WorldWideScience

Sample records for carbon steel exposed

  1. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  2. Inhibiting pitting corrosion in carbon steel exposed to dilute radioactive waste slurries

    International Nuclear Information System (INIS)

    Zapp, P.E.; Hobbs, D.T.

    1991-01-01

    Dilute caustic high-level radioactive waste slurries can induce pitting corrosion in carbon steel. Cyclic potentiodynamic polarization tests were conducted in simulated and actual waste solutions to determine minimum concentrations of sodium nitrate which inhibit pitting in ASTM A537 class 1 steel exposed to these solutions. Susceptibility to pitting was assessed through microscopic inspection of specimens and inspection of polarization scans. Long-term coupon immersion tests were conducted to verify the nitrite concentrations established by the cyclic potentiodynamic polarization tests. The minimum effective nitrite concentration is expressed as a function of the waste nitrate concentration and temperature

  3. Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Jenkins, Peter E. [Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Ren Zhiyong, E-mail: zhiyong.ren@ucdenver.edu [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Characterized the unique corrosion behaviour of carbon steel in the biodiesel/seawater environment. Black-Right-Pointing-Pointer Illustrated the in situ anode and cathode distribution using a wire beam electrode approach. Black-Right-Pointing-Pointer Elucidated the corrosion mechanisms based on ion transfer and oxygen concentration gradient. - Abstract: The electrochemical corrosion of carbon steel exposed to a mixture of biodiesel and 3.5% NaCl solution simulated seawater was characterized using wire beam electrode (WBE) technique. Both optical images and in situ potential and current measurements showed that all the anodes and most cathodes formed in the water phase, but the cathodes were mainly located along the water/biodiesel interface. Due to oxygen concentration gradient and cross-phase ion transfer, low corrosion currents were also detected in biodiesel phase. Further anode reaction was partially blocked by iron rust, but the alkali residual in biodiesel may interact with corrosion and deteriorate biodiesel quality.

  4. Mechanism of pitting corrosion prevention by nitrite in carbon steel exposed to dilute salt solutions. 1998 annual progress report

    International Nuclear Information System (INIS)

    Zapp, P.E.; Zee, J. van.

    1998-01-01

    'The overall goal of this project is to develop a fundamental understanding of the role of nitrite in preventing the breakdown of protective oxide(s) on carbon steel and the onset of pitting. Pitting corrosion of carbon steel exposed to dilute alkaline salt solutions can be induced by nitrate, sulfate, and chloride ions and is prevented by sufficient concentration of nitrite. A significant example of this material/electrolyte system is the storage and processing of DOE''s high-level radioactive liquid waste in carbon steel tanks. Added nitrite in the waste has a considerable downstream impact on the immobilization of the waste in a stable glass form. Waste tank integrity and glass production efficiency may benefit from the fundamental understanding of nitrite''s role in preventing pitting. This report summarizes progress after approximately six months of effort in this three-year EMSP project. Initial experimental and theoretical work has focused on the electrochemical behavior of carbon steel in simplified non-radioactive solutions that simulate complex dilute radioactive waste solutions. These solutions contain corrosion-inducing species such as nitrate and chloride and the corrosion-inhibiting nitrite at moderately alkaline pHs. The electrochemical behavior of interest here is that of the open-circuit potential of the steel specimen at equilibrium in the experimental electrolyte and the measures of the steel''s passivity and passivity breakdown.'

  5. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment

    International Nuclear Information System (INIS)

    Ma Yuantai; Li Ying; Wang Fuhui

    2008-01-01

    The atmospheric corrosion performance of carbon steel exposed in Wanning area, which located in the south part of China with tropic marine environment characters, was studied at different exposure periods (up to 2 years). To investigate the effect of β-FeOOH on the corrosion behavior of carbon steel in high chloride ion environment, rust layer was analyzed by using infrared spectroscopy, scanning electron microscope, X-ray diffraction, and the rusted steel was measured by electrochemical impedance spectroscopy method. The weight loss test indicated that the corrosion rate of carbon steel sharply increased during 6 months' exposure and gradually reduced after longer exposure. The results of rust analysis revealed that the underlying corrosion performance of the carbon steel was dependent on the inherent properties of the rust layers formed under different conditions such as composition and structure. Among all the iron oxide, β-FeOOH exerted significant influence. The presence of a monolayer of the rust as well as β-FeOOH accelerated the corrosion process during the initial exposure stage. EIS data implied that β-FeOOH in the inner layer was gradually consumed and transformed to γ-Fe 2 O 3 in the wet-dry cycle, which was beneficial to protect the substrate and reduced the corrosion rate

  6. Carbon steel protection in G.S. [Girldler sulphide] plants: Pt. 7

    International Nuclear Information System (INIS)

    Lires, Osvaldo; Delfino, Cristina; Rojo, Enrique.

    1989-01-01

    In order to protect carbon steel towers and piping of a GS experimental heavy water plant against corrosion produced by the action of aqueous solutions of hydrogen sulphide, a method, elsewhere published, was developed. Carbon steel exposed to saturated aqueous solutions of hydrogen sulphide forms iron sulphide scales. In oxygen free solutions, evolution of corrosion follows the sequence mackinawite → cubic ferrous sulphide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite and pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa for a period of 14 days). During a plant shutdown procedures, the carbon steel protected with those scales is exposed to water and highly humid air; under such conditions oxidation is unavoidable. Later, treatment in plant conditions does not regenerate scales because the composition of regenerated scales involves more soluble iron sulphides such as mackinawite and troilite. Therefore, it is not recommendable to expose the protective scales to atmospherical conditions. (Author)

  7. Microbially induced corrosion of carbon steel in deep groundwater environment

    Directory of Open Access Journals (Sweden)

    Pauliina eRajala

    2015-07-01

    Full Text Available The metallic low and intermediate level radioactive waste generally consists of carbon steel and stainless steels. The corrosion rate of carbon steel in deep groundwater is typically low, unless the water is very acidic or microbial activity in the environment is high. Therefore, the assessment of microbially induced corrosion of carbon steel in deep bedrock environment has become important for evaluating the safety of disposal of radioactive waste. Here we studied the corrosion inducing ability of indigenous microbial community from a deep bedrock aquifer. Carbon steel coupons were exposed to anoxic groundwater from repository site 100 m depth (Olkiluoto, Finland for periods of three and eight months. The experiments were conducted at both in situ temperature and room temperature to investigate the response of microbial population to elevated temperature. Our results demonstrate that microorganisms from the deep bedrock aquifer benefit from carbon steel introduced to the nutrient poor anoxic deep groundwater environment. In the groundwater incubated with carbon steel the planktonic microbial community was more diverse and 100-fold more abundant compared to the environment without carbon steel. The betaproteobacteria were the most dominant bacterial class in all samples where carbon steel was present, whereas in groundwater incubated without carbon steel the microbial community had clearly less diversity. Microorganisms induced pitting corrosion and were found to cluster inside the corrosion pits. Temperature had an effect on the species composition of microbial community and also affected the corrosion deposits layer formed on the surface of carbon steel.

  8. Pitting growth rate in carbon steel exposed to simulated radioactive waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1995-01-01

    Dilute high-level radioactive waste slurries can induce pitting corrosion in carbon steel tanks in which such waste is stored and processed. The waste is normally maintained with closely monitored nitrite and hydroxide concentrations known to prevent the initiation of pitting. Coupon immersion are being conducted in laboratory simulants of waste to determine the probability and growth rate of pitting in steel in the event of below-limits nitrite concentrations. Sets of about 36 carbon steel coupons have been immersed in known corrosive conditions (nitrite < 5% of the established limit) at a temperature of 50 C. Three sets have been removed from testing after 64, 150, and 350 days of immersion. The long immersion times introduced variability in the exposure conditions due to the evaporation and replenishment of solution. The deepest corrosive attack was measured one each coupon by optical microscopy. The deepest pits were ranked and analyzed as a type 1 extreme value distribution to extrapolate from the coupon population to the maximum pit depths in a waste tank structure. The data were compared to a power law for pit growth, although the deepest pits did not increase monotonically with time in the limited data set

  9. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  10. On the Rust Products Formed on Weathering and Carbon Steels Exposed to Chloride in Dry-Wet Cyclical Processes

    International Nuclear Information System (INIS)

    Garcia, K. E.; Morales, A. L.; Barrero, C. A.; Greneche, J. M.

    2005-01-01

    The rust products formed on weathering and carbon steels exposed to dry-wet cyclical processes in different chloride-rich solutions are carefully examined by means of different techniques. Special emphasis is given to the methodology of analysis of the data using 300 K and 77 K Moessbauer spectrometry and X-ray diffraction. The rust that is loosely bound to the metal surface and that it is lost during the corrosion process, for both types of steel, was found to be composed of lepidocrocite, superparamagnetic goethite, hematite, and traces of akaganeite. On the other hand, the adherent rust, which is differentiated as scraped and hit according to the way it is obtained, from both steels was found to be composed of akaganeite, spinel phase, goethite exhibiting broad distribution of particle sizes and lepidocrocite. The relative abundances of rust components for both steels were very similar, suggesting similar corrosion processes. Mass loss measurements show that the corrosion rates increases with increasing the chloride concentration. The presence of large quantities of spinel phase and akaganeite are a consequence of a corrosion process under the influence of very high chloride concentrations. Our results are useful for assessing the behavior of weathering steels where the levels of chlorides are high or in contact with sea water.

  11. Pitting growth rate in carbon steel exposed to simulated radioactive waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1996-06-01

    Dilute high-level radioactive waste slurries can induce pitting corrosion in carbon steel tanks in which such waste is stored and processed. The waste is normally maintained with closely monitored nitrite and hydroxide concentrations known to prevent the initiation of pitting. Coupon immersion tests are being conducted in laboratory simulants of waste to determine the probability and growth rate of pitting in steel in the event of out-of-limits nitrite concentrations. Sets of about 36 carbon steel coupons have been immersed in known corrosive conditions (nitrite < 5 per cent of the established limit) at a temperature of 50 degrees C. Three sets have been removed from testing after 64, 150, and 350 days of immersion. The long immersion times introduced variability in the exposure conditions due to the evaporation and replenishment of solution. The deepest corrosive attack was measured on each coupon by optical microscopy. The deepest pits were ranked and analyzed as a type 1 extreme value distribution to extrapolate from the coupon population to the maximum expected pit depths in a waste tank structure. The data were compared to a power law for pit growth, although the deepest pits did not increase monotonically with time in the limited data set

  12. Microbial corrosion of carbon steel by sulfate-reducing bacteria:

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo; Hilbert, Lisbeth Rischel

    1997-01-01

    Electrochemical measurements (EIS and DC-polarisation curves) have been conducted on carbon steel coupons exposed in SRB-active environments. Results from EIS measurements show that very large interfacial capacities are found in such systems, and consequently high capacitive currents are to be ex...

  13. Carbon steel protection in G.S. (Girlder sulfide) plants. CITROSOLV process influence. Pt. 6

    International Nuclear Information System (INIS)

    Lires, O.A.; Burkart, A.L.; Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfides, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa, for periods of 14 days). CITROSOLV Process (Pfizer) is used to descaling and passivating stainless steel plant's components. This process must be used in mixed (carbon steel - stainless steel) circuits and may cause the formation of magnetite scales over the carbon steel. The influence of magnetite in the pyrrotite-pyrite scales formation is studied in this work. (Author) [es

  14. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  15. Corrosion Protection of Carbon Steel Using Poly aniline Composite with Inorganic Pigments

    International Nuclear Information System (INIS)

    Al-Dulaimi, A.A.; Shahrir Hashim; Khan, M.I.

    2011-01-01

    Two inorganic pigments (TiO 2 and SiO 2 ) were used to prepare composites with poly aniline (PANI) by situ polymerization method. PANI and PANI composites with SiO 2 and TiO 2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO 2 and PANI-TiO 2 ) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO 2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments. (author)

  16. A computational model for the carbon transfer in stainless steel sodium systems

    International Nuclear Information System (INIS)

    Casadio, S.; Scibona, G.

    1980-01-01

    A method is proposed of computing the carbon transfer in the type 316, 304 and 321 stainless steels in sodium environment as a function of temperature, exposure time and carbon concentration in the sodium. The method is based on the criteria developed at ANL by introducing some simplifications and takes also into account the correlations obtained at WARD. Calculated carbon profiles are compared both with experimental data and with the results available by the other computer methods. The limits for quantitative predictions of the stainless steel carburization or decarburization exposed in a specific environment are discussed. (author)

  17. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  18. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    Science.gov (United States)

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, Pelectrocardiogram than female workers(27.59% vs 18.61%, Pelectrocardiogram than those who did not drink(28.17% vs 23.75%, Pelectrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, Pelectrocardiogram in the workers with cumulative noise exposure levels of electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may affect the abnormal rate of electrocardiogram in the workers exposed to noise in steel-making and steel-rolling workshops.

  19. Fundamental Studies on the Electrochemical Behaviour of Carbon Steel Exposed in Sulphide and Sulphate-Reducing Environments

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendati......The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies...

  20. Evaluation of protective effect of deposits formed by naphthenic corrosion and sulfidation on carbon steel and steel 5Cr-0.5Mo exposed in atmospheric distillation fractions

    Directory of Open Access Journals (Sweden)

    Gloria Duarte

    2017-05-01

    Full Text Available Refining of so-called opportunity crude oils with a high level of naphthenic acids and sulfur compounds has been increasing interest due to limited availability of light crude oils, however, considerable corrosive effects in the processing to high temperature on pipes and distillation towers mainly by the attack of naphthenic acids and sulfur compounds; sulfur compounds could be corrosive or can reduce the attack of naphthenic acids due to the formation of sulfides layers on the metal surface. In this work was evaluated the performance of deposits formed on the surface of carbon steel AISI SAE 1020 and 5% Cr-0.5% Mo steel exposed in crude oil fractions obtained from atmospheric distillation tower. For this, gravimetric tests were performed in dynamic autoclave using metal samples pre-treated in a crude oil fraction obtained from the atmospheric distillation tower of the Crude Distillation Unit (CDU # 1 in order to form layers of sulfides on the surface of the two materials and subsequently to expose pre-treated and non-pretreated samples in two different crude oil fractions obtained from atmospheric distillation tower of Crude Distillation Unit (CDU # 2. The evaluation showed that the samples pretreated decreased tendency to corrosion by naphthenic acids and sulfidation compared to untreated samples.

  1. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    Science.gov (United States)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  2. Ten years of Toarcian argillite - carbon steel in situ interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dauzeres, Alexandre [IRSN, PRP-DGE/SRTG/LETIS, BP 17, 92262 Fontenay-aux-Roses cedex (France); Maillet, Anais [IRSN, PRP-DGE/SRTG/LETIS, BP 17, 92262 Fontenay-aux-Roses cedex (France); UMR CNRS 7285, IC2MP, Batiment B35 - 5, avenue Albert Turpain, 86022 Poitiers cedex (France); Gaudin, Anne [UMR CNRS 6112, LPGN, 2 rue de la Houssiniere, BP 92208, 44322 Nantes cedex 3 (France); El Albani, Abderrazak; Vieillard, Philippe [UMR CNRS 7285, IC2MP, Batiment B35 - 5, avenue Albert Turpain, 86022 Poitiers cedex (France)

    2013-07-01

    In situ interaction experiments over periods of 2, 6, and 10 years between Toarcian argillite and carbon steel discs were carried out in the Tournemire Underground Research Laboratory (URL), yielding a dataset of the materials' geochemical evolution under conditions representative of the future geological disposal of high-level long-lived radioactive wastes. The carbon steel discs were exposed to corrosion due to trapped oxygen. The corrosion rates indicate that the oxidizing transient lasted between 2 and 6 years. A systematic dissolution of calcium phases (Ca-smectite sheets in I/S and calcite) was observed in the iron diffusion halos. The iron release induced mineralogical dissolution and precipitation reactions, which partly clogged the argillite porosity. (authors)

  3. Corrosion behavior of carbon steel exposed for long time to an inoculation medium of sulfate-reducing bacteria; Ryusan`en kangenkin ga seisokusuru baichi ni chokikan shinshinshita tansoko no fushoku kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Baba, F.; Suzuki, T. [Ajinomoto Co. Inc., Kawasaki (Japan). Technology and Engineering Lab.; Seo, M. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering

    1996-10-15

    In this paper, carbon steel was exposed more than six weeks to an inoculation medium of the sulfate-reducing bacteria in which the Fe{sup 2+} concentration was adjusted to a fixed value, the corrosion behavior of carbon steel was investigated by measuring the weight change and surface analysis using EPMA. As a result, the conclusions were obtained as follows: in the case of the medium with high Fe{sup 2+} concentration, the corrosion rate reached a maximum. In this case, the corrosion rate was suppressed to be low during the exposure for up to three weeks, and was increased above four weeks. The corrosion rate became 0.06 mm year{sup -1} by extrapolating the weight loss during the exposure up to six weeks. This value was higher than the average corrosion rate of carbon steel in a neutral solution with deaeration. It was shown from the analysis results using the EPMA that the FeS scale area covered on the surface of carbon steel would act as a cathode, and the other area would act as an anode. The formation of a scale effectively acting as a cathode depended on the exposure time and the formation of FeS in the medium. 15 refs., 10 figs., 1 tab.

  4. Corrosion behaviour of carbon steel in the Tournemire clay

    International Nuclear Information System (INIS)

    Foct, F.; Dridi, W.; Cabrera, J.; Savoye, S.

    2004-01-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  5. Evaluation of carburization depth in service exposed ferritic steel using magnetic Barkhausen noise analysis

    International Nuclear Information System (INIS)

    Vaidyanathan, S.; Moorthy, V.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The feasibility of using magnetic Barkhausen (MBN) measurement for the evaluation of carburization depth in ferritic steels has been reported in this paper. MBN measurements were carried out on samples from service exposed 0.5Cr-0.5Mo ferritic steel tube at different depths (cross section) from carburised ID surface to simulate the variation in carbon concentration gradient within the skin depth of MBN with increasing time of exposure to carburization. It has been observed that the MBN level increases with increasing depth of measurement. An inverse relation between MBN level and carbon content/hardness value has been observed. This study suggests that, the MBN measurements on the carburised surface can be correlated with the concentration gradient within the skin depth of the MBN which would help in predicting the approximate depth of the carburised layer with proper prior calibration. (author)

  6. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Pusparizkita Yustina M

    2018-01-01

    Full Text Available Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

  7. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  8. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  9. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  10. The correlation between accelerated and field corrosion tests performed in carbon steel and weathering steel coupons, coated and non-coated

    International Nuclear Information System (INIS)

    Antunes, Renato Altobelli

    2002-01-01

    The performance of four different organic coating systems applied to carbon and weathering steel coupons has been assessed in this investigation. applied on the surface of carbon steel and weathering steel coupons. The coupons have been evaluated using five different tests, three field tests and two accelerated tests. The field tests were carried out at three atmospheric stations, located at COSIPA in Cubatao-SP, at Alto da Serra in Cubatao-SP and at Paula Souza in Sao Paulo city. The accelerated tests consisted of (a) exposure to alternate cycles of ultraviolet radiation/condensation combined with salt spray cycles (UVCON combined with Salt Spray) and of (b) exposure to alternate cycles of ultraviolet radiation/condensation combined with the Prohesion test. The performance of the coatings was assessed by visual observation and photographs, using a method based on ASTM D-610, ASTM D-714 and ASTM-1654 standards to rank them. The oxide phases formed on the surfaces of the non-coated specimens of carbon and weathering steels, exposed to the same tests performed with the coated specimens, were identified using three different techniques: X-ray diffraction, Raman microscopy and Moessbauer spectroscopy. In the field tests, the specimens have been exposed for 1, 2, 3, 6 and 9 months. In the accelerated ones, the results were obtained after 1340 hours (4 cycles) test. The main component identified in all the specimens collected from the field tests and from the UVCON combined with the Prohesion test was lepidocrocite (γ-FeOOH). Goethite (α-FeOOH ) and magnetite (Fe 3 O 4 ) were identified as the other two main phases present in ali the specimens. In the UVCON combined with Salt Spray test, the dominant phase was magnetite, followed by goethite and lepidocrocite. The morphology of the rust formed on the specimens was examined by scanning electron microscopy (SEM). Structures corresponding to goethite and lepidocrocited were recognized on ali specimens, except those

  11. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  12. Effect of nitrite concentration on pit depth in carbon steel exposed to simulated radioactive waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1997-01-01

    The growth of pits in carbon steel exposed to dilute (0.055 M nitrate-bearing) alkaline salt solutions that simulate radioactive waste was investigated in coupon immersion tests. Most coupons were tested in the as-received condition, with the remainder having been heat treated to produce an oxide film. Nitrite, which is an established pitting inhibitor in these solutions, was present in concentrations from 0 to 0.031 M to 0.16 M; the last concentration is known to prevent pitting initiation in the test solution at the 50 degrees C test temperature. The depths of the deepest pits on coupons of particular exposure conditions were measure microscopically and were analyzed as simple, type 1 extreme value statistical distributions, to predict the deepest expected pit in a radioactive waste tank subject to the test conditions. While the growth rate of pits could not be established from these tests, the absolute value of the deepest pits predicted is of the order of 100 mils after 448 days of exposure. The data indicate that even nitrite concentrations insufficient to prevent pitting have a beneficial effect on limiting the growth of deepest pits

  13. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  14. Strong tough low-carbon bainite structural steels exposed to heat treatment and mechanical working

    International Nuclear Information System (INIS)

    Lauprecht, W.; Imgrund, H.; Coldren, P.

    1975-01-01

    A review of results of studying the mechanical properties and structure of extremely strong construction low-pearlite and pearlite-free steels subjected to thermomechanical processing (TMP) is presented. The development of TMP of low-pearlite and pearlite-free steels has led to creation of steel of the following composition: 0.06% of C; 1.8% of Mn; 0.3% of Mo; 0.05-0.09% of Nb. Depending on the kind of TMP the most important parameters of which are the temperature of the termination of rolling and the total deformation below 900 deg C, transformation in these steels occurs partially or completely in the intermediate domain. The increased density of dislocations of beinite structure affects substantially the increase in the yield limit. High degrees of squeezing at temperatures below 870 deg C promote formation of ferrite nuclei. The laboratory rolling demonstrates that by selecting the conditions of TMP one can control the mechanical properties of a steel. The sheets of 13 mm thick allow to obtain the guaranteed values of the yield limit of 70 kgf/mm 2 the transition temperature T 50 = -25 deg C, whereas after rolling under different conditions the low-temperature limit of cold shortness is - 125 deg C, and the yield limit - 45 kgf/mm 2 . As followed from the estimate of numerous industrial experiments, with sheets 20 mm thick in hot-rolled state one can obtain the yield limit no less than 50 kgf/mm 2 . On rolling mills that make possible to produce large deformation at low temperature these values can be increased. For instance, with sheets 30 mm thick one can obtain the yield limit of 56 kgf/mm 2 and the transition temperature of - 60 deg C. The dependence of the yield limit on the holding time in steel tempering is given. The steel possesses a considerable reserve of the increase of strength due to dispersion hardening, which after tempering at 600-625 deg C constitutes 8-12 kgf/mm 2 . Because of low carbon content, this steel is characterized by good

  15. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  16. Cubic martensite in high carbon steel

    Science.gov (United States)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  17. Interphase and intergranular stress generation in carbon steels

    International Nuclear Information System (INIS)

    Oliver, E.C.; Daymond, M.R.; Withers, P.J.

    2004-01-01

    Neutron diffraction spectra have been acquired during tensile straining of high and low carbon steels, in order to compare the evolution of internal stress in ferritic steel with and without a reinforcing phase. In low carbon steel, the generation of intergranular stresses predominates, while in high carbon steel similar intergranular stresses among ferrite grain families are superposed upon a large redistribution of stress between phases. Comparison is made to calculations using elastoplastic self-consistent and finite element methods

  18. Passivation condition of carbon steel in bentonite/sand mixture

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawakami, Susumu

    2002-03-01

    It is essential to understand the corrosion type of carbon steel under the repository conditions for the lifetime assessment of carbon steel overpack used for geological isolation of high-level radioactive waste. According to the previous study, carbon steel is hard to passivate in buffer material assuming a chemical condition range of groundwater in Japan. However, concrete support will be constructed around the overpack in the case of repository in the soft rock system and groundwater having a higher pH may infiltrate to buffer material. There is a possibility that the corrosion type of carbon steel will be influenced by the rise of the pH in groundwater. In this study, anodic polarization experiments were performed to understand the passivation condition of carbon steel in buffer material saturated with water contacted with concrete. An ordinary concrete an a low-alkalinity concrete were used in the experiment. The results of the experiments showed that the carbon steel can passivate under the condition that water having pH > 13 infiltrate to the buffer material assuming present property of buffer material. If the low-alkalinity concrete is selected as the support material, passivation can not occur on carbon steel overpack. The effect of the factors of buffer material such as dry density and mixing ratio of sand on the passivation of carbon steel was also studied. The results of the study showed that the present property of buffer material is enough to prevent passivation of carbon steel. (author)

  19. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  20. Effect of carbon activity on the creep behaviour of 21/4Cr, 1Mo steel in sodium

    International Nuclear Information System (INIS)

    Cordwell, J.E.; Charnock, W.; Nicholson, R.D.

