound imaging revealed the uniformity and dimensional stability of the functionalized nanolipobubbles pre- and post-embedment into the cross-linked hydrogel. Biomechanical characterization of the hydrogel by shear thinning behavior was governed by the polymer concentration and the cross-linker, glutaraldehyde. Ultrasound analysis and Cell-viZio bio-imaging were highly suitable to visualize the fluorescent image-guided nanolipobubbles and their morphology post-embedment into the hydrogel to form the NanoComposite system. Since the nanocomposite is intended for targeted treatment of neurodegenerative disorders, the distribution of the functionalized nanolipobubbles into PC12 neuronal cells was also ascertained via confocal microscopy. Results demonstrated effective release and localization of the nanolipobubbles within PC12 neuronal cells. The molecular structure of the synthetic surface peptide remained intact for an extended period to ensure potency for targeted delivery from the hydrogel ex vivo. These findings provide further insight into the properties of nanocomposite hydrogels for specialized drug delivery.

  1. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  2. Radiochemical preparation of PAAM hydrogels and their usage in agriculture

    International Nuclear Information System (INIS)

    Yousefzadeh, P.; Khajavi, M.; Sohrabpour, M.

    1994-01-01

    The polyacrylamide (PAAm) hydrogels are crosslinked polymers and have the interesting ability to release the retained additives to the surrounding media in a controlled manner. This property in turn may have application in agriculture (fertilizers, pesticides) or in medicine, etc. In this study PAAm aqueous solutions were irradiated by varying doses to find the optimum gelation dose and to investigate the following: 1. Radiation induced crosslinking of PAAm. 2. Effect of additives' concentration on the degree of crosslinking. 3. Measurement of the release rate of the additives (pesticides, microelements) versus different soil type and the gel granule size. The results show that the release rate of the additives is not a function of soil type but it rather depends on the background moisture content as well as on the hydrogel particle size. (author)

  3. Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels

    International Nuclear Information System (INIS)

    Zhang, Jingjing; Ma, Xiaoxuan; Fan, Daidi; Zhu, Chenhui; Deng, Jianjun; Hui, Junfeng; Ma, Pei

    2014-01-01

    Injectable hydrogel plays an important role in soft tissue filling and repair. We report an injectable hydrogel based on hyaluronic acid (HA) and human-like collagen (HLC), both with favorable biocompatibility and biodegradability. These two types of biomacromolecules were crosslinked with 1,4-butanediol diglycidyl ether to form a three-dimensional network. The redundant crosslinker was removed by dialysis and distillation. An HA-based hydrogel prepared by the same method was used as a control. The cytocompatibility was studied with a Cell Counting Kit-8 (CCK-8) test. Carbazole colorimetry was used to analyze the in vitro degradation rate. The histocompatibility was evaluated by hematoxylin and eosin (H and E) staining analysis and immunohistochemical analysis. The CCK-8 assay demonstrated that the HA/HLC hydrogel was less cytotoxic than the HA-based hydrogel and could promote baby hamster kidney cell (BHK) proliferation. The cell adhesion indicated that BHK could grow well on the surface of the materials and maintain good cell viability. The in vitro degradation test showed that the HA/HLC hydrogel had a longer degradation time and an excellent antienzyme ability. In vivo injection showed that there was little inflammatory response to HA/HLC after 1, 2, and 4 weeks. Therefore, the HA/HLC hydrogel is a promising biomaterial for soft tissue filling and repair. - Highlights: • Human-like collagen was used with hyaluronic acid to prepare soft tissue filling meterials. • 1,4-Butanediol diglycidyl ether (BDDE) was introduced to treat the hydrogels. • The addition of human-like collagen could improve the biological properties of hydrogels

  4. Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingjing; Ma, Xiaoxuan, E-mail: xiaoxuanma@163.com; Fan, Daidi, E-mail: fandaidi@nwu.edu.cn; Zhu, Chenhui; Deng, Jianjun; Hui, Junfeng; Ma, Pei

    2014-10-01

    Injectable hydrogel plays an important role in soft tissue filling and repair. We report an injectable hydrogel based on hyaluronic acid (HA) and human-like collagen (HLC), both with favorable biocompatibility and biodegradability. These two types of biomacromolecules were crosslinked with 1,4-butanediol diglycidyl ether to form a three-dimensional network. The redundant crosslinker was removed by dialysis and distillation. An HA-based hydrogel prepared by the same method was used as a control. The cytocompatibility was studied with a Cell Counting Kit-8 (CCK-8) test. Carbazole colorimetry was used to analyze the in vitro degradation rate. The histocompatibility was evaluated by hematoxylin and eosin (H and E) staining analysis and immunohistochemical analysis. The CCK-8 assay demonstrated that the HA/HLC hydrogel was less cytotoxic than the HA-based hydrogel and could promote baby hamster kidney cell (BHK) proliferation. The cell adhesion indicated that BHK could grow well on the surface of the materials and maintain good cell viability. The in vitro degradation test showed that the HA/HLC hydrogel had a longer degradation time and an excellent antienzyme ability. In vivo injection showed that there was little inflammatory response to HA/HLC after 1, 2, and 4 weeks. Therefore, the HA/HLC hydrogel is a promising biomaterial for soft tissue filling and repair. - Highlights: • Human-like collagen was used with hyaluronic acid to prepare soft tissue filling meterials. • 1,4-Butanediol diglycidyl ether (BDDE) was introduced to treat the hydrogels. • The addition of human-like collagen could improve the biological properties of hydrogels.

  5. Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels.

    Science.gov (United States)

    Xiang, Hengxue; Xia, Mengge; Cunningham, Alexander; Chen, Wei; Sun, Bin; Zhu, Meifang

    2017-08-01

    The effects of crosslinking density, polymer concentration and monomer ratio on the mechanical properties (tensile and compressive properties) of biocompatible clay/P(MEO 2 MA-co-OEGMA) nanocomposite (NC) hydrogels were investigated. These novel NC hydrogels, composed of inorganic/organic networks, were prepared via in-situ free radical polymerization. The results showed that with increasing inorganic crosslinking agent, i.e. clay concentration, an increase in the tensile strength, elongation at break and compressive strength was observed. Similarly, with increasing polymer concentration, the tensile strength and compressive strength of the NC hydrogels increased while the elongation at break decreased. Increasing the molar concentration of OEGMA in the comonomer led to an increase in the tensile strength of the NC hydrogels but a reduction in the compressive strength. Moreover, clay/P(MEO 2 MA-co-OEGMA) NC hydrogels presented good biocompatibility bolstering their application as tissue engineering scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Arct'Alg release from hydrogel membranes

    International Nuclear Information System (INIS)

    Amaral, Renata H.; Rogero, Sizue O.; Shihomatsu, Helena M.; Lugao, Ademar B.

    2009-01-01

    The hydrogel properties make them attractive for a variety of biomedical and pharmaceutical applications, primarily in drug delivery system. Synthetic hydrogels have been studied to develop new devices for drugs or cosmetic active agents release. Arct'Alg R is an extract derived from red algae biomass which has antioxidant, anti-inflammatory and tissue regeneration stimulant properties. This extract was incorporated to poly(N-vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) hydrogel membranes obtained by gamma rays crosslinking technique. The ionizing radiation presents the advantage to occur polymerization and sterilization simultaneously in the same process. The aim of this work was the in vitro release kinetic study of Arct'Alg R from hydrogel membranes during 24 hours to verify the possibility of use in cosmetic and dermatological treatments. Results showed that about 50% and 30% of incorporated Arct'Alg R was released from PVP and PVA hydrogel membrane devices respectively. (author)

  7. Microscale Strategies for Generating Cell-Encapsulating Hydrogels

    Directory of Open Access Journals (Sweden)

    Ali Khademhosseini

    2012-09-01

    Full Text Available Hydrogels in which cells are encapsulated are of great potential interest for tissue engineering applications. These gels provide a structure inside which cells can spread and proliferate. Such structures benefit from controlled microarchitectures that can affect the behavior of the enclosed cells. Microfabrication-based techniques are emerging as powerful approaches to generate such cell-encapsulating hydrogel structures. In this paper we introduce common hydrogels and their crosslinking methods and review the latest microscale approaches for generation of cell containing gel particles. We specifically focus on microfluidics-based methods and on techniques such as micromolding and electrospinning.

  8. Synthesis and characterization of high performance superabsorbent hydrogels using bis[2-(methacryloyloxyethyl] phosphate as crosslinker

    Directory of Open Access Journals (Sweden)

    A. A. L. Goncalves

    2016-03-01

    Full Text Available Various superabsorbent polymers (SAPs were synthesized by free radical copolymerization at 70°C using acrylic acid (AA, potassium acrylate (KA, N-isopropyl acrylamide (NIPAM and sulfopropyl methacrylate potassium salt (SPM as monomers, bis[2-(methacryloyloxyethyl] phosphate (BMEP as crosslinker and potassium persulfate (KPS as initiator. The optimization of the synthesis led to the preparation of a SAP with very high water absorption ability, with a maximum swelling of 2618 g water/g dry hydrogel. The most promising SAP was fully characterized and the absorption capacities were studied at different pH and ionic strengths. When this SAP was mixed with soil, the mixture was able to lose water more slowly. Also, this material revealed high loading capacity and showed good releasing profiles using urea as model fertilizer. Due to these advantageous properties, the synthesized SAP can be used in agricultural applications.

  9. ph Sensitive hydrogel as colon specific drug delivery

    International Nuclear Information System (INIS)

    Alarifi, A.S.

    2011-01-01

    γ-radiation induced graft copolymerization and crosslinking was for the synthesis of ph-sensitive hydrogels composed of poly (vinyl pyrrolidone) acrylic acid. The prepared hydrogels were subjected to swelling test to evaluate the effects of ph and ionic strength of the surrounding solution. Drastic changes in the swelling parameters where observed by changing the surrounding solution ph values. The release of ibuprofen from hydrogels was monitored as a function of time at ph 1 and ph 7 in order to evaluate the prepared copolymer ability for colon- specific drug carrier uses.

  10. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties.

    Science.gov (United States)

    Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin

    2017-01-01

    Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.

  11. Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure.

    Science.gov (United States)

    Liu, Yuanyuan; Jiang, Chen; Li, Shuai; Hu, Qingxi

    2016-08-01

    While the field of tissue engineered vascular grafts has greatly advanced, many inadequacies still exist. Successfully developed scaffolds require mechanical and structural properties that match native vessels and optimal microenvironments that foster cell integration, adhesion and growth. We have developed a small diameter, three-layered composite vascular scaffold which consists of electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves by combining the electrospinning and dip-coating methods. Scaffold morphology and mechanics were assessed, quantified and compared to native vessels. Scaffolds were seeded with Human Umbilical Vein Endothelial Cells (HUVECs), cultured in vitro for 3 days and were evaluated for cell viability and morphology. The results showed that composite scaffolds had adjustable mechanical strength and favorable biocompatibility, which is important in the future clinical application of Tissue-engineered vascular grafts (TEVGs). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    Science.gov (United States)

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery.

    Science.gov (United States)

    Barbucci, Rolando; Giani, Gabriele; Fedi, Serena; Bottari, Severino; Casolaro, Mario

    2012-12-01

    Hybrid magnetic hydrogels are of interest for applications in biomedical science as controlled drug-delivery systems. We have developed a strategy to obtain novel hybrid hydrogels with magnetic nanoparticles (NPs) of CoFe(2)O(3) and Fe(3)O(4) as crosslinker agents of carboxymethylcellulose (CMC) or hyaluronic acid (HYAL) polymers and we have tested these systems for controlled doxorubicin release. The magnetic NPs are functionalized with (3-aminopropyl)trimethoxysilane (APTMS) in order to introduce amino groups on the surface. The amino coating is determined and quantified by standard Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy methods, and by cyclic voltammetry, a novel approach that permits us to look at the solution properties of the functionalized NPs. The gel formation involves the creation of an amide bond between the carboxylic groups of CMC or HYAL and the amine groups of functionalized NPs, which work as crosslinking agents of the polymer chains. The hybrid hydrogels are chemically and morphologically characterized. The rheological and the water uptake properties of the hydrogels are also investigated. Under the application of an alternating magnetic field, the CMC-HYAL hybrid hydrogel previously loaded with doxorubicin shows a drug release greater than that showed by the CMC-HYAL hydrogel crosslinked with 1,3-diaminopropane. In conclusion, the presence of magnetic NPs makes the synthesized hybrid hydrogels suitable for application as a drug-delivery system by means of alternating magnetic fields. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Hydrogel-based piezoresistive sensor for the detection of ethanol

    Directory of Open Access Journals (Sweden)

    J. Erfkamp

    2018-04-01

    Full Text Available This article describes a low-cost sensor for the detection of ethanol in alcoholic beverages, which combines alcohol-sensitive hydrogels based on acrylamide and bisacrylamide and piezoresistive sensors. For reproducible measurements, the reversible swelling and deswelling of the hydrogel were shown via microscopy. The response time of the sensor depends on the swelling kinetics of the hydrogel. The selectivity of the hydrogel was tested in different alcohols. In order to understand the influence of monomer and crosslinker content on the swelling degree and on the sensitivity of the hydrogels, gels with variable concentrations of acrylamide and bisacrylamide were synthesized and characterized in different aqueous solutions with alcohol contents. The first measurements of such hydrogel-based piezoresistive ethanol sensors demonstrated a high sensitivity and a short response time over several measuring cycles.

  15. Study of crosslinking induced by gamma radiation in mixtures of polyacrylamide anionic and water

    International Nuclear Information System (INIS)

    Alcantara, M.T.S.; Brant, A.J.C.; Naime, N.; Guadagnin, H.C.; Ponce, P.; Lugao, A.B.

    2010-01-01

    Superabsorbent hydrogels are composed of three-dimensional polymeric networks that can absorb and retain body of water hundreds of times the weight of its dry weight. The hydrogels can be crosslinked by chemical or physical. In general, chemical crosslinking is performed in the presence of reactive substances of high toxicity at elevated temperatures, may cause harmful secondary reactions to final product quality. However, ionizing radiation provides the crosslinking in the absence of chemical initiators or crosslinkers, therefore without contamination or toxicity. It also allows the realization of the reaction at low temperatures. These materials find use in several application fields, such as sanitary pads, diapers, controlled release of nutrients to the soil, separation processes, water purification systems and controlled release of drugs. The purpose of this study was to assess the influence of gamma radiation in doses of 15 and 25 kGy, in reticulation system of polyacrylamide (PAAm) and water, which were characterized by swelling and Fourier Transform Infrared Spectroscopy (FTIR). The results show the importance of the amount of water in the reticulation. It was concluded that gamma radiation has excellent potential for the synthesis of hiperabsorbent hydrogels. (author)

  16. Resilin-like polypeptide-poly(ethylene gylcol) hybrid hydrogels for mechanically-demanding tissue engineering applications

    Science.gov (United States)

    McGann, Christopher Leland

    Technological progress in the life sciences and engineering has combined with important insights in the fields of biology and material science to make possible the development of biological substitutes which aim to restore function to damaged tissue. Numerous biomimetic hydrogels have been developed with the purpose of harnessing the regenerative capacity of cells and tissue through the rational deployment of biological signals. Aided by recombinant DNA technology and protein engineering methods, a new class of hydrogel precursor, the biosynthetic protein polymer, has demonstrated great promise towards the development of highly functional tissue engineering materials. In particular, protein polymers based upon resilin, a natural protein elastomer, have demonstrated outstanding mechanical properties that would have great value in soft tissue applications. This dissertation introduces hybrid hydrogels composed of recombinant resilin-like polypeptides (RLPs) cross-linked with multi-arm PEG macromers. Two different chemical strategies were employed to form RLP-PEG hydrogels: one utilized a Michael-type addition reaction between the thiols of cysteine residues present within the RLP and vinyl sulfone moieties functionalized on a multi-arm PEG macromer; the second system cross-links a norbornene-functionalized RLP with a thiol-functionalized multi-arm PEG macromer via a photoinitiated thiol-ene step polymerization. Oscillatory rheology and tensile testing confirmed the formation of elastic, resilient hydrogels in the RLP-PEG system cross-linked via Michael-type addition. These hydrogels supported the encapsulation and culture of both human aortic adventitial fibroblasts and human mesenchymal stem cells. Additionally, these RLP-PEG hydrogels exhibited phase separation behavior during cross-linking that led to the formation of a heterogeneous microstructure. Degradation could be triggered through incubation with matrix metalloproteinase. Photocross-linking was conferred to

  17. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.

    Science.gov (United States)

    Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit

    2018-02-01

    The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 3D printable conducting hydrogels containing chemically converted graphene.

    Science.gov (United States)

    Sayyar, Sepidar; Gambhir, Sanjeev; Chung, Johnson; Officer, David L; Wallace, Gordon G

    2017-02-02

    The development of conducting 3D structured biocompatible scaffolds for the growth of electroresponsive cells is critical in the field of tissue engineering. This work reports the synthesis and 3D processing of UV-crosslinkable conducting cytocompatible hydrogels that are prepared from methacrylated chitosan (ChiMA) containing graphenic nanosheets. The addition of chemically converted graphene resulted in mechanical and electrical properties of the composite that were significantly better than ChiMA itself, as well as improved adhesion, proliferation and spreading of L929 fibroblasts cells. The chemically converted graphene/ChiMA hydrogels were amenable to 3D printing and this was used to produce multilayer scaffolds with enhanced mechanical properties through UV-crosslinking.

  19. Synthesis of hydrogel via click chemistry for DNA electrophoresis.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella

    2017-09-01

    This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Physicochemical characteristics of gamma irradiation crosslinked poly(vinyl alcohol)/magnetite ferrogel composite

    OpenAIRE

    Marinović-Cincović, Milena T.; Radosavljević, Aleksandra N.; Krstić, Jelena I.; Spasojević, Jelena P.; Bibić, Nataša M.; Mitrić, Miodrag N.; Kačarević-Popović, Zorica M.

    2014-01-01

    Magnetic field sensitive gels, ferrogels are new promising class of hydrogels. The coupling of hydrogels and magnetic particles has potential application in soft actuators such as artificial muscles or for hyperthermia application. Here a composite of magnetite particles (Fe3O4) and poly(vinyl alcohol) (PVA) hydrogel is developed using gamma irradiation as a crosslinking agent. PVA and Fe3O4 were chosen because of their well-established biocompatibility, ra...

  1. Humidity Induces Changes in the Dimensions of Hydrogel-Coated Wool Yarns

    Directory of Open Access Journals (Sweden)

    Lanlan Wang

    2018-03-01

    Full Text Available Polymeric hydrogel based on acrylic acid (AA and N,N-dimethylacrylamide (DMAA was prepared by photopolymerization reaction, using nano-alumina as the inorganic crosslinker. Hydrogel-coated wool yarns determine their dimensional changes under humidity conditions. Surface morphology of the hydrogel-coated wool yarns was carried out using SEM microscopy. The hydrogel was further characterized by Fourier transformer infrared spectrum (FTIR, gel permeation chromatography (GPC, differential scanning calorimetry (DSC, thermogravimetry (TG and differential thermogravimetry (DTG. This contribution showed that UV-initiated polymerization coating wool yarns can change the functional properties of wool fibers.

  2. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    Science.gov (United States)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  3. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing.

    Science.gov (United States)

    Zhao, Lingling; Niu, Lijing; Liang, Hongze; Tan, Hui; Liu, Chaozong; Zhu, Feiyan

    2017-11-01

    pH and glucose dual-responsive injectable hydrogels were prepared through the cross-linking of Schiff's base and phenylboronate ester using phenylboronic-modified chitosan, poly(vinyl alcohol) and benzaldehyde-capped poly(ethylene glycol). Protein drugs and live cells could be incorporated into the hydrogels during the in situ cross-linking, displaying sustained and pH/glucose-triggered drug release from the hydrogels and cell viability and proliferation in the three-dimensional hydrogel matrix as well. Hence, the hydrogels with insulin and fibroblasts were considered as bioactive dressings for diabetic wound healing. A streptozotocin-induced diabetic rat model was used to evaluate the efficacy of hydrogel dressings in wound repair. The results revealed that the incorporation of insulin and L929 in the hydrogels could promote neovascularization and collagen deposition and enhance the wound-healing process of diabetic wounds. Thus, the drug- and cell-loaded hydrogels have promising potential in wound healing as a medicated system for various therapeutic proteins and live cells.

  4. Controlled release of diclofenac sodium from pH-responsive ...

    Indian Academy of Sciences (India)

    Administrator

    copolymerization of acrylic acid (AA) onto kappa-carrageenan, using ammonium persulfate ... troscopy was carried out to confirm the chemical structure of the hydrogel. ... of hydrogel systems and influence of pH of the ... Finally, the gel product was poured into 100 mL of ... chemical reaction during the matrix formation.

  5. Study on Chitosan-Polyvinyl Alcohol Inter polymeric ph-Responsive Hydrogels for Controlled Drug Delivery

    International Nuclear Information System (INIS)

    Abdel-Bary, E.M.; El-Sherbiny, I.M.; Abdelaal, M.Y.; Abdel-Razik, E.A.

    2005-01-01

    Two series of ph-responsive biodegradable interpenetrating polymeric (IPN) hydrogels composed of chitosan and poly(vinyl alcohol) (PVA) were prepared for controlled drug release investigations. The first series was chemically crosslinked with different concentrations of glutaraldehyde as a crosslinked and the second series was crosslinked by gamma-radiation. Degree of crosslinking has been controlled by the concentration of crosslinked as well as by gamma irradiation dose. The equilibrium swelling -reflecting the degree of crosslinks - were carried out for the gels at 37 degree C in buffer solutions of ph 2.1 and 7.4 (simulated gastric and intestinal fluids respectively). 5-fluorouracil (5- FU) was entrapped, as a model therapeutic agent, in the hydrogels and equilibrium-swelling studies were carried out for the drug-entrapped gels at 37 degree C. The in-vitro release profiles of the drug were established at 37 degree C in ph 2.1 and 7.4. FT-IR was employed to investigate the structural changes of the gels with different degrees of crosslinking

  6. [Determination of trace lead and cadmium in transgenic rice by crosslinked carboxymethyl konjac glucomannan microcolumn preconcentration combined with graphite furnace atomic absorption spectrometry].

    Science.gov (United States)

    Liu, Hua-qing; Li, Sheng-qing; Qu, Yang; Chen, Hao

    2012-02-01

    A novel method was developed for the determination of trace lead and cadmium in transgenic brown rice based on separation and preconcentration with a micro column packed with crosslinked carboxymethyl konjac glucomannan (CCMKGM) prior to its determination by graphite furnace atomic absorption spectrometry. Variables affecting the separation and preconcentration of lead and cadmium, such as the acidity of the aqueous solution, sample flow rate and volume, and eluent concentration and volume, were optimized. Under optimized condition, detection limits of the method for the determination of trace lead and cadmium in transgenic brown rice were 0.11 and 0.002 microg x L(-1), respectively. The obtained results of lead and cadmium in the certified reference material (GBW10010, GBS1-1) were in good agreement with the certified values. The recoveries were in the range of 90%-103% and 93%-105% for detection of Pb and Cd in transgenic brown rice and the wild-type brown rice samples respectively. This study could provide technical support for determination of trace Pb and Cd in transgenic rice.

  7. Crosslinked poly(vinyl alcohol hydrogels for wound dressing applications: A review of remarkably blended polymers

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available A series of excellent poly(vinyl alcohol (PVA/polymers blend hydrogel were reviewed using different crosslinking types to obtain proper polymeric dressing materials, which have satisfied biocompatibility and sufficient mechanical properties. The importance of biodegradable–biocompatible synthetic polymers such as PVA, natural polymers such as alginate, starch, and chitosan or their derivatives has grown significantly over the last two decades due to their renewable and desirable biological properties. The properties of these polymers for pharmaceutical and biomedical application needs have attracted much attention. Thus, a considered proportion of the population need those polymeric medical applications for drug delivery, wound dressing, artificial cartilage materials, and other medical purposes, where the pressure on alternative polymeric devices in all countries became substantial. The review explores different polymers which have been blended previously in the literature with PVA as wound dressing blended with other polymeric materials, showing the feasibility, property change, and purpose which are behind the blending process with PVA.

  8. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties

    Directory of Open Access Journals (Sweden)

    Fahad Naeem

    2017-08-01

    Full Text Available Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol. Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc, volume fraction of polymer (V2,s, solvent interaction parameter (χ and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and DSC differential scanning calorimetry (DSC and scanning electron microscopy (SEM. Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.

  9. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation.

