WorldWideScience

Sample records for carbonyl allylation propargylation

  1. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes.

  2. The reactivity of allyl and propargyl alcohols with solvated electrons: temperature and solvent effects

    International Nuclear Information System (INIS)

    Afanassiev, A.M.; Okazaki, K.; Freeman, G.R.

    1979-01-01

    The rate constants K 1 for the reaction of solvated electrons with allyl alcohol in a number of hydroxylic solvents differ by up to two orders of magnitude and decrease in the order tert-butyl alcohol > 2-propanol > l-propanol approximately ethanol > methanol approximately ethylene glycol > water. In methanol and ethylene glycol the rate constants (7 x 10 7 M -1 s -1 at 298 K) and activation energies (16 kJ/mol) are equal, in spite of a 32-fold difference in solvent viscosity (0.54 and 17.3 cP, respectively) and 3-fold difference in its activation energy (11 and 32 kJ/mol, respectively). The reaction in tert-butyl alcohol is nearly diffusion controlled and has a high activation energy that is characteristic of transport in that liquid (E 1 = 31 kJ/mol, E sub(eta) = 39 kJ/mol). The activation energies in the other alcohols are all 16 kJ/mol, and it is 14 kJ/mol in water. They do not correlate with transport properties. The solvent effect is connected primarily with the entropy of activation. The rate constants correlate with the solvated electron trap depth. When the electron affinity of the scavenger is small, a favorable configuration of solvent molecules about the electron/scavenger encounter pair is required for the electron jump to take place. The behavior of the rate parameters for propargyl alcohol is similar to that for allyl alcohol, but k 1 , A 1 , and E 1 are larger for the former. The ratio k(propargyl)/k(allyl) at 298 K equals 10.5 in water and decreases through the series, reaching 1.3 in tert-butyl alcohol. Rate parameters for several other scavengers are also reported. (author)

  3. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones.

    Science.gov (United States)

    Praveen, Chandrasekaran; Ayyanar, Asairajan; Perumal, Paramasivan Thirumalai

    2011-07-01

    An operation friendly protocol for the synthesis of novel di(indolyl)indolin-2-ones via Cu(OTf)(2) catalyzed bis-addition of N-allyl and N-propargyl indole with isatin was developed. This methodology allowed us to achieve the products in excellent yields without requiring purification technique like column chromatography. All the synthesized compounds were evaluated for their in vivo anticonvulsant activity against maximal electroshock test. Six compounds showed maximum activity compared to the standard drug phenytoin. The scope of the new molecules as antimicrobial agents were tested against two bacterial strains (Staphylococcus aureus and Escherichia coli) and one fungal strain (Candida albicans). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Practical Stannylation of Allyl Acetates Catalyzed by Nickel with Bu3 SnOMe.

    Science.gov (United States)

    Komeyama, Kimihiro; Itai, Yuuhei; Takaki, Ken

    2016-06-27

    A practical and scalable nickel-catalyzed allylic stannylation of allyl acetates with Bu3 SnOMe is described. A variety of acyclic and cyclic allyl acetates, even with base-sensitive moieties, undergoes the stannylation by using NiBr2 /4,4'-di-tert-butylbipyridine (dtbpy)/Mn catalyst system to afford highly functionalized allyl stannanes with excellent regioselectivity and yields. Furthermore, the scope of protocol is also extended by the reaction of propargyl acetates, giving rise to propargyl or allenyl stannanes. Additionally, a unique diastereoselectivity using the nickel catalyst different from the palladium was demonstrated for the stannylation of cyclic allyl acetates. In the reaction, inexpensive and stable nickel complexes, abundant reductant (Mn), and atom-economical stannyl source were used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors.

    Science.gov (United States)

    Rodríguez, Yeray A; Gutiérrez, Margarita; Ramírez, David; Alzate-Morales, Jans; Bernal, Cristian C; Güiza, Fausto M; Romero Bohórquez, Arnold R

    2016-10-01

    New N-allyl/propargyl 4-substituted 1,2,3,4-tetrahydroquinolines derivatives were efficiently synthesized using acid-catalyzed three components cationic imino Diels-Alder reaction (70-95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl-cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl-cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl-cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets. © 2016 The Authors Chemical Biology & Drug Design Published by John Wiley & Sons Ltd.

  6. Cyclisation versus 1,1-Carboboration: Reactions of B(C6F5)3 with Propargyl Amides.

    Science.gov (United States)

    Melen, Rebecca L; Hansmann, Max M; Lough, Alan J; Hashmi, A Stephen K; Stephan, Douglas W

    2013-09-02

    A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N-substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo-boration cyclisation reaction, which afforded the 5-alkylidene-4,5-dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1-carboboration is favoured as a result of the increased steric hindrance (1,3-allylic strain) in the 5-alkylidene-4,5-dihydrooxazolium borate species. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reactions of ruthenium and osmium cluster carbonyls with heteroatom-substituted and functionalized alkynes

    International Nuclear Information System (INIS)

    Koridze, A.A.

    2000-01-01

    The results of studies of the reactions of ruthenium and osmium cluster carbonyls with metal (M = Re, Mn, Fe) alkynes, silylalkynes, propargyl alcohols and their derivatives, diynes, enynes, and ferrocenylacetylene are summarized. Intramolecular rearrangements in the cluster complexes including migrations of carbonyl, hydride, and hydrocarbon ligands and the metal core reorganization are considered [ru

  8. Bubble-point measurement for the binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Baek, Seung-Hyun; Byun, Hun-Soo

    2016-01-01

    Highlights: • Phase behaviours for the (CO_2 + propargyl (meth)acrylate) systems by static method were measured. • (P, x) isotherms is obtained at pressures up to 19.14 MPa and at temperature of (313.2 to 393.2) K. • The (CO_2 + propargyl acrylate) and (CO_2 + propargyl methacrylate) systems exhibit type-I behaviour. - Abstract: Acrylate and methacrylate (acrylic acid type) are compounds with weak polarity which show a non-ideal behaviour. Phase behaviour of these systems play a significant role as organic solvents in industrial processes. High pressure phase behaviour data were reported for binary mixture of propargyl acrylate and propargyl methacrylate in supercritical carbon dioxide. The bubble-point curves for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) mixtures were measured by static view cell apparatus at temperature range from 313.2 K to 393.2 K and at pressures below 19.14 MPa. The (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems exhibit type-I phase behaviour. The (carbon dioxide + (meth)acrylate) systems had continuous critical mixture curves with maximums in pressure located between the critical temperatures of carbon dioxide and propargyl acrylate or carbon dioxide and propargyl methacrylate. The solubility behaviour of propargyl (meth)acrylate in the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl acrylate) systems increases as the temperature increases at a fixed pressure. The experimental results for the (carbon dioxide + propargyl acrylate) and (carbon dioxide + propargyl methacrylate) systems correlate with the Peng–Robinson equation of state using a van der Waals one-fluid mixing rule. The critical properties of propargyl acrylate and propargyl methacrylate were predicted with the Joback–Lyderson group contribution and Lee–Kesler method.

  9. EPR investigation of zinc/iodine exchange between propargyl iodides and diethylzinc: detection of propargyl radical by spin trapping.

    Science.gov (United States)

    Maury, Julien; Jammi, Suribabu; Vibert, François; Marque, Sylvain R A; Siri, Didier; Feray, Laurence; Bertrand, Michèle

    2012-10-19

    The production of propargyl radicals in the reaction of dialkylzincs with propargyl iodides in nondegassed medium was investigated by EPR using tri-tert-butylnitrosobenzene (TTBNB) as a spin trap. The radical mechanism and the nature of the observed species were confirmed by the trapping of propargyl radicals generated by an alternative pathway: i.e., upon irradiation of propargyl iodides in the presence of hexa-n-butyldistannane. In dialkylzinc-mediated experiments a high concentration of adduct was instantaneously observed, whereas no spontaneous production of spin adduct was detected in a blank experiment performed with the propargylic iodide and TTBNB in the absence of diethylzinc. Under irradiation in the presence of distannane, two different species were observed at the very beginning of the irradiation; the nitroxide resulting from the trapping of propargyl radical at the propargyl carbon remained the only species detected after irradiating for several minutes. The absence of adducts resulting from the trapping of allenyl canonical forms was supported by DFT calculations and by the preparation of an authentic sample.

  10. Zinc mediated domino elimination-alkylation of methyl 5-iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Poulsen, Carina Storm; Madsen, Robert

    1999-01-01

    5-Iodopentofuranosides are converted with zinc and allyl/propargyl bromide into dienes/enynes which are further used in carbohydrate annulation reactions.......5-Iodopentofuranosides are converted with zinc and allyl/propargyl bromide into dienes/enynes which are further used in carbohydrate annulation reactions....

  11. Absolute photoionization cross-section of the propargyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  12. BENZENE FORMATION ON INTERSTELLAR ICY MANTLES CONTAINING PROPARGYL ALCOHOL

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, B.; Mukherjee, R.; Subramanian, K. P.; Banerjee, S. B., E-mail: bhala@prl.res.in [Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad (India)

    2015-01-10

    Propargyl alcohol (CHCCH{sub 2}OH) is a known stable isomer of the propenal (CH{sub 2}CHCHO) molecule that was reported to be present in the interstellar medium (ISM). At astrochemical conditions in the laboratory, icy layers of propargyl alcohol grown at 85 K were irradiated by 2 keV electrons and probed by a Fourier Transform InfraRed spectrometer in the mid-infrared (IR) region, 4000-500 cm{sup –1}. Propargyl alcohol ice under astrochemical conditions was studied for the first time; therefore, IR spectra of reported amorphous (85 K) and crystalline (180 K) propargyl alcohol ices can be used to detect its presence in the ISM. Moreover, our experiments clearly show benzene (C{sub 6}H{sub 6}) formation to be the major product from propargyl alcohol irradiation, confirming the role of propargyl radicals (C{sub 3}H{sub 3}) formed from propargyl alcohol dissociation that was long expected based on theoretical modeling to effectively synthesize C{sub 6}H{sub 6} in the interstellar icy mantles.

  13. Alkylation of nido-7,8-dicarbollide anion in liquid ammonia by propargyl bromide yielding 8-propargyl-nido-7,9-dicarbaundecaborate and 9-propargyl-nido-7,8-dicarbaundecaborate anions

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Ol'shevskaya, V.A.; Zhigareva, G.G.; Petrovskij, P.V.; Vinogradova, L.E.

    2002-01-01

    Products of alkylation of nido-7,8-dicarbollide anion by propargyl bromide in liquid ammonia at a temperature of -50 deg C were studied by the methods of 11 B NMR, IR and UV spectroscopy. It was ascertained that the above-mentioned reaction is accompanied by framework regroupings and results, depending on the reaction conditions, in formation of 8-propargyl-nido-7,9-dicarbaundecaborate- and 9-propargyl-nido-7,8-dicarbaundecaborate-anion. Ability of the salts prepared to get colored in alcohol solution as a result of action of diluted mineral acids, which is unusual for carborane derivatives, was revealed [ru

  14. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  15. Copper-Catalyzed Decarboxylative Trifluoromethylation of Propargyl Bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Peddi, Santosh; Altman, Ryan A

    2014-07-15

    The development of efficient methods for accessing fluorinated functional groups is desirable. Herein, we report a two-step method that utilizes catalytic Cu for the decarboxylative trifluoromethylation of propargyl bromodifluoroacetates. This protocol affords a mixture of propargyl trifluoromethanes and trifluoromethyl allenes.

  16. Synthesis of Chromane Derivatives via Indium-mediated Intramolecular Allenylation and Allylation to Imines

    International Nuclear Information System (INIS)

    Kang, Han Young; Yu, Yeon Kwon

    2004-01-01

    The results of preparing chromans by intramolecular allylation are shown in Table 2. The results indicated that the indium-mediated allylation was not as efficient as the allenylation. About 10-20% decrease in yields was observed. As mentioned above, in each case only a single isomer was observed, and the stereochemistry of the product was determined as cis by analysis of 1 H NMR and NOE spectra. There are, however, still some limitations in these transformations. Especially, in the case of allylation mixtures of cis and trans isomers are always produced in about 2 : 1 ratio (cis/trans). The ratio was not improved under the various reaction conditions we attempted. Since the indium-mediated addition to carbonyl groups has been successful, it occurred to us that it would be worthwhile to test the addition to carbon-nitrogen double bonds, that is, imine groups. We wish to report here the results of the investigations on allylation and allenylation to C=N bond to provide the chromane structures. The whole transformations

  17. Unprecedented Spectroscopic and Computational Evidence for Allenyl and Propargyl Titanocene(IV) Complexes: Electrophilic Quenching of Their Metallotropic Equilibrium.

    Science.gov (United States)

    Ruiz-Muelle, Ana Belén; Oña-Burgos, Pascual; Ortuño, Manuel A; Oltra, J Enrique; Rodríguez-García, Ignacio; Fernández, Ignacio

    2016-02-12

    The synthesis and structural characterization of allenyl titanocene(IV) [TiClCp2 (CH=C=CH2 )] 3 and propargyl titanocene(IV) [TiClCp2 (CH2 -C≡C-(CH2 )4 CH3 )] 9 have been described for the first time. Advanced NMR methods including diffusion NMR methods (diffusion pulsed field gradient stimulated spin echo (PFG-STE) and DOSY) have been applied and established that these organometallics are monomers in THF solution with hydrodynamic radii (from the Stokes-Einstein equation) of 3.5 and 4.1 Å for 3 and 9, respectively. Full (1) H, (13) C, Δ(1) H, and Δ(13) C NMR data are given, and through the analysis of the Ramsey equation, the first electronic insights into these derivatives are provided. In solution, they are involved in their respective metallotropic allenyl-propargyl equilibria that, after quenching experiments with aromatic and aliphatic aldehydes, ketones, and protonating agents, always give the propargyl products P (when carbonyls are employed), or allenyl products A (when a proton source is added) as the major isomers. In all the cases assayed, the ratio of products suggests that the metallotropic equilibrium should be faster than the reactions of 3 and 9 with electrophiles. Indeed, DFT calculations predict lower Gibbs energy barriers for the metallotropic equilibrium, thus confirming dynamic kinetic resolution. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tsuji-Trost N-allylation with allylic acetates using cellulose-Pd catalyst

    Science.gov (United States)

    Allylic amines are synthesized using heterogeneous cellulose-Pd catalyst via N-allylation of amines; aliphatic and benzyl amines undergo facile reaction with substituted and unsubstituted allyl acetates in high yields.

  19. Synthesis and optimization of novel allylated mono-carbonyl analogs of curcumin (MACs) act as potent anti-inflammatory agents against LPS-induced acute lung injury (ALI) in rats.

    Science.gov (United States)

    Zhu, Heping; Xu, Tingting; Qiu, Chenyu; Wu, Beibei; Zhang, Yali; Chen, Lingfeng; Xia, Qinqin; Li, Chenglong; Zhou, Bin; Liu, Zhiguo; Liang, Guang

    2016-10-04

    A series of novel symmetric and asymmetric allylated mono-carbonyl analogs of curcumin (MACs) were synthesized using an appropriate synthetic route and evaluated experimentally thru the LPS-induced expression of TNF-α and IL-6. Most of the obtained compounds exhibited improved water solubility as a hydrochloride salt compared to lead molecule 8f. The most active compound 7a was effective in reducing the Wet/Dry ratio in the lungs and protein concentration in bronchoalveolar lavage fluid. Meanwhile, 7a also inhibited mRNA expression of several inflammatory cytokines, including TNF-α, IL-6, IL-1β, and VCAM-1, in Beas-2B cells after Lipopolysaccharide (LPS) challenge. These results suggest that 7a could be therapeutically beneficial for use as an anti-inflammatory agent in the clinical treatment of acute lung injury (ALI). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Preconditioning with subneurotoxic allyl nitrile: protection against allyl nitrile neurotoxicity.

    Science.gov (United States)

    Tanii, H; Higashi, T; Saijoh, K

    2010-02-01

    High-dose cruciferous allyl nitrile can induce behavioral abnormalities in rodents, while repeated exposure to allyl nitrile at subneurotoxic levels can increase phase 2 detoxification enzymes in many tissues, although the brain has not been investigated yet. In the present study, we examined the effect of 5 days repeated exposure to subneurotoxic allyl nitrile (0-400 micromol/kg/day) on the brain. Elevated glutathione S-transferase activity was recorded in the striatum, hippocampus, medulla oblongata plus pons, and cortex. Enhancement of quinone reductase activity was observed in the medulla oblongata plus pons, hippocampus, and cortex. In the medulla oblongata plus pons, elevated glutathione levels were recorded. Following repeated subneurotoxic allyl nitrile exposure (0-400 micromol/kg/day), mice were administered a high-dose allyl nitrile (1.2 mmol/kg) which alone led to appearance of behavioral abnormalities. Compared with the 0 micromol/kg/day group, animals in the 200 and 400 micromol/kg/day pre-treatment groups exhibited decreased behavioral abnormalities and elevated GABA-positive cell counts in the substantia nigra pars reticulata and the interpeduncular nucleus. These data suggest that repeated exposure to subneurotoxic levels of allyl nitrile can induce phase 2 enzymes in the brain, which together with induction in other tissues, may contribute to protection against allyl nitrile neurotoxicity. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Synthesis of propargylic and allenic carbamates via the C-H amination of alkynes.

    Science.gov (United States)

    Grigg, R David; Rigoli, Jared W; Pearce, Simon D; Schomaker, Jennifer M

    2012-01-06

    Propargylic amines are important intermediates for the synthesis of nitrogen-containing heterocycles. The insertion of a nitrene into a propargylic C-H bond has not been explored, despite the attention directed toward the Rh-catalyzed amination of other types of C-H bonds. In this communication, the conversion of a series of homopropargylic carbamates to propargylic carbamates and aminated allenes is described. © 2011 American Chemical Society

  2. Adsorption of aliphatic alcohols on ruthenium

    International Nuclear Information System (INIS)

    Shapovalova, L.B.; Zakumbaeva, G.D.

    1977-01-01

    The adsorption is studied of allyl-, propyl- and propargyl alcohols on a ruthenium catalyst-electrode at 20, 30 and 40 deg C in H 2 SO 4 in helium. Above adsorption has been found to grow with increased concentration of the alcohols in the solution. In solutions with the same concentration, propargyl alcohol has been noted to show highest sorptive capacity, followed by that of allyl- and propyl alcohols. With variations in the ruthenium electrode potential, alcohol adsorption occurs via maximum at potential = 0.18

  3. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  4. Regiospecific decarboxylative allylation of nitriles

    Science.gov (United States)

    Recio, Antonio; Tunge, Jon A.

    2009-01-01

    Palladium-catalyzed decarboxylative α-allylation of nitriles readily occurs using Pd2(dba)3 and rac-BINAP. This catalyst mixture also allows the highly regiospecific α-allylation of nitriles in the presence of much more acidic α-protons. Thus, the reported method provides access to compounds that are not readily available via base-mediated allylation chemistries. Lastly, mechanistic investigations indicate that there is a competition between C- and N-allylation of an intermediate nitrile-stabilized anion and that N-allylation is followed by a rapid [3,3]-sigmatropic rearrangement. PMID:19921827

  5. Allyl nitrile: Toxicity and health effects.

    Science.gov (United States)

    Tanii, Hideji

    2017-03-28

    Allyl nitrile (3-butenenitrile) occurs naturally in the environment, in particular, in cruciferous vegetables, indicating a possible daily intake of the compound. There is no report on actual health effects of allyl nitrile in humans, although it is possible that individuals in the environment are at a risk of exposure to allyl nitrile. However, little is known about its quantitative assessment for the environment and bioactivity in the body. This study provides a review of previous accumulated studies on allyl nitrile. Published literature on allyl nitrile was examined for findings on toxicity, metabolism, risk of various cancers, generation, intake estimates, and low-dose effects in the body. High doses of allyl nitrile produce toxicity characterized by behavioral abnormalities, which are considered to be produced by an active metabolite, 3,4-epoxybutyronitrile. Cruciferous vegetables have been shown to have a potential role in reducing various cancers. Hydrolysis of the glucosinolate sinigrin, rich in cruciferous vegetables, results in the generation of allyl nitrile. An intake of allyl nitrile is estimated at 0.12 μmol/kg body weight in Japan. Repeated exposure to low doses of allyl nitrile upregulates antioxidant/phase II enzymes in various tissues; this may contribute to a reduction in neurotoxicity and skin inflammation. These high and low doses are far more than the intake estimate. Allyl nitrile in the environment is a compound with diverse bioactivities in the body, characterized by inducing behavioral abnormalities at high doses and some antioxidant/phase II enzymes at low doses.

  6. Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction

    Directory of Open Access Journals (Sweden)

    Thomas Zeuch

    2013-11-01

    Full Text Available Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn’s largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br, allyl chloride (C3H5Cl, and 1,5-hexadiene (CH2CH(CH22CHCH2 at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re- combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re- combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.

  7. Tether-directed synthesis of highly substituted oxasilacycles via an intramolecular allylation employing allylsilanes

    Directory of Open Access Journals (Sweden)

    Cox Liam R

    2007-02-01

    Full Text Available Abstract Background Using a silyl tether to unite an aldehyde electrophile and allylsilane nucleophile into a single molecule allows a subsequent Lewis-acid-mediated allylation to proceed in an intramolecular sense and therefore receive all the benefits associated with such processes. However, with the ability to cleave the tether post allylation, a product that is the result of a net intermolecular reaction can be obtained. In the present study, four diastereoisomeric β-silyloxy-α-methyl aldehydes, which contain an allylsilane tethered through the β-carbinol centre, have been prepared, in order to probe how the relative configuration of the two stereogenic centres affects the efficiency and selectivity of the intramolecular allylation. Results Syn-aldehydes, syn-4a and syn-4b, both react poorly, affording all four possible diastereoisomeric oxasilacycle products. In contrast, the anti aldehydes anti-4a and anti-4b react analogously to substrates that lack substitution at the α-site, affording only two of the four possible allylation products. Conclusion The outcome of the reaction with anti-aldehydes is in accord with reaction proceeding through a chair-like transition state (T.S.. In these systems, the sense of 1,3-stereoinduction can be rationalised by the aldehyde electrophile adopting a pseudoaxial orientation, which will minimise dipole-dipole interactions in the T.S. The 1,4-stereoinduction in these substrates is modest and seems to be modulated by the R substituent in the starting material. In the case of the syn-substrates, cyclisation through a chair T.S. is unlikely as this would require the methyl substituent α to the reacting carbonyl group to adopt an unfavourable pseudoaxial position. It is therefore proposed that these substrates react through poorly-defined T.S.s and consequently exhibit essentially no stereoselectivity.

  8. Propargylation of Ugi Amide Dianion: An Entry into Pyrrolidinone and Benzoindolizidine Alkaloid Analogues.

    Science.gov (United States)

    Zidan, Alaa; Cordier, Marie; El-Naggar, Abeer M; Abd El-Sattar, Nour E A; Hassan, Mohamed Ali; Ali, Ali Khalil; El Kaïm, Laurent

    2018-05-04

    Propargylation of Ugi adducts under the addition of excess sodium hydride in DMSO leads to direct formation of pyrrolidinone enamides, which are useful precursors of iminium intermediates and may be trapped by various nucleophiles. This approach has been applied to the formation of benzoindolizidine alkaloids with high diversity via a Ugi/propargylation/Pictet-Spengler cyclization.

  9. Compound list: allyl alcohol [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available allyl alcohol AA 00010 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/allyl_alcohol....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/allyl_alcohol...dbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/allyl_alcohol.Rat.in_vivo.Liver.Repeat.zip ftp:/.../ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/allyl_alcohol.Rat.in_vivo.Kidney....Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Repeat/allyl_alcohol.Rat.in_vivo.Kidney.Repeat.zip ...

  10. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  11. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu; Zhu, Bo; Lee, Richmond; Yang, Wenguo; Tan, Davin; Yang, Caiyun; Han, Zhiqiang; Yan, Lin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  12. Composition of amino acid using carbon monoxide. Amide carbonylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Kunisuke (Ajinomoto Co., Inc., Tokyo (Japan))

    1989-02-01

    Amide carbonylation reaction is a method to compose N-acyl-{alpha}-amino acid from aldehyde, carboxylic acid amide, and carbon monoxide in a phase and with high yield. Unlike the conventional Strecker reaction, this method does not use HCN which is in question on public pollution and does not require hydrolysis. This amide carbonylation reaction was discovered by Wakamatsu and others of Ajinomoto Co.,Ltd. Present application examples of this method are the composition of N-acetyl amino acid from the aldehyde class, the composition of N-Acyl amino acid from olefin, the composition of N-acyl or acetyl amino acid from the raw material of alcohol and the halide class, the composition of N-acyl or acetyl amino acid via the isomerization of epoxide and allyl alcohol, the composition of amino dicarboxylic acid, applying deoxidation of ring acid anhydride, the composition of N-acyl amino acid from the raw material of the amine class, the stereoselective composition of -substitution ring-{alpha}-amino acid, and the composition of amino aldehyde. 24 refs., 2 figs., 2 tabs.

  13. Isomerization of propargyl cation to cyclopropenyl cation ...

    Indian Academy of Sciences (India)

    step) for isomeri- zation of the linear propargyl cation to ..... C3, C4 and C5. The ZPE corrections in each case are derived from the. B3LYP calculations. ..... the converse of which gives the relative capacity of the. LPD's to stabilize TS6 with respect ...

  14. p-TSA/Base-Promoted Propargylation/Cyclization of β-Ketothioamides for the Regioselective Synthesis of Highly Substituted (Hydro)thiophenes.

    Science.gov (United States)

    Nandi, Ganesh Chandra; Singh, Maya Shankar

    2016-07-15

    Metal-free, p-toluenesulfonic acid (p-TSA)-mediated, straightforward propargylation of β-ketothioamides with aryl propargyl alcohol has been achieved at room temperature. In addition, the reaction also provided thiazole rings as byproducts. Furthermore, the propargylated thioamides undergo intramolecular 1,5-cyclization to afford fully substituted (hydro)thiophenes in the presence of base. Notably, the approach is pot, atom, and step economical (PASE).

  15. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy.

    Science.gov (United States)

    Negishi, Ei-ichi; Huang, Zhihong; Wang, Guangwei; Mohan, Swathi; Wang, Chao; Hattori, Hatsuhiko

    2008-11-18

    precursor to the desired alkene is readily available as an aldehyde, the carbonyl olefination is generally the more convenient of the two. This is a particularly important factor in many cases where the desired alkene contains an allylic asymmetric carbon center, since alpha-chiral aldehydes can be prepared by a variety of known asymmetric methods and readily converted to allylically chiral alkenes via carbonyl olefination. On the other hand, a homoallylically carbon-branched asymmetric center can be readily installed by either Pd-catalyzed isoalkyl-alkenyl coupling or Zr-catalyzed asymmetric carboalumination (ZACA reaction) of 1,4-dienes. In short, it takes all kinds to make alkenes, just as it takes all kinds to make the world.

  16. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  17. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    Science.gov (United States)

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation on the absolute and relative photoionization cross sections of 3 potential propargylic fuels.

    Science.gov (United States)

    Winfough, Matthew; Meloni, Giovanni

    2017-12-01

    Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Carbocyclization cascades of allyl ketenimines via aza-Claisen rearrangements of N-phosphoryl-N-allyl-ynamides.

    Science.gov (United States)

    DeKorver, Kyle A; Wang, Xiao-Na; Walton, Mary C; Hsung, Richard P

    2012-04-06

    A series of carbocyclization cascades of allyl ketenimines initiated through a thermal aza-Claisen rearrangement of N-phosphoryl-N-allyl ynamides is described. Interceptions of the cationic intermediate via Meerwein-Wagner rearrangements and polyene-type cyclizations en route to fused bi- and tricyclic frameworks are featured.

  20. Palladium-catalyzed allylation of tautomerizable heterocycles with alkynes.

    Science.gov (United States)

    Lu, Chuan-Jun; Chen, Dong-Kai; Chen, Hong; Wang, Hong; Jin, Hongwei; Huang, Xifu; Gao, Jianrong

    2017-07-21

    A method for the allylic amidation of tautomerizable heterocycles was developed by a palladium catalyzed allylation reaction with 100% atom economy. A series of structurally diverse N-allylic substituted heterocycles can be synthesized in good yields with high chemo-, regio-, and stereoselectivities under mild conditions.

  1. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.

    Science.gov (United States)

    Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S

    2013-10-14

    Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.

  2. Flow Asymmetric Propargylation: Development of Continuous Processes for the Preparation of a Chiral β-Amino Alcohol.

    Science.gov (United States)

    Li, Hui; Sheeran, Jillian W; Clausen, Andrew M; Fang, Yuan-Qing; Bio, Matthew M; Bader, Scott

    2017-08-01

    The development of a flow chemistry process for asymmetric propargylation using allene gas as a reagent is reported. The connected continuous process of allene dissolution, lithiation, Li-Zn transmetallation, and asymmetric propargylation provides homopropargyl β-amino alcohol 1 with high regio- and diastereoselectivity in high yield. This flow process enables practical use of an unstable allenyllithium intermediate. The process uses the commercially available and recyclable (1S,2R)-N-pyrrolidinyl norephedrine as a ligand to promote the highly diastereoselective (32:1) propargylation. Judicious selection of mixers based on the chemistry requirement and real-time monitoring of the process using process analytical technology (PAT) enabled stable and scalable flow chemistry runs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Molecular Mechanics and Quantum Chemistry Based Study of Nickel-N-Allyl Urea and N-Allyl Thiourea Complexes

    Directory of Open Access Journals (Sweden)

    P. D. Sharma

    2009-01-01

    Full Text Available Eigenvalue, eigenvector and overlap matrix of nickel halide complex of N-allyl urea and N-allyl thiourea have been evaluated. Our results indicate that ligand field parameters (Dq, B’ and β evaluated earlier by electronic spectra are very close to values evaluated with the help of eigenvalues and eigenvectors. Eigenvector analysis and population analysis shows that in bonding 4s, 4p, and 3dx2-y2, 3dyz orbitals of nickel are involved but the coefficient values differ in different complexes. Out of 4px, 4py, 4pz the involvement of either 4pz or 4py, is noticeable. The theoretically evaluated positions of infrared bands indicate that N-allyl urea is coordinated to nickel through its oxygen and N-allyl thiourea is coordinated to nickel through its sulphur which is in conformity with the experimental results.

  4. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins.

    Science.gov (United States)

    Rahim, Abdur; Saha, Pinaki; Jha, Kunal Kumar; Sukumar, Nagamani; Sarma, Bani Kanta

    2017-07-19

    Carbonyl-carbonyl n→π* interactions where a lone pair (n) of the oxygen atom of a carbonyl group is delocalized over the π* orbital of a nearby carbonyl group have attracted a lot of attention in recent years due to their ability to affect the 3D structure of small molecules, polyesters, peptides, and proteins. In this paper, we report the discovery of a "reciprocal" carbonyl-carbonyl interaction with substantial back and forth n→π* and π→π* electron delocalization between neighboring carbonyl groups. We have carried out experimental studies, analyses of crystallographic databases and theoretical calculations to show the presence of this interaction in both small molecules and proteins. In proteins, these interactions are primarily found in polyproline II (PPII) helices. As PPII are the most abundant secondary structures in unfolded proteins, we propose that these local interactions may have implications in protein folding.Carbonyl-carbonyl π* non covalent interactions affect the structure and stability of small molecules and proteins. Here, the authors carry out experimental studies, analyses of crystallographic databases and theoretical calculations to describe an additional type of carbonyl-carbonyl interaction.

  5. General Allylic C–H Alkylation with Tertiary Nucleophiles

    Science.gov (United States)

    2015-01-01

    A general method for intermolecular allylic C–H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C–H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C–H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C–H reactivity are illustrated in an allylic C–H alkylation/Diels–Alder reaction cascade: a reactive diene is generated via intermolecular allylic C–H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids. PMID:24641574

  6. General allylic C-H alkylation with tertiary nucleophiles.

    Science.gov (United States)

    Howell, Jennifer M; Liu, Wei; Young, Andrew J; White, M Christina

    2014-04-16

    A general method for intermolecular allylic C-H alkylation of terminal olefins with tertiary nucleophiles has been accomplished employing palladium(II)/bis(sulfoxide) catalysis. Allylic C-H alkylation furnishes products in good yields (avg. 64%) with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z). For the first time, the olefin scope encompasses unactivated aliphatic olefins as well as activated aromatic/heteroaromatic olefins and 1,4-dienes. The ease of appending allyl moieties onto complex scaffolds is leveraged to enable this mild and selective allylic C-H alkylation to rapidly diversify phenolic natural products. The tertiary nucleophile scope is broad and includes latent functionality for further elaboration (e.g., aliphatic alcohols, α,β-unsaturated esters). The opportunities to effect synthetic streamlining with such general C-H reactivity are illustrated in an allylic C-H alkylation/Diels-Alder reaction cascade: a reactive diene is generated via intermolecular allylic C-H alkylation and approximated to a dienophile contained within the tertiary nucleophile to furnish a common tricyclic core found in the class I galbulimima alkaloids.

  7. Transition-metal-free synthesis of imidazo[2,1-b]thiazoles and thiazolo[3,2-a]benzimidazoles via an S-propargylation/5-exo-dig cyclization/isomerization sequence using propargyl tosylates as substrates.

    Science.gov (United States)

    Omar, Mohamed A; Frey, Wolfgang; Conrad, Jürgen; Beifuss, Uwe

    2014-11-07

    A transition-metal-free route for the synthesis of several N-fused heterocycles, including thiazolo[3,2-a]benzimidazoles and imidazo[2,1-b]thiazoles, is reported. The reaction between propargyl tosylates and 2-mercaptobenzimidazoles under basic conditions results in 3-substituted thiazolo[3,2-a]benzimidazoles, in yields up to 92% in a single synthesis step. With 2-mercaptoimidazoles as the substrate, the corresponding imidazo[2,1-b]thiazoles were exclusively obtained. The transformation is considered to proceed as an intermolecular S-propargylation that is followed by 5-exo-dig ring closure and double-bond isomerization.

  8. Alkene- and alkyne- substituted methylimidazolium bromides: structural effects and Physical properties (Postprint)

    National Research Council Canada - National Science Library

    Schneider, Stefan; Drake, Gregory; Hall, Leslie; Hawkiins, Tommy; Rosander, Michael; Smith, Dennis

    2007-01-01

    .... X-ray structures of 1-(2-butynyl)-3-methylimidazolium bromide, 1-propargyl-3-methylimidazolium bromide as well as the X-ray structure of 1-allyl-3- methylimidazolium bromide which was previously identified as a room temperature ionic...

  9. Alkene- and Alkyne- Substituted Methylimidazolium Bromides: Structural Effects and Physical properties (Preprint)

    National Research Council Canada - National Science Library

    Schneider, Stefan; Drake, Gregory; Hall, Leslie; Hawkiins, Tommy; Rosander, Michael; Smith, Dennis

    2007-01-01

    .... X-ray structures of 1-(2-butynyl)-3-methylimidazolium bromide, 1-propargyl-3-methylimidazolium bromide as well as the X-ray structure of 1-allyl-3- methylimidazolium bromide which was previously identified as a room temperature ionic...

  10. Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Jensen, Thomas; Fristrup, Peter

    2009-01-01

    Recent breakthroughs have proved that direct palladium (II)-catalyzed allylic C-H alkylation can be achieved. This new procedure shows that the inherent requirement for a leaving group in the Tsuji-Trost palladium-catalyzed allylic alkylation can be lifted. These initial reports hold great promise...... for the development of allylic C-H alkylation into a widely applicable methodology, thus providing a means to enhance synthetic efficiency in these reactions....

  11. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)

    Administrator

    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  12. Isobolographic Analysis for Additive, Synergism and Antagonism Effects in Binary Mixture of Mesosulfuron + Iodosulfuron and Clodinafop-Propargyl

    Directory of Open Access Journals (Sweden)

    A. A Chitband

    2012-07-01

    Full Text Available The reduction of herbicide applications is a main research priority in recent years for herbicide reducing the risk of side-effects and costs from herbicides. Therefore To predicting additive, synergism or antagonism effects mesosulfuron + iodosulfuron and clodinafop-propargyl two herbicides mixture on wild oat with isobole curvatures, greenhouse experimental in completely randomized design with 36 treatments (in dose-response arrangements and four replicates for each experiment treatments were conducted at Ferdowsi University of Mashhad. Treatments included mesosulfuron + iodosulfuron alone at doses of 0 , 2.4, 6, 12, 18 and 24 g ai ha-1, clodinafop alone at doses of 0, 6.4, 16, 32, 48 and 64 g ai ha-1 and six mixtures ratio of doses of two herbicides above mentioned as 100:0%,75:25%, 50:50%, 25:75% , 10:90% and 0:100%. The results showed mesosulfuron + iodosulfuron and clodinafop-propargyl at high dose rates showed complete control of wild oat. In addition Concentration Addition (CA model describe Fitted the data better than Hewlett and Voelund models. On the other hand, herbicides combination with each other showed additive effects on wild oat control, As by increasing the clodinafop-propargyl ratio in mixtures (90% clodinafop-propargyl + 10% mesosulfuron + iodosulfuron increased wild oat control compared with other mixing ratios remarkably.

  13. AgI /TMG-Promoted Cascade Reaction of Propargyl Alcohols, Carbon Dioxide, and 2-Aminoethanols to 2-Oxazolidinones.

    Science.gov (United States)

    Li, Xue-Dong; Song, Qing-Wen; Lang, Xian-Dong; Chang, Yao; He, Liang-Nian

    2017-11-17

    Chemical valorization of CO 2 to access various value-added compounds has been a long-term and challenging objective from the viewpoint of sustainable chemistry. Herein, a one-pot three-component reaction of terminal propargyl alcohols, CO 2 , and 2-aminoethanols was developed for the synthesis of 2-oxazolidinones and an equal amount of α-hydroxyl ketones promoted by Ag 2 O/TMG (1,1,3,3-tetramethylguanidine) with a TON (turnover number) of up to 1260. By addition of terminal propargyl alcohol, the thermodynamic disadvantage of the conventional 2-aminoethanol/CO 2 coupling was ameliorated. Mechanistic investigations including control experiments, DFT calculation, kinetic and NMR studies suggest that the reaction proceeds through a cascade pathway and TMG could activate propargyl alcohol and 2-aminoethanol through the formation of hydrogen bonds and also activate CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The nature of resonance in allyl ions and radical.

    Science.gov (United States)

    Linares, Mathieu; Humbel, Stéphane; Braïda, Benoît

    2008-12-18

    A recent valence bond scheme based on Lewis structures, the valence bond BOND (VBB) method (BOND: Breathing Orbitals Naturally Delocalized) method (Linares, M.; Braida, B.; Humbel, S. J. Phys. Chem. A 2006, 110, 2505-2509), is applied to explore the nature of resonance in allyl systems. Whereas allyl radical is correctly described by the resonance between the two traditional Lewis structures, a third "long-bonded" structure, which apparently creates a pi bond between the two distant carbon atoms, appears to plays an important role in allyl ions description. The similar vertical resonance energy (VRE) for both allyl ions is rather moderate (approximately 37 kcal/mol) in the two-structure description but is significantly enhanced when the long-bonded structure is included into the VBB wave function (by up to 20 kcal/mol). The allyl radical is much less resonant and is correctly described by the traditional two-structure picture. The development of VBB Lewis structures into "pure" valence bond determinants enlightens the role of the third structure in the description of allyl ions. The existence of a long bond between the two distant carbon atoms is clearly ruled out. Charge equilibration effect is shown to be a minor factor. The third structure is finally attributed to one- and three-electron bonding character revealed in the pi systems of the cation and anion, respectively. This makes these systems two surprising examples of odd electron bonding within a singlet state. Last, the two-structure description of allyl radical is improved by addition of missing ionic structures.

  15. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    Science.gov (United States)

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  17. Decarbonylation and hydrogenation reactions of allyl alcohol and acrolein on Pd(110)

    Science.gov (United States)

    Shekhar, Ratna; Barteau, Mark A.

    1994-11-01

    Allyl alcohol and acrolein reactions on the Pd(110) surface were investigated using temperature programmed desorption. For both unsaturated oxygenates, three coverage-dependent reaction pathways were observed. At low coverages, allyl alcohol decomposed completely to CO, hydrogen and carbonaceous species on the surface. For θ > 0.15 monolayer, ethylene (and small amounts of ethane) desorbed at ca. 295 K. Near saturation coverages, desorption of propanal was detected at ca. 235 K. The parent molecule, allyl alcohol, desorbed only after exposures sufficient to saturate these channels. Acrolein decomposition spectra were similar to those observed for allyl alcohol decomposition on the clean surface. Additional experiments with allyl alcohol on hydrogen- and deuterium-precoveredPd(110) surfaces demonstrated increased hydrogenation of the C 2-hydrocarbon products along with hydrogenation of allyl alcohol to 1-propanol. However, in contrast to previous results for allyl alcohol on the Pd(111) surface, there was no evidence for C-O scission reactions of any C 3 oxygenate on Pd(110).

  18. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Makki, Arwa; Sekar, N; Eppinger, Jö rg

    2017-01-01

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  19. Water promoted allylic nucleophilic substitution reactions of (E)-1,3 diphenylallyl acetate

    KAUST Repository

    Ghorpade, Seema Arun

    2017-11-30

    Transition metal free, water based, greener protocol for allylic alkylation, allylic amination, O-allylation of (E)-1,3-diphenylallyl acetate is described. The developed methodology is applicable for a wide range of nucleophiles furnishing excellent yields of corresponding products up to 87% under mild reaction conditions. A Distinct effect of water and base is explored for allylic nucleophilic substitution reactions of (E)-1,3-diphenylallyl acetate.

  20. Rapid synthesis of polyprenylated acylphloroglucinol analogs via dearomative conjunctive allylic annulation.

    Science.gov (United States)

    Grenning, Alexander J; Boyce, Jonathan H; Porco, John A

    2014-08-20

    Polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. Herein, we present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via double decarboxylative allylation (DcA) of acylphloroglucinol scaffolds to access allyl-desoxyhumulones followed by dearomative conjunctive allylic alkylation (DCAA).

  1. Modified glycogen as construction material for functional biomimetic microfibers.

    Science.gov (United States)

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-05

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Aza Cope Rearrangement of Propargyl Enammonium Cations Catalyzed By a Self-Assembled `Nanozyme

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Courntey J.; Fiedler, Dorothea; Bergman, Robert G.; Raymond, Kenneth N.