    1979-02-01

    The creep endurance and creep cracking behaviour of 2 1/4Cr, 1Mo steel in sodium at 475 0 C have been studied at three different sodium carbon activities. Creep endurance was found to increase with increasing carbon activity of the sodium. Tests carried out in high carbon activity sodium were discontinued before fracture. Creep crack initiation displacement at notches decreased with increasing carbon activity, presumably as a result of notch tip carburisation. The plastic zones at the tips of blunt notches in specimens exposed in high carbon activity sodium were preferentially carburised. These observations were similar to those made previously on 9Cr, 1Mo steel. One difference detected metallographically was that in a high carburising environment uniform carburisation was obtained in the 2 1/4Cr, 1Mo steel specimens whereas carburisation gradients were observed in the 9Cr, 1Mo steel. Creep crack propagation rates for given notch opening displacement rates in low and intermediate carbon activity sodium were indistinguishable. However, the strenthening that resulted from the mild carburisation of the specimen in the intermediate carbon activity sodium caused slower notch opening displacement rates and crack propagation rates than in the low carbon activity sodium, when the rates were compared at the same crack length. (author)

  1. Corrosion of carbon steel in contact with bentonite

    International Nuclear Information System (INIS)

    Dobrev, D.; Vokal, A.; Bruha, P.

    2010-01-01

    Document available in extended abstract form only. Carbon steel canisters were chosen in a number of disposal concepts as reference material for disposal canisters. The corrosion rates of carbon steels in water solution both in aerobic and anaerobic conditions are well known, but only scarce data are available for corrosion behaviour of carbon steels in contact with bentonite. A special apparatus, which enables to measure corrosion rate of carbon steels under conditions simulating conditions in a repository, namely in contact with bentonite under high pressure and elevated temperatures was therefore prepared to study: - Corrosion rate of carbon steels in direct contact with bentonite in comparison with corrosion rate of carbon steels in synthetic bentonite pore water. - Influence of corrosion products on bentonite. The apparatus is composed of corrosion chamber containing a carbon steel disc in direct contact with compacted bentonite. Synthetic granitic water is above compacted bentonite under high pressure (50 - 100 bar) to simulate hydrostatic pressure in a repository. The experiments can be carried out under various temperatures. Bentonites used for experiments were Na-type of bentonite Volclay KWK 80 - 20 and Ca-Mg Czech bentonite from deposit Rokle. Before adding water into corrosion system the corrosion chamber was purged by nitrogen gas. The saturation of bentonite and corrosion rate were monitored by measuring consumption of water, pressure increase caused by swelling pressure of bentonite and by generation of hydrogen. Corrosion rate was also determined after corrosion experiments from weight loss of samples. The results of experiments show that the corrosion behaviour of carbon steels in contact with bentonite is very different from corrosion of carbon steels in water simulating bentonite pore water solution. The corrosion rates of carbon steel in contact with bentonite reached after 30 days of corrosion the values approaching 40 mm/yr contrary to values

  2. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  3. Experimental and numerical simulation of carbon manganese steel ...

    African Journals Online (AJOL)

    Experimental and numerical simulation of carbon manganese steel for cyclic plastic behaviour. J Shit, S Dhar, S Acharyya. Abstract. The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the materials Sa333 grade 6 carbon steel and SS316 stainless steel.

  4. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Nianwei [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Department of Materials Science, Fudan University, Shanghai 200433 (China); Chen, Qimeng [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Junxi, E-mail: zhangjunxi@shiep.edu.cn [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Xin; Ni, Qingzhao [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Jiang, Yiming; Li, Jin [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2017-05-01

    The corrosion of steel exposed under a direct current (DC) electric field during simulated wet-dry cycles was investigated using weight gain, electrochemical tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results show that the steel exposed to a DC electric field exhibits a higher corrosion rate than those exposed under no DC electric field. The higher the DC electric field intensity, the higher the corrosion rate of steel. The XRD and SEM analyses indicate that more γ-FeOOH and cracks appear in the rust formed on steel exposed to the DC electric field. The porous γ-FeOOH, formation and expansion of cracks enhance the transfer of oxygen and corrosion products, thereby accelerating corrosion of steel exposed to DC electric field. - Highlights: • Effect of DC electric field on the corrosion of steel in wet/dry cycles was studied. • DC electric field accelerates the steel corrosion in wet/dry cyclic processes. • More γ-FeOOH is generated on the surface of steel exposed under a DC electric field. • More cracks appear in the rust formed on the steel exposed under a DC electric filed.

  5. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment

    International Nuclear Information System (INIS)

    Dai, Nianwei; Chen, Qimeng; Zhang, Junxi; Zhang, Xin; Ni, Qingzhao; Jiang, Yiming; Li, Jin

    2017-01-01

    The corrosion of steel exposed under a direct current (DC) electric field during simulated wet-dry cycles was investigated using weight gain, electrochemical tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results show that the steel exposed to a DC electric field exhibits a higher corrosion rate than those exposed under no DC electric field. The higher the DC electric field intensity, the higher the corrosion rate of steel. The XRD and SEM analyses indicate that more γ-FeOOH and cracks appear in the rust formed on steel exposed to the DC electric field. The porous γ-FeOOH, formation and expansion of cracks enhance the transfer of oxygen and corrosion products, thereby accelerating corrosion of steel exposed to DC electric field. - Highlights: • Effect of DC electric field on the corrosion of steel in wet/dry cycles was studied. • DC electric field accelerates the steel corrosion in wet/dry cyclic processes. • More γ-FeOOH is generated on the surface of steel exposed under a DC electric field. • More cracks appear in the rust formed on the steel exposed under a DC electric filed.

  6. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  7. Carbon steel protection in G.S. [Girldler sulphide] plants: Pt. 8

    International Nuclear Information System (INIS)

    Lires, Osvaldo; Delfino, Cristina; Rojo, Enrique.

    1990-01-01

    In order to protect carbon steel of towers and piping of a GS experimental heavy water plant against corrosion produced by the action of aqueous solutions of hydrogen sulphide, a method, elsewhere published, was developed. Carbon steel exposed to saturated aqueous solutions of hydrogen sulphide forms iron sulphide scales. In oxygen free solutions, evolution of corrosion follows the sequence mackinawate → cubic ferrous sulphide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite and pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa for a period of 14 days). Pyrite formation is favoured by an oxidizing agent presence that allows the oxidation of sulphur ions to disulphur ions. Elemental sulphur or oxygen were used as oxidating agents. Variation and operational parameters such as concentration, temperature, pH, aggregate time, etc. were studied. Though little improvement on protective scales quality was observed, results do not justify operational troubles and the additional costs and effort involved. (Author)

  8. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    Science.gov (United States)

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  9. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Yeon, Jae-Won; Ha, Young-Kyoung; Choi, In-Kyu; Chun, Kwan-Sik

    1996-01-01

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  10. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    International Nuclear Information System (INIS)

    Zapp, Philip E.; Zee, John W. van

    2002-01-01

    The research has developed a broad fundamental understanding of the inhibition action of nitrite ions in preventing nitrate pitting corrosion of carbon steel tanks containing high-level radioactive waste. This fundamental understanding can be applied to specific situations during waste removal for permanent disposition and waste tank closure to ensure that the tanks are maintained safely. The results of the research provide the insight necessary to develop solutions that prevent further degradation

  11. Long-term progress prediction for the carbon steel corrosion in diluted artificial seawater with and without zinc / sodium carbonate mixed phosphate

    International Nuclear Information System (INIS)

    Fujii, Kazumi; Ishioka, Shinichi; Iwanami, Masaru; Kaneko, Tetsuji; Tanaka, Norihiko; Kawaharada, Yoshiyuki; Yokoyama, Yutaka; Umehara, Ryuji; Kato, Chiaki; Ueno, Fumiyoshi; Fukaya, Yuichi; Kumaga, Katsuhiko

    2017-01-01

    The Fukushima Daiichi Nuclear Power Plants (1F) were damaged by an unprecedented severe accident in the great east Japan earthquake on 11th, March, 2011, and seawater and fresh water were injected as an emergency countermeasure for the core cooling. The primary containment vessels (PCVs), made of carbon steel, were exposed to seawater and fresh water, and have had the possibility of corrosion. The PCVs of 1F are the most important equipment for the core cooling and removal of the fuel debris, the structural integrity of the PCV must be maintained until decommissioning. Therefore, evaluation of PCV carbon steel corrosion behavior is important, as well as evaluation of corrosion inhibitors as one of the corrosion protection methods. In this study, long-term immersion corrosion tests for up to 10000 hours were performed in diluted artificial seawater simulating 1F with and without zinc / sodium carbonate mixed phosphate. Based on the long-term immersion corrosion test results, diagnosis method of the reduction in plate thickness of the nuclear vessel was examined. The validity of the existing corrosion progress models following parabolic rate law was confirmed. The corrosion progress models were also applicable to the corrosion inhibited condition adding zinc / sodium carbonate mixed phosphate. It was found that the corrosion rate of carbon steel drastically fell down by adding this corrosion inhibitor. (author)

  12. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  13. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  14. Fracture behaviour of the 14Cr ODS steel exposed to helium and liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Hojna, Anna, E-mail: Anna.Hojna@cvrez.cz [Centrum Vyzkumu Rez s.r.o., UJV Group, Rez 130, 250 68 Husinec (Czech Republic); Di Gabriele, Fosca [Centrum Vyzkumu Rez s.r.o., UJV Group, Rez 130, 250 68 Husinec (Czech Republic); Hadraba, Hynek; Husak, Roman; Kubena, Ivo [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic); Rozumova, Lucia; Bublikova, Petra; Kalivodova, Jana [Centrum Vyzkumu Rez s.r.o., UJV Group, Rez 130, 250 68 Husinec (Czech Republic); Matejicek, Jiri [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Za Slovankou 1782/3, 182 00 Praha (Czech Republic)

    2017-07-15

    This work describes the fracture behaviour of the 14Cr ODS steel produced by mechanical alloying process, after high temperature exposures. Small specimens were exposed to helium gas in a furnace at 720 °C for 500 h. Another set of specimens was exposed to flowing liquid lead in the COLONRI II loop at 650 °C for 1000 h. All specimens were tested for the impact and tensile behaviour. The impact test results are compared to other sets of specimens in the as received state and after isothermal annealing at 650 °C for 1000 h. The impact curves of the exposed materials showed positive shifts on the transition temperature. While the upper shelf value did not change in the Pb exposed ODS steel, it significantly increased in the He exposed one. The differences are discussed in terms of surface and subsurface microscopy observation. The embrittlement can be explained as the effect of a slight change in the grain boundary and size distribution combined with the depletion of sub-surface region from alloying elements forming oxide scale on the surface. - Highlights: •We compared the impact energy curves of as received, isothermally aged and He/Pb exposed ODS steel samples. •The highest transition temperature showed the ODS steel exposed to liquid Pb at 650 °C for 1000 h. •We observed the higher tendency of the He exposed samples to crack arrester delamination than the Pb exposed ones. •The crack arrested delamination induced apparent increase of impact energies.

  15. Laboratory investigations on the corrosion rate of A42 carbon steel in various secondary circuit chemistries representative of hydraulic tests conditions

    International Nuclear Information System (INIS)

    Brussieux, C.; Clinard, M.H.; Guillodo, M.; Alos-Ramos, O.

    2014-01-01

    Ammonia and hydrazine are currently used in the chemical conditioning of steam generators hydraulic test medium to minimize the corrosion rate of carbon steels. However, hydrazine is classified carcinogenic by the European Commission. Significant effort is therefore ongoing to limit its use or even replace it. The results presented in this paper were obtained in the frame of an EDF and AREVA research program on the subject. The corrosion rate of carbon steel in alkaline media with hydrazine was thoroughly studied. However, most studies concern polished coupons and very few data are available for carbon steel covered with oxides layer(s) representative of the layer(s) which can be found in a SG after operation. In this context, the corrosion rate at 25°C of carbon steel pre-oxidized by an autoclave treatment was studied. The tests coupons were submitted to a secondary circuit chemical conditioning treatment in an autoclave at 280°C during 30 days prior to the corrosion rate measurement. The corrosion rates were measured during two months by an electrochemical method (polarization resistance) in test media composed with deionized water, ammonia and hydrazine under an air blanket at 25°C. Similitudes with steam generators' volume/surface ratios were respected during these tests. The coupons submitted to an autoclave treatment were covered by a duplex magnetite layer. After exposure to hydrazine and ageing, the structure of the magnetite layer contains bigger crystallites than after ageing without exposure to hydrazine. The corrosion rate of passive A42 steel exposed to hydrazine was stable and low even after the complete consumption of hydrazine during at least 50 days. The corrosion rate of passive A42 steel not exposed to hydrazine grew steadily to reach the same corrosion rates as polished carbon steels within 50 days. The hydrazine consumption rate observed in the presence of magnetite covered A42 carbon steel was found higher than 1mg/kg/hour. To explain

  16. Trial manufacturing of titanium-carbon steel composite overpack

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Chiba, Takahiko; Tanai, Kenji

    1999-11-01

    This paper reports the results of design analysis and trial manufacturing of full-scale titanium-carbon steel composite overpacks. The overpack is one of the key components of the engineered barrier system, hence, it is necessary to confirm the applicability of current technique in their manufacture. The required thickness was calculated according to mechanical resistance analysis, based on models used in current nuclear facilities. The Adequacy of the calculated dimensions was confirmed by finite-element methods. To investigate the necessity of a radiation shielding function of the overpack, the irradiation from vitrified waste has been calculated. As a result, it was shown that shielding on handling and transport equipment is a more reasonable and practical approach than to increase thickness of overpack to attain a self-shielding capability. After the above investigation, trial manufacturing of full-scale model of titanium-carbon steel composite overpack has been carried out. For corrosion-resistant material, ASTM Grade-2 titanium was selected. The titanium layer was bonded individually to a cylindrical shell and fiat cover plates (top and bottom) made of carbon steel. For the cylindrical shell portion, a cylindrically formed titanium layer was fitted to the inner carbon steel vessel by shrinkage. For the flat cover plates (top and bottom), titanium plate material was coated by explosive bonding. Electron beam welding and gas metal arc welding were combined to weld of the cover plates to the body. No significant failure was evident from inspections of the fabrication process, and the applicability of current technology for manufacturing titanium-carbon steel composite overpack was confirmed. Future research and development items regarding titanium-carbon steel composite overpacks are also discussed. (author)

  17. Study on corrosion of carbon steel in DEA aqueous solutions

    Science.gov (United States)

    Yang, Jun Han; Xie, Jia Lin; Zhang, Li

    2018-02-01

    Corrosion of carbon steel in the CO2 capture process using diethanolamine (DEA) aqueous solutions was investigated. The effects of the mass concentrations of DEA, solution temperature and CO2 loading on the corrosion rate of carbon steel were demonstrated. The experimental results provided comprehensive information on the appropriate concentration range of DEA aqueous solutions under which low corrosion of carbon steel can be achieved.

  18. Marine Atmospheric Corrosion of Carbon Steel: A Review.

    Science.gov (United States)

    Alcántara, Jenifer; Fuente, Daniel de la; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-04-13

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter's great importance to human society. About half of the world's population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl - -rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors' opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.

  19. Marine Atmospheric Corrosion of Carbon Steel: A Review

    Science.gov (United States)

    Alcántara, Jenifer; de la Fuente, Daniel; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-01-01

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl−-rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors’ opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary. PMID:28772766

  20. ICP-AES determination of trace elements in carbon steel

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.

    2010-01-01

    Full text: Carbon steel, a combination of the elements iron and carbon, can be classified into four types as mild, medium, high and very high depending on the carbon content which varies from 0.05% to 2.1%. Carbon steel of different types finds application in medical devices, razor blades, cutlery and spring. In the nuclear industry, it is used in feeder pipes in the reactor. A strict quality control measure is required to monitor the trace elements, which have deleterious effects on the mechanical properties of the carbon steel. Thus, it becomes imperative to check the purity of carbon steel as a quality control measure before it is used in feeder pipes in the reactor. Several methods have been reported in literature for trace elemental determination in high purity iron. Some of these include neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is widely recognized as a sensitive technique for the determination of trace elements in various matrices, its major advantages being good accuracy and precision, high sensitivity, multi-element capability, large linear dynamic range and relative freedom from matrix effects. The present study mainly deals with the direct determination of trace elements in carbon steel using ICP-AES. An axially viewing ICP spectrometer having a polychromator with 35 fixed analytical channels and limited sequential facility to select any analytical line within 2.2 nm of a polychromator line was used in these studies. Iron, which forms one of the main constituents of carbon steel, has a multi electronic configuration with line rich emission spectrum and, therefore, tends to interfere in the determination of trace impurities in carbon steel matrix. Spectral interference in ICP-AES can be seriously detrimental to the accuracy and reliability of trace element determinations, particularly when they are performed in the presence of high

  1. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  2. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength low carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in low carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have ob- vious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  3. Nano-scaled iron-carbon precipitates in HSLC and HSLA steels

    Institute of Scientific and Technical Information of China (English)

    FU Jie; WU HuaJie; LIU YangChun; KANG YongLin

    2007-01-01

    This paper studies the composition, quantity and particle size distribution of nano-scaled precipitates with size less than 20 nm in high strength Iow carbon (HSLC) steel and their effects on mechanical properties of HSLC steel by means of mass balance calculation of nano-scaled precipitates measured by chemical phase analysis plus SAXS method, high-resolution TEM analysis and thermodynamics calculation, as well as temper rapid cooling treatment of ZJ330. It is found that there existed a large quantity of nano-scaled iron-carbon precipitates with size less than 18 nm in Iow carbon steel produced by CSP and they are mainly Fe-O-C and Fe-Ti-O-C precipitates formed below temperature A1. These precipitates have obvious precipitation strengthening effect on HSLC steel and this may be regarded as one of the main reasons why HSLC steel has higher strength. There also existed a lot of iron-carbon precipitates with size less than 36 nm in HSLA steels.

  4. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    Science.gov (United States)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-04-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  5. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    Science.gov (United States)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-05-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  6. Methane formation in tritium gas exposed to stainless steel

    International Nuclear Information System (INIS)

    Morris, G.A.

    1977-01-01

    Tests were performed to determine the effect cleanliness of a surface exposed to tritium gas had on methane formation. These tests performed on 304 stainless steel vessels, cleaned in various ways, showed that the methane formation was reduced by the use of various cleaning procedures

  7. Microbial Corrosion and Cracking in Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    1998-01-01

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendati......The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies...... will be based on results from the entire 3 year period, but only selected experimental data primarily from the latest experiments will be presented in detail here.Microbial corrosion of carbon steel under influence of sulphate-reducing bacteria (SRB) is characterised by the formation of both biofilm...... and corrosion products (ferrous sulphides) on the metal surface. Experiments have been conducted on carbon steel exposed in near neutral (pH 6 to 8.5) saline hydrogen sulphide environment (0 to 100 mg/l total dissolved sulphide) for a period of 14 days. Furthermore coupons have been exposed in a bioreactor...

  8. Carbon-14 speciation during anoxic corrosion of activated steel in a repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Cvetkovic, B.Z.; Kunz, D. [Paul Scherrer Institute, Villigen (Switzerland). Lab. for Waste Management; Salazar, G.; Szidat, S. [Bern Univ. (Switzerland). Dept. of Chemistry and Biochemistry and Oeschger Centre for Climate Change Research

    2018-01-15

    Radioactive waste contains significant amounts of {sup 14}C which has been identified a key radionuclide in safety assessments. In Switzerland, the {sup 14}C inventory of a cement-based repository for low- and intermediate-level radioactive waste (L/ILW) is mainly associated with activated steel (∝85 %). {sup 14}C is produced by {sup 14}N activation in steel parts exposed to thermal neutron flux in light water reactors. Release of {sup 14}C occurs in the near field of a deep geological repository due to anoxic corrosion of activated steel. Although the {sup 14}C inventory of the L/ILW repository and the sources of {sup 14}C are well known, the formation of {sup 14}C species during steel corrosion is only poorly understood. The aim of the present study was to identify and quantify the {sup 14}C-bearing carbon species formed during the anoxic corrosion of iron and steel and further to determine the {sup 14}C speciation in a corrosion experiment with activated steel. All experiments were conducted in conditions similar to those anticipated in the near field of a cement-based repository.

  9. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    International Nuclear Information System (INIS)

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    Highlights: • The morphology of the corrosion of steel in cement paste was studied in situ. • During galvanostatic corrosion, carbon steel reinforcement corroded homogeneously. • On ferritic stainless steel, deep corrosion pits formed and caused wider cracks. • The measured rate of steel loss correlated well with Faraday’s law of electrolysis. - Abstract: In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover

  10. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  11. Medium carbon vanadium micro alloyed steels for drop forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-01-01

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author)

  12. Mixed structures in continuously cooled low-carbon automotive steels

    International Nuclear Information System (INIS)

    Khalid, F.A.; Edmonds, D.V.

    1993-01-01

    Mixed microstructures have been studied in low- carbon microalloyed steels suitable for automotive applications, after continuous cooling from the hot-rolled condition. Microstructural features such as polygonal ferrite, bainitic and acicular ferrite and microphase constituent are identified using transmission electron microscopy. The influence of these mixed structures on the tensile strength, impact toughness and fracture behaviour is examined. It is found that improvements in impact toughness as compared with microalloyed medium- carbon ferrite/pearlite steels can be achieved from these predominantly acicular structures developed by controlling alloy composition and continuous cooling of these lower carbon steels. (orig.)

  13. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints

    International Nuclear Information System (INIS)

    Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V.

    2011-01-01

    Research highlights: → Fusion welding of dissimilar metals is a problem due to difference in properties. → Solid state welding process such as friction welding is a solution for the above problem. → Fatigue life of friction welded carbon steel and stainless steel joints are evaluated. → Effect of notch on the fatigue life of friction welded dissimilar joints is reported. → Formation of intermetallic is responsible for reduction in fatigue life of dissimilar joints. -- Abstract: This paper reports the fatigue behaviour of friction welded medium carbon steel-austenitic stainless steel (MCS-ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = -1). Applied stress vs. number of cycles to failure (S-N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.

  14. Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness

    Directory of Open Access Journals (Sweden)

    Changyou Li

    2017-03-01

    Full Text Available Medium-carbon steel is commonly used for the rail, wire ropes, tire cord, cold heading, forging steels, cold finished steel bars, machinable steel and so on. Its fatigue behavior analysis and fatigue life estimation play an important role in the machinery industry. In this paper, the estimation of fatigue life of medium-carbon steel with different surface roughness using established S-N and P-S-N curves is presented. To estimate the fatigue life, the effect of the average surface roughness on the fatigue life of medium-carbon steel has been investigated using 75 fatigue tests in three groups with average surface roughness (Ra: 0.4 μm, 0.8 μm, and 1.6 μm, respectively. S-N curves and P-S-N curves have been established based on the fatigue tests. The fatigue life of medium-carbon steel is then estimated based on Tanaka-Mura crack initiation life model, the crack propagation life model using Paris law, and material constants of the S-N curves. Six more fatigue tests have been conducted to validate the presented fatigue life estimation formulation. The experimental results have shown that the presented model could estimate well the mean fatigue life of medium-carbon steel with different surface roughness.

  15. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement......Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...

  16. Corrosion resistance of steel fibre reinforced concrete - A literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2017-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of civil infrastructure. However, there are inconsistencies among international standards and guidelines regarding the consideration of carbon-steel fibres for the structural verification of SFRC exposed...... of the mechanisms governing the corrosion of carbon-steel fibres in cracks and its effects on the fracture behaviour of SFRC are not fully understood....

  17. Improved corrosion resistance of cast carbon steel in sulphur oxides by Alonizing

    International Nuclear Information System (INIS)

    Holtzer, M.; Dzioba, Z.