    Directory of Open Access Journals (Sweden)

    Michael V Turturro

    Full Text Available The spatial presentation of immobilized extracellular matrix (ECM cues and matrix mechanical properties play an important role in directed and guided cell behavior and neovascularization. The goal of this work was to explore whether gradients of elastic modulus, immobilized matrix metalloproteinase (MMP-sensitivity, and YRGDS cell adhesion ligands are capable of directing 3D vascular sprout formation in tissue engineered scaffolds. PEGDA hydrogels were engineered with mechanical and biofunctional gradients using perfusion-based frontal photopolymerization (PBFP. Bulk photopolymerized hydrogels with uniform mechanical properties, degradation, and immobilized biofunctionality served as controls. Gradient hydrogels exhibited an 80.4% decrease in elastic modulus and a 56.2% decrease in immobilized YRGDS. PBFP hydrogels also demonstrated gradients in hydrogel degradation with degradation times ranging from 10-12 hours in the more crosslinked regions to 4-6 hours in less crosslinked regions. An in vitro model of neovascularization, composed of co-culture aggregates of endothelial and smooth muscle cells, was used to evaluate the effect of these gradients on vascular sprout formation. Aggregate invasion in gradient hydrogels occurred bi-directionally with sprout alignment observed in the direction parallel to the gradient while control hydrogels with homogeneous properties resulted in uniform invasion. In PBFP gradient hydrogels, aggregate sprout length was found to be twice as long in the direction parallel to the gradient as compared to the perpendicular direction after three weeks in culture. This directionality was found to be more prominent in gradient regions of increased stiffness, crosslinked MMP-sensitive peptide presentation, and immobilized YRGDS concentration.

  10. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air.

    Science.gov (United States)

    Jin, Yifei; Liu, Chengcheng; Chai, Wenxuan; Compaan, Ashley; Huang, Yong

    2017-05-24

    Three dimensional (3D) bioprinting technology enables the freeform fabrication of complex constructs from various hydrogels and is receiving increasing attention in tissue engineering. The objective of this study is to develop a novel self-supporting direct hydrogel printing approach to extrude complex 3D hydrogel composite structures in air without the help of a support bath. Laponite, a member of the smectite mineral family, is investigated to serve as an internal scaffold material for the direct printing of hydrogel composite structures in air. In the proposed printing approach, due to its yield-stress property, Laponite nanoclay can be easily extruded through a nozzle as a liquid and self-supported after extrusion as a solid. Its unique crystal structure with positive and negative charges enables it to be mixed with many chemically and physically cross-linked hydrogels, which makes it an ideal internal scaffold material for the fabrication of various hydrogel structures. By mixing Laponite nanoclay with various hydrogel precursors, the hydrogel composites retain their self-supporting capacity and can be printed into 3D structures directly in air and retain their shapes before cross-linking. Then, the whole structures are solidified in situ by applying suitable cross-linking stimuli. The addition of Laponite nanoclay can effectively improve the mechanical and biological properties of hydrogel composites. Specifically, the addition of Laponite nanoclay results in a significant increase in the Young's modulus of each hydrogel-Laponite composite: 1.9-fold increase for the poly(ethylene glycol) diacrylate (PEGDA)-Laponite composite, 7.4-fold increase for the alginate-Laponite composite, and 3.3-fold increase for the gelatin-Laponite composite.

  11. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Chiku, Masanobu; Tomita, Shoji; Higuchi, Eiji; Inoue, Hiroshi

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  12. Biosynthetic hydrogels--studies on chemical and physical characteristics on long-term cellular response for tissue engineering.

    Science.gov (United States)

    Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan

    2014-07-01

    Biosynthetic hydrogels can meet the drawbacks caused by natural and synthetic ones for biomedical applications. In the current article we present a novel biosynthetic alginate-poly(propylene fumarate) copolymer based chemically crosslinked hydrogel scaffolds for cardiac tissue engineering applications. Partially crosslinked PA hydrogel and fully cross linked PA-A hydrogel scaffolds were prepared. The influence of chemical and physical (morphology and architecture of hydrogel) characteristics on the long term cellular response was studied. Both these hydrogels were cytocompatible and showed no genotoxicity upon contact with fibroblast cells. Both PA and PA-A were able to resist deleterious effects of reactive oxygen species and sustain the viability of L929 cells. The hydrogel incubated oxidative stress induced cells were capable of maintaining the intra cellular reduced glutathione (GSH) expression to the normal level confirmed their protective effect. Relatively the PA hydrogel was found to be unstable in the cell culture medium. The PA-A hydrogel was able to withstand appreciable cyclic stretching. The cyclic stretching introduced complex macro and microarchitectural features with interconnected pores and more structured bound water which would provide long-term viability of around 250% after the 24th day of culture. All these qualities make PA-A hydrogel form a potent candidate for cardiac tissue engineering. © 2013 Wiley Periodicals, Inc.

  13. DESIGN AND CHARACTERIZATION OF A BIOCOMPATIBLE PHYSICAL HYDROGEL BASED ON SCLEROGLUCAN FOR TOPICAL DRUG DELIVERY.

    Science.gov (United States)

    Paolicelli, Patrizia; Varani, Gabriele; Pacelli, Settimio; Ogliani, Elisa; Nardoni, Martina; Petralito, Stefania; Adrover, Alessandra; Casadei, Maria Antonietta

    2017-10-15

    Physical hydrogels of a high-carboxymethylated derivative of scleroglucan (Scl-CM 300 ) were investigated as potential systems for topical drug delivery using three different therapeutic molecules (fluconazole, diclofenac and betamethasone). Rheological tests were carried out on drug-loaded hydrogels along with in-vitro release studies in a vertical Franz cell, in order to investigate if and how different drugs may influence the rheological and release properties of Scl-CM 300 hydrogels. Experimental results and theoretical modeling highlighted that, in the absence of drug/polymer interactions (as for fluconazole and betamethasone) Scl-CM 300 matrices offer negligible resistance to drug diffusion and a Fickian transport model can be adopted to estimate the effective diffusion coefficient in the swollen hydrogel. The presence of weak drug/hydrogel chemical bonds (as for diclofenac), confirmed by frequency sweep tests, slow down the drug release kinetics and a non-Fickian two-phase transport model has to be adopted. In-vivo experiments on rabbits evidenced optimal skin tolerability of Scl-CM 300 hydrogels after topical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics.

    Science.gov (United States)

    Zheng, Wen Jiang; An, Ning; Yang, Jian Hai; Zhou, Jinxiong; Chen, Yong Mei

    2015-01-28

    Tough Al-alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been synthesized by introducing an interpenetrating network with hybrid physically cross-linked alginate and chemically cross-linked PNIPAM. Varying the concentration of AlCl3 regulates the mechanical properties of the tough hydrogel and tunes its lower critical solution temperature (LCST) as well. The tough Al-alginate/PNIPAM exhibits 6.3 ± 0.3 MPa of compressive stress and 9.95 of uniaxial stretch. Tunability of LCST is also achieved in a wide range within 22.5-32 °C. A bending beam actuator and a four-arm gripper made of bilayer (Na-alginate/PNIPAM)/(Al-alginate/PNIPAM) hydrogel as prototype of all-hydrogel soft robotics are demonstrated. A finite element (FE) simulation model is developed to simulate the deformation of the soft robotics. The FE simulation not only reproduces the deformation process of performed experiments but also predicts more complicated devices that can be explored in the future. This work broadens the application of temperature-responsive PNIPAM-based hydrogels.

  15. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    Science.gov (United States)

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N 3 ). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N 3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Modulation of the mechanical properties of ventricular extracellular matrix hydrogels with a carbodiimide crosslinker and investigation of their cellular compatibility

    Directory of Open Access Journals (Sweden)

    Kyohei Fujita

    2018-01-01

    Full Text Available Hydrogels made from the cardiac extracellular matrix (ECM as two-dimensional (2D or 3D cell-culture substrates have beneficial biochemical effects on the differentiation of stem cells into cardiomyocytes. The mechanical properties of the substrates that match those of the host tissues have been identified as critical biophysical cues for coaxing the tissue-specific differentiation of stem cells. The objectives of the present study are (1 to fabricate hydrogels comprising pure ventricular ECM (vECM, (2 to make the gels possess mechanical properties similar to those of the decellularized ventricular tissue, and (3 to evaluate the cellular compatibility of the hydrogels. In order to achieve these aims, (1 a simplified protocol was developed to produce vECM solution easily and rapidly, (2 N-(3-Dimethylaminopropyl-N’-ethylcarbodiimide hydrochloride (EDAC was chosen to crosslink the hydrogels made from the vECM solution to enhance their mechanical properties and stabilize the microstructure of the gels, (3 rat embryonic fibroblasts or cardiomyocytes were cultured on these gels to determine the cellular compatibility of the gels. In particular, the nonlinearity and viscoelasticity of the gels were characterized quantitatively using a newly proposed nonlinear Kelvin model. The results showed that EDAC treatment allowed modulation of the mechanical properties of the gels to the same level as those of decellularized ventricular tissue in terms of the equilibrium elasticity and relaxation coefficient. Cell culture confirmed the cellular compatibility of the gels. Furthermore, an empirical relationship between the equilibrium elastic modulus of the gels and the vECM and EDAC concentrations was derived, which is important to tailor the mechanical properties of the gels. Finally, the influence of the mechanical properties of the gels on the behavior of cultured fibroblasts and cardiomyocytes was discussed.

  17. One-pot synthesis of a chitosan-based hydrogel as a potential device for magnetic biomaterial

    International Nuclear Information System (INIS)

    Paulino, Alexandre T.; Guilherme, Marcos R.; Almeida, Elisangela A.M.S. de; Pereira, Antonio G.B.; Muniz, Edvani C.; Tambourgi, Elias B.

    2009-01-01

    This describes the cross-linking/co-polymerization reaction of chitosan (CS), acrylic acid (AAc), and N, N'-methylenebisacrylamide (MBA) in the presence of citrate-covered-γ-Fe 2 O 3 nanoparticules. A gelling process was verified by means of spectroscopic methods; Fourier transform infrared (FT-IR) and solid-state 13 C-CP/MAS nuclear magnetic resonance (NMR). The corresponding signals of the gelling process, in the 13 C NMR spectra, for the magnetic hydrogel were shifted to lower values due to embedding of the citrate-covered-γ-Fe 2 O 3 nanoparticules. The X-ray diffraction (XRD) confirmed that the crystallinity of the magnetic hydrogel exhibited a different crystalline structure to that without magnetic properties. The Moessbauer and magnetization analysis revealed that the magnetic hydrogel displays a high lattice strain, due to bonded iron atom covalence and superparamagnetism. From scanning electronic microscope (SEM) micrographs, no separation phase coexists between the magnetic nanoparticules and cross-linked hydrogel, indicating an excellent dispersion throughout the hydrogel. The swelling rate was dependent on the cross-linking degree of the hydrogel and ionic strength of the aqueous solution.

  18. Thermal gelation and tissue adhesion of biomimetic hydrogels

    International Nuclear Information System (INIS)

    Burke, Sean A; Ritter-Jones, Marsha; Lee, Bruce P; Messersmith, Phillip B

    2007-01-01

    Marine and freshwater mussels are notorious foulers of natural and manmade surfaces, secreting specialized protein adhesives for rapid and durable attachment to wet substrates. Given the strong and water-resistant nature of mussel adhesive proteins, significant potential exists for mimicking their adhesive characteristics in bioinspired synthetic polymer materials. An important component of these proteins is L-3,4-dihydroxylphenylalanine (DOPA), an amino acid believed to contribute to mussel glue solidification through oxidation and crosslinking reactions. Synthetic polymers containing DOPA residues have previously been shown to crosslink into hydrogels upon the introduction of oxidizing reagents. Here we introduce a strategy for stimuli responsive gel formation of mussel adhesive protein mimetic polymers. Lipid vesicles with a bilayer melting transition of 37 0 C were designed from a mixture of dipalmitoyl and dimyristoyl phosphatidylcholines and exploited for the release of a sequestered oxidizing reagent upon heating from ambient to physiologic temperature. Colorimetric studies indicated that sodium-periodate-loaded liposomes released their cargo at the phase transition temperature, and when used in conjunction with a DOPA-functionalized poly(ethylene glycol) polymer gave rise to rapid solidification of a crosslinked polymer hydrogel. The tissue adhesive properties of this biomimetic system were determined by in situ thermal gelation of liposome/polymer hydrogel between two porcine dermal tissue surfaces. Bond strength measurements showed that the bond formed by the adhesive hydrogel (mean = 35.1 kPa, SD = 12.5 kPa, n = 11) was several times stronger than a fibrin glue control tested under the same conditions. The results suggest a possible use of this biomimetic strategy for repair of soft tissues

  19. Glucantime drug delivery comparison between crosslinked membranes irradiation versus esterification

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria J.A.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: mariajhho@yahoo.com.b, E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Amato, Valdir S. [Hospital das Clinicas (HC/USP), Sao Paulo, SP (Brazil). Div. de Clinica de Molestias Infecciosas e Parasitarias

    2009-07-01

    Pentavalent Antimony (Glucantime) is the drug of choice for the treatment of Leishmaniasis. The disease is transmitted by the female bite of Phlebotomine sandflies. The sandflies inject the infective stage, metacyclic promastigotes, during blood meals. The protozoan parasite causes a spectrum of clinical diseases afflicting 12 million people worldwide. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-viny-2- pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel content determinations. The membranes have no toxicity and gel content has revealed the crosslink degree. The chemical crosslinking depends on the acid concentration. Increase of the acid concentration increases the gel content, the thermal stability of the PVAl component and decreases the swelling capacity. The thermal stability of irradiated membranes is decreased in the presence of plasticizer. In contrast to ionizing radiation membranes described in the literature and formulated with PVAl/PEG, our new membranes composed by PVAl/PVP/PEG are more flexible and presents higher swelling capacity. The drug was immobilized in the hydrogels structures and the glucantime drug delivery was determined. (author)

  20. Glucantime drug delivery comparison between crosslinked membranes irradiation versus esterification

    International Nuclear Information System (INIS)

    Oliveira, Maria J.A.; Parra, Duclerc F.; Lugao, Ademar B.; Amato, Valdir S.

    2009-01-01

    Pentavalent Antimony (Glucantime) is the drug of choice for the treatment of Leishmaniasis. The disease is transmitted by the female bite of Phlebotomine sandflies. The sandflies inject the infective stage, metacyclic promastigotes, during blood meals. The protozoan parasite causes a spectrum of clinical diseases afflicting 12 million people worldwide. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of poly (vinyl alcohol) (PVAl), poly (N-viny-2- pyrrolidone) (PVP) and poly (ethylene glycol). They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for differential scanning calorimetry (DSC), thermogravimetry (TGA), swelling and gel content determinations. The membranes have no toxicity and gel content has revealed the crosslink degree. The chemical crosslinking depends on the acid concentration. Increase of the acid concentration increases the gel content, the thermal stability of the PVAl component and decreases the swelling capacity. The thermal stability of irradiated membranes is decreased in the presence of plasticizer. In contrast to ionizing radiation membranes described in the literature and formulated with PVAl/PEG, our new membranes composed by PVAl/PVP/PEG are more flexible and presents higher swelling capacity. The drug was immobilized in the hydrogels structures and the glucantime drug delivery was determined. (author)

  1. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes

    International Nuclear Information System (INIS)

    De France, Kevin J.; Yager, Kevin G.; Chan, Katelyn J. W.; Corbett, Brandon; Cranston, Emily D.; Hoare, Todd

    2017-01-01

    Here, while injectable in situ cross-linking hydrogels have attracted increasing attention as minimally invasive tissue scaffolds and controlled delivery systems, their inherently disorganized and isotropic network structure limits their utility in engineering oriented biological tissues. Traditional methods to prepare anisotropic hydrogels are not easily translatable to injectable systems given the need for external equipment to direct anisotropic gel fabrication and/or the required use of temperatures or solvents incompatible with biological systems. Herein, we report a new class of injectable nanocomposite hydrogels based on hydrazone cross-linked poly(oligoethylene glycol methacrylate) and magnetically aligned cellulose nanocrystals (CNCs) capable of encapsulating skeletal muscle myoblasts and promoting their differentiation into highly oriented myotubes in situ. CNC alignment occurs on the same time scale as network gelation and remains fixed after the removal of the magnetic field, enabling concurrent CNC orientation and hydrogel injection. The aligned hydrogels show mechanical and swelling profiles that can be rationally modulated by the degree of CNC alignment and can direct myotube alignment both in two- and three-dimensions following coinjection of the myoblasts with the gel precursor components. As such, these hydrogels represent a critical advancement in anisotropic biomimetic scaffolds that can be generated noninvasively in vivo following simple injection.

  2. THE USE OF POLYSACCHARIDES EXTRACTED FROM SEED OF Persea americana var. Hass ON THE SYNTHESIS OF ACRYLIC HYDROGELS

    Directory of Open Access Journals (Sweden)

    Vicente Arturo Lara-Valencia

    Full Text Available This paper reports the use of polysaccharides extracted from seed of Persea americana var. Hass in the synthesis of acrylic hydrogels. The effects of the chemical composition (acrylamide/acrylic acid, the concentration of crosslinking agent (glycerol diacrylate and the type of initiation (redox, photoinitiation of the hydrogels were evaluated with and without polysaccharides. Xerogels were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC and scanning electron microscopy (SEM, while for the swollen hydrogels the swelling kinetic and mechanical properties were evaluated. The kinetic parameters were obtained using the second order equation proposed by Schott, where it is reported that by increasing the concentration of the crosslinking agent, the degree of swelling is reduced because of the greater structural level. The increase of the amount of acrylamide and the amount of polysaccharides causes also a decrease in the swelling degree. The type of initiation also affected the hydrogels swelling kinetic, the photoinitiated hydrogels were the ones that captured less water. Moreover, the increasing of the glass transition temperature and the compression modulus with the crosslinking agent concentration and molar ratio AAm/AAc are observed for hydrogels with and without polysaccharides. The results demonstrate a successful incorporation of polysaccharides into the polymeric network.

  3. Water absorbency of chitosan grafted acrylic acid hydrogels

    Science.gov (United States)

    Astrini, N.; Anah, L.; Haryono, A.

    2017-07-01

    Acrylic acid (AA) monomer was directly grafted onto chitosan (CTS) using potassium persulfate (KPS) as an initiator and methylenebisacrylamide (MBA) as a crosslinking agent under an inert atmosphere. One factor affecting the swelling capacity of the obtained hydrogel, KPS concentration, were studied. The hydrogel products were characterized using Fourier Transform Infrared spectroscopy (FTIR) for chemical structure and scanning electron microscopy (SEM) for morphology. Swelling of the hydrogel samples in distilled water and saline solution ( 9% NaCl ) was examined. Swelling capacity of the CTS-g-PAA hydrogels in distilled water (88.53 g/g) was higher than in NaCl solution (29.94 g/g) The highest swelling capacity value was obtained when the grafted reaction was carried out using 2.5wt% initiator

  4. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    Science.gov (United States)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  5. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.

    Science.gov (United States)

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2011-07-11

    Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.

  6. Combined gelatin-chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins

    NARCIS (Netherlands)

    Kuijpers, A. J.; Engbers, G. H. M.; Meyvis, T. K. L.; de Smedt, S. S. C.; Demeester, J.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J.

    2000-01-01

    Chemically cross-linked gelatin-chondroitin sulfate (ChS) hydrogels were prepared for the controlled release of small cationic proteins. The amount of chondroitin sulfate in the gelatin gels varied between 0 and 20 wt %. The chemical cross-link density, the degree of swelling, and the rheological

  7. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  8. Diffusion coefficient, porosity measurement, dynamic and equilibrium swelling studies of Acrylic acid/Polyvinyl alcohol (AA/PVA hydrogels

    Directory of Open Access Journals (Sweden)

    Nazar Mohammad Ranjha

    2015-06-01

    Full Text Available Objective of the present work was to synthesize hydrogels of acrylic acid/polyvinyl alcohol (AA/PVA by free radical polymerization by using glutaradehyde (GA as crosslinkers. The hydrogels were evaluated for swelling, diffusion coefficient and network parameters like the average molecular weight between crosslink’s, polymer volume fraction in swollen state, number of repeating units between crosslinks and crosslinking density by using Flory-Huggins theory. It was found that the degree of swelling of AA/PVA hydrogels increases greatly within the pH range 5-7. The gel fraction and porosity increased by increasing the concentration of AA or PVA. Increase in degree of crosslinking, decreased the porosity and inverse was observed in gel fraction. Selected samples were loaded with metoprolol tartrate. Drug release was studied in USP hydrochloric acid solution of pH 1.2 and phosphate buffer solutions of pH 5.5 and 7.5. Various kinetics models like zero order, first order, Higuchi and Peppas model were used for in vitro kinetic studies. The results showed that the drug release followed concentration dependent effect (First order kinetics with non-Fickian diffusion. FTIR and SEM used to study the structure, crystallinity, compatibility, thermal stability and morphology of prepared and drug loaded hydrogels respectively.

  9. High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism.

    Science.gov (United States)

    Han, Jingquan; Lei, Tingzhou; Wu, Qinglin

    2014-02-15

    Cellulose nanoparticle (CNP) reinforced polyvinyl alcohol-borax (PB) hydrogels were produced via a facile approach in an aqueous system. The effects of particle size, aspect ratio, crystal structure, and surface charge of CNPs on the rheological properties of the composite hydrogels were investigated. The rheological measurements confirmed the incorporation of well-dispersed CNPs to PB system significantly enhanced the viscoelasticity and stiffness of hydrogels. The obtained free-standing, high elasticity and mouldable hydrogels exhibited self-recovery under continuous step strain and thermo-reversibility under temperature sweep. With the addition of cellulose I nanofibers, a 19-fold increase in the high-frequency plateau of storage modulus was obtained compared with that of the pure PB. CNPs acted as multifunctional crosslinking agents and nanofillers to physically and chemically bridge the 3D network hydrogel. The plausible mechanism for the multi-complexation between CNPs, polyvinyl alcohol and borax was proposed to understand the relationship between the 3D network and hydrogel properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    Directory of Open Access Journals (Sweden)

    Dau M

    2017-10-01

    Full Text Available Michael Dau,1 Cornelia Ganz,2 Franziska Zaage,2 Bernhard Frerich,1 Thomas Gerber2 1Department of Oral, Maxillofacial and Plastic Surgery, University Medical Center Rostock, Rostock, Germany; 2Institute of Physics, Rostock University, Rostock, Germany Purpose: The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block for the use in surgery. Materials and methods: Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18 or a cross-linked hydrogel carrier (elastic block [EB], n=18 based on polyvinylpyrrolidone (PVP and silica sol, respectively. The animals were killed after 12 (n=12, 21 (n=12 and 63 days (n=12. The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP], antibody-based examinations (CD68 and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results: A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher

  11. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Biao; Liu, Mingxian, E-mail: liumx@jnu.edu.cn; Long, Zheru; Shen, Yan; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2017-01-01

    Sodium alginate (SA)/halloysite nanotubes (HNTs) composite hydrogels were successfully prepared by solution blending and cross-linking with calcium ions. HNTs can improve the physical properties and cytocompatibility of composite hydrogels. The static and shear viscosity of SA/HNTs solution increase by the addition of HNTs. FTIR suggests the presence of hydrogen bond interactions between HNTs and SA. The crystal structure of HNTs is retained in the composites as showed by the X-ray diffraction result. A porous structure with pore size of 100–250 μm is found in the hydrogels, which can provide a space for cell growth and migration. The compressive mechanical properties of composite hydrogels significantly increase compared to the pure SA hydrogel. The SA/HNTs composite hydrogels with 80% HNTs loading exhibit the compressive stress at 80% strain of 2.99 MPa, while the stress at 80% strain of pure SA hydrogel is only 0.8 MPa. The dynamic storage modulus of composite hydrogels also markedly increases with HNTs concentration. The differential scanning calorimetry endothermic peak area and swelling ratios in NaCl solution of the composite hydrogels decrease by the addition of HNTs. Preosteoblast (MC3T3-E1) culture results reveal that the SA/HNTs composites especially at relatively low HNTs loading show a significant increase in cells adhesion and proliferation compared to the pure SA hydrogel. All the results demonstrate that the SA/HNTs composite hydrogels show a promising application in bone tissue engineering. - Highlights: • Alginate/HNTs composite hydrogels were fabricated using Ca{sup 2+} cross-linking method. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate hydrogel. • HNTs can improve the cell attachment and proliferation of alginate.

  12. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels

    International Nuclear Information System (INIS)

    Huang, Biao; Liu, Mingxian; Long, Zheru; Shen, Yan; Zhou, Changren

    2017-01-01

    Sodium alginate (SA)/halloysite nanotubes (HNTs) composite hydrogels were successfully prepared by solution blending and cross-linking with calcium ions. HNTs can improve the physical properties and cytocompatibility of composite hydrogels. The static and shear viscosity of SA/HNTs solution increase by the addition of HNTs. FTIR suggests the presence of hydrogen bond interactions between HNTs and SA. The crystal structure of HNTs is retained in the composites as showed by the X-ray diffraction result. A porous structure with pore size of 100–250 μm is found in the hydrogels, which can provide a space for cell growth and migration. The compressive mechanical properties of composite hydrogels significantly increase compared to the pure SA hydrogel. The SA/HNTs composite hydrogels with 80% HNTs loading exhibit the compressive stress at 80% strain of 2.99 MPa, while the stress at 80% strain of pure SA hydrogel is only 0.8 MPa. The dynamic storage modulus of composite hydrogels also markedly increases with HNTs concentration. The differential scanning calorimetry endothermic peak area and swelling ratios in NaCl solution of the composite hydrogels decrease by the addition of HNTs. Preosteoblast (MC3T3-E1) culture results reveal that the SA/HNTs composites especially at relatively low HNTs loading show a significant increase in cells adhesion and proliferation compared to the pure SA hydrogel. All the results demonstrate that the SA/HNTs composite hydrogels show a promising application in bone tissue engineering. - Highlights: • Alginate/HNTs composite hydrogels were fabricated using Ca 2+ cross-linking method. • The hydrogen bond interactions between HNTs and alginate are confirmed. • HNTs can significantly enhance the mechanical properties of alginate hydrogel. • HNTs can improve the cell attachment and proliferation of alginate.