    2008-02-27

    The tetrahedral [Ga{sub 4}L{sub 6}]{sup 12-} assembly (L = N,N-bis(2,3-dihydroxybenzoyl)-1,5-diaminonaphthalene) encapsulates a variety of cations, including propargyl enammonium cations capable of undergoing the aza Cope rearrangement. For propargyl enammonium substrates that are encapsulated in the [Ga{sub 4}L{sub 6}]{sup 12-} assembly, rate accelerations of up to 184 are observed when compared to the background reaction. After rearrangement, the product iminium ion is released into solution and hydrolyzed allowing for catalytic turnover. The activation parameters for the catalyzed and uncatalyzed reaction were determined, revealing that a lowered entropy of activation is responsible for the observed rate enhancements. The catalyzed reaction exhibits saturation kinetics; the rate data obey the Michaelis-Menten model of enzyme kinetics, and competitive inhibition using a non-reactive guest has been demonstrated.

  3. Construction of an Asymmetric Quaternary Carbon Center via Allylation of Hydrazones

    International Nuclear Information System (INIS)

    Kim, Jin Bum; Satyender, Apuri; Jang, Doo Ok

    2013-01-01

    Asymmetric indium-mediated allylation of imine derivatives bearing a chiral auxiliary is a reliable strategy for the synthesis of chiral homoallylic amines. Various techniques for indium-mediated stereoselective allylation of imines bearing a chiral auxiliary have been reported. In 1997 Loh and co-workers reported indium-mediated allylation with imines derived from L-valine methyl ester. Since then, many forms of indium-mediated allylation bearing a chiral auxiliary have been reported, including imines derived from (S)-valinol, (R)-phenylglycinol, uracil, (R)-phenylglycinol methyl ester, N-tert-butanesufinamide, and (1R,2S)-1-amino-2-indanol. However, the synthesis of chiral auxiliaries often involves a laborious multi-step synthesis with expensive reagents. Therefore, the development of readily accessible chiral auxiliaries for asymmetric indium-mediated all-ylation is in high demand

  4. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De

    2016-12-24

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α-vinyl-ω-hydroxypolymethylenes is given. By designing/synthesizing different allylic borate initiators, and using 1H and 11B NMR spectroscopy, the initiation mechanism was elucidated.

  5. Thiol-yne/thiol-epoxy hybrid crosslinked materials based on propargyl modified hyperbranched poly(ethyleneimine) and diglycidylether of bisphenol A resins

    OpenAIRE

    Acebo Gorostiza, Cristina; Fernández Francos, Xavier; Ramis Juan, Xavier; Serra Albet, Àngels

    2016-01-01

    A novel curing methodology based on the combination of thiol-yne and thiol-epoxy click reactions has been developed. The curing process consists of a first photoinitiated thiol-yne reaction, followed by a thermal thiol-epoxy process. As alkyne substrate a new propargyl terminated hyperbranched poly(ethyleneimine) (PEIyne) has been synthesized from the reaction of commercial poly(ethylenimine) (PEI) and glycidyl propargyl ether. The evolution of the curing of different mixtures of PEIyne and d...

  6. Rationalization of the selectivity between 1,3- and 1,2-migration: a DFT study on gold(i)-catalyzed propargylic ester rearrangement.

    Science.gov (United States)

    Jiang, Jingxing; Liu, Yan; Hou, Cheng; Li, Yinwu; Luan, Zihong; Zhao, Cunyuan; Ke, Zhuofeng

    2016-04-14

    Gold catalyzed rearrangement of propargylic esters can undergo 1,3-acyloxy migration to form allenes, or undergo 1,2-acyloxy migration to access gold-carbenoids. The variation in migration leads to different reactivities and diverse cascade transformations. The effect of terminal substituents is very important for the rearrangement. However, it remains ambiguous how terminal substituents govern the selectivity of the rearrangement. This study presents a theoretical model based on the resonance structure of gold activated propargylic ester complexes to rationalize the rearrangement selectivity. Substrates with a major resonance contributor A prefer 5-exo-dig cyclization (1,2-migration), while those with a major resonance contributor B prefer 6-endo-dig cyclization (1,3-migration). This concise model would be helpful in understanding and tuning the selectivity of the metal catalyzed rearrangement of propargylic esters.

  7. Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate.

    Science.gov (United States)

    Park, Jihye; Han, Sangil; Jeon, Mijin; Mishra, Neeraj Kumar; Lee, Seok-Yong; Lee, Jong Suk; Kwak, Jong Hwan; Um, Sung Hee; Kim, In Su

    2016-11-18

    The rhodium(III)-catalyzed olefination of various carboxamides with α-CF 3 -substituted allylic carbonate is described. This reaction provides direct access to linear CF 3 -allyl frameworks with complete trans-selectivity. In particular, a rhodium catalyst provided Heck-type γ-CF 3 -allylation products via the β-O-elimination of rhodacycle intermediate and subsequent olefin migration process.

  8. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected beta-Amino Aldehydes

    NARCIS (Netherlands)

    Dong, Jiajia; Harvey, Emma C.; Fananas-Mastral, Martin; Browne, Wesley R.; Feringa, Bernard

    2014-01-01

    A general method for the preparation of N-protected beta-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward

  9. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  10. Protein carbonylation in plants

    DEFF Research Database (Denmark)

    Møller, Ian Max; Havelund, Jesper; Rogowska-Wrzesinska, Adelina

    2017-01-01

    This chapter provides an overview of the current knowledge on protein carbonylation in plants and its role in plant physiology. It starts with a brief outline of the turnover and production sites of reactive oxygen species (ROS) in plants and the causes of protein carbonylation. This is followed...... by a description of the methods used to study protein carbonylation in plants, which is also very brief as the methods are similar to those used in studies on animals. The chapter also focuses on protein carbonylation in plants in general and in mitochondria and in seeds in particular, as case stories where...... specific carbonylated proteins have been identified. Protein carbonylation appears to accumulate at all stages of seed development and germination investigated to date. In some cases, such as seed aging, it is probably simply an accumulation of oxidative damage. However, in other cases protein...

  11. Oral Administration of (S)-Allyl-l-Cysteine and Aged Garlic Extract to Rats: Determination of Metabolites and Their Pharmacokinetics.

    Science.gov (United States)

    Park, Taehoon; Oh, Ju-Hee; Lee, Joo Hyun; Park, Sang Cheol; Jang, Young Pyo; Lee, Young-Joo

    2017-11-01

    ( S )-Allyl-l-cysteine is the major bioactive compound in garlic. ( S )-Allyl-l-cysteine is metabolized to ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide after oral administration. An accurate LC-MS/MS method was developed and validated for the simultaneous quantification of ( S )-allyl-l-cysteine and its metabolites in rat plasma, and the feasibility of using it in pharmacokinetic studies was tested. The analytes were quantified by multiple reaction monitoring using an atmospheric pressure ionization mass spectrometer. Because significant quantitative interference was observed between ( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine as a result of the decomposition of N -acetyl-( S )-allyl-l-cysteine at the detector source, chromatographic separation was required to discriminate ( S )-allyl-l-cysteine and its metabolites on a reversed-phase C 18 analytical column with a gradient mobile phase consisting of 0.1% formic acid and acetonitrile. The calibration curves of ( S )-allyl-l-cysteine, ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide were linear over each concentration range, and the lower limits of quantification were 0.1 µg/mL [( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine] and 0.25 µg/mL [( S )-allyl-l-cysteine sulfoxide and N -acetyl-( S )-allyl-l-cysteine sulfoxide]. Acceptable intraday and inter-day precisions and accuracies were obtained at three concentration levels. The method satisfied the regulatory requirements for matrix effects, recovery, and stability. The validated LC-MS/MS method was successfully used to determine the concentration of ( S )-allyl-l-cysteine and its metabolites in rat plasma samples after the administration of ( S )-allyl-l-cysteine or aged garlic extract. Georg Thieme Verlag KG Stuttgart · New York.

  12. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  13. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    John Russell Williams

    2015-01-01

    Full Text Available The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c teratogenic malformation index (TI, equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.

  14. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna

    2015-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...... protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...... irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated...

  15. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    International Nuclear Information System (INIS)

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-01-01

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H_2S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  16. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Xin [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Li, Xinghui [Departments of Physiology and Pathophysiology, Shanghai College of Medicine, Fudan University, Shanghai (China); Ma, Fenfen; Luo, Shanshan [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Ge, Ruowen [Departmentof Biological Sciences, National University of Singapore (Singapore); Zhu, Yizhun, E-mail: zhuyz@fudan.edu.cn [Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai (China); Departmentof Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  17. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.

    Science.gov (United States)

    Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J

    2018-01-07

    A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .

  18. Transition metal catalyzed carbonylation reactions carbonylative activation of C-X bonds

    CERN Document Server

    Beller, Matthias

    2014-01-01

    This book provides students and researchers in organic synthesis with a detailed discussion of carbonylation from the basics through to applications. It discusses the past, present and future of carbonylation reactions.

  19. A route to hydroxylfluorenes: TsOH-mediated condensation reactions of 1,3-diketones with propargylic alcohols

    KAUST Repository

    Yao, Liangfeng; Tan, Davin; Miao, Xiaohe; Huang, Kuo-Wei

    2012-01-01

    An efficient method of preparing hydroxylfluorenes by TsOH-mediated tandem alkylation/rearrangements of propargylic alcohols with 1,3-diketones is described. These reactions are accomplished in moderate to good yields under mild conditions to offer

  20. Zinc Mediated Tandem Fragmentation-Allylation of Methyl 5-Iodopentofuranosides

    DEFF Research Database (Denmark)

    Hyldtoft, Lene; Madsen, Robert

    1999-01-01

    In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols.......In the presence of zinc and allyl bromide methyl 5-iodopentofuranosides undergo a tandem fragmentation alkylation to give functionalized dienes. These can undergo ring-closing olefin metathesis to produce cyclohexenes which on dihydroxylation give quercitols....

  1. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  2. SYNTHESIS OF 4-ALLYL-2-METHOXY-6-AMINOPHENOL FROM NATURAL EUGENOL

    Directory of Open Access Journals (Sweden)

    I Made Sudarma

    2010-06-01

    Full Text Available The aim of this preliminary research was to synthesize derivatives of eugenol such as 4-allyl-2-methoxy-6-nitrophenol (2 and 4-allyl-2-methoxy-6-aminophenol (3. The result could be used as a reference on the transformation of eugenol to its derivatives. Theoriticaly nitration of eugenol (1 by nitric acid could produced 4-allyl-2-methoxy-6-nitrophenol (2 and followed by reduction could achieved 4-allyl-2-mehtoxy-6-aminophenol (3. The formation of this product was analyzed by analytical thin layer chromatography (TLC and GC-MS. These analysis showed the formation of product (2 and (3 were visible. TLC showed product (1 less polar than eugenol and gave orange colour, and supported by GC-MS which showed molecular ion at m/z 209 due to the presence of -NO2 by replacing one H at 6 position of eugenol. Product (3 was afforded by reduction of (2 with Sn/HCl and tlc analysis showed compound (3 more polar than eugenol (1 and (2 and supported by GC-MS which showed molecular ion at m/z 179 due to the presence of -NH2.   Keywords: Synthesis, 4-allyl-2-methoxy-6-aminophenol, Eugenol

  3. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  4. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    Science.gov (United States)

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  5. Urinary excretion of N-acetyl-S-allyl-L-cystein upon garlic consumption by human volunteers.

    NARCIS (Netherlands)

    de Rooij, B.M.; Boogaard, P.J.; Rijksen, D.A.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1996-01-01

    N-Acetyl-S-allyl-L-cysteine (allylmercapturic acid, ALMA) was previously detected in urine from humans consuming garlic. Exposure of rats to allyl halides is also known to lead to excretion of ALMA in urine. ALMA is a potential biomarker for exposure assessment of workers exposed to allyl halides.

  6. Original TDAE Strategy Using Propargylic Chloride: Rapid Access to 1,4-Diarylbut-3-ynol Derivatives

    Directory of Open Access Journals (Sweden)

    Patrice Vanelle

    2013-01-01

    Full Text Available We report herein the first synthesis of propargylic alcohols using an organic reducing agent. Diarylbutynol derivatives are formed in moderate to good yields under mild conditions from the reaction of 1-(3-chloroprop-1-ynyl-4-nitrobenzene with various aromatic aldehydes using tetrakis(dimethylaminoethylene (TDAE as reductant.

  7. Vapor-liquid equilibria of the binary system 1,5-hexadiene + allyl chloride

    NARCIS (Netherlands)

    Raeissi, S.; Florusse, L.J.; Peters, C.J.

    2014-01-01

    Knowledge of accurate vapor–liquid equilibrium data for mixtures of allyl chloride and 1,5-hexadiene is important for several industrial purposes. The bubble points of binary mixtures of allyl chloride and 1,5-hexadiene have been measured experimentally using a synthetic method. Measurements were

  8. Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Hansen, E. Louise; Kane, John

    2001-01-01

    A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed by asy...... the allylic stereocenter and the alkene geometry. Thus, a single $gamma@-substituted ester was obtained as the overall product, in high isomeric purity. The method was applied to a synthesis of a subunit of the iejimalides, a group of cytotoxic macrolides.......A new method for enantioconvergent synthesis has been developed. The strategy relies on the combination of an asymmetric Horner-Wadsworth-Emmons (HWE) reaction and a palladium-catalyzed allylic substitution. Different $alpha@-oxygen-substituted, racemic aldehydes were initially transformed...... by asymmetric HWE reactions into mixtures of two major $alpha@,$beta@-unsaturated esters, possessing opposite configurations at their allylic stereocenters as well as opposite alkene geometry. Subsequently, these isomeric mixtures of alkenes could be subjected to palladium-catalyzed allylic substitution...

  9. Selective epoxidation of allylic alcohols with a titania-silica aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Dusi, M.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    An amorphous mesoporous titania-silica aerogel (20 wt%TiO{sub 2} - 80 wt% SiO{sub 2}) and tert.-butylhydroperoxide (TBHP) have been used for the epoxidation of various allylic alcohols. Allylic alcohols possessing an internal double bond were more reactive than those with a terminal C=C bond. Epoxide selectivities could be improved by addition of (basic) zeolite 4 A and NaHCO{sub 3} to the reaction mixture. (orig.)

  10. Formation of gas-phase π-allyl radicals from propylene over bismuth oxide and γ-bismuth molybdate catalysts

    International Nuclear Information System (INIS)

    Martir, W.; Lunsford, J.H.

    1981-01-01

    Gas-phase π-allyl radicals were produced when propylene reacted over Bi 2 O 3 and γ-bismuth molybdate catalysts at 723 K. The pressure in the catalyst zone was varied between 5 x 10 -3 and 1 torr. The radicals were detected by EPR spectroscopy together with a matrix isolation technique in which argon was used as the diluent. The matrix was formed on a sapphire rod at 12 K which was located 33-cm downstream from the catalyst. Bismuth oxide was more effective in the production of gas-phase allyl radicals than γ-bismuth molybdate. By contrast α-bismuth molybdate was ineffective in forming allyl radicals and MoO 3 acted as a sink for radicals which were produced elsewhere in the system. Comparison of the π-allyl radical and the stable product concentrations over Bi 2 O 3 revealed that gas-phase radical recombination reactions served as a major pathway for the formation of 1,5-hexadiene. Addition of small amounts of gas-phase oxygen increased the concentration of allyl radicals, and at greater oxygen levels allyl peroxy radicals were detected. Because of the effect of temperature on the equilibrium between allyl and allyl peroxy radicals, the latter product must be formed in the cooler part of the system

  11. Radiation initiated copolymerization of allyl alcohol with acrylonitrile

    International Nuclear Information System (INIS)

    Solpan, Dilek; Guven, Olgun

    1996-01-01

    Copolymerization of allyl alcohol (AA) with acrylonitrile (AN) initiated by γ-rays has been investigated to determine the respective reactivity ratios. Three different experimental techniques, namely Fourier Transform Infrared (FTIR), Ultraviolet (UV/vis) and elemental analysis (EA) have been used for the determination of copolymer compositions. Fineman-Ross (FR), Kelen-Tudos (KT), Non-Linear Least Square (NLLS) Analysis and Q-e methods have been applied to the three sets of experimental data. It has been concluded that data obtained from elemental analysis as applied to the Non-Linear Least Square approach gave the most reliable reactivity ratios as 2.09 and 0.40 for acrylonitrile and allyl alcohol, respectively. (Author)

  12. REACTIVITY OF (η3-ALLYL)DICARBONYLNITROSYL IRON ...

    African Journals Online (AJOL)

    metal complexes can be synthesized from various organic precursors. Iron allyl ... iron complexes to develop a green chemistry approach [7]. Catalysis ...... Akermark, B.; Jutand, A. Addition of ketone enolates to π-allylpalladlum compounds.

  13. A facile and mild synthesis of trisubstituted allylic sulfones from Morita-Baylis-Hillman carbonates.

    Science.gov (United States)

    Jiang, Lin; Li, Yong-Gen; Zhou, Jiang-Feng; Chuan, Yong-Ming; Li, Hong-Li; Yuan, Ming-Long

    2015-05-07

    An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH) carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%-99%) with good to high selectivity (Z/E from 79:21 to >99:1). Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  14. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Nils Klüver

    Full Text Available Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L. Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1 during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos. Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L. Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes

  15. A Facile and Mild Synthesis of Trisubstituted Allylic Sulfones from Morita-Baylis-Hillman Carbonates

    Directory of Open Access Journals (Sweden)

    Lin Jiang

    2015-05-01

    Full Text Available An efficient and catalyst-free synthesis of trisubstituted allylic sulfones through an allylic sulfonylation reaction of Morita-Baylis-Hillman (MBH carbonates with sodium sulfinates has been developed. Under the optimized reaction conditions, a series of trisubstituted allylic sulfones were rapidly prepared in good to excellent yields (71%–99% with good to high selectivity (Z/E from 79:21 to >99:1. Compared with known synthetic methods, the current protocol features mild reaction temperature, high efficiency and easily available reagents.

  16. Memory effects in palladium-catalyzed allylic Alkylations of 2-cyclohexen-1-yl acetate

    DEFF Research Database (Denmark)

    Svensen, Nina; Fristrup, Peter; Tanner, David Ackland

    2007-01-01

    The objective of this work was to characterize the enantiospecificity of the allylic alkylation of enantioenriched 2-cyclohexen-1-yl acetate with the enolate ion of dimethyl malonate catalyzed by unsymmetrical palladium catalysts. The precatalysts employed were (eta(3)-allyl)PdLCl, where L...

  17. Theoretical Studies of [2,3]-Sigmatropic Rearrangements of Allylic Selenoxides and Selenimides

    Directory of Open Access Journals (Sweden)

    Sonia Antony

    2009-08-01

    Full Text Available Density-functional theory is used to model the endo and exo transition states for [2,3]-sigmatropic rearrangement of allylic aryl-selenoxides and -selenimides. The endo transition state is generally preferred for selenoxides if there is no substitution at the 2 position of the allyl group. Based upon the relative energies of the endo and exo transition states, enantioselectivity of rearrangements is expected to be greatest for molecules with substitutions at the 1- or (E-3- position of the allyl group. Ortho substitution of a nitro group on the ancillary selenoxide phenyl ring reduces the activation barriers, increases the difference between the endo and exo activation barriers and shifts the equilibrium toward products.

  18. Ketenimines from Isocyanides and Allyl Carbonates: Palladium-Catalyzed Synthesis of β,γ-Unsaturated Amides and Tetrazoles.

    Science.gov (United States)

    Qiu, Guanyinsheng; Mamboury, Mathias; Wang, Qian; Zhu, Jieping

    2016-12-05

    The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc) 2 provided ketenimines through β-hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π-allyl Pd complex proceeded via an unusual η 1 -allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ-unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5-disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gold-catalyzed intermolecular coupling of sulfonylacetylene with allyl ethers: [3,3]- and [1,3]-rearrangements

    Directory of Open Access Journals (Sweden)

    Jungho Jun

    2013-08-01

    Full Text Available Gold-catalyzed intermolecular couplings of sulfonylacetylenes with allyl ethers are reported. A cooperative polarization of alkynes both by a gold catalyst and a sulfonyl substituent resulted in an efficient intermolecular tandem carboalkoxylation. Reactions of linear allyl ethers are consistent with the [3,3]-sigmatropic rearrangement mechanism, while those of branched allyl ethers provided [3,3]- and [1,3]-rearrangement products through the formation of a tight ion–dipole pair.

  20. Crystal structure of 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester unknown solvate

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2018-01-01

    Full Text Available In the title compound, 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester {systematic name: prop-2-en-1-yl 2,3,4,5-tetrachloro-6-[2,7-dichloro-6-hydroxy-3-oxo-4-(prop-2-en-1-yl-3H-xanthen-9-yl]benzoate}, C26H14Cl6O5, accompanied by unknown solvate molecules, the dihedral angle between the xanthene ring system (r.m.s. deviation = 0.046 Å and the pentasubstituted benzene ring is 71.67 (9°. Both allyl groups are disordered over two sets of sites in statistical ratios. The scattering contributions of the disordered solvent molecules (both Ph2O and CHCl3, as identified by NMR were removed with the PLATON SQUEEZE algorithm [Spek (2015. Acta Cryst. C71, 9–18]. In the crystal, tetrameric supramolecular aggregates linked by O—H...O hydrogen bonds occur; these further interact with neighboring aggregates through C—Cl...π interactions arising from the benzene rings, forming infinite two-dimensional sheets. Each C6Cl4 ring shifts in the direction perpendicular to the two-dimensional sheet, exhibiting a helical chain in which every C6Cl4 ring is utilized as both a donor and an acceptor of Cl...π contacts. Thus, these two-dimensional sheets pack in a helical fashion, constructing a three-dimensional network.

  1. Thermal aromatic Claisen rearrangement and Strecker reaction of alkyl(allyl-aryl ethers under green reaction conditions: Efficient and clean preparation of ortho-allyl phenols (naphthols and alkyl(allyloxyarene-based γ-amino nitriles

    Directory of Open Access Journals (Sweden)

    Kheila N. Silgado-Gómez

    2017-11-01

    Full Text Available Chemical transformations of 13 diverse allyl(alkyl-aryl ethers, easily prepared using Williamson reaction of different hydroxyarenes and allyl bromide and alkyl (n-butyl, n-octyl bromides, were studied. Thermal aromatic Claisen rearrangement of allyl-aryl ethers to obtain ortho-allyl phenols (naphthols employing propylene carbonate as a nontoxic and biodegradable solvent was described for the first time. The use of this green solvent allowed to enhance notably product yields and reduce significantly the reaction time comparing with the use of 1,2-dichlorobenzene, toxic solvent, which is traditionally employed in this type of Claisen rearrangement. Three-component Strecker reaction of selected alkyl(allyl-aryl ethers with formyl function on aryl fragment and, piperidine and potassium cyanide in the presence of sulfuric acid supported on silica gel (SSA, SiO2-O-SO3H under mild reaction conditions was used in the preparation of new γ-amino nitriles, analogues of alkaloid girgensohnine [2-(4-hydroxyphenyl-2-(piperidin-1-ylacetonitrile], a perspective biological model in the search for new insecticidal agrochemicals against Aedes aegypti. The use of SSA, an inexpensive and reusable solid catalyst, allowed to obtain new series of 2-[4-alkyl(allyloxyphenyl]-2-(piperidin-1-ylacetonitriles in short time at room temperature with good yields.

  2. Allyl borates: a novel class of polyhomologation initiators

    KAUST Repository

    Wang, De; Hadjichristidis, Nikolaos

    2016-01-01

    Allyl borates, a new class of monofunctional polyhomologation initiators, are reported. These monofunctional initiators are less sensitive and more effective towards polymethylene-based architectures. As an example, the synthesis of α

  3. Reaction of aryl diazonium tetrafluoro borates with allyl methacrylate in the presence of rhodanide-anion

    International Nuclear Information System (INIS)

    Grishchuk, B.D.; Baranovskij, V.S.; Simchak, R.V.; Tulajdan, G.N.; Gorbovoj, P.M.

    2006-01-01

    Reaction of aryl diazonium tetrafluoro borates (I) with allyl ester of methacrylic acid in the water-acetone (1:5) medium is studied by means of IR spectroscopy and 1 H NMR. It is established that (I) reacts with aryl methacrylate in the presence of rhodanide-anion and catalytic quantities of copper salts with the formation of allyl esters of 2-thiocyanato-2-methyl-3-aryl propionic acids with the yield of 32-56%. Allyl fragment of biunsaturated compound shows no reaction under the tested conditions [ru

  4. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  5. Rhenium-Promoted C-C Bond-Cleavage Reactions of Internal Propargyl Alcohols.

    Science.gov (United States)

    Lee, Kui Fun; Bai, Wei; Sung, Herman H Y; Williams, Ian D; Lin, Zhenyang; Jia, Guochen

    2018-06-07

    The first examples of C-C bond cleavage reactions of internal propargyl alcohols to give vinylidene complexes are described. Treatment of [Re(dppm) 3 ]I with RC≡CC(OH)R'R'' (R=aryl, alkyl; C(OH)R'R''=C(OH)Ph 2, C(OH)Me 2 , C(OH)HPh, C(OH)H 2 ) produced the vinylidene complexes ReI(=C=CHR)(dppm) 2 with the elimination of C(O)R'R''. Computational studies support that the reactions proceed through a β-alkynyl elimination of alkoxide intermediates Re{OC(R')(R'')C≡CR}(dppm) 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Transition metal catalysed Grignard-like allylic activation across tetragonal tin(II) oxide · Pradipta Sinha Moloy Banerjee Abhijit Kundu Sujit Roy · More Details Abstract Fulltext PDF. The reaction of allyl halide and a carbonyl compound under the aegis of tetragonal tin(II) oxide and catalytic 8, 10 metal complexes provides ...

  7. The effects of γ-irradiation on the garlic oil contents in garlic bulbs and the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan, Wang Guanghui; Yang Ruipu; Wu Jilan

    1995-01-01

    The study of the effects of γ-irradiation on the garlic oil contents in the garlic bulbs and the radiolysis of allyl trisulfide and disulfide were carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant as stored for 10 months long. The main components of the garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C HOH radical into acetaldehyde, which causes that the formation of 2,3-butanediol is extensively inhibited. (author)

  8. The effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisulfide

    International Nuclear Information System (INIS)

    Wei Genshuan; Wang Guanghui; Yang Ruipu; Wu Jilan

    1996-01-01

    A study of the effects of γ-irradiation on garlic oil content in garlic bulbs and on the radiolysis of allyl trisufide and disulfide was carried out. The content of garlic oil in fresh garlic bulbs treated by gamma ray keeps nearly constant when stored for 10 months. The main components of garlic oil are allyl trisulfide (about 60%) and allyl disulfide (about 30%). The G values of radiolysis products of allyl disulfide and trisulfide in ethanol system were determined. The results show that allyl trisulfide is a very effective solvated electron scavenger and can oxidize CH 3 C . HOH radical into acetaldehyde, which means that the formation of 2,3-butanediol is extensively inhibited. (author)

  9. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  10. Enantioselective copper-catalysed propargylic substitution: synthetic scope study and application in formal total syntheses of (+)-anisomycin and (-)-cytoxazone

    NARCIS (Netherlands)

    Detz, R.J.; Abiri, Z.; le Griel, R.; Hiemstra, H.; van Maarseveen, J.H.

    2011-01-01

    A copper catalyst with a chiral pyridine-2,6-bisoxazoline (pybox) ligand was used to convert a variety of propargylic esters with different side chains (R=Ar, Bn, alkyl) into their amine counterparts in very high yields and with good enantioselectivities (up to 90 % enantiomeric excess (ee)).

  11. An Efficient Synthesis of de novo Imidates via Aza-Claisen Rearrangements of N-Allyl Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; North, Troy D.; Hsung, Richard P.

    2010-01-01

    A novel thermal 3-aza-Claisen rearrangement of N-allyl ynamides for the synthesis of α-allyl imidates is described. Also, a sequential aza-Claisen, Pd-catalyzed Overman rearrangement is described for the synthesis of azapine-2-ones. PMID:21278848

  12. Direct Vinylation of Alcohols or Aldehydes Employing Alkynes as Vinyl Donors: A Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation

    Science.gov (United States)

    Patman, Ryan L.; Chaulagain, Mani Raj; Williams, Vanessa M.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, 2-butyne couples to benzylic and aliphatic alcohols 1a–1i to furnish allylic alcohols 2a–2i, constituting a direct C-H vinylation of alcohols employing alkynes as vinyl donors. Under related transfer hydrogenation conditions employing formic acid as terminal reductant, 2-butyne couples to aldehydes 4a, 4b, and 4e to furnish identical products of carbonyl vinylation 2a, 2b, and 2e. Thus, carbonyl vinylation is achieved from the alcohol or the aldehyde oxidation level in the absence of any stoichiometric metallic reagents. Nonsymmetric alkynes 6a–6c couple efficiently to aldehyde 4b to provide allylic alcohols 2m–2o as single regioisomers. Acetylenic aldehyde 7a engages in efficient intramolecular coupling to deliver cyclic allylic alcohol 8a. PMID:19173651

  13. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Jakober, Chris A.; Robert, Michael A.; Riddle, Sarah G.; Destaillats, Hugo; Charles, M. Judith; Green, Peter G.; Kleeman, Michael J.

    2007-12-01

    Carbonyls from gasoline powered light-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were measured using an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery, 4-fluorobenzaldehyde forcarbonyls and 6-fluoro-4-chromanone for>_C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 ? 2000 ?g/L fuel for LDVs and 1.8 - 27000 mu g/L fuel for HDDVs. Gas-phase species accounted for 81-95percent of the total carbonyls from LDVs and 86-88percent from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19percent of particulate organic carbon (POC) emissions from low-emission LDVs and 37percent of POC emissions from three-way catalyst equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9percent depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas- and particle-phase under the dilution factors of 126-584 used in the current study.

  14. Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea

    Energy Technology Data Exchange (ETDEWEB)

    Sahiner, Nurettin [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Malci, Savas [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Celikbicak, Oemuer [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey); Kantoglu, Oemer [Ankara Nuclear Research Center, Turkish Atomic Energy Authority, 06983 Ankara (Turkey); Salih, Bekir [Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe Campus, 0653 Ankara (Turkey)]. E-mail: bekir@hacettepe.edu.tr

    2005-10-01

    Poly(acrylamide-1-allyl-2-thiourea) hydrogels, Poly(AA-AT), were synthesized by gamma irradiation using {sup 60}Co {gamma} source in different irradiation dose and at different 1-allyl-2-thiourea content in the monomer mixture. For the characterization of the hydrogels, Fourier transform infrared spectrometer (FT-IR), thermogravimetric analyzer (TGA), elemental analyzer and the swellability of the hydrogels were used. It was noted that 1-allyl-2-thiourea in the synthesized hydrogels was increased by the increasing the content of the 1-allyl-2-thiourea in the irradiation monomer mixture and increasing the radiation dose for the hydrogel synthesis. sis.

  15. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  16. THE METAL CARBONYLS.

    Science.gov (United States)

    Blanchard, A A

    1941-10-03

    When the metal carbonyls were first discovered, their properties were startling because they seemed to violate nearly all the previously recognized generalizations of chemistry. Even to-day the existence of the carbonyls is not particularly emphasized in elementary courses of chemistry because it is rather hard to reconcile them with the first presentations of the generalizations of chemistry. Nevertheless, as the student progresses deeper into the knowledge of chemistry it becomes desirable to include the knowledge of the carbonyls both because they become more comprehensible when viewed in the light of Werner's system of coordination and because they themselves contribute to the comprehension of the Werner theory. As long ago as 1931, Reiff in his discussion of cobalt nitrosyl carbonyl recognized the correlation between the effective atomic number and the volatility of carbonyls. A more recent study of charged Werner coordination complexes, that is, of complex ions, has shown a similar role of the effective atomic number. We are standing on fairly firm ground when we point out the correlation between E.A.N. and the volatility of the carbonyl complexes and the existence of complex ions. Be it noted that we have made no postulates as to the arrangement of the electrons in quantum levels. In the inert gases the outer principal quantum group is supposed always to contain eight electrons. In the carbonyls and other Werner complexes there is no compelling reason to suppose that the electrons in the coordinating layer, be this layer of eight, ten, twelve or sixteen electrons, are not all at the same energy level. Although we have confined our discussion almost exclusively to the property of volatility, the carbonyls are very interesting from the standpoint of several other properties, for example, magnetic susceptibility and dielectric constant. Enthusiasts in the interpretation of such properties try to draw conclusions as to the condition of the electrons, sometimes

  17. Protein Carbonylation and Adipocyte Mitochondrial Function*

    Science.gov (United States)

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  18. Protein carbonylation and adipocyte mitochondrial function.

    Science.gov (United States)

    Curtis, Jessica M; Hahn, Wendy S; Stone, Matthew D; Inda, Jacob J; Droullard, David J; Kuzmicic, Jovan P; Donoghue, Margaret A; Long, Eric K; Armien, Anibal G; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J; Bernlohr, David A

    2012-09-21

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.

  19. Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flow-Generated Diazo Compounds and Propargylated Amines.

    Science.gov (United States)

    Poh, Jian-Siang; Makai, Szabolcs; von Keutz, Timo; Tran, Duc N; Battilocchio, Claudio; Pasau, Patrick; Ley, Steven V

    2017-02-06

    We report herein the asymmetric coupling of flow-generated unstabilized diazo compounds and propargylated amine derivatives, using a new pyridinebis(imidazoline) ligand, a copper catalyst and base. The reaction proceeds rapidly, generating chiral allenes in 10-20 minutes with high enantioselectivity (89-98 % de/ee), moderate yields and a wide functional group tolerance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Radical carbonylations using a continuous microflow system

    Directory of Open Access Journals (Sweden)

    Takahide Fukuyama

    2009-07-01

    Full Text Available Radical-based carbonylation reactions of alkyl halides were conducted in a microflow reactor under pressurized carbon monoxide gas. Good to excellent yields of carbonylated products were obtained via radical formylation, carbonylative cyclization and three-component coupling reactions, using tributyltin hydride or TTMSS as a radical mediator.

  1. Allylic azides as potential building blocks for the synthesis of nitrogenated compounds

    Directory of Open Access Journals (Sweden)

    Sá Marcus M.

    2003-01-01

    Full Text Available The synthetic potential of multifunctional allylic azides and imines in attempted intramolecular cyclizations to nitrogen-containing heterocycles was investigated. Tandem Staudinger/aza-Wittig reaction of (E-3-aryl-2-(azidomethylpropenoates with triphenylphosphine and aldehydes yielded N-allylic imines in good yield. The (E-stereochemistry of C=C and C=N bonds was assigned based on NOESY experiments. AlCl3 mediated formation of 3-carbomethoxyquinoline from methyl (E-2-(azidomethyl-3-phenylpropenoate is also described.

  2. Deconvoluting the memory effect in Pd-catalyzed allylic alkylation; effect of leaving group and added chloride

    DEFF Research Database (Denmark)

    Fristrup, Peter; Jensen, Thomas; Hoppe, Jakob

    2006-01-01

    An analysis of product distributions in the Tsuji-Trost reaction indicates that several instances of reported memory effects can be attributed to slow interconversion of the initially formed syn- and anti-[Pd(eta3-allyl)] complexes. Addition of chloride triggers a true memory effect, in which...... the allylic terminus originally bearing the leaving group has a higher reactivity. The latter effect, termed regioretention, can be rationalized by ionization from a palladium complex bearing a chloride ion, forming an unsymmetrically substituted [Pd(eta3-allyl)] complex. DFT calculations verify...

  3. An intramolecular [2 + 2] cycloaddition of ketenimines via palladium-catalyzed rearrangements of N-allyl-ynamides.

    Science.gov (United States)

    DeKorver, Kyle A; Hsung, Richard P; Song, Wang-Ze; Wang, Xiao-Na; Walton, Mary C

    2012-06-15

    A cascade of Pd-catalyzed N-to-C allyl transfer-intramolecular ketenimine-[2 + 2] cycloadditions of N-allyl ynamides is described. This tandem sequence is highly stereoselective and the [2 + 2] cycloaddition could be rendered in a crossed or fused manner depending on alkene substitutions, leading to bridged and fused bicycloimines.

  4. A route to hydroxylfluorenes: TsOH-mediated condensation reactions of 1,3-diketones with propargylic alcohols

    KAUST Repository

    Yao, Liangfeng

    2012-01-01

    An efficient method of preparing hydroxylfluorenes by TsOH-mediated tandem alkylation/rearrangements of propargylic alcohols with 1,3-diketones is described. These reactions are accomplished in moderate to good yields under mild conditions to offer a straightforward and convenient one step synthetic route to hydroxylfluorene derivatives through a plausible mechanism involving a sequence of dehydration, addition, rearrangement and aromatization. This journal is © The Royal Society of Chemistry 2012.

  5. Synthesis of Thioethers by InI3-Catalyzed Substitution of Siloxy Group Using Thiosilanes

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nishimoto

    2016-10-01

    Full Text Available The substitution of a siloxy group using thiosilanes smoothly occurred in the presence of InI3 catalyst to yield the corresponding thioethers. InI3 was a specifically effective catalyst in this reaction system, while other typical Lewis acids such as BF3⋅OEt2, AlCl3, and TiCl4 were ineffective. Various silyl ethers such as primary alkyl, secondary alkyl, tertiary alkyl, allylic, benzylic, and propargylic types were applicable. In addition, bulky OSitBuMe2 and OSiiPr3 groups, other than the OSiMe3 group, were successfully substituted. The substitution reaction of enantiopure secondary benzylic silyl ether yielded the corresponding racemic thioether product, which suggested that the reaction of tertiary alkyl, secondary alkyl, benzylic, and propargylic silyl ethers would proceed via a SN1 mechanism.

  6. Triazole–Au(I complex as chemoselective catalyst in promoting propargyl ester rearrangements

    Directory of Open Access Journals (Sweden)

    Dawei Wang

    2011-07-01

    Full Text Available Triazole–Au (TA–Au catalysts were employed in several transformations involving propargyl ester rearrangement. Good chemoselectivity was observed, which allowed the effective activation of the alkyne without affecting the reactivity of the allene ester intermediates. These results led to the investigation of the preparation of allene ester intermediates with TA–Au catalysts under anhydrous conditions. As expected, the desired 3,3-rearrangement products were obtained in excellent yields (generally >90% yields with 1% loading. Besides the typical ester migrating groups, carbonates and carbamates were also found to be suitable for this transformation, which provided a highly efficient, practical method for the preparation of substituted allenes.

  7. Gold-Catalyzed Cyclization of Furan-Ynes bearing a Propargyl Carbonate Group: Intramolecular Diels-Alder Reaction with In Situ Generated Allenes.

    Science.gov (United States)

    Sun, Ning; Xie, Xin; Chen, Haoyi; Liu, Yuanhong

    2016-09-26

    Gold-catalyzed cyclization of various furan-ynes with a propargyl carbonate or ester moiety results in the formation of a series of polycyclic aromatic ring systems. The reactions can be rationalized through a tandem gold-catalyzed 3,3-rearrangement of the propargyl carboxylate moiety in furan-yne substrates to form an allenic intermediate, which is followed by an intramolecular Diels-Alder reaction of furan and subsequent ring-opening of the oxa-bridged cycloadduct. It was found that the steric and electronic properties of phosphine ligands on the gold catalyst had a significant impact on the reaction outcome. In the case of 1,5-furan-yne, the cleavage of the oxa-bridge in the cycloadduct with concomitant 1,2-migration of the R(1) group occurs to furnish anthracen-1(2H)-ones bearing a quaternary carbon center. For 1,4-furan-yne, a facile aromatization of the cycloadduct takes place to give 9-oxygenated anthracene derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway.

    Science.gov (United States)

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    Glucosinolates (GSLs) play an important role in plants as direct mediators of biotic and abiotic stress responses. Recent work is beginning to show that the GSLs can also inducing complex defense and growth networks. However, the physiological significance of these GSL-induced responses and the molecular mechanisms by which GSLs are sensed and/or modulate these responses are not understood. To identify these potential mechanisms within the plant and how they may relate to the endogenous GSLs, we tested the regulatory effect of exogenous allyl GSL application on growth and defense metabolism across sample of Arabidopsis thaliana accessions. We found that application of exogenous allyl GSL had the ability to initiate changes in plant biomass and accumulation of defense metabolites that genetically varied across accessions. This growth effect was related to the allyl GSL side-chain structure. Utilizing this natural variation and mutants in genes within the GSL pathway we could show that the link between allyl GSL and altered growth responses are dependent upon the function of known genes controlling the aliphatic GSL pathway.

  9. Glucosinolates and isothiocyanates from broccoliseed extractsuppressproteinglycationand carbonylation

    Directory of Open Access Journals (Sweden)

    Marina Hirano,

    2018-01-01

    Full Text Available Background: Glucosinolates from brassica plants are hydrolyzed by internal or salivary myrosinase to produce isothiocyanates. Glucoraphanin, a major glucosinolate in broccoli, is hydrolyzed to sulforaphane (SFN, which exhibits antitumor and detoxification activities. Regarding the influence of broccoli and its constituents on the skin, a few studies have reported anti-inflammatory and antioxidant effects. Recently, advanced glycation end products (AGEs and carbonyl proteins have been reported to accelerate skin aging. Objective: We evaluated the effects of broccoli seed extract (BSE and glucosinolates on protein glycation and carbonylation in vitro. Methods: To evaluate the effects of BSE and its constituents, protein glycation and carbonylation were induced by mixing fructose with bovine serum albumin (BSA and then measuring production of AGEs, fructosamine, and carbonyl proteins (CP. Production of CP after mixing fatty acids with BSA was also assessed. Furthermore, the effect of BSE and its constituents on CP production by human fibroblasts (TIG103 was examined. Results: BSE suppressed the production of AGEs, fructosamine, and CP after mixing fructose and BSA. BSE also suppressed production of CP when oxidized linoleic acid was mixed with BSA. Isothiocyanates, including SFN and iberin, suppressed fructose-based CP production, but SFN had no effect on CP production stimulated by oxidized linoleic acid. In contrast, glucosinolates from BSE did not suppress fructose-based CP production, but suppressed CP production due to oxidized linoleic acid. Among the glucosinolates in BSE, glucoberteroin showed the strongest suppression of CP production. CP production in fibroblasts was also suppressed by glucosinolates, including glucoiberin and glucoberteroin. Conclusions: BSE demonstrated anti-glycation and anti-carbonylation effects on protein reactions with fructose and oxidized fatty acids. Isothiocyanates suppressed protein carbonylation induced by

  10. Tandem catalytic allylic amination and [2,3]-Stevens rearrangement of tertiary amines.

    Science.gov (United States)

    Soheili, Arash; Tambar, Uttam K

    2011-08-24

    We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.