    1992-01-01

    The results of studies on the Alonizing of cast steel and of testing the corrosion resistance of this cast steel in an atmosphere containing 5 to 6% SO 2 + 50% SO 3 at 853 K are described and compared with the results obtained with unalonized cast carbon steel and high-alloy 23Cr-8Ni-2Mo cast steel. The duration of the corrosion tests was 336 hours. The aluminium diffusion layer on cast carbon steel was obtained by holding the specimens in a mixture containing 99% of powered Fe-Al and 1% of NH 4 Cl at 1323 ± 20 K. The holding time was 10 and 20 hours, respectively. The aluminium layer formed on the cast carbon steel was examined by optical microscopy and an X-ray microanalysis. After Alonizing for 10 h the layer had reached a thickness of 950 μm, and contained up to 35% Al. In a mixture of sulphur oxides corrosion rate of the alonized cast carbon steel was by about 600 times lower than of the unalonized cast carbon steel, and by about 50 times lower than that of the 23Cr-8Ni-2Mo cast steel. (orig.) [de

  18. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    Science.gov (United States)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  19. Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments.

    Science.gov (United States)

    Song, Yarong; Jiang, Guangming; Chen, Ying; Zhao, Peng; Tian, Yimei

    2017-07-31

    Chloride is reported to play a significant role in corrosion reactions, products and kinetics of ferrous metals. To enhance the understanding of the effects of soil environments, especially the saline soils with high levels of chloride, on the corrosion of ductile iron and carbon steel, a 3-month corrosion test was carried out by exposing ferrous metals to soils of six chloride concentrations. The surface morphology, rust compositions and corrosion kinetics were comprehensively studied by visual observation, scanning electron microscopy (SEM), X-Ray diffraction (XRD), weight loss, pit depth measurement, linear polarization and electrochemical impedance spectroscopy (EIS) measurements. It showed that chloride ions influenced the characteristics and compositions of rust layers by diverting and participating in corrosion reactions. α-FeOOH, γ-FeOOH and iron oxides were major corrosion products, while β-Fe 8 O 8 (OH) 8 Cl 1.35 rather than β-FeOOH was formed when high chloride concentrations were provided. Chloride also suppressed the decreasing of corrosion rates, whereas increased the difficulty in the diffusion process by thickening the rust layers and transforming the rust compositions. Carbon steel is more susceptible to chloride attacks than ductile iron. The corrosion kinetics of ductile iron and carbon steel corresponded with the probabilistic and bilinear model respectively.

  20. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

    Science.gov (United States)

    Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong

    2017-09-01

    Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

  1. Phase analysis of corrosion products of carbon steel in sea water

    International Nuclear Information System (INIS)

    Garcia R, J.; Yee M, H.; Maldonado M, H.; Nunez, L.; Reguera, E.

    1998-01-01

    Nowadays carbon steel continues being the most widely used metallic material in marine and coastal buildings. The economic losses, due to corrosion processes, of those countries with important industrial and social activities in coastal regions are highly significant. In this sense the evaluation of the corrosion process of carbon steel and other materials in seawater or in coastal zones is a primary task for protection methods or to predict the hfe of an specific installation. In this communication we present the phases analysis, using XRD and Moessbauer techniques, of corrosion products of a carbon steel (CT3, equivalent to AISI C1020) exposed in two natural corrosion stations in the Caribbean sea (Cuba). The exposition time run from days to 36 months and the evaluated rust are characteristic of samples totally immersed in seawater, from the splash zone and form coastal zones at different distance from the shoreline. Quantitative phase analysis shown presence of magnetite (Fe 3 O 4 ), maghemite (y-Fe 2 O 3 ), akaganeite (B-FeOOH), lepidocrocite (y-FeOOH) and goethite (a-FeOOH) as iron bearing phases, and CaCO 3 (Calcite and aragonite), these last ones mainly in the immersed samples. Quantitative phase analysis by XRD was implemented as a linear combination of the patterns characteristic of all the detected phases and an appropriate model for the background. The quantitative results were used in kinetic models to understand the phase transformation between the iron oxides and oxy hydroxides in the studied conditions. The XRD qualitative and quantitative results were corroborated by Moessbauer spectroscopy in the temperature range of 20 to 300 K. (Author)

  2. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  3. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  4. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien; Serdar, Marijana; Meral, Cagla; Parkinson, Dula; MacDowell, Alastair A.; Bjegović, Dubravka; Monteiro, Paulo J.M.

    2014-01-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  5. Fatigue of carbon and low-alloy steels in LWR environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Michaud, W.F.; Shack, W.J.

    1994-01-01

    Fatigue tests have been conducted on A106-Gr B carbon steel and A533-Gr B low-alloy steel to evaluate the effects of an oxygenated-water environment on the fatigue life of these steels. For both steels, environmental effects are modest in PWR water at all strain rates. Fatigue data in oxygenated water confirm the strong dependence of fatigue life on dissolved oxygen (DO) and strain rate. The effect of strain rate on fatigue life saturates at some low value, e.g., between 0.0004 and 0.001%/s in oxygenated water with ∼0.8 ppm DO. The data suggest that the saturation value of strain rate may vary with DO and sulfur content of the steel. Although the cyclic stress-strain and cyclic-hardening behavior of carbon and low-alloy steels is distinctly different, the degradation of fatigue life of these two steels with comparable sulfur levels is similar. The carbon steel exhibits pronounced dynamic strain aging, whereas strain-aging effects are modest in the low-alloy steel. Environmental effects on nucleation of fatigue crack have also been investigated. The results suggest that the high-temperature oxygenated water has little or not effect on crack nucleation

  6. Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum

    International Nuclear Information System (INIS)

    Novick, V.J.; Brodrick, C.J.; Crawford, S.; Nasiatka, J.; Pierucci, K.; Reyes, V.; Sambrook, J.; Wrobel, S.; Yeary, J.

    1996-01-01

    The main purpose of this project is to quantify aerosol particle size and generation rates produced by a plasma torch whencutting stainless steel, carbon steel and aluminum. the plasma torch is a common cutting tool used in the dismantling of nuclear facilities. Eventually, other cutting tools will be characterized and the information will be compiled in a user guide to aid in theplanning of both D ampersand D and other cutting operations. The data will be taken from controlled laboratory experiments on uncontaminated metals and field samples taken during D ampersand D operations at ANL nuclear facilities. The plasma torch data was collected from laboratory cutting tests conducted inside of a closed, filtered chamber. The particle size distributions were determined by isokinetically sampling the exhaust duct using a cascade impactor. Cuts on different thicknesses showed there was no observable dependence of the aerosol quantity produced as a function of material thickness for carbon steel. However, data for both stainless steel and aluminum revealed that the aerosol mass produced for these materials appear to have some dependance on thickness, with thinner materials producing tmore aerosols. The results of the laboratory cutting tests show that most measured particle size distributions are bimodal with one mode at about 0.2 μm and the other at about 10 μm. The average Mass Median Aerodynamic Diameters (MMAD's) for these tests are 0.36 ±0.08 μm for stainless steel, 0.48 ±0.17μm for aluminum and 0.52±0.12 μm for carbon steel

  7. Mechanistic studies of carbon steel corrosion inhibition by cashew ...

    African Journals Online (AJOL)

    The phenoxide, R-Ar-O- ions from the CNSL inhibitor were found to be responsible for the reduction of the corrosion rate of the carbon steel. Also, it was observed that the surface charge of the carbon steel electrodes was positive with respect to the solutions containing CNSL inhibitor. It is likely that the mechanism of the ...

  8. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    International Nuclear Information System (INIS)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung; Pan, Szu-Jung; Tsai, Wen-Ta; Tai, Chen-Yi; Shih, Chuan-Feng

    2013-01-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test

  9. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    Energy Technology Data Exchange (ETDEWEB)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Pan, Szu-Jung [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tsai, Wen-Ta, E-mail: wttsai@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tai, Chen-Yi [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Shih, Chuan-Feng [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Department of Electrical Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China)

    2013-02-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test.

  10. Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources

    Directory of Open Access Journals (Sweden)

    Songyan Yin

    2018-01-01

    Full Text Available In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel.

  11. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  12. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  13. EIS Response of MIC on Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Maahn, Ernst

    1998-01-01

    Abstract Microbially influenced corrosion of carbon steel under sulphate reducing (sulphide-producing) bacterial activity (SRB) results in the formation of both ferrous sulphides as well as biofilm on the metal surface. The electrochemical characteristics of the ferrous sulphide/steel interface...... as compared to the biofilm/ferrous sulphide/steel interface has been studied with EIS, DC polarisations (Tafel, LPR) and a potentiostatic step technique. The electrochemical response is related to a threshold sulphide concentration above which very characteristic changes such as indications of finite...

  14. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Zheng, H.; Ye, X.N.; Li, J.D.; Jiang, L.Z.; Liu, Z.Y.; Wang, G.D.; Wang, B.S.

    2010-01-01

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  15. Archaeologic analogues: Microstructural changes by natural ageing in carbon steels

    International Nuclear Information System (INIS)

    Munoz, Esther Bravo; Fernandez, Jorge Chamon; Arasanz, Javier Guzman; Peces, Raquel Arevalo; Criado, Antonio Javier; Dietz, Christian; Martinez, Juan Antonio; Criado Portal, Antonio Jose

    2006-01-01

    When discussing the container material for highly active radionuclear waste, carbon steel is one of the materials most frequently proposed by the international scientific community. Evidently, security with respect to the container behaviour into deep geological deposits is fundamental. Among other parameters, knowledge about material mechanical properties is essential when designing the container. Time ageing of carbon steel, apart from possible alterations of the chemical composition (e.g. corrosion) involves important microstructural changes, at the scale of centuries and millenniums. The latter may cause variations of the mechanical properties of carbon steel storage containers, with the corresponding risk of possible leakage. In order to properly estimate such risk and to adjust the corresponding mathematical models to reality, the microstructural changes observed in this study on archaeologic samples are evaluated, comparing ancient and modern steels of similar chemical composition and fabrication processes

  16. Effects of tempering on internal friction of carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2011-01-01

    Research highlights: → Time tempering dependent microstructure of two steels is studied by internal friction. → Internal friction indicates the interactions of dislocations with carbon and carbides. → Internal friction detects the first stage of tempering. → Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  17. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  18. An experimental study on inelastic behavior for exposed-type steel column bases under three-dimensional loadings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hyouk [Chosun University, Gwangju (Korea, Republic of); Choi, Yeol [Kyungpook National University, Daegu (Korea, Republic of)

    2013-03-15

    Considerable damage occurred to steel structures during the Kobe earthquake in Japan. Numerous exposed-type column bases failed in several consistent patterns caused by brittle base plate fracture, excessive anchor bolt elongation, unexpected early anchor bolt failure, and inferior construction work. An exposed-type column base receives axial force and biaxial bending when receiving an arbitrary multidirectional earthquake motion. Up to now, numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. Therefore, it is necessary to clarify the inelastic behavior of exposed type steel column bases under biaxial lateral loading and axially compressive-tensile loading, which is a closer simulation of the real seismic excitation. In this study, exposed type steel column bases with different failure types, anchor bolt yielding and base plate yielding, are tested under different loading programs, then moment resisting mechanisms and failure modes are investigated.

  19. An experimental study on inelastic behavior for exposed-type steel column bases under three-dimensional loadings

    International Nuclear Information System (INIS)

    Choi, Jae Hyouk; Choi, Yeol

    2013-01-01

    Considerable damage occurred to steel structures during the Kobe earthquake in Japan. Numerous exposed-type column bases failed in several consistent patterns caused by brittle base plate fracture, excessive anchor bolt elongation, unexpected early anchor bolt failure, and inferior construction work. An exposed-type column base receives axial force and biaxial bending when receiving an arbitrary multidirectional earthquake motion. Up to now, numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. Therefore, it is necessary to clarify the inelastic behavior of exposed type steel column bases under biaxial lateral loading and axially compressive-tensile loading, which is a closer simulation of the real seismic excitation. In this study, exposed type steel column bases with different failure types, anchor bolt yielding and base plate yielding, are tested under different loading programs, then moment resisting mechanisms and failure modes are investigated

  20. The effects of carbon prices and anti-leakage policies on selected industrial sectors in Spain – Cement, steel and oil refining

    International Nuclear Information System (INIS)

    Santamaría, Alberto; Linares, Pedro; Pintos, Pablo

    2014-01-01

    This paper assesses the impacts on the cement, steel and oil refining sectors in Spain of the carbon prices derived from the European Emissions Trading Scheme (EU ETS), and the potential effect on these sectors of the European Union anti-leakage policy measures. The assessment is carried out by means of three engineering models developed for this purpose. Our results show a high exposure to leakage of cement in coastal regions; a smaller risk in the steel sector, and non-negligible risk of leakage for the oil refining sector when carbon allowance prices reach high levels. We also find that the risk of leakage could be better handled with other anti-leakage policies than those currently in place in the EU. - Highlights: • We simulate the impact of carbon prices on the risk of leakage in the cement, steel and oil refining sectors. • We also assess the effectiveness of different anti-leakage policies in Europe. • Cement production in coastal areas is highly exposed. • The risk of leakage for steel and oil refining is smaller. • Anti-leakage policies should be modified to be efficient

  1. Plasticity of low carbon stainless steels

    International Nuclear Information System (INIS)

    Bulat, S.I.; Fel'dgandler, Eh.G.; Kareva, E.N.

    1975-01-01

    In the temperature range 800-1200 0 C and with strain rates of from 10 -3 to 3 s -1 , austenitic (000Kh18N12) and austenitic-ferrite (000Kh26N6) very low carbon stainless steels containing 0.02-0.03% C exhibit no higher resilience than corresponding ordinary steels containing 0.10-0.12% C. However, the plasticity of such steels (particularly two-phase steels) at 900-1100 0 C is appreciably inferior owing to the development of intergranular brittle fracture. Pressure treatment preceded by partial cooling of the surface to 850 0 C yields rolled and forged products with acceptable indices but is inconvenient technically. At the Zlatoustovsk and Ashin metallurgical plants successful tests have been performed involving the forging and rolling of such steels heated to 1280-1300 0 C without partial cooling; it was necessary to improve the killing conditions, correct the chemical composition (increasing the proportion of ferrite) and take measures against heat loss. (author)

  2. A study of the condition for the passivation of carbon steel in bentonite

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Morimoto, Masataka; Honda, Akira

    1999-01-01

    It is important to study the corrosion behavior of materials to be used for overpack for high-level radioactive waste disposal. Carbon steel is one of the candidate materials. The type of corrosion on carbon steel depends on whether the carbon steel is passivated or not. In this study, the condition for the passivation of carbon steel was studied using bentonite as the buffer material. Anodic polarization in bentonite and the measurements of pH of porewater in bentonite was measured. The results of these experiments showed that the possibility of passivation is small in highly compacted bentonite in groundwater in Japan. Therefore, localized corrosion on carbon steel due to the breakdown of passive film is unlikely in bentonite. In other words, general corrosion seems to be the most probable type of corrosion under repository condition in Japan. (author)

  3. Medium carbon vanadium steels for closed die forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-01-01

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported

  4. Analysis of heat transfer in plain carbon steels

    International Nuclear Information System (INIS)

    Han, Heung Nam; Lee, Kyung Jong

    1999-01-01

    During cooling of steels, the heat transfer was controlled by radiation, convection, conduction and heat evolution from phase transformation. To analyze the heat transfer during cooling precisely, the material constants such as density, heat capacity and the heat evolved during transformation were obtained as functions of temperature and chemical composition for each phase observed in plain carbon steel using a thermodynamic analysis based on the sublattice model of Fe-C-Mn system. The results were applied to 0.049 wt% and 0.155 wt% carbon steels with an austenitic stainless steel as reference by developing a proper heat transfer governing equation. The equation was solved using the lumped system method. In addition, using a transformation dilatometer with adequate experimental conditions to clarify the individual heat transfer effect, the transformation heat evolved during cooling and the transformation behavior as well as the temperature change were observed. The predicted temperature profiles during cooling were well agreed with the measured ones

  5. Ferrite morphology and residual phases in continuously cooled low carbon steels

    International Nuclear Information System (INIS)

    Dunne, D.P.

    1999-01-01

    Although much research has been conducted on the isothermal transformation products of medium to high carbon hardenable steels, relatively little has been reported for transformation of low carbon structural steels under continuous cooling conditions. The trend towards reduced carbon levels (less than about 0.1 wt% C) has been driven by demands for formability and weldability, challenging steel designers to maintain strength by microalloying and/or thermomechanical controlled processing. Although control of the ferritic products formed in low carbon steels after hot rolling, normalising and welding is essential in order to ensure adequate strength and toughness, understanding of the microstructures formed on continuous cooling is still limited. In addition, transformation mechanisms remain controversial because of polarisation of researchers into groups championing diffusional and displacive theories for the transformation of austenite over a wide range of cooling rates. The present review compares and draws together the main ferrite classification schemes, and discusses some critical issues on kinetics and mechanisms, in an attempt to rationalise the effects of cooling rate, prior austenite structure and composition on the resulting ferrite structure and its mechanical properties. It is concluded that with increasing cooling rate the ferritic product becomes finer, more plate-like, more dislocated, more carbon supersaturated, more likely to be formed by a displacive mechanism, harder and stronger. Other conclusions are that: (i) 'bainitic ferrite', which is a pervasive form of ferrite in continuously cooled low carbon steels, is different from the conventional upper and lower bainites observed in higher carbon steels, insofar as the co-product 'phase' is typically martensite-austenite islands rather than cementite; and (ii) low carbon bainite rather than martensite is the dominant product at typical fast cooling rates (<500K/s) associated with commercial

  6. Raising the Corrosion Resistance of Low-Carbon Steels by Electrolytic-Plasma Saturation with Nitrogen and Carbon

    Science.gov (United States)

    Kusmanov, S. A.; Grishina, E. P.; Belkin, P. N.; Kusmanova, Yu. V.; Kudryakova, N. O.

    2017-05-01

    Structural features of the external oxide layer and internal nitrided, carbonitrided and carburized layers in steels 10, 20 and St3 produced by the method of electrolytic plasma treatment are studied. Specimens of the steels are tested for corrosion in a naturally aerated 1-N solution of sodium chloride. The condition of the metal/sodium chloride solution interface is studied by the method of electrochemical impedance spectroscopy. It is shown that the corrosion resistance of low-carbon steels can be raised by anode electrolytic-plasma saturation with nitrogen and carbon. Recommendations are given on the choice of carbonitriding modes for structural steels.

  7. Interface Analyses Between a Case-Hardened Ingot Casting Steel and Carbon-Containing and Carbon-Free Refractories

    Science.gov (United States)

    Fruhstorfer, Jens; Dudczig, Steffen; Rudolph, Martin; Schmidt, Gert; Brachhold, Nora; Schöttler, Leandro; Rafaja, David; Aneziris, Christos G.

    2018-06-01

    Corrosion tests of carbon-free and carbon-containing refractories were performed. The carbon-free crucibles corroded, whereas the carbon-containing crucibles were negligibly attacked. On them, inclusions were attached. This study investigates melt oxygen contents, interface properties, and steel compositions with their non-metallic inclusions in order to explore the inclusion formation and deposition mechanisms. The carbon-free crucibles were based on alumina, mullite, and zirconia- and titania-doped alumina (AZT). The carbon-containing (-C) ones were alumina-C and AZT-C. Furthermore, nanoscaled carbon and alumina additives (-n) were applied in an AZT-C-n material. In the crucibles, the case-hardened steel 17CrNiMo7-6 was remelted at 1580 °C. It was observed that the melt and steel oxygen contents were higher for the tests in the carbon-free crucibles. Into these crucibles, the deoxidizing alloying elements Mn and Si diffused. Reducing contents of deoxidizing elements resulted in higher steel oxygen levels and less inclusions, mainly of the inclusion group SiO2-core-MnS-shell (2.5 to 8 μ m). These developed from smaller SiO2 nuclei. The inclusion amount in the steel was highest after remelting in AZT-C-n for 30 minutes but decreased strongly with increasing remelting time (60 minutes) due to inclusions' deposition on the refractory surface. The Ti from the AZT and the nanoadditives supported inclusion growth and deposition. Other inclusion groups were alumina and calcium aluminate inclusions. Their contents were high after remelting in carbon- or AZT-containing crucibles but generally decreased during remelting. On the AZT-C-n crucible, a dense layer formed from vitreous compositions including Al, Ca, Mg, Si, and Ti. To summarize, for reducing forming inclusion amounts, mullite is recommended as refractory material. For capturing formed inclusions, AZT-C-n showed a high potential.

  8. Effect of Cr and Mo on strain ageing behaviour of low carbon steel

    International Nuclear Information System (INIS)

    Pereloma, E.V.; Bata, V.; Scott, R.I.; Smith, R.M.

    2010-01-01

    This work explores the effects of Cr (0.26-0.74 wt%) and Mo (0.09-0.3 wt%) additions on the kinetics of strain ageing process in low carbon steel. The strain ageing behaviour of the steels was investigated by using tensile tests and transmission electron microscopy. The results have shown that Mo-alloyed steels undergo the same four stages of ageing as unalloyed low carbon steel, whereas Cr-alloyed steels exhibit only three stages of ageing. At the same time, the addition of Mo accelerates the ageing response, while alloying with Cr reduces the rate of strain ageing by ∼3 times in comparison with non-alloyed low carbon steel. It especially delays the offset of Stage III. This is explained by the reduction of carbon content in ferrite due to the enrichment of cementite with Cr leading to the reduction of its equilibrium solubility in ferrite.

  9. Effect of Cr and Mo on strain ageing behaviour of low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Pereloma, E.V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Bata, V. [Department of Materials Engineering, Monash University (Australia); Scott, R.I.; Smith, R.M. [BlueScope Steel Limited, Port Kembla (Australia)

    2010-04-25

    This work explores the effects of Cr (0.26-0.74 wt%) and Mo (0.09-0.3 wt%) additions on the kinetics of strain ageing process in low carbon steel. The strain ageing behaviour of the steels was investigated by using tensile tests and transmission electron microscopy. The results have shown that Mo-alloyed steels undergo the same four stages of ageing as unalloyed low carbon steel, whereas Cr-alloyed steels exhibit only three stages of ageing. At the same time, the addition of Mo accelerates the ageing response, while alloying with Cr reduces the rate of strain ageing by {approx}3 times in comparison with non-alloyed low carbon steel. It especially delays the offset of Stage III. This is explained by the reduction of carbon content in ferrite due to the enrichment of cementite with Cr leading to the reduction of its equilibrium solubility in ferrite.

  10. [Prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant].

    Science.gov (United States)

    Li, Yanhong; Chen, Guoshun; Yu, Shanfa

    2015-05-01

    To investigate the prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant. Using cluster sampling method, 3 150 workers exposed to noise participated in this study. According to do questionnaire survey and blood pressure measurement, 2 924 workers were tested, among which 1 313 workers were from steel making workshop and 1 611 workers were from steel rolling workshop. The relationships between different demographic characteristics, different habits, and different cumulative noise exposures of workers exposed to noise and hypertension were analyzed. For the hypertension prevalence rate, the total prevalence rate was 27.43% (802/2 924), the male was higher than the female (29.88 % (753/2 520) vs 12.13% (49/404), χ² = 55.13, P married ones were higher than the unmarried (29.84% (718/2 406) vs 16.22% (84/518), χ² = 39.76, P vs 24.61% (364/1 479), χ² = 11.93, P = 0.001), drinking ones were higher than the no drinking (31.53% (541/1 716) vs 21.61% (261/1 208), χ² = 35.05, P < 0.001). The hypertension prevalence rates among the subjects with education background in junior high school and below, high school (secondary) and university and above were separately 44.96%(125/278), 29.95%(455/1 519) and 19.70%(222/1 127) (χ² = 81.65, P < 0.001), among cumulative exposure groups 77-89, 90-94, 95-99, 100-104 and 105-113 were separately 8.43% (14/166), 14.48% (53/366), 24.28% (297/1 223), 36.65% (335/914) and 40.39%(103/255) (χ² = 127.58, P < 0.001). Multivariate logistic regression analysis showed that workers who exposed to cumulative noise in 95-99, 100-104 and 105-113 dB(A) ·year had the higher risk of hypertension, the OR (95%CI) were 1.84 (95% CI: 1.35-2.51), 1.74 (95% CI: 1.24-2.45) and 1.68 (95% CI: 1.09-2.58). Drinking (OR = 1.60, 95% CI: 1.32-1.95) and BMI ≥ 24.0 kg/m² (OR = 1.26, 95% CI: 1.22-1.30) were the risk factors for hypertension as well. Cumulative

  11. Fracture behaviour of the 14Cr ODS steel exposed to helium and liquid lead

    Science.gov (United States)

    Hojna, Anna; Di Gabriele, Fosca; Hadraba, Hynek; Husak, Roman; Kubena, Ivo; Rozumova, Lucia; Bublikova, Petra; Kalivodova, Jana; Matejicek, Jiri

    2017-07-01

    This work describes the fracture behaviour of the 14Cr ODS steel produced by mechanical alloying process, after high temperature exposures. Small specimens were exposed to helium gas in a furnace at 720 °C for 500 h. Another set of specimens was exposed to flowing liquid lead in the COLONRI II loop at 650 °C for 1000 h. All specimens were tested for the impact and tensile behaviour. The impact test results are compared to other sets of specimens in the as received state and after isothermal annealing at 650 °C for 1000 h. The impact curves of the exposed materials showed positive shifts on the transition temperature. While the upper shelf value did not change in the Pb exposed ODS steel, it significantly increased in the He exposed one. The differences are discussed in terms of surface and subsurface microscopy observation. The embrittlement can be explained as the effect of a slight change in the grain boundary and size distribution combined with the depletion of sub-surface region from alloying elements forming oxide scale on the surface.

