WorldWideScience

Sample records for carbonized blood deposited

  1. Carbon deposition and hydrogen retention in tokamak

    International Nuclear Information System (INIS)

    Tanabe, Tetsuo

    2006-01-01

    The results of measurements on co-deposition of hydrogen isotopes and wall materials, hydrogen retention, redeposition of carbon and deposition of hydrogen on PMI of JT-60U are described. From above results, selection of plasma facing material and ability of carbon wall is discussed. Selection of plasma facing materials in fusion reactor, characteristics of carbon materials as the plasma facing materials, erosion, transport and deposition of carbon impurity, deposition of tritium in JET, results of PMI in JT-60, application of carbon materials to PFM of ITER, and future problems are stated. Tritium co-deposition in ITER, erosion and transport of carbon in tokamak, distribution of tritium deposition on graphite tile used as bumper limiter of TFTR, and measurement results of deposition of tritium on the Mark-IIA divertor tile and comparison between them are described. (S.Y.)

  2. Discharge cleaning of carbon deposits

    International Nuclear Information System (INIS)

    Mozetic, M.; Vesel, A.; Drenik, A.

    2006-01-01

    Experimental results of discharge cleaning of carbon deposits are presented. Deposits were prepared by creating plasma in pure methane. The methane was cracked in RF discharge at the output power of 250 W. The resultant radicals were bonded to the wall of discharge vessel forming a thin film of hydrogenated black carbon with the thickness of about 200nm. The film was then cleaned in situ by oxygen plasma with the density of about 1x10 16 m -3 , electron temperature of 5 eV, neutral gas kinetic temperature of about 100 0 C and neutral atom density of 6x10 21 m -3 . The treatment time was 30 minutes. The efficiency of plasma cleaning was monitored by optical emission spectroscopy. As long as the wall was contaminated with carbon deposit, substantial emission of the CO molecules was detected. As the cleaning was in progress, the CO emission was decreasing and vanished after 30 minutes when the discharge vessel became free of any carbon. The results are explained by interaction of plasma radicals with carbon deposits. (author)

  3. Nickel deposition effects on the growth of carbon nanofibers on carbon paper

    NARCIS (Netherlands)

    Celebi, S.; Schaaf, van der J.; Nijhuis, T.A.; Bruijn, de F.A.; Schouten, J.C.

    2010-01-01

    Carbon nanofiber (CNF) growth has been achieved on carbon paper fibers via two nickel deposition routes: i. nickel nanoparticle-ethanol suspension casting, and ii. homogenous deposition precipitation (HDP) of nickel onto carbon paper. Nickel nanoparticles created regular tubular CNF whereas HDP of

  4. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    Science.gov (United States)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  5. Gasification of carbon deposits on catalysts and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, J L

    1986-10-01

    'Coke' deposited on catalysts and reactor surfaces includes a variety of carbons of different structures and origins, their reactivities being conveniently assessed by Temperature Programmed Reaction (TPR). The gasification of carbon deposits obtained in the laboratory under well controlled conditions, and the regeneration of coked catalysts from petroleum refining processes are reviewed and discussed. Filamentary carbon deposits, containing dispersed metal particles, behave as supported metal catalysts during gasification, and show high reactivities. Pyrolytic and acid catalysis carbons are less reactive on their own, as the gasification is not catalysed; however, metal components of the catalyst or metal impurities deposited on the surface may enhance gasification. 26 refs., 8 figs., 2 tabs.

  6. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  7. Polyaniline-deposited porous carbon electrode for supercapacitor

    International Nuclear Information System (INIS)

    Chen, W.-C.; Wen, T.-C.; Teng, H.

    2003-01-01

    Electrodes for supercapacitors were fabricated by depositing polyaniline (PANI) on high surface area carbons. The chemical composition of the PANI-deposited carbon electrode was determined by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H 2 SO 4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode

  8. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  9. Gas analysis during the chemical vapor deposition of carbon

    International Nuclear Information System (INIS)

    Lieberman, M.L.; Noles, G.T.

    1973-01-01

    Gas chromatographic analyses were performed during the chemical vapor deposition of carbon in both isothermal and thermal gradient systems. Such data offer insight into the gas phase processes which occur during deposition and the interrelations which exist between gas composition, deposition rate, and resultant structure of the deposit. The results support a carbon CVD model presented previously. The application of chromatographic analysis to research, development, and full-scale facilities is shown. (U.S.)

  10. Method for in situ carbon deposition measurement for solid oxide fuel cells

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  11. Deposition of carbon dioxide

    International Nuclear Information System (INIS)

    2001-01-01

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  12. Hydrogenated amorphous carbon next deposit after heat treatment

    International Nuclear Information System (INIS)

    Salancon, E.; Durbeck, T.; Schwarz-Selinger, T.; Jacob, W.

    2006-01-01

    One of the main safety problems in the ITER tokamak project is the tritium adsorption in the reactor walls and in particular the deposits which appear after the plasma discharge. These deposits are amorphous hydrogenated carbon films, type polymer (soft a-C:H). The heating of these deposits with a pulse laser is a proposed solution for the tritium desorption. Meanwhile, Gibson and al show that in experimental conditions, products are deposed on the walls before entering the mass spectrometer. The authors present thermo-desorption spectra of different amorphous carbon films. (A.L.B.)

  13. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  14. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  15. Responses of Carbon Dynamics to Nitrogen Deposition in Typical Freshwater Wetland of Sanjiang Plain

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-01-01

    Full Text Available The effects of nitrogen deposition (N-deposition on the carbon dynamics in typical Calamagrostis angustifolia wetland of Sanjiang Plain were studied by a pot-culture experiment during two continuous plant growing seasons. Elevated atmospheric N-deposition caused significant increases in the aboveground net primary production and root biomass; moreover, a preferential partition of carbon to root was also observed. Different soil carbon fractions gained due to elevated N-deposition and their response intensities followed the sequence of labile carbon > dissolved organic carbon > microbial biomass carbon, and the interaction between N-deposition and flooded condition facilitated the release of different carbon fractions. Positive correlations were found between CO2 and CH4 fluxes and liable carbon contents with N-deposition, and flooded condition also tended to facilitate CH4 fluxes and to inhibit the CO2 fluxes with N-deposition. The increases in soil carbon fractions occurring in the nitrogen treatments were significantly correlated with increases in root, aboveground parts, total biomass, and their carbon uptake. Our results suggested that N-deposition could enhance the contents of active carbon fractions in soil system and carbon accumulation in plant of the freshwater wetlands.

  16. Deposition and benthic mineralization of organic carbon

    DEFF Research Database (Denmark)

    Nordi, Gunnvor A.; Glud, Ronnie N.; Simonsen, Knud

    2018-01-01

    Seasonal variations in sedimentation and benthic mineralization of organic carbon (OC) were investigated in a Faroese fjord. Deposited particulate organic carbon (POC) was mainly of marine origin, with terrestrial material only accounting for b1%. On an annual basis the POC export fromthe euphotic...

  17. Boron erosion and carbon deposition due to simultaneous bombardment with deuterium and carbon ions in plasmas

    International Nuclear Information System (INIS)

    Ohya, K.; Kawata, J.; Wienhold, P.; Karduck, P.; Rubel, M.; Seggern, J. von

    1999-01-01

    Erosion of boron out of a thin film exposed to deuterium edge plasmas and the simultaneous carbon deposition have been investigated in the tokamak TEXTOR-94 and simulated by means of a dynamic Monte Carlo code. The calculated results are compared with some observations (colorimetry, spectroscopy and AES) during and after the exposures. The implantation of carbon impurities strongly changes the effective boron sputtering yield of the film, which results into a lowering of the film erosion and a formation of thick carbon deposits. A strong decrease in the observed BII line emission around a surface location far from the plasma edge can be explained by a carbon deposition on the film. The calculated carbon depth profiles in the film, depending on the distance of the exposed surface from the plasma edge, are in reasonable agreement with measurements by AES after the exposures. Although simultaneous surface erosion and carbon deposition can be simulated, the calculated erosion rate is larger, by a factor of 2, than the observations by colorimetry at the early stage of the exposure

  18. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  19. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  20. Carbonate deposition on tail feathers of ruddy ducks using evaporation ponds

    Science.gov (United States)

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1989-01-01

    Substantial carbonate deposits were observed on rectrices of Ruddy Ducks (Oxyura jamaicensis) collected during 1982-1984 on evaporation ponds in the San Joaquin Valley, California. Carbonate deposits were composed of about 75% aragonite and 25% calcite, both polymorphous forms of CaCO3. Significantly more carbonate deposits were observed on Ruddy Ducks as length of exposure to agricultural drain water increased, during the 1983-1984 field season when salt concentrations in the ponds were higher, and in certain evaporation-pond systems.

  1. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  2. Hot-wire chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Cummings, FR

    2006-07-01

    Full Text Available ablation of graphite, carbon-arc discharge and chemical vapour deposition (CVD). However, some of these techniques have been shown to be expensive due to high deposition temperatures and are not easily controllable. Recently hot-wire chemical vapour...

  3. Hydrogen retention in carbon-tungsten co-deposition layer formed by hydrogen RF plasma

    International Nuclear Information System (INIS)

    Katayama, K.; Kawasaki, T.; Manabe, Y.; Nagase, H.; Takeishi, T.; Nishikawa, M.

    2006-01-01

    Carbon-tungsten co-deposition layers (C-W layers) were formed by sputtering method using hydrogen or deuterium RF plasma. The deposition rate of the C-W layer by deuterium plasma was faster than that by hydrogen plasma, where the increase of deposition rate of tungsten was larger than that of carbon. This indicates that the isotope effect on sputtering-depositing process for tungsten is larger than that for carbon. The release curve of hydrogen from the C-W layer showed two peaks at 400 deg. C and 700 deg. C. Comparing the hydrogen release from the carbon deposition layer and the tungsten deposition layer, it is considered that the increase of the release rate at 400 deg. C is affected by tungsten and that at 700 deg. C is affected by carbon. The obtained hydrogen retention in the C-W layers which have over 60 at.% of carbon was in the range between 0.45 and 0.16 as H/(C + W)

  4. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    International Nuclear Information System (INIS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-01-01

    Graphical abstract: Carbon nanotube/carbon fiber hybrid fiber was proposed by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition process. - Highlights: • Carbon nanotube coated carbon fiber was prepared by two methods. • Uniform and dense CNTs network formed by oxidative treatments combined with EPD. • Pretreatment of the CF is beneficial to EPD of CNTs on carbon fiber surface. • CNTs enhanced the surface activity and wettability of carbon fibers. • CNTs have contributed to the interfacial properties of composite. - Abstract: To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed

  5. Relationship between blood flow, bone structure, and 239Pu deposition in the mouse skeleton

    International Nuclear Information System (INIS)

    Humphreys, E.R.; Green, D.; Howells, G.R.; Thorne, M.C.

    1982-01-01

    The rate at which blood is supplied to several bones in female CBA mice was calculated from 18 F measurements in bone and blood. Blood flow measurements were compared with plutonium uptake in whole bone and on endosteal and periosteal bone surfaces. The results showed that: the rate at which blood is supplied to bone determines the rate of deposition of plutonium; there is a threshold rate of blood supply below which plutonium is not deposited; and the rate of blood supply determines the density of plutonium deposition on endosteal but not on periosteal bone surfaces. These results are discussed in the light of the current bone blood supply hypotheses. (orig.)

  6. Chemical vapour deposition of carbon nanotubes

    CSIR Research Space (South Africa)

    Arendse, CJ

    2006-02-01

    Full Text Available , effective, more versatile and easily scalable to large substrate sizes. In this paper, we present a design of the hot-wire CVD system constructed at the CSIR for the deposition of CNTs. Additionally, we will report on the structure of CNTs deposited... exhibit exceptional chemical and physical properties related to toughness, chemical inertness, magnetism, and electrical and thermal conductivity. A variety of preparation methods to synthesise CNTs are known, e.g. carbon-arc discharge, laser ablation...

  7. Hall Measurements on Carbon Nanotube Paper Modified With Electroless Deposited Platinum

    Directory of Open Access Journals (Sweden)

    Iwuoha Emmanuel

    2009-01-01

    Full Text Available Abstract Carbon nanotube paper, sometimes referred to as bucky paper, is a random arrangement of carbon nanotubes meshed into a single robust structure, which can be manipulated with relative ease. Multi-walled carbon nanotubes were used to make the nanotube paper, and were subsequently modified with platinum using an electroless deposition method based on substrate enhanced electroless deposition. This involves the use of a sacrificial metal substrate that undergoes electro-dissolution while the platinum metal deposits out of solution onto the nanotube paper via a galvanic displacement reaction. The samples were characterized using SEM/EDS, and Hall-effect measurements. The SEM/EDS analysis clearly revealed deposits of platinum (Pt distributed over the nanotube paper surface, and the qualitative elemental analysis revealed co-deposition of other elements from the metal substrates used. When stainless steel was used as sacrificial metal a large degree of Pt contamination with various other metals was observed. Whereas when pure sacrificial metals were used bimetallic Pt clusters resulted. The co-deposition of a bimetallic system upon carbon nanotubes was a function of the metal type and the time of exposure. Hall-effect measurements revealed some interesting fluctuations in sheet carrier density and the dominant carrier switched from N- to P-type when Pt was deposited onto the nanotube paper. Perspectives on the use of the nanotube paper as a replacement to traditional carbon cloth in water electrolysis systems are also discussed.

  8. Reactivity of rhodium during co-deposition of rhodium and carbon

    International Nuclear Information System (INIS)

    Marot, Laurent; Steiner, Roland; De Temmerman, Gregory; Oelhafen, Peter

    2009-01-01

    The detailed characterizations of rhodium/carbon films prepared by co-deposition using a dual magnetron sputtering have been carried out on silicon substrates at room temperature. Effects of the carbon incorporated in the film on the chemical bonding state, optical reflectivity and crystallinity were investigated using XPS, reflectivity measurements, XRD and SEM. The incorporation of carbon changes the films' crystallinity and thus producing amorphous films. The reflectivity of the films decreases linearly as the rhodium concentration decreases. It is important to note that no chemical bonding was observed between rhodium and carbon whatever the deposition conditions, even at high deposition temperature. Concerning the reactivity of rhodium films with oxygen, after long term storage in air the rhodium surface is covered with a thin rhodium oxide (few nanometers). However, for these films no variation of the optical reflectivity was observed after long air storage.

  9. Carbonate rock depositional models: A microfacies approach

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  10. Microscopical examination of carbon deposits formed in the Windscale advanced gas cooled reactor

    International Nuclear Information System (INIS)

    Livesey, D.J.; Chatwin, W.H.; Pearce, J.H.

    1980-12-01

    Methods are described of sampling and examining carbon deposits on fuel cladding in the Windscale advanced gas-cooled reactor. Deposition is observed on fuel cladding in both the reactor core and experimental loops in carbon dioxide coolants containing various amounts of carbon monoxide and methane. Deposit distribution over the cladding surface indicated that nucleation is dependent on local surface conditions. Microscopical examination showed that deposit thickness increases by carbon filament growth into the coolant gas stream and that the process can be markedly influenced by metallic impurities. There is evidence that nickel can play a particularly significant role in deposition in loop experiments but similar effects have not been observed in the reactor core. (author)

  11. The electrolytic deposition of carbon from molten Li2CO3

    International Nuclear Information System (INIS)

    Dimitrov, A.T.

    2003-01-01

    Electrodeposition of carbon on an nickel electrode in molten salt has been investigated with the aid of scanning electron microscopy (SEM) and cyclic voltammetry, using molten LiCl, as a base electrolyte with adding of 1 and 5 % of Li 2 CO 3 . Commercial nickel wire was used as a cathode and graphite crucible as the anode electrode. A cyclic voltammograms for an nickel electrode indicates that the deposition or discharge of carbon at the cathode occurs at potential range of - 0.8 to -1.7 V. Further, SEM observations showed that morphology of the carbon at the cathode is in the form of a fairly hard black deposit. It was found that the quality of the deposit depends by the cathode surface, applied overpotential, content of lithium carbonate and the thickness of the carbon film. (Original)

  12. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  13. Diagenetic pathways in deposits of cool- and cold-water carbonate factories

    Science.gov (United States)

    Frank, T. D.; James, N. P.

    2017-12-01

    This investigation integrates sedimentological, petrographic, and geochemical observations from modern and ancient heterozoan carbonate deposits that formed at temperate to polar latitudes with the aim of evaluating diagenetic pathways characteristic of these systems. These factories operate under conditions distinct from those of photozoan counterparts. Lower temperatures, higher trophic resources, lower carbonate saturation states, and strong seasonality govern not only the nature of carbonate communities, but also how deposits translate into the rock record. In these settings, carbonate production is entirely biogenic, assemblages are of low diversity, and there are no significant calcareous phototrophs. Aragonitic taxa may be present in living communities, but allochems rapidly disappear via dissolution. Carbonate producers are not capable of building rigid frameworks, so their deposits accumulate as sands and gravels and are prone to winnowing and reworking. Low production rates lead to long seafloor residence times (1000s of years) for grains, which undergo physical reworking, dissolution, and repeated infestation by endolithic borers. Microborings remain empty, increasing grain susceptibility to disintegration. Intergranular cementation on the seafloor is rare and restricted to hardgrounds. Periods of subaerial exposure do not leave traces of meteoric alteration. Results show that the deposits of heterozoan carbonate factories tend enter the geologic record as taphonomic remnants, namely reworked, unconsolidated sands and gravels with low diagenetic potential. During burial, physical and chemical compaction produce limestones with tightly packed, grain-supported fabrics, often with grains in sutured contact. Significant cementation is associated with the deep burial realm. Results reveal a dramatically different diagenetic pathway than is typical for deposits of tropical photozoan factories, in which significant recrystallization and lithification occur on

  14. Deposition of boron doped DLC films on TiNb and characterization of their mechanical properties and blood compatibility.

    Science.gov (United States)

    Liza, Shahira; Hieda, Junko; Akasaka, Hiroki; Ohtake, Naoto; Tsutsumi, Yusuke; Nagai, Akiko; Hanawa, Takao

    2017-01-01

    Diamond-like carbon (DLC) material is used in blood contacting devices as the surface coating material because of the antithrombogenicity behavior which helps to inhibit platelet adhesion and activation. In this study, DLC films were doped with boron during pulsed plasma chemical vapor deposition (CVD) to improve the blood compatibility. The ratio of boron to carbon (B/C) was varied from 0 to 0.4 in the film by adjusting the flow rate of trimethylboron and acetylene. Tribological tests indicated that boron doping with a low B/C ratio of 0.03 is beneficial for reducing friction (μ = 0.1), lowering hardness and slightly increasing wear rate compared to undoped DLC films. The B/C ratio in the film of 0.03 and 0.4 exhibited highly hydrophilic surface owing to their high wettability and high surface energy. An in vitro platelet adhesion experiment was conducted to compare the blood compatibility of TiNb substrates before and after coating with undoped and boron doped DLC. Films with highly hydrophilic surface enhanced the blood compatibility of TiNb, and the best results were obtained for DLC with the B/C ratio of 0.03. Boron doped DLC films are promising surface coatings for blood contacting devices.

  15. Study of tokamaks carbon deposits after heat treatment

    International Nuclear Information System (INIS)

    Richou, M.; Martin, C.; Roubin, P.; Delhaes, P.; Couzi, M.; Brosset, C.; Pegourie, B.

    2006-01-01

    One of the most important problem of tokamak is the interaction plasma-wall. The wall component is the graphite. Meanwhile it is submitted to erosion phenomena, deposition and co-deposition with the hydrogen. This carbon deposits have been studied and show an oval shape. In order to obtain more information on the structure and the growth of these deposits, the authors heated them till 2500 C. Raman spectroscopy, transmission microscopy, magnetic and density measurements have been realized and compared for two types of samples: from Tore Supra and from Textor. (A.L.B.)

  16. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  17. Effect of nickel introduced by electroplating on pyrocarbon deposition of carbon-fiber preforms

    Directory of Open Access Journals (Sweden)

    Ren Yancai

    2014-08-01

    Full Text Available In order to improve the deposition rate and microstructure of pyrocarbon, nickel was introduced by electroplating on carbon fibers and used as a catalyst during the deposition of pyrocarbon at 1000 °C using methane as a precursor gas. The distribution of nickel catalyst and the microstructure of pyrocarbon were characterized by scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and Raman micro-spectrometry. Results show that nano-sized nickel particles could be well distributed on carbon fibers and the pyrocarbon deposited catalytically had a smaller d002 value and a higher graphitization degree compared with that without catalyst. In addition, the deposition rate of pyrocarbon in each hour was measured. The deposition rate of pyrocarbon in the first hour was more than 10 times when carbon cloth substrates were doped with nickel catalysts as compared to the pure carbon cloths. The pyrocarbon gained by rapid deposition may include two parts, which are generation directly on the nickel catalyst and formation with the carbon nanofibers as crystal nucleus.

  18. Carbon nanotube forests growth using catalysts from atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  19. Nitrogen deposition, land cover conversion, and contemporary carbon balance of Europe

    Science.gov (United States)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Jung, M.; Chen, Y.; Heimann, M.; Roedenbeck, C.; Jones, C.

    2009-04-01

    In Europe, atmospheric nitrogen deposition has more than doubled, forest cover was steadily increasing, and agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, land cover conversion and climate. We use results from four ecosystem process models such as BIOME-BGC, JULES, ORCHIDEE, and ORCHIDEE-CN to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been most effected by anthropogenic changes.

  20. Atomic layer deposition of dielectrics for carbon-based electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jiyoung.kim@utdallas.edu; Jandhyala, S.

    2013-11-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics.

  1. Atomic layer deposition of dielectrics for carbon-based electronics

    International Nuclear Information System (INIS)

    Kim, J.; Jandhyala, S.

    2013-01-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics

  2. Interlaminar improvement of carbon fiber/epoxy composites via depositing mixture of carbon nanotubes and sizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Cuiqin [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Julin, E-mail: julinwang@126.com [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Tao [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2014-12-01

    Graphical abstract: - Highlights: • COOH-CNTs can react with sizing agent, and the optimum reaction ratio was 1:20. • Carbon fibers were dipped into the mixture bath of CNTs and sizing agent. • SEM results indicate that fibers surfaces were coated with CNTs and sizing agent. • ILSS was increased by 67.01% for the composites after the mixture coating process. • Single fibers tensile strength was maintained after the deposited process. - Abstract: The effects of deposition to carbon fibers surfaces with mixture of functionalized multi-walled carbon fibers (MWCNTs) and sizing agent were investigated. Relationships between CNTs and sizing agent were studied with Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS) and Ubbelohde viscometer. The results revealed that CNTs could react with sizing agent at 120 °C, and optimal reaction occurs when mass ratio was about 1:20. Then, carbon fibers were immersed in mixed aqueous suspension of CNTs and sizing agent with the above ratio dispersed by ultrasonication. According to scanning electron microscope (SEM) observations, fibers surfaces were coated with CNTs and sizing agent. The static contact angle tests indicated wetting performance between fibers and epoxy resin were improved after deposited procedures. Interlaminar shear strength was increased by 67.01% for fibers/epoxy resin composites after mixture deposited process. Moreover, the tensile strength of single fibers after depositing showed a slightly increase compared with that of fibers without depositing layer.

  3. Diamond-like carbon films deposited on polycarbonates by plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.T. [Department of Computer and Communication, Diwan College of Management, 72141 Taiwan (China)], E-mail: ctguo@dwu.edu.tw

    2008-04-30

    Diamond-like carbon films were coated on optical polycarbonate using plasma-enhanced chemical vapor deposition. A mixture of SiH{sub 4} and CH{sub 4}/H{sub 2} gases was utilized to reduce the internal compressive stress of the deposited films. The structure of the DLC films was characterized as a function of film thickness using Raman spectroscopy. The dependence of G peak positions and the intensity ratio of I{sub D}/I{sub G} on the DLC film thicknesses was analyzed in detail. Other studies involving atomic force microscopy, ultraviolet visible spectrometry, and three adhesion tests were conducted. Good transparency in the visible region, and good adhesion between diamond-like carbon films and polycarbonate were demonstrated. One-time recordings before and after a DLC film was coated on compact rewritable disc substrates were analyzed as a case study. The results reveal that the diamond-like carbon film overcoating the optical polycarbonates effectively protects the storage media.

  4. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-01-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm 3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  5. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  6. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Science.gov (United States)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  7. Investigations into the effect of spinel oxide composition on rate of carbon deposition

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1987-11-01

    The deposition of carbon on fuel cladding and other steels results in a reduction in heat transfer efficiency. Methane and carbon monoxide are added to the gaseous coolant in the Advanced Gas Cooled Reactor (AGR) to reduce the radiolytic oxidation of the graphite moderator and this is known to increase the rate of carbon deposition. However, the composition of oxides formed on steel surfaces within the reactor may also influence deposition. In this investigation carefully characterised spinel type oxides of varying composition have been subjected to γ radiation under conditions of temperature, pressure and atmosphere similar to those experienced in the reactor. The rate of carbon deposition has been studied using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). (U.K.)

  8. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  9. Development of a new foil compounded from carbon nanotubes and sputter-deposition carbon

    International Nuclear Information System (INIS)

    Hiroo Hasebe; Hironori Kuboki; Hiroki Okuno; Isao Yamane; Hiroshi Imao; Nobuhisa Fukunishi; Masayuki Kase; Osamu Kamigaito

    2014-01-01

    New carbon-nanotube-sputter-deposition-carbon (CNT-SDC) foils were developed and used in the U beam time at the RIKEN RI Beam Factory (RIBF) from October to December 2011. The lifetimes of these new foils were drastically extended, and stable, high-intensity U beams were successfully provided to users. The lifetime of the CNT-SDC foils was 2-5 C, which was 100 times longer than those of static C-foils previously used. The qualitative analysis of the CNT-SDC foils clearly showed that the CNT structure and bundles were broken by beam irradiation. In addition, it was found that CNT bundles in the CNT-SDC foil were grown after the carbon deposition procedure. This structure was considered to be the reason that the CNT-SDC foils maintain advantages of both CNT and SDC foils. (author)

  10. Preparation and physical properties of vapour-deposited carbon-carbon composites

    International Nuclear Information System (INIS)

    Loll, Philippe

    1976-01-01

    In its first part, this research thesis reports a bibliographical study on methods of preparation of various types of vapour-deposited (CVD) carbons, and the author notices that only structure and texture properties of these macroscopically homogeneous pyro-carbons have been studied in detail. For a better understanding of the behaviour of carbon-carbon composites, this thesis thus reports the study of the relationships between physical properties, macroscopic texture and microscopic structure. A densification installation and methods of characterisation have been developed. The fabrication process and its installation are presented (oven with its temperature and gas rate controls, study of its thermal gradient, substrate, heat treatments), and the study and characterisation of carbon-carbon composites are reported: structure and texture properties (studied by optic and scanning electronic microscopy, density measurements, and X-ray diffraction), physical properties (electronic paramagnetic resonance, static magnetism, electric and thermal conductivity). In the last part, the author comments and discusses the obtained results: conditions of preparation, existence, physical properties of the different observed microstructures [fr

  11. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  12. Distribution and sedimentary arrangement of carbon in South African proterozoic placer deposits

    International Nuclear Information System (INIS)

    Minter, W.E.L.

    1981-01-01

    Carbon, which occurs as grains, films, and thin seams in Witwatersrand Proterozoic placer deposits, is generally confined to carbon-seam reefs that were deposited in distal environments. The distribution of carbon on paleosurfaces, on sedimentary accumulation surfaces like pebble layers, on trough-shaped bedforms of pi-crossbedded units and foresets, and on the winnowed top of placer sediments implies that its growth took place contemporaneously with placer deposition in an aquatic fluvial environment. The areal distribution of carbon seams in distal environments is patchy, and its sparsity or total absence in some areas does not affect either the gold or the uranium content of the placer. High gold and uranium contents that appear to be associated with carbon seams are at the base of the reef because that position represents both the stable consolidated paleosurface upon which the plant material anchored itself and also the surface of bedload concentration

  13. Controlled Deposition and Alignment of Carbon Nanotubes

    Science.gov (United States)

    Smits, Jan M. (Inventor); Wincheski, Russell A. (Inventor); Patry, JoAnne L. (Inventor); Watkins, Anthony Neal (Inventor); Jordan, Jeffrey D. (Inventor)

    2012-01-01

    A carbon nanotube (CNT) attraction material is deposited on a substrate in the gap region between two electrodes on the substrate. An electric potential is applied to the two electrodes. The CNT attraction material is wetted with a solution defined by a carrier liquid having carbon nanotubes (CNTs) suspended therein. A portion of the CNTs align with the electric field and adhere to the CNT attraction material. The carrier liquid and any CNTs not adhered to the CNT attraction material are then removed.

  14. Lifetimes of carbon foils deposited on etched substrates

    International Nuclear Information System (INIS)

    Stoner, J.O. Jr.; Bashkin, S.; Hartog, P.D.; Thomas, G.; Yntema, J.L.

    1981-01-01

    The methods currently in use for producing long-lived carbon foils are listed. The possible common factors which are important in making long lasting foils are a) making a strong, coherent, continuous layer, b) making a foil slack, loose, or baggy, and c) making a foil whose molecular structure minimizes shrinkage. The behavior of foils deposited on etched substrates is compared with foils deposited upon conventional microscope slides

  15. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  16. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y. [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  17. Classic beta-amyloid deposits cluster around large diameter blood vessels rather than capillaries in sporadic Alzheimer's disease.

    Science.gov (United States)

    Armstrong, Richard A

    2006-11-01

    Various hypotheses could explain the relationship between beta-amyloid (Abeta) deposition and the vasculature in Alzheimer's disease (AD). Amyloid deposition may reduce capillary density, affect endothelial cells of blood vessels, result in diffusion from blood vessels, or interfere with the perivascular clearance mechanism. Hence, the spatial pattern of the classic ('cored') type of Abeta deposit was studied in the upper laminae (I,II/III) of the superior frontal gyrus in nine cases of sporadic AD (SAD). Sections were immunostained with antibodies against Abeta and with collagen IV to study the relationships between the spatial distribution of the classic deposits and the blood vessel profiles. Both the classic deposits and blood vessel profiles were distributed in clusters. In all cases, there was a positive spatial correlation between the clusters of the classic deposits and the larger diameter (>10 microm) blood vessel profiles and especially the vertically penetrating arterioles. In only 1 case, was there a significant spatial correlation between the clusters of the classic deposits and the smaller diameter (upper laminae of the frontal cortex. This aggregation could result from diffusion of proteins from blood vessels or from overloading the system of perivascular clearance from the brain.

  18. HF treatment effect for carbon deposition on silicon (111) by DC sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Darma, Y., E-mail: aji.ravazes70@gmail.com [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2014-03-24

    Surface modifications of Si (111) substrate by HF solution for thin film carbon deposition have been systematically studied. Thin film carbon on Si (111) has been deposited using DC Unbalanced Magnetron Sputtering with carbon pellet doped by 5% Fe as the target. EDAX characterization confirmed that the carbon fraction on Si substrate much higher by dipping a clean Si substrate by HF solution before sputtering process in comparison with carbon fraction on Si substrate just after conventional RCA. Moreover, SEM and AFM images show the uniform thin film carbon on Si with HF treatment, in contrast to the Si without HF solution treatment. These experimental results suggest that HF treatment of Si surface provide Si-H bonds on top Si surface that useful to enhance the carbon deposition during sputtering process. Furthermore, we investigate the thermal stability of thin film carbon on Si by thermal annealing process up to 900 °C. Atomic arrangements during annealing process were characterized by Raman spectroscopy. Raman spectra indicate that thin film carbon on Si is remaining unchanged until 600 °C and carbon atoms start to diffuse toward Si substrate after annealing at 900 °C.

  19. DEPOSITION AND PROPERTIES OF A LITTLE-ORIENTED PYROLYTIC CARBON; Deposition et proprietes d'un carbone pyrolytique peu oriente

    Energy Technology Data Exchange (ETDEWEB)

    Rappeneau, J; Bocquet, M; Yvars, M; David, C; Auriol, A

    1963-06-15

    Pyrolytic carbon obtained by thermal decomposition of acetylene, at partial pressures of 0.02 to 0.1 atm, on walls heated to between 1550 and 1650 deg C, is characterized by its low density (1.35) and a not very marked preferred orientation of the crystallites. The latter property is expressed by an absence of laminar structure in the deposit and by its good compatibility with an artiticial graphite substrate. Following a description of the method of deposition and an outline of the structural properties, certain physical and chemical properties of the substance are examined. (auth)

  20. Carbon Dioxide (CO2) in Blood: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/carbondioxideco2inblood.html Carbon Dioxide (CO2) in Blood To use the sharing features ... this page, please enable JavaScript. What is a Carbon Dioxide (CO2) Blood Test? Carbon dioxide (CO2) is an ...

  1. Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (Tufas)

    Science.gov (United States)

    Benson, L.

    1994-01-01

    During the late Quarternary, the elevation of terrace cutting and carbonate deposition in the Pyramid Lake subbasin were controlled by constancy of lake level imposed by spill to adjoining subbasins. Sill elevations are 1177-1183 m (Mud Lake Slough Sill), 1207 m (Emerson Pass Sill), and 1265 m (Darwin Pass Sill). Carbonate deposition was favored by: (1) hydrologic closure, (2) proximity to a source of calcium, (3) elevated water temperature, and (4) a solid substrate. The thickness and aspect of tufa are a function oflake-level dynamics. Relatively thin sheets and pendant sheets were deposited during a rising or falling lake. The upper parts of thick reef-form tufas have a horizontal aspect and were deposited in a lake which was stabilized by spill to the Carson Desert subbasin. The lower parts of the reef-form tufas are thinner and their outer surface has a vertical aspect, indicating that the lower part formed in a receding lake. The thickest and most complete sequences of tufa are mounds that border the Pyramid Lake shore. The tops of the tallest mounds reach the elevation of the Darwin Pass Sill and many mounds have been eroded to the elevations of the Mud Lake Slough Sill of the Emerson Pass Sill. The sequence of tufa formation (from oldest to youngest) displayed in these mounds is: (1) a beachrock containing carbonate-cemented volcanic cobbles, (2) broken and eroded old spheroids that contain thinolitic tufa and an outer rind of dense laminated tufa, (3) large cylindrical (tubular) tufas capped by (4) coatings of old dense tufas, and (5) several generations of old branching tufa commonly associated with thin, platy tufas and coatings of thinolitic tufa, (6) young spheroids that contain poorly oriented young thinolitic tufa in the center and several generations of radially oriented young thinolitic tufas near the outer edge, (7) a transitional thinolite-to-branching tufa, (8) two or more layers of young branching tufa, (9) a 0.5-cm-thick layer of fine

  2. Silver deposition on chemically treated carbon monolith

    Directory of Open Access Journals (Sweden)

    Jovanović Zoran M.

    2009-01-01

    Full Text Available Carbon monolith was treated with HNO3, KOH and H2O2. Effects of these treatments on the surface functional groups and on the amount of silver deposited on the CM surface were studied by temperature programmed desorption (TPD and atomic absorption spectrometry (AAS. As a result of chemical treatment there was an increase in the amount of surface oxygen complexes. The increase in the amount of silver deposit is proportional to the amount of surface groups that produce CO under decomposition. However, the high amount of CO groups, decomposing above 600°C, induces the smaller Ag crystallite size. Therefore, the high temperature CO evolving oxides are, most likely, the initial centers for Ag deposition.

  3. Unravelling the depositional origins and diagenetic alteration of carbonate breccias

    Science.gov (United States)

    Madden, Robert H. C.; Wilson, Moyra E. J.; Mihaljević, Morana; Pandolfi, John M.; Welsh, Kevin

    2017-07-01

    Carbonate breccias dissociated from their platform top counterparts are little studied despite their potential to reveal the nature of past shallow-water carbonate systems and the sequential alteration of such systems. A petrographic and stable isotopic study allowed evaluation of the sedimentological and diagenetic variability of the Cenozoic Batu Gading Limestone breccia of Borneo. Sixteen lithofacies representing six facies groups have been identified mainly from the breccia clasts on the basis of shared textural and compositional features. Clasts of the breccia are representative of shallow carbonate platform top and associated flank to basinal deposits. Dominant inputs are from rocky (karstic) shorelines or localised seagrass environments, coral patch reef and larger foraminiferal-rich deposits. Early, pre-brecciation alteration (including micritisation, rare dissolution of bioclasts, minor syntaxial overgrowth cementation, pervasive neomorphism and calcitisation of bioclasts and matrix) was mainly associated with marine fluids in a near surface to shallow burial environment. The final stages of pre-brecciation diagenesis include mechanical compaction and cementation of open porosity in a shallow to moderate depth burial environment. Post-brecciation diagenesis took place at increasingly moderate to deep burial depths under the influence of dominantly marine burial fluids. Extensive compaction, circum-clast dissolution seams and stylolites have resulted in a tightly fitted breccia fabric, with some development of fractures and calcite cements. A degree of facies-specific controls are evident for the pre-brecciation diagenesis. Pervasive mineralogical stabilisation and cementation have, however, led to a broad similarity of diagenetic features in the breccia clasts thereby effectively preserving depositional features of near-original platform top and margin environments. There is little intra-clast alteration overprint associated with subsequent clast reworking

  4. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Siraj, K., E-mail: khurram.uet@gmail.com [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z. [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Naseem, S.; Riaz, S. [Center for Solid State Physics, University of Punjab, Lahore (Pakistan)

    2011-05-15

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  5. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    International Nuclear Information System (INIS)

    Siraj, K.; Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z.; Naseem, S.; Riaz, S.

    2011-01-01

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  6. Studies on structure and organization of calcium carbonate deposits in algae

    Digital Repository Service at National Institute of Oceanography (India)

    Kerkar, V.; Untawale, A.G.

    The structure and organization of calcium carbonate deposits is studied in species of Halimeda, Udotea, Neomeris (Chlorophyta) and Padina (Phaeophyta). It was found that in Halimeda aragonite deposition takes place outside the cell wall...

  7. Room-temperature deposition of diamond-like carbon field emitter on flexible substrates

    International Nuclear Information System (INIS)

    Chen, H.; Iliev, M.N.; Liu, J.R.; Ma, K.B.; Chu, W.-K.; Badi, N.; Bensaoula, A.; Svedberg, E.B.

    2006-01-01

    Room-temperature fabrication of diamond-like carbon electron field emitters on flexible polyimide substrate is reported. These thin film field emitters are made using an Ar gas cluster ion beam assisted C 6 vapor deposition method. The bond structure of the as-deposited diamond-like carbon film was studied using Raman spectroscopy. The field emission characteristics of the deposited films were also measured. Electron current densities over 15 mA/cm 2 have been recorded under an electrical field of about 65 V/μm. These diamond-like carbon field emitters are easy and inexpensive to fabricate. The results are promising for flexible field-emission fabrication without the need of complex patterning and tip shaping as compared to the Spindt-type field emitters

  8. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88 ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  9. Factors determining properties of multi-walled carbon nanotubes/fibres deposited by PECVD

    International Nuclear Information System (INIS)

    Bell, M S; Teo, K B K; Milne, W I

    2007-01-01

    This paper presents a number of factors which have been found to be important to the growth of carbon nanotubes and nanofibres by plasma enhanced chemical vapour deposition. The effect of the electric field in a plasma discharge on nanotube growth is investigated and shown to be important in achieving nanotube alignment. The use of a plasma discharge also enables deposition to take place at lower temperatures, facilitating the use of substrates which would otherwise be damaged. The effect of varying the ratio of carbon feedstock gas to etchant gas is investigated and the ratio is shown to be important for controlling the shape of deposited nanostructures. The effects of varying plasma power are investigated, showing that greater plasma power results in a lower growth rate. Higher levels of plasma power are also shown to cause the sidewalls of deposited carbon nanotubes to be etched. Finally, the growth rate of carbon nanotubes and nanofibres is shown to depend upon the strength of the local electric field. It is proposed that a higher field causes greater ionization within the plasma, which results in a higher growth rate. This is borne out by comparing simulation results with experimental observations

  10. Nitrogen deposition, land cover conversion, climate, and contemporary carbon balance of Europe (Invited)

    Science.gov (United States)

    Churkina, G.; Zahle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Ramankutty, N.; Roedenbeck, C.; Heimann, M.; Jones, C.

    2009-12-01

    In Europe, atmospheric nitrogen deposition has more than doubled, air temperature was rising, forest cover was steadily increasing, while agricultural area was declining over the last 50 years. What effect have these changes had on the European carbon balance? In this study we estimate responses of the European land ecosystems to nitrogen deposition, rising CO2, land cover conversion and climate change. We use results from three ecosystem process models such as BIOME-BGC, JULES, and ORCHIDEE (-CN) to address this question. We discuss to which degree carbon balance of Europe has been altered by nitrogen deposition in comparison to other drivers and identify areas which carbon balance has been affected by anthropogenic changes the most. We also analyze ecosystems carbon pools which were affected by the abovementioned environmental changes.

  11. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  12. Ni-YSZ Substrate Degradation during Carbon Deposition

    Directory of Open Access Journals (Sweden)

    Marinšek, Marjan

    2011-06-01

    Full Text Available Carbon deposition on various Ni-YSZ catalytic composites with average Ni particle size from 0.44 mm to 0.98 μm was studied under dry CH4-Ar and humidified CH4-Ar conditions. The change in the catalytic activity was monitored both as a mass gain due to carbon deposition and hydrogen evolution due to CH4 dehydrogenation on Ni-YSZ. Regarding the start of methane decomposition and subsequent catalyst deactivation rate, composites with smaller Ni-grains were much more active in comparison to those with relatively large grains. Dry methane conditions always caused coking of the catalyst substrate with substantial activity loss. In contrast, under humidified methane atmosphere conditions with a steam to carbon (S/C ratio of 0.82, catalytic activity of the Ni-YSZ composites remained nearly undiminished after 2,000 minutes at chosen deposition temperatures (600–800 °C. On the catalyst surface, some encapsulation of Ni with the deposited carbon was noticed while carbon filaments grew inside the treated samples. The dimensions of C-filaments were influenced by treatment conditions and Ni-YSZ substrate morphology.

    La deposición de carbón en diferentes compuestos catalizadores Ni-YSZ con un tamaño promedio de partícula Ni de 0.44 mm a 0.98 μm fue estudiado bajo condiciones secas: CH4-Ar y húmedas: CH4-Ar. El cambio de la actividad catalítica fue monitoreado tanto como una ganancia de masa debida a la deposición de carbón y una evolución de hidrógeno debido a la deshidrogenación de CH4 en Ni-YSZ. En cuanto al comienzo de descomposición del metano y a la subsiguiente desactivación del catalizador, aquellos compuestos con granos Ni menores fueron mucho más activos en comparación a aquellos con granos relativamente mayores. Las condiciones secas del metano siempre causaron coquificación del sustrato del catalizador con una sustancial pérdida de actividad. Por el

  13. Enhancing anaerobic digestion of poultry blood using activated carbon

    Directory of Open Access Journals (Sweden)

    Maria José Cuetos

    2017-05-01

    Full Text Available The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6–8 g/L. The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  14. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  15. Carbonate Channel-Levee Systems Influenced by Mass-Transport Deposition, Browse Basin, Australia

    Science.gov (United States)

    Dunlap, D.; Janson, X.; Sanchez-Phelps, C.; Covault, J. A.

    2017-12-01

    Submarine channels are primary conduits for clastic sediment transport to deep-water basins, thereby controlling the location of marine depocenters and sediment bypass. The evolution and depositional character of submarine channels have broad implications to sediment dispersal, sediment quality, and hydrocarbon exploration potential. Siliciclastic channel systems have been extensively studied in modern environments, seismic and outcrop; however, carbonate channel-levee deposits have only recently been explored. Here we utilize newly released high-resolution (90 Hz) seismic-reflection data from the Australian Browse Basin to document the influence of mass-transport complex (MTC) deposition on the stratigraphic architecture of carbonate channel-levee systems. The 2014 vintage seismic survey is 2500 km2 and hosts numerous large Miocene-age carbonate channel-levee complexes basinward of the shelf edge. Regional horizons and individual channel forms were mapped. Channels range from 200-300 m wide and are bounded by high-relief levee-overbank wedges (>100 ms TWTT). These channels extend across the survey area >70 km. The leveed-channels were sourced from middle and late Miocene slope gullies linked to platform carbonates. Slope-attached and locally derived MTC's are evident throughout the Miocene section likely related to periods of basin inversion and shelf-edge gully incision. We interpret that regionally extensive (>1000 km2) slope-attached MTC's can shut down a channel-levee system and trigger the initiation of a new system, whereas more locally derived (wasting and turbidity currents, which informs depositional models of carbonate slope systems and calls for re-evaluation of the controls on stratigraphic patterns in mixed siliciclastic-carbonate deep-water basins.