  11. Anti-Inflammatory and Antioxidant Effects of Repeated Exposure to Cruciferous Allyl Nitrile in Sensitizer-Induced Ear Edema in Mice.

    Science.gov (United States)

    Tanii, Hideji; Sugitani, Kayo; Saijoh, Kiyofumi

    2016-02-29

    Skin sensitizers induce allergic reactions through the induction of reactive oxygen species. Allyl nitrile from cruciferous vegetables has been reported to induce antioxidants and phase II detoxification enzymes in various tissues. We assessed the effects of repeated exposure to allyl nitrile on sensitizer-induced allergic reactions. Mice were dosed with allyl nitrile (0-200 µmol/kg), and then received a dermal application of 1 of 3 sensitizers on the left ear or 1 of 2 vehicles on the right ear. Quantitative assessment of edema was carried out by measuring the difference in weight between the portions taken from the right and left ears. We tested enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) in ears. Repeated exposure to allyl nitrile reduced edemas induced by glutaraldehyde and by 2, 4-dinitrochlorobenzene (DNCB), but not by formaldehyde. The repeated exposure decreased levels of TBARS, a marker of oxidative stress, induced by glutaraldehyde and by DNCB, but not by formaldehyde. Allyl nitrile elevated SOD levels for the 3 sensitizers, and CAT levels for formaldehyde and DNCB. Allyl nitrile also increased GPx levels for formaldehyde and DNCB, but not for glutaraldehyde. The reduced edemas were associated with changes in oxidative stress levels and antioxidant enzymes. Repeated exposure to allyl nitrile reduced allergic reactions induced by glutaraldehyde and by DNCB, but not by formaldehyde. This reduction was associated with changes in ROS levels and antioxidant enzyme activities.

  12. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  13. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    Science.gov (United States)

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  14. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    Science.gov (United States)

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  15. Method for conversion of .beta.-hydroxy carbonyl compounds

    Science.gov (United States)

    Lilga, Michael A.; White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Muzatko, Danielle S.; Orth, Rick J.

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  16. catena-Poly[[bromidocopper(I)]-?-?2,?1-3-(2-allyl-2H-tetra?zol-5-yl)pyridine

    OpenAIRE

    Wang, Wei

    2008-01-01

    The title compound, [CuBr(C9H9N5)] n , has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetra?zol-5-yl)pyridine. It is a new homometallic CuI olefin coord?ination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra?zol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-...

  17. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols

    Science.gov (United States)

    Kerrigan, Michael H.; Jeon, Sang-Jin; Chen, Young K.; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    (Z)-Trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-α,α,β-trisubstituted allylic alcohols. (Z)-Trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metallate rearrangement that is followed by a boron-to-zinc transmetallation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl protected α- and β-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl protected α-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (−)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. α-Ethyl and α-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors. PMID:19476375

  18. Validation of protein carbonyl measurement: A multi-centre study

    Directory of Open Access Journals (Sweden)

    Edyta Augustyniak

    2015-04-01

    Full Text Available Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15 min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5 min of UV irradiation irrespective of method used. After irradiation for 15 min, less oxidation was detected by half of the laboratories than after 5 min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique.

  19. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by 3O2; Implications for Combustion Modeling and Simulation.

    Science.gov (United States)

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O 2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  20. Cascade synthesis of dihydrobenzofuran via Claisen rearrangement of allyl aryl ethers using FeCl3/MCM-41 catalyst

    Directory of Open Access Journals (Sweden)

    Sachin S. Sakate

    2018-05-01

    Full Text Available Dihydrobenzofuran as one of the active ingredients of the naturally occurring motif is synthesized by using in situ generation of ortho allyl phenols. Aryl allyl ethers on reacting with catalytic amounts of non noble metal iron (III chloride supported on MCM-41 under moderate reaction conditions yield dihydrobenzofuran. First step via Claisen rearrangement gives ortho allyl phenol followed by its in situ cyclization to yield dihydrobenzofuran in very good yields. Both Lewis as well as Brønsted acidity of the catalyst as evidenced by Py-FTIR studies was found to catalyze the cascade synthesis of dihydrobenzofuran. The scope of the present strategy was successfully demonstrated for several substrates with varying electronic effects for the synthesis of corresponding dihydrobenzofuran with high yields in a range of 71–86%. Keywords: Claisen rearrangement, Dihydrobenzofuran, Aryl allyl ether, MCM-41, Ferric chloride

  1. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  2. Asymmetric allylation of α-ketoester-derived N-benzoylhydrazones promoted by chiral sulfoxides/N-oxides Lewis bases: highly enantioselective synthesis of quaternary α-substituted α-allyl-α-amino acids.

    Science.gov (United States)

    Reyes-Rangel, Gloria; Bandala, Yamir; García-Flores, Fred; Juaristi, Eusebio

    2013-09-01

    Chiral sulfoxides/N-oxides (R)-1 and (R,R)-2 are effective chiral promoters in the enantioselective allylation of α-keto ester N-benzoylhydrazone derivatives 3a-g to generate the corresponding N-benzoylhydrazine derivatives 4a-g, with enantiomeric excesses as high as 98%. Representative hydrazine derivatives 4a-b were subsequently treated with SmI2, and the resulting amino esters 5a-b with LiOH to obtain quaternary α-substituted α-allyl α-amino acids 6a-b, whose absolute configuration was assigned as (S), with fundament on chemical correlation and electronic circular dichroism (ECD) data. © 2013 Wiley Periodicals, Inc.

  3. Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Jensen, Thomas; Rodríguez-Rodríguez, Sergio

    2013-01-01

    The mechanism for the palladium–catalyzed allylic C–H activation was investigated using a combination of experimental and theoretical methods. A Hammett study revealed a buildup of a partial negative charge in the rate-determining step, while determination of the kinetic isotope effect (KIE...

  4. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker

    2005-01-01

    The most important cyclization reaction in hydrocarbon flames is probably recombination of propargyl radicals. This reaction may, depending on reaction conditions, form benzene, phenyl or fulvene, as well as a range of linear products. A number of rate measurements have been reported for C3H3 + C3H......3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard...

  5. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    International Nuclear Information System (INIS)

    Pang, Xiaobing; Lewis, Alastair C.

    2011-01-01

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 μg cigarette -1 (μg cig -1 ) and the particulate carbonyl emissions varied in the range of 23-127 μg cig -1 . Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 μg cig -1 gaseous and 141 μg cig -1 particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: → Carbonyl emission factors in both gas (16 species) and

  6. Carbonyl compounds in gas and particle phases of mainstream cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaobing, E-mail: pangxbyuanj@gmail.com [Department of Chemistry, University of York, Heslington, York, YO10 5DD (United Kingdom); Lewis, Alastair C., E-mail: ally.lewis@york.ac.uk [National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD (United Kingdom)

    2011-11-01

    Carbonyl compounds (carbonyls) are important constituents of cigarette smoke and some are toxic and may be carcinogenic or mutagenic to humans. In this study carbonyl emissions in the gas and particle phases of mainstream cigarette smoke were assessed by GC-MS with pentafluorophenyl hydrazine (PFPH) derivatization. Seven brands of cigarettes and one brand of cigar common in the UK market and having differing nicotine, tar and carbon monoxide yields were investigated. Sixteen carbonyl components were identified in gaseous emissions and twenty in the particle phase. In the gaseous emissions, acetaldehyde presented as the predominant species, followed by formaldehyde, 2-propenal, and pentanal. In the particulate emissions, 1-hydroxy-2-propanone was the most abundant followed by formaldehyde, benzaldehyde, and 2,5-dimethylbenzaldehyde. Significant differences were found in carbonyl emissions among the brands of cigarettes. The gaseous carbonyl emissions varied in the range of 216-405 {mu}g cigarette{sup -1} ({mu}g cig{sup -1}) and the particulate carbonyl emissions varied in the range of 23-127 {mu}g cig{sup -1}. Positive correlations were found between the total emission of carbonyls, tar yield and carbon monoxide yield. Similar gas/particle (G/P) partitioning ratios of carbonyls were found among all cigarettes, which implies that G/P partitions of carbonyls in smoke mainly depend on the physical properties of the carbonyls. The gaseous carbonyl emissions were enhanced by 40% to 130% when some of the water, accounting for 8-12% of cigarettes in mass, was removed from the tobacco. Non-filtered cigarettes showed significantly higher carbonyl emissions compared to their filtered equivalents. Carbonyl particulate accounted for 11-19% by mass of total particulate matter from tobacco smoke. The cigar generated 806 {mu}g cig{sup -1} gaseous and 141 {mu}g cig{sup -1} particulate carbonyls, which is 2-4 times greater than the cigarettes. - Highlights: {yields} Carbonyl

  7. Optimized biotin-hydrazide enrichment and mass spectrometry analysis of peptide carbonyls

    DEFF Research Database (Denmark)

    Havelund, Jesper F.; Wojdyla, K; Jensen, O. N.

    Irreversible cell damage through protein carbonylation is the result of reaction with reactive oxygen species (ROS) and has been coupled to many diseases. The precise molecular consequences of protein carbonylation, however, are still not clear. The localization of the carbonylated amino acid is ...... modifications are isobaric to carbonylation and it is often challenging to detect the weaker signal from carbonylated peptides necessitating enrichment step. We here present an optimized method for the enrichment of carbonylated peptides....

  8. Ambient levels of carbonyl compounds and their sources in Guangzhou, China

    Science.gov (United States)

    Feng, Yanli; Wen, Sheng; Chen, Yingjun; Wang, Xinming; Lü, Huixiong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Ambient levels of carbonyl compounds and their possible sources, vehicular exhaust and cooking exhaust, were studied at seven places in Guangzhou, including five districts (a residential area, an industrial area, a botanical garden, a downtown area and a semi-rural area), a bus station and a restaurant during the period of June-September 2003. Nineteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Only little changes were found in carbonyl concentration levels in the five different districts because of their dispersion and mixture in the atmosphere in summer. The lower correlations between the carbonyls' concentrations might result from the mixture of carbonyls derived from different sources, including strong photochemical reactions at noon in summer. Formaldehyde and acetaldehyde were the main carbonyls in bus station, while straight-chain carbonyls were comparatively abundant in cooking exhaust. Besides vehicular exhaust, cooking might be another major source of carbonyl compounds in Guangzhou City, especially for high molecular weight carbonyls.

  9. On the Nature of the Intermediates and the Role of Chloride Ions in Pd-Catalyzed Allylic Alkylations: Added Insight from Density Functional Theory

    DEFF Research Database (Denmark)

    Fristrup, Peter; Ahlquist, Mårten Sten Gösta; Tanner, David Ackland

    2008-01-01

    The reactivity of intermediates in palladium-catalyzed allylic alkylation was investigated using DFT (B3LYP) calculations including a PB-SCRF solvation model. In the presence of both phosphine and chloride ligands, the allyl intermediate is in equilibrium between a cationic eta(3)-allylPd complex...

  10. Synthesis of praseodymium allyl iodide complex and its use in piperilene polymerization

    International Nuclear Information System (INIS)

    Gajlyunas, G.A.; Biktimirov, R.Kh.; Khajrullina, R.M.; Marina, N.G.; Manakov, Yu.B.; Tolstikov, G.A.

    1987-01-01

    Synthesis, structure and catalytic properties of tetrahydrofuran praseodymium allyl iodine complex (1) are described and studied. Complex 1 is formed during interaction of allyl iodine with metal praseodymium (the molar ratio is 2:1) in THF at room temperature with 97% yield. It represents the solid powder-like substance of the light-brown colour with a pale green shade, being sensitive to moisture and oxygen and decomposing at temperature >120 deg. On the basis of the IR-spectroscopy data the supposition about the dimeric (or n-dimensional) complex structure is made. The complex prepared in combination with tributyl aluminium during piperylene polymerization gives a high-stereoregular and high-molecular polypiperylene

  11. Carbonyl complexes of rhodium with N-donor ligands: factors determining the formation of terminal versus bridging carbonyls

    NARCIS (Netherlands)

    Dzik, W.I.; Creusen, C.; de Gelder, R.; Peters, T.P.J.; Smits, J.M.M.; de Bruin, B.

    2010-01-01

    Cationic rhodium carbonyl complexes supported by a series of different N-3- and N-4-donor ligands were prepared, and their ability to form carbonyl-bridged species was evaluated. Complex [Rh(K3-bpa)(cod)r (1(+)) (bpa = bis(2-picolyBamine, cod = cis,cis-1,5-cyclooctadiene) reacts with I bar of CO to

  12. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  13. Enantioselective Construction of 3-Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon N-Allylglyoxylamides.

    Science.gov (United States)

    Ishida, Naoki; Nečas, David; Masuda, Yusuke; Murakami, Masahiro

    2015-06-15

    3-Hydroxypiperidine scaffolds were enantioselectively constructed in an atom-economical way by sequential action of light and rhodium upon N-allylglyoxylamides. In a formal sense, the allylic C-H bond was selectively cleaved and enantioselectively added across the ketonic carbonyl group with migration of the double bond (carbonyl-ene-type reaction). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Isomer-specific detection in the UV photodissociation of the propargyl radical by chirped-pulse mm-wave spectroscopy in a pulsed quasi-uniform flow.

    Science.gov (United States)

    Broderick, Bernadette M; Suas-David, Nicolas; Dias, Nureshan; Suits, Arthur G

    2018-02-21

    Isomer-specific detection and product branching fractions in the UV photodissociation of the propargyl radical is achieved through the use of chirped-pulse Fourier-transform mm-wave spectroscopy in a pulsed quasi-uniform flow (CPUF). Propargyl radicals are produced in the 193 nm photodissociation of 1,2-butadiene. Absorption of a second photon leads to H atom elimination giving three possible C 3 H 2 isomers: singlets cyclopropenylidene (c-C 3 H 2 ) and propadienylidene (l-C 3 H 2 ), and triplet propargylene ( 3 HCCCH). The singlet products and their appearance kinetics in the flow are directly determined by rotational spectroscopy, but due to the negligible dipole moment of propargylene, it is not directly monitored. However, we exploit the time-dependent kinetics of H-atom catalyzed isomerization to infer the branching to propargylene as well. We obtain the overall branching among H loss channels to be 2.9% (+1.1/-0.5) l-C 3 H 2 + H, 16.8% (+3.2/-1.3) c-C 3 H 2 + H, and 80.2 (+1.8/-4.2) 3 HCCCH + H. Our findings are qualitatively consistent with earlier RRKM calculations in that the major channel in the photodissociation of the propargyl radical at 193 nm is to 3 HCCCH + H; however, a greater contribution to the energetically most favorable isomer, c-C 3 H 2 + H is observed in this work. We do not detect the predicted HCCC + H 2 channel, but place an upper bound on its yield of 1%.

  15. Intramolecular carbenoid ylide forming reactions of 2-diazo-3-keto-4-phthalimidocarboxylic esters derived from methionine and cysteine

    Directory of Open Access Journals (Sweden)

    Marc Enßle

    2012-03-01

    Full Text Available Methionine, S-benzylcysteine and S-allylcysteine were converted into 2-diazo-3-oxo-4-phthalimidocarboxylic esters 8a–c in three steps. Upon rhodium-catalysed dediazoniation, two intramolecular carbenoid reactions competed, namely the formation of a cyclic sulfonium ylide and that of a six-ring carbonyl ylide. The S-methyl and S-benzyl ylides 12a and b could be isolated, while S-allyl ylide 12c underwent a [2,3]-sigmatropic rearrangement. The short-lived carbonyl ylides derived from methionine and S-benzylcysteine formed head-to-tail dimers by a [3 + 3]-cycloaddition and could be trapped with external dipolarophiles, while the S-allyl derivative 14c yielded the pentacyclic compound 17 by an intramolecular [3 + 2]-cycloaddition reaction.

  16. Spatiotemporal distribution of carbonyl compounds in China

    International Nuclear Information System (INIS)

    Ho, K.F.; Ho, Steven Sai Hang; Huang, R.-J.; Dai, W.T.; Cao, J.J.; Tian, Linwei; Deng, W.J.

    2015-01-01

    A sampling campaign was carried out at nine Chinese cities in 2010/2011. Fifteen monocarbonyls (C#= 1–9) were quantified. Temperature is the rate-determining factor of the summertime carbonyl levels. The carbonyl emissions in winter are mainly driven by the primary anthropogenic sources like automobile. A molar ratio of propionaldehyde to nonaldehyde is a barometer of the impact of atmospheric vegetation emission which suggesting that strong vegetation emissions exist in summer and high propionaldehyde abundance is caused by fossil fuel combustion in winter. Potential health risk assessment of formaldehyde and acetaldehyde was conducted and the highest cumulative risks were observed at Chengdu in summer and Wuhan in winter. Because of the strong photochemical reaction and large amount of anthropogenic emissions, high concentrations of carbonyl compounds were observed in Chengdu. The use of ethanol-blended gasoline in Wuhan is the key reason of acetaldehyde emission and action should be taken to avoid potential health risks. - Highlights: • A national wide survey of ambient carbonyl compounds were conducted in China. • Using ethanol-blended gasoline can lead to higher cancer risks. • High concentrations of HMW carbonyls (C6, C7, C8 and C9) were observed in all cities. • HMW carbonyls (C6–C9) species show a very consistent seasonal variation. • C 3 /C 9 acts as an indicator for the impact of vegetation emission in the atmosphere. - Capsule abstract: Strong vegetation emission occurs in summer atmosphere and high acetaldehyde emission due to ethanol-blended gasoline consumption in 9 Chinese cities is discouraged

  17. Allylic chlorination of terpenic olefins using a combination of MoCl{sub 5} and NaOCl

    Energy Technology Data Exchange (ETDEWEB)

    Boualy, Brahim; Firdoussi, Larbi El; Ali, Mustapha Ait; Karim, Abdellah, E-mail: elfirdoussi@ucam.ac.m [Universite Cadi Ayyad, Marrakech (Morocco). Faculte des Sciences Semlalia. Lab. de Chimie de Coordination

    2011-07-01

    MoCl{sub 5} is applied as efficient agent in allylic chlorination of terpenic olefins in the presence of NaOCl as chlorine donor. Various terpenes are converted to the corresponding allylic chlorides in moderate to good yield under mild and optimized reaction conditions. Different molybdenum precursors are also studied. Among them, MoO{sub 3} gives good yield, but after a longer reaction time. (author)

  18. A convenient procedure for the synthesis of allyl and benzyl ethers ...

    Indian Academy of Sciences (India)

    Unknown

    Department of Chemistry, Pondicherry University, Pondicherry 605 014, .... organic synthesis we hope that the procedure described in this paper will find ... Allyl bromide (Fluka) and benzyl bromide (E Merck) were freshly distilled before use.

  19. DNA damage by carbonyl stress in human skin cells

    International Nuclear Information System (INIS)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L.

    2003-01-01

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the α-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N ε -(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress

  20. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  1. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling.

    Science.gov (United States)

    Wei, Wei; Dai, Xi-Jie; Wang, Haining; Li, Chenchen; Yang, Xiaobo; Li, Chao-Jun

    2017-12-01

    Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KO t Bu and bidentate phosphine dmpe is vital to this transformation.

  2. Photodissociaton of allyl-d2 iodide excited at 193 nm: Stability of highly rotationally excited H2CDCH2 radicals to C-D fission

    International Nuclear Information System (INIS)

    Szpunar, D.E.; Liu, Y.; McCullagh, M.J.; Butler, L.J.; Shu, J.

    2003-01-01

    The photodissociation of allyl-d2 iodide (H2C=CDCH2I) and the dynamics of the nascent allyl-d2 radical (H2CCDCH2) were studied using photofragment translational spectroscopy. A previous study found the allyl radical stable at internal energies up to 15 kcal/mol higher than the 60 kcal/mol barrier to allene + H formation as the result of a centrifugal barrier. The deuterated allyl radical should then also show a stability to secondary dissociation at internal energies well above the barrier due to centrifugal effects. A comparison in this paper shows the allyl-d2 radical is stable to allene + D formation at energies of 2-3 kcal/mol higher than that of the non-deuterated allyl radical following photolysis of allyl iodide at 193 nm. This is most likely a result of a combination of the slight raising of the barrier from the difference in zero-point levels and a reduction of the impact parameter of the dissociative fragments due to the decrease in frequency of the C-D bending modes, and the refore allene + D product orbital angular momentum. Integrated signal taken at m/e = 40 (allene) and m/e = 41 (allene-d1 and propyne-d3) shows a minor fraction of the allyl-d2 radicals isomerize to the 2-propenyl radical, in qualitative support of earlier conclusions of the domination of direct allene + H formation over isomerization

  3. Dual platinum and pyrrolidine catalysis in the direct alkylation of allylic alcohols: selective synthesis of monoallylation products.

    Science.gov (United States)

    Shibuya, Ryozo; Lin, Lu; Nakahara, Yasuhito; Mashima, Kazushi; Ohshima, Takashi

    2014-04-22

    A dual platinum- and pyrrolidine-catalyzed direct allylic alkylation of allylic alcohols with various active methylene compounds to produce products with high monoallylation selectivity was developed. The use of pyrrolidine and acetic acid was essential, not only for preventing undesirable side reactions, but also for obtaining high monoallylation selectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  5. Copper-catalyzed decarboxylative trifluoromethylation of allylic bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Altman, Ryan A

    2013-11-01

    The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies distinguish this reaction from previously reported Cu-mediated reactions.

  6. Vanadium-Catalyzed Enantioselective Desymmetrization of meso-Secondary Allylic Alcohols and Homoallylic Alcohols

    OpenAIRE

    Li, Zhi; Zhang, Wei; Hisashi Yamamoto, H.

    2008-01-01

    Vanadium-catalyzed epoxidation has extended substrate scope. In addition to various bis-allylic alcohols, bis-homoallylic alcohols can also be desymmetrized using our Vanadium-Bis-hydroxamic acid complexes.

  7. A General Catalyst for Site-Selective C(sp(3))-H Bond Amination of Activated Secondary over Tertiary Alkyl C(sp(3))-H Bonds.

    Science.gov (United States)

    Scamp, Ryan J; Jirak, James G; Dolan, Nicholas S; Guzei, Ilia A; Schomaker, Jennifer M

    2016-06-17

    The discovery of transition metal complexes capable of promoting general, catalyst-controlled and selective carbon-hydrogen (C-H) bond amination of activated secondary C-H bonds over tertiary alkyl C(sp(3))-H bonds is challenging, as substrate control often dominates when reactive nitrene intermediates are involved. In this letter, we report the design of a new silver complex, [(Py5Me2)AgOTf]2, that displays general and good-to-excellent selectivity for nitrene insertion into propargylic, benzylic, and allylic C-H bonds over tertiary alkyl C(sp(3))-H bonds.

  8. An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Lucy [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Bismarck, Alexander [Department of Chemical Engineering, Polymer and Composite Engineering (PaCE) Group, Imperial College London, London SW7 2AZ (United Kingdom); Lee, Adam F. [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Wilson, Darren [Smith and Nephew Research Centre, York Science Park, Heslington, York YO10 5DF (United Kingdom); Wilson, Karen [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom)]. E-mail: kw13@york.ac.uk

    2006-09-30

    The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH{sub 2} =CHCH{sub 2}OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of -24 mJ m{sup -2} was attained. Films prepared at 20 W plasma power with a duty cycle of 10 {mu}s:500 {mu}s exhibit a high degree of hydroxyl (-OH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve -OH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing -OH retention, while longer on times enhance allyl alcohol film growth.

  9. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    Science.gov (United States)

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  10. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    Directory of Open Access Journals (Sweden)

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  11. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Science.gov (United States)

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  12. A method of detecting carbonyl compounds in tree leaves in China.

    Science.gov (United States)

    Huang, Juan; Feng, Yanli; Fu, Jiamo; Sheng, Guoying

    2010-06-01

    Carbonyl compounds have been paid more and more attention because some carbonyl species have been proven to be carcinogenic or a risk for human health. Plant leaves are both an important emission source and an important sink of carbonyl compounds. But the research on carbonyl compounds from plant leaves is very scarce. In order to make an approach to the emission mechanism of plant leaves, a new method was established to extract carbonyl compounds from fresh plant leaves. The procedure combining derivatization with ultrasonication was developed for the fast extraction of carbonyl compounds from tree leaves. Fresh leaves (Metasequoia glyptostroboides), were selected and extracted by this method. Seven carbonyl compounds, including formaldehyde, acetaldehyde, acetone, acrolein, p-tolualdehyde, m/o-tolualdehyde, and hexaldehyde were determined and quantified. The most common carbonyl species of the four tree leaves were formaldehyde, acrolein, and m/o-tolualdehyde. They accounted for 67.3% in cedar, 50.8% in sweet olive, 45.8% in dawn redwood, and 44.6% in camphor tree, respectively. Camphor tree had the highest leaf level of m/o-tolualdehyde with 15.0 +/- 3.4 microg g(-1)(fresh leaf weight), which indicated that camphor tree may be a bioindicator of the level of tolualdehyde or xylene in the atmosphere. By analyzing carbonyl compounds from different tree leaves, it is not only helpful for further studying the relationship between sink and emission of carbonyls from plants, but also helpful for exploring optimum plant population in urban greening.

  13. Pattern of occurrence and occupancy of carbonylation sites in proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2011-01-01

    sites. Comparison of metal-catalyzed oxidation of two closely related proteins indicates that this type of carbonylation might not be very specific in proteins. Interestingly, carbonylated sites show a very strong tendency to cluster together in the protein primary sequence hinting at some sort......Proteins are targets for modification by reactive oxygen species, and carbonylation is an important irreversible modification that increases during oxidative stress. While information on protein carbonylation is accumulating, its pattern is not yet understood. We have made a meta...

  14. Solvent-controlled regioselective protection of allyl-4,6-benzylidene glucopyranosides

    Directory of Open Access Journals (Sweden)

    Migaud Marie E

    2007-09-01

    Full Text Available Abstract We wish to report a simple synthetic procedure, which permits the regiospecific mono-acylation, alkylation and silylation at the 2-position of allyl 4,6-O-benzylidene α-D-glucopyranoside in high yields and which does not require the use of catalysts.

  15. Determination of Carbonyl Compounds in Exhaled Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Moldoveanu S

    2014-12-01

    Full Text Available This paper presents the findings on a quantitative evaluation of carbonyl levels in exhaled cigarette smoke from human subjects. The cigarettes evaluated include products with 5.0 mg ‘tar’, 10.6 mg ‘tar’ and 16.2 mg ‘tar’, where ‘tar’ is defined as the weight of total wet particulate matter (TPM minus the weight of nicotine and water, and the cigarettes are smoked following U.S. Federal Trade Commission (FTC recommendations. The measured levels of carbonyls in the exhaled smoke were compared with calculated yields of carbonyls in the inhaled smoke and a retention efficiency was obtained. The number of human subjects included a total of ten smokers for the 10.6 mg ‘tar’, five for the 16.2 mg ‘tar’, and five for the 5.0 mg ‘tar’ product, each subject smoking three cigarettes. The analyzed carbonyl compounds included several aldehydes (formaldehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde and n-butyraldehyde, and two ketones (acetone and 2-butanone. The smoke collection from the human subjects was vacuum assisted. Exhaled smoke was collected on Cambridge pads pretreated with a solution of dinitrophenylhydrazine (DNPH followed by high performance liquid chromatography (HPLC analysis of the dinitrophenylhydrazones of the carbonyl compounds. The cigarette butts from the smokers were collected and analyzed for nicotine. The nicotine levels for the cigarette butts from the smokers were used to calculate the level of carbonyls in the inhaled smoke, based on calibration curves. These were generated separately by analyzing the carbonyls in smoke and the nicotine in the cigarette butts obtained by machine smoking under different puffing regimes. The comparison of the level of carbonyl compounds in exhaled smoke with that from the inhaled smoke showed high retention of all the carbonyls. The retention of aldehydes was above 95% for all three different ‘tar’ levels cigarettes. The ketones were retained with a

  16. Protein carbonylation sites in bovine raw milk and processed milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Mnatsakanyan, Ruzanna; Hoffmann, Ralf

    2017-08-15

    During thermal treatment of milk, proteins are oxidized, which may reduce the nutritional value of milk, abolish protein functions supporting human health, especially important for newborns, and yield potentially harmful products. The side chains of several amino acids can be oxidized to reactive carbonyls, which are often used to monitor oxidative stress in organisms. Here we mapped protein carbonylation sites in raw milk and different brands of pasteurized, ultra high temperature (UHT) treated milk, and infant formulas (IFs) after digesting the precipitated proteins with trypsin. Reactive carbonyls were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine to enrich the modified peptides by avidin-biotin affinity chromatography and analyze them by nanoRP-UPLC-ESI-MS. Overall, 53 unique carbonylated peptides (37 carbonylation sites, 15 proteins) were identified. Most carbonyls were derived from dicarbonyls (mainly glyoxal). The number of carbonylation sites increased with the harsher processing from raw milk (4) to pasteurized (16) and UHT milk (16) and to IF (24). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Expression of liver functions following sub-lethal and non-lethal doses of allyl alcohol and acetaminophen in the rat

    DEFF Research Database (Denmark)

    Tygstrup, N; Jensen, S A; Krog, B

    1997-01-01

    BACKGROUND/AIMS: To relate severity of intoxication with allyl alcohol and acetaminophen to modulated hepatic gene expression of liver functions and regeneration. METHODS: Rats fasted for 12 h received acetaminophen 3.5 or 5.6 g per kg body weight, or allyl alcohol 100 or 125 microl by gastric tu...

  18. Direct activation of allylic alcohols in palladium catalyzed coupling reactions

    NARCIS (Netherlands)

    Gümrükçü, Y.

    2014-01-01

    The direct use of allylic alcohols in substitution reactions without pre-activation of the hydroxyl-group into a better leaving group or the use of additional stoichiometric in situ activators remains challenging due to the poor leaving group ability of the hydroxyl-group. Hence, it is important to

  19. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone

    2013-10-16

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  20. How phenyl makes a difference: mechanistic insights into the ruthenium( ii )-catalysed isomerisation of allylic alcohols

    KAUST Repository

    Manzini, Simone; Poater, Albert; Nelson, David J.; Cavallo, Luigi; Nolan, Steven P.

    2013-01-01

    [RuCl(η5-3-phenylindenyl)(PPh3)2] (1) has been shown to be a highly active catalyst for the isomerisation of allylic alcohols to the corresponding ketones. A variety of substrates undergo the transformation, typically with 0.25-0.5 mol% of catalyst at room temperature, outperforming commonly-used complexes such as [RuCl(Cp)(PPh3) 2] and [RuCl(η5-indenyl)(PPh3) 2]. Mechanistic experiments and density functional theory have been employed to investigate the mechanism and understand the effect of catalyst structure on reactivity. These investigations suggest a oxo-π-allyl mechanism is in operation, avoiding intermediate ruthenium hydride complexes and leading to a characteristic 1,3-deuterium shift. Important mechanistic insights from DFT and experiments also allowed for the design of a protocol that expands the scope of the transformation to include primary allylic alcohols. © 2013 The Royal Society of Chemistry.

  1. Propargyl organometallic compounds. II. Alkylation of sodium derivatives of 1-alkyl-1-aryl-2-alkynes in liquid ammonia

    International Nuclear Information System (INIS)

    Libman, N.M.; Sevryukov, Yu.P.

    1987-01-01

    In most cases the alkylation of the sodium derivatives of 1-phenyl-1-alkyl-2-alkynes by methyl, ethyl, isopropyl, and tert-butyl bromides in liquid ammonia takes place preferentially at the sp 2 -hybridized carbon atom, and this leads to the formation of the corresponding acetylenes, The regioselectivity of the reaction is explained by the greater softness of the trigonal atom of the ambient propargyl anion and its smaller screening by the solvate shell compared with the diagonal atom

  2. Ozone Effects on Protein Carbonyl Content in the Frontal ...

    Science.gov (United States)

    Oxidative stress (OS) plays an important role in susceptibility and disease in old age. Understanding age-related susceptibility is a critical part of community-based human health risk assessment of chemical exposures. There is growing concern over a common air pollutant, ozone (03), and adverse health effects including dysfunction of the pulmonary, cardiac, and nervous systems. The objective of this study was to test whether OS plays a role in the adverse effects caused by 03 exposure, and if so, if effects were age-dependent. We selected protein carbonyl as an indicator of OS because carbonyl content of cells is a useful indicator of oxidative protein damage and has been linked to chemical-induced adverse effects. Male Brown Norway rats (4, 12, and 24 months) were exposed to 03 (0,0.25 or 1 ppm) via inhalation for 6 h/day, 2 days per week for 13 weeks. Frontal cortex (FC) and cerebellum (CB) were dissected, quick frozen on dry ice, and stored at -80°C. Protein carbonyls were assayed using commercial kits. Hydrogen peroxide, a positive control, increased protein carbonyls in cortical tissue in vitro in a concentration-dependent manner. Significant effects of age on protein carbonyls in FC and a significant effect of age and 03 dose on protein carbonyls in CB were observed. In control rats, there was an age-dependent increase in protein carbonyls indicating increased OS in 12 and 24 month old rats compared to 4 month old rats. Although 03 increase

  3. Chalcogen-containing oxazolines in the palladium-catalyzed asymmetric allylic alkylation

    Directory of Open Access Journals (Sweden)

    Braga Antonio L.

    2006-01-01

    Full Text Available A comparative study about the ability of chiral chalcogen-containing oxazolines to act as chiral ligands in the palladium-catalyzed allylic alkylation of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate is reported. Differences in the catalytic performance are observed with sulfur, selenium and tellurium analogues.

  4. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    Science.gov (United States)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  5. Synthesis of a Novel Allyl-Functionalized Deep Eutectic Solvent to Promote Dissolution of Cellulose

    Directory of Open Access Journals (Sweden)

    Hongwei Ren

    2016-08-01

    Full Text Available Deep eutectic solvents (DESs offer attractive options for the “green” dissolution of cellulose. However, the protic hydroxyl group causes weak dissolving ability of DESs, requiring the substitution of hydroxyl groups in the cation. In this study, a novel allyl-functionalized DES was synthesized and characterized, and its possible effect on improved dissolution of cellulose was investigated. The DES was synthesized by a eutectic mixture of allyl triethyl ammonium chloride ([ATEAm]Cl and oxalic acid (Oxa at a molar ratio of 1:1 and a freezing point of 49 °C. The [ATEAm]Cl-Oxa exhibited high polarity (56.40 kcal/mol, dipolarity/polarizability effects (1.10, hydrogen-bond donating acidity (0.41, hydrogen-bond basicity (0.89, and low viscosity (76 cP at 120 °C owing to the π-π conjugative effect induced by the allyl group. The correlation between temperature and viscosity on the [ATEAm]Cl-Oxa fit the Arrhenius equation well. The [ATEAm]Cl-Oxa showed low pseudo activation energy for viscous flow (44.56 kJ/mol. The improved properties of the [ATEAm]Cl-Oxa noticeably promoted the solubility (6.48 wt.% of cellulose.

  6. 1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Feng-Ling Yang

    2008-12-01

    Full Text Available The title compound, C7H9N3O2, was prepared by alkaline hydrolysis of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxylate. The crystal structure is stabilized by three types of intermolecular hydrogen bond (N—H...O, N—H...N and O—H...N.

  7. Detection of O-propargyl-puromycin with SUMO and ubiquitin by click chemistry at PML-nuclear bodies during abortive proteasome activities

    Energy Technology Data Exchange (ETDEWEB)

    Uozumi, Naoki; Matsumoto, Hotaru [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Saitoh, Hisato, E-mail: hisa@kumamoto-u.ac.jp [Course for Biological Sciences, Faculty of Science, Kumamoto University, Kumamoto (Japan); Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto (Japan)

    2016-05-27

    The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuous association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. -- Highlights: •Click chemistry detects O-propargyl-puromycin (OP-Puro) signals in the nucleus. •OP-Puro accumulates at PML-NBs during abortive proteasome activities. •SUMO and ubiquitin are promiscuously associated with OP-Puro at PML-NBs. •The nucleus may function in immature protein homeostasis.

  8. Detection of O-propargyl-puromycin with SUMO and ubiquitin by click chemistry at PML-nuclear bodies during abortive proteasome activities

    International Nuclear Information System (INIS)

    Uozumi, Naoki; Matsumoto, Hotaru; Saitoh, Hisato

    2016-01-01

    The amino-nucleoside antibiotic, puromycin, acts by covalently linking to elongating polypeptide chains on ribosomes to generate prematurely terminated immature polypeptides. The trafficking of puromycin-conjugated (puromycylated) immature polypeptides within cell has, however, remained elusive. In this study, using O-propargyl-puromycin (OP-Puro), the distribution of puromycylated polypeptides was assessed in HeLa cells by click chemistry. Under standard culture conditions, OP-Puro signals were detected in the cytoplasm and nucleus with the highest concentrations in the nucleolus. Intriguingly, when proteasome activities were aborted using MG132, OP-Puro signals began to accumulate at promyelocytic leukemia nuclear bodies (PML-NBs) in addition to the nucleolus. We also found promiscuous association of OP-Puro signals with SUMO-2/3 and ubiquitin at PML-NBs, but not at the nucleolus, during abortive proteasome activities. This study reveals a previously unknown distribution of OP-Puro that argues for a nuclear function in regulating immature protein homeostasis. -- Highlights: •Click chemistry detects O-propargyl-puromycin (OP-Puro) signals in the nucleus. •OP-Puro accumulates at PML-NBs during abortive proteasome activities. •SUMO and ubiquitin are promiscuously associated with OP-Puro at PML-NBs. •The nucleus may function in immature protein homeostasis.

  9. Enantioselective Allylation of Thiophene-2-carbaldehyde: Formal Total Synthesis of Duloxetine

    Czech Academy of Sciences Publication Activity Database

    Motloch, P.; Valterová, Irena; Kotora, M.

    2014-01-01

    Roč. 356, č. 1 (2014), s. 199-204 ISSN 1615-4150 Grant - others:GA ČR(CZ) GAP207/11/0587 Institutional support: RVO:61388963 Keywords : aldehydes * allylation * Lewis bases * organocatalysis * synthetic methods Subject RIV: CC - Organic Chemistry Impact factor: 5.663, year: 2014

  10. Preparation and microwave shielding property of silver-coated carbonyl iron powder

    International Nuclear Information System (INIS)

    Cao, Xiao Guo; Ren, Hao; Zhang, Hai Yan

    2015-01-01

    Highlights: • The silver-coated carbonyl iron powder is prepared by the electroless plating process. • The silver-coated carbonyl iron powder is a new kind of conductive filler. • The reflection and absorption dominate the shielding mechanism of the prepared powder. • Increasing the thickness of electroconductive adhesive will increase the SE. - Abstract: Electroless silver coating of carbonyl iron powder is demonstrated in the present investigation. The carbonyl iron powders are characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD) before and after the coating process. The relatively uniform and continuous silver coating is obtained under the given coating conditions. In this paper, the electromagnetic interference (EMI) shielding mechanism of the silver-coated carbonyl iron powder is suggested. The reflection of silver coating and absorption of carbonyl iron powder dominate the shielding mechanism of the silver-coated carbonyl iron powder. The silver-coated carbonyl iron powders are used as conductive filler in electroconductive adhesive for electromagnetic interference shielding applications. The effect of the thickness of electroconductive adhesive on the shielding effectiveness (SE) is investigated. The results indicate that the SE increases obviously with the increase of the thickness of electroconductive adhesive. The SE of the electroconductive adhesive with 0.35 mm thickness is above 38 dB across the tested frequency range

  11. Genome Wide Association Mapping in Arabidopsis thaliana Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense.

    Science.gov (United States)

    Francisco, Marta; Joseph, Bindu; Caligagan, Hart; Li, Baohua; Corwin, Jason A; Lin, Catherine; Kerwin, Rachel E; Burow, Meike; Kliebenstein, Daniel J

    2016-01-01

    A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS) have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL), may provide direct feedback regulation, linking defense metabolism outputs to the growth, and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s) that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 μM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  12. Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense

    Directory of Open Access Journals (Sweden)

    Marta Francisco

    2016-07-01

    Full Text Available A key limitation in modern biology is the ability to rapidly identify genes underlying newly identified complex phenotypes. Genome wide association studies (GWAS have become an increasingly important approach for dissecting natural variation by associating phenotypes with genotypes at a genome wide level. Recent work is showing that the Arabidopsis thaliana defense metabolite, allyl glucosinolate (GSL, may provide direct feedback regulation, linking defense metabolism outputs to the growth and defense responses of the plant. However, there is still a need to identify genes that underlie this process. To start developing a deeper understanding of the mechanism(s that modulate the ability of exogenous allyl GSL to alter growth and defense, we measured changes in plant biomass and defense metabolites in a collection of natural 96 A. thaliana accessions fed with 50 µM of allyl GSL. Exogenous allyl GSL was introduced exclusively to the roots and the compound transported to the leaf leading to a wide range of heritable effects upon plant biomass and endogenous GSL accumulation. Using natural variation we conducted GWAS to identify a number of new genes which potentially control allyl responses in various plant processes. This is one of the first instances in which this approach has been successfully utilized to begin dissecting a novel phenotype to the underlying molecular/polygenic basis.