  12. Atmospheric corrosion performance of different steels in early exposure in the coastal area region West Java, Indonesia

    Science.gov (United States)

    Nuraini, Lutviasari; Prifiharni, Siska; Priyotomo, Gadang; Sundjono, Gunawan, Hadi; Purawiardi, Ibrahim

    2018-05-01

    The performance of carbon steel, galvanized steel and aluminium after one month exposed in the atmospheric coastal area, which is in Limbangan and Karangsong Beach, West Java, Indonesia was evaluated. The corrosion rate was determined by weight loss method and the morphology of the steel after exposed was observed by Scanning Electron Microscopy(SEM)/Energy Dispersive X-Ray Analysis(EDX). The site was monitored to determine the chloride content in the marine atmosphere. Then, the corrosion products formed at carbon steel were characterized by X-Ray diffraction (XRD). The result showed the aggressively corrosion in Karangsong beach, indicated from the corrosion rate of carbon steel, galvanized steel and aluminium were 38.514 mpy; 4.7860 mpy and 0.5181 mpy, respectively. While in Limbangan Beach the corrosion rate of specimen carbon steel, galvanized steel and aluminium were 3.339; 0.219 and 0.166 mpy, respectively. The chloride content was found to be the main factor that influences in the atmospheric corrosion process in this area. Chloride content accumulated in Karangsong and Limbangan was 497 mg/m2.day and 117 mg/m2.day, respectively. The XRD Analysis on each carbon steel led to the characterization of a complex mixture of iron oxides phases.

  13. Coupled gamma/alpha phase transformations in low-carbon steels

    Science.gov (United States)

    Mizutani, Yasushi

    Since steels have been the most prevalently utilized materials for many years, the desire for steels with low alloying components with a well-balanced combination of high strength and toughness is increasing. Low carbon steels consisting of bainitic microstructures are ideally suited to meeting such technological and economic requirements. Thus it is extremely important to fully clarify the mechanism of bainite formation in order to produce this type of engineering steel by optimized alloy and process design. This research focuses on understanding the mechanism of coupled displacive/diffusional gamma/alpha transformation in low-carbon steels including bainitic and martensitic transformation, and establishing a more comprehensive and physically rational computational model for predictive control of coupled gamma/alpha transformation phenomena. Models for coupled gamma/alpha phase transformation proposed in this study are based on a mechanistic and unified theory and the following assumptions: (1) The energy dissipation due to interface motion can be linearly combined with the energy dissipation due to carbon diffusion. (2) The carbon concentrations at the interface in both gamma and alpha phases are constrained by an interface solute trapping law. (3) Interface motion during nucleation is also governed by the carbon diffusion field velocity. (4) The response function of glissile interface motion can be expressed in the form of thermally activated dislocation glide. In contrast to the conventional semi-empirical models of the previous literature, the computational model proposed in this study is demonstrated to successfully provide a comprehensive and quantitative prediction of the effects of temperature, composition, microstructure, and the interactions among them. This includes the effects of substitutional solutes, morphology of the parent gamma phase, density of nucleation sites, temperature dependent variation of flow stress of matrix, and dynamic recovery of

  14. Corrosion behaviour of dissimilar welds between martensitic stainless steel and carbon steel from secondary circuit of candu npp

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2015-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. It is not unusual to find that, although the base metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not resistant. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. Our experiments were performed in chloride environmental on two types of samples: non-welded (420 martensitic steel and 52.2k carbon steel) and dissimilar welds (dissimilar metal welds: joints beetween 420 martensitic steel and 52.2k carbon steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and metallography microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and carbon steel in solutions containing chloride ions. We have been evaluated the corrosion rates of samples (welded and non-welded) by electrochemically. (authors)

  15. Effect of sodium on the creep-rupture behavior of type 304 stainless steel

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, O.K.; Kassner, T.F.

    1976-01-01

    Uniaxial creep-rupture data have been obtained for Type 304 stainless steel in the solution-annealed condition and after exposure to a flowing sodium environment at temperatures of 700, 650, and 600 0 C.The specimens were exposed to sodium for time periods between 120 and 5012 h to produce carbon penetration depths of approximately 0.010, 0.020, and 0.038 cm in the steel. Results showed that, as the depth of carbon penetration and the average carbon concentration in the steel increase, the rupture life increases and the minimum creep rate decreases. Creep correlations that relate rupture life, minimum creep rate, and time-to-tertiary creep were developed for the steel in both the solution-annealed and sodium-exposed conditions. Isochronous stress-creep strain curves and results on the calculations of the stress levels for 1 percent creep strain and long-term rupture life are also presented. 11 fig

  16. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  17. Content of nitrogen in waste petroleum carbon for steel industries

    International Nuclear Information System (INIS)

    Rios, R.O; Jimenez, A.F; Szieber, C.W; Banchik, A.D

    2004-01-01

    Steel industries use refined carbon as an alloy for steel production. This alloy is produced from waste carbon from the distillation of the petroleum. The refined carbon, called recarburizer, is obtained by calcination at high temperature. Under these thermal conditions the organic molecules decompose and a fraction of the N 2 , S and H 2 , volatile material and moisture are released; while the carbon tends to develop a crystalline structure similar to graphite's. The right combination of calcinations temperature and time in the furnace can optimize the quality of the resulting product. The content of S and N 2 has to be minimized for the use of calcined carbon in the steel industry. Nitrogen content should be reduced by two orders of magnitude, from 1% - 2% down to hundreds of ppm by weight. This work describes the activities undertaken to obtain calcined coke from petroleum from crude oil carbon that satisfies the requirements of the Mercosur standard 02:00-169 (Pending) for use as a carborizer in steels industries. To satisfy the requirements of the Mercosur standards NM 236:00 IRAM-IAS-NM so that graphite is used as a carburizer a content of 300 ppm maximum weight of nitrogen has to be obtained. So the first stage in this development is to define a production process for supplying calcined coke in the range of nitrogen concentrations required by the Mercosur standards (CW)

  18. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  19. Formation of Biofilms and Biocorrosion on AISI-1020 Carbon Steel Exposed to Aqueous Systems Containing Different Concentrations of a Diesel/Biodiesel Mixture

    Directory of Open Access Journals (Sweden)

    Ivanilda Ramos de Melo

    2011-01-01

    Full Text Available Environmental and economic concerns accelerated biofuels research and industrial production. Many countries have been using diesel and biodiesel blends as fuels justifying research on biofilms formation and metals corrosion. Cylinders made of AISI-1020 carbon steel with an exposed area of 1587 mm2, water, and water associated with B3 fuel (diesel/biodiesel blend at 97 : 3 v/v were used.The formation of biofilms was detected, and biocorrosion was detected on AISI-1020. The results showed a variation in sessile microflora during the experiments. In the biofilms, a significant concentration of aerobic, anaerobic, IOB, Pseudomonas aeruginosa, and sulfate-reducing bacteria was observed. The corrosion rates varied between 0.45±0.01 and 0.12±0.01 mm/year, depending on the experimental conditions. The main corrosion products identified were various forms of FeOOH, magnetite, and all forms of FexSy. In systems where there were high levels of sulfate reducing bacteria, corrosion pits were observed. In addition, the aliphatic hydrocarbons present in the fluid containing 10% B3 were totally degraded.

  20. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    Science.gov (United States)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  1. Internal friction in martensitic carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2009-01-01

    This paper proposes relationships between the internal friction and the microstructure of two steels containing 0.626 and 0.71 wt.% carbon. The steels were annealed at 1093 K for 5 min, quenched into water and tempered for 10 min at 423, 573 and 723 K. Internal friction was measured by using a forced vibration pendulum, in a temperature range from 100 to 450 K. The internal friction spectrum is decomposed into four peaks: P1 at 215 K, P2 at 235 K, P3 at 260 K and P4 at 380 K for 3 Hz. Peak P1 is attributed to the interactions between dislocations and carbon atoms. Peak P2 is related to the interaction between dislocations and carbide. Peak P3 is related to the generations of kink - pairs along edge dislocations. Peak P4 is attributed to epsilon carbide precipitation.

  2. Electroslag welding of rotor steels produced with vacuum-carbon reduction

    International Nuclear Information System (INIS)

    Roshchin, M.B.; Modzhuk, M.D.; Izvekov, B.V.

    1985-01-01

    Metallurgical processes of electroslag welding of rotor steels, melted with vacuum-carbon deoxidation, have been considered. It is established, that during electroslag welding of steels with carbon content 0.20...0.30%, suppression of welding bath boiling and production of dense weld metal with a high impact strength can be ensured at oxygen concentration in soldered on metal not exceeding 0.01% and silicon content 0.06...0.10%

  3. Fracture Resistance of 14Cr ODS Steel Exposed to a High Temperature Gas

    Directory of Open Access Journals (Sweden)

    Anna Hojna

    2017-12-01

    Full Text Available This paper studies the impact fracture behavior of the 14%Cr Oxide Dispersion Strengthened (ODS steel (ODM401 after high temperature exposures in helium and air in comparison to the as-received state. A steel bar was produced by mechanical alloying and hot-extrusion at 1150 °C. Further, it was cut into small specimens, which were consequently exposed to air or 99.9% helium in a furnace at 720 °C for 500 h. Impact energy transition curves are shifted towards higher temperatures after the gas exposures. The transition temperatures of the exposed states significantly increase in comparison to the as-received steel by about 40 °C in He and 60 °C in the air. Differences are discussed in terms of microstructure, surface and subsurface Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM observations. The embrittlement was explained as temperature and environmental effects resulting in a decrease of dislocation level, slight change of the particle composition and interface/grain boundary segregations, which consequently affected the nucleation of voids leading to the ductile fracture.

  4. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    International Nuclear Information System (INIS)

    Delfino, C.A.; Lires, O.A.; Rojo, E.A.

    1987-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author) [es

  5. SURFACE ROUGHNESS AND CUTTING FORCES IN CRYOGENIC TURNING OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    T. C. YAP

    2015-07-01

    Full Text Available The effect of cryogenic liquid nitrogen on surface roughness, cutting forces, and friction coefficient of the machined surface when machining of carbon steel S45C in wet, dry and cryogenic condition was studied through experiments. The experimental results show that machining with liquid nitrogen increases the cutting forces, reduces the friction coefficient, and improves the chips produced. Beside this, conventional machining with cutting fluid is still the most suitable method to produce good surface in high speed machining of carbon steel S45C whereas dry machining produced best surface roughness in low speed machining. Cryogenic machining is not able to replace conventional cutting fluid in turning carbon steel.

  6. Novel implementation of the use of the EPR-in situ technique (Electrochemical potentiodynamic reactivation) to identify intergranular corrosion susceptability of stainless steels exposed to high temperatures

    International Nuclear Information System (INIS)

    Munoz, N.; Pineda, Y.; Vera, E.; Sepulveda, H.; Heyn, Andreas

    2010-01-01

    Austenitic stainless steels (18 % Cr), are often used in pieces that are exposed to temperatures of 450 o C to 900 o C (heat exchangers). At these temperatures sensibilization occurs on the grain boundaries, becoming a key factor in the appearance of intergranular corrosion. In order to prevent this phenomena from occurring 0.3% to 0.8% of niobium is added as an alloying element in the manufacturing process, which prevents the carbon present in the steel combines with the chromium, avoiding the formation of carbides. An electrochemical method for in-situ application was developed to evaluate the corrosive behavior of stainless steel and its susceptibility and degree of sensibilizaton to an intergranular attack. This work shows the effectiveness of this technique in evaluating niobium's inhibitory effect in preventing the formation of chromium carbides on the grain boundaries of 18% chromium steel, and also shows the technique's potentiality in determining how susceptible these steels are to intercrystalline corrosion

  7. Characterization of corrosion products formed on steels in the first months of atmospheric exposure

    OpenAIRE

    Antunes Renato Altobelli; Costa Isolda; Faria Dalva Lúcia Araújo de

    2003-01-01

    The corrosion products of carbon steel and weathering steel exposed to three different types of atmospheres, at times ranging from one to three months, have been identified. The steels were exposed in an industrial site, an urban site (São Paulo City, Brazil), and a humid site. The effect of the steel type on the corrosion products formed in the early stages of atmospheric corrosion has been evaluated. The corrosion products formed at the various exposure locations were characterized by Raman...

  8. Bainite formation kinetics in high carbon alloyed steel

    International Nuclear Information System (INIS)

    Luzginova, N.V.; Zhao, L.; Sietsma, J.

    2008-01-01

    In recent years, many investigations have been carried out on the modeling of the bainite formation. In the present work, a physical approach proposed in the literature is implemented to model the formation of lower bainite in high carbon steels (1 wt.% C). In this model, the carbon diffusion is assumed to control the kinetics of the bainite formation. Both the nucleation and the growth rates are considered in an Avrami type analysis. The effect of alloying elements is taken into account considering only the thermodynamics of the system. The results and the physical meaning of the model parameters are discussed. It is shown that the diffusional approach gives a reasonable description of bainite formation kinetics in high carbon steel. Only two fitting parameters are used: the first accounts for carbon grain-boundary diffusion and the second is the initial nucleation-site density. The model satisfactorily accounts for the effect of transformation temperature, but does not take into account the carbide precipitation during bainite formation and the effect of alloying elements on the diffusion coefficient of carbon

  9. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  10. Electrochemical noise from corroding carbon steel and aluminium

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; De, P.K.; Banerjee, S.

    1997-05-01

    Electrochemical noise measurements were conducted on carbon steel and aluminium in sodium chloride solutions. Noise parameters like standard deviation of potential and current, noise resistance, pitting index, noise power were studied for the purpose of measuring corrosion rate. These parameters compared well with the corrosion rate. Pitting index was not very reliable. Current noise was more close to the corrosion rates. General corrosion gave rise to white noise type of power spectrum while flicker noise type of spectrum was obtained from pitting attack. Sodium nitrite is shown to inhibit the corrosion of carbon steel. Aluminium corrodes in the early period of exposure and passivates during long exposure

  11. Quantification of the degradation of steels exposed to liquid lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Schroer, C.; Voss, Z.; Novotny, J.; Konys, J.

    2006-05-01

    Metallographic and gravimetric methods of measuring the degradation of steels are introduced and compared, with emphasis on the quantification of oxidation in molten lead-bismuth eutectic (LBE). In future applications of LBE or other molten lead alloys, additions of oxygen should prevent the dissolution of steel constituents in the liquid heavy metal. Therefore, also the amount of steel constituents transferred between the steel (including the oxide scale formed on the surface) and the LBE has to be assessed, in order to evaluate the efficiency of oxygen additions with respect to preventing dissolution of the steel. For testing the methods of quantification, specimens of martensitic steel T91 were exposed for 1500 h to stagnant, oxygen-saturated LBE at 550 C, whereby, applying both metallographic and gravimetric measurements, the recession of the cross-section of sound material deviated by ± 3 μm for a mean value of 11 μm. Although the transfer of steel constituents between the solid phases and the LBE is negligible under the considered exposure conditions, the investigation shows that a gravimetric analysis is most promising for quantifying such a mass transfer. For laboratory experiments on the behaviour of steels in oxygen-containing LBE, it is suggested to make provisions for both metallographic and gravimetric measurements, since both types of methods have specific benefits in the characterisation of the oxidation process. (Orig.)

  12. Damascus steels: history, processing, properties and carbon dating

    International Nuclear Information System (INIS)

    Wadsworth, J.

    2007-01-01

    In the mid-1970s, a class of steels containing high levels of carbon (∼ 1-2 wt% C) was developed for superplastic characteristics - that is, the ability to plastically deform to an extraordinary degree in tension at intermediate temperatures. Because these steels also had excellent room temperature properties, they were developed for their commercial potential. In the late 1970s, we became aware of the striking compositional similarities between these modern steels and the ancient steels of Damascus. This observation led us to revisit the history and metallurgy of Damascus steels and related steels. The legends and origins of Damascus steel date back to the time of Alexander the Great (323 BC) and the medieval Crusades (11th and 12th century AD), and this material has also been the subject of scrutiny by famous scientist in Europe, including Michael Faraday. Modern attempts to reproduce the legendary surface patterns which famously characterized Damascus steels are described. The extend to which the characteristics of Damascus steels are unusual is discussed. Finally, a program on radiocarbon dating was initiated to directly determine the age of about 50 ancient steels, including a Damascus knife, and the results are summarized. (author)

  13. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  14. The effect of water vapor on the corrosion of carbon steel at 65 degree C

    International Nuclear Information System (INIS)

    Gdowski, G.E.; Estill, J.C.

    1995-01-01

    AISI 1020 carbon steel was exposed to air at various relative humidities at 65 degrees C. A ''critical relative humidity'' (CRH) of 75--85% was determined. The CRH is the transitional relative humidity where oxidation/corrosion changes from dry oxidation to aqueous film electrochemical corrosion. Short term testing suggests that aqueous film electrochemical corrosion results in the formation of an inner oxide of Fe 3 O 4 , and an outer oxide of a powdery Fe 2 O 3 and/or Fe 2 O 3 ·xH 2 O

  15. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  16. Modification of steel surface by plasma electrolytic saturation with nitrogen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kusmanov, S.A., E-mail: sakusmanov@yandex.ru; Kusmanova, Yu.V., E-mail: yulia.kusmanova@yandex.ru; Smirnov, A.A., E-mail: sciencealexsm@gmail.com; Belkin, P.N., E-mail: belkinp@yandex.ru

    2016-06-01

    The effect of the electrolyte composition with ammonia, acetone, and ammonium chloride on the structure and properties of low carbon steel was studied in anode plasma electrolytic nitrocarburising. An X-ray diffractometer, a scanning electron microscopy (SEM) and an optical microscope were used to characterize the phase composition of the modified layer and its surface morphology. Surface roughness was studied with a profilometer–profilograph. The hardness of the treated and untreated samples was measured using a microhardness tester. The sources of nitrogen and carbon are shown to be the products of evaporation and thermal decomposition of the electrolyte components. It is established that the influence of concentration of ammonia, acetone, and ammonium chloride on the size of the structural components of the hardened layer is explained by the competition of the anode dissolution, high-temperature oxidation and diffusion of the saturating component. The electrolyte composition (10–12.5% ammonium chloride, 5% acetone, 5% ammonia) and processing mode (800 °C, 5–10 min) of low carbon steels allowing to obtain the hardened surface layer up to 0.2 mm with microhardness 930 HV and with decrease in the roughness (R{sub a}) from 1.013 to 0.054 μm are proposed. The anode plasma electrolytic nitricarburising is able to decrease friction coefficient of the treated low carbon steel from 0.191 to 0.169 and wear rate from 13.5 mg to 1.0 mg. - Highlights: • Aqueous solution (12.5% NH{sub 4}Cl, 5% ammonia, 5% acetone) is proposed for PEN/C steels. • Microhardness of steel (0.2% C) is 930 HV due to PEN/C for 5–10 min at 800 °C. • Anode PEN/C of low carbon steel decreases its roughness (R{sub a}) from 1.013 to 0.054 μm. • Anode PEN/C decreases friction coefficient of low carbon steel from 0.191 to 0.169 • Anode PEN/C decreases wear loss of low carbon steel from 13.5 mg to 1.0 mg.

  17. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  18. Role of cavity formation in SCC of cold worked carbon steel in high-temperature water. Part 2. Study of crack initiation behavior

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Aoki, Masanori; Miyamoto, Tomoki; Arioka, Koji

    2013-01-01

    To consider the role of cavity formation in stress corrosion cracking (SCC) of cold worked (CW) carbon steel in high-temperature water, SCC and creep growth (part 1) and initiation (part 2) tests were performed. The part 2 crack initiation tests used blunt notched compact tension (CT) type specimens of CW carbon steel exposed under the static load condition in hydrogenated pure water and in air in the range of temperatures between 360 and 450°C. Inter-granular (IG) crack initiation was observed both in water and in air even in static load condition when steel specimens had been cold worked. 1/T type temperature dependencies of initiation times were observed for CW carbon steel, and the crack initiation times in an operating pressurized heavy water reactor, PHWR (Pt Lepreau) seemed to lie on the extrapolated line of the experimental results. Cavities were identified at the grain boundaries near the bottom of a notch (highly stressed location) before cracks initiated both in water and air. The cavities were probably formed by the condensation of vacancies and they affected the bond strength of the grain boundaries. To assess the mechanism of IGSCC initiation in high temperature water, the diffusion of vacancies driven by stress gradients was studied using a specially designed CT specimen. As a model for IGSCC in CW carbon steel in high temperature water, it was concluded that the formation of cavities from the collapse of vacancies offers the best interpretation of the present data. (author)

  19. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    International Nuclear Information System (INIS)

    Tsuchiyama, Toshihiro; Tobata, Junya; Tao, Teruyuki; Nakada, Nobuo; Takaki, Setsuo

    2012-01-01

    Highlights: ► The amount of retained austenite was increased by Q and P treatment in 12Cr–0.1C steel. ► Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. ► The optimum partitioning treatment condition for 12Cr–0.1C steel was found. ► The strength–ductility balance of 12Cr–0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe–12Cr–0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength–ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  20. Quenching and partitioning treatment of a low-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiyama, Toshihiro, E-mail: toshi@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tobata, Junya; Tao, Teruyuki [Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Nakada, Nobuo; Takaki, Setsuo [Department of Materials Science and Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The amount of retained austenite was increased by Q and P treatment in 12Cr-0.1C steel. Black-Right-Pointing-Pointer Ideal carbon concentrations in austenite and ferrite were calculated assuming CCE condition. Black-Right-Pointing-Pointer The optimum partitioning treatment condition for 12Cr-0.1C steel was found. Black-Right-Pointing-Pointer The strength-ductility balance of 12Cr-0.1C steel was improved by TRIP effect. - Abstract: Quenching and partitioning (Q and P) treatment was applied to a commercial low-carbon martensitic stainless steel, AISI Type 410 (Fe-12Cr-0.1C). The quench interruption temperature was optimized with consideration of the ideal carbon concentration in untransformed austenite after partitioning to lower the Ms temperature to room temperature. After partitioning at an appropriate temperature, a significant fraction of austenite was retained through the enrichment of carbon into the untransformed austenite. It was also suggested that the addition of silicon is not necessarily required for the Q and P treatment of 12Cr steel because of the retardation of carbide precipitation at the partitioning temperature owing to the large amount of chromium. Tensile testing revealed that the Q and P-treated material exhibited a significantly improved strength-ductility balance compared with conventional quench-and-tempered materials due to the transformation-induced plasticity (TRIP) effect by the retained austenite.

  1. Microbial activities in hydrocarbon-laden wastewaters: Impact on diesel fuel stability and the biocorrosion of carbon steel.