  13. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  14. A hydrogel actuator with flexible folding deformation and shape programming via using sodium carboxymethyl cellulose and acrylic acid.

    Science.gov (United States)

    Wu, Shuiping; Yu, Feng; Dong, Hua; Cao, Xiaodong

    2017-10-01

    Hydrogel actuator is an intelligent material, which can work as artificial muscle. However, most present hydrogel actuators, due to the inferior mechanical property and uncontrolled folding property, have always resulted in slipping off or the failure of grasping an object with specific shape and required weight. In order to solve this problem, here a tough hydrogel actuator with programmable folding deformation has been prepared by combining the "selective implanting method" and "ionic coordination". The shape and folding angle (from 0 to 180 o ) of hydrogel actuator can be precisely controlled by altering the location and size of the implanting parts that seems like the joints of finger. The ionic coordination is not only the force to trigger the folding of hydrogel, but also utilized to reinforce the mechanical property. We believed the superior mechanical and shape-programmable property can endow the hydrogel actuator with great application prospect in soft machine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Carboxymethyl Carrageenan Based Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Jumaah, F.N.; Ghani, M.A.; Abdullah, M.P.; Ahmad, A.

    2015-01-01

    Highlights: • The paper highlights the potential of carboxymethyl carrageenan based on iota and kappa to be utilized as host polymer. • The highest conductivity were achieved up to ∼10 −3 S cm −1 by carboxymethyl carrageenan without the addition of plasticizer. • The electrochemical stability windows of the films were electrochemically stable up to 3.0 V. - Abstract: A series of biodegradable carboxymethyl carrageenan based polymer electrolytes, which are carboxymethyl kappa carrageenan (sulphate per disaccharide) and carboxymethyl iota carrageenan (two sulphates per disaccharide), have been prepared by a solution casting technique with different ratios of lithium nitrate (LiNO 3 ) salts. Interestingly, the lithium ions tended to interact with the carbonyl group in the different modes of symmetry, as observed from reflection Fourier transform infrared (ATR-FTIR) spectroscopy analysis. In the carboxymethyl kappa carrageenan electrolytes, as the concentration of LiNO 3 increased, the asymmetric stretching peak of the carbonyl bond became dominant because it can be observed clearly with the shifting of the peak from 1592 to 1602 cm −1 due to the interaction between the lithium ion and the carbonyl group, while the broad O-H stretching peak became sharp and intense. However, for the carboxymethyl iota carrageenan, the asymmetry stretching mode of the carbonyl group shifted from 1567 to 1599 cm −1 , as the salt concentration increased. The shifting of the C-O-C peak also occurred in the iota-based electrolytes. However, the changes in the peak that represented SO 4 2− symmetric stretching were only detected when the ion pair formation was observed. It was proposed that the peak shifting was due to the presence of the lithium ion pathway, forming a dative bond between the lithium and oxygen in the carbonyl group. Accordingly, as more peak shifting was observed, the number of the ion pathways also increased. This hypothesis was supported by the impedance

  16. Development of hybrid cotton/hydrogel yarns with improved absorption properties for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pollini, Mauro; Paladini, Federica, E-mail: federica.paladini@unisalento.it; Sannino, Alessandro; Maffezzoli, Alfonso

    2016-06-01

    Hyperhidrosis, or excessive sweating, is an overlooked and potentially disabling symptom, which is often seen in social anxiety disorder. In this work an innovative advanced textile material was developed for application in the management of excessive sweating, preparing a drying yarn providing improved comfort. Hybrid cotton/hydrogel yarns were obtained by combining cotton with superabsorbent hydrogels through an optimization study focused on the achievement of the most promising product in terms of absorption properties and resistance to washings. Swelling and washing tests were performed using different hydrogels, and the effect of an additional crosslinking on the materials was also evaluated by testing different solutions containing Al{sup 3+} and Ca{sup 2+} ions. Scanning electron microscopy and infrared spectroscopy analyses were adopted to characterize morphology and chemical structure of the hydrogels undergoing different production processes. The biocompatibility of the hybrid fabrics was demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) through the extract method. - Highlights: • Novel textile based on natural fibres and superabsorbent hydrogels was developed. • The swelling ratio and the durability to washings were evaluated. • The effect of the choice of the hydrogel was studied. • The effects of additional crosslinking on hydrogel and fabrics were evaluated. • The optimized parameters determined durable and improved absorption properties.

  17. Radiation polymerization and crosslinking of N-isopropylacrylamide in aqueous solution and in solid state

    International Nuclear Information System (INIS)

    Safranj, A.; Yoshida, Masaru; Omichi, Hideki; Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi.

    1995-01-01

    Poly(N-isopropylacrylamide) hydrogels were synthesized by radiation induced simultaneous polymerization and cross-linking. Aqueous monomer solutions and pure monomer, without crosslinker, were irradiated in nitrogen atmosphere at a 60 Co gamma source. The conversion from monomer to polymer and cross-linked gel was investigated as a function of temperature and monomer concentration. The swelling behavior of the gels showed clear dependence on the synthesis conditions. (author)

  18. Construction of Injectable Double-Network Hydrogels for Cell Delivery.

    Science.gov (United States)

    Yan, Yan; Li, Mengnan; Yang, Di; Wang, Qian; Liang, Fuxin; Qu, Xiaozhong; Qiu, Dong; Yang, Zhenzhong

    2017-07-10

    Herein we present a unique method of using dynamic cross-links, which are dynamic covalent bonding and ionic interaction, for the construction of injectable double-network (DN) hydrogels, with the objective of cell delivery for cartilage repair. Glycol chitosan and dibenzaldhyde capped poly(ethylene oxide) formed the first network, while calcium alginate formed the second one, and in the resultant DN hydrogel, either of the networks could be selectively removed. The moduli of the DN hydrogel were significantly improved compared to that of the parent single-network hydrogels and were tunable by changing the chemical components. In situ 3D cell encapsulation could be easily performed by mixing cell suspension to the polymer solutions and transferred through a syringe needle before sol-gel transition. Cell proliferation and mediated differentiation of mouse chondrogenic cells were achieved in the DN hydrogel extracellular matrix.

  19. Topographical heterogeneity in transparent PVA hydrogels studied by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Ashit Kumar; Gupta, Siddhi, E-mail: siddhigupta@nmlindia.org; Mishra, Trilochan; Sinha, Arvind

    2012-02-01

    Physically crosslinked poly (vinyl alcohol) (PVA) hydrogels have a wide range of biomedical applications. Transparent and stable PVA hydrogels synthesized by freeze-thawing method are potential candidates to be used as tissue engineering scaffolds provided they exhibit suitable topographical roughness and surface energy. The effect of processing parameters i.e., polymer concentration and number of freeze-thaw cycles on the resulting topography of the freeze-thawed transparent hydrogels has been studied and quantified using non-contact mode of an atomic force microscope (AFM) and image analysis. Simultaneously captured phase contrast images have revealed significant information about morphological changes in the topographical features and crystallinity of the hydrogels. Topographical roughness was found to decrease as a function of number of freeze-thaw cycles.

  20. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2005-12-01

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance. (author)

  1. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    Science.gov (United States)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  2. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media.

    Science.gov (United States)

    Chou, Ying-Nien; Sun, Fang; Hung, Hsiang-Chieh; Jain, Priyesh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Chang, Yung; Wen, Ten-Chin; Yu, Qiuming; Jiang, Shaoyi

    2016-08-01

    For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate.

    Science.gov (United States)

    Xu, Kun; Tan, Ying; Chen, Qiang; An, Huiyong; Li, Wenbo; Dong, Lisong; Wang, Pixin

    2010-05-15

    Series of hydrophilic core-shell microgels with cross-linked poly(N-isopropylacrylamide) (PNIPAAm) as core and poly(vinyl amine) (PVAm) as shell are synthesized via surfactant-free emulsion polymerization. Then, the microgels are treated with a small amount of potassium persulfate (KPS) to generate free radicals on the amine nitrogens of PVAm, which subsequently initiate the graft copolymerization of acrylic acid (AA), acryloyloxyethyl trimethyl ammonium chloride (DAC), and acrylamide (AAm) onto microgels to prepare multi-responsive composite hydrogels. The composite hydrogels consist of cross-linked ungrafted polyampholyte chains as the first network and microgels with grafted polyampholyte chains as graft point and second network and show surprising mechanical strength and rapid response rate. The investigation shows the compress strength of composite hydrogels is up to 17-30 MPa, which is 60-100 times higher than that of the hydrogel matrix. The composite hydrogel shows reversible switch of transmittance when traveling the lowest critical temperature (LCST) of microgels. When the composite hydrogel swollen in pH 2.86 solution at ambient condition is immersed into the pH 7.00 solution at 45 °C, a rapid dynamic shrinking can be observed. And the character time (τ) of shrinking dynamic of composite hydrogel is 251.9 min, which is less than that of hydrogel matrix (τ=2273.7 min). Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Preparation and Properties of 3D Printed Alginate–Chitosan Polyion Complex Hydrogels for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Qiongqiong Liu

    2018-06-01

    Full Text Available Three-dimensional (3D printing holds great potential for preparing sophisticated scaffolds for tissue engineering. As a result of the shear thinning properties of an alginate solution, it is often used as 3D printing ink. However, it is difficult to prepare scaffolds with complexity structure and high fidelity, because the alginate solution has a low viscosity and alginate hydrogels prepared with Ca2+ crosslinking are mechanically weak. In this work, chitosan powders were dispersed and swelled in an alginate solution, which could effectively improve the viscosity of an alginate solution by 1.5–4 times. With the increase of chitosan content, the shape fidelity of the 3D printed alginate–chitosan polyion complex (AlCh PIC hydrogels were improved. Scanning electron microscope (SEM photographs showed that the lateral pore structure of 3D printed hydrogels was becoming more obvious. As a result of the increased reaction ion pairs in comparison to the alginate hydrogels that were prepared with Ca2+ crosslinking, AlCh PIC hydrogels were mechanically strong, and the compression stress of hydrogels at a 90% strain could achieve 1.4 MPa without breaking. In addition, human adipose derived stem cells (hASCs adhered to the 3D printed AlCh PIC hydrogels and proliferated with time, which indicated that the obtained hydrogels were biocompatible and could potentially be used as scaffolds for tissue engineering.

  5. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect.

    Science.gov (United States)

    Zhang, Yaqian; Zhang, Min; Jiang, Haoyang; Shi, Jinli; Li, Feibo; Xia, Yanhong; Zhang, Gongzheng; Li, Huanjun

    2017-12-01

    The layered nanocomposite hydrogel films containing chitosan (CS) and graphene oxide (GO) have been prepared by water evaporation induced self-assembly and subsequent physical cross-linking in alkaline solution. The layered CS/GO hydrogel films obtained have a nacre-like brick-and-mortar microstructure, which contributes to their excellent mechanical properties. The tensile strength and elongation at break of the hydrogel films with 5wt% GO are 5.35MPa and 193.5%, respectively, which are comparable to natural costal cartilage. Furthermore, the CS/GO hydrogel films exhibited pH-driven shape memory effect, and this unique phenomenon is mainly attributed to the reversible transition of partial physically cross-linking corresponding to hydrogen bondings and hydrophobic interactions between CS polymer chains due to pH changing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polymeric Micelles with Ionic Cores Containing Biodegradable Crosslinks for Delivery of Chemotherapeutic Agents

    OpenAIRE

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V.; Bronich, Tatiana K.

    2010-01-01

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca2+) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like n...

  7. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Directory of Open Access Journals (Sweden)

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  8. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gaihre, Bipin [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10 days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. - Highlights: • Zirconium ions crosslinked carboxymethyl cellulose microparticles were fabricated. • The microparticles were further stabilized by complexation with chitosan.

  9. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering

    International Nuclear Information System (INIS)

    Gaihre, Bipin; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we developed carboxymethyl cellulose (CMC) microparticles through ionic crosslinking with the aqueous ion complex of zirconium (Zr) and further complexing with chitosan (CS) and determined the physio-chemical and biological properties of these novel microparticles. In order to assess the role of Zr, microparticles were prepared in 5% and 10% (w/v) zirconium tetrachloride solution. Scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS) results showed that Zr was uniformly distributed on the surface of the microparticles as a result of which uniform groovy surface was obtained. We found that Zr enhances the surface roughness of the microparticles and stability studies showed that it also increases the stability of microparticles in phosphate buffered saline. The crosslinking of anionic CMC with cationic Zr and CS was confirmed by Fourier transform infrared spectroscopy (FTIR) results. The response of murine pre-osteoblasts (OB-6) when cultured with microparticles was investigated. Live/dead cell assay showed that microparticles did not induce any cytotoxic effects as cells were attaching and proliferating on the well plate as well as along the surface of microparticles. In addition, SEM images showed that microparticles support the attachment of cells and they appeared to be directly interacting with the surface of microparticle. Within 10 days of culture most of the top surface of microparticles was covered with a layer of cells indicating that they were proliferating well throughout the surface of microparticles. We observed that Zr enhances the cell attachment and proliferation as more cells were present on microparticles with 10% Zr. These promising results show the potential applications of CMC-Zr microparticles in bone tissue engineering. - Highlights: • Zirconium ions crosslinked carboxymethyl cellulose microparticles were fabricated. • The microparticles were further stabilized by complexation with chitosan.

  10. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine

    NARCIS (Netherlands)

    Douglas, T.E.L.; Wlodarczyk, M.; Pamula, E.; Declercq, H.A.; Mulder, E.L.W. de; Bucko, M.M.; Balcaen, L.; Vanhaecke, F.; Cornelissen, R.; Dubruel, P.; Jansen, J.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    Interest is growing in the use of hydrogels as bone tissue-engineering (TE) scaffolds due to advantages such as injectability and ease of incorporation of active substances such as enzymes. Hydrogels consisting of gellan gum (GG), an inexpensive calcium-crosslinkable polysaccharide, have been

  11. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    Science.gov (United States)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  12. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials.

    Science.gov (United States)

    Vu, Trang; Xue, Ye; Vuong, Trinh; Erbe, Matthew; Bennet, Christopher; Palazzo, Ben; Popielski, Lucas; Rodriguez, Nelson; Hu, Xiao

    2016-09-07

    This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt %) for the first group (ultrasonication), and 10 wt % for the second group (natural gel). Differential scanning calorimetry (DSC) and temperature modulated DSC (TMDSC) were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR) was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the samples' characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications, thanks to the

  13. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials

    Directory of Open Access Journals (Sweden)

    Trang Vu

    2016-09-01

    Full Text Available This study reports the formation of biocompatible hydrogels using protein polymers from natural silk cocoon fibroins and sheep wool keratins. Silk fibroin protein contains β-sheet secondary structures, allowing for the formation of physical cross-linkers in the hydrogels. Comparative studies were performed on two groups of samples. In the first group, ultrasonication was used to induce a quick gelation of a protein aqueous solution, enhancing the ability of Bombyx mori silk fibroin chains to quickly entrap the wool keratin protein molecules homogenously. In the second group, silk/keratin mixtures were left at room temperature for days, resulting in naturally-assembled gelled solutions. It was found that silk/wool blended solutions can form hydrogels at different mixing ratios, with perfectly interconnected gel structure when the wool content was less than 30 weight percent (wt % for the first group (ultrasonication, and 10 wt % for the second group (natural gel. Differential scanning calorimetry (DSC and temperature modulated DSC (TMDSC were used to confirm that the fibroin/keratin hydrogel system was well-blended without phase separation. Fourier transform infrared spectroscopy (FTIR was used to investigate the secondary structures of blended protein gels. It was found that intermolecular β-sheet contents significantly increase as the system contains more silk for both groups of samples, resulting in stable crystalline cross-linkers in the blended hydrogel structures. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to analyze the samples’ characteristic morphology on both micro- and nanoscales, which showed that ultrasonic waves can significantly enhance the cross-linker formation and avoid phase separation between silk and keratin molecules in the blended systems. With the ability to form cross-linkages non-chemically, these silk/wool hydrogels may be economically useful for various biomedical applications

  14. Experimental Investigation of Mechanical and Thermal Properties of Silica Nanoparticle-Reinforced Poly(acrylamide) Nanocomposite Hydrogels.

    Science.gov (United States)

    Zaragoza, Josergio; Babhadiashar, Nasim; O'Brien, Victor; Chang, Andrew; Blanco, Matthew; Zabalegui, Aitor; Lee, Hohyun; Asuri, Prashanth

    2015-01-01

    Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles.

  15. An evaluation of the thermal and mechanical properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application.

    Science.gov (United States)

    Curley, Colin; Hayes, Jennifer C; Rowan, Neil J; Kennedy, James E

    2014-12-01

    The treatment of irreparable knee meniscus tears remains a major challenge for the orthopaedic community. The main purpose of this research was to analyse the mechanical properties and thermal behaviour of a salt-modified polyvinyl alcohol hydrogel, in order to assess its potential for use as an artificial meniscal implant. Aqueous poly vinyl alcohol was treated with a sodium sulphate solution to precipitate out the polyvinyl alcohol resulting in a pliable hydrogel. The freeze-thaw process, a strictly physical method of crosslinking, was employed to crosslink the hydrogel. Physical crosslinks in the form of crystalline regions were induced within the hydrogel structure which resulted in a large increase in mechanical resistance. Results showed that the optimal sodium sulphate addition of 6.6% (w/v) Na2SO4 in 8.33% (w/v) PVA causes the PVA to precipitate out of its solution. The effect of multiple freeze thaw cycles was also investigated. Investigation comprised of a variety of well-established characterisation techniques such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), mechanical analysis, rheometry and swelling studies. DSC analysis showed that samples cross-linked using the freeze thaw process display a thermal shift due to increased crosslink density. FTIR analysis confirmed crystallisation is present at 1142cm(-1) and also showed that no chemical alteration occurs when PVA is treated with sodium sulphate. Swelling studies indicated that that PVA/sodium sulphate hydrogels absorb less water than untreated hydrogels due to increased amounts of PVA present. Compressive strength analysis of PVA/sodium sulphate hydrogels prepared at -80°C displayed average maximum loads of 2472N, 2482.4N and 2476N of over 1, 3 and 5 freeze thaw cycles respectively. Mechanical analysis of the hydrogel indicated that the material is thermally stable and resistant to breakdown by compressive force. These properties are crucial for

  16. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91–93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability. - Highlights: • HA/CS/PAAc hydrogels were synthesized by gamma-ray irradiation. • HA/CS/PAAc hydrogels exhibited 91–93% gel fractions under 15 kGy radiation. • All of the HA/CS/PAAc hydrogels exhibited high water contents of over 90%. • The hydrogel samples showed relatively high cell viabilities of more than

  17. Mechanical properties of poly(N-isopropylacrylamide-Co-itaconic acid) hydrogels

    International Nuclear Information System (INIS)

    Valderruten, N. E.; Quintana, J. R.; Katime, I.

    2001-01-01

    It is well known that polymers of N-isopropylacrylamide (NIPA) show lower critical solution temperature (LCST) behavior in water and its gels have a volume phase transition at about 34 degree centigree in water. In this study, we reported the polymerization of NIPA in the presence of N,N methylenebisacrylamide (BIS). Poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-itaconic acid) hydrogels were obtained by swelling the resultant solid xerogels to equilibrium in water. The effects of monomer composition and concentration of added cross-linking agent on the swelling behavior and mechanical properties of these hydrogels at 22 and 37 degree centigree were investigated, the latter involving measurements of shear in a DMTA system. The storage moduli at 22 degree centigree lay within the range 9.08-5.08 KPa. At a fixed BIS concentration, an increase from 22 to 37 degree centigree resulted in an increase in the shear moduli and the effective crosslinking density (v e ) and a decrease in the interaction parameter hydrogel/water, χ. (Author) 6 refs

  18. Preparation of wound dressing of polyvinyl alcohol/silk fibroin hydrogels by gamma radiation

    International Nuclear Information System (INIS)

    Kewsuwan, Prartana; Pongpat, Suchada; Sonsuk, Manit; Pongpat, Suchada

    2004-10-01

    Poly vinylalcohol/silk fibroin (PVA/SF) hydrogels were prepared by γ-radiation. The preparation conditions such as absorbed doses and PVA/SF concentrations were investigated. When exposed to γ -radiation, PVA/SF was crosslinked to yield high water absorption materials with water content of 100 - 1000% of their dried weight depending on the preparation conditions. The crosslinked density seems to be the main factor governing the swelling of these gels. The swelling behaviors in NaCl aqueous solutions were also investigated. The swelling of PVA/SF hydrogels decreases when exposed to electrolyte solution. With an increase of absorbed dose, the gel fraction of PVA/SF increases

  19. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.

    Science.gov (United States)

    Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang

    2014-04-01

    Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D.; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  1. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  2. Nanoclay filled hydrogels of poly (2-hydroxyethyl methacrylate-co-acrylamide) copolymers prepared by gamma radiation

    International Nuclear Information System (INIS)

    Rapado Paneque, M.; Matos Cause, W.; Barreras Gonzalez, G.; Griffith Perez, J.; Amalvy, J. I.; Van Espen, P.; Peniche, C.

    2011-01-01

    Hydrogels are polymers characterized by their ability to absorb a considerable amount of water. Hydrogels consist of polymer molecules physically or chemically crosslinked, forming a molecular network, so that in water they swell to an equilibrium value, preserving their shape [1]. The aim of this work was to prepare by gamma radiation poly (2-hydroxyethyl methacrylate-co-acrylamide) hydrogels, p(HEMA-co-AAm), doped with Nanoclay (laponite XLG). (Author)

  3. Gamma (γ) irradiated and non-irradiated poly (L-lactide) carboxymethyl starch composite film

    Science.gov (United States)

    Yusof, Mohd Reusmaazran; Shamsudin, Roslinda; Abdullah, Yusof; Yaacob, Norzita

    2018-04-01

    A film of poly (L-lactide)(PLLA) and carboxymethyl starch (CMS) is prepared by casting evaporation method. The use of CMS blended with PLLA induces the porous film that is potentially used in tissue engineering applications. PLLA is blended with CMS in solution form and rolled on glass to produce a film. The film is then irradiated with gamma-ray (γ) at 10 and 80 kGy. FTIR analysis indicates weak interaction between PLLA and CMS at 10 kGy. Degradation and crosslinking are predicted to have occurred simultaneously at 10 kGy and massive degradation at 80 kGy as indicated in differential scanning calorimetry (DSC) curves. Mechanical analysis shows a higher strength at 10 kGy indicating that crosslinking has occured whereas degradation takes place at higher doses as shown in the reduction of mechanical strength for both PLLA and PLLA/CMS.

  4. A Review on Recent Advances in Stabilizing Peptides/Proteins upon Fabrication in Hydrogels from Biodegradable Polymers

    OpenAIRE

    Faisal Raza; Hajra Zafar; Ying Zhu; Yuan Ren; Aftab -Ullah; Asif Ullah Khan; Xinyi He; Han Han; Md Aquib; Kofi Oti Boakye-Yiadom; Liang Ge

    2018-01-01

    Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All...

  5. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.

    Science.gov (United States)

    Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T

    2016-10-15

    A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables

  6. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels-Alder Click Reaction and Acylhydrazone Bond.

    Science.gov (United States)

    Yu, Feng; Cao, Xiaodong; Du, Jie; Wang, Gang; Chen, Xiaofeng

    2015-11-04

    Hydrogel, as a good cartilage tissue-engineered scaffold, not only has to possess robust mechanical property but also has to have an intrinsic self-healing property to integrate itself or the surrounding host cartilage. In this work a double cross-linked network (DN) was designed and prepared by combining Diels-Alder click reaction and acylhydrazone bond. The DA reaction maintained the hydrogel's structural integrity and mechanical strength in physiological environment, while the dynamic covalent acylhydrazone bond resulted in hydrogel's self-healing property and controlled the on-off switch of network cross-link density. At the same time, the aldehyde groups contained in hydrogel further promote good integration of the hydrogel to surrounding tissue based on aldehyde-amine Schiff-base reaction. This kind of hydrogel has good structural integrity, autonomous self-healing, and tissue-adhesive property and simultaneously will have a good application in tissue engineering and tissue repair field.