  13. Dansyl labeling and bidimensional mass spectrometry to investigate protein carbonylation.

    Science.gov (United States)

    Palmese, Angelo; De Rosa, Chiara; Marino, Gennaro; Amoresano, Angela

    2011-01-15

    Carbonylation is a non-enzymatic irreversible post-translational modification. The adduction of carbonyl groups to proteins is due to the presence of excess of ROS in cells. Carbonylation of specific amino acid side chains is one of the most abundant consequences of oxidative stress; therefore, the determination of carbonyl groups content in proteins is regarded as a reliable way to estimate the cellular damage caused by oxidative stress. This paper reports a novel RIGhT (Reporter Ion Generating Tag) (A. Amoresano, G. Monti, C. Cirulli, G. Marino. Rapid Commun. Mass Spectrom. 2006, 20, 1400) approach for selective labeling of carbonyl groups in proteins using dansylhydrazide, coupled with selective analysis by bidimensional mass spectrometry. We first applied this approach to ribonuclease A and lysozyme as model proteins. According to the so-called 'gel-free procedures', the analysis is carried out at the level of peptides following tryptic digest of the whole protein mixture. Modified RNaseA was analyzed in combined MS(2) and MS(3) scan mode, to specifically select the dansylated species taking advantage of the dansyl-specific fragmentation pathways. This combination allowed us to obtain a significant increase in signal/noise ratio and a significant increase in sensitivity of analysis, due to the reduction of duty cycle of the mass spectrometer. The unique signal obtained was correlated to peptide 1-10 of RNaseA carbonylated and labeled by dansylhydrazide. This strategy represents the first method leading to the direct identification of the carbonylation sites in proteins, thus indicating the feasibility of this strategy to investigate protein carbonylation in a proteomic approach. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    Science.gov (United States)

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  15. Direct preparation of 14C-labelled 5-allyl- and 5-propyl-2'-deoxyuridine from [2-14C]2'-deoxyuridine

    International Nuclear Information System (INIS)

    Ruth, J.L.; White, S.K.; Bergstrom, D.E.

    1982-01-01

    [2- 14 C]5-Allyl-2'-deoxyuridine was synthesized directly from [2- 14 C]2'-deoxyuridine using mercury, palladium, and 3-chloropropene. [2- 14 C]5-Propyl-2'-deoxyuridine was obtained by hydrogenation of the [ 14 C]5-allyl-2'-deoxyuridine. Advantages of the synthetic method and its application to the preparation of other radiolabeled 5-alkyl/alkenyl-2'-deoxyuridines are discussed. (author)

  16. Electromagnetic properties of carbonyl iron and their microwave ...

    Indian Academy of Sciences (India)

    Administrator

    The aim of this paper is to develop a novel thin micro- wave absorber with good absorbing performance in wide bandwidth and lightweight. So we investigated the micro- wave absorbing characterization of silicone rubber using carbonyl iron as filler. Carbonyl iron can be widely used in the field of electromagnetic shielding ...

  17. In(OTf)3 catalyzed allylation reaction of imines with tetraallyltin

    Institute of Scientific and Technical Information of China (English)

    Xiao Ning Wei; Ling Yan Liu; Bing Wang; Wei Xing Chang; Jing Li

    2009-01-01

    In the presence of catalytic amount of In(OTf)3 (10 mol%), a series of aldimines reacted with tetraallyltin in a 2:1 molar ratio to afford the corresponding homoallylic amines in good yields. The good atom efficiency was achieved under mild reaction conditions and a new protocol (allyl)4Sn/In(OTf)3 for simple imines was developed.

  18. Rh(I) -Catalyzed Intramolecular Carbonylative C-H/C-I Coupling of 2-Iodobiphenyls Using Furfural as a Carbonyl Source.

    Science.gov (United States)

    Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi

    2016-08-19

    Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Total synthesis of broussonetine F: the orthoamide Overman rearrangement of an allylic diol.

    Science.gov (United States)

    Hama, Naoto; Aoki, Toshihiro; Miwa, Shohei; Yamazaki, Miki; Sato, Takaaki; Chida, Noritaka

    2011-02-18

    A first total synthesis of broussonetine F from diethyl L-tartrate was achieved. The cornerstone of our synthesis was an orthoamide Overman rearrangement, which provided an allylic amino alcohol with complete diastereoselectivity.

  20. Phenolic carbonyls undergo rapid aqueous photodegradation to form low-volatility, light-absorbing products

    Science.gov (United States)

    Smith, Jeremy D.; Kinney, Haley; Anastasio, Cort

    2016-02-01

    We investigated the aqueous photochemistry of six phenolic carbonyls - vanillin, acetovanillone, guaiacyl acetone, syringaldehyde, acetosyringone, and coniferyl aldehyde - that are emitted from wood combustion. The phenolic carbonyls absorb significant amounts of solar radiation and decay rapidly via direct photodegradation, with lifetimes (τ) of 13-140 min under Davis, CA winter solstice sunlight at midday (solar zenith angle = 62°). The one exception is guaiacyl acetone, where the carbonyl group is not directly connected to the aromatic ring: This species absorbs very little sunlight and undergoes direct photodegradation very slowly (τ > 103 min). We also found that the triplet excited states (3C*) of the phenolic carbonyls rapidly oxidize syringol (a methoxyphenol without a carbonyl group), on timescales of 1-5 h for solutions containing 5 μM phenolic carbonyl. The direct photodegradation of the phenolic carbonyls, and the oxidation of syringol by 3C*, both efficiently produce low volatility products, with SOA mass yields ranging from 80 to 140%. Contrary to most aliphatic carbonyls, under typical fog conditions we find that the primary sink for the aromatic phenolic carbonyls is direct photodegradation in the aqueous phase. In areas of significant wood combustion, phenolic carbonyls appear to be small but significant sources of aqueous SOA: over the course of a few hours, nearly all of the phenolic carbonyls will be converted to SOA via direct photodegradation, enhancing the POA mass from wood combustion by approximately 3-5%.

  1. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia.

    Science.gov (United States)

    Miyata, T; Ueda, Y; Yamada, Y; Izuhara, Y; Wada, T; Jadoul, M; Saito, A; Kurokawa, K; van Ypersele de Strihou, C

    1998-12-01

    Advanced glycation end product (AGE) formation is related to hyperglycemia in diabetes but not in uremia, because plasma AGE levels do not differ between diabetic and nondiabetic hemodialysis patients. The mechanism of this phenomenon remains elusive. Previously, it was suggested that elevation of AGE levels in uremia might result from the accumulation of unknown AGE precursors. The present study evaluates the in vitro generation of pentosidine, a well identified AGE structure. Plasma samples from healthy subjects and nondiabetic hemodialysis patients were incubated under air for several weeks. Pentosidine levels were determined at intervals by HPLC assay. Pentosidine rose to a much larger extent in uremic than in control plasma. Pentosidine yield, i.e., the change in pentosidine level between 0 and 4 wk divided by 28 d, averaged 0.172 nmol/ml per d in uremic versus 0.072 nmol/ml per d in control plasma (P aminoguanidine and OPB-9195, which inhibit the Maillard reaction, lowered pentosidine yield in both uremic and control plasma. When ultrafiltrated plasma was exposed to 2,4-dinitrophenylhydrazine, the yield of hydrazones, formed by interaction with carbonyl groups, was markedly higher in uremic than in control plasma. These observations strongly suggest that the pentosidine precursors accumulated in uremic plasma are carbonyl compounds. These precursors are unrelated to glucose or ascorbic acid, whose concentration is either normal or lowered in uremic plasma. They are also unrelated to 3-deoxyglucosone, a glucose-derived dicarbonyl compound whose level is raised in uremic plasma: Its addition to normal plasma fails to increase pentosidine yield. This study reports an elevated level of reactive carbonyl compounds ("carbonyl stress") in uremic plasma. Most have a lower than 5000 Da molecular weight and are thus partly removed by hemodialysis. Their effect on pentosidine generation can be inhibited by aminoguanidine or OPB-9195. Carbonyl stress might contribute to

  2. Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method.

    Science.gov (United States)

    Black, Stuart; Ferrell, Jack R

    2017-02-07

    Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Additionally, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. While traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 °C.

  3. Synthesis of γ-hydroxypropyl P-chirogenic (±-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors

    Directory of Open Access Journals (Sweden)

    Iris Binyamin

    2015-07-01

    Full Text Available The synthesis of P-chirogenic (±-phosphine oxides and phosphinates via selective nucleophilic ring opening of the corresponding oxaphospholanes is described. Two representative substrates: the phosphonate 2-ethoxy-1,2-oxaphospholane 2-oxide and the phosphinate 2-phenyl-1,2-oxaphospholane 2-oxide were reacted with various Grignard reagents to produce a single alkyl/aryl product. These products may possess further functionalities in addition to the phosphorus center such as the γ-hydroxypropyl group which results from the ring opening and π-donor moieties such as aryl, allyl, propargyl and allene which originates from the Grignard reagent.

  4. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols

    Science.gov (United States)

    Kant, Ruchir

    2014-01-01

    Summary The copper-catalyzed ketenimine formation reaction of 1-(o-acetamidophenyl)propargyl alcohols with various sulfonyl azides is found to undergo a concomitant intramolecular nucleophile attack to generate 1,2-dihydro-2-iminoquinolines after aromatization (via elimination of acetyl and hydroxy groups) and tautomerization. The reaction produces 4-substituted and 3,4-unsubstituted title compounds in moderate to good yields under mild reaction conditions. PMID:24991276

  5. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective

    DEFF Research Database (Denmark)

    Møller, Ian Max; Rogowska-Wrzesinska, Adelina; Rao, R S P

    2011-01-01

    Proteins can become oxidatively modified in many different ways, either by direct oxidation of amino acid side chains and protein backbone or indirectly by conjugation with oxidation products of polyunsaturated fatty acids and carbohydrates. While reversible oxidative modifications are thought...... to be relevant in physiological processes, irreversible oxidative modifications are known to contribute to cellular damage and disease. The most well-studied irreversible protein oxidation is carbonylation. In this work we first examine how protein carbonylation occurs via metal-catalyzed oxidation (MCO) in vivo...... and in vitro with an emphasis on cellular metal ion homeostasis and metal binding. We then review proteomic methods currently used for identifying carbonylated proteins and their sites of modification. Finally, we discuss the identified carbonylated proteins and the pattern of carbonylation sites in relation...

  6. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.

    Science.gov (United States)

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-09-21

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au-allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  7. No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men

    NARCIS (Netherlands)

    Langeveld, Mirjam; Tan, Chong Yew; Soeters, Maarten R.; Virtue, Samuel; Watson, Laura Pe; Murgatroyd, Peter R.; Ambler, Graeme K.; Vidal-Puig, Santiago; Chatterjee, Krishna V.; Vidal-Puig, Antonio

    2017-01-01

    Background: Induction of nonshivering thermogenesis can be used to influence energy balance to prevent or even treat obesity. The pungent component of mustard, allyl-isothiocyanate (AITC), activates the extreme cold receptor transient receptor potential channel, subfamily A, member 1 and may thus

  8. Kinetics of carbonyl reductase from human brain.

    OpenAIRE

    Bohren, K M; von Wartburg, J P; Wermuth, B

    1987-01-01

    Initial-rate analysis of the carbonyl reductase-catalysed reduction of menadione by NADPH gave families of straight lines in double-reciprocal plots consistent with a sequential mechanism being obeyed. The fluorescence of NADPH was increased up to 7-fold with a concomitant shift of the emission maximum towards lower wavelength in the presence of carbonyl reductase, and both NADPH and NADP+ caused quenching of the enzyme fluorescence, indicating formation of a binary enzyme-coenzyme complex. D...

  9. Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols.

    Science.gov (United States)

    Larionov, Evgeny; Lin, Luqing; Guénée, Laure; Mazet, Clément

    2014-12-03

    Herein we report the palladium-catalyzed isomerization of highly substituted allylic alcohols and alkenyl alcohols by means of a single catalytic system. The operationally simple reaction protocol is applicable to a broad range of substrates and displays a wide functional group tolerance, and the products are usually isolated in high chemical yield. Experimental and computational mechanistic investigations provide complementary and converging evidence for a chain-walking process consisting of repeated migratory insertion/β-H elimination sequences. Interestingly, the catalyst does not dissociate from the substrate in the isomerization of allylic alcohols, whereas it disengages during the isomerization of alkenyl alcohols when additional substituents are present on the alkyl chain.

  10. Millimeter wave spectra of carbonyl cyanide ⋆

    Science.gov (United States)

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  11. Emissions of carbonyl compounds from various cookstoves in China

    International Nuclear Information System (INIS)

    Zhang, J.; Smith, K.R.; Univ. of California, Berkeley, CA

    1999-01-01

    This paper presents a new database of carbonyl emission factors for commonly used cookstoves in China. The emission factors, reported both on a fuel-mass basis (mg/kg) and on a defined cooking-task basis (mg/task), were determined using a carbon balance approach for 22 types of fuel/stove combinations. These include various stoves using different species of crop residues and wood, kerosene, and several types of coals and gases. The results show that all the tested cookstoves produced formaldehyde and acetaldehyde and that the vast majority of the biomass stoves produced additional carbonyl compounds such as acetone, acrolein, propionaldehyde, crotonaldehyde, 2-butanone, isobutyraldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, hexaldehyde, benzaldehyde, o-tolualdehyde, m,p-tolualdehyde, and 2,4-dimethylbenzaldehyde. Carbonyls other than formaldehyde and acetaldehyde, however, were rarely generated by burning coal, coal gas, and natural gas. Kerosene and LPG stoves generated more carbonyl compounds than coal, coal gas, and natural gas stoves, but less than biomass stoves. Indoor levels of carbonyl compounds for typical village houses during cooking hours, estimated using a mass balance model and the measured emission factors, can be high enough to cause acute health effects documented for formaldehyde exposure, depending upon house parameters and individuals' susceptibility

  12. Organocatalytic asymmetric allylic amination of Morita–Baylis–Hillman carbonates of isatins

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2012-08-01

    Full Text Available The investigation of a Lewis base catalyzed asymmetric allylic amination of Morita–Baylis–Hillman carbonates derived from isatins afforded an electrophilic pathway to access multifunctional oxindoles bearing a C3-quaternary stereocenter, provided with good to excellent enantioselectivity (up to 94% ee and in high yields (up to 97%.

  13. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    Science.gov (United States)

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  14. Spatiotemporal distribution of carbonyl compounds in China.

    Science.gov (United States)

    Ho, K F; Ho, Steven Sai Hang; Huang, R-J; Dai, W T; Cao, J J; Tian, Linwei; Deng, W J

    2015-02-01

    A sampling campaign was carried out at nine Chinese cities in 2010/2011. Fifteen monocarbonyls (C# = 1-9) were quantified. Temperature is the rate-determining factor of the summertime carbonyl levels. The carbonyl emissions in winter are mainly driven by the primary anthropogenic sources like automobile. A molar ratio of propionaldehyde to nonaldehyde is a barometer of the impact of atmospheric vegetation emission which suggesting that strong vegetation emissions exist in summer and high propionaldehyde abundance is caused by fossil fuel combustion in winter. Potential health risk assessment of formaldehyde and acetaldehyde was conducted and the highest cumulative risks were observed at Chengdu in summer and Wuhan in winter. Because of the strong photochemical reaction and large amount of anthropogenic emissions, high concentrations of carbonyl compounds were observed in Chengdu. The use of ethanol-blended gasoline in Wuhan is the key reason of acetaldehyde emission and action should be taken to avoid potential health risks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  16. Carbonyl Compounds Generated from Electronic Cigarettes

    Directory of Open Access Journals (Sweden)

    Kanae Bekki

    2014-10-01

    Full Text Available Electronic cigarettes (e-cigarettes are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  17. α,β-Unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines.

    Science.gov (United States)

    Rigoli, Jared W; Moyer, Sara A; Pearce, Simon D; Schomaker, Jennifer M

    2012-03-07

    A convenient synthesis of α,β-unsaturated imines requiring only an allylic alcohol, an amine and a Ru catalyst has been developed. The use of large excesses of oxidant and the purification of sensitive intermediates can be avoided.

  18. Reactivity of olefin and allyl ligands in π-complexes of metals

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    The data on reactivity of olefin and allyl ligands in transition metal (Ru, W) π-complexes, published up to 1984 are presented. Metal ion coordination of olefins causes their appreciable reactivity change. Transformations of π-olefin ligands into σ-alkyl ones, interaction of π-complexes with oxygen nucleophilic reagents, amines, halogenides and pseudohalogenides are considered

  19. 16th Carbonyl Metabolism Meeting: from enzymology to genomics

    Directory of Open Access Journals (Sweden)

    Maser Edmund

    2012-12-01

    Full Text Available Abstract The 16th International Meeting on the Enzymology and Molecular Biology of Carbonyl Metabolism, Castle of Ploen (Schleswig-Holstein, Germany, July 10–15, 2012, covered all aspects of NAD(P-dependent oxido-reductases that are involved in the general metabolism of xenobiotic and physiological carbonyl compounds. Starting 30 years ago with enzyme purification, structure elucidation and enzyme kinetics, the Carbonyl Society members have meanwhile established internationally recognized enzyme nomenclature systems and now consider aspects of enzyme genomics and enzyme evolution along with their roles in diseases. The 16th international meeting included lectures from international speakers from all over the world.

  20. Catalytic production of metal carbonyls from metal oxides

    Science.gov (United States)

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  1. Measurements of carbonyls in a 13-story building.

    Science.gov (United States)

    Báez, Armando P; Padilla, Hugo G; García, Rocío M; Belmont, Raúl D; Torres, Maria del Carmen B

    2004-01-01

    Formaldehyde and acetaldehyde are emitted by many mobile and stationary sources and secondary aldehydes are intermediates in the photo-oxidation of organic compounds in the atmosphere. These aldehydes are emitted indoors by many materials such as furniture, carpets, heating and cooling systems, an by smoking. Carbonyls, mainly formaldehyde and acetaldehyde, have been studied because of their adverse health effects. In addition, formaldehyde is a suspected carcinogen. Therefore, the concentrations of formaldehyde and acetaldehyde were determined to assess the inhalation exposure doses to carbonyls for people who work in a 13-story building and in order to evaluate the cancer hazard. Carbonyl compounds in indoor and outdoor air were measured at a 13-story building located in Mexico City. The mezzanine, fifth and tenth floors, and the third level-parking garage were selected for sampling. Samples were collected in two sampling periods, the first from April 20 to 29, 1998 and the second from December 1 to 20, 1998. Carbonyls were sampled by means of DNHP-coated cartridges at a flow rate of 1 l min(-1) from 9:00 to 19:00 hours, during 2-hour time intervals and analyzed by HPLC with hours, during 2-hour time intervals and analyzed by HPLC with UV/VIS detection. Mean carbonyl concentrations were highest in the 3rd level-parking garage, with the formaldehyde concentration being the highest ranging from 108 to 418 microg m(-3). In working areas, the highest carbonyl arithmetic mean concentrations (AM) were observed on the 5th floor. Acetone and formaldehyde concentrations were highest in April ranging from 161 to 348 microg m(-3) (AM = 226) and from 157 to 270 microg m(-3) (AM = 221), respectively. Propionaldehyde and butyraldehyde were present in smaller concentrations ranging from 2 to 25 and 1 to 28 microg m(-3), respectively, considering all the samples. Mean indoor/outdoor ratios of carbonyls ranged from 1.8 to 9.6. A reduction of inhalation exposure doses of 41% and

  2. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  3. Bifunctional dendrons for multiple carbohydrate presentation via carbonyl chemistry

    Directory of Open Access Journals (Sweden)

    Davide Bini

    2014-07-01

    Full Text Available The synthesis of new dendrons of the generations 0, 1 and 2 with a double bond at the focal point and a carbonyl group at the termini has been carried out. The carbonyl group has been exploited for the multivalent conjugation to a sample saccharide by reductive amination and alkoxyamine conjugation.

  4. Biomarkers derived from heterolytic and homolytic cleavage of allylic hydroperoxides resulting from alkenone autoxidation

    Digital Repository Service at National Institute of Oceanography (India)

    Rontania, J.F.; Harji, R.; Volkmanc, J.K.

    Laboratory incubation of alkenone mixtures with tert-butyl hydroperoxide and di-tert-butyl nitroxide (radical initiator) in hexane, as a means to simulate alkenone autoxidation processes, rapidly led to the formation of allylic hydroperoxides, whose...

  5. Propheromones that release pheromonal carbonyl compounds in light.

    Science.gov (United States)

    Liu, X; Macaulay, E D; Pickett, J A

    1984-05-01

    Pheromonal carbonyl compounds; (Z)-11-hexadecanal, (E)-citral, and 2-heptanone were treated with six alcohols to give acetals or ketals, some of which acted as propheromones by releasing the pheromonal carbonyl compounds in ultraviolet or simulated sunlight. Highest yields of pheromone were obtained from adducts prepared witho-nitrobenzyl alcohol ando-nitrophenylethane-1,2-diol. Adducts from (Z)-11-hexadecenal and these two alcohols were employed in lures to catch diamondback moths,Plutella xylostella (L.).

  6. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    Directory of Open Access Journals (Sweden)

    David Porter

    2015-12-01

    Full Text Available Iron(II complexes of the tetradentate amines tris(2-pyridylmethylamine (TPA and N,N′-bis(2-pyridylmethyl-N,N′-dimethylethane-1,2-diamine (BPMEN are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol % or FeBPMEN (10 mol % converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxycarbamate in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+-(2R,2′R-1,1′-bis(2-pyridylmethyl-2,2′-bipyrrolidine ((R,R′-PDP.

  7. Nanostructured palladium tailored via carbonyl chemical route towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Luo, Y.; Mora-Hernández, J.M.; Estudillo-Wong, L.A.; Arce-Estrada, E.M.; Alonso-Vante, N.

    2015-01-01

    Graphical Abstract: Mass-depending morphologies of nanostructured Palladium obtained via the carbonyl chemical route. Display Omitted -- Highlights: •Mass-depending morphology was observed in nanostructured palladium supported on carbon prepared by the carbonyl chemical route. •The Morphological effect of carbon supported Pd was investigated towards ORR. -- Abstract: Carbon supported palladium nanostructures were synthesized via the carbonyl chemical route. Compared with nanostructured platinum, prepared via carbonyl chemical route, Pd nanomaterials showed mass-loading morphology, whereas particle size and morphology of Pt nanostructures was constant. The oxygen reduction reaction (ORR) on nanostructured Pd, with different morphology in both acid and alkaline medium was investigated. A relationship, based on X-ray diffraction structural analysis pattern, transmission electron microscope, with the Pd morphological effect on ORR activity was identified

  8. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  9. Catalytic reactions of synthesis gas. Part 2. Methanol carbonylation and homologation

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M.

    1993-01-01

    The aim of the review is to evaluate the applicability of methanol hydrocarbonylation as a second test reaction to study the nondissociative activation of CO by heterogeneous rhodium and cobalt catalysts. The main emphasis in methanol (hydro)carbonylation chemistry has been on homogeneous reactions. These systems have been seen advantageous in selectivity, activity and ease of modification. The heterogenization attempts have been carried out to obtain easier separation of the catalyst and the product. The activity of cobalt, rhodium and other metals supported on different materials have been studied in heterogeneous methanol (hydro)carbonylation. The observed activities have been considerably influenced by the support. The most effective catalyst support has been activated carbon. Good carbonylation activities and selectivities have also been observed in conjunction with zeolite supports. The literature study indicates that the typical experimental conditions of methanol (hydro)carbonylation do not exceed the constructional and operational limits of the available reactor system, i.e. 500 C and 50 bar. The reaction is suitable for testing Co and Rh precursors, since both cobalt and rhodium compounds have shown carbonylation activity.

  10. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  11. Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts

    KAUST Repository

    Meconi, Giulia Magi

    2017-05-24

    Density functional theory calculations have been used to investigate the activation mechanism for the precatalyst series [Pd]-X-1–4 derived from [Pd(IPr)(R-allyl)X] species by substitutions at the terminal position of the allyl moiety ([Pd] = Pd(IPr); R = H (1), Me (2), gem-Me2 (3), Ph (4), X = Cl, Br). Next, we have investigated the Suzuki–Miyaura cross-coupling reaction for the active catalyst species IPr-Pd(0) using 4-chlorotoluene and phenylboronic acid as substrates and isopropyl alcohol as a solvent. Our theoretical findings predict an upper barrier trend, corresponding to the activation mechanism for the [Pd]-Cl-1–4 series, in good agreement with the experiments. They indeed provide a quantitative explanation of the low yield (12%) displayed by [Pd]-Cl-1 species (ΔG⧧ ≈ 30.0 kcal/mol) and of the high yields (≈90%) observed in the case of [Pd]-Cl-2–4 complexes (ΔG⧧ ≈ 20.0 kcal/mol). Additionally, the studied Suzuki–Miyaura reaction involving the IPr-Pd(0) species is calculated to be thermodynamically favorable and kinetically facile. Similar investigations for the [Pd]-Br-1–4 series, derived from [Pd(IPr)(R-allyl)Br], indicate that the oxidative addition step for IPr-Pd(0)-mediated catalysis with 4-bromotoluene is kinetically more favored than that with 4-chlorotoluene. Finally, we have explored the potential of Ni-based complexes [Ni((IPr)(R-allyl)X] (X = Cl, Br) as Suzuki–Miyaura reaction catalysts. Apart from a less endergonic reaction energy profile for both precatalyst activation and catalytic cycle, a steep increase in the predicted upper energy barriers (by 2.0–15.0 kcal/mol) is calculated in the activation mechanism for the [Ni]-X-1–4 series compared to the [Pd]-X-1–4 series. Overall, these results suggest that Ni-based precatalysts are expected to be less active than the Pd-based precatalysts for the studied Suzuki–Miyaura reaction.

  12. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    International Nuclear Information System (INIS)

    Marling, J.B.

    1981-01-01

    A deuterium-enriched material is produced by selective photoinduced dissociation of a gas phase organic carbonyl compound containing at least one hydrogen atom bonded to an atom adjacent to a carbonyl group. Alkyl carbonyl compounds such as acetone, acetaldehyde, trifluoroacetic acid, cyclobutanone, cyclopentanone, methyl acetate, 3,3-dimethyl-2-butanone, 2,4-pentanedione, and 4-methyl-2-pentanone are preferred. The carbonyl compound is subjected to intense infrared radiation from one laser, or two lasers operating at different frequencies, to selectively dissociate the deuterated molecules into stable products. The undissociated compound may be redeuterated by direct aqueous liquid phase H/D exchange, or by indirect liquid phase exchange using an alkanol in an intermediate step

  13. Predicting personal exposure to airborne carbonyls using residential measurements and time/activity data

    Science.gov (United States)

    Liu, Weili; Zhang, Junfeng (Jim); Korn, Leo R.; Zhang, Lin; Weisel, Clifford P.; Turpin, Barbara; Morandi, Maria; Stock, Tom; Colome, Steve

    As a part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study, 48 h integrated residential indoor, outdoor, and personal exposure concentrations of 10 carbonyls were simultaneously measured in 234 homes selected from three US cities using the Passive Aldehydes and Ketones Samplers (PAKS). In this paper, we examine the feasibility of using residential indoor concentrations to predict personal exposures to carbonyls. Based on paired t-tests, the means of indoor concentrations were not different from those of personal exposure concentrations for eight out of the 10 measured carbonyls, indicating indoor carbonyls concentrations, in general, well predicted the central tendency of personal exposure concentrations. In a linear regression model, indoor concentrations explained 47%, 55%, and 65% of personal exposure variance for formaldehyde, acetaldehyde, and hexaldehyde, respectively. The predictability of indoor concentrations on cross-individual variability in personal exposure for the other carbonyls was poorer, explainingexposure concentrations. It was found that activities related to driving a vehicle and performing yard work had significant impacts on personal exposures to a few carbonyls.

  14. Fluoride-Mediated Dephosphonylation of α-Diazo-β-carbonyl Phosphonates.

    Science.gov (United States)

    Phatake, Ravindra S; Mullapudi, Venkannababu; Wakchaure, Vivek C; Ramana, Chepuri V

    2017-01-20

    The possibility of fluoride-mediated selective dephosphonylation of α-diazo-β-carbonyl phosphonates such as the Ohira-Bestmann reagent has been proposed and executed. The resulting α-diazocarbonyl intermediates undergo a (3 + 2)-cycloaddition at room temperature with conjugated olefins and benzynes. Interestingly, under the current conditions, the resulting cycloaddition products underwent either N-acylation (with excess α-diazo-β-carbonyl phosphonates) or Michael addition (with conjugated olefins).

  15. Antiviral activity of an N-allyl acridone against dengue virus

    OpenAIRE

    Mazzucco, María Belén; Talarico, Laura Beatriz; Vatansever, Sezen; Carro, Ana Clara; Fascio, Mirta Liliana; D'Accorso, Norma Beatriz; Garcia, Cybele; Damonte, Elsa Beatriz

    2016-01-01

    Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of...

  16. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    Directory of Open Access Journals (Sweden)

    Verena Weidmann

    2013-10-01

    Full Text Available Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.

  17. Millimeter wave spectra of carbonyl cyanide

    Science.gov (United States)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  18. Surprisingly Mild Enolate-Counterion-Free Pd(0)-Catalyzed Intramolecular Allylic Alkylations

    DEFF Research Database (Denmark)

    Madec, David; Prestat, Guillaume; Martini, Elisabetta

    2005-01-01

    Palladium-catalyzed intramolecular allylic alkylations of unsaturated EWG-activated amides can take place under phase-transfer conditions or in the presence of a crown ether. These new reaction conditions are milder and higher yielding than those previously reported. A rationalization for such an...... for such an unexpected result is put forth and validated by DFT-B3LYP calculations. The results suggest cyclization via a counterion-free (E)-enolate TS....

  19. Line profile analyses of rhodium metal obtained by decomposition of rhodium carbonyl

    International Nuclear Information System (INIS)

    Chandra, D.; Mandalia, H.; Garner, M.L.; Blakely, M.K.; Lau, K.H.

    1995-01-01

    Metal carbonyls are important for chemical vapor deposition (CVD) of metals and alloys and formation of high surface area metallic particles which have potential applications as catalysts. Rhodium carbonyl [Rh 6 (CO) 16 ] produces high surface area metallic particles whose structure has been reported as monoclinic (I2/a) with lattice dimensions, a=17.00(±0.03)Angstrom, b=9.78(±0.02)Angstrom, c=17.53(±0.03)Angstrom and Β=121 degrees 45' ± 30' at room temperature. Generally, metal carbonyl crystals dissociate under vacuum as carbonyl gas and decompose to metallic crystals and carbon monoxide at higher temperatures. However, the behavior of rhodium carbonyl crystals is different; they decompose directly to metallic rhodium without the formation of rhodium carbonyl gas in vacuum. Several residual fine grains of rhodium metal are found after the decomposition in vacuum at relatively low temperatures. The metallic samples of rhodium were obtained from vapor pressure experiments using torsion Knudsen-effusion apparatus. X-ray diffraction analyses performed on these gains showed severely broadened Bragg reflections indicative of small particle size and/or lattice microgram. In this study, a comparison of lattice strains and domain sizes obtained by integral breadth and Fourier methods has been made. In addition a comparison of the lattice strains and domain sizes has been made between the Cauchy, Gaussian, Cauchy-Gaussian and Aqua integral breadth methods

  20. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts.

    Science.gov (United States)

    Liggins, J; Furth, A J

    1997-08-22

    Several mechanisms have been postulated for the formation of advanced glycation endproducts (AGEs) from glycated proteins; they all feature protein-bound carbonyl intermediates. Using 2,4-dinitrophenylhydrazine (DNPH), we have detected these intermediates on bovine serum albumin, lysozyme and beta-lactoglobulin after in vitro glycation by glucose or fructose. Carbonyls were formed in parallel with AGE-fluorophores, via oxidative Maillard reactions. Neither Amadori nor Heyns products contributed to the DNPH reaction. Fluorophore and carbonyl yields were much enhanced in lipid-associated proteins, but both groups could also be detected in lipid-free proteins. When pre-glycated proteins were incubated in the absence of free sugar, carbonyl groups were rapidly lost in a first-order reaction, while fluorescence continued to develop beyond the 21 days of incubation. Another unexpected finding was that not all carbonyl groups were blocked by aminoguanidine, although there was complete inhibition of reactions leading to AGE-fluorescence. It is suggested that carbonyls acting as fluorophore precursors react readily with aminoguanidine, while others are resistant to this hydrazine, possibly because they are involved in ring closure. Factors influencing the relative rates of acyclisation and hydrazone formation are discussed, together with possible implications for antiglycation therapy.

  1. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma

    DEFF Research Database (Denmark)

    Havelund, Jesper F; Wojdyla, Katarzyna; Davies, Michael J

    2017-01-01

    Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues...... in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine...

  2. Combined experimental and theoretical mechanistic investigation of the Barbier allylation in aqueous media

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Fristrup, Peter; Madsen, Robert

    2008-01-01

    -determining step. For Zn, In, Sn, Sb, and Bi, an inverse secondary kinetic isotope effect was found (k(H)/k(D) = 0.75-0.95), which was compatible with the formation of a discrete organometallic species prior to allylation via a closed six-membered transition state. With Mg, a significantly larger build...

  3. Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures

    Science.gov (United States)

    Chau, Thoi-Dai; Visart de Bocarmé, Thierry; Kruse, Norbert; Wang, Richard L. C.; Kreuzer, Hans Jürgen

    2003-12-01

    We show that gold mono- and di-carbonyls are formed on gold field emitter tips during interaction with carbon monoxide gas at room temperature and in the presence of high electrostatic fields. The experiments are done in a time-of-flight atom probe to obtain mass spectra. The yield of monocarbonyl cations is about twice that of di-carbonyl ions. Density functional theory calculations are reported that explain the field stabilization of adsorbed carbonyls and the desorption yield of their cations.

  4. Oxidation reaction of 4-allyl-4-hydroperoxy-2-methoxycyclohexa-2,5-dienone in the presence of potassium permanganate without a co-oxidant

    Directory of Open Access Journals (Sweden)

    Mehmet Serdar Gültekin

    2016-12-01

    Full Text Available 4-Allyl-4-hydroperoxy-2-methoxycyclohexa-2,5-dienone (5 was synthesized by photooxygenation of commercially available Eugenol in the presence of tetraphenylporphyrin (TPP as a singlet oxygen sensitizer. The brief and one-pot syntheses of some natural product skeletons were conducted using the corresponding allylic hydroperoxide at different temperatures (0 oC and room temperature with potassium permanganate (KMnO 4 in mild condition at N 2(g atm.

  5. Emissions of Toxic Carbonyls in an Electronic Cigarette

    Directory of Open Access Journals (Sweden)

    Guthery William

    2016-01-01

    Full Text Available Electronic cigarettes (e-cigs provide a smoke-free alternative for inhalation of nicotine without the vast array of toxic and carcinogenic combustion products produced by tobacco smoke. Elevated levels of toxic carbonyls may be generated during vaporisation; however, it is unclear whether that is indicative of a fault with the device or is due to the applied conditions of the test. A device, designed and built at this facility, was tested to determine the levels of selected toxic carbonyls. The reservoir was filled with approximately 960 mg of an e-liquid formulation containing 1.8% (w/v nicotine. Devices were puffed 200 times in blocks of 40 using a standardised regime consisting of a 55 mL puff volume; 3 s puff duration; 30 s puff interval; square wave puff profile. Confirmatory testing for nicotine and total aerosol delivery resulted in mean (n = 8 values of 10 mg (RSD 12.3% and 716 mg (RSD 11.2%, respectively. Emissions of toxic carbonyls were highly variable yet were between < 0.1% and 22.9% of expected levels from a Kentucky Reference Cigarette (K3R4F puffed 200 times under Health Canada Intense smoking conditions. It has been shown that a device built to a high specification with relatively consistent nicotine and aerosol delivery emits inconsistent levels of carbonyls. The exposure is greatly reduced when compared with lit tobacco products. However, it was observed that as the reservoirs neared depletion then emission levels were significantly higher

  6. Polymerizations of beta-substituted allylic arsonium ylides with catalytic amounts of organoboron compounds

    International Nuclear Information System (INIS)

    Mondiere, R.

    2004-01-01

    My Ph.D. work consisted in the generalization and optimization of a new polymerization reaction involving allylic arsonium ylides and catalytic amounts of various boron compounds. Thus, various β-substituted allylic arsonium salts were produced according to synthetic strategies that depended on the nature of the functional group born by the salt. These salts were converted in situ to the corresponding arsonium ylides which were then treated with boron compounds to yield polymers. Our new method of polymerization afforded either non conjugated polyenes that are functionalized every three atoms of carbon, or statistic copolymers, depending on the nature of the group R born on the β position of the ylide. These new polymers cannot be synthesized by usual methods of polymerization. Initial molar ratios of reactants were found to give molar mass control of the synthesized polymers. This controlled polymerization allowed us to produce several bloc copolymers. All the polymers were characterized by NMR techniques, by size exclusion chromatography and, for some of them, by mass spectrometry. Investigation of their physicochemical properties will need additional experiments. (author)

  7. Carbonyl Emissions in E-cigarette Aerosol: A Systematic Review and Methodological Considerations

    Directory of Open Access Journals (Sweden)

    Konstantinos E. Farsalinos

    2018-01-01

    Full Text Available Carbonyl emissions from tobacco cigarettes represent a substantial health risk contributing to smoking-related morbidity and mortality. As expected, this is an important research topic for tobacco harm reduction products, in an attempt to compare the relative risk of these products compared to tobacco cigarettes. In this study, a systematic review of the literature available on PubMed was performed analyzing the studies evaluating carbonyl emissions from e-cigarettes. A total of 32 studies were identified and presented. We identified a large diversity of methodologies, with substantial discrepancies in puffing patterns, aerosol collection and analytical methods as well as reported units of measurements. Such discrepancies make comparisons difficult, and in some cases the accuracy of the findings cannot be determined. Importantly, control for the generation of dry puffs was not performed in the vast majority of studies, particularly in studies using variable power devices, which could result in testing conditions and reported carbonyl levels that have no clinical relevance or context. Some studies have been replicated, verifying the presence of dry puff conditions. Whenever realistic use conditions were ensured, carbonyl emissions from e-cigarettes were substantially lower than tobacco cigarette smoke, while newer generation (bottom-coil, cotton wick atomizers appeared to emit minimal levels of carbonyls with questionable clinical significance in terms of health risk. However, extremely high levels of carbonyl emissions were reported in some studies, and all these studies need to be replicated because of potentially important health implications.

  8. Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects.

    Science.gov (United States)

    Méndez, Lucía; Pazos, Manuel; Molinar-Toribio, Eunice; Sánchez-Martos, Vanesa; Gallardo, José M; Rosa Nogués, M; Torres, Josep L; Medina, Isabel

    2014-12-01

    The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague-Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing; Zhang, Mengying; Wang, Limu; Li, Weihua; Sheng, Ping; Wen, Weijia

    2010-01-01

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested

  11. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Nida Ambreen

    2013-07-01

    Full Text Available Hypervalent iodine(III/TEMPO-mediated oxidation of various aliphatic, aromatic and allylic alcohols to their corresponding carbonyl compounds was successfully achieved by using microreactor technology. This method can be used as an alternative for the oxidation of various alcohols achieving excellent yields and selectivities in significantly shortened reaction times.

  13. Development of an automatic sampling device for the continuous measurement of atmospheric carbonyls compounds

    International Nuclear Information System (INIS)

    Perraud, V.

    2007-12-01

    Two sampling strategies were studied to develop an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. Because of its specificity towards carbonyls compounds, sampling by using a transfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was first studied. However, this method do not allow a quantitative sampling of all studied carbonyl compounds, nor a continuous measurement in the field. To overcome the difficulties, a second strategy was investigated: the cryogenic adsorption onto solid adsorbent followed by thermodesorption and a direct analysis by GC/MS. Collection efficiency using different solid adsorbents was found greater than 95% for carbonyl compounds consisting of 1 to 7 carbons. This work is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds. (author)

  14. Expeditious Entry to Novel 2-Methylene-2,3-dihydrofuro[3,2-c] chromen-2-ones from 6-Chloro-4-hydroxychromen-2-one and Propargylic Alcohols

    Directory of Open Access Journals (Sweden)

    Josefina Díez

    2011-08-01

    Full Text Available A catalytic system consisting of the ruthenium(II complex [Ru(η3-2-C3H4Me(CO(dppf][SbF6] (dppf = 1,1’-bis(diphenylphosphinoferrocene and trifluoroacetic acid has been used to promote the coupling of secondary propargylic alcohols with 6-chloro-4-hydroxychromen-2-one. The reactions afforded unusual 2-methylene-2,3-dihydrofuro[3,2-c]chromen-2-ones in good yields.

  15. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Science.gov (United States)

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  16. Redox and Lewis acid relay catalysis: a titanocene/zinc catalytic platform in the development of multicomponent coupling reactions.

    Science.gov (United States)

    Gianino, Joseph B; Campos, Catherine A; Lepore, Antonio J; Pinkerton, David M; Ashfeld, Brandon L

    2014-12-19

    A titanocene-catalyzed multicomponent coupling is described herein. Using catalytic titanocene, phosphine, and zinc dust, zinc acetylides can be generated from the corresponding iodoalkynes to affect sequential nucleophilic additions to aromatic aldehydes. The intermediate propargylic alkoxides are trapped in situ with acetic anhydride, which are susceptible to a second nucleophilic displacement upon treatment with a variety of electron-rich species, including acetylides, allyl silanes, electron-rich aromatics, silyl enol ethers, and silyl ketene acetals. Additionally, employing cyclopropane carboxaldehydes led to ring-opened products resulting from iodine incorporation. Taken together, these results form the basis for a new mode of three-component coupling reactions, which allows for rapid access to value added products in a single synthetic operation.

  17. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Nová k, Zoltá n; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  18. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  19. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    Science.gov (United States)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  20. Modification of Bisphenol-A Based Bismaleimide Resin (BPA-BMI) with an Allyl-Terminated Hyperbranched Polyimide (AT-PAEKI)

    National Research Council Canada - National Science Library

    Qin, Haihu; Mather, Patrick T; Baek, Jong-Beom; Tan, Loon-Seng

    2006-01-01

    As a continuation of previous work involving synthesis of an allyl-functionalized hyperbranched polyimide, AT-PAEKI, we have studied the use of this reactive polymer as a modifier of bisphenol-A based...

  1. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  2. One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters

    Directory of Open Access Journals (Sweden)

    Gastón Silveira-Dorta

    2016-05-01

    Full Text Available An improved protocol for the synthesis of enantiomerically pure allylic amines is reported. N-Protected α-amino esters derived from natural amino acids were submitted to a one-pot tandem reduction–olefination process. The sequential reduction with DIBAL-H at −78 °C and subsequent in situ addition of organophosphorus reagents yielded the corresponding allylic amines without the need to isolate the intermediate aldehyde. This circumvents the problem of instability of the aldehydes. The method tolerates well both Wittig and Horner–Wadsworth–Emmons organophosphorus reagents. A better Z-(diastereoselectivity was observed when compared to the previous one-pot method. The (diastereoselectivity of the process was affected neither by the reaction solvent nor by the amount of DIBAL-H employed. The method is compatible with the presence of free hydroxy groups as shown with serine and threonine derivatives.