  16. Microwave plasma deposition of diamond like carbon coatings

    Indian Academy of Sciences (India)

    Abstract. The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, ...

  17. River Export of Dissolved and Particulate Organic Carbon from Permafrost and Peat Deposits across the Siberian Arctic

    Science.gov (United States)

    Wild, B.; Andersson, A.; Bröder, L.; Vonk, J.; Hugelius, G.; McClelland, J. W.; Raymond, P. A.; Gustafsson, O.

    2017-12-01

    Permafrost and peat deposits of northern high latitudes store more than 1300 Pg of organic carbon. This carbon has been preserved for thousands of years by cold and moist conditions, but is now increasingly mobilized as temperatures rise. While part will be degraded to CO2 and CH4 and amplify global warming, part will be exported by rivers to the Arctic Ocean where it can be degraded or re-buried by sedimentation. We here use the four large Siberian rivers Ob, Yenisey, Lena, and Kolyma as natural integrators of carbon mobilization in their catchments. We apply isotope based source apportionments and Markov Chain Monte Carlo Simulations to quantify contributions of organic carbon from permafrost and peat deposits to organic carbon exported by these rivers. More specifically, we compare the 14C signatures of dissolved and particulate organic carbon (DOC, POC) sampled close to the river mouths with those of five potential carbon sources; (1) recent aquatic and (2) terrestrial primary production, (3) the active layer of permafrost soils, (4) deep Holocene deposits (including thermokarst and peat deposits) and (5) Ice Complex Deposits. 14C signatures of these endmembers were constrained based on extensive literature review. We estimate that the four rivers together exported 2.4-4.5 Tg organic carbon from permafrost and peat deposits per year. While total organic carbon export was dominated by DOC (90%), the export of organic carbon from permafrost and peat deposits was more equally distributed between DOC (56%) and POC (44%). Recent models predict that ca. 200 Pg carbon will be lost as CO2 or CH4 by 2100 (RCP8.5) from the circumarctic permafrost area, of which roughly a quarter is drained by the Ob, Yenisey, Lena, and Kolyma rivers. Our comparatively low estimates of river carbon export thus suggest limited transfer of organic carbon from permafrost and peat deposits to high latitude rivers, or its rapid degradation within rivers. Our findings highlight the importance

  18. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    Science.gov (United States)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  19. Carbon deposition on 20/25/Nb steel using an electrically heated AGR fuel pin

    International Nuclear Information System (INIS)

    Blanchard, A.; Campion, P.

    1980-01-01

    The radiolysis of carbon dioxide in gas-cooled reactors leads to the production of active species capable of reacting with the graphite moderator to form carbon monoxide with a resultant gradual loss of moderator. In the early days of gas-cooled reactor design, the intention was to allow the carbon monoxide concentration to increase and use this reaction product to inhibit the initial radiolysis of the carbon dioxide. Exploratory irradiation experiments using 4 to 7% carbon monoxide revealed that low density deposits ranging in colour from light grey through brown to black were found in the temperature range 470 to 600 K. In view of the fact that this type of deposition could adversely affect heat transfer processes in both fuel channels and heat exchangers, together with the fact that carbon monoxide was not sufficiently powerful as a graphite oxidation inhibitor, methane was selected as the primary inhibitor for the AGR series of power stations. This paper describes some carbon deposition experiments using an electrically heated 'dummy fuel element' linked to a recirculating carbon dioxide irradiation loop in which carbon monoxide concentration, methane concentration, fuel pin temperature and the chemical nature of the fuel pin surface were varied. (author)

  20. TPR system: a powerful technique to monitor carbon nanotube formation during chemical vapour deposition

    International Nuclear Information System (INIS)

    Tristao, Juliana Cristina; Moura, Flavia Cristina Camilo; Lago, Rochel Montero; Sapag, Karim

    2010-01-01

    In this work, a TPR (Temperature Programmed Reduction) system is used as a powerful tool to monitor carbon nanotubes production during CVD (Chemical Vapour Deposition), The experiments were carried out using catalyst precursors based on Fe-Mo supported on Al 2 O 3 and methane as carbon source. As methane reacts on the Fe metal surface, carbon is deposited and H2 is produced. TPR is very sensitive to the presence of H2 and affords information on the temperature where catalyst is active to form different forms of carbon, the reaction kinetics, the catalyst deactivation and carbon yields. (author)

  1. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  2. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Kaoru; Yoshida, Hiroyuki [Industrial Research Inst. of Ishikawa (Japan); Watanabe, Hiroshi [Gakushuin Univ., Tokyo (Japan); Iwaki, Masaya; Guzman, L [RIKEN, Saitama (Japan)

    1992-04-15

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C{sub 6}H{sub 6} gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10{sup 16} ions cm{sup -2}. The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.).

  3. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    International Nuclear Information System (INIS)

    Awazu, Kaoru; Yoshida, Hiroyuki; Watanabe, Hiroshi; Iwaki, Masaya; Guzman, L.

    1992-01-01

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C 6 H 6 gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10 16 ions cm -2 . The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.)

  4. Relative influence of deposition and diagenesis on carbonate reservoir layering

    Energy Technology Data Exchange (ETDEWEB)

    Poli, Emmanuelle [Total E and P, Courbevoie (France); Javaux, Catherine [Total E and P, Pointe Noire (Congo)

    2008-07-01

    The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)

  5. Oxygen reduction activity of N-doped carbon-based films prepared by pulsed laser deposition

    Science.gov (United States)

    Hakoda, Teruyuki; Yamamoto, Shunya; Kawaguchi, Kazuhiro; Yamaki, Tetsuya; Kobayashi, Tomohiro; Yoshikawa, Masahito

    2010-12-01

    Carbon-based films with nitrogen species on their surface were prepared on a glassy carbon (GC) substrate for application as a non-platinum cathode catalyst for polymer electrolyte fuel cells. Cobalt and carbon were deposited in the presence of N 2 gas using a pulsed laser deposition method and then the metal Co was removed by HCl-washing treatment. Oxygen reduction reaction (ORR) activity was electrochemically determined using a rotating disk electrode system in which the film samples on the GC substrate were replaceable. The ORR activity increased with the temperature of the GC substrate during deposition. A carbon-based film prepared at 600 °C in the presence of N 2 at 66.7 Pa showed the highest ORR activity among the tested samples (0.66 V vs. NHE). This film was composed of amorphous carbons doped with pyridine type nitrogen atoms on its surface.

  6. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available extensively used for the deposition of various materials, including diamond [1], polymers [2], silicon thin films [3], boron-carbon-nitride layers [4] and carbon nanotubes (CNTs) [5]. The process relies on the catalytic decomposition of precursor gases... (Ho) twice as efficient as a W filament during the deposition of microcrystalline silicon thin films [6]. Reactions between the precursor gases and the heated filament result in changes of the structural properties of the filaments; a process...

  7. On the Deposition Equilibrium of Carbon Nanotubes or Graphite in the Reforming Processes of Lower Hydrocarbon Fuels

    Directory of Open Access Journals (Sweden)

    Zdzisław Jaworski

    2017-11-01

    Full Text Available The modeling of carbon deposition from C-H-O reformates has usually employed thermodynamic data for graphite, but has rarely employed such data for impure filamentous carbon. Therefore, electrochemical data for the literature on the chemical potential of two types of purified carbon nanotubes (CNTs are included in the study. Parameter values determining the thermodynamic equilibrium of the deposition of either graphite or CNTs are computed for dry and wet reformates from natural gas and liquefied petroleum gas. The calculation results are presented as the atomic oxygen-to-carbon ratio (O/C against temperature (200 to 100 °C for various pressures (1 to 30 bar. Areas of O/C for either carbon deposition or deposition-free are computed, and indicate the critical O/C values below which the deposition can occur. Only three types of deposited carbon were found in the studied equilibrium conditions: Graphite, multi-walled CNTs, and single-walled CNTs in bundles. The temperature regions of the appearance of the thermodynamically stable forms of solid carbon are numerically determined as being independent of pressure and the analyzed reactants. The modeling indicates a significant increase in the critical O/C for the deposition of CNTs against that for graphite. The highest rise in the critical O/C, of up to 290% at 30 bar, was found for the wet reforming process.

  8. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  9. Deposition of titanium carbide films from mixed carbon and titanium plasma streams

    International Nuclear Information System (INIS)

    Delplancke-Ogletree, M.; Monteiro, O.R.

    1997-01-01

    Dual source metal plasma immersion ion implantation and deposition was used to deposit Ti x C y films over a wide range of Ti:C composition. This technique is well adapted for this purpose and allows one to tailor the microstructure and properties of the films. We investigated the variation of the composition, bonding states, and structure as functions of the deposition conditions. Excess carbon and contamination oxygen are incorporated in the TiC lattice interstitially and substitutionally, respectively. The wear mechanism of a stoichiometric TiC film was investigated and compared to that of a diamondlike carbon film. TiC fails by wear and microcrack propagation. copyright 1997 American Vacuum Society

  10. Electrophoretic deposition (EPD) of multi-walled carbon nano tubes (MWCNT) onto indium-tin-oxide (ITO) glass substrates

    International Nuclear Information System (INIS)

    Mohd Roslie Ali; Shahrul Nizam Mohd Salleh

    2009-01-01

    Full text: Multi-Walled Carbon Nano tubes (MWCNT) were deposited onto Indium-Tin-Oxide (ITO)-coated glass substrates by introducing the use of Electrophoretic Deposition (EPD) as the method. The Multi-Walled Carbon Nano tubes (MWCNT) were dispersed ultrasonically in ethanol and sodium hydroxide (NaOH) to form stable suspension. The addition of Sodium Hydroxide in ethanol can stabilize the suspension, which was very important step before the deposition take place. Two substrates of Indium-Tin-Oxide(ITO)-coated glass placed in parallel facing each other (conductive side) into the suspension. The deposition occurs at room temperature, which the distance fixed at 1 cm between both electrodes and the voltage level applied was fixed at 400 V, respectively. The deposition time also was fixed at 30 minutes. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) will be characterized using Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and Raman Microscope. The images of SEM shows that the Multi -Walled Carbon Nano tubes (MWCNT) were distributed uniformly onto the surface of ITO-Glass. The deposited ITO-Glass with Multi-Walled Carbon Nano tubes (MWCNT) could be the potential material in various practical applications such as field emission devices, fuel cells, and super capacitors. Electrophoretic deposition (EPD) technique was found to be an efficient technique in forming well distribution of Multi-Walled Carbon Nano tubes (MWCNT) onto ITO-Glass substrates, as proved in characterization methods, in which the optimum conditions will play the major role. (author)

  11. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  12. Coaxial carbon plasma gun deposition of amorphous carbon films

    International Nuclear Information System (INIS)

    Sater, D.M.; Gulino, D.A.

    1984-03-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented

  13. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  14. Nanostructured Diamond-Like Carbon Films Grown by Off-Axis Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Seong Shan Yap

    2015-01-01

    Full Text Available Nanostructured diamond-like carbon (DLC films instead of the ultrasmooth film were obtained by pulsed laser ablation of pyrolytic graphite. Deposition was performed at room temperature in vacuum with substrates placed at off-axis position. The configuration utilized high density plasma plume arriving at low effective angle for the formation of nanostructured DLC. Nanostructures with maximum size of 50 nm were deposited as compared to the ultrasmooth DLC films obtained in a conventional deposition. The Raman spectra of the films confirmed that the films were diamond-like/amorphous in nature. Although grown at an angle, ion energy of >35 eV was obtained at the off-axis position. This was proposed to be responsible for subplantation growth of sp3 hybridized carbon. The condensation of energetic clusters and oblique angle deposition correspondingly gave rise to the formation of nanostructured DLC in this study.

  15. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    International Nuclear Information System (INIS)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-01-01

    Ultrathin ( and lt; 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in(sup 2). These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested

  16. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  17. Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition

    Science.gov (United States)

    Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.

    2002-03-01

    We grow multiwall carbon nanotube (CNT) films using thermal chemical vapor deposition at atmospheric pressure using a mixture of acetylene and nitrogen from a 4-nm-thick Ni film catalyst. CNTs are characterized using electron microscopy and Rutherford backscattering spectrometry. CNTs grown with this method are extremely uniform in diameter, both throughout the sample and within the lengths of individual tubes. Nanotube outer diameters, ranging from 5-350 nm, and the total deposition of carbon material, increase exponentially with growth temperature from 630 °C-790 °C.

  18. Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.

    Science.gov (United States)

    Hong, Jinkee; Kang, Sang Wook

    2011-09-01

    We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.

  19. Cathode deposits in fullerene formation — microstructural evidence for independent pathways of pyrolytic carbon and nanobody formation

    Science.gov (United States)

    Taylor, G. H.; Gerald, J. D. Fitz; Pang, L.; Wilson, M. A.

    1994-01-01

    Microstructures in cathode deposits formed during fullerene production by electrical arcing in helium have been examined in detail. This has provided new information about the mechanisms by which nanobodies (nanotubes and nanoparticles) and pyrolytic carbon are deposited. Nanobodies and pyrolytic carbon form independently; the former probably grow in the plasma then deposit on the electrode but much of the latter deposits directly on the electrode surface.

  20. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    Science.gov (United States)

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  1. Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior

    International Nuclear Information System (INIS)

    Ben Amor, Y.; Bousselmi, L.; Tribollet, B.; Triki, E.

    2010-01-01

    Different allotropic forms of calcium carbonate scales were electrochemically deposited on a carbon steel surface in artificial underground Tunisian water at -0.95 V SCE and various Mg 2+ concentrations. Because of the importance of the diffusion process, the rotating disk electrode was used. The deposition kinetics were analyzed by chronoamperometry measurements and the calcareous layers were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The physical model proposed by Gabrielli was used to analyze the EIS measurements. Independent of the deposited allotropic form of calcium carbonate, the measurements showed that the oxygen reduction occurs in the pores formed between the CaCO 3 crystals and the metallic surface.

  2. Ironstone deposits hosted in Eocene carbonates from Bahariya (Egypt)-New perspective on cherty ironstone occurrences

    Science.gov (United States)

    Afify, A. M.; Sanz-Montero, M. E.; Calvo, J. P.

    2015-11-01

    This paper gives new insight into the genesis of cherty ironstone deposits. The research was centered on well-exposed, unique cherty ironstone mineralization associated with Eocene carbonates from the northern part of the Bahariya Depression (Egypt). The economically important ironstones occur in the Naqb Formation (Early Eocene), which is mainly formed of shallow marine carbonate deposits. Periods of lowstand sea-level caused extensive early dissolution (karstification) of the depositional carbonates and dolomitization associated with mixing zones of fresh and marine pore-water. In faulted areas, the Eocene carbonate deposits were transformed into cherty ironstone with preservation of the precursor carbonate sedimentary features, i.e. skeletal and non-skeletal grain types, thickness, bedding, lateral and vertical sequential arrangement, and karst profiles. The ore deposits are composed of iron oxyhydroxides, mainly hematite and goethite, chert in the form of micro- to macro-quartz and chalcedony, various manganese minerals, barite, and a number of subordinate sulfate and clay minerals. Detailed petrographic analysis shows that quartz and iron oxides were coetaneous and selectively replaced carbonates, the coarse dolomite crystals having been preferentially transformed into quartz whereas the micro-crystalline carbonates were replaced by the iron oxyhydroxides. A number of petrographic, sedimentological and structural features including the presence of hydrothermal-mediated minerals (e.g., jacobsite), the geochemistry of the ore minerals as well as the structure-controlled location of the mineralization suggest a hydrothermal source for the ore-bearing fluids circulating through major faults and reflect their proximity to centers of magmatism. The proposed formation model can contribute to better understanding of the genetic mechanisms of formation of banded iron formations (BIFs) that were abundant during the Precambrian.

  3. Exploring Soil Organic Carbon Deposits in a Bavarian Catchment

    Science.gov (United States)

    Kriegs, Stefanie; Hobley, Eleanor; Schwindt, Daniel; Völkel, Jörg; Kögel-Knabner, Ingrid

    2017-04-01

    The distribution of soil organic carbon (SOC) in the landscape is not homogeneous, but shows high variability from the molecular to the landscape scale. The aims of our work are 1.) to detect hot spots of SOC storage within different positions in a landscape; 2.) to outline differences (or similarities) between SOC characteristics of erosional and accumulative landscape positions; and 3.) to determine whether localised SOC deposits are dominated by fresh and labile organic matter (OM) or old and presumably stable OM. These findings are crucial for the evaluation of the landscapés vulnerability towards SOC losses caused by management or natural disturbances such as erosional rainfall events. Sampling sites of our study are located in a catchment at the foothills of the Bavarian Forest in south-east Germany. Within this area three landform positions were chosen for sampling: a) a slope with both erosional depletion and old colluvial deposits, b) a foothill with recent colluvial deposits and c) a floodplain with alluvial deposits. In order to consider both heterogeneity within a single landform position and between landforms several soil profiles were sampled at every position. Samples were taken to a maximal depth of 150 cm, depending on the presence of rocks or ground-water level, and analysed for bulk density, total carbon (TOC), inorganic carbon (IC) and texture. SOC densities and stocks were calculated. A two-step physical density fractionation using Sodium-Polytungstate (1.8 g/cm3 and 2.4 g/cm3) was applied to determine the contribution of the different soil organic matter fractions to the detected SOC deposits. Literature assumes deep buried SOC to be particularly old and stable, so we applied Accelerator Mass Spectrometry Radiocarbon Dating (AMS 14C) to bulk soil samples in order to verify this hypothesis. The results show that the floodplain soils contain higher amounts of SOC compared with slopes and foothills. Heterogeneity within the sites was smaller

  4. Carbon monoxide and COHb concentration in blood in various circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Modic, J. [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia)

    2003-07-01

    On the basis of known medical experiments we find out the correlation between the concentration of carbon monoxide (CO) in inhaling air and the concentration of carboxihemoglobyne (COHb) in human blood. All internal combustion engines produce exhaust gases containing noxious compounds: carbon monoxide, nitrogen oxides (NO{sub x}), carbon oxides (CxHy) and smoke. In a living room is important the smoke of cigarettes, smoke of furnaces, improper ventilation. In tunnel is most dangerous the carbon monoxide if it exceeds an allowable level. In human blood the carbon monoxide causes increasing the concentration of carboxihemoglobyne and in this case the hypoxia of web. With help of mathematical model the concentrations of some dangerous substances at the end of tunnel were calculated. For this case a differential equation also was developed and it shows the correlation between concentration of carbon monoxide in the air and concentration of carboxihemoglobyne in the blood. The constructed mathematical model shows circumstances in the tunnel (velocity of air moving as effect of induction, concentration of noxious substances and criterial number). Also a corresponding computer program was developed, which makes possible a quick and simple calculation. All the results are proved by experiments. Finally the differential equation was done, which shows a temporal connection between both parameters as a function of tunnel characteristics. (author)

  5. Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes

    International Nuclear Information System (INIS)

    Wright, Andrew C.; Faulkner, Michael K.; Harris, Robert C.; Goddard, Alex; Abbott, Andrew P.

    2012-01-01

    The drive to create ever smaller magnetic memory devices has led to the development of new nanomagnetic domains on surfaces. This paper reports the development of nano-chromium magnetic domains obtained using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to achieve this using conventional aqueous solutions were unsuccessful even after thin nickel underlayers were applied. The use of a novel electrolyte, a deep eutectic solvent, made from choline chloride: chromium (III) chloride enabled highly conformal overcoatings of chromium on individual bare carbon nanotubes to be obtained. Very high aspect ratio metal microstructures could be obtained by this novel technology. Magnetic imaging of the coated nanoarrays showed there to be clear magnetic character to the coating when the thin coatings were applied but this disappeared when the deposits were thicker and more contiguous. - Highlights: ► Nanoscale chromium deposited from non-aqueous electrolyte shows magnetic behavior. ► Vertically aligned carbon nanotubes conformally coated with chromium metal. ► Ionic liquid electrolyte superior to chromic acid for plating high aspect ratio structures.

  6. Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Materials Science Research Center, Glyndwr University, Wrexham LL11 2AW (United Kingdom); Faulkner, Michael K., E-mail: m.faulkner@manchester.ac.uk [Manchester Materials Science Centre, University of Manchester, Grosvenor Street, Manchester M13 9PL (United Kingdom); Harris, Robert C.; Goddard, Alex; Abbott, Andrew P., E-mail: apa1@le.ac.uk [Department of Chemistry, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2012-12-15

    The drive to create ever smaller magnetic memory devices has led to the development of new nanomagnetic domains on surfaces. This paper reports the development of nano-chromium magnetic domains obtained using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to achieve this using conventional aqueous solutions were unsuccessful even after thin nickel underlayers were applied. The use of a novel electrolyte, a deep eutectic solvent, made from choline chloride: chromium (III) chloride enabled highly conformal overcoatings of chromium on individual bare carbon nanotubes to be obtained. Very high aspect ratio metal microstructures could be obtained by this novel technology. Magnetic imaging of the coated nanoarrays showed there to be clear magnetic character to the coating when the thin coatings were applied but this disappeared when the deposits were thicker and more contiguous. - Highlights: Black-Right-Pointing-Pointer Nanoscale chromium deposited from non-aqueous electrolyte shows magnetic behavior. Black-Right-Pointing-Pointer Vertically aligned carbon nanotubes conformally coated with chromium metal. Black-Right-Pointing-Pointer Ionic liquid electrolyte superior to chromic acid for plating high aspect ratio structures.

  7. Carbon Deposition during CO2 Electrolysis in Ni-Based Solid-Oxide-Cell Electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Graves, Christopher R.; Blennow, P.

    2015-01-01

    . Electrochemical impedance spectroscopy in both H2/H2O and CO/CO2 revealed an increase in resistance of the fuel electrode after each CO2 electrolysis current-voltage curve, indicating possible carbon deposition. The difference in partial oxygen pressure between inlet and outlet was analyzed to verify carbon...... in detail. In an attempt to mitigate the degradation due to carbon deposition, the Ni-YSZ electrode was infiltrated with a gadolinium doped ceria (CGO) solution. Initial results indicate that the coking tolerance was not enhanced, but it is still unclear whether infiltrated cells degrade less. However......, infiltrated cells display a significant performance enhancement before coking, especially under electrolysis current. The investigation thus indicated carbon formation in the Ni containing fuel electrode before the thermodynamically calculated threshold for average measurements of the cell was reached...

  8. Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-01-01

    The electrochemical reduction of tinidazole (TNZ) is studied on gold-nanoparticle/carbon-nanotubes (AuNP/CNT) modified glassy carbon electrodes using the linear sweep voltammetry. An electrochemical procedure was used for the deposition of gold nanoparticles onto the carbon nanotube film pre-cast on a glassy carbon electrode surface. The resulting nanoparticles were characterized by scanning electron microscopy and cyclic voltammetry. The effect of the electrodeposition conditions, e.g., salt concentration and deposition time on the response of the electrode was studied. Also, the effect of experimental parameters, e.g., potential and time of accumulation, pH of the buffered solutions and the potential sweep rate on the response is examined. Under the optimal conditions, the modified electrode showed a wide linear response toward the concentration of TNZ in the range of 0.1–50 μM with a detection limit of 10 nM. The prepared electrode was successfully applied for the determination of TNZ in pharmaceutical and clinical samples.

  9. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement sampled near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr, and eolian material has 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain

  10. Strontium isotopes in carbonate deposits at Crater Flat, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.; Stuckless, J.S.

    1991-01-01

    Strontium isotope studies of carbonates from soils, veins, eolian dust and Paleozoic basement samples near Crater Flat, southwest of Yucca Mountain, provide evidence for the origins of these materials. Vein and soil carbonates have nearly identical ranges of 87 Sr/ 86 Sr ratios at the lower end of the pedogenic range. The average 87 Sr/ 86 Sr of Paleozoic basement from Black Marble Hill is similar to the 87 Sr/ 86 Sr in the eolian dust, perhaps indicating a local source for this material. Possible spring deposits have generally higher 87 Sr/ 86 Sr than the other carbonates. These data are compared with similar data from areas east of Yucca Mountain. 7 refs., 5 figs

  11. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  12. Chemical vapour deposition - a promising method for production of different kinds of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, A.; Ritschel, M.; Bartsch, K.; Graff, A.; Taeschner, C.; Fink, J. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany)

    2001-08-01

    Carbon nanostructures (fibres, multi and single walled tubes) have been synthesized by catalytic chemical vapour deposition. The catalyst material, deposition temperature and the used hydrocarbon are the main parameters responsible for the formation of the desired structure. In dependence on these parameters and by optimising the deposition process nanofibres with herringbone structure and tubular multiwalled nanotubes were deposited in large amounts and high purity. In the case of single wall nanotubes synthesis an aftertreatment and process is absolutely necessary to obtain material with high percentage of tubes. Layers of disordered and aligned multiwalled nanotubes were deposited on oxidised silicon substrates coated with thin sputtered metal layers (Co, permalloy) by using the micro-wave assisted plasma CVD process or the bias supported hot filament CVD method. The latter method allows relatively low deposition temperatures (550 - 750 C). The obtained carbon modifications were characterised by scanning and transmission electron microscopy. Furthermore, the electron field emission of the CNT's layers were investigated. (orig.)

  13. Microwave plasma-enhanced chemical vapour deposition growth of carbon nanostructures

    Directory of Open Access Journals (Sweden)

    Shivan R. Singh

    2010-05-01

    Full Text Available The effect of various input parameters on the production of carbon nanostructures using a simple microwave plasma-enhanced chemical vapour deposition technique has been investigated. The technique utilises a conventional microwave oven as the microwave energy source. The developed apparatus is inexpensive and easy to install and is suitable for use as a carbon nanostructure source for potential laboratory-based research of the bulk properties of carbon nanostructures. A result of this investigation is the reproducibility of specific nanostructures with the variation of input parameters, such as carbon-containing precursor and support gas flow rate. It was shown that the yield and quality of the carbon products is directly controlled by input parameters. Transmission electron microscopy and scanning electron microscopy were used to analyse the carbon products; these were found to be amorphous, nanotubes and onion-like nanostructures.

  14. Studies of carbon deposition and consumption on Ru/TiO2 during Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Yokomizo, G.; Bell, A.T.; Duncan, T.M.

    1986-01-01

    Isotropic tracer techniques have been used to characterize the dynamics of carbon deposition on the surface of a Ru/TiO 2 catalyst during Fischer-Tropsch synthesis and 13 C-NMR spectroscopy has been used to characterize the structure of the deposited carbon. Elemental carbon, designated C/sub α/ is formed very rapidly, whereas alkyl carbon, designated C/sub β/ accumulates much more slowly. The influence of catalyst reduction on temperature, reaction conditions, and time under reaction conditions on the surface concentrations and reactivity of C/sub α/ and C/sub β/ will be discussed. It will be shown that C/sub β/ progressively becomes less reactive and may be the precursor to the formation of graphitic carbon

  15. Role of carbon atoms in the remote plasma deposition of hydrogenated amorphous carbon

    International Nuclear Information System (INIS)

    Benedikt, J.; Wisse, M.; Woen, R.V.; Engeln, R.; Sanden, M.C.M. van de

    2003-01-01

    The aim of this article is to determine the role of carbon atoms in the growth of hydrogenated amorphous carbon (a-C:H) films by means of an argon/acetylene expanding thermal plasma. Cavity ring down absorption spectroscopy is used to detect metastable carbon atoms by probing the 1s 2 2s 2 2p 3s 1 P 1 2 2s 2 2p 2 1 S 0 electronic transition. In addition to absorption measurements, the emission of the same transition is monitored by means of optical emission spectroscopy. These two measurements provide information about the local production of the C atoms and about their reactivity in the gas phase. It will be shown that under growth conditions in an Ar/C 2 H 2 expanding thermal plasma, the metastable carbon density is also representative for the ground state carbon density. From obtained results it is concluded that the carbon atoms react rapidly with acetylene in the gas phase and therefore their contribution to the growth of hard diamond-like a-C:H films can be neglected. Only at low acetylene flows, the condition when soft polymer-like films are deposited, carbon atoms are detected close to the substrate and can possibly contribute to the film growth

  16. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    Science.gov (United States)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  17. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method

    Science.gov (United States)

    Manawi, Yehia M.; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A.

    2018-01-01

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research. PMID:29772760

  18. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD Method

    Directory of Open Access Journals (Sweden)

    Yehia M. Manawi

    2018-05-01

    Full Text Available Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs, carbon nanofibers (CNFs, graphene, carbide-derived carbon (CDC, carbon nano-onion (CNO and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  19. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  20. DiMES Studies of Temperature Dependence of Carbon Erosion and Re-Deposition in the DIII-D Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D L; Jacob, W; Krieger, K; Litnovsky, A; Philipps, V; West, W P; Wong, C C; Allen, S L; Bastasz, R J; Boedo, J A; Brooks, N H; Boivin, R L; De Temmerman, G; Fenstermacher, M E; Groth, M; Hollmann, E M; Lasnier, C J; McLean, A G; Moyer, R A; Stangeby, P C; Wampler, W R; Watkins, J G; Wienhold, P; Whaley, J

    2007-03-15

    A strong effect of a moderately elevated surface temperature on net carbon deposition and deuterium co-deposition in the DIII-D divertor was observed under detached conditions. A DiMES sample with a gap 2 mm wide and 18 mm deep was exposed to lower-single-null (LSN) L-mode plasmas first at room temperature, and then at 200 C. At the elevated temperature, deuterium co-deposition in the gap was reduced by an order of magnitude. At the plasma-facing surface of the heated sample net carbon erosion was measured at a rate of 3 nm/s, whereas without heating net deposition is normally observed under detachment. In a related experiment three sets of molybdenum mirrors recessed 2 cm below the divertor floor were exposed to identical LSN ELMy H-mode discharges. The first set of mirrors exposed at ambient temperature exhibited net carbon deposition at a rate of up to 3.7 nm/s and suffered a significant drop in reflectivity. In contrast, two other mirror sets exposed at elevated temperatures between 90 C and 175 C exhibited practically no carbon deposition.

  1. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  2. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    Science.gov (United States)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2015-06-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland

  3. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    Directory of Open Access Journals (Sweden)

    T. Schneider von Deimling

    2015-06-01

    Full Text Available High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2 and methane (CH4 fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels. We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C (68% range by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5 results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range. We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in

  4. Superhard PVD carbon films deposited with different gradients with and without additions of titanium and silicon

    International Nuclear Information System (INIS)

    Bauer, C.

    2003-10-01

    This work focusses on thin carbon-based films, deposited by magnetron sputtering with additional argon ion bombardment (0 eV to 800 eV) without extra adhesive layer on hard metal inserts. As one possibility of increasing the reduced adherence of hard carbon films the deposition of films with additions of titanium and silicon is studied. The aim of this work is to examine the influence of a modification of the transition between substrate and film by realizing three different types of deposition gradients. The pure carbon films are amorphous, the dominant network of atoms is formed by sp 2 bonded atoms. The amount of sp 3 bonded atoms is up to 30% and is influenced by the bombarding argon ion energy. Carbon films with additions of silicon are amorphous, only in films with a high amount of titanium (approx. 20 at%) nanocomposites of titanium carbide crystals with diameters of less than 5 nm in an amorphous carbon matrix were found. The mechanical properties and the behavior of single layer carbon films strongly depend on the argon ion energy. An increase of this energy leads to higher film hardness and higher residual stress and results in the delamination of superhard carbon films on hard metal substrates. The adhesion of single layer films for ion energies of more than 200 eV is significantly improved by additions of titanium and silicon, respectively. The addition of 23 at% silicon and titanium, respectively leads to a high reduction of the residual stress. In a non-reactive PVD process thin films were deposited with a continuously gradient in chemical composition. The results of the investigations of the films with two different concentrations of titanium and silicon, respectively show that carbon-based films with a good adhesion could be deposited. The combination of the two gradients in structure and properties and in chemical composition leads in the system with carbon and silicon carbide to hard and very adhesive films. Especially for carbon films with a high

  5. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China

    DEFF Research Database (Denmark)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere Abdisa

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling...... and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle....

  6. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  7. Molecular dynamics simulation of chemical vapor deposition of amorphous carbon. Dependence on H/C ratio of source gas

    International Nuclear Information System (INIS)

    Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin

    2011-01-01

    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas. (author)

  8. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  9. Exploration on relationship between uranium and organic materials in carbonate-siliceous pelite type uranium ore deposits

    International Nuclear Information System (INIS)

    Dong Yongjie

    1996-01-01

    The author determines the content of uranium and organic carbon of part specimen of surrounding rocks and ores, which sampled from carbonate and black shale type uranium deposits in Xiushui, Jiangxi Province, and Tongcheng, Hubei Province. According to the analytical operation regulations of organic materials, extraction and separation of chloroform pitch is carried out. Internal relationships between uranium and organic derivative is discussed. The conclusion shows that: (1) certain co-relationship between U and organic carbon and chloroform extract is detected; (2) evolutionary processes of organic materials in the exogenetic uranium deposits are not all the same; (3) non-hydrocarbon is closely related to uranium, so it can be regarded as indicator of uranium gathering in exogenetic uranium deposits

  10. Effects of deposition conditions on the properties of pyrolytic carbon deposited in a fluidized bed

    International Nuclear Information System (INIS)

    Lowden, Richard Andrew; Hunn, John D.; Nunn, Stephen D.; Kercher, Andrew K.; Price, Jeffery R.; Jellison, Gerald Earle Jr.

    2005-01-01

    The high-density, isotropic pyrolytic carbon layer beneath the silicon carbide (IPyC) plays a key role in the irradiation performance of coated particle fuel. The IPyC layer protects the kernel from reactions with chlorine during deposition of the SiC layer, provides structural support for the SiC layer, and protects the SiC from fission products and carbon monoxide. The process conditions used by the Germans to deposit the IPyC coating produced a highly isotropic, but somewhat permeable IPyC coating. The permeability of the IPyC coating was acceptable for use with the dense German UO 2 kernels, but may not be suitable when coating UCO kernels. The UCO kernels are typically more porous and thus have a larger surface area than UO 2 kernels. The lower density and the higher surface area of UCO kernels could make them more susceptible to attack by HCl gas during the silicon carbide (SiC) coating process, which could result in heavy metal dispersion into the buffer and IPyC coatings and a higher level of as-manufactured SiC defects. The relationship between IPyC deposition conditions, permeability, and anisotropy must be understood and the appropriate combination of anisotropy and permeability for particle fuel containing UCO kernels selected. A reference set of processing conditions have been determined from review of historical information and results of earlier coating experiments employing 350 and 500 (micro)m UO 2 kernels. It was decided that a limited study would be conducted, in which only coating gas fraction (CGF) and temperature would be varied. Coatings would be deposited at different rates and with a range of microstructures. Thickness, density, porosity and anisotropy would be measured and permeability evaluated using a chlorine leach test. The results would be used to select the best IPyC coating conditions for use with the available natural enrichment uranium carbide/uranium oxide (NUCO) kernels. The response plots from the investigation of the

  11. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  12. The effect of carbon content on mechanical properties, failure and corrosion resistance of deposited chromium metal

    Directory of Open Access Journals (Sweden)

    Леонід Кімович Лещинськiй

    2017-06-01

    Full Text Available It has been shown that if choosing a metal composition for surfacing rolls and rollers of continuous casting machines, both the carbon impact on the mechanical and functional properties and the critical values of the chromium concentration, which determine the corrosion resistance of the metal with regard to electrochemical corrosion theory, should be considered as well. The paper studied the effect of chromium and carbon steel the X5-X12 type on the structure, technological strength, mechanical properties, fracturing resistance and corrosion resistance of the weld metal. The composition of chromium tool steels (deposited metal (X5-used for the rolls of hot rolling mills and (X12-used for continuous casting machines rollers correspond to these values. The impact of carbon on the properties of the deposited metal containing chromium was considered by comparing the data for both types of the deposited metal. It was found that for both types of the deposited metal (X5 and X12, the limiting value of the carbon content, providing an optimal combination of strength, ductility, failure resistance is the same. If the carbon content is more than the limiting value – (0,25% the technological strength and failure resistance of the deposited metal significantly reduce. With increasing carbon content from 0,18 to 0,25% the martensite structure has a mixed morphology – lath and plate. The strength and toughness of the deposited metal grow. Of particular interest is simultaneous increase in the specific work of failure resulted from crack inhibition at the boundary with far less solid and more ductile ferrite. As for the 5% chromium metal, the X12 type composition with 0,25% C, is borderline. With a further increase in the carbon content of the metal both ductility and failure resistance sharply decrease and with 0,40% C the growth rate of fatigue crack increases by almost 1,5 times

  13. Study of hard diamond-like carbon films deposited in an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Yu Shiji; Ma Tengcai

    2003-01-01

    Chemical vapor deposition of the hard diamond-like carbon (DLC) films was achieved using an inductively coupled plasma source (ICPS). The microscopy, microhardness, deposition rate and structure characteristic of the DLC films were analyzed. It is shown that the ICPS is suitable for the hard DLC film deposition at relatively low substrate negative bias voltage, and the substrate negative bias voltage greatly affects chemical vapor deposition of the DLC film and its quality

  14. Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Borkar, Tushar [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States); Chang, Won Seok [Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Hwang, Jun Yeon, E-mail: Junyeon.Hwang@kist.re.kr [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States); Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 565-902 (Korea, Republic of); Shepherd, Nigel D.; Banerjee, Rajarshi [Department of Materials Science and Engineering and Center for Advanced Research and Technology, University of North Texas, Denton 76203 (United States)

    2012-10-15

    Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.

  15. Transport and deposition of carbon at catchment scale: stabilization mechanisms approach

    Science.gov (United States)

    Martínez-Mena, María; Almagro, María; Díaz-Pereira, Elvira; García-Franco, Noelia; Boix-Fayos, Carolina

    2016-04-01

    Terrestrial sedimentation buries large amounts of organic carbon (OC) annually, contributing to the terrestrial carbon sink. The temporal significance of this sink will strongly depend on the attributes of the depositional environment, but also on the characteristics of the OC reaching these sites and its stability upon deposition. The fate of the redistributed OC will ultimately depend on the mechanisms of its physical and chemical protection against decomposition, its turnover rates and the conditions under which the OC is stored in sedimentary settings. This framework is more complex in Mediterranean river basins where sediments are often redistributed under a range of environmental conditions in ephemeral, intermittent and perennial fluvial courses, sometimes within the same catchment. The OC stabilization mechanisms and their relations with aggregation at different transport and sedimentary deposits is under those conditions highly uncertain. The main objective of this work was to characterize the stabilization and mineralization of OC in sediments in transit (suspended load), at a range of depositional settings (alluvial bars, reservoir sediments) and soils from the source areas in a sub-catchment (111 km2) at the headwaters of the Segura catchment in South East Spain. In order to obtain a deeper knowledge on the predominant stabilization mechanism corresponding to each erosional phase, the following organic carbon fractionation method was carried out: Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. As a further step, an oxidation of the OC occluded in silt plus clay fraction and that of the free silt plus clay fraction was performed to estimate the oxidant resistant OC pool. Measured OC in these fractions can be related to three functional pools: active (free particulate organic

  16. Synthesis of carbon nanotubes using the cobalt nanocatalyst by thermal chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Madani, S.S. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zare, K. [Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Department of Chemistry, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Ghoranneviss, M. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Salar Elahi, A., E-mail: Salari_phy@yahoo.com [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-05

    The three main synthesis methods of Carbon nanotubes (CNTs) are the arc discharge, the laser ablation and the chemical vapour deposition (CVD) with a special regard to the latter one. CNTs were produced on a silicon wafer by Thermal Chemical Vapor Deposition (TCVD) using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX) measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM) was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM) to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. The ideal reaction temperature was 850 °C and the deposition time was 15 min. - Graphical abstract: FESEM images of CNTs grown on the cobalt catalyst at growth temperatures of (a) 850 °C, (b) 900 °C, (c) 950 °C and (d) 1000 °C during the deposition time of 15 min. - Highlights: • Carbon nanotubes (CNTs) were produced on a silicon wafer by TCVD technique. • EDX and AFM were used to investigate the elemental composition and surface topography. • FESEM was used to study the morphological properties of CNTs. • The grown CNTs have been investigated by HRTEM and Raman spectroscopy.

  17. Turbostratic-like carbon nitride coatings deposited by industrial-scale direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Louring, S.; Madsen, N.D.; Berthelsen, A.N.; Christensen, B.H.; Almtoft, K.P.; Nielsen, L.P.; Bøttiger, J.

    2013-01-01

    Carbon nitride thin films were deposited by direct current magnetron sputtering in an industrial-scale equipment at different deposition temperatures and substrate bias voltages. The films had N/(N + C) atomic fractions between 0.2 and 0.3 as determined by X-ray photoelectron spectroscopy (XPS). Raman spectroscopy provided insight into the ordering and extension of the graphite-like clusters, whereas nanoindentation revealed information on the mechanical properties of the films. The internal compressive film stress was evaluated from the substrate bending method. At low deposition temperatures the films were amorphous, whereas the film deposited at approximately 380 °C had a turbostratic-like structure as confirmed by high-resolution transmission electron microscopy images. The turbostratic-like film had a highly elastic response when subjected to nanoindentation. When a CrN interlayer was deposited between the film and the substrate, XPS and Raman spectroscopy indicated that the turbostratic-like structure was maintained. However, it was inconclusive whether the film still exhibited an extraordinary elastic recovery. An increased substrate bias voltage, without additional heating and without deposition of an interlayer, resulted in a structural ordering, although not to the extent of a turbostratic-like structure. - Highlights: • Carbon nitride films were deposited by industrial-scale magnetron sputtering. • The deposition temperature and the substrate bias voltage were varied. • A turbostratic-like structure was obtained at an elevated deposition temperature. • The turbostratic-like film exhibited a very high elastic recovery. • The influence of a CrN interlayer on the film properties was investigated

  18. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  19. Atmospheric deposition, CO2, and change in the land carbon sink

    DEFF Research Database (Denmark)

    Martinez-Fernandez, Cristina; Vicca, Sara; Janssens, Ivan A.

    2017-01-01

    Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and gene...... show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling....

  20. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition

    International Nuclear Information System (INIS)

    Ramirez, A; Royo, C; Latorre, N; Mallada, R; Monzón, A; Tiggelaar, R M

    2014-01-01

    The interaction between the main operational variables during the growth of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) by catalytic chemical vapor deposition is studied. In this contribution, we report the influence of the carbon source (i.e. acetylene, ethylene and propylene), the reaction/activation temperature, the rate of heating, the reaction time, the metal loading, and the metallic nanoparticle size and distribution on the growth and alignment of carbon nanotubes. Fe/Al thin films deposited onto silicon samples by electron-beam evaporation are used as catalyst. A phenomenological growth mechanism is proposed to explain the interaction between these multiple factors. Three different outcomes of the synthesis process are found: i) formation of forests of non-aligned, randomly oriented multi-walled carbon nanotubes, ii) growth of vertically aligned tubes with a thin and homogeneous carbonaceous layer on the top, and iii) formation of vertically aligned carbon nanotubes. This carbonaceous layer (ii) has not been reported before. The main requirements to promote vertically aligned carbon nanotube growth are determined. (paper)

  1. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition

    NARCIS (Netherlands)

    Wang, X.; Cammeraat, E.L.H.; Cerli, C.; Kalbitz, K.

    2014-01-01

    The importance of soil aggregation in determining the dynamics of soil organic carbon (SOC) during erosion, transportation and deposition is poorly understood. Particularly, we do not know how aggregation contributes to the often-observed accumulation of SOC at depositional sites. Our objective was

  2. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    International Nuclear Information System (INIS)

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.; Baldwin, B.; White, W.D.; Reves, J.G.; Greeley, W.J.