  7. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, G., E-mail: gianina.dodi@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi (Romania); SCIENT — Research Centre for Instrumental Analysis, Bucharest (Romania); Pala, A. [University of Sassari, Sassari (Italy); Barbu, E. [University of Portsmouth, Portsmouth (United Kingdom); Peptanariu, D. [“Petru Poni” Institute of Macromolecular Chemistry, Iasi (Romania); Hritcu, D.; Popa, M.I. [“Gheorghe Asachi” Technical University of Iasi (Romania); Tamba, B.I. [“Gr. T. Popa” University of Medicine and Pharmacy, Iasi (Romania)

    2016-06-01

    Carboxymethyl guar gum (CMGG) synthesized from commercially available polysaccharide was formulated into nanoparticles via ionic gelation using trisodium trimetaphosphate (STMP) as cross-linking agent. Characterisation using a range of analytical techniques (FTIR, NMR, GPC, TGA and DLS) confirmed the CMGG structure and revealed the effect of the CMGG and STMP concentration on the main characteristics of the obtained nanoformulations. The average nanoparticle diameter was found to be around 208 nm, as determined by dynamic light scattering (DLS) and confirmed by scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA). Experiments using simulated gastric and intestinal fluids evidenced significant pH-dependent drug release behaviour of the nanoformulations loaded with Rhodamine B (RhB) as a model drug (loading capacity in excess of 83%), as monitored by UV–Vis. While dose-dependent cytotoxicity was observed, the nanoformulations appeared completely non-toxic at concentrations below 0.3 mg/mL. Results obtained so far suggest that carboxymethylated guar gum nanoparticles formulated with STMP warrant further investigations as polysaccharide based biocompatible drug nanocarriers. - Highlights: • Carboxymethyl guar gum nanoparticles preparation by ionic gelation • The optimum synthesis system designed particles around 200 nm • The nanoformulations appeared completely non-toxic at specific concentrations • The loaded formulations evidenced significant pH-dependent drug release behaviour • The results encourage further investigations as polysaccharidic drug nanocarriers.

  8. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations

    International Nuclear Information System (INIS)

    Dodi, G.; Pala, A.; Barbu, E.; Peptanariu, D.; Hritcu, D.; Popa, M.I.; Tamba, B.I.

    2016-01-01

    Carboxymethyl guar gum (CMGG) synthesized from commercially available polysaccharide was formulated into nanoparticles via ionic gelation using trisodium trimetaphosphate (STMP) as cross-linking agent. Characterisation using a range of analytical techniques (FTIR, NMR, GPC, TGA and DLS) confirmed the CMGG structure and revealed the effect of the CMGG and STMP concentration on the main characteristics of the obtained nanoformulations. The average nanoparticle diameter was found to be around 208 nm, as determined by dynamic light scattering (DLS) and confirmed by scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA). Experiments using simulated gastric and intestinal fluids evidenced significant pH-dependent drug release behaviour of the nanoformulations loaded with Rhodamine B (RhB) as a model drug (loading capacity in excess of 83%), as monitored by UV–Vis. While dose-dependent cytotoxicity was observed, the nanoformulations appeared completely non-toxic at concentrations below 0.3 mg/mL. Results obtained so far suggest that carboxymethylated guar gum nanoparticles formulated with STMP warrant further investigations as polysaccharide based biocompatible drug nanocarriers. - Highlights: • Carboxymethyl guar gum nanoparticles preparation by ionic gelation • The optimum synthesis system designed particles around 200 nm • The nanoformulations appeared completely non-toxic at specific concentrations • The loaded formulations evidenced significant pH-dependent drug release behaviour • The results encourage further investigations as polysaccharidic drug nanocarriers

  9. Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.

    Science.gov (United States)

    Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd

    2018-01-08

    We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.

  10. Hydrogel Based on Crosslinked Methylcellulose Prepared by Electron Beam Irradiation for Wound Dressing Application

    Directory of Open Access Journals (Sweden)

    Ambyah Suliwarno

    2014-10-01

    Full Text Available The aim of this research is to explore the possibility of methylcellulose polymer to be used as wound dressing material prepared using electron beam technique. The methylcellulose paste solution with various of molecular weight (SM-4, SM-100, SM-400, SM-4000 and SM-8000 at different concentration (15-30% w/v were irradiated by using electron beam on the dose range of 10 kGy up to 40 kGy. Gel fraction and swelling ratio of hydrogels were determined gravimetrically. Tensile strength and elasticity of hydrogels were measured using a universal testing machine. It was found that with the increasing of irradiation dose from 10 up to 40 kGy, gel fraction and tensile strength were increased for all of hydrogels with various of molecular weight. On contrary, the swelling ratio of hydrogels decreased with increasing of irradiation dose. The optimum hydrogels elasticity were obtained from methylcellulose solution with the concentration range of 15-20% with irradiation dose of 20 kGy and showed excellent performance. The hydrogels based on methylcellulose prepared by electron beam irradiation can be considered for wound dressing material.

  11. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  12. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    Science.gov (United States)

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  13. Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by γ-irradiation followed by freeze-thawing

    International Nuclear Information System (INIS)

    Yang Xiaomin; Zhu Zhiyong; Liu Qi; Chen Xiliang; Ma Mingwang

    2008-01-01

    Poly(vinyl alcohol) (PVA)/water soluble chitosan (ws-chitosan)/glycerol hydrogels were prepared by γ-irradiation and γ-irradiation followed by freeze-thawing, respectively. The effects of irradiation dose and the contents of PVA and agar on the swelling, rheological, and thermal properties of these hydrogels were investigated. The swelling capacity decreases while the mechanical strength increases with increasing PVA or agar content. Increasing the irradiation dose leads to an increase in chemical crosslinking density but a decrease in physical crosslinking density. Hydrogels made by irradiation followed by freeze-thawing own smaller swelling capacity but larger mechanical strength than those made by pure irradiation. The storage modulus of the former hydrogels decreases above 50 deg. C and above 70 deg. C it comes to the same value as that prepared by irradiation. The ordered association of PVA is influenced by both chemical and physical crosslinkings and by the presence of ws-chitosan and glycerol. These hydrogels are high sensitive to pH and ionic strength, indicating that they may be useful in stimuli-responsive drug release system

  14. Preparation, optimization and property of PVA-HA/PAA composite hydrogel.

    Science.gov (United States)

    Chen, Kai; Liu, Jinlong; Yang, Xuehui; Zhang, Dekun

    2017-09-01

    PVA-HA/PAA composite hydrogel is prepared by freezing-thawing, PEG dehydration and annealing method. Orthogonal design method is used to choose the optimization combination. Results showed that HA and PVA have the maximum effect on water content. PVA and freezing-thawing cycles have the maximum effect on creep resistance and stress relaxation rate of hydrogel. Annealing temperature and freezing-thawing cycles have the maximum effect on compressive elastic modulus of hydrogel. Comparing with the water content and mechanical properties of 16 kinds of combination, PVA-HA/PAA composite hydrogel with freezing-thawing cycles of 3, annealing temperature of 120°C, PVA of 16%, HA of 2%, PAA of 4% has the optimization comprehensive properties. PVA-HA/PAA composite hydrogel has a porous network structure. There are some interactions between PVA, HA and PAA in hydrogel and the properties of hydrogel are strengthened. The annealing treatment improves the crystalline and crosslinking of hydrogel. Therefore, the annealing PVA-HA/PAA composite hydrogel has good thermostability, strength and mechanical properties. It also has good lubrication property and its friction coefficient is relative low. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A highly efficient dual-diazonium reagent for protein crosslinking and construction of a virus-based gel.

    Science.gov (United States)

    Ma, Dejun; Zhang, Jie; Zhang, Changyu; Men, Yuwen; Sun, Hongyan; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2018-05-09

    A new bench-stable reagent with double diazonium sites was designed and synthesized for protein crosslinking. Based on the highly efficient diazonium-Tyr coupling reaction, a direct mixture of the reagent and tobacco mosaic virus led to the formation of a new hydrogel, which could be degraded by chemicals and could be used to encapsulate small molecules for sustained release. Because plant viruses exhibit many chemical characteristics like protein labelling and nucleic acid packaging, the virus-based hydrogel will have large chemical space for further functionalization. Besides, this dual-diazonium reagent should be a generally useful crosslinker for chemical biology and biomaterials.

  16. New cellulose–lignin hydrogels and their application in controlled release of polyphenols

    International Nuclear Information System (INIS)

    Ciolacu, Diana; Oprea, Ana Maria; Anghel, Narcis; Cazacu, Georgeta; Cazacu, Maria

    2012-01-01

    Novel superabsorbant cellulose–lignin hydrogels (CL) were prepared by a new two-step procedure consisting in dissolving cellulose in an alkaline solution with further mixing with lignin, followed by the chemical crosslinking with epichlorohydrin. The crosslinking occurrence was verified by Fourier Transform Infrared spectroscopy (FT-IR). The effect of the structure features of cellulose–lignin hydrogels on their dehydration heat was evaluated by Differential Scanning Calorimetry (DSC). The Scanning Electron Microscopy (SEM) images reveal some morphological aspects of the hydrogels. The degree as well as the rate of swelling in a mixture of water:ethanol = 19:1 were estimated. The possible application of these hydrogels as controlled release systems was tested. Polyphenols known as having a wide range of biological effects were selected to be incorporated in such hydrogels by an optimal procedure. The extract of grapes seeds from the Chambourcin type was used as a source of polyphenols (PF). The amount of the incorporated polyphenols was estimated by UV–VIS measurements. Characterization of the hydrogels containing polyphenols was performed by FTIR spectroscopy. Some parameters were estimated based on the registered spectra, as H-bond energy (E H ), the asymmetric index (a/b) and the enthalpy of H-bond formation (ΔH). The modifications of the thermal behavior and morphology induced by the presence of the polyphenols in hydrogels were highlighted by DSC and SEM, respectively. The release of polyphenols from CL hydrogels depended on the lignin content from matrices, as assessed by spectral studies. Both loading with polyphenols and their release can be controlled by the composition of the hydrogels. The kinetic of polyphenols release was studied. - Highlights: ► A unique method to obtain cellulose–lignin hydrogels. ► The application of these hydrogels as controlled release systems was tested. ► Polyphenols from grapes seed as active ingredient.

  17. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  18. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    Science.gov (United States)

    Afshari, M. J.; Sheikh, N.; Afarideh, H.

    2015-08-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice.

  19. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.

    Science.gov (United States)

    Baniasadi, Hossein; Mashayekhan, Shohreh; Fadaoddini, Samira; Haghirsharifzamini, Yasamin

    2016-07-01

    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells cultured on hydrogels with OD of 30% showed that the highest rate of cell proliferation belong to hydrogel with OA/GEL weight ratio of 30/70. Overall, it can be concluded from all obtained results that the prepared hydrogel with OA/GEL weight ratio and OD of 30/70 and 30%, respectively, could be proper candidate for use in muscle tissue engineering. © The Author(s) 2016.

  20. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    Science.gov (United States)

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  1. Carboxymethyl starch mucoadhesive microspheres as gastroretentive dosage form.

    Science.gov (United States)

    Lemieux, Marc; Gosselin, Patrick; Mateescu, Mircea Alexandru

    2015-12-30

    Carboxymethyl starch microspheres (CMS-MS) were produced from carboxymethyl starch powder (CMS-P) with a degree of substitution (DS) from 0.1 to 1.5 in order to investigate the influence of DS on physicochemical, drug release and mucoadhesion properties as well as interactions with gastrointestinal tract (GIT) epithelial barrier models. Placebo and furosemide loaded CMS-MS were obtained by emulsion-crosslinking with sodium trimetaphosphate (STMP). DS had an impact on increasing equilibrium water uptake and modulating drug release properties of the CMS-MS according to the surrounding pH. The transepithelial electrical resistance (TEER) of NCI-N87 gastric cell monolayers was not influenced in presence of CMS-MS, whereas that of Caco-2 intestinal cell monolayers decreased with increasing DS but recovered initial values at about 15h post-treatment. CMS-MS with increasing DS also enhanced furosemide permeability across both NCI-N87 and Caco-2 monolayers at pH gradients from 3.0 to 7.4. Mucoadhesion of CMS-MS on gastric mucosa (acidic condition) increased with the DS up to 55% for a DS of 1.0 but decreased on neutral intestinal mucosa to less than 10% with DS of 0.1. The drug release, permeability enhancement and mucoadhesive properties of the CMS-MS suggest CMS-MS with DS between 0.6 and 1.0 as suitable excipient for gastroretentive oral delivery dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    Science.gov (United States)

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  3. Physicochemical properties of soy protein isolate/carboxymethyl cellulose blend films crosslinked by Maillard reactions: Color, transparency and heat-sealing ability

    International Nuclear Information System (INIS)

    Su Junfeng; Yuan Xiaoyan; Huang Zhen; Wang Xinyu; Lu Xuzhen; Zhang Lidan; Wang Shengbao

    2012-01-01

    Soy protein isolate (SPI) films have many potential applications in the biomaterial field as surgical dressings for burns, films for reduction of wound inflammation, and facial masks. The appearance and the sealing ability are important physicochemical properties that greatly influence consumer acceptance of such protein-based films. The aim of the present work was to investigate the chemical structure and the physical properties associated with color, transparency and heat-sealing ability for SPI/carboxymethyl cellulose (CMC) blend films prepared by solution casting, with weight proportions 90/10, 80/20, 70/30 and 60/40. Fourier transform infra-red (FTIR) and solid-state 13 C nuclear magnetic resonance (NMR) spectra confirmed that Maillard reactions occurred between SPI and CMC. The Hunter color value (L, a, b) and transparency of films were affected by varying the proportions of SPI and CMC. With increasing degree of crosslinking of SPI and CMC, the yellow color of the films was diluted and transparency was improved. Peel strength and tensile strength measurements showed that the Maillard reactions had the main effect of enhancing the heat-sealing ability above the melting temperature. These results indicated that the structure and properties of SPI-based films could be modified and improved by blending with CMC. - Highlights: ► Maillard reactions occurred in SPI/CMC films. ► The color and transparency of SPI/CMC films were affected by Maillard reactions. ► Maillard reactions enhanced the heat-sealing ability of SPI/CMC films.

  4. PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization.

    Science.gov (United States)

    Ahmed, Afnan Sh; Mandal, Uttam Kumar; Taher, Muhammad; Susanti, Deny; Jaffri, Juliana Md

    2017-04-05

    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.

  5. Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme.

    Directory of Open Access Journals (Sweden)

    Bao Zhang

    Full Text Available A carboxymethyl starch (CMS microgel system was prepared for the control of uptaking and releasing proteins (lysozyme. The physicochemical properties of microgels in various degrees of substitution (DS were determined by thermal gravimetric analysis (TGA, swelling degree, and rheological analysis. The microgel particle size mostly ranged from 25 µm to 45 µm. The result obtained from the TGA studies indicated that carboxymethylation decreased the thermal stability of starch, but crosslinking increased the thermal stability of CMS. The CMS microgels showed typical pH sensitivity, and the swelling degree of microgel increased with the increasing of DS and pH, because of the large amounts of carboxyl group ionization. The samples (2.25% could behave as viscoelastic solids since the storage modulus was larger than the loss modulus over the entire frequency range. The protein uptake increased with increasing pH and DS at low salt concentration. The optimal pH shifted to lower pH with increasing ionic strength. The saturated protein uptake decreased with increasing ionic strength at each pH. The protein was easily released from the microgel with high pH and high salt concentration.

  6. Silk Fibroin/Polyvinyl Pyrrolidone Interpenetrating Polymer Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Dajiang Kuang

    2018-02-01

    Full Text Available Silk fibroin hydrogel is an ideal model as biomaterial matrix due to its excellent biocompatibility and used in the field of medical polymer materials. Nevertheless, native fibroin hydrogels show poor transparency and resilience. To settle these drawbacks, an interpenetrating network (IPN of hydrogels are synthesized with changing ratios of silk fibroin/N-Vinyl-2-pyrrolidonemixtures that crosslink by H2O2 and horseradish peroxidase. Interpenetrating polymer network structure can shorten the gel time and the pure fibroin solution gel time for more than a week. This is mainly due to conformation from the random coil to the β-sheet structure changes of fibroin. Moreover, the light transmittance of IPN hydrogel can be as high as more than 97% and maintain a level of 90% within a week. The hydrogel, which mainly consists of random coil, the apertures inside can be up to 200 μm. Elastic modulus increases during the process of gelation. The gel has nearly 95% resilience under the compression of 70% eventually, which is much higher than native fibroin gel. The results suggest that the present IPN hydrogels have excellent mechanical properties and excellent transparency.

  7. Poly(vinyl alcohol)-heparin hydrogels as sensor catheter membranes

    NARCIS (Netherlands)

    Brinkman, E.; van der Does, L.; Bantjes, A.

    1991-01-01

    Poly(vinyl alcohol)-heparin hydrogels with varying water content were synthesized for use as sensor catheter membranes. Films were cast from aqueous mixtures of poly(viny) alcohol) (PVA), a photosensitive cross-linker p-diazonium diphenyl amine polymer (PA), glutaraldehyde (GA) and heparin. After

  8. Digital Drug Dosing: Dosing in Drug Assays by Light-Defined Volumes of Hydrogels with Embedded Drug-Loaded Nanoparticles

    DEFF Research Database (Denmark)

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjær Unmack

    2014-01-01

    Polyethylene glycol (PEG)-based hydrogels are widely used for biomedical applications, including matrices for controlled drug release. We present a method for defining drug dosing in screening assays by light-activated cross-linking of PEG-diacrylate hydrogels with embedded drug-loaded liposome...

  9. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering.

    Science.gov (United States)

    Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo

    2017-01-02

    Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hyaluronan hydrogels with a low degree of modification as scaffolds for cartilage engineering.

    Science.gov (United States)

    La Gatta, Annalisa; Ricci, Giulia; Stellavato, Antonietta; Cammarota, Marcella; Filosa, Rosanna; Papa, Agata; D'Agostino, Antonella; Portaccio, Marianna; Delfino, Ines; De Rosa, Mario; Schiraldi, Chiara

    2017-10-01

    In the field of cartilage engineering, continuing efforts have focused on fabricating scaffolds that favor maintenance of the chondrocytic phenotype and matrix formation, in addition to providing a permeable, hydrated, microporous structure and mechanical support. The potential of hyaluronan-based hydrogels has been well established, but the ideal matrix remains to be developed. This study describes the development of hyaluronan sponges-based scaffolds obtained by lysine methyl-ester crosslinking. The reaction conditions are optimized with minimal chemical modifications to obtain materials that closely resemble elements in physiological cellular environments. Three hydrogels with different amounts of crosslinkers were produced that show morphological, water-uptake, mechanical, and stability properties comparable or superior to those of currently available hyaluronan-scaffolds, but with significantly fewer hyaluronan modifications. Primary human chondrocytes cultured with the most promising hydrogel were viable and maintained lineage identity for 3 weeks. They also secreted cartilage-specific matrix proteins. These scaffolds represent promising candidates for cartilage engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.

    Science.gov (United States)

    Pehlivaner Kara, Meryem O; Ekenseair, Adam K

    2016-10-01

    In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.

  12. Synthesis of PVA/PVP hydrogels having two layers by radiation and their physical properties

    International Nuclear Information System (INIS)

    Nho, Y.C.; Park, K.R.

    2002-01-01

    Complete text of publication follows. The radiation can induce chemical reaction to modify polymer under even the solid state or in the low temperature. The radiation crosslinking can be easily adjusted by controlling the radiation dose and is reproducible. The finished product contains no residuals of substances required to initiate the chemical crosslinking that can restrict the application possibilities. In these studies, two layer's hydrogel which consisted of urethane membrane and a mixture of polyvinyl alcohol/poly-N-vinylpyrrolidone /glycerin/chitosan was made by gamma-ray irradiation or two steps of 'freezing and thawing' and gamma-ray irradiation for wound dressing. The physical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. Urethane was dissolved in solvent, the urethane solution was poured on the mould, and then dried to make the thin membrane. Hydrophilic polymer solutions were poured on the urethane membranes, they were exposed to gamma irradiation or 'freezing and thawing' and gamma irradiation doses of 25, 35, 50 and 60 kGy to evaluate the physical properties of hydrogels. The physical properties of hydrogels such as gelation and gel strength were improved, and the evaporation speed of water in hydrogel was low when urethane membrane was used

  13. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications.

    Science.gov (United States)

    Zinchenko, Anatoly; Miwa, Yasuyuki; Lopatina, Larisa I; Sergeyev, Vladimir G; Murata, Shizuaki

    2014-03-12

    DNA cross-linked hydrogel was used as a matrix for synthesis of gold nanoparticles. DNA possesses a strong affinity to transition metals such as gold, which allows for the concentration of Au precursor inside a hydrogel. Further reduction of HAuCl4 inside DNA hydrogel yields well dispersed, non-aggregated spherical Au nanoparticles of 2-3 nm size. The average size of these Au nanoparticles synthesized in DNA hydrogel is the smallest reported so far for in-gel metal nanoparticles synthesis. DNA hybrid hydrogel containing gold nanoparticles showed high catalytic activity in the hydrogenation reaction of nitrophenol to aminophenol. The proposed soft hybrid material is promising as environmentally friendly and sustainable material for catalytic applications.

  14. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels.

    Science.gov (United States)

    Raucci, Maria Grazia; Alvarez-Perez, Marco Antonio; Demitri, Christian; Sannino, Alessandro; Ambrosio, Luigi

    2012-01-01

    The aim of this project was to study the proliferation and differentiation of human Mesenchymal Stem Cells (hMSCs) onto a cellulose-based hydrogel for bone tissue engineering. Modified-cellulose hydrogel was prepared via double esterification crosslinking using citric acid. The response of human Mesenchymal Stem Cells (hMSCs) in terms of cell proliferation and differentiation into osteoblastic phenotype was evaluated by using Alamar blue assay and Alkaline phosphatase activity. The results showed that CMCNa and CMCNa_CA have no negative effect on hMSC, adhesion and proliferation. Moreover, the increase of the ALP expression for CMCNa_CA confirms the ability of the hydrogels to support the osteoblastic differentiation. The cellulose-based hydrogels have a potential application as filler in bone tissue regeneration.

  15. Swelling of whey and egg white protein hydrogels with stranded and particulate microstructures.

    Science.gov (United States)

    Li, Hui; Zhao, Lei; Chen, Xiao Dong; Mercadé-Prieto, Ruben

    2016-02-01

    Swelling of protein hydrogels in alkaline conditions strongly depends on the gel microstructure. Stranded transparent gels swell as predicted using a modified Flory-Rehner model with the net protein charge. Particulate opaque gels swell very differently, with a sudden increase at a narrow pH range. Its swelling is not controlled by the protein charge, but by the destruction of the non-covalent interactions. Comparable dissolution thresholds, one with pH and another with the degree of swelling, are observed in both types of microstructures. These conclusions are valid for both whey protein isolate (WPI) gels and egg white gels, suggesting that they are universal for all globular proteins that can form such microscructures. Differences are observed, however, from the prevalent chemical crosslinks in each protein system. Non-covalent interactions dominate WPI gels; when such interactions are destroyed at pH≥11.5 the gels swell extensively and eventually dissolve. In egg white gels, the higher degree of disulphide crosslinking allows extensive swelling when non-covalent interactions are destroyed, but dissolution only occurs at pH≥13 when covalent crosslinks are cleaved. The current study highlights that the microstructure of protein hydrogels, a unique particularity of protein systems compared to other synthetic hydrogels, defines swelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Radiation preparation of drug carriers based on poly(N-isopropylacrylamide) hydrogels, their loading capacities and controlled release rates for dexamethasone and tegafur

    International Nuclear Information System (INIS)

    Hoang Dang Sang; Nguyen Van Binh; Tran Bang Diep; Nguyen Thi Thom; Hoang Phuong Thao; Pham Duy Duong; Tran Minh Quynh

    2015-01-01

    Thermo-sensitive hydrogels have great potential in some applications. In order to use as the drug delivery systems, the hydrogels should be biocompatibility. New polymers with more biocompatibility and better biodegradability, and environmental friendly crosslinking agents would be necessary for the successful drug carriers. Poly (N-isopropylacrylamide-co-dimethylacrylamide) based hydrogels have been prepared from the admixture solutions of N-isopropylacrylamide (NIPA) and N,N’-dimethyl acrylamide (DMA) by radiation copolymerization and crosslinking at radiation dose of 20 kGy as reported in our previous study. Water swelling behaviour of the resulting hydrogels were much depended on their nature such as initial ratio of NIPA and DMA. The drug-loaded hydrogels were prepared by merging hydrogel in the solutions containing corresponding drugs. Loading capacity of the hydrogels were about 48.6 and 95.7 mg per g dried hydrogel for dexamethasone and tegafur. The release studies showed that the presence of ions in simulated body fluid and temperature of the solution much affecting to in vitro release behaviors of hydrogels for dexamethasone and tegafur. The release rates were fast for both drug models. The result also revealed that these drug carriers were biocompatibility without skin irritation, suggested the drug-loaded hydrogels may be used as controlled release drug delivery systems. (author)

  17. Radiation stability of resveratrol in immobilization on poly vinyl pyrrolidone hydrogel dressing for dermatological use

    International Nuclear Information System (INIS)

    Momesso, Roberta G.R.A.P.; Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose R.; Spencer, Patrick J.; Lugao, Ademar B.

    2010-01-01

    The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.

  18. Radiation stability of resveratrol in immobilization on poly vinyl pyrrolidone hydrogel dressing for dermatological use

    Energy Technology Data Exchange (ETDEWEB)

    Momesso, Roberta G.R.A.P., E-mail: robertapassarelli@yahoo.com.b [IPEN/CNEN-SP-Instituto de Pesquisas Energeticas e Nucleares, Avenida Professor Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP, CEP 05508-000 (Brazil); Moreno, Carolina S.; Rogero, Sizue O.; Rogero, Jose R.; Spencer, Patrick J.; Lugao, Ademar B. [IPEN/CNEN-SP-Instituto de Pesquisas Energeticas e Nucleares, Avenida Professor Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP, CEP 05508-000 (Brazil)

    2010-03-15

    The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.