  3. Palladium Catalyzed Allylic C-H Alkylation

    DEFF Research Database (Denmark)

    Engelin, Casper Junker; Fristrup, Peter

    2011-01-01

    are highlighted with emphasis on those leading to C-C bond formation, but where it was deemed necessary for the general understanding of the process closely related C-H oxidations and aminations are also included. It is found that C-H cleavage is most likely achieved by ligand participation which could involve......-H alkylation reaction which is the topic of the current review. Particular emphasis is put on current mechanistic proposals for the three reaction types comprising the overall transformation: C-H activation, nucleophillic addition, and re-oxidation of the active catalyst. Recent advances in C-H bond activation...... an acetate ion coordinated to Pd. Several of the reported systems rely on benzoquinone for re-oxidation of the active catalyst. The scope for nucleophilic addition in allylic C-H alkylation is currently limited, due to demands on pKa of the nucleophile. This limitation could be due to the pH dependence...

  4. Low pressure carbonylation of benzyl chloride = Die carbonylierung von benzylchlorid bei niedrigen drücken

    NARCIS (Netherlands)

    Luggenhorst, H.J.; Westerterp, K.R.

    1986-01-01

    For carbonylations, metal carbonyls, particularly cobalt and iron carbonyls, are often used as catalysts. These reactions take place under rather drastic reaction conditions, e.g. 200–300 °C and 60–100 MPa. In some patents it is stated that similar reactions using the same catalysts can also be

  5. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    Science.gov (United States)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  6. Protein carbonyl content: a novel biomarker for aging in HIV/AIDS patients

    Directory of Open Access Journals (Sweden)

    Vaishali Kolgiri

    2017-01-01

    Conclusions: Carbonyl content may has a role as a biomarker for detecting oxidative DNA damage induced ART toxicity and/or accelerated aging in HIV/AIDS patients. Larger studies are warranted to elucidate the role of carbonyl content as a biomarker for premature aging in HIV/AIDS patients.

  7. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters† †Electronic supplementary information (ESI) available: Full procedures, computational details and characterization data. See DOI: 10.1039/c7sc04283c

    Science.gov (United States)

    Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex

    2017-01-01

    A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093

  8. Coal and biomass-based chemicals via carbonylation, hydroformylation and homologation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala, P.D.; Raghunath, B.

    The paper emphasizes the importance of carbonylation, hydroformylation and homologation reactions in the manufacture of organic chemicals (such as acetic acid, acetic anhydride, cellulose acetate, vinyl acetate monomer, aliphatic amines, isocyanates, methanol, ethanol, n-butanol, ethylene glycol, acrylic acid, etc.) from coal and biomass feedstocks. Topics covered are: synthesis of acetic acid; manufacture of acetic anhydride; synthesis of vinyl acetate monomer by carbonylation; synthesis of aliphatic amines by hydroformylation; synthesis of organic diisocyanates; ethanol synthesis by homologation of methanol; synthesis of ethylene glycol via hydroformylation of formaldehyde; synthesis of n- butanol and n-butyraldehyde by propylene formylation; synthesis of acrylic acid; homologation reaction of carboxylic acid esters with ruthenium catalysts; and synthesis of phenyl isocyanate from nitrobenzene by reductive carbonylation. 26 refs.

  9. [3+2] Cycloaddition of propargylic alcohols and α-oxo ketene dithioacetals: synthesis of functionalized cyclopentadienes and further application in a Diels-Alder reaction.

    Science.gov (United States)

    Fang, Zhongxue; Liu, Jianquan; Liu, Qun; Bi, Xihe

    2014-07-07

    Cyclopentadienes are valuable intermediates in organic synthesis and also ubiquitous as the Cp ligands in organometallic chemistry. As part of ongoing efforts to develop novel organic reactions that employ functionalized alkynes, a [3+2] cycloaddition of propargylic alcohols and ketene dithioacetals has been developed, which leads to fully substituted 2,5-dialkylthio cyclopentadienes in good to excellent yields. In an unusual dethiolating Diels-Alder reaction, the cyclopentadienes were further reacted with maleimides to afford a family of novel fluorescent polycyclic compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    Science.gov (United States)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  11. Degradation of carbonyl hydroperoxides in the atmosphere and in combustion

    KAUST Repository

    Xing, Lili

    2017-10-12

    Oxygenates with carbonyl and hydroperoxy functional groups are important intermediates that are generated during the autooxidation of organic compounds in the atmosphere and during the autoignition of transport fuels. In the troposphere, the degradation of carbonyl hydroperoxides leads to low-vapor-pressure polyfunctional species that be taken into in cloud and fog droplets or to the formation of secondary organic aerosols (SOAs). In combustion, the fate of carbonyl hydroperoxides is important for the performance of advanced combustion engines, especially for autoignition. A key fate of the carbonyl hydroperoxides is reac-tion with OH radicals, for which kinetics data are experimentally unavailable. Here, we study 4-hydroperoxy-2-pentanone (CH3C(=O)CH2CH(OOH)CH3) as a model compound to clarify the kinetics of OH reactions with carbonyl hydroperoxides, in par-ticular H-atom abstraction and OH addition reactions. With a combination of electronic structure calculations, we determine previ-ously missing thermochemical data, and with multipath variational transition state theory (MP-VTST), a multidimensional tunnel-ing (MT) approximation, multiple-structure anharmonicity, and torsional potential anharmonicity we obtained much more accurate rate constants than the ones that can computed by conventional single-structure harmonic transition state theory (TST) and than the empirically estimated rate constants that are currently used in atmospheric and combustion modeling. The roles of various factors in determining the rates are elucidated. The pressure-dependent rate constants for the addition reaction are computed using system-specific quantum RRK theory. The calculated temperature range is 298-2400 K, and the pressure range is 0.01–100 atm. The accu-rate thermodynamic and kinetics data determined in this work are indispensable in the global modeling of SOAs in atmospheric science and in the detailed understanding and prediction of ignition properties of hydrocarbons

  12. A three-membered ring approach to carbonyl olefination.

    Science.gov (United States)

    Niyomchon, Supaporn; Oppedisano, Alberto; Aillard, Paul; Maulide, Nuno

    2017-10-23

    The carbon-carbon double bond, with its diverse and multifaceted reactivity, occupies a prominent position in organic synthesis. Although a variety of simple alkenes are readily available, the mild and chemoselective introduction of a unit of unsaturation into a functionalized organic molecule remains an ongoing area of research, and the olefination of carbonyl compounds is a cornerstone of such approaches. Here we show the direct olefination of hydrazones via the intermediacy of three-membered ring species generated by addition of sulfoxonium ylides, departing from the general dogma of alkenes synthesis from carbonyls. Moreover, the mild reaction conditions and operational simplicity of the transformation render the methodology appealing from a practical point of view.

  13. Iron(III) chloride catalyzed glycosylation of peracylated sugars with allyl/alkynyl alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Silva, Rodrigo Cesar da; Monteiro, Julia L.; Correa, Arlene G.; Paixao, Marcio W., E-mail: mwpaixao@ufscar.br [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2012-11-15

    In this work, the use of ferric chloride as an efficient catalyst in glycosylation reactions of sugars in the presence of allyl and alkynyl alcohols is described. The corresponding glycosides were obtained with moderate to good yields. This new procedure presented greater selectivity when compared to classic methods found in the literature. Principal features of this simple method include non-hazardous reaction conditions, low-catalyst loading, good yields and high anomeric selectivity (author)

  14. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  15. Convenient Reduction of Carbonyl Compounds to their ...

    African Journals Online (AJOL)

    NICO

    Alcohols and their derivatives occupy an important position in organic synthesis. ... review also reveals that the reduction of carbonyl compounds ..... 1 H.B. Ji and Y.B. She, Green Oxidation and Reduction, China Petrochemi- cal Press, Beijing ...

  16. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  17. Hydrogen-Bond Directed Regioselective Pd-Catalyzed Asymmetric Allylic Alkylation: The Construction of Chiral α-Amino Acids with Vicinal Tertiary and Quaternary Stereocenters.

    Science.gov (United States)

    Wei, Xuan; Liu, Delong; An, Qianjin; Zhang, Wanbin

    2015-12-04

    A Pd-catalyzed asymmetric allylic alkylation of azlactones with 4-arylvinyl-1,3-dioxolan-2-ones was developed, providing "branched" chiral α-amino acids with vicinal tertiary and quaternary stereocenters, in high yields and with excellent selectivities. Mechanistic studies revealed that the formation of a hydrogen bond between the Pd-allylic complex and azlactone isomer is responsible for the excellent regioselectivities. This asymmetric alkylation can be carried out on a gram scale without a loss of catalytic efficiency, and the resulting product can be further transformed to a chiral azetidine in two simple steps.

  18. Effect of three 2-allyl-p-mentha-6,8-dien-2-ols on inhibition of mild steel corrosion in 1 M HCl

    Directory of Open Access Journals (Sweden)

    S. Kharchouf

    2014-11-01

    Full Text Available 2-Allyl-p-mentha-6,8-dien-2-ols P1−P3 synthesized from carvone P are tested as corrosion inhibitors of steel in 1 M HCl using weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS methods. The addition of 2-allyl-p-mentha-6,8-dien-2-ols reduced the corrosion rate. Potentiodynamic polarisation studies clearly reveal that the presence of inhibitors does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. 2-Allyl-p-mentha-6,8-dien-2-ols tested adsorb on the steel surface according to Langmuir isotherm. From the adsorption isotherm some thermodynamic data for the adsorption process are calculated and discussed. EIS measurements show the increase of the charge-transfer resistance with the inhibitor concentration. The highest inhibition efficiency (92% is obtained for P1 at 3 g/L. The corrosion rate decreases with the rise of temperature. The corresponding activation energies are determined.

  19. COMPARATIVE STUDY OF EFFICACY OF FERROUS SULPHATE AND CARBONYL IRON IN ANEMIA OF ANTENATAL WOMEN

    Directory of Open Access Journals (Sweden)

    Radhika

    2015-03-01

    Full Text Available Iron deficiency anemia is the most common and important public health problem all over the world in the risk group of antenatal women. Research is going on to improve the iron status of the pregnant women with different forms of iron available. In this regard, Carbonyl Iron is showing promising results in improving the red cell mass with better compliance. 120 antenatal women were recruited in this study. The study comprised of 6weeks for each patient. They were given Carbonyl Iron 100 mg/day and FeS04 100gm/day . Before and after treatment all the baseline and specific investigations were one. Results were tabulated, comparison and significance were tested by unpaired student ’s’ test and their 'p' value was calculated. Results were shown graphically also. Carbonyl Iron showed improvement in hemoglobin, PCV and better than ferrous Sulphate (P <0.001. Incidence of side effects were less with Carbonyl Iron than Ferrous Sulphate, better compliance was seen with Carbonyl Iron. In conclusion, the present study s howed that Carbonyl Iron had better efficacy and safety in the management of Iron deficiency anemia in antenatal women than ferrous Sulphate

  20. Inactivation of Salmonella in tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating

    Science.gov (United States)

    The objective of this study was to evaluate inactivation of inoculated Salmonella enterica on tomato stem scars exploiting integrated treatment of organic acid wash (AW) followed by chitosan-allyl isothiocyanate (CT-AIT) coating. The treatment effect on microbial loads and fruit quality during 21 d...

  1. Direct two-photon excitation of Sm3+, Eu3+, Tb3+, Tb.DOTA-, and Tb.propargylDO3A in solution

    Science.gov (United States)

    Sørensen, Thomas Just; Blackburn, Octavia A.; Tropiano, Manuel; Faulkner, Stephen

    2012-07-01

    We have observed direct two-photon excitation of samarium, europium and terbium ions in solution upon near IR excitation using a tuneable pulsed light source, and have also studied two-photon processes in a pair of related terbium complexes, namely [Tb.DOTA]- and Tb.propargylDO3A. Direct two-photon excitation of lanthanides is observed in simple systems in the absence of sensitizing chromophores. Where even simple chromophores such as a triple bond are present in the complex, then single and two-photon excitation of chromophore excited states competes with direct two-photon excitation of the ions and is the dominant pathway for sensitizing formation of the lanthanide excited state.

  2. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2015-09-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37°C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  3. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance.

    Directory of Open Access Journals (Sweden)

    Chunhu Gu

    Full Text Available Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1 is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo and aged (22-24 mo mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2, SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05. Exogenous toxic aldehydes (4-HNE exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R injury, which could all be rescued by Alda-1 (ALDH2 activator (all P<0.05. However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05. The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1(+/- knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1(+/- hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.

  4. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    Science.gov (United States)

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-12-01

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Protein Carbonylation in Patients with Myelodysplastic Syndromes

    Czech Academy of Sciences Publication Activity Database

    Hlaváčková, A.; Štikarová, J.; Kotlín, R.; Chrastinová, L.; Šácha, Pavel; Májek, P.; Čermák, J.; Suttnar, J.; Dyr, J. E.

    2015-01-01

    Roč. 126, č. 23 (2015), s. 5232 ISSN 0006-4971. [Annual Meeting and Exposition of the American Society of Hematology /55./. 07.12.2013-10.12.2013, New Orleans] Institutional support: RVO:61388963 Keywords : protein carbonylation * myelodysplastic syndromes Subject RIV: CE - Biochemistry

  6. Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine N-Oxides

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, Lada; Langer, V.; Rulíšek, Lubomír; Kočovský, P.

    2013-01-01

    Roč. 19, č. 28 (2013), s. 9167-9185 ISSN 0947-6539 R&D Projects: GA MŠk LC512 Institutional support: RVO:61388963 ; RVO:86652036 Keywords : allylation * allylsilanes * calculations * organocatalysis * pyridine N-oxides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.696, year: 2013

  7. Organocatalyzed α-Sulfenylation of carbonyl compounds using N-formly/Acyl Sulfenmides

    International Nuclear Information System (INIS)

    Noh, Hyeon Wan; Lee, Chan; Jang, Hye Young

    2017-01-01

    α-Sulfenylation of aldehydes and ketones using N-formyl and N-acyl sulfenamides, prepared by Cu-catalyzed aerobic coupling of amides and thiols, was achieved in the presence of cyclic secondary amine⋅HCl catalysts. To obtain various sulfur-functionalized carbonyl compounds, sulfenamides containing aromatic and aliphatic organosulfur were investigated. As carbonyl compounds, cyclic and acyclic ketones, 1,3-dicarbonyl compounds, and aldehydes were investigated, affording the desired α-sulfenylation products in good yields

  8. Organocatalyzed α-Sulfenylation of carbonyl compounds using N-formly/Acyl Sulfenmides

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyeon Wan; Lee, Chan; Jang, Hye Young [Dept. of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2017-03-15

    α-Sulfenylation of aldehydes and ketones using N-formyl and N-acyl sulfenamides, prepared by Cu-catalyzed aerobic coupling of amides and thiols, was achieved in the presence of cyclic secondary amine⋅HCl catalysts. To obtain various sulfur-functionalized carbonyl compounds, sulfenamides containing aromatic and aliphatic organosulfur were investigated. As carbonyl compounds, cyclic and acyclic ketones, 1,3-dicarbonyl compounds, and aldehydes were investigated, affording the desired α-sulfenylation products in good yields.

  9. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase.

    Science.gov (United States)

    Chen, Yi-Yu; Lo, Huei-Fen; Wang, Tzu-Fan; Lin, Min-Guan; Lin, Long-Liu; Chi, Meng-Chun

    2015-01-01

    In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris-HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenlie [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Department of Toxicology, Guangdong Prevention and Treatment Center for Occupational Diseases, Guangzhou 510‐300 (China); Ichihara, Sahoko [Graduate School of Regional Innovation Studies, Mie University, Tsu 514‐8507 (Japan); Oikawa, Shinji [Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514‐8507 (Japan); Chang, Jie; Zhang, Lingyi; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan); Ichihara, Gaku, E-mail: gak@med.nagoya-u.ac.jp [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466‐8550 (Japan)

    2012-08-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs. -- Highlights: ► 1-BP increases hippocampal ROS levels and hippocampal and plasma protein carbonyls. ► 1-BP increases TPI carbonylation and decreases TPI activity in the hippocampus. ► 1-BP increases hippocampal and plasma AGE levels.

  11. Preparation of pyrrolizinone derivatives via sequential transformations of cyclic allyl imides: synthesis of quinolactacide and marinamide.

    Science.gov (United States)

    Simic, Milena; Tasic, Gordana; Jovanovic, Predrag; Petkovic, Milos; Savic, Vladimir

    2018-03-28

    A facile synthetic route has been developed for the preparation of pyrrolizinone derivatives employing N-allyl imides as starting materials. The nucleophilic addition of a vinyl Grignard reagent/RCM/elimination sequence afforded pyrrolizinones in good yields and has been applied for the preparation of naturally occurring quinolactacide and marinamide.

  12. A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2010-01-01

    Full Text Available The development of efficient Friedel–Crafts alkylations of arenes and heteroarenes using only catalytic amounts of a Lewis acid has gained much attention over the last decade. The new catalytic approaches described in this review are favoured over classical Friedel–Crafts conditions as benzyl-, propargyl- and allyl alcohols, or styrenes, can be used instead of toxic benzyl halides. Additionally, only low catalyst loadings are needed to provide a wide range of products. Following a short introduction about the origin and classical definition of the Friedel–Crafts reaction, the review will describe the different environmentally benign substrates which can be applied today as an approach towards greener processes. Additionally, the first diastereoselective and enantioselective Friedel–Crafts-type alkylations will be highlighted.

  13. Isomer-specific combustion chemistry in allene and propyne flames

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Miller, James A. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Westmoreland, Phillip R. [Department of Chem. Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kasper, Tina [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Wang, Juan; Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States)

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  14. Ammonia synthesis in the presence of rhodium-ruthenium-iridium carbonyl clusters

    International Nuclear Information System (INIS)

    Fedoseev, I.V.; Solov'ev, N.V.

    2007-01-01

    Researches in the field of platinum metal coordination compounds, where nitrogen enters as a ligand in coordination sphere of metal, are discussed. Results of experiments on the ammonia synthesis during the CO+N 2 mixture passing through alkali solution containing mixture of carbonyl clusters of rhodium, ruthenium and iridium at atmospheric pressure are given. Technique of the experiment and steps of assumed reactions of nitrogen fixation by Rh, Ir and Ru carbonyl clusters are demonstrated [ru

  15. Protein carbonyl content: a novel biomarker for aging in HIV/AIDS patients.

    Science.gov (United States)

    Kolgiri, Vaishali; Patil, Vinayak Wamanrao

    The major complications of "treated" Human Immunodeficiency Virus (HIV) infection are cardiovascular disease, malignancy, renal disease, liver disease, bone disease, and perhaps neurological complications, which are phenomena of the normal aging process occurring at an earlier age in the HIV-infected population. The present study is aimed to explore protein carbonyl content as a biomarker for detecting oxidative DNA damage induced ART toxicity and/or accelerated aging in HIV/AIDS patients. To investigate the potential of carbonyl content as a biomarker for detecting oxidative Deoxyribonucleic acid (DNA) damage induced Antiretroviral Theraphy (ART) toxicity and/or accelerated aging in HIV/AIDS patients. In this case-control study a total 600 subjects were included. All subjects were randomly selected and grouped as HIV-negative (control group) (n=300), HIV-infected ART naive (n=100), HIV-infected on first line ART (n=100), and HIV-infected on second line ART (n=100). Seronegative control subjects were age- and sex-matched with the ART naive patients and the two other groups. Carbonyl protein was determined by the method described in Levine et al. DNA damage marker 8-OH-dG was determined using 8-hydroxy-2-deoxy Guanosine StressXpress ELA Kit by StressMarq Biosciences. Protein carbonyl content levels and oxidative DNA damage were significantly higher (paging in HIV/AIDS patients. Larger studies are warranted to elucidate the role of carbonyl content as a biomarker for premature aging in HIV/AIDS patients. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun; Sawant, Dinesh N; Renn, Dominik; Zernickel, Anna; Du, Weiyuan; Sekar, Nethi; Eppinger, Jö rg

    2018-01-01

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  17. Aqueous protocol for allylic arylation of cinnamyl acetates with sodium tetraphenylborate using Bedford-type palladacycle catalyst

    KAUST Repository

    Ghorpade, Seema Arun

    2018-03-19

    Allylic arylation of cinnamyl acetates with sodium tetraphenylborate using 0.002 mol % of Bedford-type palladacycle catalyst is described. The developed methodology is applicable for wide range of cinnamyl acetates furnishing excellent yields up to 93%. Notably all reactions proceed smoothly under mild reaction conditions in water under air atmosphere.

  18. Metal-atom fluorescence from the quenching of metastable rare gases by metal carbonyls

    International Nuclear Information System (INIS)

    Hollingsworth, W.E.

    1982-11-01

    A flowing afterglow apparatus was used to study the metal fluorescence resulting from the quenching of metastable rare-gas states by metal carbonyls. The data from the quenching or argon, neon, and helium by iron and nickel carbonyl agreed well with a restricted degree of freedom model indicating a concerted bond-breaking dissociation

  19. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures

    Science.gov (United States)

    Pang, Xiaobing; Mu, Yujing

    The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m -3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m -3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m -3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day -1, respectively. The public concern should pay considerable attention to professional drivers' health.

  20. Direct asymmetric allylic alkenylation of N-itaconimides with Morita-Baylis-Hillman carbonates

    KAUST Repository

    Yang, Wenguo

    2012-08-03

    The asymmetric allylic alkenylation of Morita-Baylis-Hillman (MBH) carbonates with N-itaconimides as nucleophiles has been developed using a commercially available Cinchona alkaloid catalyst. A variety of multifunctional chiral α-methylene-β-maleimide esters were attained in moderate to excellent yields (up to 99%) and good to excellent enantioselectivities (up to 91% ee). The origin of the regio- and stereoselectivity was verified by DFT methods. Calculated geometries and relative energies of various transition states strongly support the observed regio- and enantioselectivity. © 2012 American Chemical Society.

  1. Stereoselective Carbonyl Olefination with Fluorosulfoximines: Facile Access to Z or E Terminal Monofluoroalkenes.

    Science.gov (United States)

    Liu, Qinghe; Shen, Xiao; Ni, Chuanfa; Hu, Jinbo

    2017-01-09

    Terminal monofluoroalkenes are important structural motifs in the design of bioactive compounds, such as homeostasis regulators and mechanism-based enzyme inhibitors. However, it is difficult to control the stereoselectivity of known carbonyl olefination reactions, and olefin metathesis is limited to disubstituted terminal monofluoroalkenes. Although sulfoximines have been used extensively in organic synthesis, reports on their use in carbonyl olefination reactions have not appeared to date. Herein, we report highly stereoselective carbonyl monofluoroolefination with a fluorosulfoximine reagent. The potential of this method is demonstrated by the synthesis of MDL 72161 and by the late-stage monofluoromethylenation of complex molecules, such as haloperidol and steroid derivatives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chang [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Fang Qingqing, E-mail: physfangqq@126.com [School of Physics and Material Science, Anhui University, Hefei 230036 (China) and Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China)

    2012-05-15

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<-5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<-5 dB and RL<-8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was -29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: Black-Right-Pointing-Pointer We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. Black-Right-Pointing-Pointer ZnO dielectric property increased absorption effect and absorption bandwidth. Black-Right-Pointing-Pointer Absorbing frequence of composites is expanding to low frequency direction. Black-Right-Pointing-Pointer The craft of high energy ball milling is easy to realize commerce production.

  3. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    International Nuclear Information System (INIS)

    Zhou Chang; Fang Qingqing; Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong

    2012-01-01

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0–20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: ► We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. ► ZnO dielectric property increased absorption effect and absorption bandwidth. ► Absorbing frequence of composites is expanding to low frequency direction. ► The craft of high energy ball milling is easy to realize commerce production.

  4. Determination of Carbonyl Compounds in Cigarette Mainstream Smoke. The CORESTA 2010 Collaborative Study and Recommended Method

    Directory of Open Access Journals (Sweden)

    Intorp M

    2014-12-01

    Full Text Available A recommended method has been developed and published by CORESTA, applicable to the quantification of selected carbonyl compounds (acetaldehyde, formaldehyde, acetone, acrolein, methyl ethyl ketone, crotonaldehyde, propionaldehyde and butyraldehyde in cigarette mainstream smoke. The method involved smoke collection in impinger traps, derivatisation of carbonyls with 2,4-dinitrophenylhydrazine (DNPH, separation of carbonyl hydrazones by reversed phase high performance liquid chromatography and detection by ultra violet or diode array.

  5. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    Science.gov (United States)

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  6. Synthesis of tritium and carbon-14 labelled N-(3-dimethyl aminopropyl)-N-(ethylaminocarbonyl)-6-(2-propenyl) ergoline-8β-carboxamide (cabergoline), a potent long lasting prolactin lowering agent

    International Nuclear Information System (INIS)

    Mantegani, S.; Brambilla, E.; Ermoli, A.; Fontana, E.; Angiuli, P.; Vicario, G.P.

    1991-01-01

    The syntheses of 3 H- and 14 C-labelled cabergoline and its analogues are described. Tritiated cabergoline ([ 3 H]cabergoline), namely N-(3-di-methylaminopropyl)-N-(ethylaminocarbonyl)-6-(2-[2,3- 3 H]-propenyl)ergoline-8β-carboxamide, was obtained, by catalytic reduction with tritium gas, according to two different synthetic procedures: A- a three step route, starting from 6-(2-propargyl)-dihydro lysergic acid-methyl ester gave [ 3 H]cabergoline, B - a one step route, starting from 1-ethyl-3-(3-dimethyl-aminopropyl)-3-[6'-(2-propargyl)ergoline-8'-carbonyl ]-urea 5' yielded [ 3 H]cabergoline. A modification of this last procedure also gave [ 3 H]dihydro cabergoline. The synthesis of [ 14 C]cabergoline was carried out, in a three step route, by addition of potassium [ 14 C]cyanide to 6-(2-propenyl)-8-chloroergoline to give the expected N-(dimethylaminopropyl)-N-(ethylaminocarbonyl)-6-(2-propenyl)-ergoline-8-[ 14 C]carboxamide, 97% radiochemically pure with a specific radioactivity of 2.09 GBq/mmol and an overall radiochemical yield of 16%. (author)

  7. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  8. Chemoenzymatic synthesis of chiral 2,2'-bipyridine ligands and their N-oxide derivatives: applications in the asymmetric aminolysis of epoxides and asymmetric allylation of aldehydes.

    Science.gov (United States)

    Boyd, D R; Sharma, N D; Sbircea, L; Murphy, D; Malone, J F; James, S L; Allen, C C R; Hamilton, J T G

    2010-03-07

    A series of enantiopure 2,2'-bipyridines have been synthesised from the corresponding cis-dihydrodiol metabolites of 2-chloroquinolines. Several of the resulting hydroxylated 2,2'-bipyridines were found to be useful chiral ligands for the asymmetric aminolysis of meso-epoxides leading to the formation of enantioenriched amino alcohols (-->84% ee). N-oxide and N,N'-dioxide derivatives of these 2,2'-bipyridines, including separable atropisomers, have been synthesised and used as enantioselective organocatalysts in the asymmetric allylation of aldehydes to give allylic alcohols (-->86% ee).

  9. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR program, Southwest Sciences will continue the development of small, low power instrumentation for real-time direct measurement of carbonyl...

  10. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    OpenAIRE

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, P. (Petra); Filip, P. (Petr); Vesel, A.

    2011-01-01

    The aim of this paper is to document suitability of plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Surface-modified carbonyl iron particles were prepared via their exposure to 50% argon and 50% octafluorocyclobutane plasma. The X-ray photoelectron spectroscopy was used for analysis of chemical bonding states in the surface layer. Plasma-treated particles were adopted for a dispersed phase in magnetorheological (MR) fluids, and the MR behaviour was in...

  11. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  12. Reactions of α-phosphorylated carbonyl compounds with amino alcohols

    International Nuclear Information System (INIS)

    Moskva, V.V.; Sitdikova, T.Sh.; Zykova, T.V.; Alparova, M.V.; Shagvaleev, F.Sh.

    1986-01-01

    2-Aminoethanol reacts with carbonyl compounds with the formation, depending on the structure of the latter, either of a mixture of azomethines and oxazolidines, or of only azomethines. In the development of investigations on the reactivity of α-phosphorylated carbonyl compounds the authors studied the reactions of a number of amino alcohols with phosphorylated acetaldehyde and acetone. In both cases they observed the formation of compounds of enamine structure, oxazolidines and azomethines were not observed. By means of NMR spectroscopy they established clearly the formation of the E-isomeric products. The 1 H, 31 P, and 13 C NMR spectra were recorded on a WP-80 spectrometer. Chemical shifts of protons and 13 C nuclei are given relative to TMS, and phosphorus nuclei relative to orthophosphoric acid

  13. Anchoring selenido-carbonyl ruthenium clusters to functionalized silica xerogels

    International Nuclear Information System (INIS)

    Cauzzi, Daniele; Graiff, Claudia; Pattacini, Roberto; Predieri, Giovanni; Tiripicchio, Antonio

    2003-01-01

    Silica Xerogels containing carbonyl Ru 3 Se 2 nido clusters were prepared in three different ways. The simple dispersion of [Ru 3 (μ 3 -Se) 2 (CO) 7 (PPh 3 ) 2 ] via sol gel process produces an inhomogeneous material; by contrast, homogeneous xerogels were obtained by reaction of [Ru 3 (μ 3 -Se) 2 (CO) 8 (PPh 3 )] with functionalized xerogels containing grafted diphenylphosphine moieties and by reaction of [Ru 3 (CO) 12 ] with a xerogel containing grafted phosphine-selenide groups. The reaction between [Ru 3 (CO) 12 ] and dodecyl diphenylphosphine selenide led to the formation of four selenido carbonyl clusters, which are soluble in hydrocarbon solvents and can be deposited as thin films from their solution by slow evaporation. (author)

  14. S-Allyl cysteine improves nonalcoholic fatty liver disease in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of hepatic lipogenesis and glucose metabolism

    OpenAIRE

    Takemura, Shigekazu; Minamiyama, Yukiko; Kodai, Shintaro; Shinkawa, Hiroji; Tsukioka, Takuma; Okada, Shigeru; Azuma, Hideki; Kubo, Shoji

    2013-01-01

    It is important to prevent and improve diabetes mellitus and its complications in a safe and low-cost manner. S-Allyl cysteine, an aged garlic extract with antioxidant activity, was investigated to determine whether S-allyl cysteine can improve type 2 diabetes in Otsuka Long-Evans Tokushima Fatty rats with nonalcoholic fatty liver disease. Male Otsuka Long-Evans Tokushima Fatty rats and age-matched Long-Evans Tokushima Otsuka rats were used and were divided into two groups at 29 weeks of age....

  15. Low pressure carbonylation of benzyl chloride = Die carbonylierung von benzylchlorid bei niedrigen drücken

    OpenAIRE

    Luggenhorst, H.J.; Westerterp, K.R.

    1986-01-01

    For carbonylations, metal carbonyls, particularly cobalt and iron carbonyls, are often used as catalysts. These reactions take place under rather drastic reaction conditions, e.g. 200–300 °C and 60–100 MPa. In some patents it is stated that similar reactions using the same catalysts can also be carried out under rather mild reaction conditions, such as 0–100 °C and 0–2.5 MPa. We studied the conversion of benzyl chloride to phenyl acetic methyl ester in a semi-batch reactor in which one of the...

  16. Carbonyl compounds and PAH emissions from CNG heavy-duty engine

    International Nuclear Information System (INIS)

    Gambino, M.; Cericola, R.; Corbo, P.; Iannaccone, S.

    1993-01-01

    Previous works carried out in Istituto Motori laboratories have shown that natural gas is a suitable fuel for general means of transportation. This is because of its favorable effects on engine performance and pollutant emissions. The natural gas fueled engine provided the same performance as the diesel engine, met R49 emission standards, and showed very low smoke levels. On the other hand, it is well known that internal combustion engines emit some components that are harmful for human health, such as carbonyl compounds and polycyclic aromatic hydrocarbons (PAH). This paper shows the results of carbonyl compounds and PAH emissions analysis for a heavy-duty Otto cycle engine fueled with natural gas. The engine was tested using the R49 cycle that is used to measure the regulated emissions. The test analysis has been compared with an analysis of a diesel engine, tested under the same conditions. Total PAH emissions from the CNG engine were about three orders of magnitude lower than from the diesel engine. Formaldehyde emission from the CNG engine was about ten times as much as from the diesel engine, while emissions of other carbonyl compounds were comparable

  17. Therapeutic Efficacy of Allyl Isothiocyanate Evaluated on N-Nitrosodiethylamine/Phenobarbitol induced Hepatocarcinogenesis in Wistar Rats

    Directory of Open Access Journals (Sweden)

    G. Thiyagarajan

    2010-07-01

    Full Text Available N-nitrosodiethylamine (NDEA is a potential carcinogenic agent that induces liver cancer. To evaluate the chemotherapeutic effect of Allyl isothiocyanate in the experimental model, Wistar male rats were administered single dose of intraperitoneal (IP injection of NDEA. Two weeks after administration of NDEA, Phenobarbital at the concentration of 0.05% was incorporated in rat chow for up to 14 successive weeks to promote liver cancer. Allyl isothiocyanate (AITC (2mg/kg body weight in addition with 0.5ml of corn oil was given orally on a daily basis. At the end of this experimental period, the rats were sacrificed and the blood samples were taken for biochemical studies. The levels of the marker enzymes for liver function were measured in serum. The results of the biochemical studies showed that NDEA administration followed by phenobarbital induces macro and microscopic liver tumors that increase the levels of marker enzymes and decreases the level of antioxidant in the serum in addition to loss of body weight. Conclusively, the administration of AITC as therapeutic treatment for hepatocarcinoma has significantly reduced the tumor development and counteracted all the biochemical effects induced by NDEA.

  18. Selective transformation of carbonyl ligands to organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, A.R.

    1992-05-12

    Studies on the carbonylation of ({eta}{sup 5}-indenyl)(L)(CO)Ru-R complexes (L = CO, PPh{sub 3}; R = CH{sub 2}OMe, CH{sub 3}) have been completed. Particularly noteworthy is that the methoxymethyl complexes readily transform to their acyl derivatives under mild conditions that leave their iron congeners inert towards CO. Surprisingly, even ({eta}{sup 5}-indenyl)(PPh{sub 3}){sub 2}Ru-CH{sub 3} carbonylates and gives ({eta}{sup 5}-indenyl)(PPh{sub 3})(CO)Ru-C(O)CH{sub 3}. Mechanistic studies on the non catalyzed'' hydrosilation of the manganese acyls (CO){sub 5}Mn-C(O)CH{sub 2}R (R = H, OCH{sub 3}, CH{sub 3}) with Et{sub 3}SiH and of cobalt acetyls (CO){sub 3}(PR{sub 3})CoC(O)CH{sub 3} with several monohydrosilanes have been completed. The cobalt acetyls cleanly give ethoxysilanes (not acetaldehyde), and the manganese acyls provide {alpha}-siloxyvinyl complexes Z-(CO){sub 5}Mn-C(OSiEt{sub 3})=CHR (R = H, CH{sub 3}, OCH{sub 3}). Carbonylation and protolytic cleavage of the latter generate pyruvoyl complexes (CO){sub 5}Mn-COCOR (R = CH{sub 3}, CH{sub 2}CH{sub 3}), formally the products of net double carbonylation'' sequences. Studies in progress are concerned with how manganese complexes as diverse as (CO){sub 5}Mn-Y (Y = C(O)R, R, BR - but not SiMe{sub 3} or Mn(CO){sub 5}) and ({eta}{sup 3}-C{sub 3}H{sub 5})Mn(CO){sub 2}L (but not CpMn(CO){sub 3} or CpMn(CO){sub 2}({eta}{sup 2}HSiR{sub 3})) function as efficient hydrosilation catalysts towards Cp(CO){sub 2}FeC(O)CH{sub 3}, for example. These reactions cleanly afford fully characterized {alpha}-siloxyethyl complexes Fp-CH(OSiR{sub 3})CH{sub 3} under conditions where typically Rh(1) hydrosilation catalysts are inactive. Several of these manganese complexes also catalytically hydrosilate organic esters, including lactones, to their ethers R-CH{sub 2}OR; these novel ester reductions occur quantitatively at room temperature and appear to be general in scope.

  19. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Matthias, E-mail: matthias.schindler@physik.uni-erlangen.de; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-15

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO{sub 2} and reduced to graphite to determine {sup 14}C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  20. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    Science.gov (United States)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  1. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  2. Plasma protein carbonyl levels and breast cancer risk

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Terry, M. B.; Gammon, M. D.; Agrawal, M.; Zhang, F. F.; Ferris, J.S.; Teitelbaum, S. L.; Eng, S. M.; Gaudet, M. M.; Neugut, A. I.; Santella, R. M.

    2007-01-01

    Roč. 11, č. 5 (2007), s. 1138-1148 ISSN 1582-1838 Institutional research plan: CEZ:AV0Z50390512 Keywords : oxidative stress * protein carbonyl * breast cancer Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 6.807, year: 2007

  3. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin.

    Science.gov (United States)

    Pazos, Manuel; Maestre, Rodrigo; Gallardo, José M; Medina, Isabel

    2013-01-01

    The present study investigates the susceptibility of individual myofibrillar proteins from mackerel (Scomber scombrus) mince to undergo carbonylation reactions during chilled storage, and the antioxidant capacity of (+)-catechin to prevent oxidative processes of proteins. The carbonylation of each particular protein was quantified by combining the labelling of protein carbonyls by fluorescein-5-thiosemicarbazide (FTSC) with 1-D or 2-D gel electrophoresis. Alpha skeletal actin, glycogen phosphorylase, unnamed protein product (UNP) similar to enolase, pyruvate kinase, isoforms of creatine kinase, aldolase A and an isoform of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) showed elevated oxidation in chilled non-supplemented mince. Myosin heavy chain (MHC) was not carbonylated in chilled muscle, but an extensive MHC degradation was observed in those samples. The supplementation of catechin reduced protein oxidation and lipid oxidation in a concentration-dependent manner: control>25>100≈200ppm. Therefore, the highest catechin concentrations (100 and 200ppm) exhibited the strongest antioxidant activity. Catechin (200ppm) reduced significantly carbonylation of protein spots identified as glycogen phosphorylase, pyruvate kinase muscle isozyme, isoforms of creatine kinase. Conversely, catechin was ineffective to inhibit the oxidation of actin and UNP similar to enolase. These results draw attention to the inefficiency of catechin to prevent actin oxidation, in contrast to the extremely high efficiency of catechin in inhibiting oxidation of lipids and other proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Synthesis of New Chiral 2,2'-bipyridine ligands and their application in copper-catalyzed asymmetric allylic oxidation and cyclopropanation

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa, A.; Teplý, Filip; Meghani, P.; Kočovský, P.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 4727-4742 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z4055905 Keywords : optically-active bipyridine * enantioselective cyclopropanation * allylic oxidation Subject RIV: CC - Organic Chemistry Impact factor: 3.297, year: 2003

  5. Highly Diastereoselective Indium-Mediated Allylation of Proline-Derived Hydrazones

    International Nuclear Information System (INIS)

    Satyender, Apuri; Jang, Doo Ok

    2013-01-01

    A highly diastereoselective indium-mediated addition reaction to L-proline-derived hydrazones has been developed. The method affords an efficient and general synthesis of homoallylic amines of high optically purity in high yields and diastereomeric ratios up to 98:2. It is well known that (S)-1-amino-2-methoxymethylpyrro-lidine and (S)-4-isopropyl- or (S)-4-phenylmethyl-oxa-zolidin-2-one-derived hydrazones have been used for metal-mediated diastereoselective allylation additions to produce chiral homoallylic amines. However, the optically pure hydrazine precursors are either commercially expensive and/or involve laborious synthetic procedures employing toxic reagents for their preparation. Thus, the design of novel classes of chiral hydrazines that would further broaden the scope of asymmetric synthesis to access optically pure homoallylic amines is highly desirable

  6. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides.

    Science.gov (United States)

    Alexander, Juliana R; Cook, Matthew J

    2017-11-03

    A new approach for the formation of ketenimines via a decarboxylative allylic rearrangement pathway that does not require strong stabilizing or protecting groups has been developed. The products can be readily hydrolyzed into their corresponding secondary amides or reacted with sulfur ylides to perform an additional [2,3]-Wittig process. Mechanistic studies suggest an outer-sphere process in which reductive alkylation is rate-limiting.

  7. Eosin Y-catalyzed, visible-light-promoted carbophosphinylation of allylic alcohols via a radical neophyl rearrangement.

    Science.gov (United States)

    Yin, Yao; Weng, Wei-Zhi; Sun, Jian-Guo; Zhang, Bo

    2018-03-28

    A visible-light-promoted phosphinylation of allylic alcohols with concomitant 1,2-aryl migration is described. This transformation proceeds smoothly under metal-free and mild conditions by using an inexpensive organic dye, eosin Y, as the photocatalyst, affording various β-aryl-γ-ketophosphine oxides in moderate to good yields. Mechanistic studies suggested that the 1,2-aryl migration proceeded through a radical (neophyl) rearrangement.

  8. Oxidant-free Rh(III)-catalyzed direct C-H olefination of arenes with allyl acetates.

    Science.gov (United States)

    Feng, Chao; Feng, Daming; Loh, Teck-Peng

    2013-07-19

    Rh(III)-catalyzed direct olefination of arenes with allyl acetate via C-H bond activation is described using N,N-disubstituted aminocarbonyl as the directing group. The catalyst undergoes a redox neutral process, and high to excellent yields of trans-products are obtained. This protocol exhibits a wide spectrum of functionality compatibility because of the simple reaction conditions employed and provides a highly effective synthetic method in the realm of C-H olefination.

  9. Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes

    International Nuclear Information System (INIS)

    Wang, Y.; Qin, Z.; Fan, F.L.