    Science.gov (United States)

    Liang, Renxing; Duncan, Kathleen E; Le Borgne, Sylvie; Davidova, Irene; Yakimov, Michail M; Suflita, Joseph M

    2017-08-20

    Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8μM/d) relative to incubations receiving a hydroprocessed biofuel (16.1μM/d) or a fuel-unamended control (17.8μM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Mahat, Nur Akma; Othman, Norinsan Kamil [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Sahrani, Fathul Karim [School of Environment and Natural Resources Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  3. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    International Nuclear Information System (INIS)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-01-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces

  4. Efficiency of inhibitor for biocorrosion influenced by consortium sulfate reducing bacteria on carbon steel

    Science.gov (United States)

    Mahat, Nur Akma; Othman, Norinsan Kamil; Sahrani, Fathul Karim

    2015-09-01

    The inhibition efficiency of benzalkonium chloride (BKC) in controlling biocorrosion on the carbon steel surfaces has been investigated. The carbon steel coupons were incubated in the presence of consortium SRB (C-SRB) with and without BKC for the difference medium concentration. The corrosion rate and inhibition efficiency have been evaluated by a weight loss method. The morphology of biofilm C-SRB on the steel surfaces were characterized with variable pressure scanning electron microscopy (VPSEM). The results revealed that BKC exhibits a low corrosion rate, minimizing the cell growth and biofilm development on the carbon steel surfaces.

  5. The Effects of Cr and Al Addition on Transformation and Properties in Low‐Carbon Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Junyu Tian

    2017-01-01

    Full Text Available Three low‐carbon bainitic steels were designed to investigate the effects of Cr and Al addition on bainitic transformation, microstructures, and properties by metallographic method and dilatometry. The results show that compared with the base steel without Cr and Al addition, only Cr addition is effective for improving the strength of low‐carbon bainitic steel by increasing the amount of bainite. However, compared with the base steel, combined addition of Cr and Al has no significant effect on bainitic transformation and properties. In Cr‐bearing steel, Al addition accelerates initial bainitic transformation, but meanwhile reduces the final amount of bainitic transformation due to the formation of a high‐temperature transformation product such as ferrite. Consequently, the composite strengthening effect of Cr and Al addition is not effective compared with individual addition of Cr in low‐carbon bainitic steels. Therefore, in contrast to high‐carbon steels, bainitic transformation in Cr‐bearing low‐carbon bainitic steels can be finished in a short time, and Al should not be added because Al addition would result in lower mechanical properties.

  6. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species

    Science.gov (United States)

    Johansson, Leena-Sisko; Saastamoinen, Tuomas

    1999-04-01

    We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.

  7. Tribological performance of hard carbon coatings on 440C bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Kustas, F M; Misra, M S; Shepard, D F; Froechtenigt, J F [Martin Marietta Astronautics Group, Denver, CO (United States)

    1991-11-01

    Hard carbon coatings such as amorphous carbon, diamond and diamond-like carbon have received considerable attention for tribological applications owing to their high hardness, high modulus and desirable surface properties. Unfortunately, most of the deposition techniques induce high substrate temperatures that would temper traditional bearing steels and reduce the substrate load-carrying capability. Therefore, to effectively use these desirable coatings, a lower temperature deposition technique is required. Ion beam deposition can provide essentially ambient temperature conditions, accurate control of process parameters and good coating-substrate adhesion. To use these attributes, a test program was initiated to deposit mass-analyzed, high purity C{sup +} and CH{sub 4}{sup +} ions on molybdenum and 440C bearing steel for subsequent characterization by Raman spectroscopy and friction-wear tests. Results for a coating deposited from a carbon monoxide source showed an amorphous carbon-microcrystalline graphtie structure which exhibited very high microhardness and a three fold reduction in coefficient of friction for unlubricated tests compared to untreated 440C steel. In addition, incrementally increasing the applied load (by up to a factor of 5) resulted in progressively lower coefficients of friction, which conforms to solid lubrication theory. End-of-travel wear debris and some limited coating delamination were observed within thinner areas of the coating. Therefore an amorphous carbon-graphite coating applied to 440C steel at ambient temperature exhibits solid lubricating film characteristics with high load-carrying capability. (orig.).

  8. Effect of small addition of Cr on stability of retained austenite in high carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Rumana; Pahlevani, Farshid, E-mail: f.pahlevani@unsw.edu.au; Sahajwalla, Veena

    2017-03-15

    High carbon steels with dual phase structures of martensite and austenite have considerable potential for industrial application in high abrasion environments due to their hardness, strength and relatively low cost. To design cost effective high carbon steels with superior properties, it is crucial to identify the effect of Chromium (Cr) on the stability of retained austenite (RA) and to fully understand its effect on solid-state phase transition. This study addresses this important knowledge gap. Using standard compression tests on bulk material, quantitative X-ray diffraction analysis, nano-indentation on individual austenitic grains, transmission electron microscopy and electron backscatter diffraction–based orientation microscopy techniques, the authors investigated the effect of Cr on the microstructure, transformation behaviour and mechanical stability of retained austenite in high carbon steel, with varying Cr contents. The results revealed that increasing the Cr %, altered the morphology of the RA and increased its stability, consequently, increasing the critical pressure for martensitic transformation. This study has critically addressed the elastoplastic behaviour of retained austenite – and provides a deep understanding of the effect of small additions of Cr on the metastable austenite of high carbon steel from the macro- to nano-level. Consequently, it paves the way for new applications for high carbon low alloy steels. - Highlights: • Effect of small addition of Cr on metastable austenite of high carbon steel from the macro- to nano-level • A multi-scale study of elastoplastic behaviour of retained austenite in high carbon steel • The mechanical stability of retained austenite during plastic deformation increased with increasing Cr content • Effect of grain boundary misorientation angle on hardness of individual retained austenite grains in high carbon steel.

  9. Effect of steel surface conditions on reinforcing steel corrosion in concrete exposed to marine environments

    Directory of Open Access Journals (Sweden)

    Anzola, E.

    2005-09-01

    Full Text Available Laboratory methods and experimental tests were deployed in the present study to evaluate corrosion in reinforced concrete exposed to marine environments. Reinforcing steel exhibiting two different surface conditions prior to embedment in concrete were studied, one the one hand to assess the electrochemical behaviour of the bars during exposure of the concrete specimens to a simulated marine environment, and on the other to determine the strength of the steel/concrete bond. The reinforced concrete specimens prepared were adapted as required for electrochemical potential and corrosion rate testing. A total of 56 7x15-cm cylindrical specimens containing 3/8" steel rods anchored at a depth of 11.5 cm were made to evaluate the steel / concrete bond and exposed to a natural marine environment for 28 or 190 days prior to testing. All the specimens were made with ready-mixed concrete. It may be concluded from the results of the corrosion tests on reinforcing steel with different surface conditions that the oxide initially covering the bars was dissolved and the steel passivated by the alkalinity in the concrete. The chief finding of the bonding study was that the layer of oxide formed in pre-embedment steel deterioration contributed to establishing a better bond.

    En el contexto de esta investigación, se tomaron en consideración métodos y ensayos experimentales de laboratorio, que permiten hacer una evaluación de la corrosión del hormigón armado expuesto en ambientes marinos. Por una parte se evaluó el comportamiento electroquímico de dos condiciones de estados superficiales del acero embebido en el hormigón, exponiéndolo en un ambiente marino simulado y, por otra parte, se estudió la adherencia entre el acero y el hormigón, con los mismos estados superficiales usados para la evaluación electroquímica. Las probetas se fabricaron de hormigón con acero de refuerzo en su interior, adecuándolas para realizar los ensayos de potenciales

  10. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    Science.gov (United States)

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Corrosion Behaviour of Nickel Plated Low Carbon Steel in Tomato Fluid

    Directory of Open Access Journals (Sweden)

    Oluleke OLUWOLE

    2010-12-01

    Full Text Available This research work investigated the corrosion resistance of nickel plated low carbon steel in tomato fluid. It simulated the effect of continuous use of the material in a tomato environment where corrosion products are left in place. Low carbon steel samples were nickel electroplated at 4V for 20, 25, 30 and 35 mins using Watts solution.The plated samples were then subjected to tomato fluid environment for for 30 days. The electrode potentials mV (SCE were measured every day. Weight loss was determined at intervals of 5 days for the duration of the exposure period. The result showed corrosion attack on the nickel- plated steel, the severity decreasing with the increasing weight of nickel coating on substrate. The result showed that thinly plated low carbon steel generally did not have any advantage over unplated steel. The pH of the tomato solution which initially was acidic was observed to progress to neutrality after 4 days and then became alkaline at the end of the thirty days test (because of corrosion product contamination of the tomatocontributing to the reduced corrosion rates in the plated samples after 10 days. Un-plated steel was found to be unsuitable for the fabrication of tomato processing machinery without some form of surface treatment - thick nickel plating is suitable as a protective coating in this environment.

  12. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-12-01

    Full Text Available Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1 and 37°C (0.138 ± 0.008 mm year-1 were higher than that at 65°C (0.105 ± 0.007 mm year-1, and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.

  13. Heat exchange performance of stainless steel and carbon foams modified with carbon nano fibers

    NARCIS (Netherlands)

    Tuzovskaya, I.; Pacheco Benito, Sergio; Chinthaginjala, J.K.; Reed, C.P.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2012-01-01

    Carbon nanofibers (CNF), with fishbone and parallel wall structures, were grown by catalytic chemical vapor deposition on the surface of carbon foam and stainless steel foam, in order to improve their heat exchange performance. Enhancement in heat transfer efficiency between 30% and 75% was achieved

  14. Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl

    Science.gov (United States)

    Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.

    2018-03-01

    Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.

  15. Properties of welded joints of 2,25Cr-1Mo steel with various carbon content

    International Nuclear Information System (INIS)

    Vornovitskij, I.N.; Brodetskaya, E.Z.; Pozdnyakova, A.S.

    1980-01-01

    Properties of welded joints of 2,25 Cr - 1 Mo steel pipelines with different carbon content are considered. It is shown that application of electrodes developed in some countries for welding permits in many cases to exclude heat treatment of welded joints owing to high ductility of weld deposited metal. To improve the ductility, it is necessary to limit both carbon content down to 0,03-0,06% and detrimental elements (sulfur, phosphorus). Heat affected zone hardness may be increased at the expense of carbon. Weld deposited metal possesses the highest long-term strength at the given test temperature; in this case long-term strength of welded joints and base metal is practically the same. The long-term strength of high-carbon steel is higher at the test temperature of 565 deg C as compared to mean-carbon and low-carbon steels, whose long-term strength is practically equal at this temperature. The long-term strength of high-carbon and mean-carbon steels is practically the same and higher as compared with low-carbon one at the test temperature of 510 deg C

  16. Surface protection of austenitic steels by carbon nanotube coatings

    Science.gov (United States)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  17. The effect of variations in carbon activity on the carburization of austenitic steels in sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Hobdell, M.R.; Hooper, A.J.

    1978-07-01

    Experience has shown that the liquid sodium coolant of fast breeder reactors is an effective carbon-transport medium; the resulting carburization of thin austenitic stainless steel components (eg IHX and fuel cladding) could adversely affect their mechanical integrity. The degree and nature of steel carburization depend, inter alia, on the carbon activity of the sodium environment. Exploratory tests are described in which specimens of austenitic stainless steel were carburized in sodium, the carbon activity of which was continuously monitored by a BNL electrochemical carbon meter. The sodium carbon activity was initially high, but decreased with time, simulating conditions equivalent to plant start-up or coolant clean-up following accidental oil ingress. The extent and nature of steel carburization was identified by metallography, electron microscopy, X-ray crystallography and chemical analysis. (author)

  18. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  19. 78 FR 16832 - Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation...

    Science.gov (United States)

    2013-03-19

    ...] Corrosion-Resistant Carbon Steel Flat Products From Germany and the Republic of Korea: Revocation of... ``ITC'') that revocation of the antidumping duty (``AD'') orders on corrosion-resistant carbon steel... (``Sunset'') Review, 77 FR 85 (January 3, 2012). \\2\\ See Corrosion-Resistant Carbon Steel Flat Products From...

  20. Reproducing ten years of road ageing - Accelerated carbonation and leaching of EAF steel slag

    International Nuclear Information System (INIS)

    Suer, Pascal; Lindqvist, Jan-Erik; Arm, Maria; Frogner-Kockum, Paul

    2009-01-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO 2 ) were used for accelerated ageing. Time (7-14 days), temperature (20-40 o C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO 2 and seven days at 40 o C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO 4 , DOC and Cr were not reproduced.

  1. Statistical analysis of inhibitor concentrations for radioactive waste in carbon steel tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.; Edwards, T.B.

    1993-01-01

    Based on a logistic regression approach, a model was developed using the explanatory variables log([NO 3 - ]), log([NO 2 - ]), and temperature to estimate the probability of pitting in a carbon steel exposed to high-level radioactive waste. Pitting susceptibility data obtained by the two techniques of cyclic potentiodynamic polarization and coupon immersion were separately and jointly analyzed with the model. Similar predictive ability is seen for equations based on both electrochemical and coupon immersion data. Using the theory associated with the determination of confidence intervals for the estimated probability, a methodology was developed to provide a lower bound for the nitrite concentration which inhibits pitting, i.e., which holds the estimated probability of pitting to a reasonably low level of 0.05

  2. intercritical heat treatments effects on low carbon steels quenched

    African Journals Online (AJOL)

    DR B. A. EZEKOYE

    Department of Physics and Astronomy, University of Nigeria, Nsukka. 2. E-mail: benjamin.ezekoye@unn.edu.ng; bezekoye@yahoo.com. ABSTRACT. Six low carbon steels containing carbon in the range 0.13-0.18wt%C were studied after intercritical quenching, intercritical quenching with low temperature tempering, ...

  3. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  4. 76 FR 66893 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Final...

    Science.gov (United States)

    2011-10-28

    ...] Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Final Results of... circular welded carbon steel pipes and tubes from India, Thailand, and Turkey, pursuant to section 751(c..., Thailand, and Turkey. See Antidumping Duty Order; Certain Welded Carbon Steel Standard Pipes and Tubes from...

  5. The correlation between accelerated and field corrosion tests performed in carbon steel and weathering steel coupons, coated and non-coated; Correlacao entre ensaios acelerados e ensaios de campo em corpos-de-provas de aco carbono e aco patinavel, sem e com revestimento

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, Renato Altobelli

    2002-07-01

    The performance of four different organic coating systems applied to carbon and weathering steel coupons has been assessed in this investigation. applied on the surface of carbon steel and weathering steel coupons. The coupons have been evaluated using five different tests, three field tests and two accelerated tests. The field tests were carried out at three atmospheric stations, located at COSIPA in Cubatao-SP, at Alto da Serra in Cubatao-SP and at Paula Souza in Sao Paulo city. The accelerated tests consisted of (a) exposure to alternate cycles of ultraviolet radiation/condensation combined with salt spray cycles (UVCON combined with Salt Spray) and of (b) exposure to alternate cycles of ultraviolet radiation/condensation combined with the Prohesion test. The performance of the coatings was assessed by visual observation and photographs, using a method based on ASTM D-610, ASTM D-714 and ASTM-1654 standards to rank them. The oxide phases formed on the surfaces of the non-coated specimens of carbon and weathering steels, exposed to the same tests performed with the coated specimens, were identified using three different techniques: X-ray diffraction, Raman microscopy and Moessbauer spectroscopy. In the field tests, the specimens have been exposed for 1, 2, 3, 6 and 9 months. In the accelerated ones, the results were obtained after 1340 hours (4 cycles) test. The main component identified in all the specimens collected from the field tests and from the UVCON combined with the Prohesion test was lepidocrocite ({gamma}-FeOOH). Goethite ({alpha}-FeOOH ) and magnetite (Fe{sub 3}O{sub 4}) were identified as the other two main phases present in ali the specimens. In the UVCON combined with Salt Spray test, the dominant phase was magnetite, followed by goethite and lepidocrocite. The morphology of the rust formed on the specimens was examined by scanning electron microscopy (SEM). Structures corresponding to goethite and lepidocrocited were recognized on ali specimens

  6. Variation of transition temperatures from upper to lower bainites in plain carbon steels

    International Nuclear Information System (INIS)

    Oka, M.; Okamoto, H.

    1995-01-01

    Experimental results and explanations for the transition temperature from upper to lower bainites in carbon steels containing from 0.20 to 1.80 wt%C were presented metallographically and kinematically. The experimental results are summarized as follows: (1) Lower bainite is not formed in steels with less than 0.35 wt%C and no transition from upper to lower bainite occurs. (2) The transition temperature of steels containing from 0.54 to 1.10 %C indicates a constant temperature of 350 C and does not depend on the carbon content. It is important to note that a transition temperature of 350 C corresponds to the Ms temperature of a 0.55%C steel being the boundary of the martensite morphology between a lath and a plate. (3) Transition temperatures of steels with more than 1.10%C decrease along the a line below about 65 C from T 0 -composition line. The bainitic transformation is essentially a kind of the martensitic one and its nucleation site is considered to be a carbon depleted zone in austenite by the thermal fluctuation of carbon atom at an isothermal holding temperature. The supercooling of about 65 C below the T 0 -composition line at the carbon range more than 1.10 wt%C is attributed to the non-chemical free energy for the displacive growth of lower bainite. (orig.)

  7. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  8. High carbon microalloyed martensitic steel with ultrahigh strength-ductility

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Ying [School of Mechanical Engineering, Shanghai Dianji University, Shanghai 200245 (China); Chen, Nailu, E-mail: nlchen@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zuo, Xunwei; Rong, Yonghua [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-04-29

    Based on the idea of rising the mechanical stability of retained austenite by the addition of Si in Fe-Mn based steels, an Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb was designed, then its hot rolled plate was successively tread by normalization process as pretreatment of novel quenching-partitioning-tempering (Q-P-T) process. Product of tensile and elongation (PSE) of 53.94 GPa% were obtained for this high carbon Q-P-T martensitic steel, and the PSE (40.18 GPa%) obtained by the conversion of tensile sample size using Oliver formula still is more excellent PSE than those of other microalloyed advanced high strength steels reported. The microstructural characterization reveals origin of ultrahigh PSE resulting from both the increase of considerable and dispersed carbon enriched retained austenite with relative high mechanical stability in volume fraction and the decrease of brittle twin-type martensite with the sensitivity of notch.

  9. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  10. Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Haijiang Hu

    2016-07-01

    Full Text Available In this work, three low-carbon bainitic steels, with different Mo contents, were designed to investigate the effects of Mo addition on microstructure and mechanical properties. Two-step cooling, i.e., initial accelerated cooling and subsequent slow cooling, was used to obtain the desired bainite microstructure. The results show that the product of strength and elongation first increases and then shows no significant change with increasing Mo. Compared with Mo-free steel, bainite in the Mo-containing steel tends to have a lath-like morphology due to a decrease in the bainitic transformation temperature. More martensite transformation occurs with the increasing Mo, resulting in greater hardness of the steel. Both the strength and elongation of the steel can be enhanced by Mo addition; however, the elongation may decrease with a further increase in Mo. From a practical viewpoint, the content of Mo could be ~0.14 wt. % for the composition design of low-carbon bainitic steels in the present work. To be noted, an optimal scheme may need to consider other situations such as the role of sheet thickness, toughness behavior and so on, which could require changes in the chemistry. Nevertheless, these results provide a reference for the composition design and processing method of low-carbon bainitic steels.

  11. Stress corrosion cracking of A515 grade 60 carbon steel

    International Nuclear Information System (INIS)

    Moore, E.L.

    1971-01-01

    An investigation was conducted to evaluate the effect of welding method plate thickness, and subsequent stress relief treatment on the stress corrosion cracking propensity of ASTM A515 Grade 60 carbon steel plate exposed to a 5 M NaNO 3 solution at 190 0 F for eight weeks. It was found that all weld coupons receiving no thermal stress relief treatment cracked within eight weeks; all weld coupons given a vibratory stress relief cracked within eight weeks; two of the eight weld coupons stress relieved at 600 0 F for one hour cracked within eight weeks; none of the weld coupons stress relieved at 1100 0 F for one hour cracked within eight weeks; and that cracking was generally more severe in coupons fabricated from 7/8 inch plate by shielded metal arc welding than it was in coupons fabricated by other welding methods. (U.S.)

  12. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca

    2008-01-01

    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  13. A study on the impediment of thickness diminution of Carbon steel tube by using a applied magnetic field

    International Nuclear Information System (INIS)

    Kim, Jong Oh; Kim, Jong Hui; Cho, Wan Sik; Hong, Sung Min; Park, Yun Won

    2001-03-01

    Magnetic properties of the carbon steel tube which is used as the pipe laying of cooling water in nuclear power plant were measured to research the impediment of thickness diminution of carbon steel tube. Magnetic field distribution of carbon steel tube in the applied magnetic field was simulated by computer program. On the basis of the simulation results, Alnico 5DG and Alnico 5 were selected as the permanent magnets applicable to the carbon steel tube. Sm2Co17 magnet was used to compare the performance of permanent magnets. The experimental apparatus similar to the draining environment of cooling water in nuclear power plant was also manufactured in order to research the impediment of thickness diminution of carbon steel carbon tube

  14. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    Science.gov (United States)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  15. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-12-14

    ...-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of...-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...

  16. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1991-01-01

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-30 0 C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  17. Modelling hydrogen permeation in a hydrogen effusion probe for monitoring corrosion of carbon steels

    International Nuclear Information System (INIS)

    Santiwiparat, P.; Rirksomboon, T.; Steward, F.R.; Lister, D.H.; Cook, W.G.

    2015-01-01

    Hydrogen accumulation inside carbon steel and stainless steel devices shaped like cylindrical cups attached to a pipe containing hydrogen gas was modelled with MATLAB software. Hydrogen transfer around the bottom of the cups (edge effect) and diffusion through the cup walls (material effect) were accounted for. The variation of hydrogen pressure with time was similar for both materials, but the hydrogen plateau pressures in stainless steel cups were significantly higher than those in carbon steel cups. The geometry of the cup also affected the plateau pressure inside the cup. (author)

  18. Carbon transport in sodium systems

    International Nuclear Information System (INIS)

    Martin Espigares, M.; Lapena, J.; La Torre, M. de

    1983-01-01

    Carbon activities in dynamic non isothermal sodium system are determined using an equilibratium method. Foils of Fe-18 w% Cr-8 W% Ni alloy with low carbon content (in the as received condition) are exposed to dynamic liquid sodium in the temperature range between 450 0 C and 700 0 C. The analysis was used to evaluate the carburization-decarburization behaviour of type 304 stainless steel exposed to sodium. (author)

  19. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    Zhang, Hui; Dong, Liang; Li, Huiquan; Fujita, Tsuyoshi; Ohnishi, Satoshi; Tang, Qing

    2013-01-01

    CO 2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO 2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO 2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO 2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  20. Electrochemical and weight-loss study of carbon steel corrosion

    International Nuclear Information System (INIS)

    Thomas, V.J.; Olive, R.P.

    2007-01-01

    The Point Lepreau Generating Station (PLGS) will undergo an 18 month refurbishment project beginning in April, 2008. During this time, most of the carbon steel piping in the primary loop will be drained of water and dried. However, some water will remain during the shutdown due to the lack of drains in some lower points in the piping system. As a result, it is necessary to examine the effect of corrosion during the refurbishment. This study examined the effect of several variables on the corrosion rate of clean carbon steel. Specifically, the effect of oxygen in the system and the presence of chloride ions were evaluated. Corrosion rates were determined using both a weight-loss technique and electrochemical methods. The experiment was conducted at room temperature. The corrosion products from the experiment were analyzed using a Raman microscope. The results of the weight-loss measurements show that the corrosion rate of polished carbon steel is independent of both the presence of oxygen and chloride ions. The electrochemical method failed to yield meaningful results due to the lack of clearly interpretable data and the inherent subjectivity in the analysis. Lepidocricite was found to be the main corrosion product using the Raman microscope. (author)

  1. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    International Nuclear Information System (INIS)

    Calderón, J.A.; Vásquez, F.A.; Carreño, J.A.

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm"−"2. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  2. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, J.A., E-mail: andres.calderon@udea.edu.co [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Vásquez, F.A. [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Carreño, J.A. [Laboratório de H2S, CO2 e Corrosividade, Instituto Nacional De Tecnologia (INT), Av. Venezuela, 82 – Térreo, Anexo 01, Sala 101A, Saúde, Rio de Janeiro, RJ (Brazil)

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm{sup −2}. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  3. Electrochemical corrosion behavior of carbon steel with bulk coating holidays

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With epoxy coal tar as the coating material, the electrochemical corrosion behavior of Q235 with different kinds of bulk coating holidays has been investigated with EIS (Electrochemical Impedance Spectroscopy) in a 3.5vol% NaCl aqueous solution.The area ratio of bulk coating holiday to total coating area of steel is 4.91%. The experimental results showed that at free corrosionpotential, the corrosion of carbon steel with disbonded coating holiday is heavier than that with broken holiday and disbonded & broken holiday with time; Moreover, the effectiveness of Cathodic Protection (CP) of carbon steel with broken holiday is better than that with disbonded holiday and disbonded & broken holiday on CP potential -850 mV (vs CSE). Further analysis indicated that the two main reasons for corrosion are electrolyte solution slowly penetrating the coating, and crevice corrosion at steel/coating interface near holidays. The ratio of impedance amplitude (Z) of different frequency to minimum frequency is defined as K value. The change rate of K with frequency is related to the type of coating holiday.