    1991-01-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbon dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow

  3. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  4. Carbon materials as new nanovehicles in hot-melt drug deposition

    International Nuclear Information System (INIS)

    Bielicka, Agnieszka; Wiśniewski, Marek; Terzyk, Artur P; Gauden, Piotr A; Furmaniak, Sylwester; Bieniek, A; Roszek, Katarzyna; Kowalczyk, Piotr

    2013-01-01

    The application of commercially available carbon materials (nanotubes and porous carbons) for the preparation of drug delivery systems is studied. We used two types of carbon nanotubes (CNT) and two activated carbons as potential materials in so-called hot-melt drug deposition (HMDD). The materials were first studied using Raman spectroscopy. Paracetamol was chosen as a model drug. The performed thermal analysis, kinetics, and adsorption–desorption studies revealed that nanoaggregates are formed between carbon nanotubes. In contrast, in pores of activated carbon we do not observe this process and the drug adsorption phenomenon mechanism is simply the filling of small pores. The formation of nanoaggregates was confirmed by the results of GCMC (grand canonical Monte Carlo) simulations and the study of the surface area on nitrogen adsorption–desorption isotherms. The application of carbon nanotubes in HMDD offers the possibility of controlling the rate of drug delivery. Performed MTT tests of nanotubes and drug-loaded nanotubes show that the observed decrease in cell viability number is caused by the influence of the cytostatic properties of nanotubes—they inhibit the proliferation of cells. The carbon nanotubes studied in this paper are essentially nontoxic. (paper)

  5. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.S. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Wang, H.J.; Feng, L. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Shao, L.X. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Zou, C.W., E-mail: qingyihaiyanas@163.com [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China)

    2014-08-30

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent.

  6. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    International Nuclear Information System (INIS)

    Tang, X.S.; Wang, H.J.; Feng, L.; Shao, L.X.; Zou, C.W.

    2014-01-01

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent

  7. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  8. Apparatus and process for deposition of hard carbon films

    Science.gov (United States)

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  9. Genesis of carbonate-siliceous-pelitic type uranium deposits in Baoyuan area

    International Nuclear Information System (INIS)

    Guo Baochi; Zhang Daishi; Li Shengxiang; Zhu Jiechen

    1995-01-01

    Based on systematic studies of the regional geology, the fundamental geological characteristics of uranium mineralizations, and according to the researches of uranium source, the REE characteristics, the H,O,C,S isotope compositions, as well as the chronology of uranium metallogenesis of the uranium deposits, the authors consider that the multistage accumulative metallogenesis (especially the hydrothermal superimposed and reworking metallogenesis) is the universal and important uranium metallogenesis in the formation of carbonate-siliceous-pelitic type uranium deposits in the area

  10. The emissivity of W coatings deposited on carbon materials for fusion applications

    International Nuclear Information System (INIS)

    Ruset, C.; Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V.; Zastrow, K.-D.; Matthews, G.; Courtois, X.; Bucalossi, J.; Likonen, J.

    2017-01-01

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  11. The emissivity of W coatings deposited on carbon materials for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Ruset, C., E-mail: ruset@infim.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Falie, D.; Grigore, E.; Gherendi, M.; Zoita, V. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Zastrow, K.-D.; Matthews, G. [Culham Centre for Fusion Energy (CCFE), Culham Science Centre, Abingdon (United Kingdom); Courtois, X.; Bucalossi, J. [IRFM, CEA Cadarache, F-13108 SAINT PAUL LEZ DURANCE (France); Likonen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-01-15

    Highlights: • The emissivity of tungsten coatings deposited on carbon substrates such as CFC and fine grain graphite was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm in the temperature range of 400 °C–1200 °C. • The emissivity of other materials of interest for nuclear fusion such as tungsten and beryllium was measured as well. • The influence of substrate structure and of the viewing angle on the emissivity of W coatings was investigated in detail. - Abstract: Tungsten coatings deposited on carbon materials such as carbon fiber composite (CFC) or fine grain graphite are currently used in fusion devices as amour for plasma facing components (PFC). More than 4000 carbon tiles were W-coated by Combined Magnetron Sputtering and Ion Implantation technology for the ITER-like Wall at JET, ASDEX Upgrade and WEST tokamaks. The emissivity of W coatings is a key parameter required by protection systems of the W-coated PFC and also by the diagnostic tools in order to get correct values of temperature and heat loading. The emissivity of tungsten is rather well known, but the literature data refer to bulk tungsten or tungsten foils and not to coatings deposited on carbon materials. The emissivity was measured at the wavelengths of 1.064 μm, 1.75 μm, 3.75 μm and 4.0 μm. It was found that the structure of the substrate has a significant influence on the emissivity values. The temperature dependence of the emissivity in the range of 400 °C–1200 °C and the influence of the viewing angle were investigated as well. The results are given in a table for W coatings and for other materials of interest for fusion such as bulk W and bulk Be.

  12. Capillary assisted deposition of carbon nanotube film for strain sensing

    Science.gov (United States)

    Li, Zida; Xue, Xufeng; Lin, Feng; Wang, Yize; Ward, Kevin; Fu, Jianping

    2017-10-01

    Advances in stretchable electronics offer the possibility of developing skin-like motion sensors. Carbon nanotubes (CNTs), owing to their superior electrical properties, have great potential for applications in such sensors. In this paper, we report a method for deposition and patterning of CNTs on soft, elastic polydimethylsiloxane (PDMS) substrates using capillary action. Micropillar arrays were generated on PDMS surfaces before treatment with plasma to render them hydrophilic. Capillary force enabled by the micropillar array spreads CNT solution evenly on PDMS surfaces. Solvent evaporation leaves a uniform deposition and patterning of CNTs on PDMS surfaces. We studied the effect of the CNT concentration and micropillar gap size on CNT coating uniformity, film conductivity, and piezoresistivity. Leveraging the piezoresistivity of deposited CNT films, we further designed and characterized a device for the contraction force measurement. Our capillary assisted deposition method of CNT films showed great application potential in fabrication of flexible CNT thin films for strain sensing.

  13. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  14. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  15. Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes

    NARCIS (Netherlands)

    Johansson, A.-C.; Larsen, J.V.; Verheijen, M.A.; Haugshøj, K.B.; Clausen, H.; Kessels, W.M.M.; Christensen, L.H.; Thomsen, E.V.

    2014-01-01

    Pt-Ru catalysts of various compositions, between 0 and 100 at.% of Ru, were deposited onto N-doped multi-walled carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) at 250 C. The Pt and Ru precursors were trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) and

  16. Prediction of viscoelastic behavior of blood flow in plaque deposited capillaries

    International Nuclear Information System (INIS)

    Solangi, M.A.; Shah, B.

    2012-01-01

    The paper investigates the viscoelastic behaviour of blood over low value of elasticity, to analyse the influence of inertia in the presence of elasticity. For viscoelastic fluids shear-thinning and strain-softening PTT (phan- Thien/tanner) constitutive model is employed to identify the influence of elasticity. The computational method adopted is based on a finite element semi-implicit time stepping Taylor-Galerkin/pressure-correction scheme. Simulations are conducted via atherosclerotic vessels along with various percentages of deposition at distinct values of Reynolds numbers. The numerical simulations are performed for recirculation flow structure and development of recirculation length to investigate the impact of atherosclerosis on partially blocked plaque deposited vessels. (author)

  17. Heating effect of substrate of pulsed laser ablation deposition technique towards the orientation of carbon microstructure

    International Nuclear Information System (INIS)

    Choy, L.S.; Irmawati Ramli; Noorhana Yahya; Abdul Halim Shaari

    2009-01-01

    Full text: Carbon thin film has been successfully deposited by second harmonic Nd:YAG pulsed laser ablation deposition, PLAD. The topology and morphology of the deposited layers was studied by scanning electron microscopy (SEM) whereas emission dispersion X-ray (EDX) was used to determine the existence of elements that constitutes the microstructure. Substrate heated at 500 degree Celsius during the laser ablation showed the most homogenous lollipop microstructure as compared to mainly pillars of microstructure ablated at lower substrate temperature. It is found that this also avoid further diffusion of carbon into catalyst in forming iron carbide. (author)

  18. Reading carbonate deposits from ancient water installations: why are they useful for geoarchaeology?

    Science.gov (United States)

    Sürmelihindi, Gül; Passchier, Cees

    2016-04-01

    Water has always been a basic need of life, to remain alive and clean, and to irrigate fertile land, which provides food to people. While looking for a source of water suitable for their requirements, ancient civilizations considered three important factors: to have a reliable supply of water; in sufficient amount and quality; and at affordable costs to transport it to where it was needed. Water lifting and distribution devices were therefore selected and improved with these essential factors in mind. Our understanding of the development of water technology in ancient cultures is mainly based on archaeology and textural sources, focusing on details of the construction of water works and water machines, and on their location in individual settlements. However, the geographic distribution of water technology in Mediterranean and Middle East is poorly understood: both the local economical basis and palaeo-environmental conditions may have played a role in the choice of certain water technologies. As a consequence, some water-lifting devices, e.g. the bucket-chain and Archimedean screw, were only used where favorable conditions prevailed. The use of ancient water installations, however, cannot easily be studied from architectural remains alone: carbonate deposits in and around such installations can provide information, not only on their use but also on palaeo-environmental conditions during their functioning and on local economical conditions. This applies mostly to water installations of Roman or Medieval age. Since the Romans maintained their water technologies routinely, any thick carbonate deposit may give information on periods of economical hardship, too. Carbonate deposits (calcareous sinter) are presently mainly used to study palaeo-environmental changes from Roman aqueducts, but water lifting machines and water mills, which are commonly build of wood, can also be studied in this way. The Romans were the first to apply waterpower to several industrial

  19. Scanning electron microscopy characterisation of carbon deposited layers in Tore Supra

    International Nuclear Information System (INIS)

    Delchambre, E.; Brosset, C.; Reichle, R.; Devynck, P.; Guirlet, R.; Tsitrone, E.; Saikali, W.; Dominici, C.; Charai, A.

    2003-01-01

    For long discharges in Tore-Supra, an infra-red safety system has been installed to survey surface temperature of the target plates located below the toroidal pump limiter. A shift in temperature is attributed to the growth of a carbon layer at the surface of the neutralizer and has been estimated to a temperature increase of 400 Celsius degrees between virgin and layered surfaces. For temperature safety analysis, target plates have been cleaned and carbon layers were sampled for scanning electronic microscopy (SEM) study. SEM micrographs have allowed to measure the deposited layer thickness and to study the specific fractal and stratified structure. Energy dispersive X-ray spectroscopy analysis has permitted to distinguish carbon layers corresponding to boronization and then to deduce an average growth rate of about 20 nm/s. The growth rate is not constant and is likely to depend on plasma operation parameters. These analyses completed by time of flight secondary ions mass spectrometry (ToF-SIMS) have shown a beneficial effect of the boronization on metallic contamination of the plasma, confirming the in situ optical spectroscopic measurements. These analyses have also shown an increase of hydrogen storage in carbon layer due to boronization. Although the measurements performed on deposited layer are very local, the results reflect the history of the 2002 campaign. (A.C.)

  20. Carbonized tantalum catalysts for catalytic chemical vapor deposition of silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Shimin [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Gao Huiping; Ren Tong; Ying Pinliang [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China); Li Can, E-mail: canli@dicp.ac.cn [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Dalian National Laboratory for Clean Energy, Dalian 116023 (China)

    2012-06-01

    Catalytic chemical vapor deposition (Cat-CVD) has been demonstrated as a promising way to prepare device-quality silicon films. However, catalyst ageing due to Si contamination is an urgency to be solved for the practical application of the technique. In this study, the effect of carbonization of tantalum catalyst on its structure and performance was investigated. The carbonized Ta catalyst has a TaC surface layer which is preserved over the temperature range between 1450 and 1750 Degree-Sign C and no Si contamination occurs on the catalyst after long-term use. Si film prepared using the carbonized Ta catalyst has a similar crystal structure to that prepared by uncarbonized Ta catalyst. Formation of the TaC surface layer can alleviate the ageing problem of the catalyst, which shows great potential as a stable catalyst for Cat-CVD of Si films. - Highlights: Black-Right-Pointing-Pointer Si films prepared by catalytic chemical vapor deposition. Black-Right-Pointing-Pointer Carbonized Ta with a TaC surface layer used as catalyst. Black-Right-Pointing-Pointer TaC surface structure preserved after long-term use in a wide temperature range. Black-Right-Pointing-Pointer Help to solve the ageing problem of metal catalysts. Black-Right-Pointing-Pointer Si film obtained has a similar crystal structure to that prepared by Ta catalyst.

  1. A depositional model for spherulitic carbonates associated with alkaline, volcanic lakes

    NARCIS (Netherlands)

    Mercedes-Martín, Ramon; Brasier, Alexander T.; Rogerson, Mike; Reijmer, John J.G.; Vonhof, Hubert; Pedley, Martyn

    2017-01-01

    The South Atlantic Aptian ‘Pre-salt’ reservoirs are formed by a combination of spherulitic carbonates and Mg-rich clays accumulated in volcanic alkaline lake settings with exotic chemistries. So far, outcrop analogues characterised by metre-thick successions deposited in lacustrine scenarios are

  2. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  3. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  4. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  5. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    Merchant, A.R.; Lobanov, N.; Elliman, R.G.; Ophel, T.R.; Rode, A.; Weisser, D.C.; Turkentine, R.B.

    1998-01-01

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp 3 -like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  6. Quantification of the lithogenic carbon pump following a dust deposition event

    Science.gov (United States)

    Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.

    2013-08-01

    Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to affine the "ballast hypothesis". In the framework of the DUNE project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7 fold higher POC flux as compared to the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. At the scale of a dust deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles through an aggregation process. Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this "lithogenic carbon pump" could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.

  7. Effects of deposited pyrolytic carbon on some mechanical properties of zircaloy-4 tubes. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Shrkawy, S W; Abdel-razek, I D; El-Sayed, H A [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Zircaloy cladding tubes are not compatible with the uranium fuel pellets as they suffer from failure due to pelletclad interaction (PCI). A carbon coating, as used in the canadian CANLUB fuel elements, is thought to improve the cladding performance with respect to the PCI problem. In this paper pyrolytic carbon coating was deposited on zircaloy-4 cladding tubes by the thermal cracking of commercial butant gas at the temperature range 250-450 degree C. In order to evaluate the effect of gaseous species on the mechanical properties of the tubes tensile and microhardness testing measurements were performed on samples prepared from the coated tubes. The fractured surface of the tensile zircaloy tubes and the deposited carbon coating, both, were examined by the SEM. The results of the tensile tests of zircaloy-4 tubes indicated that the coating process has insignificant effect on the ultimate strength of the tubes tested. The values of Vickers hardness numbers were not significantly changed across the tubes thickness. The microstructure of deposited carbon, due to the cracking process, was granular in all the temperature range (250-450 degree C) studied. 9 figs., 1 tab.

  8. Kinetic enhancement via passive deposition of carbon-based nanomaterials in vanadium redox flow batteries

    Science.gov (United States)

    Aaron, Doug; Yeom, Sinchul; Kihm, Kenneth D.; Ashraf Gandomi, Yasser; Ertugrul, Tugrul; Mench, Matthew M.

    2017-10-01

    Addition of carbon-based nanomaterials to operating flow batteries accomplishes vanadium redox flow battery performance improvement. Initial efforts focus on addition of both pristine graphene and vacuum-filtered reduced graphene oxide (rGO) film on carbon paper supporting electrodes. While the former is unable to withstand convective flow through the porous electrode, the latter shows measurable kinetic improvement, particularly when laid on the polymer electrolyte membrane (PEM) side of the electrode; in contrast to the kinetic performance gain, a deleterious impact on mass transport is observed. Based on this tradeoff, further improvement is realized using perforated rGO films placed on the PEM side of the electrodes. Poor mass transport in the dense rGO film prompts identification of a more uniform, passive deposition method. A suspension of rGO flakes or Vulcan carbon black (XC-72R), both boasting two orders-of-magnitude greater specific surface area than that of common carbon electrodes, is added to the electrolyte reservoirs and allowed to passively deposit on the carbon paper or carbon felt supporting electrodes. For common carbon felt electrodes, addition of rGO flakes or XC-72R enables a tripling of current density at the same 80% voltage efficiency.

  9. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    Science.gov (United States)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  10. Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition

    International Nuclear Information System (INIS)

    Wang, Y G; Wang, T H; Lin, X W; Dravid, V P

    2006-01-01

    We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction

  11. Synthesis of carbon-13 labelled carbonaceous deposits and their evaluation for potential use as surrogates to better understand the behaviour of the carbon-14-containing deposit present in irradiated PGA graphite

    Energy Technology Data Exchange (ETDEWEB)

    Payne, L., E-mail: liam.payne@bristol.ac.uk [Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, BS8 1TL (United Kingdom); Walker, S.; Bond, G. [Centre for Materials Science, University of Central Lancashire, PR1 2HE (United Kingdom); Eccles, H. [John Tyndall Institute for Nuclear Research, School of Computing, Engineering and Physical Sciences, University of Central Lancashire, PR1 2HE (United Kingdom); Heard, P.J.; Scott, T.B. [Interface Analysis Centre, HH Wills Physics Laboratory, University of Bristol, BS8 1TL (United Kingdom); Williams, S.J. [Radioactive Waste Management, B587, Curie Avenue, Harwell Oxford, Didcot, OX11 0RH (United Kingdom)

    2016-03-15

    The present work has used microwave plasma chemical vapour deposition to generate suitable isotopically labelled carbonaceous deposits on the surface of Pile Grade A graphite for use as surrogates for studying the behaviour of the deposits observed on irradiated graphite extracted from UK Magnox reactors. These deposits have been shown elsewhere to contain an enhanced concentration of {sup 14}C compared to the bulk graphite. A combination of Raman spectroscopy, ion beam milling with scanning electron microscopy and secondary ion mass spectrometry were used to determine topography and internal morphology in the formed deposits. Direct comparison was made against deposits found on irradiated graphite samples trepanned from a Magnox reactor core and showed a good similarity in appearance. This work suggests that the microwave plasma chemical vapour deposition technique is of value in producing simulant carbon deposits, being of sufficiently representative morphology for use in non-radioactive surrogate studies of post-disposal behaviour of {sup 14}C-containing deposits on some irradiated Magnox reactor graphite.

  12. Fabrication of Semiordered Nanopatterned Diamond-like Carbon and Titania Films for Blood Contacting Applications.

    Science.gov (United States)

    Nandakumar, Deepika; Bendavid, Avi; Martin, Philip J; Harris, Kenneth D; Ruys, Andrew J; Lord, Megan S

    2016-03-23

    Biomaterials with the ability to interface with, but not activate, blood components are essential for a multitude of medical devices. Diamond-like carbon (DLC) and titania (TiO2) have shown promise for these applications; however, both support platelet adhesion and activation. This study explored the fabrication of nanostructured DLC and TiO2 thin film coatings using a block copolymer deposition technique that produced semiordered nanopatterns with low surface roughness (5-8 nm Rrms). These surfaces supported fibrinogen and plasma protein adsorption that predominantly adsorbed between the nanofeatures and reduced the overall surface roughness. The conformation of the adsorbed fibrinogen was altered on the nanopatterned surfaces as compared with the planar surfaces to reveal higher levels of the platelet binding region. Planar DLC and TiO2 coatings supported less platelet adhesion than nanopatterned DLC and TiO2. However, platelets on the nanopatterned DLC coatings were less spread indicating a lower level of platelet activation on the nanostructured DLC coatings compared with the planar DLC coatings. These data indicated that nanostructured DLC coatings may find application in blood contacting medical devices in the future.

  13. Multi scale study of carbon deposits collected in Tore-Supra and TEXTOR tokamaks; Etude multi echelle des depots carbones collectes dans les tokamaks Tore Supra et TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Richou, M

    2007-06-15

    Tokamaks are devices aimed at studying magnetic fusion. They operate with high temperature plasmas containing hydrogen, deuterium or tritium. One of the major issue is to control the plasma-wall interaction. The plasma facing components are most often in carbon. The major drawback of carbon is the existence of carbon deposits and dust, due to erosion. Dust is potentially reactive in case of an accidental opening of the device. These deposits also contain H, D or T and induce major safety problems when tritium is used, which will be the case in ITER. Therefore, the understanding of the deposit formation and structure has become a main issue for fusion researches. To clarify the role of the deposits in the retention phenomenon, we have done different complementary characterizations for deposits collected on similar places (neutralizers) in tokamaks Tore Supra (France) and TEXTOR (Germany). Accessible microporous volume and pore size distribution of deposits has been determined with the analysis of nitrogen and methane adsorption isotherms using the BET, Dubinin-Radushkevich and {alpha}{sub s} methods and the Density Functional Theory (DFT). To understand growth mechanisms, we have studied the deposit structure and morphology. We have shown using Transmission Electron Microscopy (TEM) and Raman micro-spectrometry that these deposits are non amorphous and disordered. We have also shown the presence of nano-particles (diameter between 4 and 70 nm) which are similar to carbon blacks: nano-particle growth occurs in homogeneous phase in the edge plasma. We have emphasised a dual growth process: a homogenous and a heterogeneous one. (author)

  14. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    Science.gov (United States)

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  15. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L; Da Costa, Pedro M. F. J.

    2015-01-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  16. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  17. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  18. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  19. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate

    International Nuclear Information System (INIS)

    Yan Xingbin; Xu Tao; Chen Gang; Yang Shengrong; Liu Huiwen; Xue Qunji

    2004-01-01

    Carbon nitride films (CN x films) were deposited on Si(100) substrates by the electrolysis of methanol-urea solution at high voltage, atmospheric pressure, and low temperature. The microstructure and morphology of the resulting CN x films were analysed by means of Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectrometry (FTIR), x-ray diffraction (XRD), and atomic force microscopy. The tribological properties of the CN x films were examined on an UMT-2MT friction and wear test rig. The Raman spectrum showed two characteristic bands: a graphite G band and a disordered D band of carbon, which suggested the presence of an amorphous carbon matrix. XPS and FTIR measurements suggested the existence of both single and double carbon-nitride bonds in the film and the hydrogenation of the carbon nitride phase. The XRD spectrum showed various peaks of different d values, which could confirm the existence of the polycrystalline carbon nitride phase. The hydrogenated CN x films were compact and uniform, with a root mean square roughness of about 18 nm. The films showed excellent friction-reduction and wear-resistance, with the friction coefficient in the stable phase being about 0.08. In addition, the growth mechanism of the CN x films in liquid phase electro-deposition was discussed as well. It was assumed that the molecules of CH 3 OH and CO(NH 2 ) 2 were polarized under high electric field, and the CN x film was formed on the substrate through the reaction of the -CH 3 and -NH 2 groups on the cathode

  20. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  1. Antibody deposition in tumor in relation to blood clearance using a nephrectomized mouse model

    International Nuclear Information System (INIS)

    Nelp, W.B.; Eary, J.F.; Beaumier, P.; Krohn, K.A.; Hellstrom, K.E.; Hellstrom, I.

    1985-01-01

    The purpose of this experiment was to study tumor deposition of monoclonal anti-p97 melanoma antibody (Fab) as a function of its blood concentration over time. I-131-anti-p97 Fab and I-125 non-specific Fab were injected I.V. into 28 control athymic (nude) mice (CM) bearing human xenografted malignant melanoma containing p-97 antigen. Fab (M.W. 50,000) is rapidly excreted by kidney and >90% excretion occurred in 24 hr. To create maximum sustained high blood concentrations of Fab 10 similar mice were likewise injected 1 hr after acute nephrectomy (NM). In this case 24 hr. body excretion was <1%. Blood clearance in CM was biexponential with initial T-1/2 0.4 hr. (80%) a second T-1/2 of 4.4 hr. In NM clearance was monoexponential with a T-1/2 of 29.6 hr. Blood concentrations at 4 hrs. were 2 vs. 19% dose/gm (CM vs NM) and 0.15 vs 12 at 24 hrs. This tumor binding resembled a 2nd order phenomenon. Such information may be useful in predicting the effect of dosage manipulations (multiple bolus or sustained infusions) designed to increase Fab blood levels and enhance tumor labeling with Fab. The NM model should be useful to study the kinetics of antibody tumor deposition with various antibodies

  2. Optimizing the fabrication of carbon nanotube electrode for effective capacitive deionization via electrophoretic deposition strategy

    Directory of Open Access Journals (Sweden)

    Simeng Zhang

    2018-04-01

    Full Text Available In order to obtain superior electrode performances in capacitive deionization (CDI, the electrophoretic deposition (EPD was introduced as a novel strategy for the fabrication of carbon nanotube (CNT electrode. Preparation parameters, including the concentration of slurry components, deposition time and electric field intensity, were mainly investigated and optimized in terms of electrochemical characteristic and desalination performance of the deposited CNT electrode. The SEM image shows that the CNT material was deposited homogeneously on the current collector and a non-crack surface of the electrode was obtained. An optimal preparation condition of the deposited CNT electrode was obtained and specified as the Al (NO33 M concentration of 1.3 × 10−2 mol/L, the deposition time of 30 min and the electric field intensity of 15 V/cm. The obtained electrode performs an increasing specific mass capacitance of 33.36 F/g and specific adsorption capacity of 23.93 mg/g, which are 1.62 and 1.85 times those of the coated electrode respectively. The good performance of the deposited CNT electrode indicates the promising application of the EPD methodology in subsequent research and fabrication of the CDI electrodes for CDI process. Keywords: Carbon nanotube, Water treatment, Desalination, Capacitive deionization, Electrode fabrication, Electrophoretic deposition

  3. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  4. Structural properties of nitrogenated amorphous carbon films: Influence of deposition temperature and radiofrequency discharge power

    International Nuclear Information System (INIS)

    Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.

    2008-01-01

    The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N 2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (∼33.6 at. % N at 150 deg. C) but decreases strongly when the synthesis temperature increases (∼15 at. % N at 450 deg. C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp 2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties

  5. Distribution regularities and prospecting of carbonate-siliceous-argillitic rock type uranium deposit in China

    International Nuclear Information System (INIS)

    Zhao Fengmin; Pan Yan

    2012-01-01

    The carbonate-siliceous-argillitic rock type uranium deposit is one of the important types of uranium deposits in China. Exogenic permeability type and hydrothermal type are dominated in genetic type. Four mineralization zones, two independent mineralization districts, two potential mineralization zones can be classified in China, uranium mineralization districts can be classified further. They are classified as four levels through the potential metallogenic evaluation on the mineralization districts, an important prospective area in the near future. In order to develop and make use of carbonate-siliceous-argillitic rock type uranium resources, exploration and study should be listed in the development planning on uranium geology. (authors)

  6. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors

    International Nuclear Information System (INIS)

    Ajayi, Obafunso A; Wong, Chee Wei; Guitierrez, Daniel H; Peaslee, David; Cheng, Arthur; Chen, Bin; Gao, Theodore

    2015-01-01

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT–GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g"−"1. Upon thermal reduction, MWCNT–GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs. (paper)

  7. A model to calculate effects of atmospheric deposition on soil acidification, eutrophication and carbon sequestration

    NARCIS (Netherlands)

    Bonten, L.T.C.; Reinds, Gert Jan; Posch, Maximilian

    2016-01-01

    Triggered by the steep decline in sulphur deposition in Europe and North America over the last decades, research and emission reduction policies have shifted from acidification to the effects of nitrogen (N) deposition and climate change on plant species diversity and carbon (C) sequestration in

  8. Controllable growth of nanostructured carbon from coal tar pitch by chemical vapor deposition

    International Nuclear Information System (INIS)

    Liu Xuguang; Yang Yongzhen; Ji Weiyun; Liu Hongyan; Zhang Chunyi; Xu Bingshe

    2007-01-01

    The direct synthesis of vapor grown carbon fibers with different diameters was achieved by the pyrolysis of coal tar pitch by chemical vapor deposition. The products were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction and Raman spectroscopy. The experimental results demonstrated that ferrocene content, reaction temperature and Ar flow rate strongly influenced the yield and nature of nanostructured carbon materials, pure carbon microbeads, with diameter distribution ranging from 450 to 650 nm, were also obtained in the absence of catalyst, uniform and straight carbon nanofibers with the outer diameter of about 115 nm were obtained and curl and thick carbon fibers with narrow diameter distribution of 300-350 nm were produced

  9. Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications?

    Science.gov (United States)

    Herman Sievering; Ivan Fernandez; John Lee; John Hom; Lindsey Rustad

    2000-01-01

    Dry deposition determinations, along with wet deposition and throughfall (TF) measurements, at a spruce fir forest in central Maine were used to estimate the effect of atmospherically deposited nitrogen (N) uptake on forest carbon storage. Using nitric acid and particulate N as well as TF ammonium and nitrate data, the growing season (May-October) net canopy uptake of...

  10. Chemical vapour deposition growth and Raman characterization of graphene layers and carbon nanotubes

    Science.gov (United States)

    Lai, Y.-C.; Rafailov, P. M.; Vlaikova, E.; Marinova, V.; Lin, S. H.; Yu, P.; Yu, S.-C.; Chi, G. C.; Dimitrov, D.; Sveshtarov, P.; Mehandjiev, V.; Gospodinov, M. M.

    2016-02-01

    Single-layer graphene films were grown by chemical vapour deposition (CVD) on Cu foil. The CVD process was complemented by plasma enhancement to grow also vertically aligned multiwalled carbon nanotubes using Ni nanoparticles as catalyst. The obtained samples were characterized by Raman spectroscopy analysis. Nature of defects in the samples and optimal growth conditions leading to achieve high quality of graphene and carbon nanotubes are discussed.

  11. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  12. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Science.gov (United States)

    L.R. Seifert-Monson; B.H. Hill; R.K. Kolka; T.M. Jicha; L.L. Lehto; C.M. Elonen

    2014-01-01

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolved organic carbon solubility. To further investigate the relationship between deposition...

  13. Heat treatment of cathodic arc deposited amorphous hard carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Ager, J.W. III; Brown, I.G. [and others

    1997-02-01

    Amorphous hard carbon films of varying sp{sup 2}/sp{sup 3} fractions have been deposited on Si using filtered cathodic are deposition with pulsed biasing. The films were heat treated in air up to 550 C. Raman investigation and nanoindentation were performed to study the modification of the films caused by the heat treatment. It was found that films containing a high sp{sup 3} fraction sustain their hardness for temperatures at least up to 400 C, their structure for temperatures up to 500 C, and show a low thickness loss during heat treatment. Films containing at low sp{sup 3} fraction graphitize during the heat treatment, show changes in structure and hardness, and a considerable thickness loss.

  14. Flaking of co-deposited hydrogenated carbon layers on the TFTR limiter

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Menon, M.M.; Barry, R.E.

    1999-01-01

    Flaking of co-deposited layers on the inner limiter tiles was recently observed in TFTR. This phenomenon was unexpected and has occurred since the termination of plasma operations on 4 April 1997. Flaking affects approximately 15% of the observable tiles and appears on isotropic graphite but not on carbon fibre composite tiles. Photographic images of the flakes and precise measurements of the limiter geometry are reported. The mobilizability of tritium retained in co-deposited layers is an important factor in safety analyses of future DT reactors. A programme to analyse the flakes and tiles is underway. (author). Letter-to-the-editor

  15. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2008-01-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  16. Vertically aligned carbon nanotube probes for monitoring blood cholesterol

    Science.gov (United States)

    Roy, Somenath; Vedala, Harindra; Choi, Wonbong

    2006-02-01

    Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes (MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol (PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g. uric acid, ascorbic acid and glucose, is also reported.

  17. High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khavrus, Vyacheslav O., E-mail: V.Khavrus@ifw-dresden.de; Ibrahim, E. M. M.; Bachmatiuk, Alicja; Ruemmeli, Mark H.; Wolter, A. U. B.; Hampel, Silke; Leonhardt, Albrecht [IFW Dresden (Germany)

    2012-06-15

    We report on the high-pressure catalytic chemical vapor deposition (CCVD) of ruthenium nanoparticles (NPs) and single-walled carbon nanotubes (SWCNTs) by means of gas-phase decomposition of acetonitrile and ruthenocene in a tubular quartz flow reactor at 950 Degree-Sign C and at elevated pressures (between 2 and 8 bar). The deposited material consists of Ru metal cores with sizes ranging between 1 and 3 nm surrounded by a carbon matrix. The high-pressure CCVD seems to be an effective route to obtain composite materials containing metallic NPs, Ru in this work, inside a nanostructured carbon matrix protecting them from oxidation in ambient air. We find that in contradiction to the weak paramagnetic properties characterizing bulk ruthenium, the synthesized samples are ferromagnetic as predicted for nanosized particles of nonmagnetic materials. At low pressure, the very small ruthenium catalyst particles are able to catalyze growth of SWCNTs. Their yield decreases with increasing reaction pressure. Transmission electron microscopy, selected area energy-dispersive X-ray analysis, Raman spectroscopy, and magnetic measurements were used to analyze and confirm properties of the synthesized NPs and nanotubes. A discussion on the growth mechanism of the Ru-containing nanostructures is presented.

  18. Large flexibility of high aspect ratio carbon nanostructures fabricated by electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-11-26

    The mechanical properties of free-standing electron beam deposited amorphous carbon structures have been studied using atomic force microscopy. The fabricated carbon blades are found to be extraordinarily flexible, capable of undergoing vertical deflection up to {approx} 75% of their total length without inelastic deformation. The elastic bending modulus of these structures was calculated to be 28 {+-} 10 GPa.

  19. Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane

    International Nuclear Information System (INIS)

    Jiao, Yong; Zhang, Liqin; An, Wenting; Zhou, Wei; Sha, Yujing; Shao, Zongping; Bai, Jianping; Li, Si-Dian

    2016-01-01

    Solid oxide fuel cells (SOFCs) are promising power-generation systems to utilize methane or methane-based fuels with a high energy efficiency and low environmental impact. A successive multi-stage process is performed to explore the operation of cells using dry methane or the deposited carbon from methane decomposition as fuel. Stable operation can be maintained by optimizing the fuel supply and current density parameters. An electrochemical impedance analysis suggests that the partial oxidization of Ni can occur at anodes when the carbon fuel is consumed. The stability of cells operated on pure methane is investigated in three operating modes. The cell can run in a comparatively stable state with continuous power output in an intermittent methane supply mode, where the deposition and utilization of carbon is controlled by balancing the fuel supply and consumption. The increase in the polarization resistance of the cell might originate from the small amount of NiO and residual carbon at the anode, which can be removed via an oxidation-and-reduction maintenance process. Based on the above strategy, this work provides an alternative operating mode to improve the stability of direct methane SOFCs and demonstrates the feasibility of its application. - Highlights: • A new strategy to control the deposition and utilization of carbon was developed. • A stable fuel cell operation was obtained with an intermittent fuel supply mode. • Polarization resistance increased due to small amount of NiO and residual carbon.

  20. Spatial distribution of diffuse, primitive, and classic amyloid-beta deposits and blood vessels in the upper laminae of the frontal cortex in Alzheimer disease.

    Science.gov (United States)

    Armstrong, R A; Cairns, N J; Lantos, P L

    1998-12-01

    The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (upper cortical laminae.

  1. DEPOSITION OF NICKEL ON CARBON FIBRES BY GALVANIC METHOD

    Directory of Open Access Journals (Sweden)

    Pavol Štefánik

    2012-01-01

    Full Text Available The investigation of coating parameters in quasi-static coating of Ni layer on carbon fibre tow by galvanic method is presented. The tow of fibres was immersed in typical galvanic bath based on NiSO4, NiCl2, Na2SO4 and H3BO3 and current to carbon fibres was supplied by two leading metal rolls which are parts of continuous coating apparatus. The main parameters were current of 1 A, electrolyte temperature of 50 °C and the distance from power contacts to level of galvanic bath (8 or 13 cm. The amount and structure of deposited Ni layer at coating time 15 and 90 seconds of exposure in electrolyte and depth of immersion of tow into bath were discussed.

  2. Nanostructured titanium/diamond-like carbon multilayer films: deposition, characterization, and applications.

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Malik, Hitendra K

    2011-11-01

    Titanium/diamond-like carbon multilayer (TDML) films were deposited using a hybrid system combining radio frequency (RF)-sputtering and RF-plasma enhanced chemical vapor deposition (PECVD) techniques under a varied number of Ti/diamond-like carbon (DLC) bilayers from 1 to 4, at high base pressure of 1 × 10(-3) Torr. The multilayer approach was used to create unique structures such as nanospheres and nanorods in TDML films, which is confirmed by scanning electron microscopy (SEM) analysis and explained by a hypothetical model. Surface composition was evaluated by X-ray photoelectron spectroscopy (XPS), whereas energy dispersive X-ray analysis (EDAX) and time-of-flight secondary ion mass spectrometer (ToF-SIMS) measurements were performed to investigate the bulk composition. X-ray diffraction (XRD) was used to evaluate the phase and crystallinity of the deposited TDML films. Residual stress in these films was found to be significantly low. These TDML films were found to have excellent nanomechanical properties with maximum hardness of 41.2 GPa. In addition, various nanomechanical parameters were calculated and correlated with each other. Owing to metallic interfacial layer of Ti in multilayer films, the optical properties, electrical properties, and photoluminescence were improved significantly. Due to versatile nanomechanical properties and biocompatibility of DLC and DLC based films, these TDML films may also find applications in biomedical science.

  3. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  4. Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Park, Eunsil; Kim, Jongwon; Lee, Changseop

    2014-01-01

    This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of 110 .deg. C in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at 700 .deg. C of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as 292 m 2 g -1 high specific surface area

  5. Plasma effects in aligned carbon nanoflake growth by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Cheng, Q.J., E-mail: qijin.cheng@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Ostrikov, K. [Plasma Nanoscience Center Australia (PNCA), Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, PO Box 218, Lindfield 2070, NSW (Australia); Institute for Future Environments and School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney 2006, NSW (Australia)

    2015-01-15

    Highlights: • Plasma-specific effects in the growth of carbon nanoflakes (CNFs) are studied. • Electic field in the plasma sheath promotes separation of CNFs from the substrate. • The orentention of GNFs is related to the combined electic force and growth effects. • The high growth grates of aligned GNFs are plasma-related. - Abstract: Carbon nanofilms are directly grown on silicon substrates by plasma-enhanced hot filament chemical vapor deposition in methane environment. It is shown that the nanofilms are composed of aligned carbon nanoflakes by extensive investigation of experimental results of field emission scanning electron microscopy, micro-Raman spectroscopy and transmission electron microscopy. In comparison with the graphene-like films grown without plasmas, the carbon nanoflakes grow in an alignment mode and the growth rate of the films is increased. The effects of the plasma on the growth of the carbon nanofilms are studied. The plasma plays three main effects of (1) promoting the separation of the carbon nanoflakes from the silicon substrate, (2) accelerating the motion of hydrocarbon radicals, and (3) enhancing the deposition of hydrocarbon ions onto the substrate surface. Due to these plasma-specific effects, the carbon nanofilms can be formed from the aligned carbon nanoflakes with a high rate. These results advance our knowledge on the synthesis, properties and applications of graphene-based materials.

  6. Effect of oxygen and hydrogen on microstructure of pyrolytic carbon deposited from thermal decomposition of methane and ethanol

    Science.gov (United States)

    Ren, Biyun; Zhang, Shouyang; He, LiQun; Gu, Shengyue

    2018-05-01

    Chemical vapor infiltration (CVI) is the most extensive industrial preparation of carbon/carbon (C/C) composites. Precursor affects the CVI process considerably. In the present study, using carbon fiber bundles as preforms, methane and ethanol as precursors, the C/C composites were densified by decomposition of various gases in CVI. The thickness and texture of deposited pyrolytic carbon (PyC) were characterized by polarized light microscopy (PLM). The microstructure of PyC was analyzed by Raman spectroscopy. The morphologies of PyC were characterized by scanning electron microscopy (SEM). The composition of PyC was detected by X-ray photoelectron spectroscopy (XPS). Adding hydrogen in methane precursor resulted in a sharp decrease in the deposition rate and texture of PyC. Mixture of methane and ethanol as the precursor improved the deposition rate and texture remarkably. Besides, O element in ethanol was not remained as a constitution of PyC, and it was removed before the formation of PyC.

  7. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H. [Materials Synthesis Laboratory, Departments of Physics and Chemistry, and Center for Advanced Photonic and Electronic Materials (CAPEM), State University of New York at Buffalo, Buffalo, New York 14260 (United States); Siegal, M.P.; Provencio, P.N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  8. Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition

    Directory of Open Access Journals (Sweden)

    Peng Yang

    2013-12-01

    Full Text Available Continuous and uniform carbon nanofilms (CNFs are prepared by pyrolysis of polyimide films which are produced by molecular layer deposition (MLD. The film thickness can be easily controlled at nanometer scale by altering the cycle numbers. During the annealing process at 600 °C, the polyimide film is subject to shrinkage of 70% in thickness. The obtained CNFs do not exhibit a well-graphitized structure due to the low calcination temperature. No clear pore structures are observed in the produced films. CNFs grown on a glass substrate with a thickness of about 1.4 nm shows almost 98% optical transmittance in the visible spectrum range. Au nanoparticles coated with CNFs are produced by this method. Carbon nanotubes with uniform wall thickness are obtained using anodic aluminum oxide as a template by depositing polyimide films into its pores. Our results demonstrate that this method is very effective to coat conformal and uniform CNFs on various substrates, such as nanoparticles and porous templates, to produce functional composite nanomaterials.

  9. Barrier properties to surrogates of hydrogenated carbon nano-films deposited on PET by plasma-enhanced chemical vapour deposition.

    Science.gov (United States)

    Oliveira, Éder C; Echegoyen, Yolanda; Nerin, Cristina; Cruz, Sandra A

    2014-01-01

    Poly(ethylene terephthalate) resin was contaminated with a series of surrogates using a US Food and Drug Administration protocol. The contaminated samples were coated with two different kinds of hydrogenated amorphous carbon thin films (a-C:H): one with diamond-like hydrogenated amorphous carbon and another with polymer-like hydrogenated carbon (PLCH) phases. To evaluate the barrier properties of the a-C:H films, migration assays were performed using food simulants. After the tests, analysis by gas chromatography with different detectors was carried out. The appearance of the films before and after the migration experiments was studied by field emission scanning electron microscopy. The results showed that a-C:H films have good barrier properties for most of the evaluated compounds, mainly when they are deposited as PLCH phase.

  10. Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3

    International Nuclear Information System (INIS)

    Song, Qiushi; Xu, Qian; Wang, Yang; Shang, Xujing; Li, Zaiyuan

    2012-01-01

    Electrodeposition of carbon films on the oxide-scale-coated titanium has been performed in a LiCl–KCl–K 2 CO 3 melt, which are characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis. The electrochemical process of carbon deposition is investigated by cyclic voltammetry on the graphite, titanium and oxide-scale-coated titanium electrodes. The particle-size-gradient carbon films over the oxide-scale-coated titanium can be achieved by electrodeposition under the controlled potentials for avoiding codeposition of lithium carbide. The deposited carbon films are comprised of micron-sized ‘quasi-spherical’ carbon particles with graphitized and amorphous phases. The cyclic voltammetry behavior on the graphite, titanium and oxide-scale-coated titanium electrodes shows that CO 3 2− ions are reduced most favorably on the graphite for the three electrodes. Lithium ions can discharge under the less negative potential on the electrode containing carbon compared with titanium electrode because of the formation of lithium carbide from the reaction between lithium and carbon. - Highlights: ► Carbon films are prepared on oxide-scale-coated titanium in a LiCl–KCl–K 2 CO 3 melt. ► The films comprise micron-size ‘quasi-spherical’ carbon particles. ► The films present particle-size-gradient. ► The particles contain graphitized and amorphous phases. ► The prepared carbon films are more electrochemically active than graphite.