    2014-01-01

    Metal carbonyl complexes were used for studying the gas-phase chemical behavior of Mo, Ru, W and Os isotopes with an on-line low temperature isothermal gas chromatography apparatus. Short-lived Mo and Ru isotopes were produced by a 252 Cf spontaneous fission source. Short-lived nuclides of W and Os were produced using the heavy ion reactions 19 F + 159 Tb and 165 Ho, respectively. Short-lived products were thermalized in a recoil chamber filled with a gas mixture of helium and carbon monoxide. The carbonyls formed were then transported through capillaries to an isothermal chromatography column for study of the adsorption behavior as a function of temperature. On-line isothermal chromatography (IC) experiments on Teflon (PTFE) and quartz surfaces showed that short-lived isotopes of the listed elements can form carbonyl complexes which are very volatile and interact most likely in physical sorption processes. Deduced adsorption enthalpies of Mo and Ru carbonyls were -38 ± 2 kJ/mol and -36 ± 2 kJ/mol, respectively. These values are in good agreement with literature data, partly obtained with different chromatographic techniques. A validation of the applied Monte Carlo model to deduce adsorption enthalpies with Mo isotopes of different half-lives proved the validity of the underlying adsorption model. The investigations using a gas-jet system coupled to a heavy ion accelerator without any preseparator clearly showed the limitations of the approach. The He and CO gas mixture, which was directly added into the chamber, will result in decomposition of CO gas and produce some aerosol particles. After the experiment of 173 W and 179 Os in the heavy ion experiments, the Teflon column was covered by a yellowish deposit; the adsorption enthalpy of W and Os carbonyls could therefore not be properly deduced using Monte Carlo simulations. (orig.)

  10. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics.

    Science.gov (United States)

    El-Hellani, Ahmad; Salman, Rola; El-Hage, Rachel; Talih, Soha; Malek, Nathalie; Baalbaki, Rima; Karaoghlanian, Nareg; Nakkash, Rima; Shihadeh, Alan; Saliba, Najat A

    2018-01-05

    Available in hundreds of device designs and thousands of flavors, electronic cigarette (ECIG) may have differing toxicant emission characteristics. This study assesses nicotine and carbonyl yields in the most popular brands in the U.S. market. These products included disposable, prefilled cartridge, and tank-based ECIGs. Twenty-seven ECIG products of 10 brands were procured and their power outputs were measured. The e-liquids were characterized for pH, nicotine concentration, propylene glycol/vegetable glycerin (PG/VG) ratio, and water content. Aerosols were generated using a puffing machine and nicotine and carbonyls were, respectively, quantified using gas chromatograph and high-performance liquid chromatography. A multiregression model was used to interpret the data. Nicotine yields varied from 0.27 to 2.91 mg/15 puffs, a range corresponding to the nicotine yield of less than 1 to more than 3 combustible cigarettes. Nicotine yield was highly correlated with ECIG type and brand, liquid nicotine concentration, and PG/VG ratio, and to a lower significance with electrical power, but not with pH and water content. Carbonyls, including the carcinogen formaldehyde, were detected in all ECIG aerosols, with total carbonyl concentrations ranging from 3.72 to 48.85 µg/15 puffs. Unlike nicotine, carbonyl concentrations were mainly correlated with power. In 15 puffs, some ECIG devices emit nicotine quantities that exceed those of tobacco cigarettes. Nicotine emissions vary widely across products but carbonyl emissions showed little variations. In spite of that ECIG users are exposed to toxicologically significant levels of carbonyl compounds, especially formaldehyde. Regression analysis showed the importance of design and e-liquid characteristics as determinants of nicotine and carbonyl emissions. Periodic surveying of characteristics of ECIG products available in the marketplace is valuable for understanding population-wide changes in ECIG use patterns over time. © The

  11. 1,1-Dimetallic reagents for the elaboration of stereoselectively di- or trisubstituted linear substrates.

    Science.gov (United States)

    Normant, J F

    2001-08-01

    Although gem-dimetallic species have been known for a long time, and reacted once or twice with electrophiles, the allyl zincation of substituted vinyl metals has emerged as a particularly efficient access to such species. This is due to a high face selectivity, in the addition to the C=C bond, which can be governed by vicinal or more remote heteroatoms. This strategy has some aspects in common with the well-known allylations or aldol condensations to carbonyl derivatives. But in the present case, the C=C bond has a low polarity. We present here some examples which lead to di- or polysubstituted linear substrates, of given geometry, where the organodimetallic obtained has been doubly protonated by water. Further elaborations (to alkenes, ketones, etc.) are possible.

  12. Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2008-06-01

    Full Text Available A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl-hydroxylamine (PFBHA to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively.

    Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons.

  13. Highly enantioselective rhodium(I)-catalyzed carbonyl carboacylations initiated by C-C bond activation.

    Science.gov (United States)

    Souillart, Laetitia; Cramer, Nicolai

    2014-09-01

    The lactone motif is ubiquitous in natural products and pharmaceuticals. The Tishchenko disproportionation of two aldehydes, a carbonyl hydroacylation, is an efficient and atom-economic access to lactones. However, these reaction types are limited to the transfer of a hydride to the accepting carbonyl group. The transfer of alkyl groups enabling the formation of CC bonds during the ester formation would be of significant interest. Reported herein is such asymmetric carbonyl carboacylation of aldehydes and ketones, thus affording complex bicyclic lactones in excellent enantioselectivities. The rhodium(I)-catalyzed transformation is induced by an enantiotopic CC bond activation of a cyclobutanone and the formed rhodacyclic intermediate reacts with aldehyde or ketone groups to give highly functionalized lactones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Ubaidillah, E-mail: ubaidillah@uns.ac.id [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126, Central Java, Surakarta (Indonesia)

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmental Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.

  15. γ‐ and δ-Lactams through Palladium-Catalyzed Intramolecular Allylic Alkylation: Enantioselective Synthesis, NMR Investigation, and DFT Rationalization

    DEFF Research Database (Denmark)

    Bantreil, Xavier; Prestat, Guillaume; Moreno, Aitor

    2011-01-01

    the cyclization reactions to take place in up to 94:6 enantiomeric ratio. A model Pd-allyl complex has been prepared and studied through NMR spectroscopic analysis, which provided insight into the processes responsible for the observed enantiomeric ratios. DFT studies were used to characterize the diastereomeric...

  16. Fluorinated benzamide neuroleptics--III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3- dimethoxybenzamide as an improved dopamine D-2 receptor tracer

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar; Zhiying, Yang; Das, Malay K; Brown, Terry

    1995-04-01

    We have prepared five new analogs (n-propyl, iso-propyl, allyl, n-butyl, and iso-butyl) of the dopamine D-2 receptor antagonist, FPMB which result from modifications of the ethyl group at the pyrrolidine nitrogen in FPMB. As expected, all new derivatives showed higher apparent lipophilicity (log k{sub w}), with iso-butyl being the most lipophilic (log k{sub w} = 2.52), followed by the allyl derivative (log k{sub w} = 2.43). The allyl group showed the largest increase in affinity (from 0.26 nM for the ethyl substituent to 0.03 nM for the allyl substituent, almost 10-fold), followed by the n-propyl substituent which showed approximately five-fold better affinity than did the ethyl substituent. Radiosynthesis of S-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dimethoxybenzamide ([{sup 18}F]fallypride) was carried out by nucleophilic substitution reaction of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-tosyloxypropyl)-2,3- dimethoxybenzamide with no carrier added {sup 18}F{sup -}. [{sup 18}F]Fallypride was obtained in approximately 20-40% yields (EOS/EOB, decay corrected) in specific activities of 900-1700 Ci/mmol after reverse phase HPLC purification in 60 min from EOB. High striatal uptake (upto 2.5% injected dose/g) of [{sup 18}F]fallypride in rats was observed with striatal/cerebellar ratios of 17, 42, 63 and 122 at 30, 60, 90 and 120 min post-injection, respectively. PET experiments with [{sup 18}F]fallypride in a cebus monkey showed a brain uptake of 0.10% injected dose/cc. In rhesus monkeys [{sup 18}F]fallypride showed rapid specific uptake in the striata (0.04-0.06% injected dose/cc) with striata/cerebellum ratios of approx. 3.0 at 14 min, 5.0 at 35 min and 8 at 70 min post-injection. Specifically bound [{sup 18}F]fallypride was displaced with haloperidol (1 mg/kg) with a half-life of 18 min in the rhesus monkey.

  17. The use of biodiesel blends on a non-road generator and its impacts on ozone formation potentials based on carbonyl emissions

    International Nuclear Information System (INIS)

    Chai, Ming; Lu, Mingming; Liang, Fuyan; Tzillah, Aisha; Dendramis, Nancy; Watson, Libya

    2013-01-01

    In this study, emissions of carbonyl compounds from the use B50 and B100 were measured with a non-road diesel generator. A total of 25 carbonyl compounds were identified in the exhaust, including 10 with laboratory-synthesized standards. Formaldehyde, acetaldehyde, and acrolein were found as the most abundant carbonyl compounds emitted for both diesel and biodiesel. The sulphur content of diesel fuels and the source of biodiesel fuels were not found to have a significant impact on the emission of carbonyl compounds. The overall maximum incremental reactivity (MIR) was the highest at 0 kW and slightly increased from 25 to 75 kW. The MIR of B100 was the highest, followed by diesel and B50, which is consistent with the emission rates of total carbonyl compounds. This suggests that the use of biodiesel blends may be more beneficial to the environment than using pure biodiesel. -- Highlights: •Carbonyl compound emission from biodiesel blends combustion on a non-road generator. •25 compounds were identified, including 10 by laboratory-synthesized standards. •Sources of biodiesel have insignificant impacts on carbonyl compounds emission. •Sulphur contents have insignificant impacts on carbonyl compounds emission. •MIR of emitted carbonyls decreases in the following order: B100, diesel, B50. -- The study found that B50 resulted in lower total carbonyl emission rates and ozone formation potential resultant from these compounds, whereas both increased with B100

  18. Frustrated Lewis pairs-assisted reduction of carbonyl compounds

    DEFF Research Database (Denmark)

    Marek, Ales; Pedersen, Martin Holst Friborg

    2015-01-01

    An alternative and robust method for the reduction of carbonyl groups by frustrated Lewis pairs (FLPs) is reported in this paper. With its very mild reaction conditions, good to excellent yields, absolute regioselectivity and the non-metallic character of the reagent, it provides an excellent too...

  19. Deoxygenative gem-difluoroolefination of carbonyl compounds with (chlorodifluoromethyltrimethylsilane and triphenylphosphine

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-02-01

    Full Text Available Background: 1,1-Difluoroalkenes cannot only be used as valuable precursors for organic synthesis, but also act as bioisosteres for enzyme inhibitors. Among various methods for their preparation, the carbonyl olefination with difluoromethylene phosphonium ylide represents one of the most straightforward methods.Results: The combination of (chlorodifluoromethyltrimethylsilane (TMSCF2Cl and triphenylphosphine (PPh3 can be used for the synthesis of gem-difluoroolefins from carbonyl compounds. Comparative experiments demonstrate that TMSCF2Cl is superior to (bromodifluoromethyltrimethylsilane (TMSCF2Br and (trifluoromethyltrimethylsilane (TMSCF3 in this reaction.Conclusion: Similar to many other Wittig-type gem-difluoroolefination reactions in the presence of PPh3, the reaction of TMSCF2Cl with aldehydes and activated ketones is effective.

  20. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2016-04-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  1. Reaction of acid esters of methylenebis(phosphonous acid) with carbonyl compounds

    International Nuclear Information System (INIS)

    Novikova, Z.S.; Odinets, I.L.; Lutsenko, I.F.

    1987-01-01

    The reaction of methylenebis(phosphonites) containing two hydrophosphoryl groupings with aliphatic and aromatic aldehydes and ketones in the presence of alkali metal fluorides leads to methylenebis(α-hydroxyalkylphosphinates). The reaction of methylenebis(phosphonites) containing one hydrophosphoryl groupings with carbonyl compounds in the presence of alkali metal fluorides proceeds with the formation of a new type of heterocyclic phosphorus compound, viz., 1,2λ 3 ,4λ 5 -oxadiphospholanes. The reaction of acid esters of methylenebis(phosphonous) acid with carbonyl compounds in the presence of alkali metal alkoxides or a tertiary amine is accompanied by phosphinate-phosphonate rearrangement of the intermediately formed α-hydroxylalkylphosphinates

  2. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls

    Science.gov (United States)

    Ho, Steven Sai Hang; Ho, K. F.; Liu, W. D.; Lee, S. C.; Dai, W. T.; Cao, J. J.; Ip, H. S. S.

    2011-01-01

    Measurements of aldehydes and ketones are typically conducted by derivatization using sorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH). The collected samples are eluted with acetonitrile and analyzed by high-pressure liquid chromatography coupled with an ultra-violet detector (HPLC/UV). This paper intends to examine artifacts about its suitability in identification of unsaturated carbonyls. Kinetic tests for acrolein, crotonaldehyde, methacrolein and methyl vinyl ketone (MVK) showed formations of carbonyl-DNP-hydrazone during sampling, which could further react with DNPH, resulting in undesired UV absorption products [e.g., carbonyl-DNP-hydrazone-DNPH (dimer) and 2(carbonyl-DNP-hydrazone)-DNPH (trimer)]. The dimerization and trimerization occurred for acrolein and MVK whereas only dimerization for crotonaldehyde and methacrolein. The polymerization products undoubtedly affect the integrity of the chromatogram, leading to misidentification and inaccurate quantification. Whether precautions taken during sampling and/or sample treatment could avoid or minimize this artifact has not been thoughtfully investigated. More often, such artifacts are usually overlooked by scientists when the data are reported.

  3. Isovanillin derived N-(un)substituted hydroxylamines possessing an ortho-allylic group: valuable precursors to bioactive N-heterocycles.

    Science.gov (United States)

    Dulla, Balakrishna; Tangellamudi, Neelima D; Balasubramanian, Sridhar; Yellanki, Swapna; Medishetti, Raghavender; Kumar Banote, Rakesh; Hari Chaudhari, Girish; Kulkarni, Pushkar; Iqbal, Javed; Reiser, Oliver; Pal, Manojit

    2014-04-28

    The intramolecular 1,3-dipolar cycloaddition of isovanillin derived N-aryl hydroxylamines possessing ortho-allylic dipolarophiles affords novel benzo analogues of tricyclic isoxazolidines that can be readily transformed into functionalized lactams, γ-aminoalcohols and oxazepines. The corresponding N-unsubstituted hydroxylamines give rise to tetrahydroisoquinolines. Anxiogenic properties of these compounds are tested in zebra fish.

  4. Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress

    Directory of Open Access Journals (Sweden)

    Eva Griesser

    2017-04-01

    Full Text Available Reactive oxygen and nitrogen species (ROS/RNS play an important role in the regulation of cardiac function. Increase in ROS/RNS concentration results in lipid and protein oxidation and is often associated with onset and/or progression of many cardiovascular disorders. However, interplay between lipid and protein modifications has not been simultaneously studied in detail so far. Biomolecule carbonylation is one of the most common biomarkers of oxidative stress. Using a dynamic model of nitroxidative stress we demonstrated rapid changes in biomolecule carbonylation in rat cardiomyocytes. Levels of carbonylated species increased as early as 15 min upon treatment with the peroxynitrite donor, 3-morpholinosydnonimine (SIN-1, and decreased to values close to control after 16 h. Total (lipids+proteins vs. protein-specific carbonylation showed different dynamics, with a significant increase in protein-bound carbonyls at later time points. Treatment with SIN-1 in combination with inhibitors of proteasomal and autophagy/lysosomal degradation pathways allowed confirmation of a significant role of the proteasome in the degradation of carbonylated proteins, whereas lipid carbonylation increased in the presence of autophagy/lysosomal inhibitors. Electrophilic aldehydes and ketones formed by lipid peroxidation were identified and relatively quantified using LC-MS/MS. Molecular identity of reactive species was used for data-driven analysis of their protein targets. Combination of different enrichment strategies with LC-MS/MS analysis allowed identification of more than 167 unique proteins with 332 sites modified by electrophilic lipid peroxidation products. Gene ontology analysis of modified proteins demonstrated enrichment of several functional categories including proteins involved in cytoskeleton, extracellular matrix, ion channels and their regulation. Using calcium mobilization assays, the effect of nitroxidative stress on the activity of several ion

  5. Facile Preparation of (2Z,4E)-Dienamides by the Olefination of Electron-deficient Alkenes with Allyl Acetate.

    Science.gov (United States)

    Ding, Liyuan; Yu, Chunbing; Zhao, Zhenqiang; Li, Feifei; Zhang, Jian; Zhong, Guofu

    2017-06-21

    Direct cross-coupling between two alkenes via vinylic C-H bond activation represents an efficient strategy for the synthesis of butadienes with high atomic and step economy. However, this functionality-directed cross-coupling reaction has not been developed, as there are still limited directing groups in practical use. In particular, a stoichiometric amount of oxidant is usually required, producing a large amount of waste. Due to our interest in novel 1,3-butadiene synthesis, we describe the ruthenium-catalyzed olefination of electron-deficient alkenes using allyl acetate and without external oxidant. The reaction of 2-phenyl acrylamide and allyl acetate was chosen as a model reaction, and the desired diene product was obtained in 80% isolated yield with good stereoselectivity (Z,E/Z,Z = 88:12) under optimal conditions: [Ru(p-cymene) Cl2]2 (3 mol %) and AgSbF6 (20 mol %) in DCE at 110 ºC for 16 h. With the optimized catalytic conditions in hand, representative α- and/or β-substituted acrylamides were investigated, and all reacted smoothly, regardless of aliphatic or aromatic groups. Also, differently N-substituted acrylamides have proven to be good substrates. Moreover, we examined the reactivity of different allyl derivatives, suggesting that the chelation of acetate oxygen to the metal is crucial for the catalytic process. Deuterium-labeled experiments were also conducted to investigate the reaction mechanism. Only Z-selective H/D exchanges on acrylamide were observed, indicating a reversible cyclometalation event. In addition, a kinetic isotope effect (KIE) of 3.2 was observed in the intermolecular isotopic study, suggesting that the olefinic C-H metalation step is probably involved in the rate-determining step.

  6. Influence of the Dielectric Medium on the Carbonyl Infrared Absorption Peak of Acetylferrocene

    Directory of Open Access Journals (Sweden)

    F. López-Linares

    2005-02-01

    Full Text Available The solvent effect on the position of the carbonyl vibrational stretching ofacetylferrocene in aprotic media was studied in this work. The solvent-induced shifts in thisorganometallic compound were interpreted in terms of the alternative reaction field model(SCRF-MO proposed by Kolling. In contrast to the established trends for carbonyl groupsin organic systems, the results suggest that the continuum models for the reaction field arenot adequate and that the influence of dipolarity-polarizability described by aninhomogeneous coupling function θ (ε L(n 2 that assumes optical dielectric saturation isresponsible for the carbonyl band shift and, there is empirical evidence that the effect offield-induced intermolecular interaction on band shift, interpreted in terms of the van derWaals forces from the solvent, have a important contribution to this phenomena.

  7. Expression, purification, crystallization and preliminary X-ray diffraction analysis of carbonyl reductase from Candida parapsilosis ATCC 7330

    International Nuclear Information System (INIS)

    Aggarwal, Nidhi; Mandal, P. K.; Gautham, Namasivayam; Chadha, Anju

    2013-01-01

    The expression, purification, crystallization, preliminary X-ray diffraction and molecular-replacement studies on C. parapsilosis carbonyl reductase are reported. The NAD(P)H-dependent carbonyl reductase from Candida parapsilosis ATCC 7330 catalyses the asymmetric reduction of ethyl 4-phenyl-2-oxobutanoate to ethyl (R)-4-phenyl-2-hydroxybutanoate, a precursor of angiotensin-converting enzyme inhibitors such as Cilazapril and Benazepril. The carbonyl reductase was expressed in Escherichia coli and purified by GST-affinity and size-exclusion chromatography. Crystals were obtained by the hanging-drop vapour-diffusion method and diffracted to 1.86 Å resolution. The asymmetric unit contained two molecules of carbonyl reductase, with a solvent content of 48%. The structure was solved by molecular replacement using cinnamyl alcohol dehydrogenase from Saccharomyces cerevisiae as a search model

  8. Organocatalytic Hydrophosphonylation Reaction of Carbonyl Groups.

    Science.gov (United States)

    Herrera, Raquel P

    2017-09-01

    This revision is covering the limited examples reported for a pivotal strategy in the formation of C-P bonds such as the asymmetric organocatalytic hydrophosphonylation of carbonyl groups (Pudovik reaction). The scope and limitations, and the proposed mechanisms for the scarce different possibilities of asymmetric induction are also shown. The recent evolution and future trends of this undeveloped approach are commented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structure and stability of acrolein and allyl alcohol networks on Ag(111) from density functional theory based calculations with dispersion corrections

    Science.gov (United States)

    Ferullo, Ricardo M.; Branda, Maria Marta; Illas, Francesc

    2013-11-01

    The interaction of acrolein and allyl alcohol with the Ag(111) surface has been studied by means of periodic density functional theory based calculations including explicitly dispersion terms. Different coverage values have been explored going from isolated adsorbed molecules to isolated dimers, interacting dimers or ordered overlayers. The inclusion of the dispersion terms largely affects the calculated values of the adsorption energy and also the distance between adsorbed molecule and the metallic surface but much less the adsorbate-adsorbate interactions. Owing to the large dipole moment of acrolein, the present calculations predict that at high coverage this molecule forms a stable extensive two-dimensional network on the surface, caused by the alignment of the adsorbate dipoles. For the case of allyl alcohol, dimers and complex networks exhibit similar stability.

  10. Synthetic and mechanistic aspects of titanium-mediated carbonyl olefinations

    Energy Technology Data Exchange (ETDEWEB)

    Petasis, N.A.; Staszewski, J.P.; Hu, Yong-Han; Lu, Shao-Po [Univ. of Southern California, Los Angeles, CA (United States)

    1995-12-31

    A new method for the olefination of carbonyl compounds with dimethyl titanocene, and other related bishydrocarbyl titanocene derivatives has been recently developed in the author`s laboratories. This process is experimentally convenient and works with various types of carbonyl compounds, including aldehydes, ketones, esters, lactones, carbonates, anhydrides, amides, imides, lactams, thioesters, selenoesters, and acylsilanes. More recent studies have focused on the scope and utility of this reaction, including mechanistic studies and synthetic applications. In addition to varying the reaction conditions, the authors have examined several mixed titanocene derivatives and have found ways for carrying out this type of olefination at room temperature, such as the use of tris(trimethylsilyl) titanacyclobutene. The authors have also employed this reaction in the modification of carbohydrates and cyclobutenediones. This olefination was also followed-up with subsequent transformations to produce carbocycles and heterocycles, including tetrahydrofurans and tetrahydropyrans.

  11. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong.

    Science.gov (United States)

    Guo, H; Lee, S C; Louie, P K K; Ho, K F

    2004-12-01

    Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas

  12. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.

    2008-01-01

    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction...... tolerates a variety of functional groups, including ether, amide, alcohol, aldehyde, ketone, ester, cyano, carboxylic acid, and nitro groups. Ortho-substituted arylating agents afforded moderate yields in some cases, though good to high yields were obtained with o-iodotoluene, iodovanillin, and 1...

  13. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    Science.gov (United States)

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-08-15

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    International Nuclear Information System (INIS)

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Jang, Sang Bok; Oh, Byeong-Yun; Seo, Dae-Shik

    2016-01-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  15. Ion beam-induced topographical and chemical modification on the poly(styrene-co-allyl alcohol) and its effect on the molecular interaction between the modified surface and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Chang [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Park, Hong-Gyu [School of Electrical, Electronic & Control Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140 (Korea, Republic of); Lee, Ju Hwan; Jang, Sang Bok [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of); Oh, Byeong-Yun [ZeSHTech Co., Ltd., Business Incubator, Gwangju Institute of Science and Technology, 123, Cheomdangwagi-ro, Buk-gu, Gwangju, 500-712 (Korea, Republic of); Seo, Dae-Shik, E-mail: dsseo@yonsei.ac.kr [Information Display Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 (Korea, Republic of)

    2016-10-01

    We demonstrated uniform liquid crystal (LC) alignment on ion beam (IB)-irradiated poly(styrene-co-allyl alcohol) by modifying the chemical bonding on the surface. An IB-irradiated copolymer was used for the alignment layer. We used physico-chemical analysis to determine the IB-irradiated surface modification and LC alignment mechanism on the surface. During IB treatment on poly(styrene-co-allyl alcohol), IB irradiation induces breaking of chemical bonds on the surface to give rise to new bonds with oxygen atoms. This causes a strong Van der Waals interaction between LCs and the modified surface, thereby resulting in uniform LC alignment. The results of contact angle (CA) studies of the copolymer support the chemical bonding changes that were investigated by XPS. We achieved uniform homogeneous LC alignment and obtained stable electro-optical performance by controlling the IB energy. Therefore, the LC cells with IB-irradiated poly(styrene-co-allyl alcohol) exhibited a good potential for alternative alignment of layers in LC applications.

  16. Living catalyzed-chain-growth polymerization and block copolymerization of isoprene by rare-earth metal allyl precursors bearing a constrained-geometry-conformation ligand.

    Science.gov (United States)

    Jian, Zhongbao; Cui, Dongmei; Hou, Zhaomin; Li, Xiaofang

    2010-05-07

    Aminophenyl functionalized cyclopentadienyl ligated rare-earth metal allyl mediated cationic systems display high cis-1,4 selectivity for the polymerization of isoprene, and living reversible and rapid chain transfer to aluminium additives.

  17. On the Reaction of Carbonyl Diphosphonic Acid with Hydroxylamine and O-alkylhydroxylamines: Unexpected Degradation of P-C-P Bridge.

    Science.gov (United States)

    Khomich, Olga A; Yanvarev, Dmitry V; Novikov, Roman A; Kornev, Alexey B; Puljulla, Elina; Vepsäläinen, Jouko; Khomutov, Alex R; Kochetkov, Sergey N

    2017-06-23

    Derivatives of methylenediphosphonic acid possess wide spectra of biological activities and are used in enzymology as research tools as well as in practical medicine. Carbonyl diphosphonic acid is a promising starting building block for synthesis of functionally substituted methylenediphosphonates. Investigation of the interaction of carbonyl diphosphonic acid with hydroxylamine clearly demonstrates that it is impossible to isolate oxime within the pH range 2-12, while only cyanophosphonic and phosphoric acids are the products of the fast proceeding Beckmann-like fragmentation. In the case of O -alkylhydroxylamines, corresponding alcohols are found in the reaction mixtures in addition to cyanophosphonic and phosphoric acids. Therefore, two residues of phosphonic acid being attached to a carbonyl group provide new properties to this carbonyl group, making its oximes very unstable. This principally differs carbonyl diphosphonic acid from structurally related phosphonoglyoxalic acid and other α-ketophosphonates.

  18. Olefination of carbonyl compounds: modern and classical methods

    Energy Technology Data Exchange (ETDEWEB)

    Korotchenko, V N; Nenajdenko, Valentine G; Balenkova, Elizabeth S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation); Shastin, Aleksey V [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2004-10-31

    The published data on the methods for alkene synthesis by olefination of carbonyl compounds are generalised and systematised. The main attention is given to the use of transition metals and organoelement compounds. The review covers the data on both classical and newly developed methods that are little known to chemists at large.

  19. Olefination of carbonyl compounds: modern and classical methods

    Science.gov (United States)

    Korotchenko, V. N.; Nenajdenko, Valentine G.; Balenkova, Elizabeth S.; Shastin, Aleksey V.

    2004-10-01

    The published data on the methods for alkene synthesis by olefination of carbonyl compounds are generalised and systematised. The main attention is given to the use of transition metals and organoelement compounds. The review covers the data on both classical and newly developed methods that are little known to chemists at large.

  20. Efficient Conversion of Oximes to the Corresponding Carbonyl Compounds with Tetrabutylammonium Chromate under Aprotic Conditions

    International Nuclear Information System (INIS)

    Pourali, Ali Reza; Goli, Arezou

    2006-01-01

    The solubility in several solvents, mildness, simple work-up and absence of side reactions provide advantages of using TBAC in deoximation reactions. This is an efficient and selective method for homogeneous deoximation of structurally different compounds under the moderately acidic and aprotic conditions in high yields. Regeneration of ketones and aldehydes from their oximes has assumed added importance since the discovery of the Barton reaction in which oximes are produced at non-activated hydrocarbon sites. Also, their synthesis from non-carbonyl compounds, such as by nitrosation of an active methylene group, nitrosation of an α-halo carbonyl compound and condensation of a nitro-alkene with an aldehyde provides a valid alternative pathway to carbonyl compounds. Therefore, there has been a continued interest in the effective regeneration of carbonyl compounds from the corresponding oximes especially under mild conditions. Oxidative and reductive methods have been found to show advantages over the classical hydrolytic methods. Although many oxidizing agents have been used, only a limited number of methods are efficient because of the low solubility of these metallic reagents in most organic solvents

  1. Degradation of carbonyl hydroperoxides in the atmosphere and in combustion

    KAUST Repository

    Xing, Lili; Bao, Junwei Lucas; Wang, Zhandong; Zhang, Feng; Truhlar, Donald G.

    2017-01-01

    Oxygenates with carbonyl and hydroperoxy functional groups are important intermediates that are generated during the autooxidation of organic compounds in the atmosphere and during the autoignition of transport fuels. In the troposphere

  2. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    International Nuclear Information System (INIS)

    Bunge, Alexander; Magerusan, Lidia; Morjan, Ion; Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen

    2015-01-01

    New magnetic Fe@C nanoparticles in the size range of about 20–50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  3. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    Science.gov (United States)

    Bunge, Alexander; Magerusan, Lidia; Morjan, Ion; Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen

    2015-09-01

    New magnetic Fe@C nanoparticles in the size range of about 20-50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  4. Diazonium salt-mediated synthesis of new amino, hydroxy, propargyl, and maleinimido-containing superparamagnetic Fe@C nanoparticles as platforms for linking bio-entities or organocatalytic moieties

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, Alexander; Magerusan, Lidia [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Morjan, Ion [National Institute for Lasers, Plasma and Radiation Physics (Romania); Turcu, Rodica; Borodi, Gheorghe; Liebscher, Jürgen, E-mail: liebscher@chemie.hu-berlin.de [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania)

    2015-09-15

    New magnetic Fe@C nanoparticles in the size range of about 20–50 nm functionalized with amino, hydroxy, propargyl, or maleinimido groups were synthesized by reaction with aryl diazonium salts. Aryl diazonium salts wherein the functional groups are linked via a sulfonamide moiety turned out to be advantageous over those with direct linkage. The obtained Fe@C nanoparticles represent magnetic nanoplatforms for linking bio-entities and organocatalysts using amide formation, CuAAC, or thiol-ene click chemistry as exemplified by selected examples. The Fe@C nanoparticles obtained exhibit supramolecular behavior with high value of saturation magnetization rendering them attractive for practical applications in biomedicine and organocatalysis.

  5. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    Directory of Open Access Journals (Sweden)

    Francesca Magherini

    Full Text Available Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  6. Mechanism of copper(I)-catalyzed allylic alkylation of phosphorothioate esters: influence of the leaving group on α regioselectivity.

    Science.gov (United States)

    Sheng, Wenhao; Wang, Mian; Lein, Matthias; Jiang, Linbin; Wei, Wanxing; Wang, Jianyi

    2013-10-11

    The mechanism of Cu(I) -catalyzed allylic alkylation and the influence of the leaving groups (OPiv, SPiv, Cl, SPO(OiPr)2 ; Piv: pivavloyl) on the regioselectivity of the reaction have been explored by using density functional theory (DFT). A comprehensive comparison of many possible reaction pathways shows that [(iPr)2 Cu](-) prefers to bind first oxidatively to the double bond of the allylic substrate at the anti position with respect to the leaving group, and this is followed by dissociation of the leaving group. If the leaving group is not taken into account, the reaction then undergoes an isomerization and a reductive elimination process to give the α- or γ-selective product. If OPiv, SPiv, Cl, or SPO(OiPr)2 groups are present, the optimal route for the formation of both α- and γ-substituted products changes from the stepwise elimination to the direct process, in which the leaving group plays a stabilizing role for the reactant and destabilizes the transition state. The differences to the energy barrier for the α- and γ-substituted products are 2.75 kcal mol(-1) with SPO(OiPr)2 , 2.44 kcal mol(-1) with SPiv, 2.33 kcal mol(-1) with OPiv, and 1.98 kcal mol(-1) with Cl, respectively; these values show that α regioselectivity in the allylic alkylation follows a SPO(OiPr)2 >SPiv>OPiv>Cl trend, which is in satisfactory agreement with the experimental findings. This trend mainly originates in the differences between the attractive electrostatic forces and the repelling steric interactions of the SPO(OiPr)2 , SPiv, OPiv, and Cl groups on the Cu group. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A simple approach to unsymmetric atropoisomeric bipyridine N,N'-dioxides and their application in enantioselective allylation of aldehydes

    Czech Academy of Sciences Publication Activity Database

    Hrdina, R.; Valterová, Irena; Hodačová, Jana; Císařová, I.; Kotora, Martin

    2007-01-01

    Roč. 349, č. 6 (2007), s. 822-826 ISSN 1615-4150 R&D Projects: GA ČR(CZ) GA203/05/0102; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40550506 Keywords : allylation * asymmetric catalysis * Lewis bases Subject RIV: CC - Organic Chemistry Impact factor: 4.977, year: 2007

  8. Aldehyde Selective Wacker Oxidations of Phthalimide Protected Allylic Amines : A New Catalytic Route to beta(3)-Amino Acids

    NARCIS (Netherlands)

    Weiner, Barbara; Baeza Garcia, Alejandro; Jerphagnon, Thomas; Feringa, Ben L.

    2009-01-01

    A new method for the synthesis of B-3-amino acids is presented. Phthalimide protected allylic amines are oxidized under Wacker conditions selectively to aldehydes using PdCl2 and CuCl or Pd(MeCN)(2)Cl(NO2) and CuCl2 as complementary catalyst systems. The aldehydes are produced in excellent yields

  9. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation

    DEFF Research Database (Denmark)

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter

    2006-01-01

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.......A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)(2)I-2]-[BMIM]I -SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation....

  10. Weak carbonyl-methyl intermolecular interactions in acetone clusters explored by IR plus VUV spectroscopy

    International Nuclear Information System (INIS)

    Guan, Jiwen; Hu, Yongjun; Xie, Min; Bernstein, Elliot R.

    2012-01-01

    Highlights: ► The carbonyl overtone of acetone clusters is observed by IR-VUV spectroscopy. ► Acetone molecules in the dimer are stacked with an antiparallel way. ► The structure of the acetone trimer and the tetramer are the cyclic structures. ► The carbonyl groups would interact with the methyl groups in acetone clusters. ► These weak interactions are further confirmed by H/D substitution experiment. -- Abstract: Size-selected IR–VUV spectroscopy is employed to detect vibrational characteristics in the region 2850 ∼ 3550 cm −1 of neutral acetone and its clusters (CH 3 COCH 3 ) n (n = 1–4). Features around 3440 cm −1 in the spectra of acetone monomer and its clusters are assigned to the carbonyl stretch (CO) overtone. These features red-shift from 3455 to 3433 cm −1 as the size of the clusters increases from the monomer to the tetramer. Based on calculations, the experimental IR spectra in the C=O overtone region suggest that the dominant structures for the acetone trimer and tetramer should be cyclic in the supersonic expansion sample. This study also suggests that the carbonyl groups interact with the methyl groups in the acetone clusters. These weak interactions are further confirmed by the use of deuterium substitution.

  11. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite.

    Science.gov (United States)

    Boronat, Mercedes; Martínez, Cristina; Corma, Avelino

    2011-02-21

    The activity and selectivity towards carbonylation presented by Brønsted acid sites located inside the 8MR pockets or in the main 12MR channels of mordenite is studied by means of quantum-chemical calculations, and the mechanistic differences between methanol and DME carbonylation are investigated. The selectivity towards carbonylation is higher inside the 8MR pockets, where the competitive formation of DME and hydrocarbons that finally leads to catalyst deactivation is sterically impeded. Moreover, inclusion of dispersion interactions in the calculations leads to agreement between the calculated activation barriers for the rate determining step and the experimentally observed higher reactivity of methoxy groups located inside the 8MR channels.

  12. Olefination of Electron-Deficient Alkenes with Allyl Acetate: Stereo- and Regioselective Access to (2Z,4E)-Dienamides.

    Science.gov (United States)

    Li, Feifei; Yu, Chunbing; Zhang, Jian; Zhong, Guofu

    2016-09-16

    A Ru-catalyzed direct olefination of electron-deficient alkenes with allyl acetate via C-H bond activation is disclosed. By using N,N-disubstituted aminocarbonyl as the directing group, this external oxidant-free protocol resulted in high reaction efficiency and good stereo- and regioselectivities, which opens a novel synthetic passway for access to (Z,E)-butadiene skeletons.

  13. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics

    KAUST Repository

    Raj, Abhijeet Dhayal

    2014-04-24

    Polycyclic aromatic hydrocarbon (PAH) growth is known to be the principal pathway to soot formation during fuel combustion, as such, a physical understanding of the PAH growth mechanism is needed to effectively assess, predict, and control soot formation in flames. Although the hydrogen abstraction C2H2 addition (HACA) mechanism is believed to be the main contributor to PAH growth, it has been shown to under-predict some of the experimental data on PAHs and soot concentrations in flames. This article presents a submechanism of PAH growth that is initiated by propargyl (C 3H3) addition onto naphthalene (A2) and the naphthyl radical. C3H3 has been chosen since it is known to be a precursor of benzene in combustion and has appreciable concentrations in flames. This mechanism has been developed up to the formation of pyrene (A4), and the temperature-dependent kinetics of each elementary reaction has been determined using density functional theory (DFT) computations at the B3LYP/6-311++G(d,p) level of theory and transition state theory (TST). H-abstraction, H-addition, H-migration, β-scission, and intramolecular addition reactions have been taken into account. The energy barriers of the two main pathways (H-abstraction and H-addition) were found to be relatively small if not negative, whereas the energy barriers of the other pathways were in the range of (6-89 kcal·mol-1). The rates reported in this study may be extrapolated to larger PAH molecules that have a zigzag site similar to that in naphthalene, and the mechanism presented herein may be used as a complement to the HACA mechanism to improve prediction of PAH and soot formation. © 2014 American Chemical Society.

  14. Synthesis of tritium and carbon-14 labelled N-(3-dimethyl aminopropyl)-N-(ethylaminocarbonyl)-6-(2-propenyl) ergoline-8. beta. -carboxamide (cabergoline), a potent long lasting prolactin lowering agent

    Energy Technology Data Exchange (ETDEWEB)

    Mantegani, S.; Brambilla, E.; Ermoli, A.; Fontana, E.; Angiuli, P.; Vicario, G.P. (Farmitalia Carlo Erba s.r.l., Milan (Italy))

    1991-05-01

    The syntheses of {sup 3}H- and {sup 14}C-labelled cabergoline and its analogues are described. Tritiated cabergoline (({sup 3}H)cabergoline), namely N-(3-di-methylaminopropyl)-N-(ethylaminocarbonyl)-6-(2-(2,3-{sup 3}H)-propenyl)ergoline-8{beta}-carboxamide, was obtained, by catalytic reduction with tritium gas, according to two different synthetic procedures: A- a three step route, starting from 6-(2-propargyl)-dihydro lysergic acid-methyl ester gave ({sup 3}H)cabergoline, B - a one step route, starting from 1-ethyl-3-(3-dimethyl-aminopropyl)-3-(6'-(2-propargyl)ergoline-8'-carbonyl )-urea 5' yielded ({sup 3}H)cabergoline. A modification of this last procedure also gave ({sup 3}H)dihydro cabergoline. The synthesis of ({sup 14}C)cabergoline was carried out, in a three step route, by addition of potassium ({sup 14}C)cyanide to 6-(2-propenyl)-8-chloroergoline to give the expected N-(dimethylaminopropyl)-N-(ethylaminocarbonyl)-6-(2-propenyl)-ergoline-8-({sup 14}C)carboxamide, 97% radiochemically pure with a specific radioactivity of 2.09 GBq/mmol and an overall radiochemical yield of 16%. (author).

  15. cyclo-addition reaction of triplet carbonyl compounds to substituted ...

    Indian Academy of Sciences (India)

    Unknown

    cited state energy of the olefin must be higher than that of the ketone so that ... the first singlet and triplet1,3 (n, π*) excited state of the carbonyl compounds.3,4 ... of the oxetane via carbon–carbon and carbon–oxygen attacks. They found the ...

  16. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuhiko, E-mail: takedaq@hiroshima-u.ac.jp [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Nakatani, Nobutake [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Department of Environmental and Symbiotic Sciences, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501 (Japan); Sakugawa, Hiroshi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan)

    2014-09-15

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area.

  17. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    International Nuclear Information System (INIS)

    Takeda, Kazuhiko; Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi; Nakatani, Nobutake; Sakugawa, Hiroshi

    2014-01-01

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area

  18. Neutron radiographic characteristics of MA-ND type (allyl-diglycol-carbonate) nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ilic, R.; Rant, J.; Humar, M.; Somogyi, G.; Hunyadi, I.

    1986-01-01

    Neutron radiographic properties of recently developed new nuclear track detectors (MA-ND/..cap alpha.., MA-ND/p and MA-ND/p1), manufactured from allyl diglycol carbonate, were studied. It was found that the quality of radiographic image has an optimum at a removed layer thickness of about 0.8 ..mu..m. The image obtained under this condition is characterized by high detection sensitivity to neutrons (approx. 8.10/sup -3/ tracks/nsub(th) when using B converter) and by excellent inherent unsharpness (approx. 5 ..mu..m) as well as high image contrast (maximum value of net optical density is approx. 1.4).

  19. An Expeditious Synthesis of [1,2]Isoxazolidin-5-ones and [1,2]Oxazin-6-ones from Functional Allyl Bromide Derivatives

    Directory of Open Access Journals (Sweden)

    Imen Beltaïef

    2010-06-01

    Full Text Available Reaction of allyl bromide (Z-1 and (Z-2 with N-substituted hydroxylamine hydrochlorides in presence of tert-butoxide in tert-butanol at reflux provides a short and effective route to [1,2]isoxazolidin-5-ones 3 and [1,2]oxazin-6-ones 4.