  4. Structural and tribological properties of carbon steels modified by plasma pulses

    International Nuclear Information System (INIS)

    Sartowska, B.; Walis, L.; Piekoszewski, J.; Senatorski, J.; Stanislawski, J.; Nowicki, L.; Ratajczak, R.; Barlak, M.; Kopcewicz, M.; Kalinowska, J.; Prokert, F.

    2006-01-01

    Carbon steels with different concentration of carbon and heat (Armco-iron, steels 20, 45, 65 and N9) were treated according to the standard procedures: they were irradiated with five intense (about 5 J/cm 2 ), short (μs range) argon or nitrogen plasma pulses generated in a rod plasma injector (RPI) type of plasma generator. Samples were characterized by the following methods: nuclear reaction analysis (NRA) 14 N(d,α) 12 C , scanning electron microscopy (SEM), conversion electron Moessbauer spectroscopy (CEMS), X-ray diffraction analysis (GXRD), and Amsler wear tests. SEM observations shown that the morphology of the pulse treated samples, both argon and nitrogen plasma are identical. It has been found, that nitrogen is much more efficient than argon in ausenitization of carbon steel. The craters and droplets are uniformly distributed over the surface, which is typical of melted and rapidly recrystallized top layers. The thickness of the modified layers is in the range of 1.2-1.6 μm

  5. Fireside corrosion and steamside oxidation of 9-12% Cr martensitic steels exposed for long term testing

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Jensen, S. A.; Rasmussen, F.

    2009-01-01

    MoV121 and HCM12 for the 12% Cr steels. The test tubes were welded in as part of the existing final superheaters in actual plants and exposure has been conducted over a ten year period (1994-2005). Compared to the older steel types, T92 and HCM12 utilise tungsten to improve their creep strength. From......To obtain long term corrosion and steam oxidation data for the 9-12%Cr ferritic steels, test tube sections have been exposed in Amager 3 and Avedore 1 coal fired power plants in Denmark (formerly run by ENERGI E2). Thus direct comparisons can be made for T91 and T92 for the 9% Cr steels and X20Cr...... Avedore I testing, T91 and T92 can be compared for exposure times up to similar to 48 000 h exposure. From Amager 3 testing, X20, HCM12 and T92 were tested; T92 has been exposed for up to 31 000 h and X20 and HCM12 have had 84 500 h exposure. Tube sections were removed for various exposure durations...

  6. Special Advanced Studies for Pollution Prevention. Delivery Order 0017: Sol-Gel Surface Preparation for Carbon Steel and Stainless Steel Bonding

    National Research Council Canada - National Science Library

    Zheng, Haixing

    1997-01-01

    The objective of this program is to study the feasibility of using sol-gel active alumina coatings for the surface preparation of carbon steel and stainless steel for adhesive bonding, and to optimize...

  7. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  8. Corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions

    International Nuclear Information System (INIS)

    Wu, P.C.S.; Grundy, B.R.; Miller, R.L.

    1979-01-01

    The corrosion behavior of sodium-exposed stainless steels in chloride-containing aqueous solutions was investigated. Results showed that sodium-corroded Type 316 stainless steel (prototypic Liquid Metal Fast Breeder Reactor (LMFBR) fuel cladding) maintains its integrity after five months exposure in these solutions at 82 0 C and with chloride content up to 500 ppM. In contrast, sensitized and sodium mass transfer deposit-containing Type 304 stainless steel failed in the high chloride solution (500 ppM) within ten days at the same temperature. The failure was initiated by pitting and subsequently accelerated by intergranular attack. The results also show that high pH tends to reduce the susceptibility to failure while procedures commonly used for sodium removal have no significant effect on the water corrosion behavior of the test material. Based on the current results, it is concluded that water shortage is feasible for spent fuels in a LMFBR reprocessing plant

  9. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Science.gov (United States)

    2010-09-14

    ... Products covered by this order are certain corrosion-resistant carbon steel flat products from Korea. These... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... review of the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE...

  10. A discussion for stabilization time of carbon steel in atmospheric corrosion

    Science.gov (United States)

    Zhang, Zong-kai; Ma, Xiao-bing; Cai, Yi-kun

    2017-09-01

    Stabilization time is an important parameter in long-term prediction of carbon steel corrosion in atmosphere. The range of the stabilization time of carbon steel in atmospheric corrosion has been published in many scientific literatures. However, the results may not precise because engineering experiences is dominant. This paper deals with the recalculation of stabilization time based on ISO CORRAG program, and analyzes the results and makes a comparison to the data mentioned above. In addition, a new thinking to obtain stabilization time will be proposed.

  11. Does carbonation of steel slag particles reduce their toxicity? An in vitro approach.

    Science.gov (United States)

    Ibouraadaten, Saloua; van den Brule, Sybille; Lison, Dominique

    2015-06-01

    Mineral carbonation can stabilize industrial residues and, in the steel industry, may contribute to simultaneously valorize CO2 emissions and slag. We hypothesized that, by restricting the leaching of metals of toxicological concern such as Cr and V, carbonation can suppress the toxicity of these materials. The cytotoxic activity (WST1 assay) of slag dusts collected from a stainless and a Linz-Donawitz (LD) steel plant, before and after carbonation, was examined in J774 macrophages. The release of Cr, V, Fe, Mn and Ni was measured after incubation in artificial lung fluids mimicking the extracellular and phagolysosomal milieu to which particles are confronted after inhalation. LD slag had the higher Fe, Mn and V content, and was more cytotoxic than stainless steel slag. The cytotoxic activity of LD but not of stainless dusts was reduced after carbonation. The cytotoxic activity of the dusts toward J774 macrophages necessitated a direct contact with the cells and was reduced in the presence of inhibitors of phagocytosis (cytochalasin D) or phagolysosome acidification (bafilomycin), pointing to a key role of metallic constituents released in phagolysosomes. This in vitro study supports a limited reduction of the cytotoxic activity of LD, but not of stainless, steel dusts upon carbonation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Successive carbon- and boron saturation of KhVG steel in powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, Yu A; Gordienko, S I

    1975-01-01

    Method of successive saturation of KhVG steel with carbon and boron in powder mixtures is described. After carbonization of steel in a charcoal carburator at 930 deg C during 3 hrs a domain of equiaxial large grains is formed there the latter representing carbides of Fe/sub 3/C and (Fe, M)/sub 3/C. The increase of duration of carbonization up to 5 hrs and above results in formation of a cement grid greatly impairing the mechanical properties of the metal. Carbonization is followed by borating in powdered technical boron carbide at 900 deg C for 4 hrs which ensures formation on the sample surface of a borated layer with depth up to 65 mkm covering the carbonized zone. As followed from metallographic and x-ray structural analysis, the borated layer consists of boride needles with complex composition (Fe, Cr, Mn)B. Oil hardening of carbonized KhVG steel from 850 deg C and low-temperature tempering at 180 deg C for 1 hr results in formation in the main metal of martensite-carbide structure and, respectively, in the decrease of the microhardness gradient between the diffusion layers, as compared with borated KhVG steel. Operation tests of strengthened matrices of preforming machines under the conditions of application of dynamic pressing forces up to 1500 kg Fce/cm/sup 2/ demonstrated that the cyclical strength of carboborated coverings is 2.0-3.0 times higher than that of borated ones. The method of carboborating is recommended for strengthening the details of stamp and press tools.

  13. Ultra low carbon bainitic (ULCB) steels after quenching and tempering

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Kolan, C.; Jeziorski, L.

    1998-01-01

    The mechanical and Charpy V impact strength properties of new advanced ultra low carbon bainitic (ULBC) steels after water quenching and tempering (WQT) have been investigated. Their chemical compositions are given. The nine continuous cooling transformation diagrams (CCT) of the new ULCB steel grades have been established. The CCT diagrams for ULCB N i steels containing 9% Ni - grade 10N9 and 5% Ni - grade HN5MVNb are given. The comparison between CCT diagrams of 3.5%Ni + 1.5%Cu containing steels grade HSLA 100 and HN3MCu is shown. The effect of the increase in carbon and titanium contents in the chemical composition of ULCB M n steels 04G3Ti, 06G3Ti and 09G3Ti on the kinetics of phase transformations during continuous cooling is presented by the shifting CCT diagrams. The Charpy V impact strength and brittle fracture occurence curves are shown. The effect of tempering temperature on tensile properties of WQT HN3MCu steel is shown and Charpy V impact strength curves after different tempering conditions are shown. The optimum tempering temperatures region of HN3MCu steel for high Charpy V impact toughness at law temperatures - 80 o C(193 K) and -120 o C(153 K) is estimated. The effect of tempering temperature on mechanical properties of HN5MVNb steel is given. The low temperature impact Charpy V toughness of HN5MVNb steel is shown. The optimum range of tempering temperature during 1 hour for high toughness of WQT HN5MVNb steel is given. HN3MCu and HN5MVNb steels after WQT have high yield strength YS≥690 MPa and high Charpy V impact toughness KV≥80 J at -100 o C (173K) and KCV≥50 J/cm 2 at - 120 o C (153K) so they may be used for cryogenic applications

  14. Effect of carbon content on formation of bimodal microstructure and mechanical properties of low-carbon steels subjected to heavy-reduction single-pass hot/warm deformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Won, E-mail: wonipark@iis.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Komaba 4-6-1, Meguro-ku 153-8505, Tokyo (Japan); Yanagimoto, Jun [Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku 153-8505, Tokyo (Japan)

    2014-06-01

    A compression test simulating heavy-reduction single-pass rolling was conducted to investigate the microstructural evolution based on the formation of a bimodal structure and the mechanical properties of 0.01% and 0.1% carbon steels and niobium steel. When thermomechanical processing was conducted near and above the critical transformation temperature (A{sub c3}), microstructures of all steels were significantly refined and consisted of equiaxed grains without elongated grains. Nevertheless, these microstructures showed weak or no formation of the bimodal structure or coarse grains with decreasing carbon content, while they showed bimodal structure formation when 0.2% carbon steel was used in our previous research. The average grain size of Nb steel was about 2 μm and its microstructure was uniformly refined. These may be attributed to a decrease in the number of nucleation sites with decreasing carbon content in low-carbon steels and the occurrence of nucleation at grain boundaries as well as in grain interiors in Nb steel during processing. Mechanical properties of all steels deformed above the critical transformation temperature exhibited high performance characteristics with superior strength and marked elongation. Their fractographs indicated ductile fracture, which was revealed by SEM observation after a tensile test.

  15. Corrosion study of steels exposed over five years to the humid tropical atmosphere of Panama

    Energy Technology Data Exchange (ETDEWEB)

    Jaén, Juan A., E-mail: juan.jaen@up.ac.pa [Departamento de Química Física, Edificio de Laboratorios Científicos-VIP (Panama); Iglesias, Josefina [Laboratorio de Análisis Industriales y Ciencias Ambientales (Panama)

    2017-11-15

    The results of assessing five-year corrosion of low-carbon and conventional weathering steels exposed to the Panamanian tropical atmosphere is presented. Two different test sites, one in Panama City: 5 km from the shoreline of the Pacific Ocean, and another in the marine environment of Fort Sherman, Caribbean coast of Panama; namely, Fort Sherman Coastal site: 100 m from coastline. The corrosion products, formed in the skyward and earthward faces in the studied tropical environment, were mainly identified using room temperature and low temperature (15 K) Mössbauer spectroscopy, and ATR-FTIR. In all samples, lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) were the main constituents. Some maghemite (γ-Fe{sub 2}O{sub 3}), was also identified in Tocumen by Mössbauer spectroscopy and traces of feroxyhyte (δ-FeOOH) using ATR-FTIR. The corrosion rate values obtained are discussed in light of the atmospheric exposure conditions and atmospheric pollutants.

  16. Influence of boron on strain hardening behaviour and ductility of low carbon hot rolled steel

    International Nuclear Information System (INIS)

    Deva, Anjana; Jha, B.K.; Mishra, N.S.

    2011-01-01

    Highlights: → Unique feature of low strain hardening exponent (n) with high total elongation has been discussed in industrially produced low carbon boron containing steel. → n has been correlated with the micro structural changes occurring during deformation of steel. → This feature of low n and high % elongation has potential for higher cold reducibility. → The work is being reported for the first time on industrially produced low carbon boron containing steel. - Abstract: The beneficial effect of boron on mechanical properties of low carbon Al-killed steel has been reported in recent past. However, the effect of boron on strain hardening exponent (n) and ductility has not been fully understood. This aspect has been discussed in present work. The results of mill trials with reference to n and ductility with boron added steel are compared to those for commercial grade. The lowering of 'n' with increased total elongation in boron bearing steel has been related to the microstructural evolution as a result of boron addition.

  17. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    OpenAIRE

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-01-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The rev...

  18. Carbon transfer between 2 1/4 Cr 1 Mo alloy and austenitic steels (experiments in anisothermal loops)

    International Nuclear Information System (INIS)

    Baque, P.; Besson, M.; Champeix, L.; Donati, J.R.; Oberlin, C.; Saint-Paul, P.

    1976-01-01

    Studies on carbon transfer between the ferritic steel 2 1/4 Cr 1 Mo and the austenitic steels 316L and 321H have shown that there is not any measurable carbon transfer in the operating conditions of the secondary circuit of PHENIX (475 deg C was the maximal temperature of the 2 1/4 Cr 1 Mo steel). A significant carbon transfer has been observed between the ferritic steel and the 316L steel when the 321H was replaced by the 2 1/4 Cr 1 Mo steel in the same thermohydraulic conditions (the ferritic steel was then used up to 545 deg C). This experiment has demonstrated the importance of the temperature and the initial carbon content of the ferritic steel as parameters in the decarburization process. It appears that decarburization may not be sensitive to the thermohydraulic conditions at least in the range investigated in those experiments. In the other hand the 316L steel is observed to have been carburized, the degree of carburization remaining appreciably constant and independent on the temperature between 400 deg C and 550 deg C [fr

  19. Erosion and deuterium retention of CLF-1 steel exposed to deuterium plasma

    Science.gov (United States)

    Qiao, L.; Wang, P.; Hu, M.; Gao, L.; Jacob, W.; Fu, E. G.; Luo, G. N.

    2017-12-01

    In recent years reduced activation ferritic martensitic steel has been proposed as the plasma-facing material in remote regions of the first wall. This study reports the erosion and deuterium retention behaviours in CLF-1 steel exposed to deuterium (D) plasma in a linear experimental plasma system as function of incident ion energy and fluence. The incident D ion energy ranges from 30 to 180 eV at a flux of 4 × 1021 D m-2 s-1 up to a fluence of 1025 D m-2. SEM images revealed a clear change of the surface morphology as functions of incident fluence and impinging energy. The mass loss results showed a decrease of the total sputtering yield of CLF-1 steel with increasing incident fluence by up to one order of magnitude. The total sputtering yield of CLF-1 steel after 7.2 × 1024 D m-2 deuterium plasma exposure reduced by a factor of 4 compared with that of pure iron, which can be attributed to the enrichment of W at the surface due to preferential sputtering of iron and chromium. After D plasma exposure, the total deuterium retention in CLF-1 steel samples measured by TDS decreased with increasing incident fluence and energy, and a clear saturation tendency as function of incident fluence or energy was also observed.

  20. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  1. Reproducing ten years of road ageing - Accelerated carbonation and leaching of EAF steel slag

    Energy Technology Data Exchange (ETDEWEB)

    Suer, Pascal, E-mail: pascal.suer@swedgeo.se [Swedish Geotechnical Institute, Linkoeping (Sweden); Lindqvist, Jan-Erik [Swedish Cement and Concrete Research Institute, Boras (Sweden); Arm, Maria; Frogner-Kockum, Paul [Swedish Geotechnical Institute, Linkoeping (Sweden)

    2009-09-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO{sub 2}) were used for accelerated ageing. Time (7-14 days), temperature (20-40 {sup o}C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO{sub 2} and seven days at 40 {sup o}C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO{sub 4}, DOC and Cr were not reproduced.

  2. Resuspension of carbon dust collected in Tore Supra and exposed to turbulent airflow: Controlled experiments and comparison with model

    Energy Technology Data Exchange (ETDEWEB)

    Peillon, S., E-mail: samuel.peillon@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA/LPMA, Saclay, Gif-sur-Yvette 91192 (France); Roynette, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA/LPMA, Saclay, Gif-sur-Yvette 91192 (France); Grisolia, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Gensdarmes, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SCA/LPMA, Saclay, Gif-sur-Yvette 91192 (France)

    2014-11-15

    Highlights: • Mobilization of dust is a key issue for the safety assessment of fusion reactors. • Carbon dust has been collected on the plasma facing components of Tore Supra. • Samples exhibit bimodal particle size distributions. • Samples have been exposed to turbulent airflows for dust resuspension studies. • A comparison with the so-called Rock’n roll resuspension model is proposed. - Abstract: This work presents the results of experiments conducted with carbon microparticles collected in the tokamak Tore Supra in order to characterize their resuspension behaviour from a stainless-steel substrate when exposed to turbulent airflow. Experiments were conducted in a wind tunnel with controlled velocity profiles and monitored environmental conditions. A consequent amount of dust has been collected in the vessel of the tokamak and a bimodal particle size distribution of samples is first demonstrated. Comparison with resuspension of alumina powders with equivalent particle size distributions under turbulent airflow is also discussed. Results for both carbon and alumina microparticles are then compared to a theoretical resuspension model. Data reveal that exposing multilayer deposits with bimodal particle size distributions to low-speed flows (i.e. 3–10 m/s) induces a significant reduction of the mobilized fractions compared to what was predicted by the model. In addition, results helped to highlight some limitations in the model to physically describe changes in the adhesive strength that can occur with a polydisperse deposit.

  3. Hardness and adhesion performances of nanocoating on carbon steel

    Science.gov (United States)

    Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.

    2018-01-01

    Nanocoatings industry has been aggressive in searching for cost-effective alternatives and environmental friendly approaches to manufacture products. Nanocoatings represent an engineering solution to prevent corrosion of the structural parts of ships, insulation and pipelines industries. The adhesion and hardness properties of coating affect material properties. This paper reviews ZnO-SiO2 as nanopowder in nano coating formulation as the agent for new and improved coating performances. Carbon steel on type S50C used as common substrate in nanocoating industry. 3wt% ZnO and 2wt% SiO2 addition of nanoparticles into nanocoating showed the best formulation since hardness and adhesion of nanocoating was good on carbon steel substrate. Incorporation of nanoparticles into coating increased the performances of coating.

  4. The effect of cyclic and dynamic loads on carbon steel pipe

    International Nuclear Information System (INIS)

    Rudland, D.L.; Scott, P.M.; Wilkowski, G.M.

    1996-02-01

    This report presents the results of four 152-mm (6-inch) diameter, unpressurized, circumferential through-wall-cracked, dynamic pipe experiments fabricated from STS410 carbon steel pipe manufactured in Japan. For three of these experiments, the through-wall crack was in the base metal. The displacement histories applied to these experiments were a quasi-static monotonic, dynamic monotonic, and dynamic, cyclic (R = -1) history. The through-wall crack for the third experiment was in a tungsten-inert-gas weld, fabricated in Japan, joining two lengths of STS410 pipe. The displacement history for this experiment was the same history applied to the dynamic, cyclic base metal experiment. The test temperature for each experiment was 300 C (572 F). The objective of these experiments was to compare a Japanese carbon steel pipe material with US pipe material, to ascertain whether this Japanese steel was as sensitive to dynamic and cyclic effects as US carbon steel pipe. In support of these pipe experiments, quasi-static and dynamic, tensile and fracture toughness tests were conducted. An analysis effort was performed that involved comparing experimental crack initiation and maximum moments with predictions based on available fracture prediction models, and calculating J-R curves for the pipe experiments using the η-factor method

  5. Microstructural investigations of 0.2% carbon content steel

    Science.gov (United States)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  6. Surface modifications induced by yttrium implantation on low manganese-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Univ. Blaise Pascal Clermont-Fd II, Le Puy en Velay (France). Lab. Vellave d' Elaboration et d' Etude des Materiaux; Haanapel, V.A.C.; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Health and Consumer Protection, Joint Research Center, The European Commission, 21020, Ispra (Italy)

    1999-12-15

    Low manganese-carbon steel samples were ion implanted with yttrium. Sample compositions and structures were investigated before and after yttrium implantations to determine the yttrium distribution in the sample. Yttrium implantation effects were characterized using several analytical and structural techniques such as X-ray photoelectron spectroscopy, reflection high energy electron diffraction, X-ray diffraction, glancing angle X-ray diffraction and Rutherford backscattering spectrometry. In this paper it is shown that correlation between composition and structural analyses provides an understanding of the main compounds induced by yttrium implantation in low manganese-carbon steel. (orig.)

  7. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    Masumura, Takuro; Nakada, Nobuo; Tsuchiyama, Toshihiro; Takaki, Setsuo; Koyano, Tamotsu; Adachi, Kazuhiko

    2015-01-01

    In order to evaluate the effects of carbon and nitrogen addition on the stability of austenite, athermal and deformation-induced α′-martensitic transformation behaviors were investigated using type 304-metastable austenitic stainless steels containing 0.1 mass% carbon or nitrogen. The difference in the development of the deformation microstructure in particular is discussed in terms of the stacking-fault energy (SFE). Since carbon-added steel has a lower SFE than that of nitrogen-added steel, deformation twins and ε-martensite were preferentially formed in the carbon-added steel, whereas a dislocation cell structure developed in the nitrogen-added steel. Crystallographic analysis using the electron backscatter diffraction method revealed that the difference in the deformation microstructure has a significant influence on the growth behavior of deformation-induced α′-martensite, that is, the interface of the deformation twins and ε-martensite suppresses the growth of α′-martensite, whereas dislocation cell boundaries are not effective. As a result, the mechanical stability of carbon-added steel is slightly higher than that of nitrogen-added steel, although the thermal stabilization effect of carbon is much lower than that of nitrogen

  8. Influence of Heat Treatments on the Corrosion Resistance of Medium -Carbon Steel using Sulfuric Spring Water

    Directory of Open Access Journals (Sweden)

    Ikhlas Basheer

    2015-02-01

    Full Text Available The corrosion is one of the important problems that may be occur to the parts of machinery and equipment after manufactured and when used as a result of exposure to corrosive media. Plain-carbon steel is considered as one of the most common minerals used in industrial applications. Some of heat treatments can have direct effect on the corrosion rate of steel by building up galvanic corrosion cells between its microscopic phases. Therefore, to adopt one of kinds of the plain-carbon steel and the most commonly used in industry to be study subject, that is medium carbon steel and took samples of this steel has been treated thermally in three methods which the normalising, annealing, and hardening .The corrosive media used in the research is Sulfuric Spring, it contains many chemical compounds to show its influence on the corrosion of steel. The weight loss method is used to determine corrosion rate and to compare between the results obtained, show that the greatest corrosion resistance of the annealed steel and the corrosion resistance of the hardened steel is the lowest while the corrosion  resistance of the normalised steel is in-between them.         Calcium carbonate was formed on the metal surface which acts as an isolating layer which decrease corrosion rate with time

  9. Monitoreo mediante EIS del acero embebido en un concreto de escoria activada alcalinamente expuesto a carbonatación EIS monitoring of embedded steel in alkali activated concrete exposed to carbonation

    Directory of Open Access Journals (Sweden)

    Willian Aperador

    2011-01-01

    Full Text Available En este trabajo se utilizó la técnica de espectroscopia de impedancia electroquímica (EIS para evaluar la acción del dióxido de carbono sobre la corrosión de un acero estructural ASTM A 706 embebido en un concreto de escoria activado alcalinamente (AAS, el concreto AAS es una mezcla de escoria molida granulada, agregados finos y gruesos y solución alcalina (silicato de sodio en la cantidad requerida para la mezcla de concreto. El estudio se realizó comparativamente con especímenes expuestos a condiciones naturales con una baja concentración de CO2 (0,03% CO2. La carbonatación del concreto se obtuvo de forma acelerada bajo condiciones controladas (3% CO2, 65% de humedad relativa y 20°C de temperatura. Los datos de Impedancia fueron adquiridos en un rango de 1mHz hasta 100kHz. A las frecuencias altas se encontró la respuesta de la interfase medio de exposición-concreto y a frecuencias bajas la respuesta de la interfase correspondiente al concreto - acero. Mediante EIS se estableció la capacidad de lograr la pasivación del acero embebido en concreto AAS, en condiciones ambientales naturales y aceleradas.In this work the technique of impedance spectroscopy electrochemistry (EIS was used to evaluate the effects of carbon dioxide on the corrosion of ASTM A 706 structural steel embedded in concrete with alkali activated slag (AAS, AAS concrete is a mixture of ground granulated slag, fine and coarse aggregates and alkaline solution (sodium silicate in the amount required for the concrete mix. The study was conducted in comparison with specimens exposed to natural conditions with a low concentration of CO2 (0.03% CO2. The carbonation of the concrete was obtained through accelerated carbonation under controlled conditions (3% CO2, 65% of relative humidity and 20°C of temperature. The data of Impedance in the middle frequency region 1mHz - 100KHz. A high frequency response was found using the interface-specific exposure and low frequency

  10. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel.