  19. Radiation stability of resveratrol in immobilization on poly vinyl pyrrolidone hydrogel dressing for dermatological use

    Science.gov (United States)

    Momesso, Roberta G. R. A. P.; Moreno, Carolina S.; Rogero, Sizue O.; Rogero, José R.; Spencer, Patrick J.; Lugão, Ademar B.

    2010-03-01

    The polyphenol trans-resveratrol is a natural phytoalexin, which is found in red wine and in a wide variety of plant species. Resveratrol displays a wide array of biological activities, such as modulation of lipid metabolism, anti-inflammatory and antioxidant activities. This active compound immobilized in polyvinylpyrrolidone (PVP) hydrogel could be very interesting for topical administration, as a dressing form for dermatological use. However, PVP hydrogel obtained by radiation-induced crosslinking can cause undesirable hydrolysis reactions in the active compound. The aim of this work was to verify the resveratrol stability after irradiation at 0.5 and 1 kGy in the presence of ethanol, methanol or tert-butyl alcohol. The integrity of these samples was compared to unirradiated resveratrol by HPLC. The PVP hydrogel matrix was characterized by gel fraction, swelling and in vitro biocompatibility test. The results of gel fraction and swelling degree were approximately 90% and 1600%, respectively. The cytotoxicity assay showed absence of toxicity for this formulation after crosslinking and sterilization, indicating that the PVP hydrogel formulation was appropriate for resveratrol immobilization to produce a dressing for dermatological use.

  20. Novel 3D porous semi-IPN hydrogel scaffolds of silk sericin and poly(N-hydroxyethyl acrylamide for dermal reconstruction

    Directory of Open Access Journals (Sweden)

    S. Ross

    2017-09-01

    Full Text Available In this work, a novel semi-interpenetrating polymer network (semi-IPN hydrogel scaffold based on silk sericin (SS and poly(N-hydroxyethyl acrylamide (PHEA was successfully fabricated via conventional free-radical polymerization. The porous structure of the scaffolds was introduced using a lyophilization technique and the effect of cross-linker (XL on morphology, gelation time and physical properties of hydrogel scaffold was first studied. The results show that using low cross-linker content (0.125, 0.25 and 0.5 wt% XL produced flexible scaffolds and appropriate gelation times for fabricating the scaffold. Therefore, the polymerization system with a constant percentage of XL at 0.5 wt% was chosen to study further the effect of SS on the physical properties and cell culture of the scaffolds. It was observed that the hydrogel scaffold of PHEA without SS (PHEA/SS-0 had no cell proliferation, whereas hydrogel scaffolds with SS enhanced cell viability when compared to the positive control. The sample of PHEA/SS at 1.25 wt% of SS and 0.5 wt% of cross-linker was the most suitable for HFF-1 cells to migrate and cell proliferation due to possessing a connective porous structure, along with silk sericin. The results proved that this novel porous semi-IPN hydrogel has the potential to be used as dermal reconstruction scaffold.

  1. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  2. External stimuli response on a novel chitosan hydrogel crosslinked ...

    Indian Academy of Sciences (India)

    The influence of external stimuli such as pH, temperature, and ionic strength of the swelling media on equilibrium swelling properties has been observed. Hydrogels showed a typical pH and temperature responsive behaviour such as low pH and high temperature has maximum swelling while high pH and low temperature ...

  3. Characterisation of Prosopis juliflora seed gum and the effect of its addition to {kappa}-carrageenan systems

    Energy Technology Data Exchange (ETDEWEB)

    Azero, Edwin G. [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ (Brazil). Dept. de Ciencias Naturais; Andrade, Cristina T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano]. E-mail: ctandrade@ima.ufrj.br

    2006-09-15

    The galactomannan from Prosopis juliflora (PJ galactomannan) was extracted from milled seeds in water at 50 deg C. Its structural and solution properties were characterised in comparison with a commercial sample of guar gum (GG galactomannan). After partial degradation, the resulting samples were submitted to {sup 13}C-NMR spectroscopy. The mannose to galactose (M/G) ratios of PJ (M/G = 1.64) and GG (M/G = 1.85) galactomannans were estimated from the relative peak areas of the corresponding C-1 lines. Expansion of the C-4 lines revealed differences in the fine structure of the two galactomannans. The intrinsic viscosity determined for the GG sample, [{eta}] = 10.3 dL g{sup -1}, was slightly higher than that determined for PJ galactomannan, [{eta}] = 9.4 dL g{sup -1}. Dynamic experiments carried out at the same concentrations showed similar viscoelastic behaviours for the two gums. No enhancement in the storage modulus (G') was observed for {kappa}-carrageenan/PJ mixed solution in 0.1 mol L{sup -1} KCl at 1.0 g L{sup -1} total polymer concentration, in relation to {kappa}-carrageenan alone. Self-supporting gels obtained by mixing {kappa}-carrageenan and PJ or GG galactomannans in 0.25 mol L{sup -1} KCl at 10 g L{sup -1} total polymer concentration displayed similar mechanical properties. (author)

  4. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering.

    Science.gov (United States)

    Deepthi, S; Jayakumar, R

    2018-06-01

    Hydrogels are a class of materials that has the property of injectability and in situ gel formation. This property of hydrogels is manipulated in this study to develop a biomimetic bioresorbable injectable system of alginate nanobeads interspersed in fibrin network. Alginate nanobeads developed by calcium cross-linking yielded a size of 200-500 nm. The alginate nanobeads fibrin hydrogel was formed using dual syringe apparatus. Characterization of the in situ injectable hydrogel was done by SEM, FTIR and Rheometer. The developed hydrogel showed mechanical strength of 19 kPa which provides the suitable compliance for soft tissue engineering. Cytocompatibility studies using human umbilical cord blood derived mesenchymal stem cells showed good attachment, proliferation and infiltration within the hydrogel similar to fibrin gel. The developed in situ forming hydrogel could be a suitable delivery carrier of stem cells for soft tissue regeneration.

  5. [Advances in the research of application of hydrogels in three-dimensional bioprinting].

    Science.gov (United States)

    Yang, J; Zhao, Y; Li, H H; Zhu, S H

    2016-08-20

    Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges.

  6. PAMAM dendrimer hydrogel film—biocompatible material to an efficient dermal delivery of drugs

    Science.gov (United States)

    Magalhães, Thamiris Machado; Guerra, Rodrigo Cinti; San Gil, Rosane Aguiar da Silva; Valente, Ana Paula; Simão, Renata Antoun; Soares, Bluma Guenther; Mendes, Thamara de Carvalho; Pyrrho, Alexandre dos Santos; Sousa, Valeria Pereira de; Rodrigues-Furtado, Vanessa Lúcia

    2017-08-01

    We report the preparation, characterization, and drug release kinetics of a pH-responsive hydrogel film from a dendrimer megamer. The megamer (GP32) is a three-dimensional reticulated structure with a mean diameter of 71.16 nm (PDI 0.150) and was prepared by the reaction between Poly(amidoamine) generation4 (PAMAM G4) dendrimer and glutaraldehyde (G:P molar ratio 32). The crosslinking units in the megamer are provided mainly by the bicyclic dimer 2-hydroxy-3,4,4a,7,8,8a-hexahydro-2 H-chromene-6-carbaldehyde as determined by high-resolution (800 MHz) 1H NMR and FTIR. The hydrogel film (F[GP32]) is formed upon evaporation of a methanolic solution of the megamer and has a high degree of organization and homogeneity. Further crosslinking with glutaraldehyde (CLF[GP32]) enhanced the mechanical properties of the hydrogel film. The chemical constitution and unique megamer architecture enable the hydrogel film to carry both lipophilic and hydrophilic substances. The film did not cause any dermal irritation or clinical signs of toxicity in tests on rabbits, allowed for a sustained release of ketoprofen and played an important role in the process of drug delivery into the receptor medium. This performance taken together with the absence of toxicity makes this hydrogel film a good choice for dermal sustained drug release. [Figure not available: see fulltext.

  7. Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration.

    Science.gov (United States)

    Carvalho, Isadora C; Mansur, Herman S

    2017-09-01

    Wound repair is one of the most complex biological processes in human life. To date, no ideal biomaterial solution has been identified, which that encompasses all functions and properties of real skin tissue. Thus, this study focused on the synthesis of new biocompatible hybrid hydrogel scaffolds based on methacrylate-functionalized high molecular mass chitosan with gelatin-A photocrosslinked with UV radiation to tailor matrix network properties. These hybrid hydrogels were produced via freeze-drying and were extensively characterized by swelling and degradation measurements, Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM-EDS), and micro-computed tomography (micro-CT). The results demonstrated that hydrogels were produced with broadly designed swelling degrees typically ranging from 500% to 2000%, which were significantly dependent on the relative concentration of polymers and irradiation time for crosslinking. Analogously, degradation was reduced with increased photocrosslinking of the network. Moreover, insights into the mechanism of photochemical crosslinking were suggested based on FTIR and UV-Vis analyses of the characteristic functional groups involved in the reactions. SEM analysis associated with micro-CT imaging of the hybrid scaffolds showed uniformly interconnected 3D porous structures, with architectural features affected by the crosslinking of the network. These hydrogels were biocompatible, with live cell viability responses of human embryonic kidney (HEK293T) cells being above 95%. Hence, novel hybrid hydrogels were designed and produced with tunable properties through photocrosslinking and with a biocompatible response suitable for use in wound dressing and skin tissue repair applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid Reinforced with Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lim Sze Lim

    2017-11-01

    Full Text Available pH-sensitive poly(acrylic acid (PAA hydrogel reinforced with cellulose nanocrystals (CNC was prepared. Acrylic acid (AA was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.

  9. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels.

    Science.gov (United States)

    Nicodemus, G D; Skaalure, S C; Bryant, S J

    2011-02-01

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications

    International Nuclear Information System (INIS)

    Memic, Adnan; Aldhahri, Musab; Alhadrami, Hani A; Hussain, M Asif; Al Nowaiser, Fozia; Al-Hazmi, Faten; Oklu, Rahmi; Khademhosseini, Ali

    2016-01-01

    The incorporation of nanomaterials in hydrogels (hydrated networks of crosslinked polymers) has emerged as a useful method for generating biomaterials with tailored functionality. With the available engineering approaches it is becoming much easier to fabricate nanocomposite hydrogels that display improved performance across an array of electrical, mechanical, and biological properties. In this review, we discuss the fundamental aspects of these materials as well as recent developments that have enabled their application. Specifically, we highlight synthesis and fabrication, and the choice of nanomaterials for multifunctionality as ways to overcome current material property limitations. In addition, we review the use of nanocomposite hydrogels within the framework of biomedical and pharmaceutical disciplines. (paper)

  11. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    International Nuclear Information System (INIS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-01-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  12. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Science.gov (United States)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  13. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Energy Technology Data Exchange (ETDEWEB)

    Raafat, Amany I., E-mail: ismaelraafat_a@hotmail.com [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Eid, Mona; El-Arnaouty, Magda B. [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2012-07-15

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  14. Preparation of reinforced poly(ethylene oxide) blend hydrogel films containing a drug and assessment of their properties

    International Nuclear Information System (INIS)

    Yang Zhanshan; Zhu Nankang; Yang Shuqin

    1999-01-01

    Reinforced poly(ethylene oxide) blend hydrogen films containing mafenide acetate were prepared by using two freezing-thawing cycles and the irradiation crosslinking technique, and their properties and the drug release were assessed. The results showed that the tensile strength of the reinforced PEO blend hydrogel films increased significantly (p < 0.01), the gel fraction and the elongation at break of the films increased slightly as compared with those formed by the irradiation without the freezing-thawing treatment, indicating that the mechanical properties of the PEO blend hydrogel films can be improved by the freezing-thawing cycles. The reinforced films possessed an ideal flexibility, crosslinking density and elasticity as wound dressings. Swelling studies showed that the equilibrium water content of the hydrogel films expressed in the degree of swelling decreased significantly (p < 0.01), suggesting that a significant structural rearrangement of the films occurred during the freezing process. The structural densification resulted in the increase of the mechanical strength of the hydrogel films. The hydrogels formed by the irradiation at doses of 40 kGy were comparatively stronger. Release studies were run on the reinforced hydrogels with mafenide acetate which was incorporated before the freezing-thawing treatment. Release was followed over seven days. The drug transport was controlled by a regular diffusion model

  15. Self-Healable and Cold-Resistant Supercapacitor Based on a Multifunctional Hydrogel Electrolyte.

    Science.gov (United States)

    Tao, Feng; Qin, Liming; Wang, Zhikui; Pan, Qinmin

    2017-05-10

    Excellent self-healability and cold resistance are attractive properties for a portable/wearable energy-storage device. However, achieving the features is fundamentally dependent on an intrinsically self-healable electrolyte with high ionic conduction at low temperature. Here we report such a hydrogel electrolyte comprising sodium alginate cross-linked by dynamic catechol-borate ester bonding. Since its dynamically cross-linked alginate network can tolerate high-content inorganic salts, the electrolyte possesses excellent healing efficiency/cyclability but also high ionic conduction at both room temperature and low temperature. A supercapacitor with the multifunctional hydrogel electrolyte completely restores its capacitive properties even after breaking/healing for 10 cycles without external stimulus. At a low temperature of -10 °C, the capacitor is even able to maintain at least 80% of its room-temperature capacitance. Our investigations offer a strategy to assemble self-healable and cold-resistant energy storage devices by using a multifunctional hydrogel electrolyte with rationally designed polymeric networks, which has potential application in portable/wearable electronics, intelligent apparel or flexible robot, and so on.

  16. Dual responsive supramolecular hydrogel with electrochemical activity.

    Science.gov (United States)

    Du, Ping; Liu, Jianghua; Chen, Guosong; Jiang, Ming

    2011-08-02

    Supramolecular materials with reversible responsiveness to environmental changes are of particular research interest in recent years. Inclusion complexation between cyclodextrin (CD) and ferrocene (Fc) is well-known and extensively studied because of its reversible association-dissociation controlled by the redox state of Fc. Although there are quite a few reported nanoscale materials incorporating this host-guest pair, polymeric hydrogels with electrochemical activity based on this interactive pair are still rare. Taking advantage of our previous reported hybrid inclusion complex (HIC) hydrogel structure, a new Fc-HIC was designed and obtained with β-CD-modified quantum dots as the core and Fc-ended diblock co-polymer p(DMA-b-NIPAM) as the shell, to achieve an electrochemically active hydrogel at elevated temperatures. Considering the two independent cross-linking strategies in the network structure, i.e., the interchain aggregation of pNIPAM and inclusion complexation between CD and Fc on the surface of the quantum dots, the hydrogel was fully thermo-reversible and its gel-sol transition was achieved after the addition of either an oxidizing agent or a competitive guest to Fc.

  17. Immobilization and release study of a red alga extract in hydrogel membranes

    International Nuclear Information System (INIS)

    Amaral, Renata Hage

    2009-01-01

    In pharmaceutical technology hydrogel is the most used among the polymeric matrices due to its wide application and functionality, primarily in drug delivery system. In view of the large advance innovations in cosmetic products, both through the introduction of new active agents as the matrices used for its controlled release, the objective of this study was to evaluate the release and immobilization of a natural active agent, the Arct'Alg in hydrogel membranes to obtain a release device for cosmetics. Arct'Alg is an aqueous extract which has excellent anti-oxidant, lipolytic, anti-inflammatory and cytostimulant action. Study on mechanical and physical-chemical properties and biocompatibility in vitro of hydrogel membranes of poly(vinyl-2- pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) obtained by ionizing radiation crosslinking have been performed. The physical-chemical characterization of polymeric matrices was carried out by gel fraction and swelling tests and biocompatibility by in vitro test of cytotoxicity by using the technique of neutral red incorporation. In the gel fraction test, both the PVP and PVA hydrogel showed a high crosslinking degree. The PVP hydrogel showed a greater percentage of swelling in relation to PVA and the cytotoxicity test of the hydrogels showed non-toxicity effect. The cytostimulation property of Arct'Alg was verified by the cytostimulation test with rabbit skin cells, it was showed an increase at about 50% of the cells when in contact with 0,5% of active agent. The hydrogel membranes prepared with 3% of Arct'Alg were subjected to the release test in an incubator at 37 degree C and aliquots collected during the test were quantified by high performance liquid chromatography (HPLC). The results obtained in the kinetics of release showed that the PVP hydrogel membranes released about 50% of Arct'Alg incorporated and the PVA hydrogel membranes at about 30%. In the cytostimulation test of released Arct'Alg, the PVP device showed an

  18. Natural fibers for hydrogels production and their applications in agriculture

    Directory of Open Access Journals (Sweden)

    Liliana Serna Cock

    2017-10-01

    Full Text Available This paper presents a review on hydrogels applied to agriculture emphasizing on the use of natural fibers. The objectives were to examine, trends in research addressed to identify natural fibers used in hydrogels development and methods for modifying natural fibers, understand factors which determine the water retention capacity of a hydrogel. Consequently, this paper shows some methodologies used to evaluate the hydrogels efficiency and to collect in tables, relevant information in relation to methods of natural fibers modification and hydrogel synthesis. It was found that previous research focused on hydrogels development processed with biodegradable polymers such as starch, chitosan and modified natural fibers, cross-linked with potassium acrylate and acrylamide, respectively. In addition, current researches aimed to obtaining hydrogels with improved properties, which have allowed a resistance to climatic variations and soil physicochemical changes, such as pH, presence of salts, temperature and composition. In fact, natural fibers such as sugarcane, agave fiber and kapok fiber, modified with maleic anhydride, are an alternative to obtain hydrogels due to an increasing of mechanical properties and chemically active sites. However, the use of natural nanofibers in hydrogels, has been a successful proposal to improve hydrogels mechanical and swelling properties, since they give to material an elasticity and rigidity properties. A hydrogel efficiency applied to soil, is measured throughout properties as swellability, mechanical strength, and soil water retention. It was concluded that hydrogels, are an alternative to the current needs for the agricultural sector.

  19. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing

    International Nuclear Information System (INIS)

    Afshari, M.J.; Sheikh, N.; Afarideh, H.

    2015-01-01

    Hydrogels with three components, poly(vinyl alcohol) (PVA), carboxymethylate chitosan (CM-chitosan) and honey have been prepared by using radiation method and radiation followed by freeze-thawing cycles technique (combinational method). The solid concentration of the polymer solution is 15 wt% and the ratios of PVA/CM-chitosan/honey are 10/1.5/3.5, 10/2/3, 10/3/2, and 10/3.5/1.5. The applied irradiation doses are 25, 30 and 40 kGy. Various tests have been done to evaluate the hydrogel properties to produce materials to be used as wound dressing. The results show that combinational method improves the mechanical strength of hydrogels while it has no significant effect on the water evaporation rate of gels. The combinational method decreases the swelling of hydrogels significantly, albeit this parameter is still acceptable for wound dressing. Microbiological analyses show that the hydrogel prepared by both methods can protect the wound from Escherichia coli bacterial infection. The wound healing test shows the good performance of the gels in mice. - Highlights: • Hydrogels prepared by the combination of irradiation and freeze-thawing methods. • Hydrogels with improved mechanical strength prepared by the combinational method. • The prepared hydrogels had acceptable transparency and degree of swelling. • The water evaporation rates of these hydrogels were pretty low. • Presences of honey in the formulation of gels led to a higher tissue regeneration

  20. Combined effects of PEG hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration.

    Science.gov (United States)

    Missirlis, Dimitris; Spatz, Joachim P

    2014-01-13

    The development and use of synthetic, cross-linked, macromolecular substrates with tunable elasticity has been instrumental in revealing the mechanisms by which cells sense and respond to their mechanical microenvironment. We here describe a hydrogel based on radical-free, cross-linked poly(ethylene glycol) to study the effects of both substrate elasticity and type of adhesive coating on fibroblast adhesion and migration. Hydrogel elasticity was controlled through the structure and concentration of branched precursors, which efficiently react via Michael-type addition to produce the polymer network. We found that cell spreading and focal adhesion characteristics are dependent on elasticity for all types of coatings (RGD peptide, fibronectin, vitronectin), albeit with significant differences in magnitude. Importantly, fibroblasts migrated slower but more persistently on stiffer hydrogels, with the effects being more pronounced on fibronectin-coated substrates. Therefore, our results validate the hydrogels presented in this study as suitable for future mechanosensing studies and indicate that cell adhesion, polarity, and associated migration persistence are tuned by substrate elasticity and biochemical properties.

  1. Hydrogels as adsorbents of organo-sulphur compounds currently found in diesel

    Energy Technology Data Exchange (ETDEWEB)

    Aburto, J.; Mendez-Orozco, A.; Borgne, S.L. [Instituto Mexicano del Petroleo, Programa de Biotecnologia del Petroleo, Col. Sn. Bartolo Atepehuacan, Mexico (Mexico)

    2004-07-01

    Hydrogels of chitosan were synthesised using glutaric dialdehyde as the crosslinking agent in an acetonitrile/water solution (1:4, v/v). These hydrogels recognised and adsorbed the dibenzothiophene sulfone (DBTS) against other related compounds found in diesel, e.g. dibenzothiophene (DBT), fluorene (FLE) and 4,6-dimethyl DBT (DMDBT). In order to improve the recognition and adsorption of DBTS, the latter compound served as a template for the building of recognition sites inside the hydrogel matrix through the use of the molecular imprinting technique (MIT). Despite the adsorption capacity of the molecular imprinted hydrogel (MIH) was not increased, the imprinting process of chitosan allowed both an enhancement of two orders of magnitude in ligand affinity constant and material homogeneity as seen by SEM. The change in swelling degree (Q) suggested the presence of a conformational memory of the hydrogel that might allow the design of stimuli-response but also tailored-made hydrogels responding at a required factor as temperature. The imprinting process improved ligand recognition and consequently hydrogel's specificity as shown by a monolayer adsorption. In contrast, the adsorption isotherm of DBTS by the non-imprinted hydrogel showed a multilayer adsorption due to non-specific interactions. (author)

  2. Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ϵ-caprolactone) for MSC chondrogenesis

    NARCIS (Netherlands)

    Stichler, Simone; Böck, Thomas; Paxton, Naomi; Bertlein, Sarah; Levato, Riccardo; Schill, Verena; Smolan, Willi; Malda, Jos; Teßmar, Jörg; Blunk, Torsten; Groll, Jürgen

    2017-01-01

    This study investigates the use of allyl-functionalized poly(glycidol)s (P(AGE-co-G)) as a cytocompatible cross-linker for thiol-functionalized hyaluronic acid (HA-SH) and the optimization of this hybrid hydrogel as bioink for 3D bioprinting. The chemical cross-linking of gels with 10 wt.% overall

  3. Radiation Synthesis of Stimuli-Responsive Hydrogels for Biological Applications

    International Nuclear Information System (INIS)

    Eid, M.; Hegazy, S.A.

    2009-01-01

    Poly(acrylamide/maleic acid/gelatin) P(AAm/MA/G) hydrogel networks were synthesized by 60 Co gamma irradiation at different doses. The properties of the hydrogels such as gelation percent, porosity, and moisture retention were investigated. The swelling ratio (S), equilibrium water content (EWC) and diffusion characteristics, including equilibrium swelling ratio (ESR), diffusion constant (n) and diffusion coefficients (D) were investigated and a non-Fickian type of diffusion characteristics was found in all the swelling media for the diffusion of water into these hydrogels. Further, the swelling pattern of P(AAm/MA/G) hydrogels was studied in different physiological bio-fluids, ph and ionic/salt solutions and showed great responsiveness due to their ionic character. The penetration velocity (v) of these biological fluids into such hydrogels was also calculated and it was found to be the maximum in urea and the minimum in synthetic urine. The higher equilibrium water content of these hydrogels, promotes them to be used as biomedical/pharmaceutical technology. The caffeine release as a drug model has been studied at ph 1 and ph 7 to resemble the ph of the stomach and the intestine, respectively. The caffeine release was controlled by the hydrogel crosslinking density that caused in increase of the irradiation dose

  4. Alginate nanobeads interspersed fibrin network as in situ forming hydrogel for soft tissue engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2018-06-01

    Full Text Available Hydrogels are a class of materials that has the property of injectability and in situ gel formation. This property of hydrogels is manipulated in this study to develop a biomimetic bioresorbable injectable system of alginate nanobeads interspersed in fibrin network. Alginate nanobeads developed by calcium cross-linking yielded a size of 200–500 nm. The alginate nanobeads fibrin hydrogel was formed using dual syringe apparatus. Characterization of the in situ injectable hydrogel was done by SEM, FTIR and Rheometer. The developed hydrogel showed mechanical strength of 19 kPa which provides the suitable compliance for soft tissue engineering. Cytocompatibility studies using human umbilical cord blood derived mesenchymal stem cells showed good attachment, proliferation and infiltration within the hydrogel similar to fibrin gel. The developed in situ forming hydrogel could be a suitable delivery carrier of stem cells for soft tissue regeneration.

  5. Synthesis and Properties of the Metallo-Supramolecular Polymer Hydrogel Poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3

    KAUST Repository

    Al-Dossary, Mona S.