  11. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition

    International Nuclear Information System (INIS)

    Du Chunsheng; Pan Ning

    2006-01-01

    Carbon nanotube thin films have been successfully fabricated by the electrophoretic deposition technique. The supercapacitors built from such thin film electrodes have a very small equivalent series resistance, and a high specific power density over 20 kW kg -1 was thus obtained. More importantly, the supercapacitors showed superior frequency response. Our study also demonstrated that these carbon nanotube thin films can serve as coating layers over ordinary current collectors to drastically enhance the electrode performance, indicating a huge potential in supercapacitor and battery manufacturing

  12. Deposition of additives onto surface of carbon materials by blending method--general conception

    International Nuclear Information System (INIS)

    Przepiorski, Jacek

    2005-01-01

    Carbon fibers loaded with potassium carbonate and with metallic copper were prepared by applying a blending method. Raw isotropic coal pitch was blended with KOH or CuBr 2 and obtained mixtures were subjected to spinning. In this way KOH and copper salt-blended fiber with uniform distribution of potassium and copper were spun. The raw fibers were exposed to stabilization with a mixture of CO 2 and air or air only through heating to 330 deg. C and next to treatment with carbon dioxide or hydrogen at higher temperatures. Electron probe micro-analysis (EPMA) analyses showed presence of potassium carbonate or metallic copper predominantly in peripheral regions of the obtained fibers. Basing on the mechanisms of potassium and copper diffusion over the carbon volume, generalized method for the deposition of additives onto surface of carbon materials is proposed

  13. Geochemical partitioning of lead in biogenic carbonate sediments in a coral reef depositional environment

    International Nuclear Information System (INIS)

    Horta-Puga, Guillermo

    2017-01-01

    The fate of trace elements in reef depositional environments has not been extensively investigated. The aim of this study was to determine the partitioning of Pb in sediments of the Veracruz Reef System, and its relation to local environmental sources. Lead was determined in four geochemical fractions: exchangeable (3.8 ± 0.4 μg g −1 ), carbonate (57.0 ± 13.6 μg g −1 ), organic matter (2.0 ± 0.9 μg g −1 ), and mineral (17.5 ± 5.4 μg g −1 ). For the mineral fraction, lead concentrations were higher in those reefs influenced by river discharge or by long-distance transport of terrigenous sediments. The bioavailable concentration of lead (range: 21.9–85.6 μg g −1 ) indicates that the Veracruz Reef System is a moderately polluted area. As expected, the carbonate fraction contained the highest proportion of Pb (70%), and because the reef framework is largely made up of by biogenic carbonate sediments, hence, it is therefore the most important repository of Pb in coral reef depositional environments. - Highlights: • Lead concentrations were determined in four geochemical fractions of reef sediments. • The carbonate fraction accounted for > 70% of the content of Pb in reef sediments. • Terrigenous sediments are the main source of Pb associated to the mineral fraction. • The Veracruz Reef System is considered a moderately polluted area. • Sediments are the main repositories of lead in coral reef depositional environments.

  14. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  15. Giant Negative Piezoresistive Effect in Diamond-like Carbon and Diamond-like Carbon-Based Nickel Nanocomposite Films Deposited by Reactive Magnetron Sputtering of Ni Target

    DEFF Research Database (Denmark)

    Meškinis, Šaru Nas; Gudaitis, Rimantas; Šlapikas, Kęstutis

    2018-01-01

    deposited by either reactive HIPIMS or dc magnetron sputtering of Ni target was explained by possible clustering of the sp2-bonded carbon and/or formation of areas with the decreased hydrogen content. It was suggested that the tensile stress-induced rearrangements of these conglomerations have resulted......Piezoresistive properties of hydrogenated diamond-like carbon (DLC) and DLC-based nickel nanocomposite (DLC:Ni) films were studied in the range of low concentration of nickel nanoparticles. The films were deposited by reactive high power pulsed magnetron sputtering (HIPIMS) of Ni target, and some...... samples were deposited by direct current (dc) reactive magnetron sputtering for comparison purposes. Raman scattering spectroscopy, energy-dispersive X-ray spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) were used to study the structure and chemical composition of the films. A four...

  16. Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, Arrelaine A., E-mail: arrelaine.dameron@nrel.gov [National Renewable Energy Laboratory, 1617 Cole Blvd Golden, Golden, CO 80401 (United States); Pylypenko, Svitlana; Bult, Justin B.; Neyerlin, K.C.; Engtrakul, Chaiwat; Bochert, Christopher; Leong, G. Jeremy; Frisco, Sarah L.; Simpson, Lin; Dinh, Huyen N.; Pivovar, Bryan [National Renewable Energy Laboratory, 1617 Cole Blvd Golden, Golden, CO 80401 (United States)

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  17. On the Growth and Microstructure of Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2010-01-01

    Full Text Available Abstract Carbon nanotubes (CNTs were deposited on various substrates namely untreated silicon and quartz, Fe-deposited silicon and quartz, HF-treated silicon, silicon nitride-deposited silicon, copper foil, and stainless steel mesh using thermal chemical vapor deposition technique. The optimum parameters for the growth and the microstructure of the synthesized CNTs on these substrates are described. The results show that the growth of CNTs is strongly influenced by the substrate used. Vertically aligned multi-walled CNTs were found on quartz, Fe-deposited silicon and quartz, untreated silicon, and on silicon nitride-deposited silicon substrates. On the other hand, spaghetti-type growth was observed on stainless steel mesh, and no CNT growth was observed on HF-treated silicon and copper. Silicon nitride-deposited silicon substrate proved to be a promising substrate for long vertically aligned CNTs of length 110–130 μm. We present a possible growth mechanism for vertically aligned and spaghetti-type growth of CNTs based on these results.

  18. Late Paleozoic SEDEX deposits in South China formed in a carbonate platform at the northern margin of Gondwana

    Science.gov (United States)

    Qiu, Wenhong Johnson; Zhou, Mei-Fu; Liu, Zerui Ray

    2018-05-01

    SEDEX sulfide deposits hosted in black shale and carbonate are common in the South China Block. The Dajiangping pyrite deposit is the largest of these deposits and is made up of stratiform orebodies hosted in black shales. Sandstone interlayered with stratiform orebodies contains detrital zircon grains with the youngest ages of 429 Ma. Pyrite from the orebodies has a Re-Os isochron age of 389 ± 62 Ma, indicative of formation of the hosting strata and syngenetic pyrite ores in the mid-late Devonian. The hosting strata is a transgression sequence in a passive margin and composed of carbonaceous limestone in the lower part and black shales in the upper part. The ore-hosting black shales have high TOC (total organic carbon), Mo, As, Pb, Zn and Cd, indicating an anoxic-euxinic deep basin origin. The high redox proxies, V/(V + Ni) > 0.6 and V/Cr > 1, and the positive correlations of TOC with Mo and V in black shales are also consistent with an anoxic depositional environment. The Dajiangping deposit is located close to the NE-trending Wuchuan-Sihui fault, which was active during the Devonian. The mid-late Devonian mineralization age and the anoxic-euxinic deep basinal condition of this deposit thus imply that the formation of this deposit was causally linked to hydrothermal fluid exhalation in an anoxic fault-bounded basin that developed in a carbonate platform of the South China Block. The regional distribution of many Devonian, stratiform, carbonaceous sediment-hosted sulfide deposits along the NE-trending fault-bounded basins in South China, similar to the Dajiangping deposit, indicates that these deposits formed at a basin developed in the passive margin setting of the South China Block during the Devonian. This environment was caused by the break-up and northward migration of the South China Block from Gandwana.

  19. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada: BC DEPOSITION FROM FOREST FIRES

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J. L. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Polashenski, C. M. [USACE-CRREL, Fort Wainwright Alaska USA; Thayer School of Engineering, Dartmouth College, Hanover New Hampshire USA; Soja, A. J. [National Institute of Aerospace, NASA Langley Research Center, Hampton Virginia USA; Marelle, L. [Center for International Climate and Environmental Research-Oslo (CICERO), Oslo Norway; Casey, K. A. [Thayer School of Engineering, Dartmouth College, Hanover New Hampshire USA; Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt Maryland USA; Choi, H. D. [National Institute of Aerospace, NASA Langley Research Center, Hampton Virginia USA; Raut, J. -C. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Wiedinmyer, C. [National Center for Atmospheric Research, Boulder Colorado USA; Emmons, L. K. [National Center for Atmospheric Research, Boulder Colorado USA; Fast, J. D. [Pacific Northwest National Laboratory, Richland Washington USA; Pelon, J. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Law, K. S. [LATMOS/IPSL, UPMC University Paris 6 Sorbonne Universités, UVSQ, CNRS, Paris France; Flanner, M. G. [Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor Michigan USA; Dibb, J. E. [Earth Systems Research Center, EOS, University of New Hampshire, Durham New Hampshire USA

    2017-08-05

    We identify an important Black Carbon (BC) aerosol deposition event that was observed in snow stratigraphy and dated to between 27 July 2013 – 2 August 2013. This event comprises a significant portion (~60%) of total deposition over a 10 month period (July 2013 – April 2014). Here we link this event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the CALIOP and MODIS instruments during transport between Canada and Greenland, confirming that this event involved emissions from forest fires in Canada. We use high-resolution regional chemical transport mod-eling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model accurately captures the timing of the BC deposition event and shows that the major contribution to deposition during this event is emissions originating from fires in Canada. However, the model under-predicts aerosol deposition compared to measurements at all sites by a factor of 2–100. Under-prediction of modeled BC deposition originates from uncertainties in fire emissions combined with uncertainties in aerosol scavenging by clouds. This study suggests that it is possible to describe the transport of an exceptional smoke event on regional and continental scales. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  20. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  1. Raman Spectroscopic Study of Carbon Nanotubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition

    Directory of Open Access Journals (Sweden)

    Syazwan Afif Mohd Zobir

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD method at 800–1000°C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO, ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G′ bands were observed at 1336–1364, 1559–1680, and 2667–2682 cm-1, respectively. Carbon nanotubes (CNTs with the highest degree of crystallinity were obtained at around 8000°C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000°C.

  2. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  3. Diamond-like carbon films deposited by a hybrid ECRCVD system

    International Nuclear Information System (INIS)

    Guo, C.T.; Dittrich, K.-H.

    2007-01-01

    A novel hybrid technique for diamond-like carbon (DLC) film deposition has been developed. This technique combines the electron cyclotron resonance chemical vapor deposition (ECRCVD) of C 2 H 2 and metallic magnetron sputtering. Here we described how DLC film is used for a variety of applications such as stamper, PCB micro-tools, and threading form-tools by taking advantage of hybrid ECRCVD system. The structure of the DLC films is delineated by a function of bias voltages by Raman spectroscopy. This function includes parameters such as dependence of G peak positions and the intensity ratio (I D /I G ). Atomic force microscope (AFM) examines the root-mean-square (R.M.S.) roughness and the surface morphology. Excellent adhesion and lower friction coefficients of a DLC film were also assessed

  4. Properties of electrophoretically deposited single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A.

    2015-01-01

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10 −3 Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm 3 , and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators

  5. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    International Nuclear Information System (INIS)

    Salvadori, M. C.; Teixeira, F. S.; Araújo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-01-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp 3 bonding for the DLC, demonstrating that some sp 3 bonds are destroyed by the gold implantation.

  6. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.

    Science.gov (United States)

    Su, Chao; Chen, Yubo; Wang, Wei; Ran, Ran; Shao, Zongping; Diniz da Costa, João C; Liu, Shaomin

    2014-06-17

    In this study, we propose and experimentally verified that methane and formic acid mixed fuel can be employed to sustain solid oxide fuel cells (SOFCs) to deliver high power outputs at intermediate temperatures and simultaneously reduce the coke formation over the anode catalyst. In this SOFC system, methane itself was one part of the fuel, but it also played as the carrier gas to deliver the formic acid to reach the anode chamber. On the other hand, the products from the thermal decomposition of formic acid helped to reduce the carbon deposition from methane cracking. In order to clarify the reaction pathways for carbon formation and elimination occurring in the anode chamber during the SOFC operation, O2-TPO and SEM analysis were carried out together with the theoretical calculation. Electrochemical tests demonstrated that stable and high power output at an intermediate temperature range was well-maintained with a peak power density of 1061 mW cm(-2) at 750 °C. With the synergic functions provided by the mixed fuel, the SOFC was running for 3 days without any sign of cell performance decay. In sharp contrast, fuelled by pure methane and tested at similar conditions, the SOFC immediately failed after running for only 30 min due to significant carbon deposition. This work opens a new way for SOFC to conquer the annoying problem of carbon deposition just by properly selecting the fuel components to realize their synergic effects.

  7. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  8. Solid state de-wetting observed for vapor deposited copper films on carbon substrates

    International Nuclear Information System (INIS)

    Schrank, C.; Eisenmenger-Sittner, C.; Neubauer, E.; Bangert, H.; Bergauer, A.

    2004-01-01

    Copper-Carbon composites are a good example for novel materials consisting of components with extremely different physical and chemical properties. They have a high potential for an application as heat sinks for electronic components, but the joining of the two materials is a difficult task. To obtain reasonable mechanical and thermal contact between copper and carbon the following route was chosen. First glassy-carbon substrates were subjected to an RF-Nitrogen plasma treatment. Then 300 nm thick copper coatings were sputter-deposited on the plasma treated surface within the same vacuum chamber. Finally, the samples were removed from the deposition chamber and either investigated immediately or thermally annealed at 850 deg. C under high vacuum conditions (10 -4 Pa). While non-annealed copper-coatings were continuous and showed excellent adhesion values of approximately 700 N/cm 2 , the heat treated samples lose their continuity by a de-wetting process. At the beginning holes are formed, then a labyrinth-like morphology develops and finally the coating consists of isolated droplets. All these processes occur well below the melting temperature of copper and were observed by AFM and SEM. The mechanism of this solid-state de-wetting process is investigated in relation to the recent literature on de-wetting and its consequences on the manufacturing of copper-carbon composites are discussed

  9. A study of the performance and properties of diamond like carbon (DLC) coatings deposited by plasma chemical vapor deposition (CVD) for two stroke engine components

    Energy Technology Data Exchange (ETDEWEB)

    Tither, D. [BEP Grinding Ltd., Manchester (United Kingdom); Ahmed, W.; Sarwar, M.; Penlington, R. [Univ. of Northumbria, Newcastle-upon-Tyne (United Kingdom)

    1995-12-31

    Chemical vapor deposition (CVD) using microwave and RF plasma is arguably the most successful technique for depositing diamond and diamond like carbon (DLC) films for various engineering applications. However, the difficulties of depositing diamond are nearly as extreme as it`s unique combination of physical, chemical and electrical properties. In this paper, the modified low temperature plasma enhanced CVD system is described. The main focus of this paper will be work related to deposition of DLC on metal matrix composite materials (MMCs) for application in two-stroke engine components and results will be presented from SEM, mechanical testing and composition analysis studies. The authors have demonstrated the feasibility of depositing DLC on MMCs for the first time using a vacuum deposition process.

  10. Ammonium Laurate Surfactant for Cleaner Deposition of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Hanna M. [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Meany, Brendan [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Ticey, Jeremy [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Sun, Chuan-Fu [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Wang, YuHuang [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States; Cumings, John [Department of Material Science and Engineering and ‡Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States

    2015-06-15

    Experiments probing the properties of individual carbon nanotubes (CNTs) and those measuring bulk composites show vastly different results. One major issue limiting the results is that the procedures required to separate and test CNTs introduce contamination that changes the properties of the CNT. These contamination residues often come from the resist used in lithographic processing and the surfactant used to suspend and deposit the CNTs, commonly sodium dodecyl sulfate (SDS). Here we present ammonium laurate (AL), a surfactant that has previously not been used for this application, which differs from SDS only by substitution of ionic constituents but shows vastly cleaner depositions. In addition, we show that compared to SDS, AL-suspended CNTs have greater shelf stability and more selective dispersion. These results are verified using transmission electron microscopy, atomic force microscopy, ζ-potential measurements, and Raman and absorption optical spectroscopy. This surfactant is simple to prepare, and the nanotube solutions require minimal sonication and centrifugation in order to outperform SDS.

  11. Sequence stratigraphy in a mixed carbonate-silicilastic depositional system (Middle Miocene; Styrian Basin, Austria)

    Science.gov (United States)

    Friebe, J. Georg

    1993-07-01

    The mixed carbonate-siliciclastic Weißenegg (Allo-) Formation records three depositional sequences corresponding approximately to the TB 2.3, TB 2.4 and TB 2.5 global cycles. Sea-level fluctuations were of the order of at least 30 m. Siliciclastic lowstand systems tracts comprise lignite deposits, reworked basement and tidal siltstones (above a tectonically enhanced sequence boundary) as well as coastal sand bars. Coastal sands of the transgressive systems tract contain distinct layers of well cemented nodules. They are interpreted as the first stage in hardground formation and record superimposed minor sea-level fluctuations. Coral patch reefs and rhodolith platforms developed during transgressive phases and were subsequently drowned and/or suffocated by siliciclastics during early highstand. Shallowing upwards siliciclastic parasequences, each terminated by a bank of rhodolith limestone, form the (late) highstand systems tract. The limestone beds record superimposed fourth-order transgressive pulses. Occasionally a carbonate highstand wedge developed. Lowstand carbonate shedding occurred where the top of a platform which suffered incipient drowning during highstand was near sealevel again during the following lowstand. Late highstand delta progradation is common.

  12. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  13. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    CERN Document Server

    Tanaka, T; Shinohara, M; Takagi, T

    2002-01-01

    Application of pulsed high negative voltage (approx 10 mu s pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N sub 2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N sub 2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron mic...

  14. Controlling the diameters and field emission properties of vertically aligned carbon nanotubes synthesized by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sung Yool; Kang, Young Il; Cho, Kyoung Ik; Choi, Kyu Seok; Kim, Do Jin

    2001-01-01

    We report here the synthesis of vertically well-aligned carbon nanotubes and the effect of catalytic metal layer on the diameter of grown carbon nanotubes and the field emission characteristics of them, The carbon nanotubes were grown by thermal chemical vapor deposition at temperatures below 900 .deg. C on Fe metal catalytic layer, deposited by sputtering process on a Si substrate and pretreated by heat and NH 3 gas. We found that the thickness of metal layers could be an important parameter in controlling the diameters of carbon nanotubes. With varying the thickness of the metal layers the grain sizes of them also vary so that the diameters of the nanotubes could be controlled. Field emission measurement has been made on the carbon nanotube field emitters at room temperature in a vacuum chamber below 10 -6 Torr. Our vertically aligned carbon nanotube field emitter of the smallest diameter emits a current density about 10 mA/cm 2 at 7.2 V/μm. The field emission property of the carbon nanotubes shows strong dependence on the nanotube diameters as expected

  15. Parallel measurements of organic and elemental carbon dry (PM1, PM2.5) and wet (rain, snow, mixed) deposition into the Baltic Sea.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita; Falkowska, Lucyna M

    2016-03-15

    Parallel studies on organic and elemental carbon in PM1 and PM2.5 aerosols and in wet deposition in various forms of its occurrence were conducted in the urbanised coastal zone of the Baltic Sea. The carbon load introduced into the sea water was mainly affected by the form of precipitation. Dry deposition load of carbon was on average a few orders of magnitude smaller than wet deposition. The suspended organic carbon was more effectively removed from the air with rain than snow, while an inverse relationship was found for elemental carbon. However the highest flux of water insoluble organic carbon was recorded in precipitation of a mixed nature. The atmospheric cleaning of highly dissolved organic carbon was observed to be the most effective on the first day of precipitation, while the hydrophobic elemental carbon was removed more efficiently when the precipitation lasted longer than a day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Deuterium retention properties of co-deposited carbon films produced at wall gaps

    International Nuclear Information System (INIS)

    Nobuta, Yuji; Kanazawa, Jun; Yamauchi, Yuji; Hino, Tomoaki; Yokoyama, Kenji; Suzuki, Satoshi; Ezato, Koichiro; Enoeda, Mikio; Akiba, Masato; Akamaru, Satoshi; Hatano, Yuji

    2013-01-01

    Deuterium retention properties in co-deposited carbon film produced in gap and the relationship between this retention behavior and the crystal structure of carbon film were investigated. In the case of a wide gap, the atomic ratio of deuterium to carbon (D/C) in the film was almost constant at any depth in the gap, while in the case of a narrow gap the D/C ratio decreased with increasing distance from the gap entrance. The micro structure of carbon film tended to be more amorphous for the film produced at locations deeper in the gap. Thermal desorption spectra of D 2 in the film produced near the gap entrance showed one broad main peak at around 1100 K, while that in the film produced near the bottom showed very sharp peaks at around 950 K. This difference in desorption behavior was related with the differences of micro structure. (author)

  17. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  18. Multiwalled Carbon Nanotube Forest Grown via Chemical Vapor Deposition from Iron Catalyst Nanoparticles, by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Linford, Matthew R.

    2013-09-25

    Carbon nanotubes (CNTs) have unique chemical and physical properties. Herein, we report an XPS analysis of a forest of multiwalled CNTs using monochromatic Al Kα radiation. Survey scans show only one element: carbon. The carbon 1s peak is centered 284.5 eV. The C 1s envelope also shows the expected π → π* shake-up peak at ca. 291 eV. The valence band and carbon KVV Auger signals are presented. When patterned, the CNT forests can be used as a template for subsequent deposition of metal oxides to make thin layer chromatography plates.1-3

  19. Deposition of calcium carbonate into postglacial reefs: a test on a 'coral reef hypothesis'. Kohyoki no sangosho eno tansan calcium taiseki sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Kayanne, H [Geological Survey of Japan, Tsukuba (Japan)

    1993-06-15

    This paper describes the following matters on changes in rates of deposition of calcium carbonate into postglacial coral reefs: Estimation was made on change in CaCO3 deposition in four coral reefs the data of which relating to all cross sections down to reef base have been acquired by drilling; the main deposition periods in the coral reefs formed in the postglacial period were five to six thousand years ago; the maximum deposition rate is estimated to be 2.7 [times] 10[sup 14] gC per one thousand years under an assumption that the total deposition amount in postglacial coral reefs is 1.2 [times] 10[sup 18] gC (converted to carbon amount); the recent deposition rate is (1/7.5) that of the former rate; from information obtained on submerged coral reefs, deposition amounts in coral reefs before 10,000 years ago are judged to have been smaller than those thereafter; and the above knowledges do not support the 'coral reef hypothesis' by Berger et al. that deposition of calcium carbonate into postglacial coral reefs has occurred from 15,000 years ago to 10,000 years ago. 30 refs., 2 figs.

  20. Irreversible membrane fouling abatement through pre-deposited layer of hierarchical porous carbons

    KAUST Repository

    Hamad, Juma

    2014-11-01

    In this work, dual-templated hierarchical porous carbons (HPCs), produced from a coupled ice-hard templating approach, are shown to be a highly effective solution to the commonly occurring problem of irreversible fouling of low-pressure membranes used for pre-treatment in wastewater reuse. For the first time, dual-templated HPCs, along with their respective counterparts - single-templated meso-porous carbon (MPCs) (without macropores) - are tested in terms of their fouling reduction capacity and ability to remove different effluent organic matter fractions present in wastewater and compared with a commercially available powdered activated carbon (PAC). The synthesized HPCs provided exceptional fouling abatement, a 4-fold higher fouling reduction as compared to the previously reported best performing commercial PAC and ~2.5-fold better fouling reduction than their respective mesoporous counterpart. Thus, it is shown that not only mesoporosity, but macroporosity is also necessary to achieve high fouling reduction, thus emphasizing the need for dual templating. In the case of HPCs, the pre-deposition technique is also found to outperform the traditional sorbent-feed mixing approach, mainly in terms of removal of fouling components. Based on their superior performance, a high permeability (ultra-low-pressure) membrane consisting of the synthesized HPC pre-deposited on a large pore size membrane support (0.45μm membrane), is shown to give excellent pre-treatment performance for wastewater reuse application. © 2014 Elsevier Ltd.

  1. Electrochemical atomic layer deposition of Pt nanostructures on carbon paper and Ni foam; poster

    CSIR Research Space (South Africa)

    Louw, EK

    2012-07-01

    Full Text Available characteristic of polycrystalline Pt electrodes. ECALD produced good quality deposits that uniformly covered the carbon paper support. The advantages of preparing nanoparticles with this method include ease, flexibility and cost effectiveness. This could provide...

  2. Fabrication of hierarchical porous N-doping carbon membrane by using ;confined nanospace deposition; method for supercapacitor

    Science.gov (United States)

    Wang, Guoxu; Liu, Meng; Du, Juan; Liu, Lei; Yu, Yifeng; Sha, Jitong; Chen, Aibing

    2018-03-01

    The membrane carbon materials with hierarchical porous architecture are attractive because they can provide more channels for ion transport and shorten the ions transport path. Herein, we develop a facile way based on "confined nanospace deposition" to fabricate N-dopi-ng three dimensional hierarchical porous membrane carbon material (N-THPMC) via coating the nickel nitrate, silicate oligomers and triblock copolymer P123 on the branches of commercial polyamide membrane (PAM). During high temperature treatment, the mesoporous silica layer and Ni species serve as a "confined nanospace" and catalyst respectively, which are indispensable elements for formation of carbon framework, and the gas-phase carbon precursors which derive from the decomposition of PAM are deposited into the "confined nanospace" forming carbon framework. The N-THPMC with hierarchical macro/meso/microporous structure, N-doping (2.9%) and large specific surface area (994m2 g-1) well inherits the membrane morphology and hierarchical porous structure of PAM. The N-THPMC as electrode without binder exhibits a specific capacitance of 252 F g-1 at the current density of 1 A g-1 in 6 M KOH electrolyte and excellent cycling stability of 92.7% even after 5000 cycles.

  3. Cataphoretic assembly of cationic dyes and deposition of carbon nanotube and graphene films.

    Science.gov (United States)

    Su, Y; Zhitomirsky, I

    2013-06-01

    Cathodic electrophoretic deposition (EPD) method has been developed for the fabrication of thin films from aqueous solutions of crystal violet (CV) dyes. The films contained rod-like particles with a long axis oriented perpendicular to the substrate surface. The proposed deposition mechanism involved cataphoresis of cationic CV(+) species, base generation in the cathodic reactions, and charge neutralization at the electrode surface. The assembly of rod-like particles was governed by π-π interactions of polyaromatic CV molecules. The deposition kinetics was studied by quartz crystal microbalance. CV dyes allowed efficient dispersion of multiwalled carbon nanotubes (MWCNTs) and graphene in water at relatively low CV concentrations. The feasibility of cathodic EPD of MWCNT and graphene from aqueous suspensions, containing CV, has been demonstrated. The deposition yield was investigated at different CV concentrations and deposition voltages. The relatively high deposition yield of MWCNT and graphene indicated that CV is an efficient dispersing, charging, and film forming agent for EPD. Electron microscopy data showed that at low CV concentrations in MWCNT or graphene suspensions and low deposition voltages, the films contained mainly MWCNT or graphene. The increase in the CV concentration and/or deposition voltage resulted in enhanced co-deposition of CV. The EPD method developed in this investigation paves the way for the fabrication of advanced nanocomposites by cathodic electrodeposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A comparative chemical network study of HWCVD deposited amorphous silicon and carbon based alloys thin films

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P., E-mail: bibhuprasad.swain@gmail.com [Centre for Materials Science and Nanotechnology, Sikkim Manipal Institute of Technology, Majitar, Rangpo Sikkim (India); Swain, Bhabani S.; Hwang, Nong M. [Thin Films and Microstructure Laboratory, Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-03-05

    Highlights: • a-SiC:H, a-SiN:H, a-C:H and a-SiCN:H films were deposited by hot wire chemical vapor deposition. • Evolution of microstructure of a-SiCN:H films deposited at different NH{sub 3} flow rate were analyzed. • The chemical network of Si and C based alloys were studied by FTIR and Raman spectroscopy. -- Abstract: Silicon and carbon based alloys were deposited by hot wire chemical vapor deposition (HWCVD). The microstructure and chemical bonding of these films were characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron microscopy revealed various microstructures were observed for a-C:H, a-SiC:H, a-SiN:H, a-CN:H and a-SiCN:H films. The microstructure of SiN:H films showed agglomerate spherical grains while a-C:H films showed more fractal surface with branched microstructure. However, a-SiC:H, a-CN:H and a-SiCN:H indicated uniform but intermediate surface fractal microstructure. A series of a-SiCN:H films were deposited with variation of NH{sub 3} flow rate. The nitrogen incorporation in a-SiCN:H films alter the carbon network from sp{sup 2} to sp{sup 3} bonding The detail chemical bonding of amorphous films was analyzed by curve fitting method.

  5. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  6. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaoqi; Aguey-Zinsou, Kondo-Francois, E-mail: f.aguey@unsw.edu.au [MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2017-10-17

    Herein, we report on a novel method for deposition of magnesium (Mg) nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs) in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  7. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chaoqi Shen

    2017-10-01

    Full Text Available Herein, we report on a novel method for deposition of magnesium (Mg nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  8. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  9. El Paso Formation - a Lower Ordovician platform carbonate deposit

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, R.E.

    1987-05-01

    The eastward-transgressive Lower Ordovician El Paso Formation conformably overlies Bliss Sandstone in southern New Mexico. Locally, lower El Paso was deposited on low hills of plutonic and volcanic rocks. The region subsided gradually throughout Canadian time, receiving the El Paso carbonate rock blanket up to 460 m thick. Lithologic and chronologic correlative rocks were deposited over most of the southwestern US as the first Paleozoic carbonate platform sequence. The El Paso Formation contains four members, listed here in ascending order: Hitt Canyon, Jose, McKelligon, and Padre. Gradually decreasing sand content upward through the Hitt Canyon indicates deepening water and/or greater distance to shore. Girvanella(.) oncolites are locally abundant. Stromatolite mounds near the top of the Hitt Canyon, combined with an influx of sand, ooids, and rounded bioclasts in the Jose Member, recorded a shoaling phase. The overlying McKelligon Member contains little or no sand, and sponge-Calathium mounds are prominent at some locales. Stromatolite mounds are interbedded with sponge-Calathium mounds in a few sections. Lower Padre Member beds are typically silty to sandy and locally contain thinly-laminated zones. The Padre contains more restricted fauna that includes traces of ostracods. Pervasive bioturbation of El Paso beds and fauna consisting of echinoderms, sponges, gastropods, trilobites, Nuia, Calathium, cephalopods, and algae plus minor brachiopods and Pulchrilamina indicate predominating shallow-subtidal environments. Low-energy platform environments, in which a large volume of micritic muds accumulated, were disturbed thousands of times by storms producing abundant thin, poorly washed biosparite, intrasparite, and intrasparrudite lenses.

  10. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  11. Preparation of carbon nanotubes with different morphology by microwave plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan); Mansurov, Zulkhair [Al-Farabi Kazakh National University, 71 Al-Farabi av., 050038 Almaty (Kazakhstan); Tokmoldin, S.Zh. [Institute of Physics and Technology, Ibragimov Street 11, 050032 Almaty (Kazakhstan)

    2010-04-15

    In this work we present a part of our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapour deposition MPECVD. Well aligned, curly, carbon nanosheets, coiled carbon sheets and carbon microcoils have been prepared. We have investigated the effect of the different growth condition parameters such as the growth temperature, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. The yield of the carbon microcoils was high when the growth temperature was 700 C. There is a linear relation between the growth rate and the methane to hydrogen ratio. The effect of the gas pressure on the CNTs was also studied. Our samples were investigated by scanning electron microscope and Raman spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  13. Regional cerebral blood flow after long-term exposure to carbon disulfide

    International Nuclear Information System (INIS)

    Aaserud, O.; Russell, D.; Nyberg-Hansen, R.; Joergensen, E.B.; Gjerstad, L.; Rootwelt, K.; Nakstad, P.; Hommeren, O.J.; Tvedt, B.

    1992-01-01

    Sixteen former rayon viscose workers were investigated four years after the exposure to carbon disulfide was discontinued. Median age was 58 years (range 43-65 years), median exposure time was 17 years (range 10-35 years). Encephalopathy was diagnosed in altogether 14 workers. To further explore pathophysiological mechanisms, cerebrovascular investigations were employed. Doppler ultrasound examination of the precerebral vessels in 15 workers showed a slight stenosis of the left internal carotid artery in one. Regional cerebral blood flow investigation (rCBF) with single photon emission computerized tomography (SPECT) with Xenon-133 gas was performed in 14. There was no significant difference from a control group. Regional side-to-side asymmetries beyond reference limits were demonstrated in eight workers. The abnormalities were modest, but may indicate a tendency toward focal blood flow disturbances in workers with long-term exposure to carbon disulfide. (au)

  14. Surface hardening of optic materials by deposition of diamond like carbon coatings from separated plasma of arc discharge

    Science.gov (United States)

    Osipkov, A. S.; Bashkov, V. M.; Belyaeva, A. O.; Stepanov, R.; Mironov, Y. M.; Galinovsky, A. L.

    2015-02-01

    This article considers the issue of strengthening of optic materials used in the IR spectrum by deposition of diamond like carbon coatings from separated plasma arc discharge. The report shows results of tests of bare and strengthened optical materials such as BaF2, MgF2, Si, Ge, including the testing of their strength and spectral characteristics. Results for the determination of optical constants for the DLC coatings deposited on substrates of Ge and Si, by using separated plasma, are also presented. Investigations showed that surface hardening of optical materials operable in the IR range, by the deposition of diamond like carbon coating onto their surface, according to this technology, considerably improves operational properties and preserves or improves their optic properties.

  15. Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes

    Science.gov (United States)

    Lee, Churl Seung; Bae, Joonho

    2013-12-01

    Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.

  16. Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition

    International Nuclear Information System (INIS)

    Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.

    1995-01-01

    High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs

  17. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  18. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Oliveira, M. H.; Viana, G. A.; de Lima, M. M.; Cros, A.; Cantarero, A.; Marques, F. C.

    2010-12-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH4) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  19. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-01-01

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH 4 ) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  20. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  1. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak)

    OpenAIRE

    Mohammad Ali Jazi; Mohammad Hassan Karimpour; Azadeh Malekzadeh Shafaroudi

    2015-01-01

    Introduction The Baqoroq Cu-Zn-As deposit is located northeast of the town ofAnarak in Isfahan province, in theeast central areaof Iran. Copper mineralization occursin upper cretaceous carbonate rocks.Studyof thegeologyof the Nakhlak area, the location ofa carbonate-hosted base metaldeposit, indicatesthe importance of stratigraphic, lithological and structural controls in the placement of this ore deposit. (Jazi et al., 2015).Some of the most world’s most important epigenetic, stratabo...

  2. Characterization and cytocompatibility of carbon layers prepared by photo-induced chemical vapor deposition

    Czech Academy of Sciences Publication Activity Database

    Kubová, O.; Švorčík, V.; Heitz, J.; Moritz, S.; Romanin, C.; Matějka, P.; Macková, Anna

    2007-01-01

    Roč. 515, č. 17 (2007), s. 6765-6772 ISSN 0040-6090 R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : Polytetrafluoroethylene * Carbon layer * CVD deposition * Layer properties * Cell proliferation Subject RIV: JJ - Other Materials Impact factor: 1.693, year: 2007

  3. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers

    International Nuclear Information System (INIS)

    Costa e Silva, Danilo Lopes

    2015-01-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  4. Deposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Shannon K., E-mail: hanna.shannonk@gmail.com [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States); Miller, Robert J. [Marine Science Institute, University of California, Santa Barbara, CA 93106 (United States); Lenihan, Hunter S. [Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 (United States)

    2014-08-30

    Highlights: • CNTs decrease the filtration rate of mussels by as much as 24%. • Metals in CNTs and their δ{sup 13}C can be used to quantify CNTs in biological samples. • Mussels exposed to CNTs deposit high concentrations of them in biodeposits. • CNTs accumulate mainly in gut tissue of mussels during exposure. - Abstract: Carbon nanotubes (CNTs) are one of the few truly novel nanomaterials and are being incorporated into a wide range of products, which will lead to environmental release and potential ecological impacts. We examined the toxicity of CNTs to marine mussels and the effect of mussels on CNT fate and transport by exposing mussels to 1, 2, or 3 mg CNTs l{sup −1} for four weeks and measuring mussel clearance rate, shell growth, and CNT accumulation in tissues and deposition in biodeposits. We used metal impurities and carbon stable isotope ratios of the CNTs as tracers of CNT accumulation. Mussels decreased clearance rate of phytoplankton by 24% compared with control animals when exposed to CNTs. However, mussel growth rate was unaffected by CNT concentrations up to 3 mg l{sup −1}. Based on metal concentrations and carbon stable isotope values, mussels deposited most CNTs in biodeposits, which contained >110 mg CNTs g{sup −1} dry weight, and accumulated about 1 mg CNTs g{sup −1} dry weight of tissue. We conclude that extremely high concentrations of CNTs are needed to illicit a toxic response in mussels but the ability of mussels to concentrate and deposit CNTs in feces and pseudofeces may impact infaunal organisms living in and around mussel beds.

  5. Diluent changes the physicochemical and electrochemical properties of the electrophoretically-deposited layers of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Benko, Aleksandra, E-mail: akbenko@gmail.com [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, A. Mickiewicza 30 Ave., 30-059, Krakow (Poland); Nocuń, Marek [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, A. Mickiewicza 30 Ave., 30-059, Krakow (Poland); Berent, Katarzyna; Gajewska, Marta [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, A. Mickiewicza 30 Ave, 30-059, Krakow (Poland); Klita, Łukasz; Wyrwa, Jan; Błażewicz, Marta [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, A. Mickiewicza 30 Ave., 30-059, Krakow (Poland)

    2017-05-01

    Highlights: • Different properties of the EPD-deposited CNTs layers may be altered by changing the applied solvent. • More conductive solvents guarantee higher values of the recorded current densities, increasing kinetics of the deposition and yielding layers of higher thicknesses. • In a less conductive, organic medium, mobility of the particles is reduced, allowing for optimal packing and densification of the CNTs layer. • Proper solvent selection in the EPD of CNTs may lead to obtainment of CNTs—substrate materials with conductivity that is superior to an unmodified substrate. - Abstract: Coating the material of choice with a layer of well-adhered carbon nanotubes is a subject of interest in many fields of materials science and industry. Electrophoretic deposition is one of the methods to handle this challenging task. In this process, careful designing of the deposition parameters is crucial in obtaining the product of strictly desired properties. This study was aimed to identify the influence of the diluent on the physicochemical ad electrochemical qualities of the final product. By analyzing the properties of the suspensions being used, we were able to hypothesize on the mechanisms of carbon nanotubes—liquid interactions and their outcome on the thickness, homogeneity, chemical and structural composition and electrical conductivity of the metal substrate covered with a layer of carbon nanotubes. We obtained a materials, composed of metal and a layer of CNTs, with conductivity that is superior to an unmodified metal. This types of materials may find numerous applications in fabrication of novel electronic devices, including the implantable electrodes for biomedicine—as reported in our previous studies, these types of coating are biocompatible.

  6. Raman Spectroscopic Study of Carbon Nano tubes Prepared Using Fe/ZnO-Palm Olein-Chemical Vapour Deposition Syazwan

    International Nuclear Information System (INIS)

    Zobir, A.M.; Abdullah, S.; Rusop, M.; Abdullah, S.; Abu Bakar, S.; Zainal, Z.; Sarijo, S.H.; Rusop, M.

    2012-01-01

    Multi walled carbon nano tubes (MWCNTs) were synthesized using Fe/ZnO catalyst by a dual-furnace thermal chemical vapor deposition (CVD) method at 800-1000 degree C using nitrogen gas with a constant flow rate of 150 sccm/min as a gas carrier. Palm olein (PO), ferrocene in the presence of 0.05 M zinc nitrate, and a p-type silicon wafer were used as carbon source, catalyst precursor, and sample target, respectively. D, G, and G' bands were observed at 1336-1364, 1559-1680, and 2667-2682 cm -1 , respectively. Carbon nano tubes (CNTs) with the highest degree of crystallinity were obtained at around 8000 degree C, and the smallest diameter of about 2 nm was deposited on the silicon substrate at 1000 degree C.

  7. Deposition of diamond-like carbon films by plasma source ion implantation with superposed pulse

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    2003-01-01

    Diamond-like carbon (DLC) films were prepared on silicon wafer substrate by plasma source ion implantation with superposed negative pulse. Methane and acetylene gases were used as working gases for plasma. A negative DC voltage and a negative pulse voltage were superposed and applied to the substrate holder. The DC voltage was changed in the range from 0 to -4 kV and the pulse voltage was changed from 0 to -18 kV. The surface of DLC films was very smooth. The deposition rate of DLC films increased with increasing in superposed DC bias voltage. Carbon ion implantation was confirmed for the DLC film deposited from methane plasma with high pulse voltage. I D /I G ratios of Raman spectroscopy were around 1.5 independent on pulse voltage. The maximum hardness of 20.3 GPa was observed for the film prepared with high DC and high pulse voltage

  8. Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors

    International Nuclear Information System (INIS)

    Zhao Xin; Chu, Bryan T T; Johnston, Colin; Sykes, John M; Grant, Patrick S; Ballesteros, Belen; Wang Weiliang

    2009-01-01

    Steam purified, carboxylic and ester functionalized single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) films with homogeneous distribution and flexible control of thickness and area were fabricated on polymeric and metallic substrates using a modified spray deposition technique. By employing a pre-sprayed polyelectrolyte, the adhesion of the carbon nanotube (CNT) films to the substrates was significantly enhanced by electrostatic interaction. Carboxylic and ester functionalization improved electrochemical performance when immersed in 0.1 M H 2 SO 4 and the specific capacitance reached 155 and 77 F g -1 for carboxylic functionalized SWNT and MWNT films respectively. Compared with existing techniques such as hot pressing, vacuum filtration and dip coating, the ambient pressure spray deposition technique is suggested as particularly well suited for preparing CNT films at large scale for applications including providing electrodes for electrochemical supercapacitors and paper batteries.

  9. Metal-doped diamond-like carbon films synthesized by filter-arc deposition

    International Nuclear Information System (INIS)

    Weng, K.-W.; Chen, Y.-C.; Lin, T.-N.; Wang, D.-Y.

    2006-01-01

    Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp 3 /sp 2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp 3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films

  10. Adherence problem for carbon films of up to 0.5 mg/cm2 on vacuum-deposited thick ferromagnetic Gd targets

    International Nuclear Information System (INIS)

    Maier-Komor, P.; Kruecken, R.; Speidel, K.-H.; Kenn, O.