  20. 6-Bromo-1,3-di-2-propynyl-1H-imidazo[4,5-b]pyridin-2(3H-one

    Directory of Open Access Journals (Sweden)

    S. Dahmani

    2010-04-01

    Full Text Available The room-temperature reaction of propargyl bromide and 6-bromo-1,3-dihydroimidazo[4,5-b]pyridin-2-one in dimethylformamide yields the title compound, C12H8BrN3O, which features nitrogen-bound propynyl substituents. The imidazopyridine fused ring is almost planar (r.m.s. deviation = 0.011 Å; the propynyl chains point in opposite directions relative to the fused ring. One acetylenic H atom is hydrogen bonded to the carbonyl O atom of an inversion-related molecule, forming a dimer; adjacent dimers are linked by a second acetylene–pyridine C—H...N interaction, forming a layer motif.

  1. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  2. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    Science.gov (United States)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  3. Nucleophilic tetrafluoroethylation of carbonyl compounds with fluorinated sulfones

    Czech Academy of Sciences Publication Activity Database

    Václavík, Jiří; Chernykh, Yana; Jurásek, Bronislav; Beier, Petr

    2015-01-01

    Roč. 169, Jan (2015), s. 24-31 ISSN 0022-1139 R&D Projects: GA ČR GAP207/11/0421 Grant - others:GA MŠk(CZ) ED3.2.00/08.0144; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : fluorine * tetrafluoroethylation * sulfones * nucleophilic addition * carbonyl compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.213, year: 2015

  4. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    Science.gov (United States)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  5. Biological distribution of iodo-allyl Gabapentin and iodo-Gabapentin

    International Nuclear Information System (INIS)

    Akat, H.; Yildirim, Y.; Balcan, M.; Yurt Lambrecht, F.; Yilmaz, O.; Duman, Y.

    2008-01-01

    Gabapentin (GBP) is an anticonvulsant and is widely used in the treatment of epilepsy. In this study, GBP and an allyl derivative of GBP were radioiodinated with 131 I using the iodogen method; then their radiopharmaceutical potential in rats and rabbits was investigated. The radiochemical purity of 131 I-GBP and its derivatives was determined by RTLC. The labeling yield was 95±2%. Biological evaluation was performed in normal rats and rabbits. Labeled compounds were intravenously injected into two rabbits via the ear vein after anesthetizing. The dynamic and static scintigrams were obtained using a gamma camera at different time. Then the labeled compounds were administered intravenously into the rats. The distribution was studied by counting the radioactivity in the removed organs. The results of biodistribution in the rats showed the clearance of 131 IALGBP was faster than 131 I-GBP. On the other hand, the uptake of 131 I-ALGBP in the brain was higher than 131 I-GBP at 60 minutes. (author)

  6. Selectivity of a heterogeneous rhodium catalyst for the carbonylation of monohydric alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, B; Scurrell, M S

    1977-01-01

    Selectivity of a heterogeneous rhodium catalyst for the carbonylation of monohydric alcohols with carbon monoxide in the presence of the corresponding alkyl iodides as promotors was studied in a glass reactor at approx. 0.05:1 alcohol/carbon monoxide ratio. The 1% by wt rhodium-zeolite catalyst was prepared by immersing a Linde molecular sieve zeolite Type 13X in rhodium trichloride at 80/sup 0/C for 15 hr. Methanol was converted to methyl acetate at 433/sup 0/-513/sup 0/K with selectivites > 90% even at the highest temperatures, and dimethyl ether was by-produced. In the absence of methyl iodide, the carbonylation rate decreased drastically but the dehydration was virtually unaffected. The selectivity for ethanol carbonylation decreased from 99% at 383/sup 0/K to 6% at 523/sup 0/K due to the formation of ethylene (predominant at > 470/sup 0/K) and diethyl ether. The only product of the reaction with propan-2-ol studied at 433/sup 0/ or 473/sup 0/K was propene with 100% conversion at 473/sup 0/K. These results are consistent with the relative ease of reactant dehydration on polar catalysts. Table and 13 references.

  7. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    International Nuclear Information System (INIS)

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  8. Time and dose effects of cigarette smoke and acrolein on protein carbonyl formation in HaCaT keratinocytes.

    Science.gov (United States)

    Avezov, K; Reznick, A Z; Aizenbud, D

    2015-01-01

    Cigarette smoke (CS) is an important environmental source of human exposure to a highly toxic and chemically active α,β-unsaturated aldehyde: acrolein. It is capable of causing protein carbonylation and dysfunction, especially in oral tissues of smokers, constantly exposed to CS toxic constituents. The foremost damage is considered to be cumulative, but even a short exposure can be potentially harmful. The objectives of the current study were to examine the short time and dose effects of direct CS and acrolein exposure on intracellular protein carbonylation in epithelial cells. HaCaT-keratinocytes were exposed to different doses of acrolein and whole phase CS using a unique smoking simulator apparatus that mimics the exposure in smokers. The rate of intracellular protein carbonyl modification was examined 10-60 min after the exposure by Western blot. In addition, the effect of pre-incubation with a thiol scavenger N-acetylcysteine (NAC) was also assessed. We found that intracellular protein carbonyls increased as fast as 10 min after CS exposure and their concentration doubled after 20 min, with a slight elevation afterwards. Also, carbonyl levels increased gradually as CS and acrolein doses were elevated. Addition of 1 mM NAC neutralized part of the damage. We conclude that CS and acrolein intracellular protein carbonylation is dose- and time- dependent. Even a short time exposure to CS and its aldehydic constituents can be potentially harmful.

  9. Ruthenium(II) carbonyl compounds with the 4'-chloro-2,2':6',2''-terpyridine ligand.

    Science.gov (United States)

    Tatikonda, Rajendhraprasad; Haukka, Matti

    2017-04-01

    Two ruthenium carbonyl complexes with the 4'-chloro-2,2':6',2''-terpyridine ligand (tpy-Cl, C 15 H 10 ClN 3 ), i.e. [RuCl(tpy-Cl)(CO) 2 ][RuCl 3 (CO) 3 ] (I) [systematic name: cis -di-carbonyl-chlorido(4'-chloro-2,2':6',2''-terpyridine-κ 3 N )ruthenium(II) fac -tricarbonyltri-chlorido-ruthenate(II)], and [RuCl 2 (tpy-Cl)(CO) 2 ] (II) [ cis -dicarbonyl- trans -di-chlorido(4'-chloro-2,2':6',2''-terpyridine-κ 2 N 1 , N 1' )ruthenium(II)], were synthesized and characterized by single-crystal X-ray diffraction. The Ru II atoms in both centrosymmetric structures (I) and (II) display similar, slightly distorted octa-hedral coordination spheres. The coordination sphere in the complex cation in compound (I) is defined by three N atoms of the tridentate tpy-Cl ligand, two carbonyl carbon atoms and one chlorido ligand; the charge is balanced by an octa-hedral [Ru(CO) 3 Cl 3 ] - counter-anion. In the neutral compound (II), the tpy-Cl ligand coordinates to the metal only through two of its N atoms. The coordination sphere of the Ru II atom is completed by two carbonyl and two chlorido ligands. In the crystal structures of both (I) and (II), weak C-H⋯Cl inter-actions are observed.

  10. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation

    International Nuclear Information System (INIS)

    Dennis, K.J.; Shibamoto, T.

    1990-01-01

    Peroxidation of lipids produces carbonyl compounds; some of these, e.g., malonaldehyde and 4-hydroxynonenal, are genotoxic because of their reactivity with biological nucleophiles. Analysis of the reactive carbonyl compounds is often difficult. The methylhydrazine method developed for malonaldehyde analysis was applied to simultaneously measure the products formed from linoleic acid, linolenic acid, arachidonic acid, and squalene upon ultraviolet-irradiation (UV-irradiation). The photoreaction products, saturated monocarbonyl, alpha,beta-unsaturated carbonyls, and beta-dicarbonyls, were derivatized with methylhydrazine to give hydrazones, pyrazolines, and pyrazoles, respectively. The derivatives were analyzed by gas chromatography and gas chromatography-mass spectrometry. Lipid peroxidation products identified included formaldehyde, acetaldehyde, acrolein, malonaldehyde, n-hexanal, and 4-hydroxy-2-nonenal. Malonaldehyde levels formed upon 4 hr of irradiation were 0.06 micrograms/mg from squalene, 2.4 micrograms/mg from linolenic acid, and 5.7 micrograms/mg from arachidonic acid. Significant levels of acrolein (2.5 micrograms/mg) and 4-hydroxy-2-nonenal (0.17 micrograms/mg) were also produced from arachidonic acid upon 4 hr irradiation

  11. Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China.

    Science.gov (United States)

    Wang, Ming; Chen, Wentai; Shao, Min; Lu, Sihua; Zeng, Limin; Hu, Min

    2015-02-01

    Carbonyl compounds are important intermediates in atmospheric photochemistry, but their primary sources are still not understood well. In this work, carbonyls, hydrocarbons, and alkyl nitrates were continuously measured during November 2011 at a rural site in the Yangtze River Delta region of China. Mixing ratios of carbonyls and hydrocarbons showed large fluctuations during the entire measurement. The average level for total measured volatile organic compounds during the pollution episode from 25th to 27th November, 2011 was 91.6 ppb, about 7 times the value for the clean period of 7th-8th, November, 2011. To preliminarily identify toluene sources at this site, the emission ratio of toluene to benzene (T/B) during the pollution episode was determined based on photochemical ages derived from the relationship of alkyl nitrates to their parent alkanes. The calculated T/B was 5.8 ppb/ppb, significantly higher than the values of 0.2-1.7 ppb/ppb for vehicular exhaust and other combustion sources, indicating the dominant influence of industrial emissions on ambient toluene. The contributions of industrial sources to ambient carbonyls were then calculated using a multiple linear regression fit model that used toluene and alkyl nitrates as respective tracers for industrial emission and secondary production. During the pollution episode, 18.5%, 69.0%, and 52.9% of measured formaldehyde, acetaldehyde, and acetone were considered to be attributable to industrial emissions. The emission ratios relative to toluene for formaldehyde, acetaldehyde, and acetone were determined to be 0.10, 0.20 and 0.40 ppb/ppb, respectively. More research on industrial carbonyl emission characteristics is needed to understand carbonyl sources better. Copyright © 2014. Published by Elsevier B.V.

  12. Palladium-Catalyzed Asymmetric Allylic Alkylation of 4-Substituted Isoxazolidin-5-ones: Straightforward Access to β2,2 -Amino Acids.

    Science.gov (United States)

    Nascimento de Oliveira, Marllon; Arseniyadis, Stellios; Cossy, Janine

    2018-04-03

    We report here an unprecedented and highly enantioselective palladium-catalyzed allylic alkylation applied to 4-substituted isoxazolidin-5-ones. Ultimately, the process provides a straightforward access to β 2,2 -amino acids bearing an all-carbon quaternary stereogenic center in great yields and a high degree of enantioselectivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  14. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal in the atmosphere at Mt. Tai

    Directory of Open Access Journals (Sweden)

    K. Kawamura

    2013-05-01

    Full Text Available Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m in the North China Plain during 2–5, 23–24 and 25 June 2006 under clear sky conditions. Using a two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA. After the two-step derivatization with BHA and N,O-Bis(trimethylsilyltrifluoroacetamide (BSTFA, carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0–826 ng m−3, average 303 ng m−3, hydroxyacetone (0–579 ng m−3, 126 ng m−3, glyoxal (46–1200 ng m−3, 487 ng m−3, methylglyoxal (88–2690 ng m−3, 967 ng m−3, n-nonanal (0–500 ng m−3, 89 ng m−3, and n-decanal (0–230 ng m−3, 39 ng m−3. These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous α-dicarbonyls (glyoxal and methylglyoxal are more than 20 times more abundant than particulate carbonyls and that glycolaldehyde is one order of magnitude more abundant than in aerosol phase. In contrast, hydroxyacetone and normal aldehydes (nonanal and decanal are equally present in both phases. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning, suggesting that a contribution from field burning of agricultural wastes (wheat crops is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  15. Reactions of rhodium(I) carbonyl chloride with olefins

    International Nuclear Information System (INIS)

    Varshavskii, Yu.S.; Kiseleva, N.V.; Cherkasova, T.G.; Buzina, N.A.; Bresler, L.S.

    1987-01-01

    The reactions of [Rh(CO) 2 Cl] 2 (Y 0 ) with cyclooctene and several other olefins (1-heptene, 1-hexene, ethylene, and cyclohexene) have been studied by IR and 13 C NMR spectroscopy. The main reaction products are the binuclear complexes Rh 2 L(CO) 3 Cl 2 (Y 1 ) and [RhL(CO)Cl] 2 (Y 2 ), where L denotes the olefin. The extent of replacement of the carbonyl groups depends on the nature of the olefin and the conditions under which the reaction is carried out (the L:Rh ratio and the removal of CO from the reaction sphere). The liquid olefins form the following series according to their ability to replace the carbonyl groups: C 8 H 14 > C 7 H 14 , C 6 H 12 > C 6 H 10 . In the presence of an excess of C 8 H 14 , Y 2 disproportionates with the formation of a dicarbonyl product, which presumably corresponds to the formula Rh(C 8 H 14 ) 2 (CO) 2 Cl (a pentacoordinate complex with a trigonal-bipyramidal structure). The 13 C signal in the NMR spectrum of a solution of Y 2 in C 8 H 14 is a singlet with σ( 13 C) 180.3 ppm, which is an indication of the rapid exchange of the carbonyl groups. Rapid exchange of the CO ligands is also observed in solutions of Y 0 in the olefins (with the exception of C 6 H 10 ). For example, the 13 C signal in the spectrum of a solution of Y 0 in C 8 H 14 is a singlet with σ( 13 C) 179.8 ppm. The spectrum of Y 0 in C 6 H 10 is a doublet with σ( 13 C) = 178.5 ppm and 1 J(CRh) = 76.3 Hz. A scheme for the interaction of Y 0 with olefins based on the conception of the trans antagonism of π-acceptor ligands has been proposed

  16. Trifluoroethylation of Alkynes: Synthesis of Allylic-CF3 Compounds by Visible-Light Photocatalysis

    Institute of Scientific and Technical Information of China (English)

    Geum-bee Roh; Naeem Iqbal; Eun Jin Cho

    2016-01-01

    Two types of allylic trifluoromethylated compounds were synthesized by reacting alkynes with CF3CH2I using visible-light photocatalysis.Subtle differences in the catalytic system controlled the selectivity of iodotrifluoroethylation and hydrotrifluoroethylation.The iodotrifluoroethylated products were obtained in the presence of [Ru(bpy)3]C12 and TMEDA in CH3CN under visible-light irradiation,whereas hydrotrifluoroethylated products were synthesized usingfac-[Ir(ppy)3] and a mixture of DBU and K2CO3 in DMF.The iodotrifluoroethylation reaction worked particularly well,even at gram-scale,and the synthetic utility of iodotrifluoroethylated products was proved by their coupling reactions,providing complex CF3-containing products.

  17. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    Science.gov (United States)

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  19. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  20. Structure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of Alcohols

    OpenAIRE

    Briggs, Daniel Neal

    2010-01-01

    AbstractStructure and Reactivity of Zeolite- and Carbon-Supported Catalysts for the Oxidative Carbonylation of AlcoholsbyDaniel Neal BriggsDoctor of Philosophy in Chemical EngineeringUniversity of California, BerkeleyProfessor Alexis T. Bell, Chair The oxidative carbonylation of alcohols to produce dialkyl carbonates is a process that takes place commercially in a slurry of cuprous chloride in the appropriate alcohol. While this process is chemically efficient, it incurs costs in terms of ene...

  1. Dithioacetals as an Entry to Titanium-Alkylidene Chemistry: A New and Efficient Carbonyl Olefination.

    Science.gov (United States)

    Breit, Bernhard

    1998-03-02

    Wittig, Horner-Wadsworth-Emmons, Julia-Lythgoe, Tebbe, Grubbs, and Petasis-when it comes to carbonyl olefinations, these names are familiar to all chemistry students. In the future, the name Takeda will probably have to be added to this list. His recent work on the formation of titanium-alkylidene species from dithioacetals has provided organic chemists with a remarkable method for carbonyl olefination that is generally applicable under neutral to Lewis acidic conditions. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  2. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  3. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    Science.gov (United States)

    Sun, Y-E; Wang, W-D

    2016-06-30

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.

  4. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction of the molec......We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction......-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron...

  5. A Simple Catalytic Mechanism for the Direct Coupling of α-Carbonyls with Functionalized Amines: A One-Step Synthesis of Plavix

    OpenAIRE

    Evans, Ryan W.; Zbieg, Jason R.; Zhu, Shaolin; Li, Wei; MacMillan, David W. C.

    2013-01-01

    The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst...

  6. Synthesis of dimethyl carbonate by oxidative carbonylation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.G.; Han, M.S.; Kim, H.S.; Ahn, B.S.; Park, K.Y.

    1999-07-01

    Dimethyl carbonate (DMC) synthesis reaction by oxidative carbonylation of methanol has been studied using vapor phase flow reaction system in the presence of Cu-based catalysts. A series of Cu-based catalysts were prepared by the conventional impregnation method using activated carbon (AC) as support. The effect of various promoters and reaction conditions on the catalytic reactivities was intensively evaluated in terms of methanol conversion and DMC selectivity. The morphological change of catalysts during the reaction was also compared by X-ray diffraction and SEM analysis. Regardless of catalyst compositions, the optimal reaction temperature for oxidative carbonylation of methanol was found to be around 120--130 C. The reaction rate was too slow below 100 C, while too many by-products were produced above 150 C. Among the various catalysts employed, CuCl{sub 2}/NaOH/AC catalyst with the mole ratio of OH/Cu = 0.5--1.0 has shown the best catalytic performance, which appears to have a strong relationship with the formation of intermediate species, Cu{sub 2}(OH){sub 3}Cl.

  7. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Directory of Open Access Journals (Sweden)

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  8. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation

    Directory of Open Access Journals (Sweden)

    Gómez-Pastor Rocío

    2012-01-01

    Full Text Available Abstract Background In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p. Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.

  9. Exciton Coupling in Circular Dichroic Spectroscopy as a Tool for Establishing the Absolute Configuration of alpha,beta-Unsaturated Esters of Allylic Alcohols

    DEFF Research Database (Denmark)

    Lauridsen, A.; Cornett, Claus; Christensen, S. B.

    1991-01-01

    alpha-beta-Unsaturated esters of allylic alcohols have been shown to exhibit exciton coupling by circular dichroic spectroscopy. This coupling permits the establishment of the absolute configuration. The method was used to prove the absolute configuration at C-2 of archangelolide. Detailed NMR sp...

  10. Enantioselective allylations of selected alpha, beta, gamma, delta-unsaturated aldehydes by axially chiral N,N'-dioxides. Synthesis of the left-hand part of papulacandin D

    Czech Academy of Sciences Publication Activity Database

    Vlašaná, K.; Betík, R.; Valterová, Irena; Nečas, D.; Kotora, M.

    2016-01-01

    Roč. 3, č. 3 (2016), s. 301-305 ISSN 2213-3372 Institutional support: RVO:61388963 Keywords : allylation * aldehyde * Lewis base * asymmetric synthesis * organocatalysis * homoallylic alcohol s Subject RIV: CC - Organic Chemistry

  11. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    International Nuclear Information System (INIS)

    Tian Binghui; Luan Zhaokun; Li Mingming

    2005-01-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC

  12. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    Science.gov (United States)

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  13. Synthesis and preclinical evaluation of [11C-carbonyl]PF-04457845 for neuroimaging of fatty acid amide hydrolase

    International Nuclear Information System (INIS)

    Hicks, Justin W.; Parkes, Jun; Sadovski, Oleg; Tong, Junchao; Houle, Sylvain; Vasdev, Neil; Wilson, Alan A.

    2013-01-01

    Introduction: Fatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [ 11 C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor. Methods: PF-04457845 was radiolabeled at the carbonyl position via automated [ 11 C]CO 2 -fixation. Ex vivo brain biodistribution of [ 11 C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [ 11 C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma. Results: The title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [ 11 C]CO 2 (decay uncorrected) within 25 min from end-of-bombardment in > 98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [ 11 C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2–4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71–81%, demonstrating specificity for FAAH. The binding of [ 11 C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted. Conclusions: [ 11 C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in

  14. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk [Kyung Hee Univ., Seoul (Korea, Republic of)

    2012-11-15

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O{sub 2} might be the main reason for the activity of the selenium catalyst for this reaction.

  15. Alkylselenite-catalyzed Oxidative Carbonylation of Amines: Density Functional Theory Study

    International Nuclear Information System (INIS)

    Hwang, Sun; Kim, Hoon Sik; Cheong, Minserk

    2012-01-01

    Ureas and carbamates have been conventionally produced by the reaction of amines with phosgene. However, phosgenation processes raise severe environmental concerns, which are attributed to the toxicity of phosgene and the formation of corrosive hydrogen chloride as a co-product. The considerable industrial interest in replacing current phosgene-based processes prompted several methods using non-phosgene routes including carbonylation of amines or nitro compounds and carbomethoxylation of amines with dialkylcarbonates. Among these, catalytic oxidative carbonylation of an amine in the presence of alcohol has been studied most extensively. Catalytic systems based on precious metals such as Rh and Pd are commonly used for this purpose, but most of these catalytic systems suffer from either low reactivity or severe reaction conditions such as high temperature and pressures. In conclusion, the facile change of selenium oxidation state by CO and O 2 might be the main reason for the activity of the selenium catalyst for this reaction

  16. Synthesis, spectroscopy, X-ray crystallography, DFT calculations, DNA binding and molecular docking of a propargyl arms containing Schiff base.

    Science.gov (United States)

    Balakrishnan, C; Subha, L; Neelakantan, M A; Mariappan, S S

    2015-11-05

    A propargyl arms containing Schiff base (L) was synthesized by the condensation of 1-[2-hydroxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone with trans-1,2-diaminocyclohexane. The structure of L was characterized by IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by single crystal X-ray diffraction analysis. The UV-Visible spectral behavior of L in different solvents exhibits positive solvatochromism. Density functional calculation of the L in gas phase was performed by using DFT (B3LYP) method with 6-31G basis set. The computed vibrational frequencies and NMR signals of L were compared with the experimental data. Tautomeric stability study inferred that the enolimine is more stable than the ketoamine form. The charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Electronic absorption and emission spectral studies were used to study the binding of L with CT-DNA. The molecular docking was done to identify the interaction of L with A-DNA and B-DNA. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Thermal studies on unirradiated and γ-irradiated polymer of allyl diglycol carbonate

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Pandey, A.K.; Iyer, R.H.; Singh Mudher, K.D.

    1995-01-01

    The thermal decomposition of unirradiated and γ-irradiated (5.93-15.5 MRad dose range) allyl diglycol carbonate polymer (trade name, CR-39) was studied by thermogravimetry (TG) and differential thermal analysis (DTA). These studies indicate four main decomposition steps in CR-39 polymer in air. Assessment of the influence of radiation dose on the above range shows that while the 5.93 MRad γ-irradiated polymer CR-39 degrades in three steps, the 15.5 MRad γ-irradiated polymer degrades in only two steps. The kinetics of the different stages of degradation were also evaluated from the TG curves. Irradiation enhances the decomposition rate and the effect increases further with increasing radiation dose. The activation energy values calculated for all the decomposition stages decrease on irradiation

  18. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    Science.gov (United States)

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Analysis of protein carbonylation - pitfalls and promise in commonly used methods

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.; Wojdyla, K.; Nedic, O.

    2014-01-01

    that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases....... Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation...... in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods....

  20. Analysis of protein carbonylation-pitfalls and promise in commonly used methods

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Wojdyla, K; Nedić, O

    2014-01-01

    that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases....... Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation...... in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods....

  1. Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions

    Science.gov (United States)

    Spezia, Riccardo; Knecht, Stefan; Mennucci, Benedetta

    Carotenoids can play multiple roles in biological photoreceptors thanks to their rich photophysics. In the present work, we have investigated six of the most common carbonyl containing carotenoids: Echinenone, Canthaxanthin, Astaxanthin, Fucoxanthin, Capsanthin and Capsorubin. Their excitation properties are investigated by means of a hybrid density functional theory (DFT) and multireference configuration interaction (MRCI) approach to elucidate the role of the carbonyl group: the bright transition is of {\\pi}{\\pi}* character, as expected, but the presence of a C=O moiety reduces the energy of n{\\pi}* transitions which may become closer to the {\\pi}{\\pi}* transition, in particular as the conjugation chain decreases. This can be related to the presence of a low-lying charge transfer state typical of short carbonyl- containing carotenoids. The DFT/MRCI results are finally used to benchmark single- reference time-dependent DFT-based methods: among the investigated functionals, the meta- GGA (and in particular M11L and MN12L) functionals show to perform the best for all six investigated systems.

  2. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    Science.gov (United States)

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  3. New method to determine the total carbonyl functional group content in extractable particulate organic matter by tandem mass spectrometry.

    Science.gov (United States)

    Dron, J; Zheng, W; Marchand, N; Wortham, H

    2008-08-01

    A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    Science.gov (United States)

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characterization of Carbonyl Compounds in the Ambient Air of an Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2011-01-01

    Full Text Available The purpose of this study was to characterize spatial and temporal variations of carbonyl compounds in Gumi city, where a number of large electronic-industrial complexes are located. Carbonyl samples were collected at five sites in the Gumi area: three industrial, one commercial, and one residential area. Sampling was carried out throughout a year from December 2003 to November 2004. At one industrial site, samples were taken every six days, while those of the other sites were for seven consecutive days in every season. Each sample was collected for 150 minutes and at intervals of three times a day (morning, afternoon, and evening. A total of 476 samples were analyzed to determine 15 carbonyl compounds by the USEPA TO-11A (DNPH-cartridge/HPLC method. In general, acetaldehyde appeared to be the most abundant compound, followed by formaldehyde, and acetone+acrolein. Mean concentrations of acetaldehyde were two to three times higher in the industrial sites than in the other sites, with its maximum of 77.7 ppb. In contrast, ambient levels of formaldehyde did not show any significant difference between the industrial and non-industrial groups. Its concentrations peaked in summer probably due to the enhanced volatilization and photochemical reactivity. These results indicate significant emission sources of acetaldehyde in the Gumi industrial complexes. Mean concentrations of organic solvents (such as acetone+acrolein and methyl ethyl ketone were also significantly high in industrial areas. In conclusion, major sources of carbonyl compounds, including acetaldehyde, are strongly associated with industrial activities in the Gumi city area.

  6. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    Science.gov (United States)

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials.

  7. Reductive coupling of carbon monoxide in a rhenium carbonyl complex with pendant Lewis acids.

    Science.gov (United States)

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2008-09-10

    Phosphinoborane ligands impart unique reactivity to a rhenium carbonyl cation relative to simple phosphine complexes. Addition of either triethylborohydride or a platinum hydride (that can be formed from H2) forms a rhenium boroxycarbene. This carbene, which crystallizes as a dimer, disproportionates over a period of days to afford the starting cation and a structurally unprecedented boroxy(boroxymethyl)carbene, in which a new C-C bond has been formed between two reduced CO ligands. This product of C-C bond formation can be independently synthesized by addition of 2 equiv of hydride to the rhenium carbonyl cation.

  8. Protection of Grain Products from Sitophilus oryzae (L.) Contamination by Anti-Insect Pest Repellent Sachet Containing Allyl Mercaptan Microcapsule.

    Science.gov (United States)

    Chang, Yoonjee; Lee, Soo-Hyun; Na, Ja Hyun; Chang, Pahn-Shick; Han, Jaejoon

    2017-11-01

    The purpose of this study was to develop an anti-insect pest repellent sachet to prevent Sitophilus oryzae (L.) (Coleoptera: Curculionidae) contamination in grain packaging. The anti-insect pest activities of essential oils (EOs) from garlic (Allium Sativum), ginger (Zingiber Officinalis), black pepper (Piper nigrum), onion (Allium cepa), and fennel (Foeniculum vulgare) as well as major compounds (allyl disulfide, AD; allyl mercaptan, AM) isolated from of garlic and onion (AD and AM) were measured against S. oryzae. The results revealed that garlic EO, onion EO, AD, and AM showed strong fumigant insecticidal activities. Among these, AM showed the highest acetylcholinesterase (AChE) inhibition rate, indicating that the fumigation insecticidal efficacy of AM is related with its AChE inhibition ability. Subsequently, the microcapsules were produced with a high efficiency (80.02%) by using AM as a core material and rice flour as a wall material. Finally, sachet composed of rice flour microcapsule containing 2% AM (RAM) was produced. Repellent assay was performed to measure anti-insect pest ability of the RAM sachet, showed remarkable repelling effect within 48 h both in the presence or absence of attractant. In a release profile of RAM sachet, it was expected to last over 20 mo during the distribution period of brown rice. Moreover, RAM sachet showed no undesirable changes to the sensory properties of the rice both before and after cooking. Taken together, these results suggest that the newly developed RAM sachet could be used as a packaging material to protect grain products from S. oryzae contamination. The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), causes damages to stored products and its contamination in grain products has become a major problem in cereal market. To preserve brown rice, an anti-insect pest repellent sachet containing 2% allyl mercaptan was newly developed and it showed remarkable repellent abilities against S. oryzae. It

  9. The magnetorheological fluid of carbonyl iron suspension blended with grafted MWCNT or graphene

    Science.gov (United States)

    Rwei, Syang-Peng; Ranganathan, Palraj; Chiang, Whe-Yi; Wang, Tza-Yi

    2017-12-01

    In this work, the magnetorheological (MR) fluids containing MWCNT/CI (carbonyl iron) complex and graphene/CI complex were prepared and have the better dispersity in silicone oil than CI powders alone. 1, 4-Aminobenzoic acid (PABA) was used as a grafting agent to modify CI powders to have NH2-end-group so that such nanoparticles can adsorb to acid-treated MWCNT or graphene via attraction of NH2 and COOH groups. The MWCNT/CI complex and graphene/CI complex have a structure of carbonyl iron nanoparticles adsorbed to MWCNT and graphene by self assembly, respectively. Because the carbonyl iron particles possessing magnetic permeability in nanometer scale adsorb to MWCNT or graphene which usually has a nanometer-scaled diameter and a micrometer-scaled length in this work, the dispersity of MWCNT/CI or graphene/CI complex in silicone oil is superior than the previous report [15] that the micrometer-scaled carbonyl iron microspheres were coated with multiwalled carbon nanotubes. Among CI (unmodified), MWCNT/CI and graphene/CI, graphene/CI has the best dispersity while MWCNT/CI still has the better dispersity than unmodified CI. At the temperature T = 300 K, the saturation magnetizations of CI, MWCNT/CI, graphene/CI are 208, 211 emu/g, and 204 emu/g, respectively, indicating that MWCNT/CI complex and graphene/CI complex still maintain the saturation magnetization as high as CI without being interfered by the blended MWCNT or graphene. A wide dynamic range of the yield stress adjusted through varying the electric current can be achieved by the MR fluids containing 69 wt% MWCNT/CI and graphene/CI which is useful in a shock absorber or damper. The result of the yield stress indicates the suspended MWCNT/CI particles are oriented more easily toward the direction perpendicular to the flow direction to block the flow stream lines.

  10. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China.

    Science.gov (United States)

    Feng, Yanli; Mu, Cuicui; Zhai, Jinqing; Li, Jian; Zou, Ting

    2010-11-15

    Carbonyl compounds including their concentrations, potential sources, diurnal variations and personal exposure were investigated in six subway stations and in-subway trains in Shanghai in June 2008. The carbonyls were collected onto solid sorbent (Tenax TA) coated with pentafluorophenyl hydrazine (PFPH), followed by solvent extraction and gas chromatography (GC)/mass spectrometry (MS) analysis of the PFPH derivatives. The total carbonyl concentrations of in-subway train were about 1.4-2.5 times lower than in-subway stations. A significant correlation (R>0.5, psubway stations. The diurnal variations in both the subway station and in-subway train showed that the concentrations of most carbonyls were much higher in the morning rush hour than in other sampling periods. Additionally, pronounced diurnal variations of acetaldehyde concentration before and after the evening peak hour in the subway train suggested that passengers contributed to high acetaldehyde levels. The personal exposure showed that the underground subway stations were important microenvironment for exposure to formaldehyde and acetaldehyde. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A Device-Independent Evaluation of Carbonyl Emissions from Heated Electronic Cigarette Solvents.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available To investigate how the two main electronic (e- cigarette solvents-propylene glycol (PG and glycerol (GL-modulate the formation of toxic volatile carbonyl compounds under precisely controlled temperatures in the absence of nicotine and flavor additives.PG, GL, PG:GL = 1:1 (wt/wt mixture, and two commercial e-cigarette liquids were vaporized in a stainless steel, tubular reactor in flowing air ranging up to 318°C to simulate e-cigarette vaping. Aerosols were collected and analyzed to quantify the amount of volatile carbonyls produced with each of the five e-liquids.Significant amounts of formaldehyde and acetaldehyde were detected at reactor temperatures ≥215°C for both PG and GL. Acrolein was observed only in e-liquids containing GL when reactor temperatures exceeded 270°C. At 318°C, 2.03±0.80 μg of formaldehyde, 2.35±0.87 μg of acetaldehyde, and a trace amount of acetone were generated per milligram of PG; at the same temperature, 21.1±3.80 μg of formaldehyde, 2.40±0.99 μg of acetaldehyde, and 0.80±0.50 μg of acrolein were detected per milligram of GL.We developed a device-independent test method to investigate carbonyl emissions from different e-cigarette liquids under precisely controlled temperatures. PG and GL were identified to be the main sources of toxic carbonyl compounds from e-cigarette use. GL produced much more formaldehyde than PG. Besides formaldehyde and acetaldehyde, measurable amounts of acrolein were also detected at ≥270°C but only when GL was present in the e-liquid. At 215°C, the estimated daily exposure to formaldehyde from e-cigarettes, exceeded United States Environmental Protection Agency (USEPA and California Office of Environmental Health Hazard Assessment (OEHHA acceptable limits, which emphasized the need to further examine the potential cancer and non-cancer health risks associated with e-cigarette use.

  12. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification.

    Science.gov (United States)

    Scharf, Brian; Clement, Cristina C; Yodmuang, Supansa; Urbanska, Aleksandra M; Suadicani, Sylvia O; Aphkhazava, David; Thi, Mia M; Perino, Giorgio; Hardin, John A; Cobelli, Neil; Vunjak-Novakovic, Gordana; Santambrogio, Laura

    2013-07-25

    Aging-related oxidative stress has been linked to degenerative modifications in different organs and tissues. Using redox proteomic analysis and illustrative tandem mass spectrometry mapping, we demonstrate oxidative posttranslational modifications in structural proteins of intervertebral discs (IVDs) isolated from aging mice. Increased protein carbonylation was associated with protein fragmentation and aggregation. Complementing these findings, a significant loss of elasticity and increased stiffness was measured in fibrocartilage from aging mice. Studies using circular dichroism and intrinsic tryptophan fluorescence revealed a significant loss of secondary and tertiary structures of purified collagens following oxidation. Collagen unfolding and oxidation promoted both nonenzymatic and enzymatic degradation. Importantly, induction of oxidative modification in healthy fibrocartilage recapitulated the biochemical and biophysical modifications observed in the aging IVD. Together, these results suggest that protein carbonylation, glycation, and lipoxidation could be early events in promoting IVD degenerative changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Gold(I)-assisted catalysis - a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate

    Science.gov (United States)

    Freindorf, Marek; Cremer, Dieter; Kraka, Elfi

    2018-03-01

    The unified reaction valley approach (URVA) combined with the local mode, ring puckering and electron density analysis is applied to elucidate the mechanistic differences of the non-catalysed and the Au[I]-N-heterocyclic carbene (NHC)-catalysed [3,3]-sigmatropic rearrangement of allyl acetate. Using a dual-level approach (DFT and DLPNO-CCSD(T)), the influence of solvation, counter-ions, bulky and electron withdrawing/donating substituents as well as the exchange of the Au[I]-NHC with a Au[I]-phosphine catalyst is investigated. The catalyst breaks up the rearrangement into two steps by switching between Au[I]-π and Au[I]-σ complexation, thus avoiding the energy-consuming CO cleavage in the first step. Based on local stretching force constants ka(C=C), we derive for the first time a quantitative measure of the π-acidity of the Au[I] catalyst; in all catalysed reactions, the bond order n(C=C) drops from 2 to 1.65. The ring puckering analysis clarifies that all reactions start and end via a six-membered ring with a boat form. All Au[I]-σ-complex intermediates show a considerable admixture of the chair form. The non-catalysed [3,3]-sigmatropic rearrangement goes through a maximum of charge separation between the allyl and acetate units at the transition state, while all catalysed reactions proceed via a minimum of charge separation reached in the region of the Au[I]-σ-complex.

  14. A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of N-Allyl-Ynamides

    Science.gov (United States)

    DeKorver, Kyle A.; Hsung, Richard P.; Lohse, Andrew G.; Zhang, Yu

    2010-01-01

    A fascinating mechanistic study of ynamido-palladium-π-allyl complexes is described that features isolation of a unique silyl-ketenimine via aza-Claisen rearrangement, which can be accompanied by an unusual thermal N-to-C 1,3-Ts shift in the formation of tertiary nitriles, and a novel cyclopentenimine formation via a palladium catalyzed aza-Rautenstrauch-type cyclization pathway. PMID:20337418

  15. Chemoselective Reduction and Alkylation of Carbonyl Functions Using Phosphonium Salts as an in Situ Protecting Groups.

    Science.gov (United States)

    Ohta, Reiya; Fujioka, Hiromichi

    2017-01-01

    Recent progress in the chemoselective reduction and alkylation of carbonyl functions using our in situ protection method is described. Methods that enable reversal or control of the reactivity of a carbonyl functional group are potentially useful. They open up new areas of synthetic organic chemistry and change the concept of retrosynthesis because they remove the need for complicated protection/deprotection sequences. In this account, we discuss the strategy and applications of our in situ protection method using phosphonium salts.

  16. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    Science.gov (United States)

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    Directory of Open Access Journals (Sweden)

    Esther Barreiro

    2016-05-01

    Full Text Available Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF, chronic obstructive pulmonary disease (COPD, cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions.

  18. Synthesis, Molecular Structure and Characterization of Allylic Derivatives of 6-Amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]-triazin-8(7H-one

    Directory of Open Access Journals (Sweden)

    Gene-Hsiang Lee

    2006-06-01

    Full Text Available 1-Allyl- (2 and 7-allyl-6-amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (3 were obtained via the 18-crown-6-ether catalyzed room temperature reactionof 6-amino-3-methyl-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H-one (1 with potassiumcarbonate and allyl bromide in dry acetone. The structures of these two derivatives wereverified by 2D-NMR measurements, including gHSQC and gHMBC measurements. Theminor compound 2 may possess aromatic character. A single crystal X-ray diffractionexperiment indicated that the major compound 3 crystallizes from dimethyl sulfoxide in themonoclinic space group P21/n and its molecular structure includes an attached dimethylsulfoxide molecule, resulting in the molecular formula C10H16N6O2S. Molecular structuresof 3 are linked by extensive intermolecular N-H···N hydrogen bonding [graph set C 1 (7]. 1Each molecule is attached to the dimethyl sulfoxide oxygen via N-H···O intermolecularhydrogen bonding. The structure is further stabilized by π-π stacking interactions.

  19. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  20. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol-ene protocol: a potential anticancer drug nanocarrier.

    Science.gov (United States)

    Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek

    2013-03-15

    Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Vapor phase carbonylation of dimethyl ether and methyl acetate with supported transition metal catalysts

    International Nuclear Information System (INIS)

    Shikada, T.; Fujimoto, K.; Tominaga, H.O.

    1986-01-01

    The synthesis of acetic acid (AcOH) from methanol (MeOH) and carbon monoxide has been performed industrially in the liquid phase using a rhodium complex catalyst and an iodide promoter. The selectivity to AcOH is more than 99% under mild conditions (175 0 C, 28 atm). The homogeneous rhodium catalyst has been also effective for the synthesis of acetic anhydride (Ac 2 O) by carbonylation of dimethyl ether (DME) or methyl acetate (AcOMe). However, rhodium is one of the most expensive metals and its proved reserves are quite limited. It is highly desired, therefore, to develop a new catalyst as a substitute for rhodium. The authors have already reported that nickel supported on active carbon exhibits an excellent activity for the vapor phase carbonylation of MeOh in the presence of iodide promoter and under moderately pressurized conditions. In addition, corrosive attack on reactors by iodide compounds is expected to be negligible in the vapor phase system. In the present work, vapor phase carbonylation of DME and AcOMe on nickel-active carbon (Ni/A.C.) and molybdenum-active carbon (Mo/A.C.) catalysts was studied

  2. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Effect of fiber material on ozone removal and carbonyl production from carpets

    Science.gov (United States)

    Abbass, Omed A.; Sailor, David J.; Gall, Elliott T.

    2017-01-01

    Indoor air quality is affected by indoor materials such as carpets that may act as sources and/or sinks of gas-phase air pollutants. Heterogeneous reactions of ozone with carpets may result in potentially harmful products. In this study, indoor residential carpets of varying fiber types were tested to evaluate their ability to remove ozone, and to assess their role in the production of carbonyls when exposed to elevated levels of ozone. Tests were conducted with six types of new unused carpets. Two sets of experiments were conducted, the first measured ozone removal and ozone deposition velocities, and the second measured primary carbonyl production and secondary production as a result of exposure to ozone. The tests were conducted using glass chambers with volume of 52 L each. Air exchange rates for all tests were 3 h-1. The ozone removal tests show that, for the conditions tested, the polyester carpet sample had the lowest ozone removal (40%), while wool carpet had the greatest ozone removal (65%). Most carpet samples showed higher secondary than primary carbonyl emissions, with carpets containing polypropylene fibers being a notable exception. Carpets with polyester fibers had both the highest primary and secondary emissions of formaldehyde among all samples tested. While it is difficult to make blanket conclusions about the relative air quality merits of various carpet fiber options, it is clear that ozone removal percentages and emissions of volatile organic compounds can vary drastically as a function of fiber type.