    2014-05-01

    Gels are a special class of materials which are composed of 3D networks of crosslinked polymer chains that encapsulate liquid/air in the matrix. They can be classified into organogels or hydrogels (organic solvent for organogel and water for hydrogel). For hydrogels that contain metallic elements in the form of ions, the term of metallo-supramolecular polymer hydrogel (MSPHG) is often used. The aim of this project is to develop a kind of new MSPHG and investigate its properties and possible applications. The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-monosodium maleate) (PVM/Na-MA). By addition of AgNO3-solution, the formation of the silver(I) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]∙AgNO3 is obtained. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(I) cations. The supercritical CO2 dried silver(I) hydrogel was characterized by FT-IR, SEM-EDAX, TEM, TGA and Physical adsorption (BET) measurements. The intact silver(I) hydrogel was characterized by cryo-SEM. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(II) cations without disintegration of the hydrogel. The silver(I) hydrogel shows effective antibacterial activity and potential application as burn wound dressing.

  6. Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems

    Science.gov (United States)

    Hirayama, Mayu; Tsuruta, Kazuhiro; Kawamura, Akifumi; Ohara, Masayuki; Shoji, Kan; Kawano, Ryuji; Miyata, Takashi

    2018-03-01

    Diagnosis sensors using micro-total analysis systems (µ-TAS) have been developed for detecting target biomolecules such as proteins and saccharides because they are signal biomolecules for monitoring body conditions and diseases. In this study, biomolecularly stimuli-responsive micro-sized hydrogels that exhibited quick shrinkage in response to lectin concanavalinA (ConA) were prepared in a microchannel by photopolymerization using a fluorescence microscope. In preparing the micro-size hydrogels, glycosyloxyethyl methacrylate (GEMA) as a ligand monomer was copolymerized with a crosslinker in the presence of template ConA in molecular imprinting. The ConA-imprinted micro-hydrogel showed greater shrinkage in response to target ConA than nonimprinted micro-hydrogel. When a buffer solution was switched to an aqueous ConA solution in the Y-shaped microchannel, the flow rates changed quickly because of the responsive shrinkage of the micro-hydrogel prepared in the microchannel. These results suggest that the ConA-imprinted micro-hydrogel acted as a self-regulated microvalve in microfluidic systems.

  7. In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering

    Directory of Open Access Journals (Sweden)

    Shengjie Huang

    2017-12-01

    Full Text Available Hyaluronic acid (HA-based hydrogels have applied widely for biomedical applications due to its biocompatibility and biodegradability. However, the use of initiators or crosslinkers during the hydrogel formation may cause cytotoxicity and thereby impair the biocompatibility. Inspired by the crosslinking mechanism of fibrin gel, a novel HA-based hydrogel was developed via the in situ supramolecular assembly based on knob-hole interactions between fibrinogen and knob-grafted HA (knob-g-HA in this study. The knob-grafted HA was synthesized by coupling knob peptides (GPRPAAC, a mimic peptide of fibrin knob A to HA via Michael addition. Then the translucent fibrinogen/knob-g-HA hydrogels were prepared by simply mixing the solutions of knob-g-HA and fibrinogen at the knob/hole ratio of 1.2. The rheological behaviors of the fibrinogen/knob-g-HA hydrogels with the fibrinogen concentrations of 50, 100 and 200 mg/mL were evaluated, and it was found that the dynamic storage moduli (G′ were higher than the loss moduli (G″ over the whole frequency range for all the groups. The SEM results showed that fibrinogen/knob-g-HA hydrogels presented the heterogeneous mesh-like structures which were different from the honeycomb-like structures of fibrinogen/MA-HA hydrogels. Correspondingly, a higher swelling ratio was obtained in the groups of fibrinogen/knob-g-HA hydrogel. Finally, the cytocompatibility of fibrinogen/knob-g-HA hydrogels was proved by live/dead stainings and MTT assays in the 293T cells encapsulation test. All these results highlight the biological potential of the fibrinogen/knob-g-HA hydrogels for 3D cellular engineering.

  8. A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites

    International Nuclear Information System (INIS)

    Saravanan, P.; Padmanabha Raju, M.; Alam, Sarfaraz

    2007-01-01

    Synthesis of Ag nanoparticles containing polyacrylamide (PAm) hydrogel composites was performed by free-radical cross-linking polymerization of acrylamide monomer in an aqueous medium containing Ag + ions. The Ag nanoparticle/PAm composites exhibit faint yellow colour and are found to stable under ambient conditions, without undergoing oxidation. TEM micrographs reveal the presence of nearly spherical and well-separated Ag nanoparticles with diameters in the range of 4-7 nm. UV-vis studies apparently show the characteristic surface plasmon band at ∼415 nm, for the existence of Ag nanoparticles within the hydrogel matrix. The effect of varying Ag + ion concentration within the PAm hydrogels on the amount of formation of Ag nanoparticles, as well as on the bulk properties of hydrogel nanocomposites such as equilibrium swelling, optical and electrical properties are studied. The Ag/PAm hydrogel nanocomposites have higher swelling ratio and lower electron transfer resistance than its corresponding conventional hydrogel

  9. Structure and Properties of Hydrophobic Aggregation Hydrogel with Chemical Sensitive Switch

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2017-01-01

    Full Text Available Hydrogels with chemical sensitive switch have control release properties in special environments. A series of polyacrylamide-octadecyl methacrylate hydrogels crosslinked by N,N′-bis (acryloyl cystamine were synthesized as potential chemical sensitive system. When this hydrogel encounters dithiothreitol it can change its quality. The properties of the hydrogels were characterized by infrared spectroscopy, contact angle, and scanning electron microscopy. The water absorption of the hydrogel has the maximum value of 475%, when the content of octadecyl methacrylate is 5 wt%. The amount of weight loss was changed from 34.6% to 17.2%, as the content of octadecyl methacrylate increased from 3 wt% to 9.4 wt%. At the same time, the stress of the hydrogel decreased from 67.01% to 47.61%; the strength of the hydrogel reaches to the maximum 0.367 Mpa at 7 wt% octadecyl methacrylate. The increasing content of octadecyl methacrylate from 3 wt% to 9.4 wt% can enhance the hydrophobicity of the hydrogel; the contact angle of water to hydrogel changed from 14.10° to 19.62°. This hydrogel has the porous structure which permits loading of oils into the gel matrix. The functionalities of the hydrogel make it have more widely potential applications in chemical sensitive response materials.

  10. Study On The Application Of Hydrogel Prepared By Radiation Technique For Fermentation Of Sawdust

    International Nuclear Information System (INIS)

    Le Thuy Trang; Nguyen Huynh Phuong Uyen; Vo Thu Ha; Le Quang Luan

    2011-01-01

    The super water-adsorption hydrogels was successfully preparation by radiation crosslinking CMC in paste condition and radiation grafting acrylic acid into starch. The hydrogel with 76.36% gel fraction and 91.13% swelling degree were obtained by irradiation of CMC 20% at 20 kGy, while the hydrogel with 65.3% gel fraction and 234 swelling degree was acrylic acid and starch at 4 kGy. The supplementation of hydrogels prepared by radiation technique showed a higher cellulose degradation effect of waste of cattle after fermenting 30 and 45 days. The optimum condition was determined by mixing 1% (w/w) dried hydrogel in 99% (w/w) waste of cattle. The fermented sawdust using hydrogel prepared by radiation technique showed a better effect on the growth of F1 Chinese cabbage (Brassica Pe-tsai Bailey L.). (author)

  11. Fluxgate magnetorelaxometry: a new approach to study the release properties of hydrogel cylinders and microspheres.

    Science.gov (United States)

    Wöhl-Bruhn, S; Heim, E; Schwoerer, A; Bertz, A; Harling, S; Menzel, H; Schilling, M; Ludwig, F; Bunjes, H

    2012-10-15

    Hydrogels are under investigation as long term delivery systems for biomacromolecules as active pharmaceutical ingredients. The release behavior of hydrogels can be tailored during the fabrication process. This study investigates the applicability of fluxgate magnetorelaxometry (MRX) as a tool to characterize the release properties of such long term drug delivery depots. MRX is based on the use of superparamagnetic core-shell nanoparticles as model substances. The feasibility of using superparamagnetic nanoparticles to study the degradation of and the associated release from hydrogel cylinders and hydrogel microspheres was a major point of interest. Gels prepared from two types of photo crosslinkable polymers based on modified hydroxyethylstarch, specifically hydroxyethyl starch-hydroxyethyl methacrylate (HES-HEMA) and hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA), were analyzed. MRX analysis of the incorporated nanoparticles allowed to evaluate the influence of different crosslinking conditions during hydrogel production as well as to follow the increase in nanoparticle mobility as a result of hydrogel degradation during release studies. Conventional release studies with fluorescent markers (half-change method) were performed for comparison. MRX with superparamagnetic nanoparticles as model substances is a promising method to analyze pharmaceutically relevant processes such as the degradation of hydrogel drug carrier systems. In contrast to conventional release experiments MRX allows measurements in closed vials (reducing loss of sample and sampling errors), in opaque media and at low magnetic nanoparticle concentrations. Magnetic markers possess a better long-term stability than fluorescent ones and are thus also promising for the use in in vivo studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. STEREO PHOTO HYDROFEL, A PROCESS OF MAKING SAID STEREO PHOTO HYDROGEL, POLYMERS FOR USE IN MAKING SUCH HYDROGEL AND A PHARMACEUTICAL COMPRISING SAID POLYMERS

    NARCIS (Netherlands)

    Hiemstra, C.; Zhong, Zhiyuan; Feijen, Jan

    2008-01-01

    The Invention relates to a stereo photo hydrogel formed by stereo complexed and photo cross-linked polymers, which polymers comprise at least two types of polymers having at least one hydrophilic component, at least one hydrophobic mutually stereo complexing component, and at least one of the types

  13. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior.

    NARCIS (Netherlands)

    Bongio, M.; Beucken, J.J.J.P van den; Nejadnik, M.R.; Leeuwenburgh, S.C.G.; Kinard, L.A.; Kasper, F.K.; Mikos, A.G.; Jansen, J.A.

    2011-01-01

    The ultimate goal of this work was to develop a biocompatible and biomimetic in situ crosslinkable hydrogel scaffold with an instructive capacity for bone regenerative treatment. To this end, synthetic hydrogels were functionalized with two key components of the extracellular matrix of native bone

  14. Glyoxal Crosslinking of Cell-Seeded Chitosan/Collagen Hydrogels for Bone Regeneration

    Science.gov (United States)

    Wang, Limin; Stegemann, Jan P.

    2011-01-01

    Chitosan and collagen are natural biomaterials that have been used extensively in tissue engineering, both separately and as composite materials. Most methods to fabricate chitosan/collagen composites use freeze drying and chemical crosslinking to create stable porous scaffolds, which subsequently can be seeded with cells. In this study, we directly embedded human bone marrow stem cells (hBMSC) in chitosan/collagen materials by initiating gelation using β-glycerophosphate at physiological temperature and pH. We further examined the use of glyoxal, a dialdehyde with relatively low toxicity, to crosslink these materials and characterized the resulting changes in matrix and cell properties. The cytocompatibility of glyoxal and the crosslinked gels were investigated in terms of hBMSC metabolic activity, viability, proliferation, and osteogenic differentiation. These studies revealed that glyoxal was cytocompatible at concentrations below about 1 mM for periods of exposure up to 15 h, though the degree of cell spreading and proliferation were dependent on matrix composition. Glyoxal-crosslinked matrices were stiffer and compacted less than uncrosslinked controls. It was further demonstrated that hBMSC can attach and proliferate in 3D matrices composed of 50/50 chitosan/collagen, and that these materials supported osteogenic differentiation in response to stimulation. Such glyoxal-crosslinked chitosan/collagen composite materials may find utility as cell delivery vehicles for enhancing the repair of bone defects. PMID:21345389

  15. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks.

    Science.gov (United States)

    Broguiere, Nicolas; Isenmann, Luca; Zenobi-Wong, Marcy

    2016-08-01

    Hyaluronan (HA) is an essential component of the central nervous system's extracellular matrix and its high molecular weight (MW) form has anti-inflammatory and anti-fibrotic properties relevant for regenerative medicine. Here, we introduce a new hydrogel based on high MW HA which is cross-linked using the transglutaminase (TG) activity of the activated blood coagulation factor XIII (FXIIIa). These HA-TG gels have significant advantages for neural tissue engineering compared to previous HA gels. Due to their chemical inertness in the absence of FXIIIa, the material can be stored long-term, is stable in solution, and shows no cytotoxicity. The gelation is completely cell-friendly due to the specificity of the enzyme and the gelation rate can be tuned from seconds to hours at physiological pH and independently of stiffness. The gels are injectable, and attach covalently to fibrinogen and fibrin, two common bioactive components in in vitro tissue engineering, as well as proteins present in vivo, allowing the gels to covalently bind to brain or spinal cord defects. These optimal chemical and bioactive properties of HA-TG gels enabled the formation of 3D neuronal cultures of unprecedented performance, showing fast neurite outgrowth, axonal and dendritic speciation, strong synaptic connectivity in 3D networks, and rapidly-occurring and long-lasting coordinated electrical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Kinetic investigation and lifetime prediction of Cs-NIPAM-MBA-based thermo-responsive hydrogels.

    Science.gov (United States)

    Othman, Muhammad Bisyrul Hafi; Khan, Abbas; Ahmad, Zulkifli; Zakaria, Muhammad Razlan; Ullah, Faheem; Akil, Hazizan Md

    2016-01-20

    This study attempted to clarify the influence of a cross-linker, N,N-methylenebisacrylamide (MBA), and N-isopropylacrylamide (NIPAM) on the non-isothermal kinetic degradation, solid state and lifetime of hydrogels using the Flynn-Wall-Ozawa (F-W-O), Kissinger, and Coats-Redfern (C-Red) methods. The series of dual-responsive Cs-PNIPAM-MBA microgels were synthesized by soapless-emulsion free radical copolymerization in an aqueous medium at 70 °C. The thermal properties were investigated using thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) under nitrogen atmosphere. The apparent activation energy using the chosen Flynn-Wall-Ozawa and Kissinger methods showed that they fitted each other. Meanwhile, the type of solid state mechanism was determined using the Coats-Redfern method proposed for F1 (pure Cs) and F2 (Cs-PNIPAM-MBA hydrogel series) types, which comprise random nucleation with one nucleus reacting on individual particles, and random nucleation with two nuclei reacting on individual particles, respectively. On average, a higher Ea was attributed to the greater cross-linking density of the Cs hydrogel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Studies on the properties of poly(ethylene oxide) R-150 water-swollen hydrogel formed by irradiation

    International Nuclear Information System (INIS)

    Yang Zhanshan; Zhu Nankang; Yang Shuqin; Qiang Yizhong

    2000-01-01

    The physical and chemical properties of PEO R-150 water-swollen hydrogel films formed by electron beam irradiation are studied and compared with PEO R-150 hydrogel films. The experimental results show that the irradiation dose and mass fraction of the polymer do not produce a significant effect on the gel fraction, of the PEO R-150 water-swollen hydrogel films (P>0.05). The degrees of swelling of the PEO R-150 water-swollen hydrogel films decrease as the irradiation dose increasing (P 0.05). The results indicate that the saturant crosslinking density, the lowest degree of swelling of the PEO R-150 water-swollen hydrogel films produce and unfavorable effect on their machinery strength

  18. Cadmium sulfide quantum dots/poly(acrylic acid-co-acrylic amide) composite hydrogel synthesized by gamma irradiation

    Science.gov (United States)

    Yang, Tao; Li, Qing; Wen, Wanxin; Hu, Liang; He, Weiwei; Liu, Hanzhou

    2018-04-01

    To improve the durability and stability of quantum dots (QDs) in the composite hydrogel, an irradiation induced reduction and polymerization-crosslinking method was reported herein where CdS QDs could be synthesized in situ and fastened to polymer chains due to the coordination forces between amino groups and CdS nanoparticles. The morphology and photoluminescence (PL) property of the composite hydrogel were studied. The result indicated that the CdS QDs with uniform size were dispersed evenly in the composite hydrogel, and the introduced CdS QDs had no obvious effect on the hydrogel structure. With the increases of reagent concentrations, PL intensity of the composite hydrogel was enhanced; however, the emission wavelength had no change.

  19. Preparation of various hydrogels based on poly (Vinyl pyrrolidone) and poly ethylene glycol using gamma and electron irradiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2006-11-01

    Different hydrogels have been prepared using gamma and electron irradiation; the hydrogels are composed of poly(vinyl pyrolidone) (PVP), poly(ethylene glycol) (PEG). The influence of some process parameters on the properties of the hydrogels has been investigated as: the gel fraction, maximum swelling, swelling kinetics, and mechanical properties. In the first part of this study, hydrogel dressings have been prepared using electron irradiation, and the dressings are composed of poly(vinyl pyrrolidone) (PVP), poly(ethylene glycol) (PEG) and agar. The gel fraction increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. The prepared hydrogels dressings could be considered as a good barrier against microbes. In the second part, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. In the third part of the study, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and poly(ethylene glycol) (PEG) with various molecular weights, and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. The data show that PEG with low molecular weight needs a high dose for the gelation, and the presence of PVP lowers the needed gelation dose. The maximum swelling decreases with increasing irradiation dose and the PVP concentration, which is due to higher crosslinks between the polymer chains. (author)

  20. Microwave-enhanced synthesis of biodegradable multifunctional chitosan hydrogels for wastewater treatment

    Directory of Open Access Journals (Sweden)

    M. Piatkowski

    2017-10-01

    Full Text Available Chitosan, a derivative of chitin, is a biodegradable polymer known of its favorable properties, applicable in medicine and industry. Commonly obtained chitosan hydrogels are of various swelling capacity, and may bind only anions losing their susceptibility to biodegradation. Hydrogels are mostly obtained using toxic crosslinkers, which pollute environment due to waste generation during their synthesis. In the present article a novel, waste-free method for obtaining chitosan hydrogels under microwave irradiation, is described. Their chemical and morphological structure, swelling properties, sorption capability of a model dye and cadmium ions are described, and kinetic studies, were carried out. Biodegradability of the obtained hydrogels was investigated with the Sturm Test method. As a result, multifunctional chitosan hydrogels with both negative and positive surface charges and increased ability of anions and cations binding, were obtained. Materials were fully biodegradable, capable to absorb high amounts of water, as well as to remove various water contaminants.

  1. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    Science.gov (United States)

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  2. Hydrogels from radiation crosslinked blends of hydrophilic polymers and fillers

    International Nuclear Information System (INIS)

    Yen, S.N.; Osterholtz, F.D.

    1975-01-01

    Particulate, free-flowing, insoluble swellable polymers are provided which are comprised of a mixture of an insoluble, swellable hydrogel and inert filler. The mixtures are free-flowing powders or granules which can absorb many times their weight of water and hence are useful as a soil amendment

  3. Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine.

    Science.gov (United States)

    Ibáñez-Fonseca, Arturo; Ramos, Teresa L; González de Torre, Israel; Sánchez-Abarca, Luis Ignacio; Muntión, Sandra; Arias, Francisco Javier; Del Cañizo, María Consuelo; Alonso, Matilde; Sánchez-Guijo, Fermín; Rodríguez-Cabello, José Carlos

    2018-03-01

    Biocompatibility studies, especially innate immunity induction, in vitro and in vivo cytotoxicity, and fibrosis, are often lacking for many novel biomaterials including recombinant protein-based ones, such as elastin-like recombinamers (ELRs), and has not been extensively explored in the scientific literature, in contrast to traditional biomaterials. Herein, we present the results from a set of experiments designed to elucidate the preliminary biocompatibility of 2 types of ELRs that are able to form extracellular matrix-like hydrogels through either physical or chemical cross-linking both of which are intended for different applications in tissue engineering and regenerative medicine. Initially, we present in vitro cytocompatibility results obtained upon culturing human umbilical vein endothelial cells on ELR substrates, showing optimal proliferation up to 9 days. Regarding in vivo cytocompatibility, luciferase-expressing hMSCs were viable for at least 4 weeks in terms of bioluminescence emission when embedded in ELR hydrogels and injected subcutaneously into immunosuppressed mice. Furthermore, both types of ELR-based hydrogels were injected subcutaneously in immunocompetent mice and serum TNFα, IL-1β, IL-4, IL-6, and IL-10 concentrations were measured by enzyme-linked immunosorbent assay, confirming the lack of inflammatory response, as also observed upon macroscopic and histological evaluation. All these findings suggest that both types of ELRs possess broad biocompatibility, thus making them very promising for tissue engineering and regenerative medicine-related applications. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    Science.gov (United States)

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  5. Preparation of high water-swelling agricultural starch hydrogels by 60Co γ-radiation grafting

    International Nuclear Information System (INIS)

    Wang Qingjun; Quan Yiwu; Chen Qingmin

    2003-01-01

    The starch grafted acrylic acid was used to synthesize water-swelling hydrogels by 60 Co γ-radiation grafting technique. With radiation dose of about 7 kGy, the crosslinking reagent amount of 0.001%-0.1%, the pH value 5-8 and the starch amount of 10%-30%, we can produce 600 times water-swelling hydrogels which are of high performance, low cost and suitable for agriculture

  6. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes.

    Science.gov (United States)

    El-Aassar, M R; El Fawal, G F; Kamoun, Elbadawy A; Fouda, Moustafa M G

    2015-01-01

    In this work, hydrogel membrane composed of; kappa carrageenan (κC) and hyaluronic acid (HA) crosslinked with epichlorohydrine is produced. The optimum condition has been established based on their water absorption properties. Tensile strength (TS) and elongation (E%) for the formed films are evaluated. The obtained films were characterized by FTIR, scanning electron microscopy (SEM) and thermal analysis. All membranes were loaded with l-carnosine as a drug model. The swelling properties and kinetics of the release of the model drug from the crosslinked hydrogel membrane were monitored in buffer medium at 37°C. The equilibrium swelling of films showed fair dependency on the high presence of HA in the hydrogel. Moreover, the cumulative release profile increased significantly and ranged from 28% to 93%, as HA increases. SEM explored that, the porosity increased by increasing HA content; consequently, drug release into the pores and channels of the membranes is facilitated. In addition, water uptake % increased as well. A slight change in TS occurred by increasing the HA% to κC, while the highest value of strain for κC membrane was 498.38% by using 3% HA. The thermal stability of the κC/HA was higher than that of HA. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Separation of water and oil by poly (acrylic acid)-coated stainless steel mesh prepared by radiation crosslinking

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Shin, Jung Woong; Park, Jong Seok; Lim, Young Mook; Jeun, Joon Pyo; Kang, Phil Hyun [Research Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

  8. New Hydrogels Enriched with Antioxidants from Saffron Crocus Can Find Applications in Wound Treatment and/or Beautification.

    Science.gov (United States)

    Zeka, Keti; Ruparelia, Ketan C; Sansone, Claudia; Macchiarelli, Guido; Continenza, Maria Adelaide; Arroo, Randolph R J

    2018-01-01

    Saffron extracts have a long history of application as skin protectant, possibly due to their ability to scavenge free radicals. In this work, the performance of a hydrogel enriched with antioxidant compounds isolated from saffron crocus (Crocus sativus L.) petals was tested. These hydrogels could be considered as new drug delivery system. Hydrogels are crosslinked polymer networks that absorb large quantities of water but retain the properties of a solid, thus making ideal dressings for sensitive skin. We tested antioxidant-enriched hydrogels on primary mouse fibroblasts. Hydrogels enriched with kaempferol and crocin extracted from saffron petals showed good biocompatibility with in vitro cultured fibroblasts. These new types of hydrogels may find applications in wound treatment and/or beautification. © 2018 S. Karger AG, Basel.

  9. Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications.

    Science.gov (United States)

    Han, Sangheon; Ham, Trevor R; Haque, Salma; Sparks, Jessica L; Saul, Justin M

    2015-09-01

    Polymeric biomaterials that provide a matrix for cell attachment and proliferation while achieving delivery of therapeutic agents are an important component of tissue engineering and regenerative medicine strategies. Keratins are a class of proteins that have received attention for numerous tissue engineering applications because, like other natural polymers, they promote favorable cell interactions and have non-toxic degradation products. Keratins can be extracted from various sources including human hair, and they are characterized by a high percentage of cysteine residues. Thiol groups on reductively extracted keratin (kerateine) form disulfide bonds, providing a more stable cross-linked hydrogel network than oxidatively extracted keratin (keratose) that cannot form disulfide crosslinks. We hypothesized that an iodoacetamide alkylation (or "capping") of cysteine thiol groups on the kerateine form of keratin could be used as a simple method to modulate the levels of disulfide crosslinking in keratin hydrogels, providing tunable rates of gel erosion and therapeutic agent release. After alkylation, the alkylated kerateines still formed hydrogels and the alkylation led to changes in the mechanical and visco-elastic properties of the materials consistent with loss of disulfide crosslinking. The alkylated kerateines did not lead to toxicity in MC3T3-E1 pre-osteoblasts. These cells adhered to keratin at levels comparable to fibronectin and greater than collagen. Alkylated kerateine gels eroded more rapidly than non-alkylated kerateine and this control over erosion led to tunable rates of delivery of rhBMP-2, rhIGF-1, and ciprofloxacin. These results demonstrate that alkylation of kerateine cysteine residues provides a cell-compatible approach to tune rates of hydrogel erosion and therapeutic agent release within the context of a naturally-derived polymeric system. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  11. Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels

    Directory of Open Access Journals (Sweden)

    Sadik Kaga

    2016-04-01

    Full Text Available Hydrogels have emerged as a versatile class of polymeric materials with a wide range of applications in biomedical sciences. The judicious choice of hydrogel precursors allows one to introduce the necessary attributes to these materials that dictate their performance towards intended applications. Traditionally, hydrogels were fabricated using either polymerization of monomers or through crosslinking of polymers. In recent years, dendrimers and dendrons have been employed as well-defined building blocks in these materials. The multivalent and multifunctional nature of dendritic constructs offers advantages in either formulation or the physical and chemical properties of the obtained hydrogels. This review highlights various approaches utilized for the fabrication of hydrogels using well-defined dendrimers, dendrons and their polymeric conjugates. Examples from recent literature are chosen to illustrate the wide variety of hydrogels that have been designed using dendrimer- and dendron-based building blocks for applications, such as sensing, drug delivery and tissue engineering.