    2004-01-01

    For high precision measurements of magnetic moments and reduced transition probabilities by the combined technique of projectile Coulomb excitation in inverse kinematics and transient magnetic fields sandwich targets of carbon and gadolinium were required. First preparations revealed a lack of adhesion between the Gd film and the vacuum-deposited C layer. Either the adhesion was generally poor or good results could not be reproduced. Now on a 4 mg/cm 2 Gd target 0.5 mg/cm 2 of nat C should be deposited. The Gd was deposited on 1-1.6 mg/cm 2 Ta backings and Cu films of 3.5-7 mg/cm 2 were deposited on the reverse side of the Ta backings. The adhesive properties of evaporated carbon on ferromagnetic gadolinium were investigated. For this either substrate cooling or the deposition of a 5 μg/cm 2 Ti film as adhesion agent were applied

  11. Exhaust circulation into dry gas desulfurization process to prevent carbon deposition in an Oxy-fuel IGCC power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Nakao, Yoshinobu; Oki, Yuso

    2014-01-01

    Highlights: • Power plant with semi-closed gas turbine and O 2 –CO 2 coal gasifier was studied. • We adopt dry gas sulfur removal process to establish the system. • The exhaust gas circulation remarkably prevented carbon deposition. • Efficiency loss for exhaust gas circulation is quite small. • Appropriate operating condition of sulfur removal process is revealed. - Abstract: Semi-closed cycle operation of gas turbine fueled by oxygen–CO 2 blown coal gasification provides efficient power generation with CO 2 separation feature by excluding pre-combustion type CO 2 capture that usually brings large efficiency loss. The plant efficiency at transmission end is estimated as 44% at lower heating value (LHV) providing compressed CO 2 with concentration of 93 vol%. This power generation system will solve the contradiction between economical resource utilization and reduction of CO 2 emission from coal-fired power plant. The system requires appropriate sulfur reduction process to protect gas turbine from corrosion and environment from sulfur emission. We adopt dry gas sulfur removal process to establish the system where apprehension about the detrimental carbon deposition from coal gas. The effect of circulation of a portion of exhaust gas to the process on the retardation of carbon deposition was examined at various gas compositions. The circulation remarkably prevented carbon deposition in the sulfur removal sorbent. The impact of the circulation on the thermal efficiency is smaller than the other auxiliary power consumption. Thus, the circulation is appropriate operation for the power generation

  12. Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin (NW China)

    Science.gov (United States)

    Guo, Chuan; Chen, Daizhao; Song, Yafang; Zhou, Xiqiang; Ding, Yi; Zhang, Gongjing

    2018-06-01

    During the Early Ordovician, the Tarim Basin (NW China) was mainly occupied by an extensive shallow-water carbonate platform, on which a carbonate ramp system was developed in the Bachu-Keping area of the western part of the basin. Three well-exposed typical outcrop sections of the Lower Ordovician Penglaiba Formation were investigated in order to identify the depositional facies and to clarify origins of meter-scale cycles and depositional sequences, thereby the platform evolution. Thirteen lithofacies are identified and further grouped into three depositional facies (associations): peritidal, restricted and open-marine subtidal facies. These lithofacies are vertically stacked into meter-scale, shallowing-upward peritidal and subtidal cycles. The peritidal cycles are mainly distributed in the lower and uppermost parts of the Penglaiba Formation deposited in the inner-middle ramp, and commonly start with shallow subtidal to intertidal facies followed by inter- to supratidal facies. In contrast, the subtidal cycles occur throughout the formation mostly in the middle-outer ramp and are dominated by shallow to relatively deep (i.e., intermediate) subtidal facies. The dominance of asymmetrical and incomplete cycles suggests a dominant control of Earth's orbital forcing on the cyclic deposition on the platform. On the basis of vertical facies and cycle stacking patterns, and accommodation changes illustrated by the Fischer plots from all studied sections, five third-order depositional sequences are recognized in the Penglaiba Formation. Individual sequences comprise a lower transgressive part and an upper regressive one. In shallow-water depositional environments, the transgressive packages are dominated by thicker-than-average subtidal cycles, indicating an increase in accommodation space, whereas regressive parts are mainly represented by thinner-than-average peritidal and subtidal cycles, denoting a decrease in accommodation space. In contrast, in intermediate to

  13. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  14. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  15. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  16. Isotopic characteristics of two kinds of hydrothermal carbonation in the Maria Lazara gold deposit. Goias Estate of Central Brazil

    International Nuclear Information System (INIS)

    Pulz, G.; Fuck, R.

    1998-01-01

    In the hydrothermal halo of the Maria Lazara gold deposit, two kinds of carbonation were identified: pervasive carbonation, which corresponds to the disseminations of calcite in the hydrothermal halo represented by the biotite-sulfide and carbonate-chlorite zones and, venular carbonation expressed by quartz and calcite veins inserted in the inner biotite-sulfide zone show an organic carbon component depleted in C. In the carbonate-chlorite zone the calcite isotopic behavior reflects the Co2 derived from the metamorphism o the basic host-rocks. (author)

  17. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  18. Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system

    International Nuclear Information System (INIS)

    Wang Zhipeng; Shoji, Mao; Ogata, Hironori

    2011-01-01

    We employ a new gas mixture of CH 4 -Ar to fabricate carbon nanosheets by microwave plasma enhanced chemical vapor deposition at the growth temperature of less than 500 deg. C. The catalyst-free nanosheets possess flower-like structures with a large amount of sharp edges, which consist of a few layers of graphene sheets according to the observation by transmission electron microscopy. These high-quality carbon nanosheets demonstrated a faster electron transfer between the electrolyte and the nanosheet surface, due to their edge defects and graphene structures.

  19. Vertically aligned carbon nanotubes black coatings from roll-to-roll deposition process

    Science.gov (United States)

    Goislard de Monsabert, Thomas; Papciak, L.; Sangar, A.; Descarpentries, J.; Vignal, T.; de Longiviere, Xavier; Porterat, D.; Mestre, Q.; Hauf, H.

    2017-09-01

    Vertically aligned carbon nanotubes (VACNTs) have recently attracted growing interest as a very efficient light absorbing material over a broad spectral range making them a superior coating in space optics applications such as radiometry, optical calibration, and stray light elimination. However, VACNT coatings available to-date most often result from batch-to-batch deposition processes thus potentially limiting the manufacturing repeatability, substrate size and cost efficiency of this material.

  20. Gradient titanium and silver based carbon coatings deposited on AISI316L

    Science.gov (United States)

    Batory, Damian; Reczulska, Malgorzata Czerniak-; Kolodziejczyk, Lukasz; Szymanski, Witold

    2013-06-01

    The constantly growing market for medical implants and devices caused mainly due to a lack of proper attention attached to the physical condition as well as extreme sports and increased elderly population creates the need of new biocompatible biomaterials with controlled bioactivity and certain useful properties. According to many literature reports, regarding the modifications of variety of different biomaterials using the surface engineering techniques and their biological and physicochemical examination results, the most promising material for great spectra of medical applications seem to be carbon layers. Another issue is the interaction between the implant material and surrounding tissue. In particular cases this interface area is directly exposed to air. Abovementioned concern occurs mainly in case of the external fixations, thus they are more vulnerable to infection. Therefore a crucial role has the inhibition of bacterial adhesion that may prevent implant-associated infections, occurrence of other numerous complications and in particular cases rejection of the implant. For this reason additional features of carbon coatings like antibacterial properties seem to be desired and justified. Silver doped diamond-like carbon coatings with different Ag concentrations were prepared by hybrid RF PACVD/MS (Radio Frequency Plasma Assisted Chemical Vapor Deposition/Magnetron Sputtering) deposition technique. Physicochemical parameters like chemical composition, morphology and surface topography, hardness and adhesion were determined. Examined layers showed a uniform distribution of silver in the amorphous DLC matrix, high value of H/E ratio, good adhesion and beneficial topography which make them a perfect material for medical applications e.g. modification of implants for the external fixations.

  1. Numerical model for evaluation of the effects of carbon deposition on the performance of 1 kW SOFC stack – a proposal

    Directory of Open Access Journals (Sweden)

    Motylinski Konrad

    2017-01-01

    Full Text Available Solid oxide fuel cells are high-temperature electrochemical energy conversion devices which operate at elevated temperature (600- 900°C. As a result it possible to internally reform the incoming fuel, thus except hydrogen and carbon monoxide, SOFCs can be fuelled with various hydrocarbonaceous gases. The presence of carbon-containing compounds in the fuel might result in the formation and of carbon in a form of a thin layer on the SOFC anode. The carbon deposition process depends on the thermodynamic conditions, such as temperature and steam to carbon ratio. The higher the temperature, the longer period of time is required for the solid carbon particles to deposit on the porous surface. The correlation used for this study is based on creating the ternary diagrams or Gibb’s diagrams. The presented results cover a first stage of the analysis of the carbon deposition processes in SOFCs, focusing mainly on the numerical study of the changes of the fuel cell performance due to degradation of anode performance. A dedicated model of SOFC was proposed. It accounts for the diminution of the active area and/or deactivation by the increase of the resistance of the anode. The article presents the proposed methodology and the numerical approach.

  2. Suppression of hydrogenated carbon film deposition by scavenger techniques and their application to the tritium inventory control of fusion devices

    International Nuclear Information System (INIS)

    Tabares, F.L.; Tafalla, D.; Tanarro, I.; Herrero, V.J.; Islyaikin, A.; Maffiotte, C.

    2002-01-01

    The well-known radical and ion scavenger techniques of application in amorphous hydrogenated carbon film deposition studies are investigated in relation to the mechanism of tritium and deuterium co-deposition in carbon-dominated fusion devices. A particularly successful scheme results from the injection of nitrogen into methane/hydrogen plasmas for conditions close to those prevailing in the divertor region of present fusion devices. A complete suppression of the a-C : H film deposition has been achieved for N 2 /CH 4 ratios close to one in methane (5%)/hydrogen DC plasma. The implications of these findings in the tritium retention control in future fusion reactors are addressed. (author). Letter-to-the-editor

  3. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development.

    Directory of Open Access Journals (Sweden)

    Keith M Godfrey

    Full Text Available Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother's adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001 and at age 4 years (r = 0.16, P = 0.02. In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02. This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04. We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

  4. Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Islam

    2018-04-01

    Full Text Available In this work, we report development of hybrid nanostructures of metal nanoparticles (NP and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT. The X-ray photoelectron spectroscope (XPS and atomic force microscope (AFM studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM, reduction time (5, 20 s, and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (<10 nm could be produced from EC reduction in CoSO4 and H3BO3 mixed solution with some tendency to form oxides. Different carbon nanostructures including few-walled or multiwalled carbon nanotubes (CNT and carbon nanosheets were grown in a C2H2/NH3 plasma using the plasma-enhanced chemical vapor deposition technique. The devised processing routes enable size controlled synthesis of cobalt nanoparticles and metal/carbon hybrid nanostructures with unique microstructural features.

  5. Quantifying Black Carbon Deposition Over the Greenland Ice Sheet from Forest Fires in Canada

    Science.gov (United States)

    Thomas, J. L.; Polashenski, C. M.; Soja, Amber J.; Marelle, L.; Casey, K. A.; Choi, H. D.; Raut, J.-C.; Wiedinmyer, C.; Emmons, L. K.; Fast, J. D.; hide

    2017-01-01

    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57 on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud-Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high-resolution regional chemical transport modeling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.

  6. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  7. The structure of nano-palladium deposited on carbon-based supports

    International Nuclear Information System (INIS)

    Pikna, Ľubomír; Milkovič, Ondrej; Saksl, Karel; Heželová, Mária; Smrčová, Miroslava; Puliš, Pavel; Michalik, Štefan; Gamcová, Jana

    2014-01-01

    Nano-palladium catalysts, prepared using the same procedure with the same metal content (3 wt%) and two different supports, activated carbon (Pd/C) and activated carbon—multiwalled carbon nanotubes (Pd/C/CNT), are discussed. The simple technique of deposition reduction was applied in the preparation of these two types of Pd catalysts. TEM, XRD analysis, EXAFS signal analysis, and XANES were used for sample characterization. In both samples, transmission electron microscopy identified nanosized Pd particles with nearly spherical morphology but different sizes. The mean diameters of the particles on Pd/C and Pd/C/CNT were estimated to be 5.4 nm and 7.8 nm, respectively. The EXAFS signal analysis showed that Pd atoms on the particle surfaces were coordinated by 4 oxygens to form a PdO monolayer covering a metallic core. The XANES signal analysis indicated a smaller particle size for Pd/C (∅ 5 nm) than for Pd/C/CNT (∅ 10 nm), in good agreement with the TEM observations. - Graphical abstract: Visualization of metallic core (left), oxide monolayer (middle) and nanoparticle of diameter 5 nm (right). - Highlights: • Pd catalysts were prepared on two types of supports: carbon and carbon nanotubes. • BET, TEM, XRD characterization of prepared catalysts. • XAFS: Concentration of Pd in samples Pd/C and Pd/C/CNT. • EXAFS and XANES signal analysis of catalysts. • Visualisation of atoms arrangement at the Pd nanoparticle surface

  8. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions

    International Nuclear Information System (INIS)

    Hartel, Carola; Nikoghosyan, Anna; Durante, Marco; Sommer, Sylwester; Nasonova, Elena; Fournier, Claudia; Lee, Ryonfa; Debus, Juergen; Schulz-Ertner, Daniela; Ritter, Sylvia

    2010-01-01

    Background and purpose: To investigate the cytogenetic damage in blood lymphocytes of patients treated for prostate cancer with different radiation qualities and target volumes. Materials and methods: Twenty patients receiving carbon-ion boost irradiation followed by IMRT or IMRT alone for the treatment of prostate cancer entered the study. Cytogenetic damage induced in peripheral blood lymphocytes of these patients was investigated at different times during the radiotherapy course using Giemsa staining and mFISH. A blood sample from each patient was taken before initiation of radiation therapy and irradiated in vitro to test for individual radiosensitivity. In addition, in vitro dose-effect curves for the induction of chromosomal exchanges by X-rays and carbon ions of different energies were measured. Results: The yield of chromosome aberrations increased during the therapy course, and the frequency was lower in patients irradiated with carbon ions as compared to patients treated with IMRT with similar target volumes. A higher frequency of aberrations was measured by increasing the target volume. In vitro, high-LET carbon ions were more effective than X-rays in inducing aberrations and yielded a higher fraction of complex exchanges. The yield of complex aberrations observed in vivo was very low. Conclusion: The investigation showed no higher aberration yield induced by treatment with a carbon-ion boost. In contrast, the reduced integral dose to the normal tissue is reflected in a lower chromosomal aberration yield when a carbon-ion boost is used instead of IMRT alone. No cytogenetic 'signature' of exposure to densely ionizing carbon ions could be detected in vivo.

  9. Deposition and microstructure of Ti-containing diamond-like carbon nanocomposite films

    International Nuclear Information System (INIS)

    Yang, Won Jae; Sekino, Tohru; Shim, Kwang Bo; Niihara, Koichi; Auh, Keun Ho

    2005-01-01

    Ti-containing diamond-like carbon (DLC) films were deposited by plasma decomposition of CH 4 /Ar gas mixtures with an introduction of tetrakis(dimethylamino)titanium (TDMAT, Ti[(CH 3 ) 2 N] 4 ), which was used as a precursor of titanium. The films deposited were found to be nanocomposite coatings consisting of TiN nanocrystalline clusters and amorphous hydrocarbon (a-C:H), indicating that the nanocrystalline clusters were embedded in the DLC matrix. The crystallinity of TiN clusters, as well as the Ti atomic concentrations in the films, increased with an increase of substrate temperature. The substrate temperature applied to form a crystalline phase in the DLC matrix induced a graphitization of amorphous hydrocarbon matrix. The increase of volume fraction of TiN nanocrystalline clusters in the DLC matrix enhanced the mechanical properties of nanostructured coatings, although the graphite-like structural transition of DLC matrix happened due to the applied heating

  10. Carbon Co-Deposition During Gas Reduction of Water-Atomized Fe-Cr-Mo Powder

    Directory of Open Access Journals (Sweden)

    Ali B.

    2017-06-01

    Full Text Available The water atomization of iron powder with a composition of Fe-3Cr-0.5Mo (wt.% at 1600°C and 150 bar creates an oxide layer, which in this study was reduced using a mixture of methane (CH4 and argon (Ar gas. The lowest oxygen content was achieved with a 100 cc/min flow rate of CH4, but this also resulted in a co-deposition of carbon due to the cracking of CH4. This carbon can be used directly to create high-quality, sinter hardenable steel, thereby eliminating the need for an additional mixing step prior to sintering. An exponential relationship was found to exist between the CH4 gas flow rate and carbon content of the powder, meaning that its composition can be easily controlled to suit a variety of different applications.

  11. Model predictions of long-lived storage of organic carbon in river deposits

    Directory of Open Access Journals (Sweden)

    M. A. Torres

    2017-11-01

    Full Text Available The mass of carbon stored as organic matter in terrestrial systems is sufficiently large to play an important role in the global biogeochemical cycling of CO2 and O2. Field measurements of radiocarbon-depleted particulate organic carbon (POC in rivers suggest that terrestrial organic matter persists in surface environments over millennial (or greater timescales, but the exact mechanisms behind these long storage times remain poorly understood. To address this knowledge gap, we developed a numerical model for the radiocarbon content of riverine POC that accounts for both the duration of sediment storage in river deposits and the effects of POC cycling. We specifically target rivers because sediment transport influences the maximum amount of time organic matter can persist in the terrestrial realm and river catchment areas are large relative to the spatial scale of variability in biogeochemical processes.Our results show that rivers preferentially erode young deposits, which, at steady state, requires that the oldest river deposits are stored for longer than expected for a well-mixed sedimentary reservoir. This geometric relationship can be described by an exponentially tempered power-law distribution of sediment storage durations, which allows for significant aging of biospheric POC. While OC cycling partially limits the effects of sediment storage, the consistency between our model predictions and a compilation of field data highlights the important role of storage in setting the radiocarbon content of riverine POC. The results of this study imply that the controls on the terrestrial OC cycle are not limited to the factors that affect rates of primary productivity and respiration but also include the dynamics of terrestrial sedimentary systems.

  12. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    International Nuclear Information System (INIS)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-01-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli ( E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10 -7 to 10 -12 M with a detection limit of 1×10 -12 M. (paper)

  13. Characterization of diamond-like carbon coatings prepared by pulsed bias cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Wu Jinbao; Chang, J.-J.; Li, M.-Y.; Leu, M.-S.; Li, A.-K.

    2007-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been deposited on Si(100) and stainless steel substrates by cathodic vacuum arc plasma deposition with pulse voltage. Adherent deposits on silicon can be obtained through applying gradient Ti/TiC/DLC layers. A pulse bias of - 100 V was applied to the substrate in order to obtain a denser structure of DLC coating approximately 1 μm thick. The microstructure and hardness value of DLC films were analyzed by using X-ray photoelectron spectroscopy and nano-indenter. The experimental results show that the duty cycle strongly influenced the hardness and sp 3 content of the DLC coatings. We observed that when the duty cycle was raised from 2.5% to 12.5%, the hardness increased from 26 GPa to 49 GPa, and the sp 3 fraction of the DLC films measured by XPS increased from 39% to 50.8 % as well. But at constant duty cycle, say 12.5%, the hardness is dropped from 49 to 14 GPa in proportion to the increase of residual gas pressure from 3 x 10 -3 Pa to 1 Pa. As the residual gas pressure increased, collisional phenomenon will decrease the energy of the ions. Ions with low energy make more graphitic carbon links and result in a low hardness value

  14. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb) ......) in arterial blood. The objectives were to determine the level of correlation and to determine whether the methods showed agreement and evaluate them as diagnostic tests in discriminating between heavy and light smokers....

  15. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition

    NARCIS (Netherlands)

    Morassutto, M.; Tiggelaar, Roald M.; Smithers, M.A.; Smithers, M.A.; Gardeniers, Johannes G.E.

    2016-01-01

    Abstract In this study, dense arrays of aligned carbon nanotubes are obtained by thermal catalytic chemical vapor deposition, using Fe catalyst dispersed on a thin Ta layer. Alignment of the carbon nanotubes depends on the original Fe layer thickness from which the catalyst dispersion is obtained by

  16. Genesis of Pb-Zn-Cu-Ag Deposits within Permian Carboniferous-Carbonate Rocks in Madina Regency, North Sumatra

    Directory of Open Access Journals (Sweden)

    Bhakti Hamonangan Harahap

    2015-09-01

    Full Text Available DOI:10.17014/ijog.2.3.167-184Strong mineralized carbonate rock-bearing Pb-Zn-Cu-Ag-(Au ores are well exposed on the Latong River area, Madina Regency, North Sumatra Province. The ore deposit is hosted within the carbonate rocks of the Permian to Carboniferous Tapanuli Group. It is mainly accumulated in hollows replacing limestone in the forms of lensoidal, colloform, veins, veinlets, cavity filling, breccia, and dissemination. The ores dominantly consist of galena (126 000 ppm Pb and sphalerite (2347 ppm Zn. The other minerals are silver, azurite, covellite, pyrite, marcasite, and chalcopyrite. This deposit was formed by at least three phases of mineralization, i.e. pyrite and then galena replaced pyrite, sphalerite replaced galena, and pyrite. The last phase is the deposition of chalcopyrite that replaced sphalerite. The Latong sulfide ore deposits posses Pb isotope ratio of 206Pb/204Pb = 19.16 - 20.72, 207Pb/204Pb = 16.16 - 17.29, and 208Pb/204Pb = 42.92 - 40.78. The characteristic feature of the deposit indicates that it is formed by a sedimentary process rather than an igneous activity in origin. This leads to an interpretation that the Latong deposit belongs to the Sedimentary Hosted Massive Sulfide (SHMS of Mississippi Valley-Type (MVT. The presence of SHMS in the island arc such as Sumatra has become controversial. For a long time, ore deposits in the Indonesian Island Arc are always identical with the porphyry and hydrothermal processes related to arc magmatism. This paper is dealing with the geology of Latong and its base metal deposits. This work is also to interpret their genesis as well as general relationship to the regional geology and tectonic setting of Sumatra.

  17. Co-deposition of Pt and ceria anode catalyst in supercritical carbon dioxide for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    You, Eunyoung; Guzmán-Blas, Rolando; Nicolau, Eduardo; Aulice Scibioh, M.; Karanikas, Christos F.; Watkins, James J.; Cabrera, Carlos R.

    2012-01-01

    Pt and mixed Pt-ceria catalysts were deposited onto gas diffusion layers using supercritical fluid deposition (SFD) to fabricate thin layer electrodes for direct methanol fuel cells. Dimethyl (1,5-cyclooctadiene) platinum (II) (CODPtMe 2 ) and tetrakis (2,2,6,6-tetramethyl 3,5-heptanedionato) cerium (IV) (Ce(tmhd) 4 ) were used as precursors. Hydrogen-assisted Pt deposition was performed in compressed carbon dioxide at 60 °C and 17.2 MPa to yield high purity Pt on carbon-black based gas diffusion layers. During the preparation of the mixed Pt-ceria catalyst, hydrogen reduction of CODPtMe 2 to yield Pt catalyzed the deposition of ceria from Ce(tmhd) 4 enabling co-deposition at 150 °C. The catalyst layers were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive spectral (SEM-EDS) analyses. Their electrochemical performance toward methanol oxidation was examined in half cell mode using a three electrode assembly as well as in fuel cell mode. The thin layer electrodes formed via SFD exhibited higher performance in fuel cell operations compared to those prepared by the conventional brush-paint method. Furthermore, the Pt-ceria catalyst with an optimized composition exhibited greater methanol oxidation activity than pure platinum.

  18. Deposition Measurements in NSTX

    Science.gov (United States)

    Skinner, C. H.; Kugel, H. W.; Hogan, J. T.; Wampler, W. R.

    2004-11-01

    Two quartz microbalances have been used to record deposition on the National Spherical Torus Experiment. The experimental configuration mimics a typical diagnostic window or mirror. An RS232 link was used to acquire the quartz crystal frequency and the deposited thickness was recorded continuously with 0.01 nm resolution. Nuclear Reaction Analysis of the deposit was consistent with the measurement of the total deposited mass from the change in crystal frequency. We will present measurements of the variation of deposition with plasma conditions. The transport of carbon impurities in NSTX has been modelled with the BBQ code. Preliminary calculations indicated a negligible fraction of carbon generated at the divertor plates in quiescent discharges directly reaches the outer wall, and that transient events are responsible for the deposition.

  19. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Svegl, Irena Grabec; Bele, Marjan [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia); Ogorevc, Bozidar [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia)], E-mail: bogorevc@ki.si

    2008-11-03

    A new type of carbon film electrode, composed of a thin layer of tightly packed carbon black (CB) nanoparticles deposited onto a gelatin-covered indium tin oxide/glass support using the surface-induced deposition (SID) approach, is presented. Some parameters of the novel SID method were optimized and the surface image and functionalization of the investigated carbon black film electrode (CBFE) was inspected by employing scanning electron microscopy and infrared spectroscopy. A cyclic voltammetry (CV) study was conducted in which the electron-transfer kinetics and CBFE interfacial characteristics were evaluated employing several selected reference redox systems, such as [Ru(NH{sub 3}){sub 6}]{sup 3+/2+}, [Fe(CN){sub 6}]{sup 3-/4-} and Fe{sup 3+/2+} in aqueous, and ferrocene/ferrocenium in acetonitrile media. CV recordings were also performed in order to compare the electrochemical behavior of the CBFE with that of some well-known and established bare carbon-based electrodes. In order to confirm the validity of the CB film preparation method, the electroanalytical performance of the proposed CBFE was examined by carrying out linear sweep voltammetry of ascorbic acid (AA), anodic stripping square-wave voltammetry of Cu(II) in acidic medium, and amperometric measurements of hydrogen peroxide under flow injection conditions. The sensing characteristics of the novel carbon film electrode, demonstrated in this preliminary study, comprise: (i) a wide working potential window ranging from +1.0 to -1.3 V (depending on the solution pH), (ii) a wide applicable pH range (at least from 2 to 12), (iii) low voltammetric background (<5 {mu}A cm{sup -2}), (iv) a satisfactory linear voltammetric and amperometric response (r{sup 2} > 0.99) to various analytes, (v) good reproducibility (for example, r.s.d. of 2% in amperometric detection of H{sub 2}O{sub 2} and r.s.d. of 8.5% for electrode-to-electrode CV runs), and (vi) stable and fast current response (at least 100 CV runs with

  20. Depositional models of the shallow marine carbonates in the geochemical cycle. Busshitsu junkan ni okeru asaumi tansan'engan no taiseki model

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, T [Tohoku University, Sendai (Japan). Institute of Geology and Paleontology

    1993-06-15

    This paper summarizes depositional models of carbonates related to carbon circulation on the earth surface. The paper lists the following examples of modelling the Recent coral reefs: A model that divides coral reefs into several boxes corresponding to geographies, and estimates organic and inorganic carbon production in each box; and a model that discusses seawater flows to estimate fluxes of organic and inorganic carbons between the boxes and between the reefs and open seas. Carbon circulation in a time scale of the Quaternary may be described appropriately by the box model corresponding to the condition of deposition and dissolution of the carbonate rocks. Several examples of modelling oceans and coral reefs are described briefly. The paper lists a model by Berner et al. that notes migration of carbon, Ca, and Mg among five boxes of Ca-Mg silicate, ocean, atmosphere, calcite, and dolomite regarding the geochemical cycle during about 600 million years in the Phanerozoic era. It also explains a model developed from the former model. 39 refs., 1 fig.

  1. Voltage-Controlled Spray Deposition of Multiwalled Carbon Nanotubes on Semiconducting and Insulating Substrates

    Science.gov (United States)

    Maulik, Subhodip; Sarkar, Anirban; Basu, Srismrita; Daniels-Race, Theda

    2018-05-01

    A facile, cost-effective, voltage-controlled, "single-step" method for spray deposition of surfactant-assisted dispersed carbon nanotube (CNT) thin films on semiconducting and insulating substrates has been developed. The fabrication strategy enables direct deposition and adhesion of CNT films on target samples, eliminating the need for substrate surface functionalization with organosilane binder agents or metal layer coatings. Spray coating experiments on four types of sample [bare silicon (Si), microscopy-grade glass samples, silicon dioxide (SiO2), and polymethyl methacrylate (PMMA)] under optimized control parameters produced films with thickness ranging from 40 nm to 6 μm with substantial surface coverage and packing density. These unique deposition results on both semiconducting and insulator target samples suggest potential applications of this technique in CNT thin-film transistors with different gate dielectrics, bendable electronics, and novel CNT-based sensing devices, and bodes well for further investigation into thin-film coatings of various inorganic, organic, and hybrid nanomaterials on different types of substrate.

  2. Numerical investigation of heat transfer enhancement by carbon nano fibers deposited on a flat plate

    NARCIS (Netherlands)

    Pelevic, Nikola; van der Meer, Theo

    2013-01-01

    Numerical simulations of flow and heat transfer have been performed for flow over a plate surface covered with carbon nano fibers (CNFs). The CNFs influence on fluid flow and heat transfer has been investigated. Firstly, a stochastic model for CNFs deposition has been explained. Secondly, the

  3. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Evans, C. D.; Hofmeister, J.; Krejci, R.; Tahovská, K.; Persson, T.; Cudlín, Pavel; Hruška, J.

    2011-01-01

    Roč. 17, č. 10 (2011), 3115–3129 ISSN 1354-1013 R&D Projects: GA MŠk OC10022 Institutional research plan: CEZ:AV0Z60870520 Keywords : acidification * carbon * deposition * DOC * forest floor * leaching * nitrogen * nitrogen saturation * soil * sulphur Subject RIV: DD - Geochemistry Impact factor: 6.862, year: 2011 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02468.x/pdf

  4. Study of modification methods of probes for critical-dimension atomic-force microscopy by the deposition of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, O. A., E-mail: ageev@sfedu.ru [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation); Bykov, Al. V. [NT-MDT (Russian Federation); Kolomiitsev, A. S.; Konoplev, B. G.; Rubashkina, M. V.; Smirnov, V. A.; Tsukanova, O. G. [Southern Federal University, Institute for Nanotechnologies, Electronics, and Electronic Equipment Engineering (Russian Federation)

    2015-12-15

    The results of an experimental study of the modification of probes for critical-dimension atomicforce microscopy (CD-AFM) by the deposition of carbon nanotubes (CNTs) to improve the accuracy with which the surface roughness of vertical walls is determined in submicrometer structures are presented. Methods of the deposition of an individual CNT onto the tip of an AFM probe via mechanical and electrostatic interaction between the probe and an array of vertically aligned carbon nanotubes (VACNTs) are studied. It is shown that, when the distance between the AFM tip and a VACNT array is 1 nm and the applied voltage is within the range 20–30 V, an individual carbon nanotube is deposited onto the tip. On the basis of the results obtained in the study, a probe with a carbon nanotube on its tip (CNT probe) with a radius of 7 nm and an aspect ratio of 1:15 is formed. Analysis of the CNT probe demonstrates that its use improves the resolution and accuracy of AFM measurements, compared with the commercial probe, and also makes it possible to determine the roughness of the vertical walls of high-aspect structures by CD-AFM. The results obtained can be used to develop technological processes for the fabrication and reconditioning of special AFM probes, including those for CD-AFM, and procedures for the interoperational express monitoring of technological process parameters in the manufacturing of elements for micro- and nanoelectronics and micro- and nanosystem engineering.

  5. Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Modibedi, Remegia M.; Mathe, Mkhulu K.; Motsoeneng, Rapelang G.; Khotseng, Lindiwe E.; Ozoemena, Kenneth I.; Louw, Eldah K.

    2014-01-01

    Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions using the electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substrates for the electrodeposition of the metal. Supported nanostructured Pd electrodes were characterized using electrochemical methods and scanning electron microscopy. Carbon paper and Ni foam produced good quality deposits with some agglomeration on Ni foam. The EDX profiles confirmed the presence of Pd particles. Cyclic voltammograms of the electrodeposited Pd on substrates showed features characteristic of polycrystalline Pd electrodes. In the acidic electrolyte a very weak oxygen reduction reaction (ORR) activity was observed on Pd/Carbon paper electrode when compared to Pd/Ni foam electrode. The Pd/Ni foam electrode showed improved ORR activity in alkaline medium

  6. Depositing Nickel-based Hardfacing to Join Carbon Steel and Cast Iron

    Directory of Open Access Journals (Sweden)

    Tomás Fernández-Columbié

    2016-10-01

    Full Text Available The objective of this investigation is to determine the micro-structural behavior of a joint between cast iron and carbon steel by depositing a nickel-based substrate in the carbon steel. The filler was added through Shielded Metal Arc Welding using Castec 3099 (UTP 8 electrodes while the base materials were joined through Gas Tungsten Arc Welding with ER 70S – A1 bare electrodes. The Schaeffler diagram was used to analyze the chemical composition of the resulting weld beads. The results of the analysis performed on the welded area and the heat influence zone indicated the formation of acicular structures near the welded line when Castec 3099 electrodes are used and the formation of skeletal ferrite on the heat influence zone during the application of this welding process. An austenitic mixture is formed when ER 70S – A1 electrodes are used.

  7. Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period.

    Science.gov (United States)

    Yan, Guoyong; Xing, Yajuan; Xu, Lijian; Wang, Jianyu; Meng, Wei; Wang, Qinggui; Yu, Jinghua; Zhang, Zhi; Wang, Zhidong; Jiang, Siling; Liu, Boqi; Han, Shijie

    2016-06-30

    As crucial terrestrial ecosystems, temperate forests play an important role in global soil carbon dioxide flux, and this process can be sensitive to atmospheric nitrogen deposition. It is often reported that the nitrogen addition induces a change in soil carbon dioxide emission in growing season. However, the important effects of interactions between nitrogen deposition and the freeze-thaw-cycle have never been investigated. Here we show nitrogen deposition delays spikes of soil respiration and weaken soil respiration. We found the nitrogen addition, time and nitrogen addition×time exerted the negative impact on the soil respiration of spring freeze-thaw periods due to delay of spikes and inhibition of soil respiration (p nitrogen), 39% (medium-nitrogen) and 36% (high-nitrogen) compared with the control. And the decrease values of soil respiration under medium- and high-nitrogen treatments during spring freeze-thaw-cycle period in temperate forest would be approximately equivalent to 1% of global annual C emissions. Therefore, we show interactions between nitrogen deposition and freeze-thaw-cycle in temperate forest ecosystems are important to predict global carbon emissions and sequestrations. We anticipate our finding to be a starting point for more sophisticated prediction of soil respirations in temperate forests ecosystems.

  8. Solid Lubrication of Laser Deposited Carbon Nanotube Reinforced Nickel Matrix Nanocomposites Preprint

    Science.gov (United States)

    2009-03-01

    thickness 440C stainless steel (SS) and the deposited composites had a square geometry in order to assure a uniform laser heat distribution during the...tested against (a) 440C stainless steel counterface with Pmax=0.6 GPa and (b) Si3N4 counterface with Pmax=0.8 GPa. Fig. 4. (a) Pure Ni and (c...decrease in friction coefficients compared to pure Ni. 15. SUBJECT TERMS Tribology , friction, wear, solid lubricant, carbon nanotubes, metal

  9. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Zhang, Xu; Liang, Hong; Wu, Zhenglong; Wu, Xiangying; Zhang, Huixing

    2013-01-01

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment

  10. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  11. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood

    OpenAIRE

    Arazawa, D. T.; Kimmel, J. D.; Finn, M.C.; Federspiel, W. J.

    2015-01-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (< 500 mL/min) ECCO2R devices necessitates more efficient gas exchange devices. Since over 90% of blood CO2 is transported as bicarbonate (HCO3−), we previously reported development of a carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal ...

  12. Direct Fabrication of Carbon Nanotubes STM Tips by Liquid Catalyst-Assisted Microwave Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Fa-Kuei Tung

    2009-01-01

    Full Text Available Direct and facile method to make carbon nanotube (CNT tips for scanning tunneling microscopy (STM is presented. Cobalt (Co particles, as catalysts, are electrochemically deposited on the apex of tungsten (W STM tip for CNT growth. It is found that the quantity of Co particles is well controlled by applied DC voltage, concentration of catalyst solution, and deposition time. Using optimum growth condition, CNTs are successfully synthesized on the tip apex by catalyst-assisted microwave-enhanced chemical vapor deposition (CA-MPECVD. A HOPG surface is clearly observed at an atomic scale using the present CNT-STM tip.

  13. Microorganisms in the deposits of cold carbon mineral waters of the Russian Far East and their habitats

    Science.gov (United States)

    Kalitina, E. G.; Kharitonova, N. A.; Kuzmina, T. V.; Chelnokov, G. A.

    2018-01-01

    Study of the chemical composition of carbon mineral waters has shown the prevalence of calcium, magnesium and sodium among the cations, sulfate, nitrate and chloride ions among the anions, and ferric iron, strontium and manganese in the microelement composition. Results of the microbiological studies have revealed that carbon mineral waters contain various microorganisms that can transform the physical and chemical composition of mineral waters by interfering with geochemical cycles. The sanitary and microbiological properties of carbon mineral waters have been evaluated thus proving that the waters of Medvezhii (Shmakovskoe deposit) are microbiologically clean.

  14. ELECTROCATALYTIC ACTIVITY FOR O2 REDUCTION OF UNSUBSTITUTED AND PERCHLORINATED IRON PHTHALOCYANINES ADSORBED ON AMINO-TERMINATED MULTIWALLED CARBON NANOTUBES DEPOSITED ON GLASSY CARBON ELECTRODES

    OpenAIRE

    CAÑETE, PAULINA; SILVA, J. FRANCISCO; ZAGAL, JOSÉ H

    2014-01-01

    Amino-functionalized multiwalled carbon nanotubes (MWCNT-NH2) were modified with Fe phthalocyanine (FePc) and perchlorinated Fe phthalocyanine (16(Cl)FePc) and deposited on glassy carbon electrodes (GCE). The electrocatalytic activity of these hybrid electrodes was examined for the reduction of molecular oxygen in alkaline media (0.2 M NaOH) using stationary and rotating disk electrodes. Electrodes containing 16(Cl)FePc are more active than those containing FePc. Electrodes containing CNTs ar...

  15. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Science.gov (United States)

    Wang, Jianbo; Zhu, Tingcheng; Ni, Hongwei; Zhong, Haixiu; Fu, Xiaoling; Wang, Jifeng

    2013-01-01

    Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  16. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    Science.gov (United States)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  17. Synthesis of CNTs via chemical vapor deposition of carbon dioxide as a carbon source in the presence of NiMgO

    Energy Technology Data Exchange (ETDEWEB)

    Allaedini, Ghazaleh, E-mail: jiny_ghazaleh@yahoo.com [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Tasirin, Siti Masrinda [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Aminayi, Payam [Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI (United States)

    2015-10-25

    Carbon nanotubes were synthesized via the chemical vapor deposition (CVD) method, using Ni/MgO as a catalyst and CO{sub 2} as a nontoxic, abundant, and economical carbon source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), along with the results from Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, confirmed the successful formation of CNTs. Energy-dispersive X-ray spectroscopy (EDX) was performed to investigate the weight percentage of the present elements in the synthesized powder, and a significant yield of 27.38% was confirmed. The reaction mechanism was discussed, and the role of the carbon source, catalyst support, and presence of H{sub 2} in the reaction environment was elaborated. - Highlights: • CO{sub 2} was used as a nontoxic and economical carbon source for CNT production. • A novel Ni supported MgO has been synthesized and employed in the CVD process. • CNTs were produced with a significant yield of 27.38%.

  18. Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms

    Science.gov (United States)

    Bressac, M.; Guieu, C.; Doxaran, D.; Bourrin, F.; Desboeufs, K.; Leblond, N.; Ridame, C.

    2014-02-01

    Lithogenic particles, such as desert dust, have been postulated to influence particulate organic carbon (POC) export to the deep ocean by acting as mineral ballasts. However, an accurate understanding and quantification of the POC-dust association that occurs within the upper ocean is required in order to refine the "ballast hypothesis". In the framework of the DUNE (a DUst experiment in a low-Nutrient, low-chlorophyll Ecosystem) project, two artificial seedings were performed seven days apart within large mesocosms. A suite of optical and biogeochemical measurements were used to quantify surface POC export following simulated dust events within a low-nutrient, low-chlorophyll ecosystem. The two successive seedings led to a 2.3-6.7-fold higher POC flux than the POC flux observed in controlled mesocosms. A simple linear regression analysis revealed that the lithogenic fluxes explained more than 85% of the variance in POC fluxes. On the scale of a dust-deposition event, we estimated that 42-50% of POC fluxes were strictly associated with lithogenic particles (through aggregation and most probably sorption processes). Lithogenic ballasting also likely impacted the remaining POC fraction which resulted from the fertilization effect. The observations support the "ballast hypothesis" and provide a quantitative estimation of the surface POC export abiotically triggered by dust deposition. In this work, we demonstrate that the strength of such a "lithogenic carbon pump" depends on the biogeochemical conditions of the water column at the time of deposition. Based on these observations, we suggest that this lithogenic carbon pump could represent a major component of the biological pump in oceanic areas subjected to intense atmospheric forcing.

  19. Carbon Deposition during CO2 Electrolysis in Ni-Based Solid-Oxide-Cell Electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Graves, Christopher R.; Blennow, P.

    2015-01-01

    the onset of carbon deposition. The outlet gas composition at each current step was estimated based on the inlet gas composition and the reactant conversion using Faraday's law. The increase in voltage was observed at lower outlet pCO/pCO2 ratios than that corresponding to the expected thermodynamic......The carbon formation threshold in an operating cell was investigated during electrolysis of an idealized reactant atmosphere of CO and CO2. The electrolysis current was gradually increased in steps until the cell voltage spontaneously increased, thereby indicating cell degradation and possibly...

  20. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  1. Multiscale study of the porosity of carbon deposits collected in Tore Supra

    International Nuclear Information System (INIS)

    Martin, C.; Richou, M.; Saikaily, W.; Pegourie, B.; Brosset, C.; Roubin, P.

    2007-01-01

    Carbon deposits collected in Tore Supra, on the neutralisers and on the toroidal pump limiter, are analysed by adsorption isotherm measurements and electron microscopy. Both techniques are suitable to study the porosity in a multiscale range and allow the characterisation of the volume and the structure of the pore network. The neutraliser deposits show an oval shape structure and a high specific surface area. This area corresponds to microporosity, i.e. pores with a typical size lower than 2 nm, (∼11%), mesoporosity (∼5%) and macroporosity, i.e. pores with a typical size more than 50 nm. Surprisingly, transmission electron microscopy performed on thin foils cut from an oval reveals a regular network of parallel slit-shaped mesopores (size ∼ 10 nm) and macropores (size ∼ 100 nm), with a well-defined orientation with respect to the oval axis

  2. Boreal mire carbon exchange: sensitivity to climate change and anthropogenic nitrogen and sulfur deposition

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Tobias

    2010-07-01

    Boreal peatlands are important long-term sinks of atmospheric carbon and in the same time the largest natural source of methane to the atmosphere. A changing climate as well as deposition of anthropogenically derived pollutants, such as nitrogen and sulfur, has the potential to affect the processes that control the carbon exchange in peatlands. Many of the biogeochemical responses to changed environmental conditions, such as changed plant community composition, are slow and therefore long-term studies are required. In this thesis I have investigated the long-term effects of nitrogen addition, sulfur addition and greenhouse enclosures on carbon exchange by using a field manipulation experiment in a boreal minerogenic, oligotrophic mire after 10-12 years of treatment. Treatment effects on CH{sub 4} emissions, gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE) were estimated from 1-2 seasons of chamber flux measurements. Treatment effects on potential CH{sub 4} production and oxidation were estimated in incubations of peat from different depth intervals. The effect of nitrogen deposition on carbon accumulation was evaluated in peat cores at different depth intervals. The long-term nitrogen additions have: shifted plant community composition from being dominated by Sphagnum to being dominated by sedges and dwarf shrubs; changed mire surface microtopography so that mean water table is closer to the surface in plots with high nitrogen; increased CH{sub 4} production and emission; increased Reco slightly but have not affected GPP or NEE; reduced the peat height increment, but increased both peat bulk density and carbon content, leading to an unchanged carbon accumulation. The long-term sulfur additions have not reduced CH{sub 4} emissions, only slightly reduced CH{sub 4} production and did not have any effect on the CO{sub 2} carbon exchange. The greenhouse treatment, manifested in increased air and soil temperatures, reduced

  3. Black carbon concentration and deposition estimations in Finland by the regional aerosol–climate model REMO-HAM

    Directory of Open Access Journals (Sweden)

    A. I. Hienola

    2013-04-01

    Full Text Available The prediction skill of the regional aerosol–climate model REMO-HAM was assessed against the black carbon (BC concentration measurements from five locations in Finland, with focus on Hyytiälä station for the year 2005. We examined to what extent the model is able to reproduce the measurements using several statistical tools: median comparison, overlap coefficient (OVL; the common area under two probability distributions curves and Z score (a measure of standard deviation, shape and spread of the distributions. The results of the statistics showed that the model is biased low. The local and regional emissions of BC have a significant contribution, and the model tendency to flatten the observed BC is most likely dominated by the lack of domestic burning of biofuel in the emission inventories. A further examination of the precipitation data from both measurements and model showed that there is no correlation between REMO's excessive precipitation and BC underestimation. This suggests that the excessive wet removal is not the main cause of the low black carbon concentration output. In addition, a comparison of wind directions in relation with high black carbon concentrations shows that REMO-HAM is able to predict the BC source directions relatively well. Cumulative black carbon deposition fluxes over Finland were estimated, including the deposition on snow.

  4. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  5. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  6. Mechanical and tribological properties of carbon thin film with tungsten interlayer prepared by Ion beam assisted deposition

    Czech Academy of Sciences Publication Activity Database

    Vlčák, P.; Černý, F.; Tolde, Z.; Sepitka, J.; Gregora, Ivan; Daniš, S.