    Science.gov (United States)

    1982-10-01

    steel . Successful martempering requires a cooling rate sufficient to avoid the nose of the C- curve and thus prevent significant bainite formation. When...STUDY OF THE EFFECT OF INTERRUPTED QUENCHES ON A THERMONECHANICALLY PROCESSED HIGH CARBON STEEL by Steven A. Barton October 1982 Thesis Advisor: T.R...unlimited. A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel by Steven A. Barton Lieutenant, United

  11. The Mechanism of High Ductility for Novel High-Carbon Quenching-Partitioning-Tempering Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua

    2015-09-01

    In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.

  12. Mineral CO2 sequestration by steel slag carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2005-12-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar pressure, 100C, and a particle size of <38 μm. The two must important factors determining the reaction rare are particle size (<2 mm to <38 μm) and reaction temperature (25-225C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step, The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zona during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism

  13. Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions

    International Nuclear Information System (INIS)

    Refait, Ph.; Bourdoiseau, J.A.; Jeannin, M.; Nguyen, D.D.

    2012-01-01

    Highlights: ► Green rust is electro-generated at low NaHCO 3 concentration (0.003 mol dm −3 ). ► Chukanovite and carbonated green rust are obtained in NaHCO 3 + Na 2 SO 4 deaerated electrolytes. ► The mechanisms of formation of carbonated corrosion products of carbon steel are specified. - Abstract: To investigate the nature and properties of carbonated rust layers, carbon steel electrodes were polarised anodically at a potential ∼100–200 mV higher than the open circuit potential in NaHCO 3 solutions (0.003, 0.1 and 1 mol dm −3 ) continuously deaerated by an argon flow. X-ray diffraction and μ-Raman spectroscopy were used to identify the electro-generated compounds. GR(CO 3 2− ) (=Fe II 4 Fe III 2 (OH) 12 CO 3 ·4H 2 O) is observed at 0.003 and 0.1 mol dm −3 NaHCO 3 whereas FeCO 3 is obtained at the largest concentration (1 mol dm −3 ). GR(CO 3 2− ) is accompanied by magnetite Fe 3 O 4 at the lowest NaHCO 3 concentration. The current density decreases to negligible values in each case, indicating that a passive film also forms independently of the nature of the carbonated compound. Experiments were performed similarly in solutions of NaHCO 3 and Na 2 SO 4 . Chukanovite Fe 2 (OH) 2 CO 3 could be obtained in solutions containing 0.03 mol dm −3 of each salt. In contrast with the results obtained in the solutions free of sulphate, the current density remains important during the formation of the rust layer

  14. Corrosion resistance of steel fibre reinforced concrete – a literature review

    DEFF Research Database (Denmark)

    Marcos Meson, Victor; Michel, Alexander; Solgaard, Anders

    2016-01-01

    Steel fibre reinforced concrete (SFRC) is increasingly being used in the construction of prefabricated segmental linings for bored tunnels, since it entails simplified production processes and higher quality standards. However, international standards and guidelines are not consistent regarding...... the consideration of steel fibres for the structural verification of SFRC elements exposed to corrosive environments, hampering the development of civil infrastructure built of SFRC. In particular, the long-term effect of exposure to chlorides is in focus and under discussion. This paper reviews the existing...... the existence of a critical crack width, below 0.20 mm, where corrosion of carbon-steel fibres is not critical and the structural integrity of the exposed SFRC can be ensured over the long-term. A doctoral project investigating chloride-induced corrosion of steel fibres on cracked SFRC has been initiated...

  15. The Effects of Cr and Al Addition on Transformation and Properties in Low‐Carbon Bainitic Steels

    OpenAIRE

    Junyu Tian; Guang Xu; Mingxing Zhou; Haijiang Hu; Xiangliang Wan

    2017-01-01

    Three low‐carbon bainitic steels were designed to investigate the effects of Cr and Al addition on bainitic transformation, microstructures, and properties by metallographic method and dilatometry. The results show that compared with the base steel without Cr and Al addition, only Cr addition is effective for improving the strength of low‐carbon bainitic steel by increasing the amount of bainite. However, compared with the base steel, combined addition of Cr and Al has no significant effect o...

  16. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    Science.gov (United States)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  17. INFLUENCE OF ELECTRIC SPARK ON HARDNESS OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-03-01

    Full Text Available Purpose. The purpose of work is an estimation of influence of an electric spark treatment on the state of mouldable superficial coverage of carbon steel. Methodology. The steel of fragment of railway wheel rim served as material for research with chemical composition 0.65% С, 0.67% Mn, 0.3% Si, 0.027% P, 0.028% S. Structural researches were conducted with the use of light microscopy and methods of quantitative metallography. The structural state of the probed steel corresponded to the state after hot plastic deformation. The analysis of hardness distribution in the micro volumes of cathode metal was carried out with the use of microhardness tester of type of PMT-3. An electric spark treatment of carbon steel surface was executed with the use of equipment type of EFI-25M. Findings. After electric spark treatment of specimen surface from carbon steel the forming of multi-layered coverage was observed. The analysis of microstructure found out the existence of high-quality distinctions in the internal structure of coverage metal, depending on the probed area. The results obtained in the process are confirmed by the well-known theses, that forming of superficial coverage according to technology of electric spark is determined by the terms of transfer and crystallization of metal. The gradient of structures on the coverage thickness largely depends on development of structural transformation processes similar to the thermal character influence. Originality. As a result of electric spark treatment on the condition of identical metal of anode and cathode, the first formed layer of coverage corresponds to the monophase state according to external signs. In the volume of coverage metal, the appearance of carbide phase particles is accompanied by the decrease of microhardness values. Practical value. Forming of multi-layered superficial coverage during electric spark treatment is accompanied by the origin of structure gradient on a thickness. The effect

  18. 76 FR 64312 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Final Results of the Expedited...

    Science.gov (United States)

    2011-10-18

    ... Rectangular Carbon Steel Tubing From Taiwan: Final Results of the Expedited Sunset Review of the Antidumping... the antidumping duty order on light-walled welded rectangular carbon steel tubing from Taiwan pursuant... steel tubing from Taiwan pursuant to section 751(c) of the Act. See Initiation of Five-Year (``Sunset...

  19. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  20. 78 FR 55241 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-10

    ... merchandise covered by this Order \\2\\ is certain corrosion- resistant carbon steel flat products from Korea... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... the countervailing duty (CVD) order on corrosion-resistant carbon steel flat products (CORE) from the...

  1. Nonmetallic inclusions in carbon steel smelted in plasma furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shengelaya, I B; Kostyakov, V N; Nodiy, T K; Imerlishvili, V G; Gavisiani, A G [AN Gruzinskoj SSR, Tbilisi. Inst. Metallurgii

    1979-01-01

    A complex investigation on nonmetallic inclusions in carbon cast iron, smelted in plasma furnace in argon atmosphere and cast partly in the air and partly in argon atmosphere, has been carried out. As compared to open-hearth furnace carbon steel, the test metal was found to contain more oxide inclusions and nitrides; besides, in chromium-containing metal, chromium nitrides form the larger part of nitrides.

  2. Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Goods, S.H.; Bradshaw, R.W. [Sandia National Labs., Livermore, CA (United States); Prairie, M.R.; Chavez, J.M. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    Corrosion behavior of two stainless steels and carbon steel in mixtures of NaNO{sub 3} and KNO{sub 3} was evaluated to determine if impurities found in commodity grades of alkali nitrates aggravate corrosivity as applicable to an advanced solar thermal energy system. Corrosion tests were conducted for 7000 hours with Types 304 and 316 stainless steels at 570C and A36 carbon steel at 316C in seven mixtures of NaNO{sub 3} and KNO{sub 3} containing variations in impurity concentrations. Corrosion tests were also conducted in a ternary mixture of NaNO{sub 3}, KNO{sub 3}, and Ca(NO{sub 3}){sub 2}. Corrosion rates were determined by descaled weight losses while oxidation products were examined by scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The nitrate mixtures were periodically analyzed for changes in impurity concentrations and for soluble corrosion products.

  3. Testing of methods for decontamination of stainless steels and carbon steels conformably to demountable equipment of nuclear power plant with WWR type reactor

    International Nuclear Information System (INIS)

    Dergunova, G.M.; Nazarov, V.K.; Ozolin, A.B.; Smirnov, L.M.; Stel'mashuk, V.P.; Yulikov, E.I.; Vlasov, I.N.

    1978-01-01

    Results are given of experiments on decontamination of stainless steel by the oxidation-reduction method and also results of decontamination of carbon steel by means of solutions based on oxalic acid, citric acid and phosphoric acid. Investigations of efficiency of oxidation-reduction treatment were done on samples of stainless steel cut from the pipeline of the primary coolant circuit of reactor. Comparison is given of efficiency of oxidation-reduction methods of contamination of stainless steel in the case of application of different compositions of decontaminating solutions. Dependences are given for decontamination completeness on duration of operations, on temperature and on ratio of volume of decontaminating solutions to surface are of the sample. For carbon steels parameters are given for decontamination process by means of oxalic, citric and phosphoric acid solutions. (I.T.) [ru

  4. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    .... Scope of the Order Products covered by this order are certain corrosion-resistant carbon steel flat... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... countervailing duty (CVD) order on corrosion-resistant carbon steel flat products from the Republic of Korea for...

  5. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  6. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  7. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, Kazuo; Nagano, Tetsushi; Nakayama, Shinichi; Muraoka, Susumu

    1992-02-01

    As a part of evaluation of the long-term durability for the overpack containers for high-level radioactive waste, we have conducted corrosion tests for carbon steel in wet bentonite, a candidate buffer material. The corrosion rates were evaluated by weight difference of carbon steel and corrosion products were analyzed by Fourier transform infrared spectroscopy (FT-IR) and colorimetry. At 40degC, the corrosion rate of carbon steel in wet bentonite was smaller than that in pure water. At 95degC, however, the corrosion rate in wet bentonite was much higher than that in pure water. This high corrosion rate in wet bentonite at 95degC was considered to result from evaporation of moisture in bentonite in contact with the metal. This evaporation led to dryness and then to shrinkage of the bentonite, which generated ununiform contact of the metal with bentonite. Probably, this ununiform contact promoted the local corrosion. The locally corroded parts of specimen in wet bentonite at 95degC were analyzed by Fourier transform infrared microspectroscopy (micro-FT-IR), and lepidocrocite γ-FeO(OH) was found as well as goethite α-FeO(OH). In wet bentonite at 95degC, hematite α-Fe 2 O 3 was identified by means of colorimetry. (author)

  8. Morphological and microstructural studies on aluminizing coating of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  9. Microbiologically influenced corrosion of carbon steel in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Mihalache, M.; Laurentiu, P.

    2016-01-01

    Sulphate-reducing bacteria (SRB) are the most important organisms in microbiologically induced corrosion. In this context, the paper presents an assessment (by experimental tests) of the behaviour of carbon steel samples (SA106gr.B) in SRB media. Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system carbon steel / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). The surfaces of the tested samples were analyzed using the optical and electronic microscope, and emphasized the role of bacteria in the development of biofilms under which appeared characteristics of corrosion attack. The correlation of all results confirmed that SRB accelerated the localized corrosion of the surfaces of SA 106gr.B carbon steel. (authors)

  10. Evaluation of the potential of additives as corrosion inhibitors of CA-50 carbon steel used as reinforcement in concretes

    International Nuclear Information System (INIS)

    Mennucci, Marina Martins

    2006-01-01

    In this work, various compounds were tested to evaluate their potential capability for their use as corrosion inhibitors of carbon steel reinforcement in concretes. The additives tested were sodium benzoate, polyethylene glycol, hexamethylenetetramine, benzotriazole and yttrium carbonate. Initially, exploratory tests were carried out to select the ones to be used as corrosion inhibitors, based on the inhibit ion efficiency determined from electrochemical tests, specifically polarization tests and electrochemical impedance spectroscopy. These tests were carried out in a solution composed of 0.01 N sodium hydroxide (NaOH) and 0.05 N potassium hydroxide (KOH) to simulate the composition of the solution inside the pores in concretes. The additive that presented the most promising potential to be used as corrosion inhibitor was benzotriazole (BTA). After the elimination of some compounds and selection of the additive with higher corrosion inhibit ion efficiency in the test medium, the effect of its concentration on the corrosion inhibition efficiency was evaluated. Sodium nitrite solutions with the same concentrations as those solutions with BTA were tested for comparison reasons. Sodium nitrite is a well established corrosion inhibitor for carbon steel reinforcement in concretes but it has been related to toxic effects. The BTA was associated to higher corrosion inhibition efficiencies than that of sodium nitrite in similar concentrations. A blackish adherent film was formed on the steel surface exposed to BTA solutions during long periods of immersion in the alkaline medium. The results suggest that BTA is a potential candidate for substitution of nitrites as corrosion inhibitor of reinforcements in concrete. (author)

  11. Influences of spray parameters on the structure and corrosion resistance of stainless steel layers coated on carbon steel by plasma spray treatment

    International Nuclear Information System (INIS)

    Yeom, Kyong An; Lee, Sang Dong; Kwon, Hyuk Sang; Shur, Dong Soo; Kim, Joung Soo

    1996-01-01

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 deg C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats. (author)

  12. Carbon distribution in bainitic steel subjected to deformation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yu. F., E-mail: yufi55@mail.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Nikitina, E. N., E-mail: Nikitina-EN@mail.ru; Gromov, V. E., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation)

    2015-10-27

    Analysis of the formation and evolution of carbide phase in medium carbon steel with a bainitic structure during compressive deformation was performed by means of transmission electron diffraction microscopy. Qualitative transformations in carbide phase medium size particles, their density and volume concentration depended on the degree of deformation.

  13. Influence of ultraviolet light irradiation on the corrosion behavior of carbon steel AISI 1015

    Science.gov (United States)

    Riazi, H. R.; Danaee, I.; Peykari, M.

    2013-03-01

    Corrosion of carbon steel in sodium chloride solution was studied under ultraviolet illumination using weight loss, polarization, electrochemical impedance spectroscopy and current transient tests. The polarization test revealed an increase in the corrosion current density observed under UV illumination. The impedance spectroscopy indicated that the charge transfer resistance of the system was decreased by irradiation of UV light on a carbon steel electrode. The weight loss of carbon steel in solution increased under UV light, which confirms the results obtained from electrochemical measurements. We propose that the main effect of UV irradiation is on the oxide film, which forms on the surface. Thus, in presence of UV, the conductivity of oxide film might increase and lead to higher metal dissolution and corrosion rate.

  14. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-06-07

    ...-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit for Preliminary Results of...-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot... duty order on certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Initiation...

  15. 75 FR 29976 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final...

    Science.gov (United States)

    2010-05-28

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-475-826] Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final Results of Antidumping Duty Administrative...-quality steel plate products from Italy. See Certain Cut-to-Length Carbon-Quality Steel Plate Products...

  16. 78 FR 4385 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2013-01-22

    ...-Quality Steel Plate Products From the Republic of Korea: Preliminary Results of Antidumping Duty... the antidumping duty order on certain cut-to- length carbon-quality steel plate products (CTL plate... Carbon-Quality Steel Plate Products from the Republic of Korea'' dated concurrently with this notice...

  17. Cast Steel Filtration Trials Using Ceramic-Carbon Filters

    Directory of Open Access Journals (Sweden)

    Lipowska B.

    2014-12-01

    Full Text Available Trials of cast steel filtration using two types of newly-developed foam filters in which carbon was the phase binding ceramic particles have been conducted. In one of the filters the source of carbon was flake graphite and coal-tar pitch, while in the other one graphite was replaced by a cheaper carbon precursor. The newly-developed filters are fired at 1000°C, i.e. at a much lower temperature than the currently applied ZrO2-based filters. During filtration trials the filters were subjected to the attack of a flowing metal stream having a temperature of 1650°C for 30 seconds.

  18. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    Saenz Gonzalez, Eduardo

    2005-01-01

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO 3 , NaCl, NaF, NaNO 2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  19. Moessbauer spectroscopic study of rust formed on a weathering steel and a mild steel exposed for a long term in an industrial environment

    International Nuclear Information System (INIS)

    Kamimura, Takayuki; Nasu, Saburo; Tazaki, Takashi; Kuzushita, Kaori; Morimoto, Shotaro

    2002-01-01

    The rusts formed on mild steel (15-year exposure) and weathering steel (32-year exposure) exposed to an industrial environment have been characterized by means of X-ray diffraction technique and 57 Fe Moessbauer spectroscopy. By using an X-ray diffraction method, it is suggested that the rusts formed on both steels consist of the crystalline α-FeOOH, γ-FeOOH and an X-ray amorphous phase, which gives no peak to X-ray diffraction pattern. The amount of the X-ray amorphous phase exceeds 50% of the total amount of the rust. The 57 Fe Moessbauer spectra observed at 10K indicate that the rust contains only α-FeOOH, γ-FeOOH and Fe 3-δ O 4 (γ-Fe 2 O 3 ) for mild steel, and only α-FeOOH and γ-FeOOH for weathering steel. The X-ray amorphous substance in the rust payer formed on mild steel possesses the structures of mainly α-FeOOH showing superparamagnetism owing to its small particle size, and Fe 3-δ O 4 (γ-Fe 2 O 3 ). They are contained both in the inner rust layer and in the outer rust layer. The X-ray amorphous phase in the rust layer formed on weathering steel is mainly α-FeOOH. (author)

  20. A Study on the Low Temperature Brittleness by Cyclic Cooling-Heating of Low Carbon Hot Rolled Steel Plate

    International Nuclear Information System (INIS)

    Lee, Hyo Bok

    1979-01-01

    The ductile-brittle transition phenomenon of low carbon steel has been investigated using the standard Charpy V-notch specimen. Dry ice and acetone were used as refrigerants. Notched specimens were cut from the hot rolled plate produced at POSCO for the Olsen impact test. The effect of cyclic cooling and heating of 0.14% carbon steel on the embrittlement was extensively examined. The ductile-brittle transition temperature was found to be approximately-30 .deg. C. The transition temperature was gradually increased as the number of cooling-heating cycles increased. On a typical V-notch fracture surface it was found that the ductile fracture surface showed a thick and fibrous structure, while the brittle fracture surface a small and light grain with irregular disposition. As expected, the transition temperature was also increased as the carbon content of steel increased. Compared with the case of 0.14% carbon steel, the transition temperature of 0.17% carbon steel was found to be increased about 12 .deg. C

  1. Assessment of wall-thinning in carbon steel pipe by using laser-generated guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Yong; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, School of Mechanical Engineering, Busan (Korea, Republic of)

    2010-10-15

    The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were use dto estimate the size and location of wall thinning

  2. Assessment of wall-thinning in carbon steel pipe by using laser-generated guided wave

    International Nuclear Information System (INIS)

    Kim, Do Yong; Cho, Youn Ho; Lee, Joon Hyun

    2010-01-01

    The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were use dto estimate the size and location of wall thinning

  3. The hot working characteristics of a boron bearing and a conventional low carbon steel

    International Nuclear Information System (INIS)

    Stumpf, Waldo; Banks, Kevin

    2006-01-01

    Constitutive hot working constants were determined for an 11 ppm boron low carbon strip steel and compared from 875 to 1140 deg. C and strain rates of 0.001-2.5 s -1 to a high nitrogen low carbon strip steel. The boron steel showed a different hot working behaviour than the conventional steel with the steady state flow stress about 50-60% higher, the peak strain more than 50% higher and the eventual ferrite grain size about 40% smaller, if compared at the same temperature compensated strain rates or Z values. This difference persisted where the soaking temperature before compression was varied between 1140 and 1250 deg. C, proving that undissolved AlN in the boron-bearing steel was not responsible. With systematically varied linear cooling rates after hot working, the final ferrite grain size in the boron steel is finer and is independent of the two Z values applied during hot working. Retarded softening by dynamic recrystallisation during hot working in the boron containing steel is probably caused by boron solute drag of moving grain boundaries

  4. An Evaluation of Carbon Steel Corrosion Under Stagnant Seawater Conditions

    National Research Council Canada - National Science Library

    Lee, Jason

    2004-01-01

    Corrosion, of 1020 carbon steel coupons in, natural seawater over a six-month period was more aggressive under stagnant anaerobic conditions than stagnant aerobic conditions as measured by weight loss...

  5. Microstructure and Mechanical Properties of Austempered Medium-Carbon Spring Steel

    Science.gov (United States)

    Kim, Seong Hoon; Kim, Kwan-Ho; Bae, Chul-Min; Lee, Jae Sang; Suh, Dong-Woo

    2018-03-01

    Changes in microstructure and mechanical properties of medium-carbon spring steel during austempering were investigated. After austempering for 1 h at 290 °C or 330 °C, the bainite transformation stabilized austenite, and microstructure consisting of bainitic ferrite and austenite could be obtained after final cooling; the retained austenite fraction was smaller in the alloy austempered at 290 °C because carbon redistribution between bainitic ferrite and austenite slowed as the temperature decreased, and thereby gave persistent driving force for the bainite transformation. The products of tensile strength and reduction of area in the austempered alloy were much larger in the austempered steel than in quenched and tempered alloy, mainly because of significant increase in reduction of area in austempered alloy.

  6. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    Science.gov (United States)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  7. 78 FR 29113 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Science.gov (United States)

    2013-05-17

    ...-Quality Steel Plate Products From the Republic of Korea: Final Results of Antidumping Duty Administrative... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate products... duty order on certain cut-to-length carbon-quality steel plate products from the Republic of Korea...

  8. CO2 laser cladding of VERSAlloyTM on carbon steel with powder feeding

    International Nuclear Information System (INIS)

    Kim, Jae-Do; Kweon, Jin-Wook

    2007-01-01

    Laser cladding processing with metal powder feeding has been experimented on carbon steel with VERSAlloy TM . A special device for the metal powder feeding was designed and manufactured. By adopting proper cladding parameters, good clad layers and sound metallurgical bonding with the base metal were obtained. Analysis indicates that the micro hardness of clad layer and the heat-affected zone increased with increasing of cladding speed. The experimental results showed that VERSAlloy TM cladded well with carbon steel

  9. Effect of the dendritic morphology on hot tearing of carbon steels

    International Nuclear Information System (INIS)

    Ridolfi, M R

    2016-01-01

    Hot tears form during solidification in the brittle region of the dendritic front. Most hot tearing criteria are based on solid and fluid mechanics, being the phenomenon strictly depending on the solid resistance to applied strains and on the liquid capability of filling the void spaces. Modelling both mechanisms implies the precise description of the dendritic morphology. To this scope, the theory of coalescence of the dendritic arms at grain boundaries of Rappaz et al. has been applied, in this work, to the columnar growth of carbon steels by means of a simple mathematical model. Depending on the alloy composition, solid bridging starts at solid fractions down to about 0.8 and up to above 0.995 (very low carbon). The morphology of the brittle region changes drastically with increasing carbon and adding other solutes. In particular, ferritic dendrites, typical of low carbon steels, tend to offer short and wide interdendritic spaces to the surrounding liquid making possible their complete filling, and few solid bridges; peritectic steels show the rise of austenite growing and bridging rapidly in the interdendritic spaces, preventing void formation; austenitic dendrites form long and narrow interdendritic spaces difficult to reach for the liquid and with a lot of solid bridges. Sulphur addition mainly acts in delaying the coalescence end, more markedly in ferritic dendrites. (paper)

  10. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Certain Corrosion-Resistant... order on certain corrosion-resistant carbon steel flat products (``CORE'') from the Republic of Korea.... Scope of the Order The merchandise covered by the order includes flat-rolled carbon steel products, of...