  12. Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry.

    Science.gov (United States)

    Marin, Luminita; Ailincai, Daniela; Morariu, Simona; Tartau-Mititelu, Liliana

    2017-08-15

    The paper focusses on the synthesis of novel hydrogels by joining natural biodegradable compounds with the aim to achieve biocompatible materials for bio related applications. The hydrogels were prepared from chitosan and citral by constitutional dynamic chemistry, incorporating both molecular and supramolecular dynamic features. The hydrophobic flexible citral has been reversible immobilized onto the hydrophilic chitosan backbone via imine bonds to form amphiphilic glycodynamers, which further self-ordered through supramolecular interactions into a 3D-network of biodynameric hydrogel. The synthetic pathway has been demonstrated by NMR and FTIR spectroscopy, X-ray diffraction and polarized light microscopy. Studies of the hydrogel morphology revealed a 3D porous microstructure, whose pores size correlated with the crosslinking degree. Rheological investigations evidenced high elasticity, thermo-responsiveness and thixotropic behavior. As a proof of the concept, the hydrogels proved in vivo biocompatibility on laboratory mice. The paper successfully implements the constitutional dynamic chemistry in generation of chitosan high performance hydrogels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    Science.gov (United States)

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting

    International Nuclear Information System (INIS)

    Müller, Michael; Zenobi-Wong, Marcy; Becher, Jana; Schnabelrauch, Matthias

    2015-01-01

    Bioprinting is an emerging technology in the field of tissue engineering as it allows the precise positioning of biologically relevant materials in 3D, which more resembles the native tissue in our body than current homogenous, bulk approaches. There is however a lack of materials to be used with this technology and materials such as the block copolymer Pluronic have good printing properties but do not allow long-term cell culture. Here we present an approach called nanostructuring to increase the biocompatibility of Pluronic gels at printable concentrations. By mixing acrylated with unmodified Pluronic F127 it was possible to maintain the excellent printing properties of Pluronic and to create stable gels via UV crosslinking. By subsequent elution of the unmodified Pluronic from the crosslinked network we were able to increase the cell viability of encapsulated chondrocytes at day 14 from 62% for a pure acrylated Pluronic hydrogel to 86% for a nanostructured hydrogel. The mixed Pluronic gels also showed good printability when cells where included in the bioink. The nanostructured gels were, with a compressive modulus of 1.42 kPa, mechanically weak, but we were able to increase the mechanical properties by the addition of methacrylated hyaluronic acid. Our nanostructuring approach enables Pluronic hydrogels to have the desired set of properties in all stages of the bioprinting process. (paper)

  15. Development of polymer-polysaccharide hydrogels for controlling drug delivery

    Science.gov (United States)

    Baldwin, Aaron David

    The use of polymers as biomaterials has evolved over the past several decades, encompassing an expanding synthetic toolbox and many bio-mimetic approaches. Both synthetic and natural polymers have been used as components for biomaterials as their unique chemical structures can provide specific functions for desired applications. Of these materials, heparin, a highly sulfated naturally occurring polysaccharide, has been investigated extensively as a core component in drug delivery platforms and tissue engineering. The goal of this work was to further explore the use of heparin via conjugation with synthetic polymers for applications in drug delivery. We begin by investigating low molecular weight heparin (LMWH), a depolymerized heparin that is used medicinally in the prevention of thrombosis by subcutaneous injection or intravenous drip. Certain disease states or disorders require frequent administration with invasive delivery modalities leading to compliance issues for individuals on prolonged therapeutic courses. To address these issues, a long-term delivery method was developed for LMWH via subcutaneous injection of in situ hydrogelators. This therapy was accomplished by chemical modification of LMWH with maleimide functionality so that it may be crosslinked into continuous hydrogel networks with four-arm thiolated polyethylene glycol (PEG-SH). These hydrogels degrade via hydrolysis over a period of weeks and release bioactive LMWH with first-order kinetics as determined by in vitro and in vivo models, thus indicating the possibility of an alternative means of heparin delivery over current accepted methodologies. Evaluation of the maleimide-thiol chemistries applied in the LMWH hydrogels revealed reversibility for some conjugates under reducing conditions. Addition chemistries, such as maleimide-thiol reactions, are widely employed in biological conjugates and are generally accepted as stable. Here we show that the resulting succinimide thioether formed by the

  16. Development of a P((MAA-co-NVP)-g-EG) Hydrogel Platform for Oral Protein Delivery: Effects of Hydrogel Composition on Environmental Response and Protein Partitioning.

    Science.gov (United States)

    Steichen, Stephanie; O'Connor, Colleen; Peppas, Nicholas A

    2017-01-01

    Hydrogels based upon terpolymers of methacrylic acid, N-vinyl pyrrolidone, and poly(ethylene glycol) are developed and characterized for their ability to respond to changes in environmental pH and to partition protein therapeutics of varying molecular weights and isoelectric points. P((MAA-co-NVP)-g-EG) hydrogels are synthesized with PEG-based cross-linking agents of varying length and incorporation densities. The composition is confirmed using FT-IR spectroscopy and shows peak shifts indicating hydrogen bonding. Scanning electron microscopy reveals microparticles with an irregular, planar morphology. The pH-responsive behavior of the hydrogels is confirmed under equilibrium and dynamic conditions, with the hydrogel collapsed at acidic pH and swollen at neutral pH. The ability of the hydrogels to partition model protein therapeutics at varying pH and ionic strength is evaluated using three model proteins: insulin, porcine growth hormone, and ovalbumin. Finally, the microparticles are evaluated for adverse interactions with two model intestinal cell lines and show minimal cytotoxicity at concentrations below 5 mg mL -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Radiation crosslinked hydrogels as sustained release drug delivery systems

    International Nuclear Information System (INIS)

    Pekala, W.; Rosiak, J.; Rucinska-Rybus, A.; Burczak, K.; Galant, S.; Czolczynska, T.

    1986-01-01

    Radiation methods have been used for: i/modification of vascular prostheses, ii/ obtaining burn dressing materials enabling controlled drug release, iii/ the preparation of polymer ocular insert discs. The surface of polyester vascular prostheses, has been modified by deposition of acrylamide and inducing its polymerization in the solid state by γ-radiation. As a result of this treatment, tightness of the prosthesis walls and its surface hydrophilicity have been improved. Toxicological examinations and blood hemolysis studies of modified prostheses showed its good biocompatibility. Various burn dressings have been prepared and the most promising of all investigated turned to be composition consisting of a cotton gauze base and an active polyacrylamide hydrogel layer with addition of glycerin and immobilized Provital/protein preparation/. Preliminary clinical evaluations of this particular dressing showed that the process of burn healing is indeed fast and fully satisfactory. Ocular insert discs made of polymer and containing pilocarpin hydrochloride which is released at controlled rate have been prepared. It has been found that high hydrophilicity and good swelling properties of the ocular insert discs made possible to incorporate pilocarpin hydrochloride into hydrogel matrix. This work has been carried out under IAEA research contract RB 3379/R-1 POL. (author)

  18. Improvement of mechanical properties of hydrogel by irradiation of polymers in aqueous solution with κ-carrageenan

    International Nuclear Information System (INIS)

    Makuuchi, K.; Yoshii, F.; Zhai, M.

    2000-01-01

    Predominate radiation reaction of κ-carrageenan (KC) hydrogel is the main chain scission of KC. The gel strength of KC hydrogel decreased with increasing irradiation dose. However, KC was found to enhances the radiation crosslinking of synthetic water-soluble polymer (SWSP) such as poly(ethylene oxide) (PEO) and poly(N-vinylpyrolidone) (PVP) in aqueous solution. The gel strength of SWSP hydrogel increased with increasing dose when KC was blended. Probably the radiation degraded KC radicals are recombined with radicals of PVP and PEO. The hydrogel thus prepared absorbs huge amounts of water due to the presence of strong hydrophilic -OSO 3 - groups in KC. (author)

  19. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Wasikiewicz, J.M.; Mitomo, H.; Nagasawa, N.; Yoshii, F.

    2007-01-01

    This article deals with the determination of the adsorption properties of metal ions and humic acid in wa- ter on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, distilled water, and certain organic solvents. Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure. Charged characteristic analyses demonstrated typically pH-dependent properties of the crosslinked materials. The adsorption studies were carded out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Moreover, isothermal adsorption data revealed that Cu 2+ , Cd 2+ , and humic acid were removed by these crosslinked materials with high efficiency. Adsorption isothermal data were interpreted well by the Langmuir equation. These crosslinked carboxymethylated chitosan derivatives indicate favorable adsorption of metal ions and humic acid. (authors)

  20. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels.

    Science.gov (United States)

    Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John

    2017-03-15

    Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial

  1. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    Science.gov (United States)

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  2. Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds

    International Nuclear Information System (INIS)

    Fiejdasz, Sylwia; Szczubiałka, Krzysztof; Lewandowska-Łańcucka, Joanna; Nowakowska, Maria; Osyczka, Anna M

    2013-01-01

    The progress in tissue regeneration is strongly dependent on the development of biocompatible materials with properties resembling those of a native tissue. Also, the application of noninvasive methods of delivering the scaffold into the tissue defect is of great importance. In this study we present a group of biopolymer-based materials as potential injectable scaffolds. In contrast to other studies involving collagen neutralization or additional incubation of gel in genipin solution, we propose collagen and collagen–chitosan gels crosslinked in situ with genipin. Since some parameters of the cells should be considered in the microscale, the steady-state fluorescence anisotropy was applied to study the microenvironment of the gels. To our knowledge we are the first to report on microrheological properties, such as gel time and microviscosity, for this group of hydrogels. Rapid gelation at physiological temperatures found makes these materials of special interest in applications requiring gel injectability. Physico-chemical investigation showed the influence of the crosslinking agent concentration and chitosan addition on the crosslinking degree, swelling ratio, gel microviscosity, and the degradation rate. Strong correlation was revealed between the surface wettability and the viability of cultured mesenchymal stem cells. Cytotoxicity studies indicated that the collagen–chitosan hydrogels showed the best biocompatibility. (paper)

  3. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

    Science.gov (United States)

    Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki

    2016-07-01

    Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

  4. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.

    Science.gov (United States)

    Neumann, Alexander J; Quinn, Timothy; Bryant, Stephanie J

    2016-07-15

    Photopolymerizable and hydrolytically labile poly(ethylene glycol) (PEG) hydrogels formed from photo-clickable reactions were investigated as cell delivery platforms for cartilage tissue engineering (TE). PEG hydrogels were formed from thiol-norbornene PEG macromers whereby the crosslinks contained caprolactone segments with hydrolytically labile ester linkages. Juvenile bovine chondrocytes encapsulated in the hydrogels were cultured for up to four weeks and assessed biochemically and histologically, using standard destructive assays, and for mechanical and ultrasound properties, as nondestructive assays. Bulk degradation of acellular hydrogels was confirmed by a decrease in compressive modulus and an increase in mass swelling ratio over time. Chondrocytes deposited increasing amounts of sulfated glycosaminoglycans and collagens in the hydrogels with time. Spatially, collagen type II and aggrecan were present in the neotissue with formation of a territorial matrix beginning at day 21. Nondestructive measurements revealed an 8-fold increase in compressive modulus from days 7 to 28, which correlated with total collagen content. Ultrasound measurements revealed changes in the constructs over time, which differed from the mechanical properties, and appeared to correlate with ECM structure and organization shown by immunohistochemical analysis. Overall, non-destructive and destructive measurements show that this new hydrolytically degradable PEG hydrogel is promising for cartilage TE. Designing synthetic hydrogels whose degradation matches tissue growth is critical to maintaining mechanical integrity as the hydrogel degrades and new tissue forms, but is challenging due to the nature of the hydrogel crosslinks that inhibit diffusion of tissue matrix molecules. This study details a promising, new, photo-clickable and synthetic hydrogel whose degradation supports cartilaginous tissue matrix growth leading to the formation of a territorial matrix, concomitant with an

  5. Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants.

    Science.gov (United States)

    Chen, Dong; Amstad, Esther; Zhao, Chun-Xia; Cai, Liheng; Fan, Jing; Chen, Qiushui; Hai, Mingtan; Koehler, Stephan; Zhang, Huidan; Liang, Fuxin; Yang, Zhenzhong; Weitz, David A

    2017-12-26

    Emulsions of two immiscible liquids can slowly coalesce over time when stabilized by surfactant molecules. Pickering emulsions stabilized by colloidal particles can be much more stable. Here, we fabricate biocompatible amphiphilic dimer particles using a hydrogel, a strongly hydrophilic material, and achieve large contrast in the wetting properties of the two bulbs, resulting in enhanced stabilization of emulsions. We generate monodisperse single emulsions of alginate and shellac solution in oil using a flow-focusing microfluidics device. Shellac precipitates from water and forms a solid bulb at the periphery of the droplet when the emulsion is exposed to acid. Molecular interactions result in amphiphilic dimer particles that consist of two joined bulbs: one hydrogel bulb of alginate in water and the other hydrophobic bulb of shellac. Alginate in the hydrogel compartment can be cross-linked using calcium cations to obtain stable particles. Analogous to surfactant molecules at the interface, the resultant amphiphilic particles stand at the water/oil interface with the hydrogel bulb submerged in water and the hydrophobic bulb in oil and are thus able to stabilize both water-in-oil and oil-in-water emulsions, making these amphiphilic hydrogel-solid particles ideal colloidal surfactants for various applications.

  6. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    Science.gov (United States)

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol-Assisted Method for Biomedical and Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Ibrahim M. El-Sherbiny

    2011-01-01

    Full Text Available We have developed a novel spray gelation-based method to synthesize a new series of magnetically responsive hydrogel nanoparticles for biomedical and drug delivery applications. The method is based on the production of hydrogel nanoparticles from sprayed polymeric microdroplets obtained by an air-jet nebulization process that is immediately followed by gelation in a crosslinking fluid. Oligoguluronate (G-blocks was prepared through the partial acid hydrolysis of sodium alginate. PEG-grafted chitosan was also synthesized and characterized (FTIR, EA, and DSC. Then, magnetically responsive hydrogel nanoparticles based on alginate and alginate/G-blocks were synthesized via aerosolization followed by either ionotropic gelation or both ionotropic and polyelectrolyte complexation using CaCl2 or PEG-g-chitosan/CaCl2 as crosslinking agents, respectively. Particle size and dynamic swelling were determined using dynamic light scattering (DLS and microscopy. Surface morphology of the nanoparticles was examined using SEM. The distribution of magnetic cores within the hydrogels nanoparticles was also examined using TEM. In addition, the iron and calcium contents of the particles were estimated using EDS. Spherical magnetic hydrogel nanoparticles with average particle size of 811 ± 162 to 941 ± 2 nm were obtained. This study showed that the developed method is promising for the manufacture of hydrogel nanoparticles, and it represents a relatively simple and potential low-cost system.

  8. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    Science.gov (United States)

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  9. EXTRACELLULAR MIMETICS: A COMPARATIVE EVALUATION OF CELL ENCAPSULATION UTILIZING HYDROGELS AND SCAFFOLDS

    Directory of Open Access Journals (Sweden)

    Marco Antonio Vieira Grinet

    2017-01-01

    Full Text Available An in vitro encapsulation platform utilizing hydrogels and bone matrix (BM scaffolds to investigate the effects of microenvironmental parameters on encapsulated goat mesenchymal stem cells (gMSC was presented. The base encapsulation matrix was composed of a biocompatible hydrogel formed through a photoinitiated polymerization process. Different polymer concentrations were used to compare the effects of hydrogel crosslinking density on physical properties, as well as on cell viability. The potential of BM to support the growth and differentiation of gMSC was also analyzed. Both methods were compared in order to analyze viability. Structures that better allow flow of oxygen showed more promising results, whereas BM structures require a better evaluation method for concrete results.

  10. Sodium alginate/gelatin with silica nanoparticles a novel hydrogel for 3D printing

    Science.gov (United States)

    Soni, Raghav; Roopavath, Uday Kiran; Mahanta, Urbashi; Deshpande, A. S.; Rath, S. N.

    2018-05-01

    Sodium alginate/gelatin hydrogels are promising materials for 3D bio-printing due to its good biocompatibility and biodegradability. Gelatin is used for thermal crosslinking and its cell adhesion properties. Hence patient specific sodium alginate/gelatin hydrogel scaffolds can be bio-fabricated in a temperature range of 4-14 oC. In this study we made an attempt to introduce silica (SiO2) nanoparticles in the polymer network of sodium alginate (2.5%)/gelatin (8%) hydrogel at different concentrations (w/v) as 0%, 1.25%, 2.5%, 5%, and 7.5%. The effect of silica nanoparticles on viscosity, swelling behavior, and degradation rate are analyzed. Hydrogels with 5% silica nanoparticles show significantly less swelling and degradation when compared to other concentrations. The viscosity of the hydrogels gradually increases up to 5% addition of silica nanoparticles enhancing the stability of 3D printed structures.

  11. Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogels

    DEFF Research Database (Denmark)

    Zaharia, Anamaria; Sarbu, Andrei; Radu, Anita-Laura

    2015-01-01

    Novel nanocomposite hydrogel structures based on cross-linked poly(acrylic acid) (PAA) and kaolinite (Kaol), modified with different loadings of polyacrylamide (PAAm), were prepared by inverse dispersion polymerization. Ceric ammonium nitrate as an initiator in the presence of nitric acid was used...... of Kaol particles in the polyacrylic acid matrix, thereby leading to enhanced interactions and furthermore to improved mechanical properties of the final hydrogels....

  12. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    Science.gov (United States)

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. MWCNTs/Cellulose Hydrogels Prepared from NaOH/Urea Aqueous Solution with Improved Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Yingpu Zhang

    2015-01-01

    Full Text Available Novel high strength composite hydrogels were designed and synthesized by introducing multiwalled carbon nanotubes (MWCNTs into cellulose/NaOH/urea aqueous solution and then cross-linked by epichlorohydrin. MWCNTs were used to modify the matrix of cellulose. The structure and morphology of the hydrogels were characterized by Fourier transform infrared (FT-IR spectroscopy, high resolution transmission electron microscopy (HR-TEM, and scanning electron microscopy (SEM. The results from swelling testing revealed that the equilibrium swelling ratio of hydrogels decreased with the increment of MWCNTs content. Thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA results demonstrated that the introduction of MWCNT into cellulose hydrogel networks remarkably improved both thermal and mechanical properties of the composite hydrogels. The preparation of MWCNTs modifiedcellulose-based composites with improved mechanical properties was the first important step towards the development of advanced functional materials.

  14. Poly(vinyl pyrrolidone) (PVP) hydrogels study for ophthalmologic area utilization

    International Nuclear Information System (INIS)

    Amaral, Renata Hage; Rogero, Sizue Ota; Lugao, Ademar Benevolo; Cruz, Aurea S.; Sacramento, Rogerio S.; Lima Filho, Acacio A. Souza; Schor, Paulo

    2005-01-01

    Poly (vinyl pyrrolidone) (PVP) hydrogels produced by radiation-induced crosslinking were studied to compose drug delivery system to be used in the eye surface and to manufacture ophthalmic plugs. Some formulations with PVP and poly ethylene glycol (PEG) with different molar mass (300 and 600) were prepared utilizing 0.85% sodium chloride aimed to control the swelling capacity. The obtained hydrogels were characterized by gel fraction and swelling assays. The gel fraction and swelling results indicated no difference in the formulation containing or not NaCl. The gel fraction results varied from 62 to 81% and the swelling degree from 130 to 420%. In vitro assay of cytotoxicity by neutral red uptake method was the first biocompatibility test performed. The results showed no evidence of toxicity in the studied hydrogels. (author)

  15. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudesai, S. A., E-mail: swapnil@barc.gov.in; Mitra, S.; Mukhopadhyay, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 40085 (India); Lawrence, Mathias B. [Department of Physics, St. Xavier’s College, Mapusa, Goa 403507 (India); Desa, J. A. E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India)

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  16. 2.6. Sorption of serum albumin by ethynyl-piperidol hydrogels

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption of serum albumin by ethynyl-piperidol hydrogels was studied in this article. Albumins adsorption on the surface of solids was considered. The capacity of cross-linked ethynyl piperidol polymers to the serum albumin was considered as well. The kinetic curves of sorption of human serum albumin by triple copolymer of isopropenyl trimethyl ethynyl piperidol were constructed. Sorption activity of ethynyl-piperidol polymers depending on ph of solution of human serum albumin were defined. Influence of solution ionic strength on sorption of human serum albumin was defined as well. The desorption of human serum albumin from the complexes with hydrogels was examined.

  17. Hydrogels and their medical applications

    Science.gov (United States)

    Rosiak, Janusz M.; Yoshii, Fumio

    1999-05-01

    Biomaterials play a key role in most approaches for engineering tissues as substitutes for functional replacement, for components of devices related to therapy and diagnosis, for drug delivery systems and supportive scaffolds for guided tissue growth. Modern biomaterials could be composed of various components, e.g. metals, ceramics, natural tissues, polymers. In this last group, the hydrogels, hydrophilic polymeric gels with requested biocompatibility and designed interaction with living surrounding seem to be one of the most promising group of biomaterials. Especially, if they are formed by means of ionizing radiation. In early 1950s, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking of hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of the phenomenon associated with radiation synthesis, with topology of network and relation between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by A. Charlesby (Atomic Radition and polymers, Pergamon Press, Oxford, 1960) and A. Chapiro (Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962) proceed from this time. The noticeable interest in the application of radiation techniques to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents invented by Japanese and American scientists, headed by Kaetsu in Japan and Hoffman in USA. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as the modification of material surfaces to improve biocompatibility and their ability to bond antigens and antibodies had been the main subjects of these investigations. In this article a brief summary of investigations on mechanism and kinetics of radiation formation of hydrogels as well as some examples of commercialized hydrogel biomaterials have been

  18. Hydrogels and their medical applications

    International Nuclear Information System (INIS)

    Rosiak, Janusz M.; Yoshii, Fumio

    1999-01-01

    Biomaterials play a key role in most approaches for engineering tissues as substitutes for functional replacement, for components of devices related to therapy and diagnosis, for drug delivery systems and supportive scaffolds for guided tissue growth. Modern biomaterials could be composed of various components, e.g. metals, ceramics, natural tissues, polymers. In this last group, the hydrogels, hydrophilic polymeric gels with requested biocompatibility and designed interaction with living surrounding seem to be one of the most promising group of biomaterials. Especially, if they are formed by means of ionizing radiation. In early 1950s, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking of hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of the phenomenon associated with radiation synthesis, with topology of network and relation between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by A. Charlesby (Atomic Radition and polymers, Pergamon Press, Oxford, 1960) and A. Chapiro (Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962) proceed from this time. The noticeable interest in the application of radiation techniques to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents invented by Japanese and American scientists, headed by Kaetsu in Japan and Hoffman in USA. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as the modification of material surfaces to improve biocompatibility and their ability to bond antigens and antibodies had been the main subjects of these investigations. In this article a brief summary of investigations on mechanism and kinetics of radiation formation of hydrogels as well as some examples of commercialized hydrogel biomaterials have been

  19. Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Eltjani-Eltahir Hago

    2013-01-01

    Full Text Available In this work, a new approach was introduced to prepare interpenetrating polymer network PVA/GE hydrogels by cross-linking of various concentration gelatin in the presence of transglutaminase enzyme by using the freezing-thawing cycles technique. The effects of freezing-thawing cycles on the properties of morphological characterization, gel fraction, swelling, mechanical, and MTT assay were investigated. The IPN PVA/GE hydrogels showed excellent physical and mechanical Properties. MTT assay data and the fibroblasts culture also showed excellent biocompatibility and good proliferation. This indicates that the IPN hydrogels are stable enough for various biomedical applications.

  20. Preparation and Characterization of Novel Gellan Gum Hydrogels Suitable for Modified Drug Release

    Directory of Open Access Journals (Sweden)

    Pietro Matricardi

    2009-09-01

    Full Text Available Innovative hydrogels obtained by physical and chemical crosslinking of deacylated Gellan gum have been characterized in terms of water uptake, rheological properties and compressibility, and the behaviour of the tested materials, according to the type of the obtained network, is thoroughly discussed. The release from the various gels of loaded model molecules of different steric hindrance was also investigated and the trend of the release profiles has been related to the structures proposed for the physical and the chemical hydrogel.