    2013-01-01

    Roč. 2013, FEB (2013) ISSN 2314-4874 Institutional support: RVO:68378271 Keywords : carbon coatings * ion beam deposition * XRD * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.1155/2013/630156

  7. Carbon dioxide dissociation and buffering in chicken blood during development.

    Science.gov (United States)

    Tazawa, H; Piiper, J

    1984-07-01

    Carbon dioxide dissociation curves of oxygenated and deoxygenated bloods, the Haldane effect, the buffer value and other blood and true plasma buffering indices, O2 capacity and hematocrit were determined in bloods withdrawn from chicks before, during and after hatching and 8-month-old hens. Blood CO2 dissociation curves shifted upwards in the developing embryo till pipping, and moved downwards after pipping and hatching. In accordance with the position of the CO2 dissociation curves, the true plasma bicarbonate and red cell CO2 standardized to PCO2 = 40 torr changed. The Haldane factor at standard PCO2 increased from 0.12-0.13 on days 10-14 of incubation to 0.34 in young hens. The buffering power changed in parallel with O2 capacity and hematocrit, increasing steadily during incubation, dropping at hatching and then increasing again to the adult value. The observed changes in the CO2 dissociation curves and buffering variables during the development enable the chick to minimize the changes in the acid-base status and are favorable for coping with the increasing demand for CO2 transport and buffering of the developing bird.

  8. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  9. Depositional facies mosaics and their time lines in Lower Ordovician carbonates of central Appalachians

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, C.T.; Goldhammer, R.K.; Hardie, L.A.

    1985-02-01

    A comparative sedimentology and facies stratigraphy study of the Lower Ordovician carbonate of the central Appalachians (Beekmantown Group and equivalents) has been carried out. Our approach used subfacies (rock record of subenvironments) as the basin units of section measurement. The authors differentiated related sets of subfacies into larger facies units (rock record of environments). Facies were then correlated from section to section using fossils and lithostratigraphy to make a 3-dimensional facies mosaic. Within this mosaic, time lines were constructed using onlap-offlap tongues and cyclic sequences. These time lines cut across facies boundaries. Using this approach, the authors have established that the lower 600 m of the Lower Ordovician carbonate sequence is made up of 4 main facies: (1) cyclic laminite facies composed of a package of shoaling-upward shelf lagoon-peritidal cycles, (2) thin-bedded grainstone facies deposited in a shelf lagoon, (3) Renalcis bioherm facies recording a shelf lagoon patch-reef environment, and (4) Epiphyton bioherm facies recording a shelf-edge reef system. The distribution of these facies along time lines across the strike of the central Appalachians is markedly zoned. Epiphyton bioherm facies dominate the eastern margin while cyclic laminite facies dominate the western margin, with thin-bedded grainstone and Renalcis bioherm facies making up the central belt. This zonation of facies is a typical shallow carbonate shelf system with fringing reefs along the eastern, seaward margin and tidal flats along the western, landward margin. Vertical distribution of these facies across strike records 3 major sea level changes during deposition of the lower 600 m of this extensive Lower Ordovician carbonate shelf.

  10. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.

    Science.gov (United States)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-11-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  12. Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction: Presentation

    CSIR Research Space (South Africa)

    Modibedi, M

    2013-03-01

    Full Text Available the electrochemical atomic layer deposition technique. Pd was deposited on carbon paper and Ni foam substrates using Cu as a sacrificial metal following the procedure published by Mkwizu et al. The electrochemical activity of the prepared nanostructures towards ORR...

  13. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa

    Science.gov (United States)

    Beukes, N. J.; Klein, C.; Kaufman, A. J.; Hayes, J. M.

    1990-01-01

    The transition zone comprises Campbellrand microbialaminated (replacing "cryptalgalaminate") limestone and shale, with minor dolomite, conformably overlain by the Kuruman Iron Formation of which the basal part is characterized by siderite-rich microbanded iron-formation with minor magnetite and some hematite-containing units. The iron-formation contains subordinate intraclastic and microbialaminated siderite mesobands and was deposited in deeper water than the limestones. The sequence is virtually unaltered with diagenetic mineral assemblages reflecting a temperature interval of about 110 degrees to 170 degrees C and pressures of 2 kbars. Carbonate minerals in the different rock types are represented by primary micritic precipitates (now recrystallized to microsparite), early precompactional sparry cements and concretions, deep burial limpid euhedral sparites, and spar cements precipitated from metamorphic fluids in close contact with diabase sills. Paragenetic pathways of the carbonate minerals are broadly similar in all lithofacies with kerogen intimately associated with them. Kerogen occurs as pigmentation in carbonate crystals, as reworked organic detritus in clastic-textured carbonate units, and as segregations of kerogen pigment around late diagenetic carbonate crystals. Locally kerogen may also be replaced by carbonate spar. Carbon isotope compositions of the carbonate minerals and kerogen are dependent on their mode of occurrence and on the composition of the dominant carbonate species in a specific lithofacies. Integration of sedimentary, petrographic, geochemical, and isotopic results makes it possible to distinguish between depositional, early diagenetic, deep burial, and metamorphic effects on the isotopic compositions of the carbonate minerals and the kerogen in the sequence. Major conclusions are that deep burial thermal decarboxylation led to 13C depletion in euhedral ferroan sparites and 13C enrichment in kerogen (organic carbon). Metamorphic

  14. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    Science.gov (United States)

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  15. Physicochemical and Biological Investigation of Different Structures of Carbon Coatings Deposited onto Polyurethane

    Directory of Open Access Journals (Sweden)

    Witold Kaczorowski

    2016-01-01

    Full Text Available The aim of this study was to examine the thrombogenic properties of polyurethane that was surface modified with carbon coatings. Physicochemical properties of manufactured coatings were investigated using transmission electron microscopy (TEM, atomic force microscopy (AFM, X-ray Photoelectron Spectroscopy (XPS, Raman spectroscopy and contact angle measurement methods. Samples were examined by the Impact-R method evaluating the level of platelets activation and adhesion of particular blood cell elements. The analysis of antimicrobial resistance against E. coli colonization and viability of endothelial cells showed that polyurethane modified with use of carbon layers constituted an interesting solution for biomedical application.

  16. Composition and color stability of carbon monoxide treated dried porcine blood.

    Science.gov (United States)

    Fontes, P R; Gomide, L A M; Fontes, E A F; Ramos, E M; Ramos, A L S

    2010-07-01

    Color stability of swine blood was studied over 12 weeks of storage in plastic bags, after pH (7.40, 6.70, or 6.00) adjustment, saturation with carbon monoxide (CO) and spray-drying. CO-treated dried blood presented a redder color and higher reflectance between 610 and 700 nm, compared to a brownish-red color and lower reflectance of untreated samples. As indicated by reflectance spectra, blood pH adjustment did not influence (P>0.05) the initial color of dried blood but influenced (Pvalues, which was more pronounced in polyethylene (OTR=4130 cm(3)/m(2)/day/atm) packaged samples. After 12 weeks of storage, CO-treated samples packaged in high OTR bags presented color indexes similar to those of the untreated dried samples. CO-treated samples packaged in nylon-polyethylene (OTR=30-60 cm(3)/m(2)/day/atm) bags showed a smaller rate of discoloration and color difference (DeltaE(*)) between the CO-treated and untreated samples. Even with some darkening, packaging CO-treated dry blood in low OTR bags still gives an acceptable reddish color after 12 weeks of storage while untreated dry blood has a brownish color just after drying. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Amorphous carbon nitrogenated films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Durrant, Steven F.; Rangel, Rita C.C.; Kayama, Milton E.; Landers, Richard; Cruz, Nilson C. da

    2006-01-01

    In this work, an investigation was conducted on amorphous hydrogenated-nitrogenated carbon films prepared by plasma immersion ion implantation and deposition. Glow discharge was excited by radiofrequency power (13.56 MHz, 40 W) whereas the substrate-holder was biased with 25 kV negative pulses. The films were deposited from benzene, nitrogen and argon mixtures. The proportion of nitrogen in the chamber feed (R N ) was varied against that of argon, while keeping the total pressure constant (1.3 Pa). From infrared reflectance-absorbance spectroscopy it was observed that the molecular structure of the benzene is not preserved in the film. Nitrogen was incorporated from the plasma while oxygen arose as a contaminant. X-ray photoelectron spectroscopy revealed that N/C and O/C atomic ratios change slightly with R N . Water wettability decreased as the proportion of N in the gas phase increased while surface roughness underwent just small changes. Nanoindentation measurements showed that film deposition by means of ion bombardment was beneficial to the mechanical properties of the film-substrate interface. The intensity of the modifications correlates well with the degree of ion bombardment

  18. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    Science.gov (United States)

    Adzic, Radoslav; Harris, Alexander

    2013-03-26

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  19. Carbon and tungsten effect on characteristics of sputtered and re-deposited beryllium target layers under deuteron bombardment

    International Nuclear Information System (INIS)

    Danelyan, L.S.; Gureev, V.M.; Elistratov, N.G.

    2004-01-01

    The behavior of the plasma facing Be-elements in the International Thermonuclear Experimental Reactor ITER will be affected by the re-deposition of other eroded plasma facing materials. The effect of carbon- and tungsten-additions on the microstructure, chemical composition and hydrogen isotope accumulation in the sputtered and re-deposited layers of beryllium TGP-56 at its interaction with 200 - 300 eV hydrogen isotope ions was studied in the MAGRAS facility equipped with a magnetron sputtering system. (author)

  20. Directly deposited graphene nanowalls on carbon fiber for improving the interface strength in composites

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yao [Department of Building Materials Engineering, College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chu, Jin; Li, Chaolong, E-mail: cmf-210@126.com, E-mail: lichaolong@cigit.ac.cn; Piao, Mingxing; Zhang, Heng; Shi, Haofei [Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Mingfeng, E-mail: cmf-210@126.com, E-mail: lichaolong@cigit.ac.cn; Mao, Weijie [Department of Building Materials Engineering, College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Liu, Bao Sheng [Avic Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China)

    2016-05-23

    Graphene nanowalls (GNWs) were grown directly on carbon fibers using a chemical vapor deposition technique which is simple and catalyst-free. We found that there is very strong π-π stacking which is a benefit for the GNWs/carbon fiber interface. This single modified filament then was embedded into an epoxy matrix to be a single-fiber composite in which was formed a “tenon-mortise” structure. Such a “tenon-mortise” model provides a simple, stable, and powerful connection between carbon fiber and the epoxy matrix. In addition, it was demonstrated that the epoxy matrix can be well embedded into GNWs through a field emission scanning electron microscope. The results of the single-fiber composite tests indicated that the interfacial strength of the composites was immensely improved by 173% compared to those specimens without GNWs.

  1. A study on hydrogen, oxygen, carbon, sulfur and lead isotopes in the rich uranium deposit No.201

    International Nuclear Information System (INIS)

    Li Yuexiang; Li Tiangang; Tong Hongshou; Feng Mingyue; Xu Zhan

    1995-01-01

    The uranium deposit No.201 located in Indonesian granite is one of the richest uranium deposits of granite type in China. An attempt is made to investigate the sources of ore-forming solutions and ore-forming materials, and to presume the environment of ore formation in the light of the study on composition of stable isotopes such as hydrogen, oxygen, carbon, sulfur and lead. The research results indicate that the ore-forming fluids in the deposit is mainly composed of meteoric water, the ore-forming materials principally came from pre-Yanshanian granite Massif and possibly, partly from the lower crust, and metallogenesis was undertaken under relatively stable physicochemical conditions

  2. A study on hydrogen, oxygen, carbon, sulfur and lead isotopes in the rich uranium deposit No.201

    Energy Technology Data Exchange (ETDEWEB)

    Yuexiang, Li; Tiangang, Li; Hongshou, Tong; Mingyue, Feng; Zhan, Xu [Beijing Research Inst. of Uranium Geology (China)

    1995-09-01

    The uranium deposit No.201 located in Indonesian granite is one of the richest uranium deposits of granite type in China. An attempt is made to investigate the sources of ore-forming solutions and ore-forming materials, and to presume the environment of ore formation in the light of the study on composition of stable isotopes such as hydrogen, oxygen, carbon, sulfur and lead. The research results indicate that the ore-forming fluids in the deposit is mainly composed of meteoric water, the ore-forming materials principally came from pre-Yanshanian granite Massif and possibly, partly from the lower crust, and metallogenesis was undertaken under relatively stable physicochemical conditions.

  3. Deposition of carbon nitride films by vacuum ion diode with explosive emission

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Perry, A.J. [New Jersey Inst. of Tech., Newark (United States); Elkind, A.; Kalmukov, A.

    1997-10-31

    Carbon nitride films were synthesized using a novel technique based on the pulsed high voltage ion/electron diode with explosive emission (pulsed voltage 200-700 kV pulsed current 100-500 Acm{sup -2} (ions) 150-2000 Acm{sup -2} (electrons)). The method and its novel features are discussed as well as its application to the formation of the crystalline {beta}-phase in C{sub 3}N{sub 4} films. Mixed elemental nitrogen and carbon films are formed by sequential deposition then subjected to ion and/or electron beam mixing to synthesize the C{sub 3}N{sub 4} structure. The experimental conditions used for this pulsed process are described and the efficiency of the method for nitrogen incorporation is demonstrated. The results presented indicate that {beta}-C{sub 3}N{sub 4} crystallites are formed in an amorphous matrix. (orig.) 20 refs.

  4. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    Science.gov (United States)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Heimann, M.; Jones, C.

    2010-09-01

    European ecosystems are thought to take up large amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more that 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C yr-1. The extents of forest and grasslands have increased with the respective rates of 5800 km2 yr-1 and 1100 km2 yr-1 as agricultural land has been abandoned at a rate of 7000 km2 yr-1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. The models suggest that European ecosystems sequester carbon at a rate of 56 TgC yr-1 (mean of four models for 1951-2000) with strong interannual variability (±88 TgC yr-1, average across models) and substantial inter-model uncertainty (±39 TgC yr-1). Decadal budgets suggest that there has been a continuous increase in the mean net carbon storage of ecosystems from 85 TgC yr-1 in 1980s to 108 TgC yr-1 in 1990s, and to 114 TgC yr-1 in 2000-2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are suggested as an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with land use changes are needed to further improve the quantitative understanding of the driving forces of the European land carbon balance.

  5. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  6. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  7. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    DEFF Research Database (Denmark)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan

    2017-01-01

    is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration...... outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate......Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters...

  8. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  9. Diamond-like carbon prepared by pulsed laser deposition with ion bombardment: physical properties

    Science.gov (United States)

    Písařík, P.; Mikšovský, J.; Remsa, J.; Zemek, J.; Tolde, Z.; Jelínek, M.

    2018-01-01

    Diamond-like carbon (DLC) and titanium-doped DLC thin films were prepared by unique hybrid system consisting of pulsed laser deposition, ion source (bombardment) and magnetron sputtering. The influence of deposition parameters (ion energies, deposition pressures and magnetron power) on composition and physical properties was studied. Composition and sp 3/ sp 2 ratio were determined by XPS. sp 3/ sp 2 ratio was in the range from 1.4 to 2.2 for undoped DLC and from 3.4 to 4.8 for Ti-DLC. AFM showed that the layers were smooth, but with small amounts of random droplets. The measurements of the contact angle and determination of surface free energy were made for water, diiodomethane and ethylene glycol. Hardness and reduced Young's modulus varied from 20 to 31 GPa and from 182 to 276 GPa, respectively. Film adhesion was determined by scratch test; L C3 reached 23 N for DLC and 27 N for TiDLC. Optimization of sp 3/ sp 2 ratio, hardness and adhesion to biomedical alloys will advance the DLC coatings usability in the field of implantology.

  10. Nanogranular Au films deposited on carbon covered Si substrates for enhanced optical reflectivity and Raman scattering

    International Nuclear Information System (INIS)

    Bhuvana, T; Kumar, G V Pavan; Narayana, Chandrabhas; Kulkarni, G U

    2007-01-01

    Electroless deposition of gold has been carried out on Si(100) surfaces precoated with laser ablated carbon layers of different thicknesses, and the resulting substrates have been characterized by a host of techniques. We first established the porous nature of the amorphous carbon layer by Raman and profilometric measurements. The Au uptake from the plating solution was optimal at a carbon layer thickness of 90 nm, where we observed nanogranules of ∼60-70 nm, well separated from each other in the carbon matrix (mean interparticle spacing ∼7 nm). We believe that the observed nanostructure is a result of Au 3+ electroless reduction on the Si surface through porous channels present in the amorphous carbon matrix. Importantly, this nanostructured substrate exhibited high reflectivity in the near IR region besides being effective as a substrate for surface enhanced Raman scattering (SERS) measurements with enhancement factors up to 10 7

  11. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  12. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition

    NARCIS (Netherlands)

    Jodin, Lucie; Dupuis, Anne-Claire; Rouvière, Emmanuelle; Reiss, Peter

    2006-01-01

    The preparation of the catalyst is one of the key parameters which governs the quality of carbon nanotubes (CNTs) grown by catalyzed chemical vapor deposition (CVD). We investigated the influence of three different procedures of catalyst preparation on the type and diameter of CNTs formed under

  13. Retinal venous blood carbon monoxide response to bright light in male pigs: A preliminary study.

    Science.gov (United States)

    Oren, Dan A; Duda, Magdalena; Kozioł, Katarzyna; Romerowicz-Misielak, Maria; Koziorowska, Anna; Sołek, Przemysław; Nowak, Sławomir; Kulpa, Magdalena; Koziorowski, Marek

    2017-03-01

    The physical mechanism by which light is absorbed in the eye and has antidepressant and energizing effects in Seasonal Affective Disorder and other forms of psychiatric major depression is of scientific interest. This study was designed to explore one specific aspect of a proposed humoral phototransduction mechanism, namely that carbon monoxide (CO) levels increase in retinal venous blood in response to bright light. Eleven mature male pigs approximately six months of age were kept for 7days in darkness and fasted for 12h prior to surgery. Following mild sedation, anesthesia was induced. Silastic catheters were inserted into the dorsal nasal vein through the angular vein of the eye to reach the ophthalmic sinus, from which venous blood outflowing from the eye area was collected. The animals were exposed to 5000lx of fluorescent-generated white light. CO levels in the blood were analyzed by gas chromatography before and after 80min of light exposure. At baseline, mean CO levels in the retinal venous blood were 0.43±0.05(SE)nmol/ml. After bright light, mean CO levels increased to 0.54±0.06nmol/ml (two-tailed t-test plight exposure raises carbon monoxide levels in ophthalmic venous blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of elevated CO2 and nitrogen deposition on ecosystem carbon fluxes on the Sanjiang plain wetland in Northeast China.

    Directory of Open Access Journals (Sweden)

    Jianbo Wang

    Full Text Available BACKGROUND: Increasing atmospheric CO2 and nitrogen (N deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes. METHODOLOGY/PRINCIPAL FINDINGS: Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP was higher than ecosystem respiration (ER, leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE. CONCLUSION/SIGNIFICANCE: In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.

  15. Impact of future Arctic shipping on high-latitude black carbon deposition (Invited)

    Science.gov (United States)

    Corbett, J. J.; Browse, J.; Carslaw, K. S.; Schmidt, A.

    2013-12-01

    The retreat of Arctic sea-ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snow-melt and sea-ice loss. We use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a global aerosol microphysics model GLOMAP coupled to the chemical transport model TOMCAT to quantify the contribution of future Arctic shipping to high-latitude BC deposition. Emission rates of SOx (SO2 and SO4) and particulate matter (PM) were estimated for 2050 under both business-as-usual and high-growth scenarios. BC particles are assumed to be water-insoluble at emission but can become active in cloud drop formation through soluble material accumulation. After BC particles become cloud-active they are more efficiently wet scavenged, which accounts for 80% of modeled BC deposition. Current-day Arctic shipping contributes 0.3% to the BC mass deposited north of 60N (250 Gg). About 50% of modelled BC deposition is on open ocean, suggesting that current Arctic ship traffic may not significantly contribute to BC deposition on central Arctic sea ice. However, 6 - 8% of deposited BC on the west coast of Greenland originates from local ship traffic. Moreover, in-Arctic shipping contributes some 32% to high-latitude ship-sourced deposition despite accounting for less than 1.0% of global shipping emissions. This suggests that control of in-Arctic shipping BC emissions could yield greater decrease in high-latitude BC deposition than a similar control strategy applied only to the extra-Arctic shipping industry. Arctic shipping in 2050 will contribute less than 1% to the total BC deposition north of 60N due to the much greater relative contribution of BC transported from non-shipping sources

  16. A mechanism for corrosion product deposition on the carbon steel piping in the residual heat removal system of BWRs

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Chiba, Yoshinori; Hosokawa, Hideyuki; Ohsumi, Katsumi; Uchida, Shunsuke; Ishizawa, Noboru

    2002-01-01

    The dose rate of the residual heat removal (RHR) piping has been considered to be caused by accumulation of insoluble (crud) radioactive corrosion products on carbon steel surfaces. Soft shutdown procedures (i.e., plant shutdown with moderate coolant temperature reduction rate) used to be applied to reduce crud radioactivity release from the fuel surface, but these are no longer used because of the need for shorter plant shutdown times. In order to apply other suitable countermeasures to reduce RHR dose rate, assessment of plant data, experiments on deposition of crud and ion species on carbon steel, and mass balance evaluation of radioactive corrosion products based on plant and laboratory data were carried out and the following findings were made. (1) Deposits of ion species on carbon steel surfaces of the RHR piping was much more numerous than for crud. (2) Ion species accumulation behavior on RHR piping, which is temperature dependent, can be evaluated with the calculation model used for the dehydration reaction of corrosion products generated during the wet lay-up period. (3) Deposition amounts could be reduced to 1/2.5 when the starting RHR system operation temperature was lowered from 155degC to 120degC. (author)

  17. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    Science.gov (United States)

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  18. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  19. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  20. Effects of potassium hydroxide post-treatments on the field-emission properties of thermal chemical vapor deposited carbon nanotubes.

    Science.gov (United States)

    Lee, Li-Ying; Lee, Shih-Fong; Chang, Yung-Ping; Hsiao, Wei-Shao

    2011-12-01

    In this study, a simple potassium hydroxide treatment was applied to functionalize the surface and to modify the structure of multi-walled carbon nanotubes grown on silicon substrates by thermal chemical vapor deposition. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive spectrometry were employed to investigate the mechanism causing the modified field-emission properties of carbon nanotubes. From our experimental data, the emitted currents of carbon nanotubes after potassium hydroxide treatment are enhanced by more than one order of magnitude compared with those of untreated carbon nanotubes. The emitted current density of carbon nanotubes increases from 0.44 mA/cm2 to 7.92 mA/cm2 after 30 minutes KOH treatment. This technique provides a simple, economical, and effective way to enhance the field-emission properties of carbon nanotubes.

  1. RIR MAPLE procedure for deposition of carbon rich Si/C/H films

    International Nuclear Information System (INIS)

    Dřínek, Vladislav; Strašák, Tomáš; Novotný, Filip; Fajgar, Radek; Bastl, Zdeněk

    2014-01-01

    We applied the resonant infrared matrix assisted pulsed laser evaporation (RIR MAPLE) technique to demonstrate a new approach to a controlled deposition of carbon rich amorphous Si/C/H film. In absence of radicals and accelerated species commonly generated in PECVD and sputtering setups, the RIR MAPLE method does not decompose precursor molecules. Moreover, unlike the standard MAPLE procedure, in which solvent molecules absorb laser energy from excimer or near infrared lasers, we applied the pulsed TEA CO 2 laser to excite the dendrimer precursor molecules in a frozen target. In this manner we achieved just cross-linking of the starting precursor on substrates and the deposition of carbon rich Si/C/H film. The film was analyzed by Fourier Transformed Infrared (FTIR), UV/VIS, Raman and X-ray Photoelectron (XPS) spectroscopy and Atomic Force Microscopy (AFM) technique. According to analyses the film retained the precursor elemental composition free of graphitic (sp 2 ) clusters. In course of reaction only the peripheral allyl groups containing C=C bonds were opened to achieve cross-linking. Whereas annealing to 300 °C was necessary for the elimination of =C–H 1 , 2 bonds in the films prepared at 200 °C, those bonds vanished completely for the films prepared at substrate temperature 255 °C. The film posseses a smooth surface with root mean square (RMS) parameter up to 10 nm within scanned distance 2.5 μm.

  2. RIR MAPLE procedure for deposition of carbon rich Si/C/H films

    Energy Technology Data Exchange (ETDEWEB)

    Dřínek, Vladislav, E-mail: drinek@icpf.cas.cz [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Strašák, Tomáš [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Novotný, Filip [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague (Czech Republic); Fajgar, Radek [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Rozvojova 135, 165 02 Prague 6 (Czech Republic); Bastl, Zdeněk [J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i., Dolejškova 2155/3, 182 23 Prague 8 (Czech Republic)

    2014-02-15

    We applied the resonant infrared matrix assisted pulsed laser evaporation (RIR MAPLE) technique to demonstrate a new approach to a controlled deposition of carbon rich amorphous Si/C/H film. In absence of radicals and accelerated species commonly generated in PECVD and sputtering setups, the RIR MAPLE method does not decompose precursor molecules. Moreover, unlike the standard MAPLE procedure, in which solvent molecules absorb laser energy from excimer or near infrared lasers, we applied the pulsed TEA CO{sub 2} laser to excite the dendrimer precursor molecules in a frozen target. In this manner we achieved just cross-linking of the starting precursor on substrates and the deposition of carbon rich Si/C/H film. The film was analyzed by Fourier Transformed Infrared (FTIR), UV/VIS, Raman and X-ray Photoelectron (XPS) spectroscopy and Atomic Force Microscopy (AFM) technique. According to analyses the film retained the precursor elemental composition free of graphitic (sp{sup 2}) clusters. In course of reaction only the peripheral allyl groups containing C=C bonds were opened to achieve cross-linking. Whereas annealing to 300 °C was necessary for the elimination of =C–H{sub 1}, {sub 2} bonds in the films prepared at 200 °C, those bonds vanished completely for the films prepared at substrate temperature 255 °C. The film posseses a smooth surface with root mean square (RMS) parameter up to 10 nm within scanned distance 2.5 μm.

  3. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    International Nuclear Information System (INIS)

    Arora, P.; Doyle, M.; White, R.E.

    1999-01-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li x C 6 vertical bar 1 M LiPF 6 , 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) vert b ar LiMn 2 O 4 cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized

  4. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  5. Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition

    Science.gov (United States)

    Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ

    2017-10-01

    In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.

  6. Carbon Deposition Diagnostics for Reliability and State-of-Health Assessment of SOFC

    DEFF Research Database (Denmark)

    Ploner, A.; Hagen, A.; Hauch, A.

    2018-01-01

    -YSZ-supported cell under steam reforming conditions by stopping the steam supply and investigates the cell voltage and temperature responses due to this fault. Simultaneously, time-dependent electrochemical impedance spectroscopy (EIS) monitoring during cell operation was performed which could be correlated to two...... processes, one mainly originating from support layer and another from the active anode layer of the cell in a Ni-YSZ supported cell. Monitoring via EIS may therefore be used to allow recognition of carbon deposition in due course and give the opportunity to counteract before detrimental failure occurs....

  7. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  8. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S.; Muhl S, S.

    2004-01-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H 2 /CH 4 in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10 -4 to 6x10 -4 Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  9. Carbonate Formation And Diagenesis In Pastos Grandes Laguna (Bolivia): Modern Analog For The South Atlantic Cretaceous Presalt Travertinoid Deposits

    Science.gov (United States)

    Muller, E.; Ader, M.; Gérard, E.; Virgone, A.; Gaucher, E.; Bougeault, C.; Durlet, C.; Moreira, M. A.; Virgile, R.; Vennin, E.; Agogué, H.; Hugoni, M.

    2017-12-01

    The Cretaceous Presalt travertinoid deposits of the South Atlantic are usually considered as "strange deposits" having poor equivalents in modern environments. Pastos Grandes Laguna, which is located in a 2.9 Ma caldera on the andean-bolivian Altiplano (at 4450 m), is intersected by active faults with hydrothermal fluids and presents a spherulitic plateform with similar sedimentological facies to the Presalt: halite and bedded evaporites, shrub-shaped calcites, ooids, pisolites and various stromatolites. Pastos Grandes Laguna is certainly one of the best modern analog of the Presalt for investigating the on going processes of carbonate deposition and diagenesis and the influence of biology. During two expeditions, we recovered samples of gas, water and microbial mats from the hydrothermal sources to the evaporating zones on the spherulitic plateform. These samples are being analyzed to determine 1) the influence of the gases emitted at the hydrothermal sources (chemical and isotopic composition) on the chemistry of the Laguna and the mineralogy of its sediments and 2) the role of ecosystems that develop in this environment on carbonate formation. Preliminary results on gas composition, corrected for the atmospheric contribution, indicates a magmatic source of CO2 partly mantellic associated with a small crustal contribution. Other initial results have so far indicated that CO2 gas emissions, evaporation, as well as photosynthesis and respiration play a role on water chemistry and carbonate precipitation. This study will contribute to the overall understanding of the role of organisms in sedimentation and the predictive diagenetic evolution of hydrothermal and lacustrine deposits.

  10. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  11. Short Term vs Long Term Environmental Reconstruction from Carbonated Deposits of the Limagne Area (Massif Central, France)

    Energy Technology Data Exchange (ETDEWEB)

    Barbecot, F.; Gibert, E.; Amokrane, Y.; Massault, M.; Noret, A. [Centre National de la Recherche Scientifique Interaction et Dynamique des Environnements de Surface, Universite Paris (France); Ghaleb, B. [Geotop, Universite du Quebec a Montreal, Montreal (Canada)

    2013-07-15

    A 80 cm sequence has been cored from carbonated travertine in the limagne area (French Massif Central, France) in order to document recent environmental fluctuations (0-100 a) of gaseous springs, in relation to the environmental and geochemical parameters that control the isotopic signatures of modern carbonate deposits. The chronology of these finely laminated deposits that are ideal for reconstructing hydrological conditions at very narrow time steps is determined through AMS-{sup 14}C and {sup 210}Pb/{sup 226}Ra radiometric methods. Preliminary results highlight a high enrichment in stable isotopes (eg up to +8 per mille vs VPDB for {delta}{sup 13}C), likely linked to both recharge temperature and degassing processes. Moreover, two general trends are superimposed: the first one, cyclic, may be correlated to the hydrologic annual/biannual budget while the second one, linear, implies a long term environmental trend. (author)

  12. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes

    KAUST Repository

    Alhebshi, Nuha

    2013-01-01

    A novel supercapacitor electrode structure has been developed in which a uniform and conformal coating of nanostructured Ni(OH)2 flakes on carbon microfibers is deposited in situ by a simple chemical bath deposition process at room temperature. The microfibers conformally coated with Ni(OH) 2 nanoflakes exhibit five times higher specific capacitance compared to planar (non-conformal) Ni(OH)2 nanoflake electrodes prepared by drop casting of Ni(OH)2 powder on the carbon microfibers (1416 F g-1vs. 275 F g-1). This improvement in supercapacitor performance can be ascribed to the preservation of the three-dimensional structure of the current collector, which is a fibrous carbon fabric, even after the conformal coating of Ni(OH)2 nanoflakes. The 3-D network morphology of the fibrous carbon fabric leads to more efficient electrolyte penetration into the conformal electrode, allowing the ions to have greater access to active reaction sites. Cyclic stability testing of the conformal and planar Ni(OH)2 nanoflake electrodes, respectively, reveals 34% and 62% drop in specific capacitance after 10 000 cycles. The present study demonstrates the crucial effect that electrolyte penetration plays in determining the pseudocapacitive properties of the supercapacitor electrodes. © 2013 The Royal Society of Chemistry.

  13. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  14. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  15. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  16. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  17. Sedimentology of polar carbonate systems

    Science.gov (United States)

    Frank, T. D.; James, N. P.

    2013-12-01

    The key attributes, processes, and products associated with carbonate accumulation and diagenesis at tropical and temperate latitudes are well known. Comparatively little work has concentrated on carbonate deposition at the coldest end of the depositional spectrum, the polar shelves. Such deposits are not abundant, but they have the potential to provide unique insights into paleoceanographic and paleoclimatic conditions in regions of the planet that are arguably the most sensitive to global change. We examined skeletal assemblages, facies, stratigraphy, petrography, geochemistry, and diagenesis of Quaternary deposits from the Ross Sea, Antarctica and Permian counterparts from Gondwana (now eastern Australia). These modern and ancient polar carbonate factories possess several unique characteristics that set them apart from better-known systems of the temperate and tropical latitudes. All production is biogenic and there are no significant calcareous phototrophs. Carbonate communities are not capable of building rigid frameworks, and thus their deposits are prone to winnowing and reworking by waves and bottom currents. The seawater, although frigid, is isothermal, and thus deep-water benthic communities can exist near the surface. Carbonate saturation, which is at or below solubility for both aragonite and high-Mg calcite, plays a key role in determining the dominant mineralogy of benthos as well as the preservation potential of skeletal debris. As many taxa precipitate low-Mg calcite in isotopic equilibrium, deposits have potential to provide geochemical proxy information for use in paleoceanographic and paleoclimatic reconstructions. More than any other type of carbonate system, the slow biogenic carbonate production and accumulation in cold waters is achieved firstly by arresting siliciclastic sedimentation and secondly by increasing nutrient availability. Thus, carbonate deposition may occur during the coldest of times, such as during glacial advance when

  18. Structure and gas-barrier properties of amorphous hydrogenated carbon films deposited on inner walls of cylindrical polyethylene terephthalate by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Tian Xiubo; Yang Shiqin; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    The influence of radio-frequency (RF) power on the structure and gas permeation through amorphous hydrogenated carbon films deposited on cylindrical polyethylene terephthalate (PET) samples is investigated. The results show that a higher radio-frequency power leads to a smaller sp 3 /sp 2 value but produces fewer defects with smaller size. The permeability of PET samples decreases significantly after a-C:H deposition and the RF only exerts a small influence. However, the coating uniformity, color, and wettability of the surface are affected by the RF power. A higher RF power results in to better uniformity and it may be attributed to the combination of the high-density plasma and sample heating.

  19. Post-irradiation examination of a fuel pin using a microscopic X-ray system: Measurement of carbon deposition and pin metrology

    International Nuclear Information System (INIS)

    Gras, Ch.; Stanley, S.J.

    2008-01-01

    The paper presents some interesting aspects associated with X-ray imaging and its potential application in the nuclear industry. The feasibility of using X-ray technology for the post-irradiation examination of a fuel pin has been explored, more specifically pin metrology and carbon deposition measurement. The non-active sample was specially designed to mimic the structure of an AGR fuel pin whilst a carbon based material was applied to the mock up fuel rod in order to mimic carbon deposition. Short duration low energy (50 kV) 2D digital radiography was employed and provided encouraging results (with respect to carbon deposition thickness and structure measurements) for the mock up fuel pin with a spatial resolution of around 10 μm. Obtaining quantitative data from the resultant images is the principal added value associated with X-ray imaging. A higher intensity X-ray beam (≥90 kV) was also used in conjunction with the low energy set-up to produce a clear picture of the cladding as well as the interface between the lead (Pb mimics the uranium oxide) and stainless steel cladding. Spent fuel metrology and routine radiography are two additional tasks that X-ray imaging could perform for the post-irradiation examination programme. Therefore, when compared to other techniques developed to deliver information on one particular parameter, X-ray imaging offers the possibility to extract useful information on a range of parameters

  20. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  1. The palaeoenvironmental implications of carbonate petrography, kerogen distribution and carbon and oxygen isotope variations in the early Proterozoic transition from Campbellrand limestone to Kuruman iron-formation deposition in Griqualand West

    International Nuclear Information System (INIS)

    Beukes, N.J.; Klein, C.; Kaufman, A.J.; Hayes, J.M.

    1990-01-01

    The Griqualand West area of the Transvaal basin in South Africa offers a unique opportunity to study the relationships between the deposition of limestone and iron-formation. The stratigraphic sequence includes the transition from microbialaminated Campbellrand carbonates to the conformably Kuruman iron formation composed mainly of microbanded iron-formation. The relationships between carbonate mineral paragenesis, kerogen abundance, and isotopic compositions of carbon and oxygen for the same drill core samples are reported. The significance of whole rock carbon-isotopic compositions of iron-formations relative to those of limestones and dolomites are explored. 6 refs

  2. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    Joensson, M; Nerushev, O A; Campbell, E E B

    2007-01-01

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 μm min -1 ) and then drops off rapidly to reach a steady level (2 μm min -1 ) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  3. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  4. Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system

    International Nuclear Information System (INIS)

    Lim, Sung Hoon; Park, Kyu Chang; Moon, Jong Hyun; Yoon, Hyun Sik; Pribat, Didier; Bonnassieux, Yvan; Jang, Jin

    2006-01-01

    We report on the growth mechanism and density control of vertically aligned carbon nanotubes using a triode plasma enhanced chemical vapor deposition system. The deposition reactor was designed in order to allow the intermediate mesh electrode to be biased independently from the ground and power electrodes. The CNTs grown with a mesh bias of + 300 V show a density of ∼ 1.5 μm -2 and a height of ∼ 5 μm. However, CNTs do not grow when the mesh electrode is biased to - 300 V. The growth of CNTs can be controlled by the mesh electrode bias which in turn controls the plasma density and ion flux on the sample

  5. Effect of Carbonated Beverage Intake on Blood Gases and Some Biochemical Parameters in Male Albino Rats

    International Nuclear Information System (INIS)

    Taha, M.S.; Osman, H.F.

    2012-01-01

    The purpose of this study was to identify the effect of carbonated beverage (colourless or black coloured drinks) on arterial blood gases, kidney function, bone mineral density (BMD), glucose and insulin. The rats were divided into three groups; ten rats per each group. Group (I) used as control, group (II) rats supplemented with colourless carbonated beverage (10 ml /100 ml water) and group (III) rats supplemented with black coloured carbonated beverage (10 ml /100 ml water) for three months. The arterial blood gases were evaluated by measuring ph PO 2 , , PCO 2 , , H + a nd HCO 3 -. Rats receiving the coloured drinks showed high significant increase in ph while PO 2 showed very high significant decrease in both groups. PCO 2 showed high significant decrease in groups (II) and (III) while H + showed high significant decrease in group (III) only. HCO 3 - showed high significant increase in group III. All these changes were related to carbonic acid dissolved in water and the increased ph lead to alkalinity of the blood and it is inversely proportional to the number of hydrogen ions (H + ). Non-significant changes were observed in sodium ions while potassium ions showed significant increase in group (II) and high significant increase in group (III). The level of urea showed high and very high significant increase in groups (II) and (III), respectively. Creatinine level showed non-significant increase in group (III). The histopathology changes were observed in kidney tissues in rats of groups (II) and (III). From these results, it appears that black coloured beverage can increase the risk of kidney problems more than colourless beverages. Ca + and inorganic phosphorous levels showed non- significant change except Ca ions showed a significant decrease in rats of group (III). The acidity of carbonated beverage leads to weak bones by promoting the loss of calcium. The decrease of bone mineral density was more pronounced in some parts of femur of rats receiving black

  6. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    Science.gov (United States)

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  7. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yizhou; Liu, Xiangmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China); Yeung, Kelvin W.K. [Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong (China); Chu, Paul K. [Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wu, Shuilin, E-mail: shuilin.wu@gmail.com [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062 (China)

    2017-04-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  8. Coating of diamond-like carbon nanofilm on alumina by microwave plasma enhanced chemical vapor deposition process.

    Science.gov (United States)

    Rattanasatien, Chotiwan; Tonanon, Nattaporn; Bhanthumnavin, Worawan; Paosawatyanyong, Boonchoat

    2012-01-01

    Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.

  9. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures

    International Nuclear Information System (INIS)

    Zhu, Yizhou; Liu, Xiangmei; Yeung, Kelvin W.K.; Chu, Paul K.; Wu, Shuilin

    2017-01-01

    Highlights: • Carbon naonotubes/chitosan/ZnO coating was first constructed on Ti implants. • This system endowed Ti implants with excellent self-antibacterial activity. • The amount of Zn could be precisely controlled by atom layer deposition. • This system could regulate cell behaviors on metallic implants. - Abstract: One-dimensional (1D) nanostructures of ZnO using atomic layer deposition (ALD) on chitosan (CS) modified carbon nanotubes (CNTs) were first introduced onto the surfaces of biomedical implants. When the content of ZnO is not sufficient, CNTs can strengthen the antibacterial activity against E. coli and S. aureus by 8% and 39%, respectively. CS can improve the cytocompatibility of CNTs and ZnO. The amount of Zn content can be controlled by changing the cycling numbers of ALD processes. This hybrid coating can not only endow medical implants with high self-antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of over 73% and 98%, respectively, but also regulate the proliferation and osteogenic differentiation of osteoblasts by controlling the amount of ZnO.

  10. Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries

    Science.gov (United States)

    Li, Xiang; Liu, Jiangwen; Ouyang, Liuzhang; Yuan, Bin; Yang, Lichun; Zhu, Min

    2018-04-01

    Carbon coated SnS microplates (SnS@C MPs) were prepared via a facile chemical vapor deposition method using SnS2 nanoflakes as precursor and ethanol vapor as carbon source. The carbon coating restrains the growth of SnS during the heat treatment. Furthermore, it improves the electronic conductivity as well as accommodates volume variations of SnS during the sodiation and desodiation processes. Therefore, the rate capability and cycle performance of the SnS@C MPs as anode materials for sodium-ion batteries are remarkably enhanced compared with the bare SnS and the SnS2 precursor. At current densities of 0.1, 0.2, 0.5, 1 and 2 A g-1, the optimized SnS@C MPs exhibit stable capacities of 602.9, 532.1, 512.2, 465.9 and 427.2 mAh g-1, respectively. At 1 A g-1, they show a reversible capacity of 528.8 mAh g-1 in the first cycle, and maintain 444.7 mAh g-1 after 50 cycles, with capacity retention of 84.1%. The carbon coating through chemical vapor deposition using ethanol vapor as carbon sources is green, simple and cost-effective, which shows great promise to improve the reversible Na+ storage of electrode materials.

  11. Carbon monoxide concentration in donated blood: relation to cigarette smoking and other sources.

    Science.gov (United States)

    Aberg, Anna-Maja; Sojka, Birgitta Nilsson; Winsö, Ola; Abrahamsson, Pernilla; Johansson, Göran; Larsson, Jan Erik

    2009-02-01

    Carbon monoxide (CO) is normally present in the human body due to endogenous production of CO. CO can also be inhaled by exposure to external sources such as cigarette smoke, car exhaust, and fire. The purpose of this study was to investigate CO concentrations in blood from 410 blood donors at the blood center in Umeå, Sweden. To further evaluate the effects of cigarette smoking on CO concentrations, the elimination time for CO was examined in six volunteer smokers after a smoked cigarette. Blood samples from whole blood donors were obtained during the blood center's routine operation. In connection with blood donations, demographic and behavioral data were collected from the donors. The CO concentration was determined using gas chromatography. The majority of blood donors had approximately the same CO concentration (mean, 84.5 micromol/L). In 6 percent of the samples, the concentrations were higher than 130 micromol per L. The highest CO concentration was 561 micromol per L. The main source for these high CO concentrations appeared to be cigarette smoking. In the volunteer smokers, the elimination time after a smoked cigarette varied significantly, with elimination half-lives from 4.7 to 8.4 hours. These results show that blood bank red blood cell bags may have CO concentrations above the physiologic level. The time interval between cigarette smoking and blood donation seems to be a particularly important factor for elevated CO concentrations.

  12. Development of a carbon-nanoparticle-coated stirrer for stir bar sorptive extraction by a simple carbon deposition in flame.