  4. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri

    Directory of Open Access Journals (Sweden)

    Masateru Nishihara

    2002-01-01

    Full Text Available A choline-containing phospholipid (PL-4 in Methanopyrus kandleri cells was identified as archaetidylcholine, which has been described by Sprott et al. (1997. The PL-4 consisted of a variety of molecular species differing in hydrocarbon composition. Most of the PL-4 was acid-labile because of its allyl ether bond. The identity of PL-4 was confirmed by thin-layer chromatography (TLC followed by positive staining with Dragendorff-reagent and fast-atom bombardment–mass spectrometry. A new method of LiAlH4 hydrogenolysis was developed to cleave allyl ether bonds and recover the corresponding hydrocarbons. We confirmed the validity of the LiAlH4 method in a study of the model compound synthetic unsaturated archaetidic acid (2,3-di-O-geranylgeranyl-sn-glycerol-1-phosphate. Saturated ether bonds were not cleaved by the LiAlH4 method. The hydrocarbons formed following LiAlH4 hydrogenolysis of PL-4 were identified by gas–liquid chromatography and mass spectrometry. Four kinds of hydrocarbons with one to four double bonds were detected: 47% of the hydrocarbons had four double bonds; 11% had three double bonds; 14% had two double bonds; 7% had one double bond; and 6% were saturated species. The molecular species composition of PL-4 was also estimated based on acid lability: 77% of the molecular species had two acid-labile hydrocarbons; 11% had one acid-labile and one acid-stable hydrocarbon; and 11% had two acid-stable hydrocarbons. To our knowledge, this is the first report of a specific chemical degradation method for the structural analysis of allyl ether phospholipid in archaea.

  5. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  6. Kinetics and Mechanism of the Gas-Phase Reaction of Selected Carbonyls with Cl Atoms between 250 and 340 K

    Science.gov (United States)

    Hasson, A. S.; Algrim, L.; Abdelhamid, A.; Tyndall, G. S.; Orlando, J. J.

    2013-12-01

    Carbonyls are important products from the gas phase degradation of most volatile organic compounds. Their atmospheric reactions therefore have a significant impact on atmospheric composition, particularly in aged air masses. While the reactions of short-chain linear carbonyls are well understood, the chemistry of larger (> C6) and branched carbonyl is more uncertain. To provide insight into these reactions, the reactions of three carbonyls (methyl isopropyl ketone, MIK; di-isopropyl ketone, DIK; and diethyl ketone, DEK) with chlorine atoms were investigated between 250 and 340 K and 1 atm in the presence and absence of NOx and an HO2 source (methanol). Experiments were performed in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. The kinetics were studied using the relative rate technique with butanone and isopropanol as the reference compounds. The Arrhenius expression for the three rate coefficients was determined to be k(DEK+Cl) = 3.87 x 10-11e(2 × 7 kJ/mol)/RT cm3 molecules-1 s-1 , k(MIPK+Cl) = 7.20 x 10-11e(0.2× 8 kJ/mol)/RT cm3 molecules-1 s-1 , and k(DIPK+Cl) = 3.33 x 10-10e(-3× 8 kJ/mol)/RT cm3 molecules-1 s-1 . Measured reaction products accounted for 38-72 % of the reacted carbon and were consistent with strong deactivation of the carbon atom adjacent to the carbonyl group with respect to H-atom abstraction by Cl atoms. The product distributions also provide insight into radical recycling from the organic peroxy + HO2 reaction, and the relative rates of isomerization, fragmentation and reaction with O2 for carbonyl-containing alkoxy radicals. Implications of these results will be discussed.

  7. Comparative Studies on Conventional and Ultrasound-Assisted Synthesis of Novel Homoallylic Alcohol Derivatives Linked to Sulfonyl Dibenzene Moiety in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Mohamed F. Mady

    2013-01-01

    Full Text Available Novel homoallylic alcohols incorporating sulfone moieties were synthesized by the treatment of different carbonyl compounds with allylic bromides in aqueous media via sonochemical Barbier-type reaction conditions. Sulfonation of α-bromoketones with sodium benzenesulfinate in presence of CuI/2,6-lutidine rapidly gave β-keto-sulfones in good yields. In general, ultrasound irradiation offered the advantages of high yields, short reaction times, and simplicity compared to the conventional methods. The structures of all the compounds were confirmed by analytical and spectral data.

  8. Preparation methods and properties of allylboranes

    International Nuclear Information System (INIS)

    Mikhajlov, B.M.

    1976-01-01

    The methods of synthesis and chemical properties of allylboron compounds of different types are considered as well as the application in organic chemistry, for example, for synthesis of 1-boroadamantane and adamantane compounds. PMR study of triallylborane reveals permanent allyl rearrangement. The paper describes the ability to complex formation, reactions with organometal compounds and some other agents, reactions with diborane and tetraalkyldiboranes, reactions with carbonyl compounds and nitriles, reactions with compounds containing activated double carbon-carbon bond, reactions with acetylene compounds, and reaction with allene compounds

  9. Hydrothermal synthesis of carbonyl iron-carbon nanocomposite: Characterization and electromagnetic performance

    Directory of Open Access Journals (Sweden)

    Hakimeh Pourabdollahi

    Full Text Available In this research, the electromagnetic absorption properties of the carbonyl iron-carbon (CI/C nanocomposite prepared via hydrothermal reaction using glucose as carbon precursor was studied in the range of 8.2–12.4 GHz. In hydrothermal reaction, glucose solution containing CI particles, placed in autoclave for 4 h under 453 K. Using surface coating technology is a method that prevents Cl oxidation and improves CI electromagnetic absorption. The structure, morphology and magnetic performances of the prepared nanocomposites were characterized by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, transmission electron microscopy (TEM and vibrating sample magnetometer (VSM. The electromagnetic properties including complex permittivity (εr, the permeability (µr, dielectric loss, magnetic loss, reflection loss, and attenuation constant were investigated using a vector network analyzer. For The CI/C nanocomposite, the bandwidth of −10 dB and −20 dB were obtained in the frequency range of 9.8–12.4 and 11.0–11.8 GHz, respectively. As well as, the reflection loss was −46.69 dB at the matching frequency of 11.5 GHz, when the matching thickness was 1.3 mm. While for CI particles the reflection loss for 4.4 mm thickness was −16.86 dB at the matching frequency of 12.3 GHz. The results indicate that the existence layer of carbon on carbonyl iron enhance the electromagnetic absorbing properties. Therefore, this nanocomposite can be suitable for in the radar absorbing coatings. Keywords: Hydrothermal synthesis, Carbonyl iron-carbon nanocomposite, Microwave absorption, Reflection loss

  10. Carbonyl Stress and Microinflammation-Related Molecules as Potential Biomarkers in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Tohru Ohnuma

    2018-03-01

    Full Text Available This literature review primarily aims to summarize our research, comprising both cross-sectional and longitudinal studies, and discuss the possibility of using microinflammation-related biomarkers as peripheral biomarkers in the diagnosis and monitoring of patients with schizophrenia. To date, several studies have been conducted on peripheral biomarkers to recognize the potential markers for the diagnosis of schizophrenia and to determine the state and effects of therapy in patients with schizophrenia. Research has established a correlation between carbonyl stress, an environmental factor, and the pathophysiology of neuropsychiatric diseases, including schizophrenia. In addition, studies on biomarkers related to these stresses have achieved results that are either replicable or exhibit consistent increases or decreases in patients with schizophrenia. For instance, pentosidine, an advanced glycation end product (AGE, is considerably elevated in patients with schizophrenia; however, low levels of vitamin B6 [a detoxifier of reactive carbonyl compounds (RCOs] have also been reported in some patients with schizophrenia. Another study on peripheral markers of carbonyl stress in patients with schizophrenia revealed a correlation of higher levels of glyceraldehyde-derived AGEs with higher neurotoxicity and lower levels of soluble receptors capable of diminishing the effects of AGEs. Furthermore, studies on evoked microinflammation-related biomarkers (e.g., soluble tumor necrosis factor receptor 1 have reported relatively consistent results, suggesting the involvement of microinflammation in the pathophysiology of schizophrenia. We believe that our cross-sectional and longitudinal studies as well as various previous inflammation marker studies that could be interpreted from several perspectives, such as mild localized encephalitis and microvascular disturbance, highlighted the importance of early intervention as prevention and distinguished the possible

  11. Titanocene Dichloride Complexes Bonded to Carbosilane Dendrimers Via a Spacer of Variable Length – Molecular Dynamics Calculations and Catalysis of Allylic Coupling Reactions

    Czech Academy of Sciences Publication Activity Database

    Strašák, Tomáš; Jaroschik, F.; Malý, M.; Čermák, Jan; Sýkora, Jan; Fajgar, Radek; Karban, Jindřich; Harakat, D.

    2014-01-01

    Roč. 409, SI (2014), s. 137-146 ISSN 0020-1693 R&D Projects: GA MŠk(CZ) LC06070 Grant - others:UJEP(CZ) GA13-06989S Institutional support: RVO:67985858 Keywords : metallodendrimers * titanocene dichloride * allylic homocoupling * molecular dynamics Subject RIV: CC - Organic Chemistry Impact factor: 2.046, year: 2014

  12. Contact and fumigant toxicity of Armoracia rusticana essential oil, allyl isothiocyanate and related compounds to Dermatophagoides farinae.

    Science.gov (United States)

    Yun, Yeon-Kyeong; Kim, Hyun-Kyung; Kim, Jun-Ran; Hwang, Kumnara; Ahn, Young-Joon

    2012-05-01

    The toxicity to adult Dermatophagoides farinae of allyl isothiocyanate identified in horseradish, Armoracia rusticana, oil and another 27 organic isothiocyanates was evaluated using contact + fumigant and vapour-phase mortality bioassays. Results were compared with those of two conventional acaricides, benzyl benzoate and dibutyl phthalate. Horseradish oil (24 h LC(50), 1.54 µg cm(-2)) and allyl isothiocyanate (2.52 µg cm(-2)) were highly toxic. Benzyl isothiocyanate (LC(50) , 0.62 µg cm(-2)) was the most toxic compound, followed by 4-chlorophenyl, 3-bromophenyl, 3,5-bis(trifluoromethyl)phenyl, cyclohexyl, 2-chlorophenyl, 4-bromophenyl and 2-bromophenyl isothiocyanates (0.93-1.41 µg cm(-2)). All were more effective than either benzyl benzoate (LC(50) , 4.58 µg cm(-2)) or dibutyl phthalate (24.49 µg cm(-2)). The structure-activity relationship indicates that types of functional group and chemical structure appear to play a role in determining the isothiocyanate toxicities to adult D. farinae. In the vapour-phase mortality bioassay, these isothiocyanates were consistently more toxic in closed versus open containers, indicating that their mode of delivery was, in part, a result of vapour action. In the light of global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments, the horseradish oil-derived compounds and the isothiocyanates described herein merit further study as potential acaricides for the control of house dust mite populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry.

  13. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    Science.gov (United States)

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Carbonyl emission and toxicity profile of diesel blends with an animal-fat biodiesel and a tire pyrolysis liquid fuel.

    Science.gov (United States)

    Ballesteros, R; Guillén-Flores, J; Martínez, J D

    2014-02-01

    In this paper, two diesel fuels, an animal-fat biodiesel and two diesel blends with the animal-fat biodiesel (50vol.%) and with a tire pyrolysis liquid (TPL) fuel (5vol.%) have been tested in a 4-cylinder, 4-stroke, turbocharged, intercooled, 2.0L Nissan diesel automotive engine (model M1D) with common-rail injection system and diesel oxidation catalyst (DOC). Carbonyl emissions have been analyzed both before and after DOC and specific reactivity of carbonyl profile has been calculated. Carbonyl sampling was carried out by means of a heated line, trapping the gas in 2,4-DNPH cartridges. The eluted content was then analyzed in an HPLC system, with UV-VIS detection. Results showed, on the one hand, an increase in carbonyl emissions with the biodiesel fraction in the fuel. On the other hand, the addition of TPL to diesel also increased carbonyl emissions. These trends were occasionally different if the emissions were studied after the DOC, as it seems to be selectivity during the oxidation process. The specific reactivity was also studied, finding a decrease with the oxygen content within the fuel molecule, although the equivalent ozone emissions slightly increased with the oxygen content. Finally, the emissions toxicity was also studied, comparing them to different parameters defined by different organizations. Depending on the point of study, emissions were above or below the established limits, although acrolein exceeded them as it has the least permissive values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Femtosecond Fluorescence and Intersystem Crossing in Rhenium(I) Carbonyl-Bipyridine Complexes

    Czech Academy of Sciences Publication Activity Database

    Cannizzo, A.; Blanco-Rodríguez, A. M.; Nahhas, A. E.; Šebera, Jakub; Záliš, Stanislav; Vlček, Antonín; Chergui, M.

    2008-01-01

    Roč. 130, č. 28 (2008), s. 8967-8974 ISSN 0002-7863 R&D Projects: GA MŠk 1P05OC068 Institutional research plan: CEZ:AV0Z40400503 Keywords : rhenium(I) * carbonyl-bipyridine * intersystem crossing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.091, year: 2008

  16. Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures

    OpenAIRE

    Faivre, Magalie; Gelszinnis, Renaud; Degouttes, Jérôme; Terrier, Nicolas; Rivière, Charlotte; Ferrigno, Rosaria; Deman, Anne-Laure

    2014-01-01

    This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a ...

  17. Syntheses of the hexahydroindene cores of indanomycin and stawamycin by combinations of iridium-catalyzed asymmetric allylic alkylations and intramolecular Diels-Alder reactions.

    Science.gov (United States)

    Gärtner, Martin; Satyanarayana, Gedu; Förster, Sebastian; Helmchen, Günter

    2013-01-02

    Short and concise syntheses of the hexahydroindene cores of the antibiotics indanomycin (X-14547 A) and stawamycin are presented. Key methods used are an asymmetric iridium-catalyzed allylic alkylation, a modified Julia olefination, a Suzuki-Miyaura coupling, and an intramolecular Diels-Alder reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride

    International Nuclear Information System (INIS)

    Zhang Zhihong; Feng Chuanliang

    2007-01-01

    The present work describes the fabrication and characterization of chloride-derivatized polymer coatings prepared by continuous wave (cw) plasma polymerization as adhesion layers in DNA immobilization/hybridization. The stability of plasma-polymerized allyl chloride (ppAC) in H 2 O was characterized by variation of the thickness of polymer films and its wettability was examined by water contact angle technique. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to study polymer matrix properties and oligonucleotide/DNA binding interaction. With the same carrier gas rate and process pressure, plasma polymers deposited at different input powers show various comparable immobilization properties; nevertheless, low input power plasma-polymerized films gives a lower sensitivity toward DNA binding than that from high input power plasma-deposited films. The following DNA immobilization on chloride-functionalized surfaces was found dependence on the macromolecular architecture of the plasma films. The hybridization between probe DNA and total mismatch target DNA shows no non-specific adsorption between target and ppAC

  19. Preservation of beech and spruce wood by allyl alcohol-based copolymers

    International Nuclear Information System (INIS)

    Solpan, Dilek; Gueven, Olgun

    1999-01-01

    Allyl alcohol (AA), acrylonitrile (AN), methyl methacrylate (MMA), monomers and monomer mixtures AA+AN, AA+MMA were used to conserve and consolidate Beech and Spruce. After impregnation, copolymerisation and polymerisation were accomplished by gamma irradiation. The fine structure of wood+polymer(copolymer) composites was investigated by Scanning Electron Microscopy (SEM). It was observed that copolymer obtained from AA+MMA monomer mixture showed the optimum compatibility. The compressional strength and Brinell Hardness Numbers determined for untreated and treated wood samples indicated that the mechanical strength of wood+copolymer composites was increased. It was found that the mechanical strength of the wood samples containing the AA+MMA copolymer was higher than the others. In the presence of P(AA/MMA), at highest conversion, the compressive strength perpendicular to the fibres in Beech and Spruce increased approximately 100 times. The water uptake capacity of wood+copolymer composites was observed to decrease by more than 50% relative to the original samples, and biodegradation did not take place

  20. Lanthanum triflate triggered synthesis of tetrahydroquinazolinone derivatives of N-allyl quinolone and their biological assessment

    Directory of Open Access Journals (Sweden)

    Jardosh Hardik H.

    2012-01-01

    Full Text Available A series of 24 derivatives of tetrahydroquinazolinone has been synthesized by one-pot cyclocondensation reaction of N-allyl quinolones, cyclic β-diketones and (thiourea/N-phenylthiourea in presence of lanthanum triflate catalyst. This methodology allowed us to achieve the products in excellent yield by stirring at room temperature. All the synthesized compounds were investigated against a representative panel of pathogenic strains using broth microdilution MIC (minimum inhibitory concentration method for their in vitro antimicrobial activity. Amongst these sets of heterocyclic compounds 5h, 6b, 6h, 5f, 5l, 5n and 6g found to have admirable activity.

  1. Contribution to radiation-chemically catalyzed hydroformylation of butenes in the presence of metal carbonyls

    International Nuclear Information System (INIS)

    Joosten, L.

    1976-01-01

    In this paper a study is presented of the influence of gamma-radiation on the catalytic hydroformylation of olefines. As model olefines buten-1 and buten-2 as well as their mixtures have been used together with the catalysts di-cobalt octacarbonyle and rhodium (I) tristri phenyl-phosphine carbonyle hydride. In addition the catalytic activity of the VI. side group carbonyles Cr(CO) 6 , Mo(CO) 6 and W(CO) 6 has been studied under radiation chemical conditions. For this purpose a mixture of olefine, solvent (cyclo hexane) and calalyst has been pressurized and processed in a mixing autoklave together with a Co and H 2 (1:1) mixture, variing the reaction variables within certain limits. (orig.) [de

  2. Elevated Levels of Carbonyl Compounds in the Atmosphere of Eastern Himalaya in India

    Science.gov (United States)

    Sarkar, C.; Chatterjee, A.; Majumdar, D.; Raha, S.; Ghosh, S. K.; Srivastava, A.

    2015-12-01

    A first ever study on atmospheric carbonyl compounds (CC) were made over eastern Himalaya in India. Samples were collected over a high altitude hill station, Darjeeling (27.01°N, 88.15°E, 2200 masl) during 2011-2012. It is well known that CC have toxic and carcinogenic properties as well as they have important effects on regional climate. Therefore their presence in the environment is of great concern especially for the Himalayan region because of the ecological and geographical importance of the area. The average annual concentration of total CCs was 293.3 ± 463.9 μgm-3 with maximum during post monsoon (1104.8 ± 568.0 μgm-3) and minimum during winter season (72.2 ± 42.9 μgm-3). Darjeeling experiences huge emissions of carbonaceous pollutants from massive influx of tourists during premonsoon and postmonsoon seasons. Though the emission strength could be comparable, the loss of carbonyls from the atmosphere could be due to photochemical degradation under high solar insolation during premonsoon. Acetone was most abundant species with an annual average concentration of 200.8±352.9 μgm-3 with 70 % contribution to the total CCs measured. Interestingly, acetone over Darjeeling was found to be much higher than most of the metropolitan cities in the world. The average formaldehyde to acetaldehyde ratio (1.64 ± 1.43) over Darjeeling is a good representation of a typical urban atmosphere at this high altitude over this part of Himalaya. High carbonyl concentration over eastern Himalaya compared to other megacities across the globe could be attributed to uncontrolled activities related to development in tourism, high population density and moreover it's unique orography and land use pattern with narrow roads, unplanned township etc. The unscientific treatment of human and animal and other domestic waste is another major concern which significantly contribute to carbonyl and other carbonaceous pollutants over this part of Himalaya.

  3. Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    Science.gov (United States)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-06-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L-1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL-1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h.

  4. Spectroscopic and theoretical studies on the aromaticity of pyrrol-2-yl-carbonyl conformers

    Science.gov (United States)

    Dubis, Alina T.; Wojtulewski, Sławomir; Filipkowski, Karol

    2013-06-01

    The aromaticity of s-cis and s-trans pyrrol-2-yl carbonyl conformers was studied by FT-IR, 1H NMR spectroscopy and DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The Harmonic Oscillator Model of Aromaticity (HOMA) and Nucleus Independent Chemical Shift (NICS) indices were calculated to estimate π-electron delocalization in the pyrrole ring. The usefulness of infrared spectroscopy in the evaluation of the aromaticity of the homogeneous set of pyrroles is discussed. The influence of 2-substitution on different aspects of aromaticity and stability of the pyrrol-2-yl carbonyl conformers is also discussed. It is concluded that the substitution effect of the title pyrrole derivatives can be explained on the basis of theoretical and experimental measurements of π-electron delocalization, including IR data.

  5. Concise stereocontrolled formal synthesis of (+/-)-quinine and total synthesis of (+/-)-7- hydroxyquinine via merged Morita-Baylis-Hillman-Tsuji-Trost cyclization.

    Science.gov (United States)

    Webber, Peter; Krische, Michael J

    2008-12-05

    Concise stereoselective syntheses of (+/-)-quinine and (+/-)-7-hydroxyquinine are achieved using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. Cyclization of enone-allyl carbonate 11 delivers the product of cycloallylation 13 in 68% yield. Diastereoselective conjugate reduction of the enone 13 (>20:1 dr) followed by exchange of the N-protecting group provides the saturated N-Boc-protected methyl ketone 19, which upon aldol dehydration provides quinoline containing enone 15, possessing all carbon atoms of quinine. Exposure of ketone 15 to L-selectride enables diastereoselective carbonyl reduction (>20:1 dr) to furnish the allylic alcohol 16. Stereoselective hydroxyl-directed epoxidation using an oxovanadium catalyst modified by N-hydroxy-N-Me-pivalamide delivers epoxide 17 (17:1 dr). Cyclization of the resulting amine-epoxide 17 provides (+/-)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal. Notably, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2-asymmetric induction events. Deoxygenation of the N-Cbz-protected allylic acetate 22 provides olefin 23, which previously has been converted to quinine. Thus, (+/-)-quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal.

  6. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R.M.; Campos, A.; Gonzalez, D.

    1995-09-01

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetone+acrolein. Three different types of samples (rural, urban, petrol emission) were successfully analyzed

  7. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    Science.gov (United States)

    Regazzoni, Luca; de Courten, Barbora; Garzon, Davide; Altomare, Alessandra; Marinello, Cristina; Jakubova, Michaela; Vallova, Silvia; Krumpolec, Patrik; Carini, Marina; Ukropec, Jozef; Ukropcova, Barbara; Aldini, Giancarlo

    2016-06-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species.

  8. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    Science.gov (United States)

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  9. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    International Nuclear Information System (INIS)

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-01-01

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 μM, 4-hydroxynonenal (HNE) at 0.10 μM, trans-2-hexanal at 0.10 μM, and trans-2,4-hexadienal at 0.05 μM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 μM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  11. 7α-alkylation and 7,7-bis-alkylation of 20-hydroxyecdysone with propargyl bromide in a lithium-ammonia solution and catalytic reductive spirocyclization of 7,7-bis(2-propyn-1-yl)-14-deoxy-Δ(8(14))-20-hydroxyecdysone.

    Science.gov (United States)

    Galyautdinov, Ilgiz V; Khairullina, Zarema R; Sametov, Valery P; Muslimov, Zabir S; Khalilov, Leonard M; Odinokov, Victor N

    2016-03-01

    7α-Alkylation and 7,7-bis-alkylation of 20-hydroxyecdysone with propargyl bromide in a lithium-ammonia solution resulted in the formation of 7α-(2-propyn-1-yl)- and 7,7-bis(2-propyn-1-yl)-14-deoxy-Δ(8(14))-20-hydroxyecdysone in 92% and 75% yield respectively. Upon catalytic hydrogenation (10% Pd-C) of 7,7-bis(2-propyn-1-yl) derivative spirocyclization occurs by geminal 2-propyn-1-yl groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    KAUST Repository

    Guan, Xiao-Yu

    2014-02-07

    A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  13. Efficient and selective α-bromination of carbonyl compounds with N-bromosuccinimide under microwave

    KAUST Repository

    Guan, Xiao-Yu; Al-Misba'a, Zahra; Huang, Kuo-Wei

    2014-01-01

    A highly efficient method for the synthesis of α-halocarbonyl compounds has been achieved via selective monobromination of aromatic and aliphatic carbonyl compounds with N-bromosuccinimide catalyzed by p-toluenesulfonic acid under microwave irradiation within 30 min.

  14. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air

    Science.gov (United States)

    Lui, K. H.; Ho, Steven Sai Hang; Louie, Peter K. K.; Chan, C. S.; Lee, S. C.; Hu, Di; Chan, P. W.; Lee, Jeffrey Chi Wai; Ho, K. F.

    2017-03-01

    Gas-phase formaldehyde (HCHO) is an intermediate and a sensitive indicator for volatile organic compounds (VOCs) oxidation, which drives tropospheric ozone production. Effective photochemical pollution control strategies demand a thorough understanding of photochemical oxidation precursors, making differentiation between sources of primary and secondary generated HCHO inevitable. Spatial and seasonal variations of airborne carbonyls based on two years of measurements (2012-2013), coupled with a correlation-based HCHO source apportionment analysis, were determined for three sampling locations in Hong Kong (denoted HT, TC, and YL). Formaldehyde and acetaldehyde were the two most abundant compounds of the total quantified carbonyls. Pearson's correlation analysis (r > 0.7) implies that formaldehyde and acetaldehyde possibly share similar sources. The total carbonyl concentration trends (HT rural). A regression analysis further quantifies the relative primary HCHO source contributions at HT (∼13%), TC (∼21%), and YL (∼40%), showing more direct vehicular emissions in urban than rural areas. Relative secondary source contributions at YL (∼36%) and TC (∼31%) resemble each other, implying similar urban source contributions. Relative background source contributions at TC could be due to a closed structure microenvironment that favors the trapping of HCHO. Comparable seasonal differences are observed at all stations. The results of this study will aid in the development of a new regional ozone (O3) control policy, as ambient HCHO can enhance O3 production and also be produced from atmospheric VOCs oxidation (secondary HCHO).

  15. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gó mez-Suá rez, Adriá n; Gasperini, Danila; Vummaleti, Sai V. C.; Poater, Albert; Cavallo, Luigi; Nolan, Steven P.

    2014-01-01

    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  16. Highly efficient and eco-friendly gold-catalyzed synthesis of homoallylic ketones

    KAUST Repository

    Gómez-Suárez, Adrián

    2014-08-01

    We report a new catalytic protocol for the synthesis of γ,δ-unsaturated carbonyl units from simple starting materials, allylic alcohols and alkynes, via a hydroxalkoxylation/Claisen rearrangement sequence. This new process is more efficient (higher TON and TOF) and more eco-friendly (increased mass efficiency) than the previous state-of-the-art technique. In addition, this method tolerates both terminal and internal alkynes. Moreover, computational studies have been carried out in order to shed light on how the Claisen rearrangement is initiated. © 2014 American Chemical Society.

  17. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling† †Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c7sc04207h

    Science.gov (United States)

    Wei, Wei; Dai, Xi-Jie; Wang, Haining; Li, Chenchen; Yang, Xiaobo

    2017-01-01

    Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KOtBu and bidentate phosphine dmpe is vital to this transformation. PMID:29568466

  18. Efficient and Selective Syntheses of (all-E)- and (6E,10Z)-2′-O-Methylmyxalamides D via Pd-Catalyzed Alkenylation—Carbonyl Olefination Synergy

    Science.gov (United States)

    Wang, Guangwei; Huang, Zhihong; Negishi, Ei-ichi

    2008-01-01

    Highly efficient and selective syntheses of both (all-E) and (6E,10Z)-isomers of 2′-O-methylmyxalamide D (2 and 3), in which the crucial conjugated pentaene moieties were assembled in ≥98% stereoselectivity through the use of two Pd-catalyzed alkenylation reactions, the Horner—Wadsworth—Emmons (HWE) olefination, and either the Corey—Schlessinger—Mills modified (CSM-modified) Peterson olefination for 2 or the Still—Gennari olefination for 3, are reported. Either 2 or 3 was prepared in 16% yield in seven steps from propargyl alcohol. PMID:18593171

  19. Complex permeability and permittivity variation of carbonyl iron rubber in the frequency range of 2 to 18 GHz

    Directory of Open Access Journals (Sweden)

    Adriana Medeiros Gama

    2010-04-01

    Full Text Available The complex dielectric permittivity (e and magnetic permeability (m of Radar Absorbing Materials (RAM based on metallic magnetic particles (carbonyl iron particles embedded in a dielectric matrix (silicon rubber have been studied in the frequency range of 2 to 18 GHz. The relative permeability and permittivity of carbonyl iron-silicon composites for various mass fractions are measured by the transmission/reflection method using a vector network analyzer. The concentration dependence of permittivity and permeability on the frequency is analyzed. In a general way, the results show that e´ parameter shows a more significant variation among the evaluated parameters (e”, m”, m’. The comparison of dielectric and magnetic loss tangents (e”/e” and m”/m’, respectively shows more clearly the variation of both parameters (e and m according to the frequency. It is also observed that higher carbonyl iron content fractions favor both dielectric and magnetic loss tangents.

  20. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins

    DEFF Research Database (Denmark)

    Weber, Daniela; Davies, Michael J.; Grune, Tilman

    2015-01-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple...

  1. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Signe Elisabeth Åsberg

    2015-05-01

    Full Text Available Isothiocyanates (ITCs are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.

  2. Conformational analysis of a Chlamydia-specific disaccharide α-Kdo-(2→8)-α-Kdo-(2→O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    International Nuclear Information System (INIS)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline; Weisemann, Ruediger; Kosma, Paul; Brade, Helmut; Brade, Lore; Peters, Thomas

    1998-01-01

    The disaccharide α-Kdo-(2 → 8)-α-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all 1 H NMR signals of α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex

  3. Catalyst-Directed Diastereoselective Isomerization of Allylic Alcohols for the Stereoselective Construction of C(20) in Steroid Side Chains: Scope and Topological Diversification.

    Science.gov (United States)

    Li, Houhua; Mazet, Clément

    2015-08-26

    The stereoselective construction of C20 in steroidal derivatives by a highly diastereoselective Ir-catalyzed isomerization of primary allylic alcohols is reported. A key aspect of this strategy is a straightforward access to geometrically pure steroidal enol tosylate and enol triflate intermediates for subsequent high yielding stereoretentive Negishi cross-coupling reactions to allow structural diversity to be introduced. A range of allylic alcohols participates in the diastereoselective isomerization under the optimized reaction conditions. Electron-rich and electron-poor aryl or heteroaryl substituents are particularly well-tolerated, and the stereospecific nature of the reaction provides indifferently access to the natural C20-(R) and unnatural C20-(S) configurations. Alkyl containing substrates are more challenging as they affect regioselectivity of iridium-hydride insertion. A rationale for the high diastereoselectivities observed is proposed for aryl containing precursors. The scope of our method is further highlighted through topological diversification in the side chain and within the polycyclic domain of advanced and complex steroidal architectures. These findings have the potential to greatly simplify access to epimeric structural analogues of important steroid scaffolds for applications in biological, pharmaceutical, and medical sciences.

  4. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation.

    Science.gov (United States)

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter; Fehrmann, Rasmus

    2006-03-07

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)2I2]-[BMIM]I-SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.

  5. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    Science.gov (United States)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  6. Quantification of Carbonyl Compounds Generated from Ozone-Based Food Colorants Decomposition Using On-Fiber Derivatization-SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Wenda Zhu

    2014-12-01

    Full Text Available Fruit leathers (FLs production produces some not-to-specification material, which contains valuable ingredients like fruit pulp, sugars and acidulates. Recovery of FL for product recycling requires decolorization. In earlier research, we proved the efficiency of an ozone-based decolorization process; however, it produces carbonyls as major byproducts, which could be of concern. A headspace solid-phase microextraction with on-fiber derivatization followed by gas chromatography-mass spectrometry was developed for 10 carbonyls analysis in ozonated FL solution/suspension. Effects of dopant concentration, derivatization temperature and time were studied. The adapted method was used to analyze ozonated FL solution/suspension samples. Dopant concentration and derivatization temperature were optimized to 17 mg/mL and 60 °C, respectively. Competitive extraction was studied, and 5 s extraction time was used to avoid non-linear derivatization of 2-furfural. The detection limits (LODs for target carbonyls ranged from 0.016 and 0.030 µg/L. A much lower LOD (0.016 ppb for 2-furfural was achieved compared with 6 and 35 ppb in previous studies. Analysis results confirmed the robustness of the adapted method for quantification of carbonyls in recycled process water treated with ozone-based decolorization. Ethanal, hexanal, 2-furfural, and benzaldehyde were identified as byproducts of known toxicity but all found below levels for concern.

  7. Determination of carbonyl compounds in air by HPLC

    International Nuclear Information System (INIS)

    Garcia, S.; Perez, R.M.; Campos, A.; Gonzalez, D.

    1995-01-01

    A method for the determination of seven carbonyl compounds in air is presented. The procedure involve sampling of air by a Sep-Pak Cartridge impregnated with 2,4-dinitrophenylhydrazine. Elution was done with 3 mL of acetonitrile and the eluate was diluted to 5 mL. The analysis was done by HPLC with UV detection and external standard method quantification. It has been achieved relative standard deviations about 5% and detection limits of 80 ng/cartridge for formaldehyde, acetaldehyde and acetoacetonitrile. Three different types of samples (rural, urban, petrol emission) were successfully analyzed. (Author) 12 refs

  8. Design of the passive personal dosimeter for miners using an allyl diglycol carbonate plastic. Phase 1

    International Nuclear Information System (INIS)

    1983-12-01

    The report summarizes the results of the feasibility study on the design and development of a passive personal dosimeter incorporating an allyl diglycol carbonate plastic (CR39) detector, for use by uranium miners. Based upon the feasibility study, a passive personal dosimeter using a capacitor-type electrostatic enhancement device has been designed. Preliminary tests indicate that the prototype could be used in the mine environment to differentiate radon and thoron daughters with a detection efficiency comparable to that of a typical active device. Further study is required, however, into the possible influence in the mine environment of local variations in charged fraction, upon the calibration of this dosimeter

  9. Defects in tor regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Sассharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    B. V. Homza

    2014-02-01

    Full Text Available TOR signaling pathway first described in yeast S. сerevisiae is the highly conserved regulator of eukaryotic cell growth, aging and stress resistance. The effect of nitrogen sources, in particular amino acids, on the activity of TOR signaling pathway is well studied, however its relation to carbohydrates is poor understood. The aim of the present study is expanding of our understanding of potential role of TOR regulatory complexes in development of carbonyl/oxidative stress that can result from yeast cultivation on glucose and fructose. It has been shown that the level of α-dicarbonyl compounds and protein carbonyl groups increased with time of yeast cultivation and was higher in cells grown on fructose that demonstrated their accelerated aging and carbonyl/oxidative stress development as compared with cells grown on glucose. The strains defective in TOR proteins cultivated in the presence of glucose as well as fructose demonstrated lower markers of the stress and aging than parental strain. Thus these data confirmed the previous conclusion on fructose more potent ability to cause carbonyl/oxidative stress and accelerated aging in S. cerevisiae as compared with glucose. However, defects in TOR regulatory complexes retard aging and development of the stress in yeast independent on the type of carbohydrate in the cultivation medium.

  10. Rapid Determination of Six Low Molecular Carbonyl Compounds in Tobacco Smoke by the APCI-MS/MS Coupled to Data Mining

    Directory of Open Access Journals (Sweden)

    Wuduo Zhao

    2017-01-01

    Full Text Available A simple method was established for the rapid determination of low molecular carbonyl compounds by the combination of atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS and data mining. The ionization was carried out in positive mode, and six low molecular carbonyl compounds of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde were analyzed by both full scan mode and daughter scan mode. To overcome the quantitative difficulties from isomer of acetone/propionaldehyde and butanone/butyraldehyde, the quantitation procedure was performed with the characteristic ion of [CH3O]+ under CID energy of 5 and 15 eV. Subsequently, the established method was successfully applied to analysis of six low molecular carbonyl compounds in tobacco smoke with analytical period less than four minutes. The contents of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde for a cigarette were about 63±5.8, 325±82, 55±9.7, 11±1.4, 67±5.9, and 12±1.8 μg/cig, respectively. The experimental results indicated that the established method had the potential application in rapid determination of low molecular carbonyl compounds.

  11. Mechanism of stimulation of endogenous fermentation in yeast by carbonyl cyanide m-chlorophenylhydrazone

    NARCIS (Netherlands)

    Noshiro, A.; Purwin, C.; Laux, M.; Nicolaij, K.; Scheffers, W.A.; Holzer, H.

    1987-01-01

    Addition of the uncoupler and protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to starved yeast cells starts endogenous alcoholic fermentation lasting about 20 min. Hexose 6-phosphates, fructose 2,6-bisphosphate, and pyruvate accumulate in less than 2 min after addition of CCCP from

  12. Capture of an elusive nitrile ylide as an intermediate in isoxazole-oxazole photoisomerization.

    Science.gov (United States)

    Nunes, Cláudio M; Reva, Igor; Fausto, Rui

    2013-11-01

    The unimolecular photochemistry of 3,5-dimethylisoxazole (1) induced by a narrow-band tunable UV laser was studied using low-temperature matrix isolation coupled with infrared spectroscopy. Monomers of 1 were isolated in argon matrices at 15 K and characterized spectroscopically. Irradiation of matrix-isolated 1 at λ = 222 nm (near its absorption maximum) led to the corresponding 2H-azirine 3 and ketenimine 6 as primary photoproducts and also to nitrile ylide 4 and 2,5-dimethyloxazole (5). The photoproducts were identified (i) by comparison with infrared spectra of authentic matrix-isolated samples of 3 and 5 and (ii) using additional irradiations at longer wavelengths (where 1 does not react) which induce selective photoisomerizations of 4 and 6. In particular, irradiation with λ = 340 nm led to the unequivocal identification of the nitrile ylide anti-4, which was transformed into oxazole 5. The details of the 1,5-electrocyclization of the carbonyl nitrile ylide 4 and its structural nature (propargyl-like versus allene-like geometry) were also characterized using theoretical calculations. Thus, the elusive carbonyl nitrile ylide 4 was captured and characterized for the first time as an intermediate in the isoxazole-oxazole photoisomerization.

  13. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  14. Reactions of carbonyl compounds with α,β-unsaturated nitriles as a convenient pathway to carbo- and heterocycles

    International Nuclear Information System (INIS)

    Sharanin, Yu A; Goncharenko, M P; Litvinov, Victor P

    1998-01-01

    Published data on the methods for synthesis of carbo- and heterocyclic compounds based on reactions of α,β-unsaturated nitriles with carbonyl compounds and activated phenols are surveyed. It is demonstrated that all these reactions occur via nucleophilic addition of the carbanion generated from a carbonyl compound to the double bond of an unsaturated nitrile (the Michael reaction). The main routes of transformation of the adducts into carbo- and heterocyclic compounds are considered. The methods for regioselective preparation of fused 4H-pyrans or 1,4-dihydropyridines by varying conditions of cyclisation of Michael adducts are discussed. The bibliography includes 249 references.

  15. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    International Nuclear Information System (INIS)

    Qing Yuchang; Zhou Wancheng; Luo Fa; Zhu Dongmei

    2010-01-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  16. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    Science.gov (United States)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  17. Catalyst Initiation in the Oscillatory Carbonylation Reaction

    Directory of Open Access Journals (Sweden)

    Katarina Novakovic

    2011-01-01

    Full Text Available Palladium(II iodide is used as a catalyst in the phenylacetylene oxidative carbonylation reaction that has demonstrated oscillatory behaviour in both pH and heat of reaction. In an attempt to extract the reaction network responsible for the oscillatory nature of this reaction, the system was divided into smaller parts and they were studied. This paper focuses on understanding the reaction network responsible for the initial reactions of palladium(II iodide within this oscillatory reaction. The species researched include methanol, palladium(II iodide, potassium iodide, and carbon monoxide. Several chemical reactions were considered and applied in a modelling study. The study revealed the significant role played by traces of water contained in the standard HPLC grade methanol used.

  18. Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (Z)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition

    Science.gov (United States)

    2015-01-01

    The cationic ruthenium catalyst generated upon the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H promotes the redox-triggered C–C coupling of 2-alkynes and primary alcohols to form (Z)-homoallylic alcohols with good to complete control of olefin geometry. Deuterium labeling studies, which reveal roughly equal isotopic compositions at the allylic and distal vinylic positions, along with other data, corroborate a catalytic mechanism involving ruthenium(0)-mediated allene–aldehyde oxidative coupling to form a transient oxaruthenacycle, an event that ultimately defines (Z)-olefin stereochemistry. PMID:25075434

  19. Iron Dextran treatment does not induce serum protein carbonyls in the newborn pig

    Science.gov (United States)

    Oxidation of serum proteins can lead to carbonyl formation which alters their function and is often associated with stress-related diseases. Since it is recommended that all pigs reared in modern production facilities be given supplemental iron at birth to prevent anemia, and metals can catalyze th...

  20. Mechanistic Insights into Solvent and Ligand Dependency in Cu(I)-Catalyzed Allylic Alkylation with gem-Diborylalkanes.

    Science.gov (United States)

    Zhang, Qi; Wang, Bing; Liu, Jia-Qin; Fu, Yao; Wu, Yu-Cheng

    2018-01-19

    The recent Cu-catalyzed allylic substitution reaction between gem-diboryalkane and allyl electrophiles shows intriguing solvent and ligand-controlled regioselectivity. The α-alkylation product was obtained in DMF solvent, while γ-alkylation product was obtained in dioxane solvent and the dioxane and NHC ligand situation. In the present study, density functional theory calculations have been used to investigate the reaction mechanism and origin of the regioselectivity. For both dioxane and DMF, γ-alkylation undergoes successive oxidative addition (CH 2 Bpin trans to leaving group) and direct Cγ-C reductive elimination. The α-alkylation is found to undergo oxidative addition (CH 2 Bpin trans to leaving group), isomerization, and Cα-C reductive elimination rather than the previously proposed oxidative addition (-CH 2 Bpin cis to the leaving group) and Cα-C reductive elimination. The γ-alkylation and α-alkylation is, respectively, favorable for dioxane and DMF solvent, which is consistent with the γ- and α-selectivity in experiment. The solvent interferes the isomerization step, thereby affects the relative facility of the α- and γ-alkylation. Further investigation shows that η 1 -intermediate formation promoted by solvent is the rate-determining step of the isomerization. The stronger electron-donating ability of DMF than dioxane facilitates the η 1 -intermediate formation and finally results in the easier isomerization in DMF. For dioxane and NHC situation, in the presence of neutral NHC ligand, the -PO 4 Et 2 group tightly coordinates with the Cu center after the oxidative addition, preventing the isomerization process. The regioselectivity is determined by the relative facility of the oxidative addition step. Therefore, the favorable oxidative addition (in which -CH 2 Bpin trans to the leaving group) results in the facility of γ-alkylation.