  1. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide

    International Nuclear Information System (INIS)

    Wang, Bo; Jeon, Young Sil; Park, Ho Seok; Kim, Ji-Heung

    2016-01-01

    Stimuli-responsive and self-healing materials have a wide range of potential uses, and some significant research has focused on cross-linking of hydrogel materials by means of reversible coordination bonding. The resulting materials, however, tend to have poor mechanical properties with pronounced weakness and brittleness. In this work, we present a novel mussel-inspired graphene oxide(GO)–containing hydrogel based on modified polyaspartamide with γ-amino butyric acid (GABA), 3.4-dihydroxyphenethylamine (DOPA), and ethanolamine (EA), termed PolyAspAm(GABA/DOPA/EA). Here both GO nanosheets and boric acid (H 3 BO 3 ) act as cross-linkers, interacting with polar functional groups of the PolyAspAm(GABA/DOPA/EA). Compared to PolyAspAm(GABA/DOPA/EA)/B 3+ gel without GO, the same containing 5 wt% of GO yielded a 10-fold increase in both the storage and loss moduli, as well as 134% and 104% increases in the tensile and compressive strengths, respectively. In addition, the GO-containing polyaspartamide hydrogel exhibited rapid and autonomous self-healing property. Two types of bonding, boron–catechol coordination and strong hydrogen bonding interactions between PolyAspAm side chains and GO nanosheets, would impart the enhanced mechanical strength and good reversible gelation behavior upon pH stimulation to the hydrogel, making this biocompatible hydrogel a promising soft matter for biomedical applications. - Highlights: • Novel GO-containing nanocomposite hydrogels based on dopamine-conjugated polyaspartamide derivative was prepared. • Improvement in the mechanical property of composite gel by GO incorporation was elucidated. • The “smart” characteristics of pH-responsive gelation and rapid self-healing were demonstrated.

  2. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Jeon, Young Sil; Park, Ho Seok; Kim, Ji-Heung, E-mail: kimjh@skku.edu

    2016-12-01

    Stimuli-responsive and self-healing materials have a wide range of potential uses, and some significant research has focused on cross-linking of hydrogel materials by means of reversible coordination bonding. The resulting materials, however, tend to have poor mechanical properties with pronounced weakness and brittleness. In this work, we present a novel mussel-inspired graphene oxide(GO)–containing hydrogel based on modified polyaspartamide with γ-amino butyric acid (GABA), 3.4-dihydroxyphenethylamine (DOPA), and ethanolamine (EA), termed PolyAspAm(GABA/DOPA/EA). Here both GO nanosheets and boric acid (H{sub 3}BO{sub 3}) act as cross-linkers, interacting with polar functional groups of the PolyAspAm(GABA/DOPA/EA). Compared to PolyAspAm(GABA/DOPA/EA)/B{sup 3+} gel without GO, the same containing 5 wt% of GO yielded a 10-fold increase in both the storage and loss moduli, as well as 134% and 104% increases in the tensile and compressive strengths, respectively. In addition, the GO-containing polyaspartamide hydrogel exhibited rapid and autonomous self-healing property. Two types of bonding, boron–catechol coordination and strong hydrogen bonding interactions between PolyAspAm side chains and GO nanosheets, would impart the enhanced mechanical strength and good reversible gelation behavior upon pH stimulation to the hydrogel, making this biocompatible hydrogel a promising soft matter for biomedical applications. - Highlights: • Novel GO-containing nanocomposite hydrogels based on dopamine-conjugated polyaspartamide derivative was prepared. • Improvement in the mechanical property of composite gel by GO incorporation was elucidated. • The “smart” characteristics of pH-responsive gelation and rapid self-healing were demonstrated.

  3. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    Energy Technology Data Exchange (ETDEWEB)

    Sahiner, Nurettin [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Malci, Savas [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Celikbicak, Oemuer [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Kantoglu, Oemer [Ankara Nuclear Research Center, Turkish Atomic Energy Authority, 06983 Ankara (Turkey); Salih, Bekir [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey)]. E-mail: bekir@hacettepe.edu.tr

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using {sup 60}Co {gamma} source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis. sis.

  4. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria.

    Science.gov (United States)

    Singh, P; Medronho, B; Alves, L; da Silva, G J; Miguel, M G; Lindman, B

    2017-11-01

    Novel carboxymethyl cellulose-chitosan (CMC-Cht) hybrid micro- and macroparticles were successfully prepared in aqueous media either by drop-wise addition or via nozzle-spray methods. The systems were either physically or chemically crosslinked using genipin as the reticulation agent. The macroparticles (ca. 2mm) formed are found to be essentially of the core-shell type, while the microparticles (ca. 5μm) are apparently homogeneous. The crosslinked particles are robust, thermally resistant and less sensitive to pH changes. On the other hand, the physical systems are pH sensitive presenting a remarkable swelling at pH 7.4, while little swelling is observed at pH 2.4. Furthermore, model probiotic bacteria (Lactobacillus rhamnosus GG) was for the first time successfully encapsulated in the CMC-Cht based particles with acceptable viability count. Overall, the systems developed are highly promising for probiotic encapsulation and potential delivery in the intestinal tract with the purpose of modulating gut microbiota and improving human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect.

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    Full Text Available Cell sheet-mediated tissue regeneration is a promising approach for corneal reconstruction. However, the fragility of bioengineered corneal endothelial cell (CEC monolayers allows us to take advantage of cross-linked porous gelatin hydrogels as cell sheet carriers for intraocular delivery. The aim of this study was to further investigate the effects of biopolymer concentrations (5-15 wt% on the characteristic and safety of hydrogel discs fabricated by a simple stirring process combined with freeze-drying method. Results of scanning electron microscopy, porosity measurements, and ninhydrin assays showed that, with increasing solid content, the pore size, porosity, and cross-linking index of carbodiimide treated samples significantly decreased from 508±30 to 292±42 µm, 59.8±1.1 to 33.2±1.9%, and 56.2±1.6 to 34.3±1.8%, respectively. The variation in biopolymer concentrations and degrees of cross-linking greatly affects the Young's modulus and swelling ratio of the gelatin carriers. Differential scanning calorimetry measurements and glucose permeation studies indicated that for the samples with a highest solid content, the highest pore wall thickness and the lowest fraction of mobile water may inhibit solute transport. When the biopolymer concentration is in the range of 5-10 wt%, the hydrogels have high freezable water content (0.89-0.93 and concentration of permeated glucose (591.3-615.5 µg/ml. These features are beneficial to the in vitro cultivation of CECs without limiting proliferation and changing expression of ion channel and pump genes such as ATP1A1, VDAC2, and AQP1. In vivo studies by analyzing the rabbit CEC morphology and count also demonstrate that the implanted gelatin discs with the highest solid content may cause unfavorable tissue-material interactions. It is concluded that the characteristics of cross-linked porous gelatin hydrogel carriers and their triggered biological responses are in relation to biopolymer

  6. pH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid hydrogels and in vitro release of 5-fluorouracil.

    Directory of Open Access Journals (Sweden)

    Shahid Bashir

    Full Text Available There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN hydrogels of N-succinyl-chitosan (NSC via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid(Poly (AAm-co-AA was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and field emission scanning electron microscope (FESEM. The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA, and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug

  7. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N. Narayana, E-mail: nagireddynarayana@gmail.com [Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli (Italy); Ravindra, S. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa); Reddy, N. Madhava [Department of Environmental Science, Gates Institute of Technology, NH-7, Gooty, Anantapuram, Andhra Pradesh (India); Rajinikanth, V. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa); Raju, K. Mohana [Synthetic Polymer Laboratory, Department of Polymer Science & Technology, S.K. University, Anantapuram, Andhra Pradesh (India); Vallabhapurapu, Vijaya Srinivasu [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa)

    2015-11-15

    The present work deals with the development of temperature and magnetic responsive hydrogel networks based on poly (N-isopropylacrylamide)/acrylamido propane sulfonic acid. The hydrogel matrices are synthesized by polymerizing N-isopropylacrylamide (NIPAM) monomer in the presence of acrylamido propane sulphonicacid (AMPS) using a cross-linker (N,N-methylenebisacrylamide, MBA) and redox initiating system [ammonium persulphate (APS)/tetramethylethylenediamine (TMEDA)]. The magnetic nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating iron ions and subsequent treatment with ammonia. A series of hydrogel-magnetic nanocomposites (HGMNC) are developed by varying AMPS composition. The synthesized hydrogel magnetic nanocomposites (HGMNC) are characterized by using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), Thermal Analyses and Electron Microscopy analysis (Scanning and Transmission Electron Microscope). The metal extraction capacities of the prepared hydrogel (HG) and hydrogel magnetic nanocomposites (HGMNC) were studied at different temperatures. The results suggest that HGMNCs have higher extraction capacity compared to HG and HG loaded iron ions. This data also reveals that the extraction of metals by hydrogel magnetic nanocomposites (HGMNCs) is higher at higher temperatures than room temperature. The prepared HGMNCs are also subjected to hyperthermia (cancer therapy) studies. - Highlights: • We have developed temperature responsive hydrogel magnetic nanocomposites. • Addition of AMPS monomer to this magnetic hydrogel enhances the temperature sensitivity to 40–43 °C. • Similarly the sulfonic groups present in the AMPS units enhances the swelling ratio of magnetic hydrogels. • AMPS acts as good stabilizing agent for nanoparticles in the magnetic nanogel.

  8. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications

    International Nuclear Information System (INIS)

    Reddy, N. Narayana; Ravindra, S.; Reddy, N. Madhava; Rajinikanth, V.; Raju, K. Mohana; Vallabhapurapu, Vijaya Srinivasu

    2015-01-01

    The present work deals with the development of temperature and magnetic responsive hydrogel networks based on poly (N-isopropylacrylamide)/acrylamido propane sulfonic acid. The hydrogel matrices are synthesized by polymerizing N-isopropylacrylamide (NIPAM) monomer in the presence of acrylamido propane sulphonicacid (AMPS) using a cross-linker (N,N-methylenebisacrylamide, MBA) and redox initiating system [ammonium persulphate (APS)/tetramethylethylenediamine (TMEDA)]. The magnetic nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating iron ions and subsequent treatment with ammonia. A series of hydrogel-magnetic nanocomposites (HGMNC) are developed by varying AMPS composition. The synthesized hydrogel magnetic nanocomposites (HGMNC) are characterized by using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), Thermal Analyses and Electron Microscopy analysis (Scanning and Transmission Electron Microscope). The metal extraction capacities of the prepared hydrogel (HG) and hydrogel magnetic nanocomposites (HGMNC) were studied at different temperatures. The results suggest that HGMNCs have higher extraction capacity compared to HG and HG loaded iron ions. This data also reveals that the extraction of metals by hydrogel magnetic nanocomposites (HGMNCs) is higher at higher temperatures than room temperature. The prepared HGMNCs are also subjected to hyperthermia (cancer therapy) studies. - Highlights: • We have developed temperature responsive hydrogel magnetic nanocomposites. • Addition of AMPS monomer to this magnetic hydrogel enhances the temperature sensitivity to 40–43 °C. • Similarly the sulfonic groups present in the AMPS units enhances the swelling ratio of magnetic hydrogels. • AMPS acts as good stabilizing agent for nanoparticles in the magnetic nanogel

  9. Evaluation of carboxymethyl moringa gum as nanometric carrier.

    Science.gov (United States)

    Rimpy; Abhishek; Ahuja, Munish

    2017-10-15

    In the present study, carboxymethylation of Moringa oleifera gum was carried out by reacting with monochloroacetic acid. Modified gum was characterised employing Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and Rheology study. The carboxymethyl modification of moringa gum was found to increase its degree of crystallinity, reduce viscosity and swelling, increase the surface roughness and render its more anionic. The interaction between carboxymethyl moringa gum and chitosan was optimised by 2-factor, 3-level central composite experimental design to prepare polyelectrolyte nanoparticle using ofloxacin, as a model drug. The optimal calculated parameters were found to be carboxymethyl moringa gum- 0.016% (w/v), chitosan- 0.012% (w/v) which provided polyelectrolyte nanoparticle of average particle size 231nm and zeta potential 28mV. Carboxymethyl moringa gum-chitosan polyelectrolyte nanoparticles show sustained in vitro release of ofloxacin upto 6h which followed first order kinetics with mechanism of release being erosion of polymer matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Low-Cost, Rapidly Responsive, Controllable, and Reversible Photochromic Hydrogel for Display and Storage.

    Science.gov (United States)

    Yang, Yongqi; Guan, Lin; Gao, Guanghui

    2018-04-25

    Traditional optoelectronic devices without stretchable performance could be limited for substrates with irregular shape. Therefore, it is urgent to explore a new generation of flexible, stretchable, and low-cost intelligent vehicles as visual display and storage devices, such as hydrogels. In the investigation, a novel photochromic hydrogel was developed by introducing the negatively charged ammonium molybdate as a photochromic unit into polyacrylamide via ionic and covalent cross-linking. The hydrogel exhibited excellent properties of low cost, easy preparation, stretchable deformation, fatigue resistance, high transparency, and second-order response to external signals. Moreover, the photochromic and fading process of hydrogels could be precisely controlled and repeated under the irradiation of UV light and exposure of oxygen at different time and temperature. The photochromic hydrogel could be considered applied for artificial intelligence system, wearable healthcare device, and flexible memory device. Therefore, the strategy for designing a soft photochromic material would open a new direction to manufacture flexible and stretchable devices.

  11. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide Hydrogels for Transdermal Delivery

    Directory of Open Access Journals (Sweden)

    Rachel Shet Hui Wong

    2017-07-01

    Full Text Available Novel poly (ethylene oxide (PEO hydrogel films were synthesized via UV cross-linking with pentaerythritol tetra-acrylate (PETRA as cross-linking agent. The purpose of this work was to develop a novel hydrogel film suitable for passive transdermal drug delivery via skin application. Hydrogels were loaded with model drugs (lidocaine hydrochloride (LID, diclofenac sodium (DIC and ibuprofen (IBU via post-loading and in situ loading methods. The effect of loading method and drug physicochemical properties on the material and drug release properties of medicated film samples were characterized using scanning electron microscopy (SEM, swelling studies, differential scanning calorimetry (DSC, fourier transform infrared spectroscopy (FT-IR, tensile testing, rheometry, and drug release studies. In situ loaded films showed better drug entrapment within the hydrogel network and also better polymer crystallinity. High drug release was observed from all studied formulations. In situ loaded LID had a plasticizing effect on PEO hydrogel, and films showed excellent mechanical properties and prolonged drug release. The drug release mechanism for the majority of medicated PEO hydrogel formulations was determined as both drug diffusion and polymer chain relaxation, which is highly desirable for controlled release formulations.

  12. Synthesis and characterization of thermosensitive hydrogels and the investigation of modified release of ibuprofen

    Directory of Open Access Journals (Sweden)

    Ilić-Stojanović Snežana S.

    2013-01-01

    Full Text Available The method of the synthesis of poly(N-isopropylacrylamide-co-2-hydroxypropyl methacrylate hydrogels obtained by radical polymerization is described. Their characterization was carried out by the determination of the quantity of residual monomers and by investigating their structure using the FTIR. Three glass transitions were detected by DSC method. The porous surfaces of hydrogels with incorporated ibuprofen were shown in SEM micrographs. The swelling ratio of hydrogels decreased with the temperature increase and the swelling transport mechanism was changed from non-Fickian to Fickian. Ibuprofen was incorporated in hydrogel as a drug carrier and released quantity was monitored by HPLC method depending on the temperature. Hydrogel with the lower cross-linker content had the highest swelling degree (α = 34.72 at 10°C and released the largest amount of ibuprofen (64.21 mg/gxerogel at 40°C. [Projekat Ministarstva nauke Republike Srbije, br. TR-34012

  13. Síntese e caracterização de hidrogéis compósitos a partir de copolímeros acrilamida-acrilato e caulim: efeito da constituição de diferentes caulins do nordeste brasileiro Synthesis and characterization of poly (acrylamide-co-acrylate and kaolin hydrogel composites: effect of the constitution of different kaolins from northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Carlos W. de Q. Brito

    2013-01-01

    Full Text Available Superabsorbent hydrogels based on poly (acrylamide-co-acrylate and different kaolins, were prepared by free-radical aqueous copolymerization. FTIR and WAXS techniques were employed for characterization of a series of hydrogels, obtained by varying the percentage of clay, crosslinking and constitution of kaolin. The water absorbency at equilibrium (Weq decreased with increasing clay content and the amount of crosslinking agent. Superabsorbent hydrogel (Weq > 1084 g H2O/g gel was obtained as 10 wt% of white kaolin and 0.05 mol% of crosslinking agent were used. The hydrogel proved sensitive to pH variation and the presence of salts.

  14. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling

    Science.gov (United States)

    Cangialosi, Angelo; Yoon, ChangKyu; Liu, Jiayu; Huang, Qi; Guo, Jingkai; Nguyen, Thao D.; Gracias, David H.; Schulman, Rebecca

    2017-09-01

    Shape-changing hydrogels that can bend, twist, or actuate in response to external stimuli are critical to soft robots, programmable matter, and smart medicine. Shape change in hydrogels has been induced by global cues, including temperature, light, or pH. Here we demonstrate that specific DNA molecules can induce 100-fold volumetric hydrogel expansion by successive extension of cross-links. We photopattern up to centimeter-sized gels containing multiple domains that undergo different shape changes in response to different DNA sequences. Experiments and simulations suggest a simple design rule for controlled shape change. Because DNA molecules can be coupled to molecular sensors, amplifiers, and logic circuits, this strategy introduces the possibility of building soft devices that respond to diverse biochemical inputs and autonomously implement chemical control programs.

  15. Development and Characterization of UHMWPE Fiber-Reinforced Hydrogels For Meniscal Replacement

    Science.gov (United States)

    Holloway, Julianne Leigh

    Meniscal tears are the most common orthopedic injuries to the human body. The current treatment of choice, however, is a partial meniscectomy that leads to osteoarthritis proportional to the amount of tissue removed. As a result, there is a significant clinical need to develop materials capable of restoring the biomechanical contact stress distribution to the knee after meniscectomy and preventing the onset of osteoarthritis. In this work, a fiber-reinforced hydrogel-based synthetic meniscus was developed that allows for tailoring of the mechanical properties and molding of the implant to match the size, shape, and property distribution of the native tissue. Physically cross-linked poly(vinyl alcohol) (PVA) hydrogels were reinforced with ultrahigh molecular weight polyethylene (UHMWPE) fibers and characterized in compression (0.1-0.8 MPa) and tension (0.1-250 MPa) showing fine control over mechanical properties within the range of the human meniscus. Morphology and crystallinity analysis of PVA hydrogels showed increases in crystallinity and PVA densification, or phase separation, with freeze-thaw cycles. A comparison of freeze-thawed and aged, physically cross-linked hydrogels provided insight on both crystallinity and phase separation as mechanisms for PVA gelation. Results indicated both mechanisms independently contributed to hydrogel modulus for freeze-thawed hydrogels. In vitro swelling studies were performed using osmotic solutions to replicate the swelling pressure present in the knee. Minimal swelling was observed for hydrogels with a PVA concentration of 30-35 wt%, independently of hydrogel freeze-thaw cycles. This allows for independent tailoring of hydrogel modulus and pore structure using freeze-thaw cycles and swelling behavior using polymer concentration to match a wide range of properties needed for various soft tissue applications. The UHMWPE-PVA interface was identified as a significant weakness. To improve interfacial adhesion, a novel

  16. Interfacial self-healing of nanocomposite hydrogels: Theory and experiment

    Science.gov (United States)

    Wang, Qiming; Gao, Zheming; Yu, Kunhao

    2017-12-01

    Polymers with dynamic bonds are able to self-heal their fractured interfaces and restore the mechanical strengths. It is largely elusive how to analytically model this self-healing behavior to construct the mechanistic relationship between the self-healing properties (e.g., healed interfacial strength and equilibrium healing time) and the material compositions and healing conditions. Here, we take a self-healable nanocomposite hydrogel as an example to illustrate an interfacial self-healing theory for hydrogels with dynamic bonds. In the theory, we consider the free polymer chains diffuse across the interface and reform crosslinks to bridge the interface. We analytically reveal that the healed strengths of nanocomposite hydrogels increase with the healing time in an error-function-like form. The equilibrium self-healing time of the full-strength recovery decreases with the temperature and increases with the nanoparticle concentration. We further analytically reveal that the healed interfacial strength decreases with increasing delaying time before the healing process. The theoretical results quantitatively match with our experiments on nanosilica hydrogels, and also agree well with other researchers' experiments on nanoclay hydrogels. We expect that this theory would open promising avenues for quantitative understanding of the self-healing mechanics of various polymers with dynamic bonds, and offer insights for designing high-performance self-healing polymers.

  17. Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance

    Directory of Open Access Journals (Sweden)

    Jun Feng

    2017-11-01

    Full Text Available In situ forming hydrogels with catechol groups as tissue reactive functionalities are interesting bioinspired materials for tissue adhesion. Poly(ethylene glycol (PEG–catechol tissue glues have been intensively investigated for this purpose. Different cross-linking mechanisms (oxidative or metal complexation and cross-linking conditions (pH, oxidant concentration, etc. have been studied in order to optimize the curing kinetics and final cross-linking degree of the system. However, reported systems still show limited mechanical stability, as expected from a PEG network, and this fact limits their potential application to load bearing tissues. Here, we describe mechanically reinforced PEG–catechol adhesives showing excellent and tunable cohesive properties and adhesive performance to tissue in the presence of blood. We used collagen/PEG mixtures, eventually filled with hydroxyapatite nanoparticles. The composite hydrogels show far better mechanical performance than the individual components. It is noteworthy that the adhesion strength measured on skin covered with blood was >40 kPa, largely surpassing (>6 fold the performance of cyanoacrylate, fibrin, and PEG–catechol systems. Moreover, the mechanical and interfacial properties could be easily tuned by slight changes in the composition of the glue to adapt them to the particular properties of the tissue. The reported adhesive compositions can tune and improve cohesive and adhesive properties of PEG–catechol-based tissue glues for load-bearing surgery applications.

  18. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu, E-mail: cylsy@163.com [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yong [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Wang, Fengju [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Meng, Weiwei; Yang, Xinlin [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Li, Peng [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Jiang, Jianxin [State Key Laboratory of Trauma Burns and Combined Injury, The Third Military Medical University, Chongqing 400042 (China); Tan, Huimin [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng, Yongfa [Guangdong Fuyang Biotechnology Co., Ltd., Heyuan, Guangdong 517000 (China)

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed. - Highlights: • The novel solvent precipitation method was developed to prepare the porous superabsorbent polymer. • The swelling rate was promoted and the harmful residual monomer was leached after modification. • The modified polymer showed good biological safety. • It showed good hemostasis to arterial hemorrhage model of the animal. • The hemostatic mechanism of the modified superabsorbent polymer was discussed.

  19. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material.

    Science.gov (United States)

    Golafshan, Nasim; Rezahasani, R; Tarkesh Esfahani, M; Kharaziha, M; Khorasani, S N

    2017-11-15

    The aim of this study was to develop a novel nanohybrid interpenetrating network hydrogel composed of laponite:polyvinyl alcohol (PVA)-alginate (LAP:PVA-Alginate) with adjustable mechanical, physical and biological properties for wound healing application. Results demonstrated that compared to PVA-Alginate, mechanical strength of LAP:PVA-Alginate significantly enhanced (upon 2 times). Moreover, incorporation of 2wt.% laponite reduced swelling ability (3 times) and degradation ratio (1.2 times) originating from effective enhancement of crosslinking density in the nanohybrid hydrogels. Furthermore, nanohybrid hydrogels revealed admirable biocompatibility against MG63 and fibroblast cells. Noticeably, MTT assay demonstrated that fibroblast proliferation significantly enhanced on 0.5wt.% LAP:PVA-alginate compared to PVA-alginate. Moreover, hemolysis and clotting tests indicated that the nanohybrid hydrogels promoted hemostasis which could be helpful in the wound dressing. Therefore, the synergistic effects of the nanohybrid hydrogels such as superior mechanical properties, adjustable degradation rate and admirable biocompatibility and hemolysis make them a desirable candidate for wound healing process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Study of crosslinking induced by gamma radiation in mixtures of polyacrylamide anionic and water; Estudo da reticulacao induzida por radiacao gama de misturas de poliacrilamida anionica e agua

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, M.T.S.; Brant, A.J.C.; Naime, N.; Guadagnin, H.C.; Ponce, P.; Lugao, A.B., E-mail: ablugao@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Superabsorbent hydrogels are composed of three-dimensional polymeric networks that can absorb and retain body of water hundreds of times the weight of its dry weight. The hydrogels can be crosslinked by chemical or physical. In general, chemical crosslinking is performed in the presence of reactive substances of high toxicity at elevated temperatures, may cause harmful secondary reactions to final product quality. However, ionizing radiation provides the crosslinking in the absence of chemical initiators or crosslinkers, therefore without contamination or toxicity. It also allows the realization of the reaction at low temperatures. These materials find use in several application fields, such as sanitary pads, diapers, controlled release of nutrients to the soil, separation processes, water purification systems and controlled release of drugs. The purpose of this study was to assess the influence of gamma radiation in doses of 15 and 25 kGy, in reticulation system of polyacrylamide (PAAm) and water, which were characterized by swelling and Fourier Transform Infrared Spectroscopy (FTIR). The results show the importance of the amount of water in the reticulation. It was concluded that gamma radiation has excellent potential for the synthesis of hiperabsorbent hydrogels. (author)