    Science.gov (United States)

    Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan

    2016-03-01

    Stir bar sorptive extraction is an environmentally friendly microextraction technique based on a stir bar with various sorbents. A commercial stirrer is a good support, but it has not been used in stir bar sorptive extraction due to difficult modification. A stirrer was modified with carbon nanoparticles by a simple carbon deposition process in flame and characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry. A three-dimensional porous coating was formed with carbon nanoparticles. In combination with high-performance liquid chromatography, the stir bar was evaluated using five polycyclic aromatic hydrocarbons as model analytes. Conditions including extraction time and temperature, ionic strength, and desorption solvent were investigated by a factor-by-factor optimization method. The established method exhibited good linearity (0.01-10 μg/L) and low limits of quantification (0.01 μg/L). It was applied to detect model analytes in environmental water samples. No analyte was detected in river water, and five analytes were quantified in rain water. The recoveries of five analytes in two samples with spiked at 2 μg/L were in the range of 92.2-106% and 93.4-108%, respectively. The results indicated that the carbon nanoparticle-coated stirrer was an efficient stir bar for extraction analysis of some polycyclic aromatic hydrocarbons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Deposition and characterization of IrOx nanofoils on carbon nanotube templates by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Yi-Min; Cai, Jhen-Hong; Huang, Ying-Sheng; Lee, Kuei-Yi; Tsai, Dah-Shyang; Tiong, Kwong-Kau

    2012-01-01

    Large surface area IrO x nanofoils (IrO x NF) were deposited on multi-wall carbon nanotube (MWCNT) templates, forming IrO x /MWCNT nanocomposites, by reactive radio frequency magnetron sputtering using Ir metal target. The structural and spectroscopic properties of IrO x NF were characterized. The micrographs of field emission scanning electron microscopy showed the formation of foil-like structure for the as-deposited samples. Transmission electron microscopy analysis revealed the contiguous presence of glassy iridium oxide, iridium metal, and iridium dioxide nanocrystals in the foil. X-ray photoelectron spectroscopy analysis provided the information of the oxidation states and the stoichiometry of IrO x NF. Raman spectra revealed the amorphous-like phase of the as-deposited IrO x NF. The nanofoil structure provided ultra-high surface area for electrical charge storage which made the IrO x /MWCNT nanocomposites as an attractive candidate for the supercapacitor applications.

  14. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  15. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  16. Preliminary report on the geology of uranium deposits in the Browns Park Formation in Moffat County, Colorado, and Carbon County, Wyoming

    International Nuclear Information System (INIS)

    Ormond, A.

    1957-06-01

    Uranium was first discovered in the Browns Park Formation in 1951 in the Miller Hill area of south-central Wyoming. Since that time economically important deposits in this formation have been discovered and developed in the Poison Basin of south-central Wyoming and in the Maybell area of northwest Colorado. The Browns Park is the youngest formation (Miocene) in the region and overlies older rocks with angular unconformity. The formation consists of a basal conglomerate, fluviatile, lacustrine, and eolian sandstones, and locally a few thin beds of clay, tuff, and algal limestone. The sandstones are predominantly fine- to medium-grained and consist of quartz grains, scattered black chert grains, and interstitial clay. The uranium deposits are of the sandstone-impregnation type and are not confined to specific stratigraphic horizons. The important ore minerals are autunite and uranophane in oxidized sandstones, and uraninite and coffinite in unoxidized sandstones. Uranium is often associated with limonite and calcium carbonate in concretionary forms. Woody material, thought to play an important part in the deposition of uranium in many sandstone-type deposits, is not present in the deposits of the Browns Park Formation. However, organic carbon in the form of petroleum and petroleum residues has been observed in association with uranium in both the Poison Basin and the Maybell areas

  17. The effect of heat- or ultra violet ozone-treatment of titanium on complement deposition from human blood plasma.

    Science.gov (United States)

    Linderbäck, Paula; Harmankaya, Necati; Askendal, Agneta; Areva, Sami; Lausmaa, Jukka; Tengvall, Pentti

    2010-06-01

    Titanium (Ti) is a well known metallic biomaterial extensively used in dental, orthopaedic-, and occasionally also in blood contacting applications. It integrates well to bone and soft tissues, and is shown upon blood plasma contact to activate the intrinsic pathway of coagulation and bind complement factor 3b. The material properties depend largely on those of the nm-thick dense layer of TiO(2) that becomes rapidly formed upon contact with air and water. The spontaneously formed amorphous Ti-oxide has a pzc approximately 5-6 and its water solubility is at the order of 1-2 micromolar. It is often subjected to chemical- and heat treatments in order to increase the anatase- and rutile crystallinity, to modify the surface topography and to decrease the water solubility. In this work, we prepared sol-gel derived titanium and smooth PVD titanium surfaces, and analysed their oxide and protein deposition properties in human blood plasma before and after annealing at 100-500 degrees C or upon UVO-treatment for up to 96 hours. The blood plasma results show that complement deposition vanished irreversibly after heat treatment at 250-300 degrees C for 30 minutes or after UVO exposure for 24 hours or longer. XPS and infrared spectroscopy indicated change of surface water/hydroxyl binding upon the heat- and UVO treatments, and increased Ti oxidation. XRD analysis confirmed an increased crystallinity and both control (untreated) and annealed smooth titanium displayed low XRD-signals indicating some nanocrystallinity, with predominantly anatase phase. The current results show that the behaviour of titanium dioxide in blood contact can be controlled through relatively simple means, such as mild heating and illumination in UV-light, which both likely irreversibly change the stoichiometry and structure of the outmost layers of titanium dioxide and its OH/H(2)O binding characteristics. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    DeVries, F.W.; Lawes, B.C.

    1981-01-01

    Ammonium carbonates are commonly used as the lixiviant for in-situ leaching of uranium ores. However this leads to the deposition of ammonium ions in the uranium ore formation and the problem of ammonia contamination of ground water which may find its way into the drinking water supply. The ammonia contamination of the ore deposit may be reduced by injecting an aqueous solution of a potassium salt (carbonate, bicarbonate, halide, sulfate, bisulfate, persulfate, or monopersulfate) into the deposit after mining has ceased

  19. Mesozoic authigenic carbonate deposition in the Arctic: Do glendonites record gas hydrate destabilization during the Jurassic?

    Science.gov (United States)

    Morales, Chloe; Suan, Guillaume; Wierzbowski, Hubert; Rogov, Mikhail; Teichert, Barbara; Kienhuis, Michiel V. M.; Polerecky, Lubos; Middelburg, Jack B. M.; Reichart, Gert-Jan; van de Schootbrugge, Bas

    2015-04-01

    Glendonites are calcite pseudomorphs after ikaite, an unstable hydrated calcium carbonate mineral. Because present-day ikaite occurs predominantly in sub-polar environments and is unstable at warm temperatures, glendonites have been used as an indicator of near-freezing conditions throughout Earth history. Ikaite has also been observed in cold deep-sea environments like the Gulf of Mexico, the Japan Trench, and the Zaire Fan where their formation is possibly governed by other parameters. The description of glendonites in Paleocene-Eocene sediments of Svalbard, and Early Jurassic (Pliensbachian) deposits of northern Germany, however questions the role of temperature on ikaite precipitation (Spielhagen and Tripati, 2009; Teichert and Luppold, 2013). Anomalously low carbon isotope values of Jurassic glendonites point to the involvement of methane as a possible carbon source for ikaite/glendonite formation. Terrestrial organic matter degradation is also frequently evoked as a potential source of carbon. The involved bio- and geochemical processes remains thus not well constrained. Here we present new geochemical data of a large number of glendonites specimens from the Lower and Middle Jurassic of northern Siberia and the Lena river middle flows (Bajocian, Bathonian, Pliensbachian). Carbon and oxygen isotopic values show comparable trends between the different sections. Bulk glendonites δ13C and δ18O values vary from 0.0 to -44.5o and -15.0 to -0.8 respectively and show a negative correlation. Some samples display similar low δ13C values as the Pliensbachian glendonites of Germany (Teichert and Luppold, 2013), suggesting thermogenic and/or biogenic methane sources. The range of carbon isotope values is comparable to those observed at other methane seeps deposits. Further investigations are needed to better constrain the carbon cycle in these particular environmental conditions. The role of microbial communities into ikaite/glendonite formation equally needs to be

  20. Uranium deposit research, 1983

    International Nuclear Information System (INIS)

    Ruzicka, V.; LeCheminant, G.M.

    1984-01-01

    Research on uranium deposits in Canada, conducted as a prerequisite for assessment of the Estimated Additional Resources of uranium, revealed that (a) the uranium-gold association in rudites of the Huronian Supergroup preferably occurs in the carbon layers; (b) chloritized ore at the Panel mine, Elliot Lake, Ontario, occurs locally in tectonically disturbed areas in the vicinity of diabase dykes; (c) mineralization in the Black Sturgeon Lake area, Ontario, formed from solutions in structural and lithological traps; (d) the Cigar Lake deposit, Saskatchewan, has two phases of mineralization: monomineralic and polymetallic; (e) mineralization of the JEB (Canoxy Ltd.) deposit is similar to that at McClean Lake; (f) the uranium-carbon assemblage was identified in the Claude deposit, Carswell Structure; and (g) the Otish Mountains area, Quebec, should be considered as a significant uranium-polymetallic metallogenic province

  1. The role of the gas species on the formation of carbon nanotubes during thermal chemical vapour deposition

    International Nuclear Information System (INIS)

    Ohashi, Fumitaka; Chen, Guan Yow; Stolojan, Vlad; Silva, S Ravi P

    2008-01-01

    In this paper, we investigate the several roles that hydrogen plays in the catalytic growth of carbon nanotubes from the point of view of gas species, catalyst activation and subsequent interaction with the carbon nanotubes. Carbon nanotubes and nanofibres were grown by thermal chemical vapour deposition, using methane and a mixture of hydrogen and helium, for a range of growth temperatures and pre-treatment procedures. Long, straight carbon nanotubes were obtained at 900 deg. C, and although the growth yield increases with the growth temperature, the growth shifts from nanotubes to nanofibres. By introducing a helium purge as part of the pre-treatment procedure, we change the gas chemistry by altering the hydrogen concentration in the initial reaction stage. This simple change in the process resulted in a clear difference in the yield and the structure of the carbon nanofibres produced. We find that the hydrogen concentration in the initial reaction stage significantly affects the morphology of carbon fibres. Although hydrogen keeps the catalyst activated and increases the yield, it prevents the formation of graphitic nanotubes.

  2. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-01-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH 4 as the source of carbon and with different nitrogen flow rates (N 2 /CH 4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp 2 -bonded carbon or a change in sp 2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band. [copyright] 2001 American Institute of Physics

  3. Dispersion of carbon nanotubes in hydroxyapatite powder by in situ chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Haipeng; Wang Lihui; Liang, Chunyong; Wang Zhifeng; Zhao Weimin

    2010-01-01

    In the present work, we use chemical vapor deposition of methane to disperse carbon nanotubes (CNTs) within hydroxyapatite (HA) powder. The effect of different catalytic metal particles (Fe, Ni or Co) on the morphological and structural development of the powder and dispersion of CNTs in HA powder was investigated. The results show that the technique is effective in dispersing the nanotubes within HA powder, which simultaneously protects the nanotubes from damage. The results can have important and promising speculations for the processing of CNT-reinforced HA-matrix composites in general.

  4. Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures

    Directory of Open Access Journals (Sweden)

    Li C

    2010-01-01

    Full Text Available Abstract In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs is achieved using atomic layer deposition (ALD. Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials.

  5. Monte Carlo simulation of electron depth distribution and backscattering for carbon films deposited on aluminium as a function of incidence angle and primary energy

    Science.gov (United States)

    Dapor, Maurizio

    2005-01-01

    Carbon films are deposited on various substrates (polymers, polyester fabrics, polyester yarns, metal alloys) both for experimental and technological motivations (medical devices, biocompatible coatings, food package and so on). Computational studies of the penetration of electron beams in supported thin film of carbon are very useful in order to compare the simulated results with analytical techniques data (obtained by scanning electron microscopy and/or Auger electron spectroscopy) and investigate the film characteristics. In the present paper, the few keV electron depth distribution and backscattering coefficient for the special case of film of carbon deposited on aluminium are investigated, by a Monte Carlo simulation, as a function of the incidence angle and primary electron energy. The simulated results can be used as a way to evaluate the carbon film thickness by a set of measurements of the backscattering coefficient.

  6. Sol-gel coatings on carbon/carbon composites

    International Nuclear Information System (INIS)

    Sim, S.M.; Krabill, R.M.; Dalzell, W.J. Jr.; Chu, P.Y.; Clark, D.E.

    1986-01-01

    The need for structural materials that can withstand severe environments up to 4000 0 F has promulgated the investigation of sol-gel derived ceramic and composite coatings on carbon/carbon composite materials. Alumina and zirconia sols have been deposited via thermophoresis on carbon/carbon substrates

  7. Effect of deposition parameter on hardness of amorphous carbon film prepared by plasma immersion ion implantation using C2H2

    International Nuclear Information System (INIS)

    Mitsuo, A.; Uchida, S.; Morikawa, K.; Kawaguchi, M.; Shiotani, K.; Suzuki, H.

    2007-01-01

    Carbon films were deposited on a cemented carbide substrate and silicon wafer at various bias voltages, acetylene (C 2 H 2 ) pressures and process times by plasma immersion ion implantation (PIII). In order to investigate the substrate temperature, the tool steel substrate was also simultaneously treated. The final substrate temperature was estimated from the hardness of the tool steel substrate. The surface and cross-sectional morphology of the deposited films were observed using a scanning electron microscope (SEM). Depth profiles of the carbon were obtained by Auger electron spectroscopy (AES). Raman spectroscopy was employed for the structural evaluation of the films. The hardness of the deposited films was measured using a nano-indenter with the maximum load of 0.5 mN. A variety of film hardnesses between 10 to 24 GPa was obtained. The hardness of the carbon films decreased with the increasing bias voltage, C 2 H 2 pressure and process time, although the intensity ratio of the disordered peak to graphitic peak in the Raman spectrum increased. It was considered that the decrease in the film hardness was caused by a stress reduction accompanied by a heating effect during the process as each PIII process parameter significantly influenced the substrate temperature

  8. TL studies of quaternary biogenic carbonate deposits of Saurashtra, Western India

    International Nuclear Information System (INIS)

    Patel, M.P.; Bhatt, Nilesh; Murthy, K.V.R.

    1992-01-01

    The quaternary biogenic carbonate deposits of Saurashtra, coastal as well as inland, comprise the beach rocks, miliolites and the stabilised sand dunes. The beach rocks contain the varieties of megafossils and broken shell fragments while the miliolites are granular made up of medium to fine grained, well sorted, abraded to finely abraded and even pelletised microfossils and shell fragments. The various constituents of the beach rocks and miliolites are cemented together by a fine calcite cement. The carbonate sand dunes contain relatively less amount of biogenic material and are rich in quartz. Age wise, the well consolidated beach rocks and miliolites are older (middle to later upper pleistocene) as compared to poorly consolidated coastal stabilised younger sand dunes (holocene). Chemically the former are rich in CaCO 3 while the latter are rich in SiO 2 . TL studies of the representative samples of beach rocks, miliolites and sand dunes clearly suggest that the glow curves of beach rocks and miliolites differ from that of sand dunes. Again, the existence of close similarity between the ATL/NTL curves for beach rocks and miliolites substantiate their close affinity in the field. (author). 14 refs., 2 tabs., 2 figs

  9. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    Directory of Open Access Journals (Sweden)

    G. Churkina

    2010-09-01

    Full Text Available European ecosystems are thought to take up large amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more that 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C yr−1. The extents of forest and grasslands have increased with the respective rates of 5800 km2 yr−1 and 1100 km2 yr−1 as agricultural land has been abandoned at a rate of 7000 km2 yr−1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. The models suggest that European ecosystems sequester carbon at a rate of 56 TgC yr−1 (mean of four models for 1951–2000 with strong interannual variability (±88 TgC yr−1, average across models and substantial inter-model uncertainty (±39 TgC yr−1. Decadal budgets suggest that there has been a continuous increase in the mean net carbon storage of ecosystems from 85 TgC yr−1 in 1980s to 108 TgC yr−1 in 1990s, and to 114 TgC yr−1 in 2000–2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are suggested as an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with

  10. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China

    Science.gov (United States)

    Okita, P.M.; Shanks, Wayne C.

    1992-01-01

    Carbonate and sulfide minerals from the Molango, Mexico, and TaoJiang, China, Mn deposits display similar and distinctive ??34S and ??13C patterns in intervals of manganese carbonate mineralization. ??13C-values for Mn-bearing carbonate range from -17.8 to +0.5??? (PDB), with the most negative values occurring in high-grade ore zones that are composed predominantly of rhodochrosite. In contrast, calcite from below, within and above Mn-carbonate zones at Molango has ??13C???0??? (PDB). Markedly negative ??13C data indicate that a large proportion of the carbon in Mn-carbonates was derived from organic matter oxidation. Diagenetic reactions using MnO2 and SO2-4 to oxidize sedimentary organic matter were the principle causes of such 12C enrichment. Pyrite content and sulfide ?? 34S-values also show distinctive variations. In unmineralized rocks, very negative ??34S-values (avg. < -21??? CDT) and abundant pyrite content suggest that pyrite formed from diagenetic, bacteriogenic sulfate reduction. In contrast, Mn-bearing horizons typically contain only trace amounts of pyrite (e.g., <0.5 wt% S with ??34S-values 34S-enriched, in some cases to nearly the value for contemporaneous seawater. 34S-enriched pyrite from the Mn-carbonate intervals indicates sulfide precipitation in an environment that underwent extensive SO2-4 reduction, and was largely a closed system with regard to exchange of sulfate and dissolved sulfide with normal seawater. The occasional occurrence of 34S-depleted pyrite within Mn-carbonate zones dominated by 34S-enriched pyrite is evidence that closed-system conditions were intermittent and limited to local pore waters and did not involve entire sedimentary basins. Mn-carbonate precipitation may have occluded porosity in the surficial sediments, thus establishing an effective barrier to SO2-4 exchange with overlying seawater. Similar isotopic and mineralogic characteristics from both the Molango and TaoJiang deposits, widely separated in geologic time and

  11. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  12. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  13. Slope and basinal deposits adjacent to isolated carbonate platforms in the Indian Ocean: Sedimentology, geomorphology, and a new 1.2 Ma record of highstand shedding

    Science.gov (United States)

    Counts, J. W.; Jorry, S.; Jouet, G.

    2017-12-01

    Newly analyzed bathymetric, seismic, and core data from carbonate-topped seamounts in the Mozambique Channel reveals a variety of depositional processes and products operating on platform slopes and adjacent basins. Mass transport complexes (including turbidites and debrites), leveed channel systems with basin-floor fans, and contourites are imaged in high resolution in both seafloor maps and cross-section, and show both differences and similarities compared with platform slopes in the Bahamas and elsewhere. In some, though not all, platforms, increased sedimentation can be observed on the leeward margins, and slope rugosity may be asymmetric with respect to prevailing wind direction. Deposition is also controlled by glacial-interglacial cycles; cores taken from the lower slopes (3000+ m water depth) of carbonate platforms reveal a causative relationship between sea level and aragonite export to the deep ocean. δ18O isotopes from planktonic and benthic foraminifera of two 27-meter cores, reveal a high-resolution, continuous depositional record of carbonate sediment dating back to 1.2 Ma. Sea level rise, as determined by correlation with the LR04 benthic stack, is coincident with increased aragonite flux from platform tops. Gravity flow deposits are also affected by platform flooding—the frequency of turbidite/debrite deposits on pinnacle slopes increases during highstand, although such deposits are also present during glacial episodes. The results reported here are the first record of highstand shedding in the southern Indian Ocean, and provide the longest Quaternary sediment record to date in the region, including the Mid-Brunhes transition (MIS 11) that serves as an analog for the current climate conditions. In addition, this is the first study to describe sedimentation on the slopes of these platforms, providing an important point of comparison that has the potential to influence source-to-sink carbonate facies models.

  14. Ion Deposited Carbon Coatings.

    Science.gov (United States)

    1983-07-01

    PAGE ("’hen Dita t,,I,, efl TABLE OF CONTENTS Section No. Title Page No. 1.0 OBJECTIVE 1 2.0 SCOPE 2 3.0 BACKGROUND 3 4.0 COATINGS DEPOSITION 4 4.1...scientific, ards of measure. The Committee, and Confer- technical, practical, and teaching purposes.ence voting members, are leading professional On the

  15. Natural reducing agents for electroless nanoparticle deposition: Mild synthesis of metal/carbon nanostructured microspheres

    International Nuclear Information System (INIS)

    Duffy, Paul; Reynolds, Lyndsey A.; Sanders, Stephanie E.; Metz, Kevin M.; Colavita, Paula E.

    2013-01-01

    Composite materials are of interest because they can potentially combine the properties of their respective components in a manner that is useful for specific applications. Here, we report on the use of coffee as a low-cost, green reductant for the room temperature formation of catalytically active, supported metal nanoparticles. Specifically, we have leveraged the reduction potential of coffee in order to grow Pd and Ag nanoparticles at the surface of porous carbon microspheres synthesized via ultraspray pyrolysis. The metal nanoparticle-on-carbon microsphere composites were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA). To demonstrate the catalytic activity of Pd/C and Ag/C materials, Suzuki coupling reactions and nitroaromatic reduction reactions were employed, respectively. - Highlights: • Natural reductants were used as green electroless deposition reagents. • Room temperature synthesis of supported Ag and Pd nanoparticles was achieved. • Carbon porous microspheres were used as supports. • Synthesis via natural reductants yielded catalytically active nanoparticles.

  16. Formation of Ge dot or film in Ge/Si heterostructure by using sub-monolayer carbon deposition on top and in-situ post annealing

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Yuhki, E-mail: itoh.yuhki@ecei.tohoku.ac.jp; Hatakeyama, Shinji; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    Effects of carbon (C) atoms on solid-phase epitaxial growth of Ge on Si(100) have been studied. C and Ge layers were deposited on Si(100) substrates at low temperature (150–300 °C) by using solid-source molecular beam epitaxy (MBE) system and subsequently annealed at 650 °C in the MBE chamber. The surface morphology after annealing changed depending on deposited amounts of C and deposition temperature of Ge. Ge dots were formed for small amounts of C while smooth Ge films were formed by large amounts of C varying with the Ge deposition temperature. The surface morphology after annealing was also affected by the as-deposited Ge crystallinity. The change in surface morphology depending on the amounts of deposited C was considered to be affected by the formation of Ge–C bonds which relieved the misfit strain between Ge and Si. The crystallinity of Ge deteriorated with increasing C coverage due to the incorporation of insoluble C atoms in the shape of both dots and films. - Highlights: • Effects of carbon on solid-phase epitaxy of C/Ge/Si(100) were studied. • Surface morphology changed depending on C amounts and Ge deposition temperature. • Solid-phase growth of Ge changed from large dots to smooth films with C coverage. • Transition of surface morphology was affected by the formation of Ge–C bonds.

  17. Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites

    Directory of Open Access Journals (Sweden)

    M. Al-Haik

    2010-01-01

    Full Text Available Pitch-based carbon fibers are commonly used to produce polymeric carbon fiber structural composites. Several investigations have reported different methods for dispersing and subsequently aligning carbon nanotubes (CNTs as a filler to reinforce polymer matrix. The significant difficulty in dispersing CNTs suggested the controlled-growth of CNTs on surfaces where they are needed. Here we compare between two techniques for depositing the catalyst iron used toward growing CNTs on pitch-based carbon fiber surfaces. Electrochemical deposition of iron using pulse voltametry is compared to DC magnetron iron sputtering. Carbon nanostructures growth was performed using a thermal CVD system. Characterization for comparison between both techniques was compared via SEM, TEM, and Raman spectroscopy analysis. It is shown that while both techniques were successful to grow CNTs on the carbon fiber surfaces, iron sputtering technique was capable of producing more uniform distribution of iron catalyst and thus multiwall carbon nanotubes (MWCNTs compared to MWCNTs grown using the electrochemical deposition of iron.

  18. Study on purification of carbon nano tubes grown on Fe/Ni bimetallic catalyst supported on Mg O by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Mirershadi, S.; Mortazavi, Z.; Reyhani, A.; Norouzian, Sh.; Moniri, N.; Novinrooz, A. J.

    2007-01-01

    Carbon nano tubes grown on Fe/Ni bimetallic catalysts supported on Mg O by thermal chemical vapor deposition. Then purification of carbon nano tubes by oxidation under air at atmospheric pressure and acid treatment with HCl, have been studied. The Scanning electron microscopy observation showed impurities with carbon nano tubes. Scanning electron microscopy, XRD, Raman spectroscopy and Thermogravimetric analysis/Differential Scanning Calorimetry techniques have been used to investigate the effect of purification of carbon nano tubes on morphology and structural quality of them. The weight ratio of carbon nano tubes in purified sample re saved to 85/8 %.

  19. Mesoporous silica particles modified with graphitic carbon: interaction with human red blood cells and plasma proteins

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Diego Stefani Teodoro; Franqui, Lidiane Silva; Bettini, Jefferson; Strauss, Mathias, E-mail: diego.martinez@lnnano.cnpem.br [Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP (Brazil); Damasceno, Joao Paulo Vita; Mazali, Italo Odone [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2016-07-01

    Full text: In this work the interaction of the mesoporous silica particles (SBA-15, ∼700 nm) modified with graphitic carbon (SBA-15/C) on human red blood cells (hemolysis) and plasma proteins (protein corona formation) is studied. XPS and CHN analysis showed that the carbon content on the SBA-15/C samples varied from 2 to 10% and was tuned by the functionalization step. The formed carbon structures where associated to graphitic nanodomains coating the pores surface as verified by Raman spectroscopy and {sup 13}C NMR. Advanced TEM/EELS analysis showed that the carbon structures are distributed along the SBA-15 mesopores. SAXS and textural analyses were used to confirm that the porous structure of the silica support is kept after the modification procedure and to calculate the number of graphitic carbon stacked layers coating the mesopores. After incubation of SBA-15 with human red blood cells (RBCs), it was observed a dose-dependent hemolytic effect, probably, due to binding of the material silanol-rich surface to the phosphatidylcholine molecules from the RBC membrane. The graphitic carbon modifications have mitigated this effect, indicating that the graphitic carbon coating protected the silanol groups of the particle surface hindering the hemolysis. Considering the protein corona formation, selective biomolecular interaction of proteins was observed for the different materials using gel electrophoresis (SDS-PAGE) analysis. Besides, graphitic carbon modification decreased the amount of proteins on the corona. Together, the in vitro hemolysis and protein corona assays are promising biological models to understand the influence of silica surface functionalization on their bionano-interactions. Finally, our work contributes to the development of fundamental research on such nanomaterials chemistry in the emerging field of nanobioscience and nanotoxicology. (author)

  20. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  1. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Science.gov (United States)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2017-03-01

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram.

  2. Effects of sulfate deposition on pore water dissolved organic carbon, nutrients, and microbial enzyme activities in a northern peatland

    Science.gov (United States)

    Export of dissolved organic carbon from lakes and streams has increased throughout Europe and North America over the past several decades. One possible cause is altered deposition chemistry; specifically, decreasing sulfate inputs leading to changes in ionic strength and dissolve...

  3. Electrochemically assisted co-deposition of calcium phosphate/collagen coatings on carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xueni [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Hu Tao [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Li Hejun, E-mail: lihejun@nwpu.edu.cn [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Chen Mengdi; Cao Sheng; Zhang Leilei [C/C Composites Technology Research Center, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Hou Xianghui [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-02-01

    Calcium phosphate (CaP)/collagen coatings were prepared on the surface of carbon/carbon (C/C) composites by electrochemically assisted co-deposition technique. The effects of collagen concentration in the electrolyte on morphology, structure and composition of the coatings were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The adhesive strength of the coatings was also evaluated by scratch tests and tensile bond tests. It was demonstrated that the coatings of three-dimensional collagen network structure was formed on the C/C composites from the electrolyte containing collagen. The surface of the collagen network was covered by uniform CaP aggregates. The coatings were actually composites of CaP and collagen. Hydroxyapatite (HA) was a favorable composition in the coatings with the increase of the collagen concentration in the electrolyte. The formed collagen network increased the cohesive and adhesive strength of the coatings. The adhesive strength between the coatings and substrates increased as the collagen concentration in the electrolyte increased. The coatings prepared at the collagen concentration of 500 mg/L in the electrolyte were not scraped off until the applied load reached 32.0 {+-} 2.2 N and the average tensile adhesive strength of the coatings was 4.83 {+-} 0.71 MPa. After C/C coated with composite coatings (500 mg/L) being immersed in a 10{sup -3} M Ca (OH){sub 2} solution at 30-33 deg. C for 96 h, nano-structured HA/collagen coatings similar to the natural human bone were obtained on the C/C.

  4. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    Science.gov (United States)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  5. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  6. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis

    International Nuclear Information System (INIS)

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A.; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-01-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. - Highlights: • Meta-analysis was used to address the effects of N addition on C cycle. • N addition caused an large decease in belowground plant C pool. • N-rich and N-limited ecosystems had different responses to N addition. - N addition caused a large decrease in below-ground plant C pool.

  7. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  8. The application of radon survey by activated carbon in the exploration of sandstone-type uranium deposit in Teguidda, Niger

    International Nuclear Information System (INIS)

    Shen Zhengxin

    2012-01-01

    This paper described the application of the method of activated carbon survey in the exploration of sandstone-type uranium deposits in Niger. The survey principle and the measures to ensure the survey quality were also introduced. Through the tests at known deposits, this method shows good response to ground mineralization, deep uranium sources and fault information. Good result had been obtained in the study area which indicated that this method can be used as an important evidence to determine the target area for uranium mineralization. (author)

  9. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  10. Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes

    International Nuclear Information System (INIS)

    El Mel, A A; Achour, A; Gautron, E; Angleraud, B; Granier, A; Le Brizoual, L; Djouadi, M A; Tessier, P Y; Xu, W; Choi, C H

    2011-01-01

    Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600 deg. C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500 deg. C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.

  11. Evaluation of carbon monoxide in blood samples from the second health and nutrition survey. Progress report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Radford, E.P.

    1976-01-01

    This is a study of carbon monoxide (CO) in the blood of human subjects participating in the Second National Health and Nutrition Survey (HANES II), a detailed study of health indicators in sample populations of many communities throughout the U.S. The purpose of this aspect of the survey is to evaluate the levels of blood carboxyhemoglobin in normal individuals of all ages in typical U.S. communities, from whom accurate histories and clinical studies are available. This report gives results of the first of three years of analyses. A careful calibration of the analytical method has been completed, and more than 3000 blood samples have been analyzed. Although smoking histories are not yet available to permit evaluation of carboxyhemoglobin in non-smokers, in children under 12 years of age, blood COHb has been found to be consistently low, with less than 3% greater than 1.5% COHb. These preliminary results suggest that urban exposure to carbon monoxide among the general population is not now significant in the U.S., at least during the period of these early examinations.

  12. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  13. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  14. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    Devries, F.W.; Lawes, B.C.

    1982-01-01

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal

  15. Restoration of uranium solution mining deposits

    Energy Technology Data Exchange (ETDEWEB)

    Devries, F.W.; Lawes, B.C.

    1982-01-19

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal.

  16. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

    Directory of Open Access Journals (Sweden)

    Domenico Melisi

    2014-11-01

    Full Text Available In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current–voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  17. Carbon diffusion in uncoated and titanium nitride coated iron substrates during microwave plasma assisted chemical vapor deposition of diamond

    International Nuclear Information System (INIS)

    Weiser, P.S.; Prawer, S.; Manory, R.R.; Paterson, P.J.K.; Stuart, Sue-Anne

    1992-01-01

    Auger Electron Spectroscopy has been employed to investigate the effectiveness of thin films of TiN as barriers to carbon diffusion during Chemical Vapor Deposition (CVD) of diamond onto Fe substrates. Auger Depth Profiling was used to monitor the C concentration in the TiN layer, through the interface and into the substrate both before and after CVD diamond deposition. The results show that a layer of TiN only 250 Angstroems thick is sufficient to inhibit soot formation on the Fe surface and C diffusion into the Fe bulk. 14 refs., 4 figs

  18. Acidic sweep gas with carbonic anhydrase coated hollow fiber membranes synergistically accelerates CO2 removal from blood.

    Science.gov (United States)

    Arazawa, D T; Kimmel, J D; Finn, M C; Federspiel, W J

    2015-10-01

    The use of extracorporeal carbon dioxide removal (ECCO2R) is well established as a therapy for patients suffering from acute respiratory failure. Development of next generation low blood flow (carbonic anhydrase (CA) immobilized bioactive hollow fiber membrane (HFM) which significantly accelerates CO2 removal from blood in model gas exchange devices by converting bicarbonate to CO2 directly at the HFM surface. This present study tested the hypothesis that dilute sulfur dioxide (SO2) in oxygen sweep gas could further increase CO2 removal by creating an acidic microenvironment within the diffusional boundary layer adjacent to the HFM surface, facilitating dehydration of bicarbonate to CO2. CA was covalently immobilized onto poly (methyl pentene) (PMP) HFMs through glutaraldehyde activated chitosan spacers, potted in model gas exchange devices (0.0151 m(2)) and tested for CO2 removal rate with oxygen (O2) sweep gas and a 2.2% SO2 in oxygen sweep gas mixture. Using pure O2 sweep gas, CA-PMP increased CO2 removal by 31% (258 mL/min/m(2)) compared to PMP (197 mL/min/m(2)) (Premoval by 17% (230 mL/min/m(2)) compared to pure oxygen sweep gas control (Premoval increased by 109% (411 mL/min/m(2)) (Premoval, and when used in combination with bioactive CA-HFMs has a synergistic effect to more than double CO2 removal while maintaining physiologic pH. Through these technologies the next generation of intravascular and paracorporeal respiratory assist devices can remove more CO2 with smaller blood contacting surface areas. A clinical need exists for more efficient respiratory assist devices which utilize low blood flow rates (removal efficiency by shifting equilibrium from bicarbonate to gaseous CO2, through either a bioactive carbonic anhydrase enzyme coating or bulk blood acidification with lactic acid. In this study we demonstrate a novel approach to local blood acidification using an acidified sweep gas in combination with a bioactive coating to more than double CO2 removal

  19. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    Science.gov (United States)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600-1,150 m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60 m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals ( Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand

  20. Global change and modern coral reefs: New opportunities to understand shallow-water carbonate depositional processes

    Science.gov (United States)

    Hallock, Pamela

    2005-04-01

    Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.

  1. Macrokinetics of carbon nanotubes synthesis by the chemical vapor deposition method

    Science.gov (United States)

    Rukhov, Artem; Dyachkova, Tatyana; Tugolukov, Evgeny; Besperstova, Galina

    2017-11-01

    A new approach to studying and developing basic processes which take place on the surface of a metal catalyst during the thermal decomposition of carbonaceous substances in the carbon nanotubes synthesis by the chemical vapor deposition method was proposed. In addition, an analysis was made of the interrelationships between these thermal, diffusion, hydrodynamic and other synthesis processes. A strong effect of the catalyst regeneration stage on the stage of nanotube formation has been shown. Based on the developed approach, a mathematical model was elaborated. Comparison of the calculation and the experiment carried out with the NiO-MgO catalyst at propane flow rate of 50 mL/min (standard conditions) and ethanol flow rate 0.3 mL/min (liq.) has revealed a discrepancy of less than 10%.

  2. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    Science.gov (United States)

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  3. Effect of Radio-Frequency and Low-Frequency Bias Voltage on the Formation of Amorphous Carbon Films Deposited by Plasma Enhanced Chemical Vapor Deposition

    International Nuclear Information System (INIS)

    Manis-Levy, Hadar; Mintz, Moshe H.; Livneh, Tsachi; Zukerman Ido; Raveh, Avi

    2014-01-01

    The effect of radio-frequency (RF) or low-frequency (LF) bias voltage on the formation of amorphous hydrogenated carbon (a-C:H) films was studied on silicon substrates with a low methane (CH 4 ) concentration (2–10 vol.%) in CH 4 +Ar mixtures. The bias substrate was applied either by RF (13.56 MHz) or by LF (150 kHz) power supply. The highest hardness values (∼18–22 GPa) with lower hydrogen content in the films (∼20 at.%) deposited at 10 vol.% CH 4 , was achieved by using the RF bias. However, the films deposited using the LF bias, under similar RF plasma generation power and CH 4 concentration (50 W and 10 vol.%, respectively), displayed lower hardness (∼6–12 GPa) with high hydrogen content (∼40 at.%). The structures analyzed by Fourier Transform Infrared (FTIR) and Raman scattering measurements provide an indication of trans-polyacetylene structure formation. However, its excessive formation in the films deposited by the LF bias method is consistent with its higher bonded hydrogen concentration and low level of hardness, as compared to the film prepared by the RF bias method. It was found that the effect of RF bias on the film structure and properties is stronger than the effect of the low-frequency (LF) bias under identical radio-frequency (RF) powered electrode and identical PECVD (plasma enhanced chemical vapor deposition) system configuration. (plasma technology)

  4. Criteria for identification of carbonate reservoirs according to well logging data (carboniferous deposits of Astrakhan' vault taken as an example)

    International Nuclear Information System (INIS)

    Makarova, A.N.; Mitalev, I.A.

    1979-01-01

    Described are the criteria for identification of carbonate reservoirs according to well logging data (carboniferous deposits of Astrakhan' vault taken as an example). According to gamma logging and cavitymetry data clay areas (decreased readings of neutron-gamma logging opposite dense rocks) are distinguished in a well log. ''Reservoir-nonreserVoir'' boundary is relatively drawn on the basis of the relation between neutron-gamma logaing indications and average general porosity of carbonate rocks determined by accoustic and neutron gamma logging

  5. Deposition of pyrolytic carbon from C2H2--C3H6--Ar gas mixtures: coating under adiabatic conditions

    International Nuclear Information System (INIS)

    Gyarmati, E.; Gupta, A.K.; Puetter, B.

    In this report a method is described by which pyrolytic carbon can be deposited from ethylene-propylene-argon gas mixtures at temperatures between 1230 and 1330 0 C in 55-mm fluidized bed apparatus without heat exchange with the apparatus

  6. Quantitative controls on location and architecture of carbonate depositional sequences: upper miocene, cabo de gata region, se Spain

    Science.gov (United States)

    Franseen, E.K.; Goldstein, R.H.; Farr, M.R.

    1998-01-01

    Sequence stratigraphy, pinning-point relative sea-level curves, and magnetostratigraphy provide the quantitative data necessary to understand how rates of sea-level change and different substrate paleoslopes are dominant controls on accumulation rate, carbonate depositional sequence location, and internal architecture. Five third-order (1-10 my) and fourth-order (0.1-1.0 my) upper Miocene carbonate depositional sequences (DS1A, DS1B, DS2, DS3, TCC) formed with superimposed higher-frequency sea-level cycles in an archipelago setting in SE Spain. Overall, our study indicates when areas of high substrate slope (> 15??) are in shallow water, independent of climate, the location and internal architecture of carbonate deposits are not directly linked to sea-level position but, instead, are controlled by location of gently sloping substrates and processes of bypass. In contrast, if carbonate sediments are generated where substrates of low slope ( 15.6 cm/ky to ??? 2 cm/ky and overall relative sea level rose at rates of 17-21.4 cm/ky. Higher frequency sea-level rates were about 111 to more than 260 cm/ky, producing onlapping, fining- (deepening-) upward cycles. Decreasing accumulation rates resulted from decreasing surface area for shallow-water sediment production, drowning of shallow-water substrates, and complex sediment dispersal related to the archipelago setting. Typical systems tract and parasequence development should not be expected in "bypass ramp" settings; facies of onlapping strata do not track base level and are likely to be significantly different compared to onlapping strata associated with coastal onlap. Basal and upper DS2 reef megabreccias (indicating the transition from cool to warmer climatic conditions) were eroded from steep upslope positions and redeposited downslope onto areas of gentle substrate during rapid sea-level falls (> 22.7 cm/ky) of short duration. Such rapid sea-level falls and presence of steep slopes are not conducive to formation of

  7. Gemstone deposits of Serbia

    Directory of Open Access Journals (Sweden)

    Miladinović Zoran

    2016-06-01

    Full Text Available Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc., jasper (picture, landscape, red etc., common opal (dendritic, green, milky white etc., silica masses (undivided, and quartz (rock crystal, amethyst etc.. Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine, garnet (almandine and pyrope, tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  8. Gemstone deposits of Serbia

    Science.gov (United States)

    Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje

    2016-06-01

    Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  9. Physical and optical characterisation of carbon-silicon layers produced by rapid thermal chemical vapour deposition

    International Nuclear Information System (INIS)

    McBride, G.M.

    1994-04-01

    The Quplas II reactor is a novel chemical vapour deposition (CVD) system, which was recently designed and built at The Queen's University of Belfast. The system was intended to produce layers of Silicon (Si) for application in advanced bipolar transistor manufacture. It became clear that the system was capable of depositing novel materials such as Silicon-Carbon (Si-C) films which could have application as the emitter material in heterojunction bipolar transistors (HBT's) formed on silicon substrates. This work focuses mainly on the development of analytical techniques to allow characterisation of the deposited layers of Si-C and permit optimisation of both the process conditions and the deposition system. The techniques that were developed to characterise the Si-C films in terms of their physical and optical properties included: Secondary Ion Mass Spectroscopy (SIMS), X-Ray Diffractometry (XRD), Transmission and Scanning Electron Microscopy (TEM and SEM), Near Infrared (NIR) and Ultraviolet/Visible/Near Infrared (UV/VIS/NIR) Spectroscopy. From assessing the data obtained from the analysis of the samples using the techniques mentioned above, it was possible to characterise the Si-C films in terms of: stoichiometry, crystallinity, degree of oxygen contamination, thickness, optical roughness of the film/air and film/substrate interfaces, and energy bandgap. In the fabrication of Si-C films it was found to be necessary to use low process pressures in order to ensure that the film deposition was slow enough to allow for a more ordered growth process. This led to the formation of polycrystalline Si-C films which had greatly reduced levels of oxygen compared to earlier amorphous films. In addition the polycrystalline Si-C films tended to have optically rough film/air and film/substrate interfaces. For most samples it was possible to obtain the thickness of their Si-C films from their SIMS profiles. Based on the method of interferometry, the thickness of the Si-C films

  10. Significance of relic carbonate deposits along the central and southwestern margin of India for late Quaternary environmental and sea level changes

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Montaggioni, L.; Vora, K.H.; Almeida, F.; Rao, K.M.; Rajagopalan, G.

    Environmental and sea level indicators were investigated using dredge samples from late Quaternary carbonate deposits along the shelf break between Goa and Cape Comorin, India. Geomorphic features in the area were identified from sonar profiles...

  11. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    Science.gov (United States)

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  12. Carbon sequestration in depleted oil shale deposits

    Science.gov (United States)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  13. A porous silica rock ("tripoli") in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition, and origin through carbonate dissolution

    Science.gov (United States)

    Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen

    2005-01-01

    The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.

  14. Mineralization, geochemistry, fluid inclusion and sulfur stable isotope studies in the carbonate hosted Baqoroq Cu-Zn-As deposit (NE Anarak

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Jazi

    2015-10-01

    Full Text Available Introduction The Baqoroq Cu-Zn-As deposit is located northeast of the town ofAnarak in Isfahan province, in theeast central areaof Iran. Copper mineralization occursin upper cretaceous carbonate rocks.Studyof thegeologyof the Nakhlak area, the location ofa carbonate-hosted base metaldeposit, indicatesthe importance of stratigraphic, lithological and structural controls in the placement of this ore deposit. (Jazi et al., 2015.Some of the most world’s most important epigenetic, stratabound and discordant copperdeposits are the carbonate hosted Tsumeb and Kipushi type deposits,located in Africa. The Baqoroq deposit is believed to be of this type. Materials and methods In the current study, fifty rock samples were collected from old tunnels and surface mineralization. Twenty-two thin sections, ten polished sections and four thin-polished sections were prepared for microscopic study. Ten samples were selected for elemental analysis by ICP-OES (Inductively coupled plasma optical emission spectrometry by the Zar Azma Company (Tehran and AAS (Atomic absorption spectrometry at the Ferdowsi University of Mashhad. Seven doubly polished sections of barite mineralization were prepared for microthermometric analysis. Homogenization and last ice-melting temperatures were measured using a Linkam THMSG 600 combined heating and freezing stage at Ferdowsi University of Mashhad. Sulfur isotopes of five barite samples were determined by the Iso-Analytical Ltd. Company of the UK. The isotopic ratios are presented in per mil (‰notation relative to the Canyon Diablo Troilite. Results The upper Cretaceoushost rocks of the Baqoroq deposit include limestone, sandstone, and conglomerate units. Mineralization is controlled by two main factors: lithostratigraphy and structure. Epigenetic Cu-Zn mineralizationoccurs in ore zones as stratabound barite and barite-calcite veins and minor disseminated mineralization. Open space filling occurred as breccia matrix

  15. Enhancement of C/C-LAS joint using aligned carbon nanotubes prepared by injection chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Feng-Ling; Fu, Qian-Gang, E-mail: fuqiangang@nwpu.edu.cn; Feng, Lei; Shen, Qing-Liang

    2016-01-05

    Carbon nanotubes (CNTs) enhanced carbon/carbon-lithium aluminum silicate (C/C-LAS) joint was prepared by a three-step technique of pack cementation, injection chemical vapor deposition (ICVD) and hot-pressing. A layer of aligned CNTs was grown on the surface of SiC coated C/C composites by ICVD method, and the joint was obtained by hot-pressing with magnesium aluminum silicate (MAS) as the interlayer. SEM observation reveals that the introduced CNTs result in the formation of a dense and crack-free CNT/MAS nanocomposite interface between SiC and MAS. Compared with the joints without CNTs, the average shear strength of the joints reinforced by CNTs was improved by 48% accompanied by an obvious change in failure mode from brittle fracture without CNTs to plastic fracture with CNTs. The pulling-out and bridging of CNTs on the fracture surfaces had a positive effect on the strength enhancement of the C/C-LAS joint.

  16. Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes

    Science.gov (United States)

    Skafte, Theis Løye; Blennow, Peter; Hjelm, Johan; Graves, Christopher

    2018-01-01

    Reduction of CO2 to CO and O2 in the solid oxide electrolysis cell (SOEC) has the potential to play a crucial role in closing the CO2 loop. Carbon deposition in nickel-based cells is however fatal and must be considered during CO2 electrolysis. Here, the effect of operating parameters is investigated systematically using simple current-potential experiments. Due to variations of local conditions, it is shown that higher current density and lower fuel electrode porosity will cause local carbon formation at the electrochemical reaction sites despite operating with a CO outlet concentration outside the thermodynamic carbon formation region. Attempts at mitigating the issue by coating the composite nickel/yttria-stabilized zirconia electrode with carbon-inhibiting nanoparticles and by sulfur passivation proved unsuccessful. Increasing the fuel electrode porosity is shown to mitigate the problem, but only to a certain extent. This work shows that a typical SOEC stack converting CO2 to CO and O2 is limited to as little as 15-45% conversion due to risk of carbon formation. Furthermore, cells operated in CO2-electrolysis mode are poisoned by reactant gases containing ppb-levels of sulfur, in contrast to ppm-levels for operation in fuel cell mode.

  17. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China)

    2017-03-15

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram. - Highlights: • The typical deposited metals is the lath martensite with the fine stripe δ-ferrite. • The impact toughness is dependent on the δ-ferrite and the high quenching martensite. • The chemical compositions influence the solidification sequence.

  18. Tribological improvements of carbon-carbon composites by infiltration of atomic layer deposited lubricious nanostructured ceramic oxides

    Science.gov (United States)

    Mohseni, Hamidreza

    A number of investigators have reported enhancement in oxidation and wear resistant of carbon-carbon composites (CCC) in the presence of protective coating layers. However, application of a surface and subsurface coating system that can preserve its oxidation and wear resistance along with maintaining lubricity at high temperature remains unsolved. To this end, thermodynamically stable protective oxides (ZnO/Al2O3/ZrO2) have been deposited by atomic layer deposition (ALD) to infiltrate porous CCC and graphite foams in order to improve the thermal stability and wear resistance in low and high speed sliding contacts. Characterization of microstructural evolution was achieved by using energy dispersive x-ray spectroscopy (EDS) mapping in scanning electron microscope (SEM) coupled with focused ion beam (FIB), x-ray tomography, high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and X-ray diffraction (XRD). Evaluation of the tribological properties of CCC coated with abovementioned ALD thin films were performed by employing low speed pure sliding tribometer and a high speed/frequency reciprocating rig to simulate the fretting wear behavior at ambient temperature and elevated temperatures of 400°C. It was determined with x-ray tomography imaging and EDS mapping that ALD ZnO/Al2O3/ZrO2 nanolaminates and baseline ZrO2 coatings exhibited excellent conformality and pore-filling capabilities down to ˜100 microm and 1.5 mm in the porous CCC and graphite foam, respectively, which were dependent on the exposure time of the ALD precursors. XRD and HRTEM determined the crystalline phases of {0002} textured ZnO (wurtzite), amorphous Al2O3, and {101}-tetragonal ZrO2. Significant improvements up to ˜65% in the sliding and fretting wear factors were determined for the nanolaminates in comparison to the uncoated CCC. A tribochemical sliding-induced mechanically mixed layer (MML) was found to be responsible for these improvements

  19. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kaatz, F.H.; Siegal, M.P.; Overmyer, D.L.; Provencio, P.P.; Jackson, J.L

    2003-01-15

    We grow multiwalled carbon nanotubes (CNTs) via thermal chemical vapor deposition from a sputtered 4-nm-thick nickel catalyst film on a tungsten-coated silicon substrate. CNTs grow from a mixture of nitrogen and acetylene gases at temperatures ranging from 630 to 790 deg. C, resulting in CNT outer diameters of 5-350 nm. CNT diameters increase exponentially with temperature. These results define regimes for template growth fabricated in catalytically active anodized aluminum oxide (AAO) with controlled pinhole sizes ranging from 10 to 50 nm. We measure a threshold electron emission field of 3 V/{mu}m and a field enhancement factor {beta}=5230 on randomly oriented 10-nm diameter CNTs.

  20. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition

    International Nuclear Information System (INIS)

    Kaatz, F.H.; Siegal, M.P.; Overmyer, D.L.; Provencio, P.P.; Jackson, J.L.

    2003-01-01

    We grow multiwalled carbon nanotubes (CNTs) via thermal chemical vapor deposition from a sputtered 4-nm-thick nickel catalyst film on a tungsten-coated silicon substrate. CNTs grow from a mixture of nitrogen and acetylene gases at temperatures ranging from 630 to 790 deg. C, resulting in CNT outer diameters of 5-350 nm. CNT diameters increase exponentially with temperature. These results define regimes for template growth fabricated in catalytically active anodized aluminum oxide (AAO) with controlled pinhole sizes ranging from 10 to 50 nm. We measure a threshold electron emission field of 3 V/μm and a field enhancement factor β=5230 on randomly oriented 10-nm diameter CNTs

  1. Corrosion properties of aluminum based alloys deposited by ion beam assisted deposition

    International Nuclear Information System (INIS)

    Enders, B.; Krauss, S.; Wolf, G.K.

    1994-01-01

    The replacement of cadmium coatings by other protective measures is an important task because of the environmentally detrimental properties of cadmium. Therefore, aluminum and aluminum alloy coatings containing elements such as silicon or magnesium with more positive or negative positions in the galvanic series in relation to pure aluminum were deposited by ion beam assisted deposition onto glass and low carbon steel. Pure aluminum films were deposited onto low carbon steel in order to study the influence of the ion-to-atom arrival ratio and the angle of ion incidence on the corrosion properties. For examination of the pitting behavior as a function of the concentration of alloying element, quasipotentiostatic current-potential and potentiostatic current-time plots were measured in chlorine-containing acetate buffer. It is shown that these alloys can protect steel substrates under uniform and pitting corrosion conditions considerably better than pure aluminum coatings. ((orig.))

  2. Deuterium trapping in the carbon-silicon co-deposition layers prepared by RF sputtering in D2 atmosphere

    Science.gov (United States)

    Zhang, Hongliang; Zhang, Weiyuan; Su, Ranran; Tu, Hanjun; Shi, Liqun; Hu, Jiansheng

    2018-04-01

    Deuterated carbon-silicon layers co-deposited on graphite and silicon substrates by radio frequency magnetron sputtering in pure D2 plasma were produced to study deuterium trapping and characteristics of the C-Si layers. The C-Si co-deposited layers were examined by ion beam analysis (IBA), Raman spectroscopy (RS), infrared absorption (IR) spectroscopy, thermal desorption spectroscopy (TDS) and scanning electron microscopy (SEM). It was found that the growth rate of the C-Si co-deposition layer decreased with increasing temperature from 350 K to 800 K, the D concentration and C/Si ratios increased differently on graphite and silicon substrates. TDS shows that D desorption is mainly as D2, HD, HDO, CD4, and C2D4 and release peaks occurred at temperatures of less than 900 K. RS and IR analysis reveal that the structure of the C-Si layers became more disordered with increasing temperatures. Rounded areas of peeling with 1-2 μm diameters were observed on the surface.

  3. The relationship of carbonate-siliceous-pelitic uranium deposits with the plunging portions of down-faulted zones

    International Nuclear Information System (INIS)

    Liu Guihua; Liu Shouzhi; Zhou Huawen.

    1985-01-01

    Five uranium deposits of carbonate-siliceous-pelitic type occurred in different geological setting are studied. The geological data suggest that this type of uranium deposits is mostly located in the plunging portions of down-faulted zones. The cause of this kind of occurrence is tentatively discussed. It is proposed that uraniferous strata are the uranium source in deposits. The infiltration under arid climatic conditions promoted the uranium concentration up to ore grade. The mesozoic-cenozoic era which is characterized by the arid climate was the main ore-forming period. The converging condition of ground water in the plunging portions of down-faulted zones was better. Therefore, the plunging portions of down-faulted zones were more favourable for uranium ore formation compared with that of the uplifting portions. The preservation is the most important ore-controlling factor under the neotectonic movement and the plunging portions are the most favourable in this sence. The recognition criteria for the plunging portions of down-faulted zones which can be used in uranium exploration are proposed

  4. Cord blood testing

    Science.gov (United States)

    ... Blood culture (if an infection is suspected) Blood gases (including oxygen, carbon dioxide, and pH levels) Blood ... 2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM ...

  5. Scientific communications: Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at ruby creek, southern brooks range, Alaska

    Science.gov (United States)

    Selby, D.; Kelley, K.D.; Hitzman, M.W.; Zieg, J.

    2009-01-01

    New Re-Os data for chalcopyrite, bornite, and pyrite from the carbonate-hosted Cu deposit at Ruby Creek (Bornite), Alaska, show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the carbonate-hosted Ruby Creek Cu-(Co) deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization pre dominantly occurred at 384 ?? 4.2 Ma, with an earlier phase possibly at ???400 Ma. The Re-Os data are consistent with the observed paragenetic sequence and coincide with zircon U-Pb ages from igneous rocks within the Ambler metallogenic belt, some of which are spatially and genetically associated with regional volcanogenic massive sulfide deposits. The latter may suggest a temporal link between regional magmatism and hydrothermal mineralization in the Ambler district. The utility of bornite and chalcopyrite, in addition to pyrite, contributes to a new understanding of Re-Os geochronology and permits a refinement of the genetic model for the Ruby Creek deposit. ?? 2009 Society of Economices Geologists, Inc.

  6. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD Coatings on Thermoplastic Polyurethane Polymers

    Directory of Open Access Journals (Sweden)

    Daniel Heim

    2012-04-01

    Full Text Available Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide as well as diamond-like carbon (DLC coating materials on polymer surfaces (thermoplastic polyurethane, deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti. In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  7. Hemocompatibility of Inorganic Physical Vapor Deposition (PVD) Coatings on Thermoplastic Polyurethane Polymers.

    Science.gov (United States)

    Lackner, Juergen M; Waldhauser, Wolfgang; Hartmann, Paul; Bruckert, Franz; Weidenhaupt, Marianne; Major, Roman; Sanak, Marek; Wiesinger, Martin; Heim, Daniel

    2012-04-17

    Biocompatibility improvements for blood contacting materials are of increasing interest for implanted devices and interventional tools. The current study focuses on inorganic (titanium, titanium nitride, titanium oxide) as well as diamond-like carbon (DLC) coating materials on polymer surfaces (thermoplastic polyurethane), deposited by magnetron sputtering und pulsed laser deposition at room temperature. DLC was used pure (a-C:H) as well as doped with silicon, titanium, and nitrogen + titanium (a-C:H:Si, a-C:H:Ti, a-C:H:N:Ti). In-vitro testing of the hemocompatibility requires mandatory dynamic test conditions to simulate in-vivo conditions, e.g., realized by a cone-and-plate analyzer. In such tests, titanium- and nitrogen-doped DLC and titanium nitride were found to be optimally anti-thrombotic and better than state-of-the-art polyurethane polymers. This is mainly due to the low tendency to platelet microparticle formation, a high content of remaining platelets in the whole blood after testing and low concentration of platelet activation and aggregation markers. Comparing this result to shear-flow induced cell motility tests with e.g., Dictostelium discoideum cell model organism reveals similar tendencies for the investigated materials.

  8. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Electrophoretically-Deposited Nano-Fe3O4@carbon 3D Structure on Carbon Fiber as High-Performance Supercapacitors

    Science.gov (United States)

    Hajalilou, Abdollah; Etemadifar, Reza; Abbasi-Chianeh, Vahid; Abouzari-Lotf, Ebrahim

    2018-05-01

    Structural and electrochemical behaviors of electrophortically-deposited Fe3O4 and Fe3O4@C nanoparticles on carbon fiber (CF) were investigated. The nanoparticles were synthesized via a green-assisted hydrothermal route. The as-prepared samples were characterized by x-ray diffraction, transmission and scanning electron microscopies, Fourier transform infrared and UV-visible spectroscopies as well as by a vibration sample magnetometer. Surprisingly, the saturation magnetization (M s) of the Fe3O4@C ( 26.99 emu/g) was about 20% higher than that of Fe3O4 nanoparticles. A rather rectangular CV curve for both the elecrophortically-deposited Fe3O4 and Fe3O4@C on CF indicated the double-layer supercapacitor behavior of the samples. The synergistic effects of double shells improved the electrochemical behavior of Fe3O4@CF. The Fe3O4@C@CF composite exhibited a higher specific capacitance of 412 F g-1 at scan rate of 0.05 V/s compared to the Fe3O4@CF with a value of 193 F g-1. The superb electrochemical properties of Fe3O4@C@CF confirm their potential for applications as supercapacitors in the energy storage field.

  10. Carbonate hosted gold deposit in Tasmania, Australia

    International Nuclear Information System (INIS)

    Abadi, M.H.

    1999-01-01

    Full text: This study uses elemental and isotopic composition of carbonates associated with gold from Henty and Beaconsfield in Tasmania, Australia, to illustrate source of gold-bearing fluids, salinity, temperature and dissolution and reprecipitation of carbonate. The Beaconsfield and Henty gold mines are located in northern and western Tasmania respectively. Gold mineralisation in Beaconsfield occurs within the quartz-carbonate Tasmania Reef (Lower to Middle Palaeozoic sequence, Hills, 1998). The Henty gold mine is located at the base of the Cambrian Tyndall Group (volcano-sedimentary succession, White and McPhie, 1996) close to Henty Fault. Gold in carbonate samples from Henty ranges from 7.7 to 9360 ppm and in Beaconsfield ranges from 0.01 to 434 ppm. The amount of carbonate in samples from Henty and Beaconsfield gold mines varies from approximately 24 to 99.8%. Bivariate plot of Ca relative to total amounts of Mg, Fe and Mn illustrates that the major carbonate minerals at Beaconsfield and Henty gold mines are magnesian ankerite and calcite. The difference in carbonate mineralogy, at Henty and Beaconsfield gold mines, is attributed to the composition of fluids responsible for carbonate alteration. Gold and magnesium in Beaconsfield ankerite are derived from the leaching of Cambrian ultramafic rocks during the Devonian by the passage of meteoric fluids through tectonically affected Ordovician carbonates (Rao and Adabi, 1999). The total concentration of Fe and Mn are low (0.5 to 2%) in Henty and high (1 to 17.5%) in Beaconsfield ankerite, possibly due to oxidising conditions at Henty and reducing conditions at Beaconsfield gold mines during gold mineralisation. Variation of Sr values between Beaconsfield ankerite and Henty calcite is related to dissolution of limestone that increase Sr concentrations in gold mineralising fluids. Na values in both Beaconsfield (20 to 1100 ppm) and Henty carbonates (25 to 1650 ppm) suggest low salinity fluids responsible for gold

  11. Dynamic control of low-Z material deposition and tungsten erosion by strike point sweeping on DIII-D

    Directory of Open Access Journals (Sweden)

    J. Guterl

    2017-08-01

    Full Text Available Carbon deposition on tungsten between ELMs was investigated in DIII-D in semi-attached/detached H-mode plasma conditions using fixed outer strike point (OSP positions. Carbon deposition during plasma exposure of tungsten was monitored in-situ by measuring the reflectivity of the tungsten sample surface. No significant carbon deposition, i.e., without strong variations of the reflectivity, was observed during these experiments including discharges at high densities. In contrast, ERO modeling predicts a significant carbon deposition on the tungsten surface for those high density plasma conditions. The surface reflectivity decreases with methane injection, consistent with increased carbon coverage, as expected. The sweeping of OSP leads to a pronounced increase of the surface reflectivity, suggesting that the strike point sweeping may provide an effective means to remove carbon coating from tungsten surface. The ERO modeling however predicts again a regime of carbon deposition for these experiments. The discrepancies between carbon deposition regime predicted by the ERO model and the experimental observations suggest that carbon erosion during ELMs may significantly affect carbon deposition on tungsten.

  12. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi [Department of 702, Beihang University, Beijing (China); Li, Liuhe, E-mail: liliuhe@buaa.edu.cn [Department of 702, Beihang University, Beijing (China); Luo, Sida [Department of 702, Beihang University, Beijing (China); International Research Institute for Multidisciplinary Science, Beihang University, Beijing (China); Lu, Qiuyuan [Dong Feng Commercial Vehicle Technical Center, Dong Feng Commercial Vehicle Co., LTD, Wuhan (China); Gu, Jiabin; Lei, Ning [Department of 702, Beihang University, Beijing (China); Huo, Chunqin [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Guangdong (China)

    2017-01-30

    Highlights: • Effect of inner surface materials of tubes on plasma discharge is examined. • Electron mean free path is used to analyze the films deposition. • Secondary electrons emitted from inner surface of tube enhance plasma discharge. - Abstract: Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  13. Controllable deposition of platinum nanoparticles on single-wall carbon nanohorns as catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Niu, Ben; Xu, Wei; Guo, Zhengduo; Zhou, Nengzhi; Liu, Yang; Shi, Zujin; Lian, Yongfu

    2012-09-01

    Uniform and well dispersed platinum nanoparticles were successfully deposited on single-walled carbon nanohorns with the assistance of 4,4-dipydine and ion liquids, respectively. In particular, the size of platinum nanoparticles could be controlled in a very narrow range (2.2 to 2.5 nm) when ion liquids were applied. The crystalline nature of these platinum nanoparticles was confirmed by high resolution transmission electron microscopy observation and X-ray power diffraction analysis, and two species of platinum Pt(0) and Pt(II) were detected by X-ray photoelectron spectroscopy. Electrochemical studies revealed that thus obtained nanocomposites had much better electrocatalytic activity for the methanol oxidation than those prepared with carbon nanotubes as supporter.

  14. New 'ex vivo' radioisotopic method of quantitation of platelet deposition

    International Nuclear Information System (INIS)

    Badimon, L.; Mayo Clinic, Rochester, MN; Thrombosis and Atherosclerosis Unit, Barcelona; Mayo Clinic, Rochester, MN; Fuster, V.; Chesebro, J.H.; Dewanjee, M.K.

    1983-01-01

    We have developed a sensitive and quantitative method of 'ex vivo' evaluation of platelet deposition on collagen strips, from rabbit Achilles tendon, superfused by flowing blood and applied it to four animal species, cat, rabbit, dog and pig. Autologous platelets were labeled with indium-111-tropolone, injected to the animal 24 hr before the superfusion and the number of deposited platelets was quantitated from the tendon gamma-radiation and the blood platelet count. We detected some platelet consumption with superfusion time when blood was reinfused entering the contralateral jugular vein after collagen contact but not if blood was discarded after the contact. Therefore, in order to have a more physiological animal model we decided to discard blood after superfusion of the tendon. In all species except for the cat there was a linear relationship between increase of platelet on the tendon and time of exposure to blood superfusion. The highest number of platelets deposited on the collagen was found in cats, the lowest in dogs. Ultrastructural analysis showed the platelets were deposited as aggregates after only 5 min of superfusion. (orig.)

  15. Deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates

    International Nuclear Information System (INIS)

    Eryilmaz, O L; Johnson, J A; Ajayi, O O; Erdemir, A

    2006-01-01

    As an element, carbon is rather unique and offers a range of rare opportunities for the design and fabrication of zero-, one-, two-, and three-dimensional nanostructured novel materials and coatings such as fullerenes, nanotubes, thin films, and free-standing nano-to-macroscale structures. Among these, carbon-based two-dimensional thin films (such as diamond and diamond-like carbon (DLC)) have attracted an overwhelming interest in recent years, mainly because of their exceptional physical, chemical, mechanical, electrical, and tribological properties. In particular, certain DLC films were found to provide extremely low friction and wear coefficients to sliding metallic and ceramic surfaces. Since the early 1990s, carbon has been used at Argonne National Laboratory to synthesize a class of novel DLC films that now provide friction and wear coefficients as low as 0.001 and 10 -11 -10 -10 mm 3 N -1 m -1 , respectively, when tested in inert or vacuum test environments. Over the years, we have optimized these films and applied them successfully to all kinds of metallic and ceramic substrates and evaluated their friction and wear properties under a wide range of sliding conditions. In this paper, we will provide details of our recent work on the deposition, characterization, and tribological applications of near-frictionless carbon films on glass and ceramic substrates. We will also provide chemical and structural information about these films and describe the fundamental tribological mechanisms that control their unusual friction and wear behaviour

  16. Effects of acidic deposition on the erosion of carbonate stone — experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    Science.gov (United States)

    Baedecker, Philip A.; Reddy, Michael M.; Reimann, Karl J.; Sciammarella, Cesar A.

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30° to horizontal at the five NAPAP materials exposure sites range from ˜ 15 to ˜ 30 μm yr -1 for marble, and from ˜ 25 to ˜ 45 μm yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ˜ 30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ˜ 70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ("clean rain"). These results are for marble and limestone slabs exposed at an angle of 30° from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60° or 85°. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at

  17. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    Science.gov (United States)

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation; Sintesis y caracterizacion de peliculas delgadas de carbono amorfo nitrurado, depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P, B

    2001-07-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp{sup 2} and sp{sup 3} bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  19. An Investigation on the Formation of Carbon Nanotubes by Two-Stage Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. S. Shamsudin

    2012-01-01

    Full Text Available High density of carbon nanotubes (CNTs has been synthesized from agricultural hydrocarbon: camphor oil using a one-hour synthesis time and a titanium dioxide sol gel catalyst. The pyrolysis temperature is studied in the range of 700–900°C at increments of 50°C. The synthesis process is done using a custom-made two-stage catalytic chemical vapor deposition apparatus. The CNT characteristics are investigated by field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results showed that structural properties of CNT are highly dependent on pyrolysis temperature changes.

  20. The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2015-06-01

    Full Text Available Hard carbon thin films were synthesized on Si (100 and quartz substrates by the Pulsed Laser Deposition (PLD technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties.

  1. Isotope studies of UK tufa deposits and associated source waters

    International Nuclear Information System (INIS)

    Thorpe, P.M.

    1981-12-01

    Tufa is a secondary deposit of calcium carbonate precipitated from springs and streams. Previous attempts to date tufa deposits directly with 14 C have had limited success. The major problem is to quantify the amount of carbon incorporated in tufa, derived from the dissolution of carbonate bedrock, essentially free of 14 C. The isotopic composition of tufa-depositing streamwaters is similar to that of water recharging aquifers. The 14 C levels of recent tufa layers, at three sites, were similar to those of the source waters. 14 C dates from tufa at these sites suggested a Postglacial origin when corrected for bedrock carbon dilution of 16 to 24%. This dilution was overestimated by consideration of carbon mass balance using characteristic stable carbon isotope compositions (delta 13 C) for the biogenic and bedrock components. This method of correction is often applied to 14 C dates from groundwaters. The carbon isotope composition of spring waters supplying the tufa-depositing streams was realistically explained by a two stage process of carbonate dissolution under open and then closed conditions with respect to gaseous carbon dioxide. Seasonal variations in the 14 C and delta 13 C composition of stream and spring waters, downstream increases in 14 C and delta 13 C and seasonal variations in the oxygen and hydrogen isotopic composition of rainfall are explained. (author)

  2. Effect of working pressure on corrosion behavior of nitrogen doped diamond-like carbon thin films deposited by DC magnetron sputtering.

    Science.gov (United States)

    Khun, N W; Liu, E

    2011-06-01

    Nitrogen doped diamond-like carbon thin films were deposited on highly conductive p-silicon(100) substrates using a DC magnetron sputtering deposition system by varying working pressure in the deposition chamber. The bonding structure, adhesion strength, surface roughness and corrosion behavior of the films were investigated by using X-ray photoelectron spectroscopy, micro-Raman spectroscopy, micro-scratch test, atomic force microscopy and potentiodynamic polarization test. A 0.6 M NaCl electrolytic solution was used for the corrosion tests. The optimum corrosion resistance of the films was found at a working pressure of 7 mTorr at which a good balance between the kinetics of the sputtered ions and the surface mobility of the adatoms promoted a microstructure of the films with fewer porosities.

  3. Study of different nanostructured carbon supports for fuel cell catalysts

    Science.gov (United States)

    Mirabile Gattia, Daniele; Antisari, Marco Vittori; Giorgi, Leonardo; Marazzi, Renzo; Piscopiello, Emanuela; Montone, Amelia; Bellitto, Serafina; Licoccia, Silvia; Traversa, Enrico

    Pt clusters were deposited by an impregnation process on three carbon supports: multi-wall carbon nanotubes (MWNT), single-wall carbon nanohorns (SWNH), and Vulcan XC-72 carbon black to investigate the effect of the carbon support structure on the possibility of reducing Pt loading on electrodes for direct methanol (DMFC) fuel cells without impairing performance. MWNT and SWNH were in-house synthesised by a DC and an AC arc discharge process between pure graphite electrodes, respectively. UV-vis spectrophotometry, scanning and transmission electron microscopy, X-ray diffraction, and cyclic voltammetry measurements were used to characterize the Pt particles deposited on the three carbon supports. A differential yield for Pt deposition, not strictly related to the surface area of the carbon support, was observed. SWNH showed the highest surface chemical activity toward Pt deposition. Pt deposited in different forms depending on the carbon support. Electrochemical characterizations showed that the Pt nanostructures deposited on MWNT are particularly efficient in the methanol oxidation reaction.

  4. Deposition of carbon nanotubes onto aramid fibers using as-received and chemically modified fibers

    International Nuclear Information System (INIS)

    Rodríguez-Uicab, O.; Avilés, F.; Gonzalez-Chi, P.I; Canché-Escamilla, G.; Duarte-Aranda, S.; Yazdani-Pedram, M.; Toro, P.; Gamboa, F.; Mazo, M.A.; Nistal, A.; Rubio, J.

    2016-01-01

    Highlights: • The surface of aramid fibers was functionalized by two acid treatments. • The treatment based on HNO_3/H_2SO_4 reduced the mechanical properties of the fibers. • CNTs were deposited on the aramid fibers, reaching electrical conductivity. • Homogeneous CNT distribution was achieved by using pristine fibers or chlorosulfonic acid. - Abstract: Multiwall carbon nanotubes (MWCNTs) oxidized by an acid treatment were deposited on the surface of as-received commercial aramid fibers containing a surface coating (“sizing”), and fibers modified by either a chlorosulfonic treatment or a mixture of nitric and sulfuric acids. The surface of the aramid fiber activated by the chemical treatments presents increasing density of CO, COOH and OH functional groups. However, these chemical treatments reduced the tensile mechanical properties of the fibers, especially when the nitric and sulfuric acid mixture was used. Characterization of the MWCNTs deposited on the fiber surface was conducted by scanning electron microscopy, Raman spectroscopy mapping and X-ray photoelectron spectroscopy. These characterizations showed higher areal concentration and more homogeneous distribution of MWCNTs over the aramid fibers for as-received fibers and for those modified with chlorosulfonic acid, suggesting the existence of interaction between the oxidized MWCNTs and the fiber coating. The electrical resistance of the MWCNT-modified aramid yarns comprising ∼1000 individual fibers was in the order of MΩ/cm, which renders multifunctional properties.

  5. Factors associated with blood oxygen partial pressure and carbon dioxide partial pressure regulation during respiratory extracorporeal membrane oxygenation support: data from a swine model.

    Science.gov (United States)

    Park, Marcelo; Mendes, Pedro Vitale; Costa, Eduardo Leite Vieira; Barbosa, Edzangela Vasconcelos Santos; Hirota, Adriana Sayuri; Azevedo, Luciano Cesar Pontes

    2016-01-01

    The aim of this study was to explore the factors associated with blood oxygen partial pressure and carbon dioxide partial pressure. The factors associated with oxygen - and carbon dioxide regulation were investigated in an apneic pig model under veno-venous extracorporeal membrane oxygenation support. A predefined sequence of blood and sweep flows was tested. Oxygenation was mainly associated with extracorporeal membrane oxygenation blood flow (beta coefficient = 0.036mmHg/mL/min), cardiac output (beta coefficient = -11.970mmHg/L/min) and pulmonary shunting (beta coefficient = -0.232mmHg/%). Furthermore, the initial oxygen partial pressure and carbon dioxide partial pressure measurements were also associated with oxygenation, with beta coefficients of 0.160 and 0.442mmHg/mmHg, respectively. Carbon dioxide partial pressure was associated with cardiac output (beta coefficient = 3.578mmHg/L/min), sweep gas flow (beta coefficient = -2.635mmHg/L/min), temperature (beta coefficient = 4.514mmHg/ºC), initial pH (beta coefficient = -66.065mmHg/0.01 unit) and hemoglobin (beta coefficient = 6.635mmHg/g/dL). In conclusion, elevations in blood and sweep gas flows in an apneic veno-venous extracorporeal membrane oxygenation model resulted in an increase in oxygen partial pressure and a reduction in carbon dioxide partial pressure 2, respectively. Furthermore, without the possibility of causal inference, oxygen partial pressure was negatively associated with pulmonary shunting and cardiac output, and carbon dioxide partial pressure was positively associated with cardiac output, core temperature and initial hemoglobin.

  6. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    Science.gov (United States)

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  7. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    International Nuclear Information System (INIS)

    Moeller, Soeren

    2014-01-01

    The use of carbon-based plasma-facing wall components offers many advantages for plasma operation in magnetic confinement nuclear fusion devices. However, through reactions with the hydrogen based fusion plasma, carbon forms amorphous hydrogenated carbon co-deposits (a-C:H) in the vacuum vessels. If tritium is used to fuel the reactor, this co-deposition can quickly lead to an inacceptable high tritium inventory. Through co-deposition with carbon about 10% of the tritium injected into the reactor can be trapped. Even with other wall materials co-deposition can be significant. A method to recover the hydrogen isotopes from the co-deposits is necessary. The method has to be compatible with the requirements of the devices and nuclear fusion plasma operation. In this work thermo-chemical removal by neutral gases (TCR) and removal by plasmas is investigated. Models are developed to describe the involved processes of both removal methods. TCR is described using a reaction-diffusion model. Within this model the reactive gas diffuses into the co-deposits and subsequently reacts in a thermally activated process. The co-deposits are pyrolysed, forming volatile gases, e.g. CO 2 and H 2 O. These gases are pumped from the vacuum vessel and recycled. Applying the model to literature observations enables to connect data on exposure temperature, pressure, time and co-deposit properties. Two limits of TCR (reaction- or diffusion-limited) are identified. Plasma removal sputters co-deposits by their chemical and physical interaction with the impinging ions. The description uses a 0D plasma model from the literature which derives plasma parameters from the balance of input power to plasma power losses. The model is extended with descriptions of the plasma sheath and ion-surface interactions to derive the co-deposit removal rates. Plasma removal can be limited by this ion induced surface release rate or the rate of pumping of the released species. To test the models dedicated

  8. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Soeren

    2014-11-01

    The use of carbon-based plasma-facing wall components offers many advantages for plasma operation in magnetic confinement nuclear fusion devices. However, through reactions with the hydrogen based fusion plasma, carbon forms amorphous hydrogenated carbon co-deposits (a-C:H) in the vacuum vessels. If tritium is used to fuel the reactor, this co-deposition can quickly lead to an inacceptable high tritium inventory. Through co-deposition with carbon about 10% of the tritium injected into the reactor can be trapped. Even with other wall materials co-deposition can be significant. A method to recover the hydrogen isotopes from the co-deposits is necessary. The method has to be compatible with the requirements of the devices and nuclear fusion plasma operation. In this work thermo-chemical removal by neutral gases (TCR) and removal by plasmas is investigated. Models are developed to describe the involved processes of both removal methods. TCR is described using a reaction-diffusion model. Within this model the reactive gas diffuses into the co-deposits and subsequently reacts in a thermally activated process. The co-deposits are pyrolysed, forming volatile gases, e.g. CO{sub 2} and H{sub 2}O. These gases are pumped from the vacuum vessel and recycled. Applying the model to literature observations enables to connect data on exposure temperature, pressure, time and co-deposit properties. Two limits of TCR (reaction- or diffusion-limited) are identified. Plasma removal sputters co-deposits by their chemical and physical interaction with the impinging ions. The description uses a 0D plasma model from the literature which derives plasma parameters from the balance of input power to plasma power losses. The model is extended with descriptions of the plasma sheath and ion-surface interactions to derive the co-deposit removal rates. Plasma removal can be limited by this ion induced surface release rate or the rate of pumping of the released species. To test the models dedicated

  9. Pore size control of Pitch-based activated carbon fibers by pyrolytic deposition of propylene

    International Nuclear Information System (INIS)

    Xie Jinchuan; Wang Xuhui; Deng Jiyong; Zhang Lixing

    2005-01-01

    In this paper, we attempted to narrow the pore size of Pitch-based activated carbon fiber (Pitch-ACF) by chemical vapor deposition (CVD) of propylene at 700 deg. C. The BET equation was used to estimate the specific surface areas. The micropore volumes were determined using DR equation, t-plot and α s -plot, and mesopore surface areas were determined by t-plot and α s -plot. The pore size distribution (PSD) of micropores and mesopore was investigated by micropore analysis method (MP method) and MK method, respectively. The relation between the graphite-like crystal interlayer distance and pore size was analyzed by X-ray diffraction (XRD). The results showed that the pore size of Pitch-ACF was gradually narrowed with increasing deposition time. The catalytic activation of Ni was attempted when Pitch-ACF was modified simultaneously by pyrolysis of propylene. The results obtained from the analysis of PSD of micropores, mesopores and macropores in Ni-P-ACF by density function theory (DFT) showed that the pore structure and surface chemistry were greatly changed due to introducing nickel catalyst

  10. INFLUENCE OF THE SILICON INTERLAYER ON DIAMOND-LIKE CARBON FILMS DEPOSITED ON GLASS SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Deiler Antonio Lima Oliveira

    2012-06-01

    Full Text Available Diamond-like carbon (DLC films as a hard protective coating have achieved great success in a diversity of technological applications. However, adhesion of DLC films to substrates can restrict their applications. The influence of a silicon interlayer in order to improve DLC adhesion on glass substrates was investigated. Amorphous silicon interlayer and DLC films were deposited using plasma enhanced chemical vapor deposition from silane and methane, respectively. The bonding structure, transmittance, refraction index, and adherence of the films were also evaluated regarding the thickness of the silicon interlayer. Raman scattering spectroscopy did not show any substantial difference in DLC structure due to the interlayer thickness of the silicon. Optical measurements showed a sharp decrease of transmittance in the ultra-violet region caused by the fundamental absorption of the light. In addition, the absorption edge of transmittance shifted toward longer wavelength side in the ultra-violet region as the thickness of the silicon interlayer increased. The tribological results showed an increase of DLC adherence as the silicon interlayer increased, which was characterized by less cracks around the grooves.

  11. Benefits of carbon addition on the hydrogen absorption properties of Mg-based thin films grown by Pulsed Laser Deposition

    International Nuclear Information System (INIS)

    Darok, X.; Rougier, A.; Bhat, V.; Aymard, L.; Dupont, L.; Laffont, L.; Tarascon, J.-M.

    2006-01-01

    Mg-Ni thin films were grown using Pulsed Laser Deposition. In situ optical changes from shiny metallic to transparent states were observed for films deposited in vacuum and under an Ar/H 2 gas mixture (93/7%), respectively. Optical changes were also achieved by ex situ hydrogenation under hydrogen gas pressure of 15 bars at 200 deg. C. However, after ex situ hydrogenation, the optical transmittance of the Mg-based hydrogenated thin films did not exceed 25%. Such limitation was attributed to oxygen contamination, as deduced by High Resolution Transmission Electron Microscopy observations, showing the co-existence of both Mg-based and MgO phases for as-deposited films. A significant decrease in oxygen contamination was successfully achieved with the addition of carbon, leading to the preparation of (Mg-based)-C x (x < 20%) thin films showing a faster and easier hydrogenation

  12. Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available The Ni/MgO and Ni-Cu/MgO catalysts were prepared by sol-gel method and used as the catalysts for synthesis of carbon nanotubes by thermal chemical vapor deposition. The effect of Cu on the carbon yield and structure was investigated, and the effects of calcination temperature and reaction temperature were also investigated. The catalysts and synthesized carbon materials were characterized by temperature programmed reduction (TPR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. Results showed that the addition of Cu promoted the reduction of nickel species, subsequently improving the growth and yield of CNTs. Meanwhile, CNTs were synthesized by the Ni/MgO and Ni-Cu/MgO catalysts with various calcination temperatures and reaction temperatures, and results suggested that the obtained CNTs on Ni-Cu/MgO catalyst with the calcination temperature of 500°C and the reaction temperature of 650°C were of the greatest yield and quantity of 927%.

  13. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  14. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Geochemical Indicators of the Carbonate Sedimentation Depositional Environments and Geodynamic Conditions in the East of the Middle Urals in the Kizelovian Time

    Directory of Open Access Journals (Sweden)

    S. A. Dub

    2017-12-01

    Full Text Available Geochemical characteristics of the limestones of Kizelovskian substage of the Eastern Urals zone (Rezh River, Middle Urals, such as carbon and oxygen isotopic composition, concentration of minor and trace elements, and redox value indicators, were studied in details. Based on the results of data interpretation and analysis of lithological features, it was assumed that carbonate deposits formed in shallow oxygen-rich environment with high bioproductivity warm water ecosystem, and within the isolated carbonate platform with a steady sinking territory. Some signs indicate that sedimentation during the Kizelovian time occurred in the inner lagoon of a large atoll. The Maldivian archipelago could be a contemporary analogue of the Rezhevskaya carbonate platform.

  16. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    Science.gov (United States)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  17. Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications

    Science.gov (United States)

    Lettéron, Alexandre; Hamon, Youri; Fournier, François; Séranne, Michel; Pellenard, Pierre; Joseph, Philippe

    2018-05-01

    A 220-m thick carbonate-dominated succession has been deposited in shallow-water, saline lake environments during the early to middle Priabonian (MP17A-MP18 mammal zones) in the Saint-Chaptes Basin (south-east France). The palaeoenvironmental, paleoclimatic and palaeogeographic significance of such saline lake carbonates has been deciphered on the basis of a multi-proxy analyses including: 1) depositional and diagenetic features; 2) biological components (molluscs, benthic foraminifera, characean gyrogonites, spores and pollens); 3) carbon and oxygen stable isotopes; 4) trace elements; and 5) clay mineralogy. Five stages of lacustrine system evolution have been identified: 1) fresh-water closed lake under dry climate (unit U1); 2) fresh to brackish water lacustrine deltaic system with a mixed carbonate-siliciclastic sedimentation under relatively wet climatic conditions (unit U2); 3) salt-water lacustrine carbonate system under humid climatic setting (unit U3); 4) evaporitic lake (unit U4); and 5) closed lake with shallow-water carbonate sedimentation under subtropical to Mediterranean climate with dry seasons (unit U5). Upper Eocene aridification is evidenced to have started as early as the earliest Priabonian (unit U1: MP17A mammal zone). A change from humid to dryer climatic conditions is recorded between units U3 and U4. The early to middle Priabonian saline lake is interpreted as an athalassic (inland) lake that have been transiently connected with neighboring salt lakes influenced by seawater and/or fed with sulfates deriving from recycling of evaporites. Maximum of connection with neighboring saline lakes (Mormoiron Basin, Camargue and Central grabens, Hérault Basin) likely occurred during unit U3 and at the base of unit U5. The most likely sources of salts of these adjacent basins are: 1) Triassic evaporites derived from salt-diapirs (Rhône valley) or from paleo-outcrops located east of the Durance fault or offshore in the Gulf of Lion; or 2) marine

  18. Whole Watershed Quantification of Net Carbon Fluxes by Erosion and Deposition within the Christina River Basin Critical Zone Observatory

    Science.gov (United States)

    Aufdenkampe, A. K.; Karwan, D. L.; Aalto, R. E.; Marquard, J.; Yoo, K.; Wenell, B.; Chen, C.

    2013-12-01

    We have proposed that the rate at which fresh, carbon-free minerals are delivered to and mix with fresh organic matter determines the rate of carbon preservation at a watershed scale (Aufdenkampe et al. 2011). Although many studies have examined the role of erosion in carbon balances, none consider that fresh carbon and fresh minerals interact. We believe that this mechanism may be a dominant sequestration process in watersheds with strong anthropogenic impacts. Our hypothesis - that the rate of mixing fresh carbon with fresh, carbon-free minerals is a primary control on watershed-scale carbon sequestration - is central to our Christina River Basin Critical Zone Observatory project (CRB-CZO, http://www.udel.edu/czo/). The Christina River Basin spans 1440 km2 from piedmont to Atlantic coastal plain physiographic provinces in the states of Pennsylvania and Delaware, and experienced intensive deforestation and land use beginning in the colonial period of the USA. Here we present a synthesis of multi-disciplinary data from the CRB-CZO on materials as they are transported from sapprolite to topsoils to colluvium to suspended solids to floodplains, wetlands and eventually to the Delaware Bay estuary. At the heart of our analysis is a spatially-integrated, flux-weighted comparison of the organic carbon to mineral surface area ratio (OC/SA) of erosion source materials versus transported and deposited materials. Because source end-members - such as forest topsoils, farmed topsoils, gullied subsoils and stream banks - represent a wide distribution of initial, pre-erosion OC/SA, we quantify source contributions using geochemical sediment fingerprinting approaches (Walling 2005). Analytes used for sediment fingerprinting include: total mineral elemental composition (including rare earth elements), fallout radioisotope activity for common erosion tracers (beryllium-7, beryllium-10, lead-210, cesium-137), particle size distribution and mineral specific surface area, in addition

  19. Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tian, F.; Li, H.P.; Zhao, N.Q.; He, C.N.

    2009-01-01

    Catalytic effects of the fabrication of carbon nanotubes (CNTs) by chemical vapor deposition of methane were investigated by thermogravimetric analysis. More specifically, the total yield and thermal stability characteristics of the product were examined with respect to physicochemical characteristics of the catalyst. Three kinds of Ni/Al catalysts with 5 wt%, 10 wt% and 15 wt% Ni, respectively were employed to synthesize CNTs. It was determined that an optimal Ni content of the catalyst resulted in maximum yield and most stable product. With increasing the Ni content, the CNT yield increased but they became less stable during heat treatment in air. According to transmission electron microscopy observations, the defect sites along the walls and at the ends of the raw CNTs facilitated the thermal oxidative destruction of the CNTs.

  20. Plasma-deposited a-C(N) H films

    CERN Document Server

    Franceschini, D E

    2000-01-01

    The growth behaviour, film structure and mechanical properties of plasma-deposited amorphous hydrogenated carbon-nitrogen films are shortly reviewed. The effect of nitrogen-containing gas addition to the deposition to the hydrocarbon atmospheres used is discussed, considering the modifications observed in the chemical composition growth kinetics, carbon atom hybridisation and chemical bonding arrangements of a-C(N):H films. The overall structure behaviour is correlated to the variation of the mechanical properties.