  11. Thermoplastic liners for carbon steel pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mauyed S.; AlDossary, Abdullah K. [Saudi Aramco, Dhahran (Saudi Arabia)

    2009-12-19

    Materials selection for pipe and fittings used to convey corrosive fluids has often been a challenge. Traditionally, exotic Corrosion Resistant Alloys (CRA) have been used in corrosive environments despite their high cost. Plastic lined carbon steel piping offers a cost effective alternative to the use of CRAs by eliminating corrosion, significantly reducing the use of toxic chemicals and the heavy metal usually present in CRAs. Thermoplastic Liners offer the combination of corrosion resistance and mechanical strength, which are unachievable with singular materials. Under pressure conditions, the liner is fully supported by the metalwork, while under vacuum conditions, the liner must be thick enough along with venting system to withstand the collapsing forces created by the negative pressure. Plastic liners have been used successfully to line and protect metallic pipelines for many years and have become an indispensable requirement of the oil and gas industry particularly with water injection and hydrocarbon services. In the case of internally corroded pipes, the use of thermoplastic liners for rehabilitation is an option to extend the lifetime of companies' assets, reduce maintenance cost and increase intervals between T and Is. For new construction, plastic liners in carbon steel pipes can compete technically and economically with pipelines of CRA materials and other corrosion inhibition systems. This paper describes various design features, installations of thermoplastic liners in comparison to other corrosion inhibition methods. (author)

  12. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  13. X-ray photoelectron spectroscopy characterization of high dose carbon-implanted steel and titanium alloys

    Science.gov (United States)

    Viviente, J. L.; García, A.; Alonso, F.; Braceras, I.; Oñate, J. I.

    1999-04-01

    A study has been made of the depth dependence of the atomic fraction and chemical bonding states of AISI 440C martensitic stainless steel and Ti-6Al-4V alloy implanted with 75 keV C + at very high doses (above 10 18 ions cm -2), by means of X-ray photoelectron spectroscopy combined with an Ar + sputtering. A Gaussian-like carbon distribution was observed on both materials at the lowest implanted dose. More trapezoidal carbon depth-profiles were found with increasing implanted doses, and a pure carbon layer was observed only on the titanium alloy implanted at the highest dose. The implanted carbon was combined with both base metal and carbon itself to form metallic carbides and graphitic carbon. Furthermore, carbon-enriched carbides were also found by curve fitting the C 1s spectra. The titanium alloy showed a higher carbidic contribution than the steel implanted at the same C + doses. A critical carbon concentrations of about 33 at.% and 23 at.% were measured for the formation of C-C bonds in Ti-6Al-4V and steel samples, respectively. The carbon atoms were bound with metal to form carbidic compounds until these critical concentrations were reached; when this C concentration was exceeded the proportion of C-C bonds increased and resulted in the growth of carbonaceous layers.

  14. Formation of low friction and wear-resistant carbon coatings on tool steel by 75keV, high-dose carbon ion implantation

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Eskildsen, S.S.; Straede, C.A.; Chechenin, N.G.

    1994-01-01

    Hardened AISI D2 steel samples were subjected to mass-separated C + ion bombardment at 75keV with ion doses in the range 0.5-15x10 18 C + cm -2 . It was observed that sputtering was still limited, and the system exhibited internal growth, because most of the ions penetrated more than 0.1μm into the growing carbon film. At the lowest ion doses applied, carbon was implanted into the steel, while higher doses resulted in the implanted carbon concentration near the surface being almost 100%. For the highest doses applied, Rutherford backscattering spectrometry and surface profilometry analyses showed that layers about 0.5-1μm thick of almost pure carbon grew outward from the steel substrate. Transmission electron microscopy showed that the carbon layers were amorphous and exhibited an intermixed layer-substrate interface. The layers were hard and exhibited pronounced elastic recovery when subjected to ultralow load indentation. Low friction and excellent wear properties were measured when tested under dry conditions with a ball-on-disc tribometer. ((orig.))

  15. 77 FR 5240 - Light-Walled Welded Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty...

    Science.gov (United States)

    2012-02-02

    ... Rectangular Carbon Steel Tubing From Taiwan: Continuation of Antidumping Duty Order AGENCY: Import... revocation of the antidumping duty order on light-walled welded rectangular carbon steel tubing from Taiwan would likely lead to a continuation or recurrence of dumping and material injury to an industry in the...

  16. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography.

    Science.gov (United States)

    Boone, Marijn A; Nielsen, Peter; De Kock, Tim; Boone, Matthieu N; Quaghebeur, Mieke; Cnudde, Veerle

    2014-01-01

    Steel production is one of the largest contributors to industrial CO2 emissions. This industry also generates large amounts of solid byproducts, such as slag and sludge. In this study, fine grained stainless-steel slag (SSS) is valorized to produce compacts with high compressive strength without the use of a hydraulic binder. This carbonation process is investigated on a pore-scale level to identify how the mineral phases in the SSS react with CO2, where carbonates are formed, and what the impact of these changes is on the pore network of the carbonated SSS compact. In addition to conventional research techniques, high-resolution X-ray computed tomography (HRXCT) is applied to visualize and quantify the changes in situ during the carbonation process. The results show that carbonates mainly precipitate at grain contacts and in capillary pores and this precipitation has little effect on the connectivity of the pore space. This paper also demonstrates the use of a custom-designed polymer reaction cell that allows in situ HRXCT analysis of the carbonation process. This shows the distribution and influence of water and CO2 in the pore network on the carbonate precipitation and, thus, the influence on the compressive strength development of the waste material.

  17. Urine mutagenicity of steel workers exposed to coke oven emissions

    Energy Technology Data Exchange (ETDEWEB)

    De Meo, M.P.; Dumenil, G.; Botta, A.H.; Laget, M.; Zabaloueff, V.; Mathias, A.

    1987-03-01

    Urine mutagenicity of 19 individuals was investigated at a steel mill. All the subjects worked on the coal processing unit. Urine samples were collected at the end of a working day. Urine samples of two exposed workers were collected at the end of two periods of rest and two periods of working. Mutagens were extracted on XAD-2 resin and tested by the Salmonella microsomal assay and the SOS spot test. Mutagenic potencies of exposed smokers and exposed non-smokers were 8.62 +/- 6.56 and 1.1 +/- 0.48 revertants/mg creatinine respectively with Salmonella typhimurium strain TA98 + S9. Both values were significantly higher than those of unexposed smokers and non-smokers (5.07 +/- 3.33 and 0.47 +/- 0.72 revertants/mg creatinine respectively). The urinary mutagenic potency of the two exposed individuals increased at the end of periods of working (15.97 +/- 2.57 revertants/mg creatinine) and decreased at the end of periods of rest (12.31 +/- 2.45 revertants/mg creatinine). Urinary mutagens were detected with S. typhimurium strain TA100 + S9 to a lesser extent. No direct-acting mutagens were detected by the SOS spot test. Atmospheric benzo(a)pyrene (BaP) were also measured by h.p.l.c. on the coke battery. BaP concentrations ranged between 0.01 and 0.6 microgram/m3 air at the different working sites. Biological monitoring with short-term tests is discussed.

  18. Pitting corrosion resistance of a novel duplex alloy steel in alkali-activated slag extract in the presence of chloride ions

    Science.gov (United States)

    Shi, Jin-jie; Ming, Jing; Liu, Xin

    2017-10-01

    In this study, two types of reinforcing steels (conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions (ordinary Portland cement (OPC) extract and alkali-activated slag (AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various NaCl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.

  19. Corrosion behavior of carbon steel for overpack in groundwater containing bicarbonate ions

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu; Dong, Junpha

    2009-01-01

    Carbon steel is considered in Japan the candidate material for overpacks in high-level radioactive waste disposal. Effects of bicarbonate solutions on the corrosion behavior and corrosion products of carbon steel were investigated by electrochemical measurements, FT-IR and XRD analyses. The anodic polarization measurements showed that bicarbonate ions (HCO 3 - ) accelerated the anodic dissolution and the outer layer film formation of carbon steel in the case of high concentrations, on the other hand, it inhibited these processes in the case of low concentrations. The FT-IR and XRD analyses of the anodized film showed that siderite (FeCO 3 ) was formed in 0.5 to 1.0 mol/L bicarbonate solution, and Fe 2 (OH) 2 CO 3 in 0.1 to 0.2 mol/L bicarbonate solution, while Fe 6 (OH) 12 CO 3 was formed in 0.02 to 0.05 mol/L bicarbonate solutions. The stability of these corrosion products was able to be explained by using the actual potential-pH diagrams for the Fe-H 2 O-CO 2 system. (author)

  20. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.

  1. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete.

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-08-18

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored.

  2. FP corrosion dependence on carbon and chromium content in Fe-Cr steel

    International Nuclear Information System (INIS)

    Sasaki, Koei; Tanigaki, Takanori; Fukumoto, Ken-ichi; Uno, Masayoshi

    2015-01-01

    In an attempt to investigate Cs or Cs-Te corrosion dependence on chromium or carbon content in Fe-Cr steel, cesium and Cs-Te corrosion test were performed to three specimens, Fe-9Cr-0C, Fe-9Cr-0.14C and Fe-13Cr-0.14C, for 100 hours at 973K in simulated high burn-up fuel pin environment. Cesium corrosion depth has no dependence on chromium or carbon content in Fe-Cr steel. Cs-Te corrosion was appeared in only Fe-13Cr-0.14C which has chromium carbides ranged along grain boundary. Appearance of the Cs-Te corrosion was determined by distribution or arrangement of chromium carbides which depends on chromium and carbon content. (author)

  3. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    International Nuclear Information System (INIS)

    Kouli, M.-E.; Giannakis, M

    2016-01-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples. (paper)

  4. The efficiency of different types of wood charcoal on increasing carbon content on surfaces of low carbon steel in the pack carburizing process

    Directory of Open Access Journals (Sweden)

    Narongsak Thammachot

    2014-09-01

    Full Text Available The purpose of this research is to compare the efficiency of five types of wood charcoal, eucalyptus, coconut shell, tamarind, bamboo and cassava root in increasing carbon content on surfaces of low carbon steel by the pack carburizing process. The experiment for pack carburized low carbon steel (grade AISI 1020 was conducted by using the different wood charcoals as carburizers, mixed with 10% limestone (by weight as the energizer. The carburizing temperature of 950°C, and carburizing times of 2, 4 and 6 hours were used in the experiment. After grinding, the specimens in each case were checked for carbon content by optical emission spectroscopy. Micro-Vickers hardness testing and microstructure inspections were carried out. The results of the experiment showed that the efficiency of eucalyptus charcoal as the carburizer (for increasing carbon content on surfaces of low carbon steel was higher than that of tamarind, cassava root, coconut shell and bamboo charcoals. The averages for carbon content were: 1.16, 1.06, 0.97, 0.83 and 0.77% respectively.

  5. Study of benzotriazole as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Solehudin, Agus, E-mail: asolehudin@upi.edu [Department of Mechanical Engineering Education, Indonesia University of Education (UPI), Bandung, West Java (Indonesia); Nurdin, Isdiriayani [Department of Chemical Engineering, Bandung Institute of Technology, Bandung, West Java (Indonesia)

    2014-03-24

    Corrosion and inhibition studies on API 5LX65 carbon steel in chloride solution containing various concentrations of benzotriazole has been conducted at temperature of 70°C using Electrochemical Impedance Spectroscopy (EIS). Corroded carbon steel surface with and without inhibitor have been observed using X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive Spectroscopy (EDS). The objectives of this research are to study the performance of benzotriazole as corrosion inhibitors. The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H{sub 2}S at different BTAH concentrations showed that corrosion rate of carbon steel decreases with increasing of BTAH concentrations from 0 to 10 mmol/l. The inhibition efficiency of BTAH was found to be affected by its concentration. The optimum efficiency obtained of BTAH is 93% at concentration of 5 mmol/l. The result of XRD and EDS analysis reveal the iron sulfide (FeS) formation on corroded carbon steel surface without inhibitor. The EDS spectrum show the Nitrogen (N) bond on carbon steel surface inhibited by BTAH.

  6. Development of carbon steel with superior resistance to wall thinning and fracture for nuclear piping system

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2010-07-01

    Carbon steel is usually used for piping for secondary coolant system in nuclear power plant because of low cost and good machinability. However, it is generally reported that carbon steel was failed catastrophically because of its low resistance to wall thinning and fracture toughness. Especially, flow accelerated corrosion (FAC) is one of main problems of the wall thinning of piping in the nuclear power plant. Therefore, in this project, fabrication technology of new advanced carbon steel materials modified by dispersion of nano-carbide ceramics into the matrix is developed first in order to improve the resistance to wall thinning and fracture toughness drastically compared to the conventional one. In order to get highly wettable fine TiC ceramic particles into molten metal, the micro-sized TiC particles were first mechanically milled by Fe (MMed TiC/Fe) in a high energy ball mill machine in Ar gas atmosphere, and then mixed with surfactant metal elements (Sn, Cr, Ni) to obtain better wettability, as this lowered surface tension of the carbon steel melt. According to microscopic images revealed that an addition of MMed TiC/Fe-surfactant mixed powders favorably disperses the fine TiC particles in the carbon steel matrix. It was also found that the grain size refinement of the cast matrix is achieved remarkably when fine TiC particles were added due to the fact that they act as nucleation sites during the solidification process. As a results, a cast carbon steel dispersed with fine TiC particles shows improved mechanical properties such as hardness, tensile strength and cavitation resistance compared to that of without particles. However, the slight decrease of toughness was found

  7. Influence of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in bicarbonate/carbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-11-01

    The influences of temperature, chloride ions and chromium element on the electronic property of passive film formed on carbon steel in NaHCO{sub 3}/Na{sub 2}CO{sub 3} buffer solution are investigated by capacitance measurement and electrochemical impedance spectroscopy (EIS). The results show that the passive film appears n-type semiconductive character; with increasing the solution temperature, the addition of chromium into carbon steel and increasing the concentration of chloride ions, the slopes of Mott-Schottky plots decrease, which indicates the increment of the defect density in the passive film. EIS results show that the transfer impedance R{sub 1} and the diffusion impedance W decrease with increasing the solution temperature, with the addition of chromium into carbon steel and with increasing the chloride ions concentration. It can be concluded that the corrosion protection effect of passive film on the substrate decreases with increasing the solution temperature, adding chromium into carbon steel and increasing chloride ions concentration.

  8. corrosion response of low carbon steel in tropical road mud

    African Journals Online (AJOL)

    Dr Obe

    Corrosion Mitigation efforts using readily available anti- corrosion coatings to protect low carbon steel test coupons against the ... The following protective coating devices were effective: ..... 2 West, J.M (1986): Basic Corrosion and Oxidation,.

  9. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels

    International Nuclear Information System (INIS)

    Lewis, D.B.; Leyland, A.; Stevenson, P.R.; Cawley, J.; Matthews, A.

    1993-01-01

    We recently reported a novel low-temperature carbon diffusion technique for surface hardening of stainless steels. The treatment was shown to provide benefits in terms of abrasive wear resistance. There is also evidence to suggest that by performing diffusion treatments at low temperatures (i.e. below 400 C), these benefits can be achieved without compromising corrosion resistance. Here a variety of surface analysis and depth profiling techniques have been used to determine the physical and mechanical properties of carbon-rich layers produced on a range of stainless steel substrate materials. X-ray diffraction (XRD) was employed to determine the crystallographic structure, whilst wavelength dispersive X-ray analysis (WDX) and glow discharge optical spectroscopy (GDOS) gave information on the concentration and distribution of the diffused species within the treated layers. A variety of carbide-based structures was detected, including the expected M 23 C 6 and, more surprisingly, M 3 C. Optical and electron microscopy techniques were used to provide information on layer morphology. The surfaces produced by the low-temperature carbon-diffusion process generally exhibit a distinct diffusion layer of between 1 and 20 μm, depending on the material and the treatment conditions. Austenitic stainless steels appear to give the best response to treatment, however other types of stainless steel can be treated, particularly if the microstructure contains above 5% retained austenite. Here we discuss the changes in mechanical and metallurgical properties provided by this technique and its potential value for treatment of both austenitic and other stainless steel substrate materials. (orig.)

  10. Comparison of carbon footprints of steel versus concrete pipelines for water transmission.

    Science.gov (United States)

    Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie

    2016-05-01

    The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.

  11. Effect of commercial metals (Al, Cu, carbon steel, and Zn) on the oxidation of soy-biodiesel

    International Nuclear Information System (INIS)

    Díaz-Ballote, L; Castillo-Atoche, A; Maldonado, L; Ruiz-Gómez, M A; Hernández, E

    2016-01-01

    The effect of aluminum, copper, low carbon steel and zinc on the oxidation of biodiesel derived from soybean oil is studied using residual mass curves from thermogravimetry. Biodiesel is oxidized in the presence and absence of each metal in static conditions and exposed to ambient air. Oxidized biodiesel parameters are confirmed by viscosity measurements, nuclear magnetic resonance and Fourier transform infrared spectroscopy. The results showed that the metals do not negatively influence the oxidative stability of biodiesel and it can even be considered that they slightly inhibit the oxidation process. This behavior was ascribed to a depletion of dissolved oxygen in biodiesel due to oxidation of the metal and the low solubility of oxygen at high temperature. (paper)

  12. A quality approach to maintain the properties of S235 JR structural carbon steel in Lebanon

    International Nuclear Information System (INIS)

    Sidawi, J.A.; Al Khatib, H.

    2004-01-01

    Full text.S235JR carbon steel is one of the most popular steels used in Lebanon. It is imported by steel dealers and is widely used by all fabricators and manufacturers of steels for many structural purposes and applications. This kind of steel has good ductile properties as well as excellent weldability. It is still known by its previous designation St 37-2 or E 24-2. S235JR is produced in many shapes and thicknesses such as steel plates, sheets, angles and different other geometric shapes. Standard chemical and mechanical tests were conducted and reported on S235JR hot-rolled structural low-carbon mild steel specimens collected from Lebanese steel market. The main objective of this work is to assure the compliance of these properties with those set by the steel manufacturer. The above mentioned tests were performed at the laboratories of the Industrial Research Institute (IR) in Lebanon to assure the quality and credibility of the results. related European and American standards were presented as references and compared with the achieved results. Discussion was presented to show the similarities and differences between S235JR steel samples and standard requirements. Some of the reasons for such differences were discussed. Sufficient data was furnished through this work for the public and mainly for the Lebanese Standard Organization LIBNOR to easily adopt and implement the EN 10025:1993 European standard that can be applied in Lebanon concerning the most commonly used hot rolled low carbon structural steel. A follow up concerning adopting and implementing EN 10025:1993 will be briefed

  13. Preparation of diamond like carbon thin film on stainless steel and ...

    Indian Academy of Sciences (India)

    Diamond-like carbon; buffer layer; plasma CVD; surface characterization; biomedical applications. Abstract. We report the formation of a very smooth, continuous and homogeneous diamond-like carbon DLC thin coating over a bare stainless steel surface without the need for a thin Si/Cr/Ni/Mo/W/TiN/TiC interfacial layer.

  14. Measurement of carbon activity in sodium and steel and the behaviour of carbon-bearing species

    International Nuclear Information System (INIS)

    Rajendran Pillai, S.; Ranganathan, R.; Mathews, C.K.

    1988-01-01

    Carburization or decarburization of structural materials in a sodium system depends on the local differences in carbon activity. The behaviour of carbon-bearing species in sodium influences its carbon activity. In order to understand the behaviour of carbon in these systems, an electrochemical carbon meter was fabricated in our laboratory. The original version of this meter was capable of operating in the temperature range of 850-980 K. Studies are carried out to extend this lower limit of temperature. Employing the carbon meter, experiments were carried out to understand the behaviour of carbon-bearing species. Gas equilibration experiments were also carried out with the same view. A new method for measuring the carbon activity in steels are described which employs the carbon meter. A review on these investigations and the conclusions reached on the behaviour of carbon in fast reactor loops are described

  15. 77 FR 37711 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam...

    Science.gov (United States)

    2012-06-22

    ...)] Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam...-fair-value imports from India, Oman, the United Arab Emirates, and Vietnam of circular welded carbon... respect to circular welded carbon-quality steel pipe from Oman and the United Arab Emirates being sold in...

  16. 75 FR 69125 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China

    Science.gov (United States)

    2010-11-10

    ... with material injury by reason of imports from China of certain seamless carbon and alloy steel standard, line, and pressure pipe (``seamless SLP pipe''), provided for in subheadings 7304.19.10, 7304.19... Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China Determination On the basis of...

  17. Effect of microstructural variation on the Cu/CK45 carbon steel friction weld joint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.B.; Jung, S.B. [Advanced Materials and Process Research Center for IT, Sungkyunkwan Univ., Gyounggi-do (Korea)

    2003-12-01

    The mechanical properties of friction-welded pure Cu/CK45 carbon steel joints have been studied. The joint strength increased with increasing upset pressure till it reached a critical value. However, the joint strength was fixed at a low strength with increasing friction time, compared to that of the Cu base metal. The hardness near the interface at the Cu side was softer than that of the base metal due to the dynamically recrystallized and annealed grain. The width of the softened region became wider with increasing friction time and decreasing upset pressure. But the hardness of the CK45 carbon steel side showed a slightly higher value than that of the base metal. This result was explained by the formation of martensite structure at the CK45 carbon steel side during the welding process. (orig.)

  18. Vanadium Effect on a Medium Carbon Forging Steel

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  19. Influence of the impurities on the depth of penetration with carbon steel weldings

    Directory of Open Access Journals (Sweden)

    O. Savytsky

    2014-04-01

    Full Text Available In this paper the results of the research about the influence of the impurities on the depth of penetration with carbon steels weldings of different chemical composition are presented. These data suggest that presence of those impurities, such as sulphure and oxygen, in the steel, increases the depth of penetration to 1,3 - 1,5 times compared to welding refined steels. Applying activating fluxes for welding high tensile steels, provides an increase in the depth of penetration of 2 - 3 times.

  20. Corrosion of carbon steel and low-alloy steel in diluted seawater containing hydrazine under gamma-rays irradiation

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamamoto, Masahiro; Tsukada, Takashi

    2014-01-01

    Seawater was injected into reactor cores of Units 1, 2, and 3 in the Fukushima Daiichi nuclear power station as an urgent coolant. It is considered that the injected seawater causes corrosion of steels of the reactor pressure vessel and primary containment vessel. To investigate the effects of gamma-rays irradiation on weight loss in carbon steel and low-alloy steel, corrosion tests were performed in diluted seawater at 50°C under gamma-rays irradiation. Specimens were irradiated with dose rates of 4.4 kGy/h and 0.2 kGy/h. To evaluate the effects of hydrazine (N 2 H 4 ) on the reduction of oxygen and hydrogen peroxide, N 2 H 4 was added to the diluted seawater. In the diluted seawater without N 2 H 4 , weight loss in the steels irradiated with 0.2 kGy/h was similar to that in the unirradiated steels, and weight loss in the steels irradiated with 4.4 kGy/h increased to approximate 1.7 times of those in the unirradiated steels. Weight loss in the steels irradiated in the diluted seawater containing N 2 H 4 was similar to that in the diluted seawater without N 2 H 4 . When N 2 was introduced into the gas phase in the flasks during gamma-rays irradiation, weight loss in the steels decreased. (author)

  1. Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Park, Eun-Kwang; Kim, Kyeong-Yeol; Lee, Min-Ku; Rhee, Chang-Kyu

    2014-01-01

    Carbon steel dispersed with nano-sized TiC ceramic particles was fabricated using the liquid metal casting process by means of their ex-situ introduction. For this purpose, the nano-sized TiC powders with an initial average size of 40 nm were first mechanically activated with two metal powders (Fe, Ni) and then introduced externally into the molten carbon steel during the casting process. According to the chemical composition analysis, 90% of the initial TiC nanoparticles were discovered within the cast carbon steel. Compared to cast carbon steel without TiC nanoparticles, the grain size refinement and mechanical property enhancement were achieved. Atom probe tomographic analysis revealed that the TiC nanoparticles were approximately 30 nm in size in the carbon steel matrix with a number density of 1.49×10 21 m −3

  2. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time Limit for Preliminary Results of... countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea. See Countervailing...

  3. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  4. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  5. Holographic interferometry as electrochemical emission spectroscopy of carbon steel in seawater with low concentration of RA-41 corrosion inhibitor

    International Nuclear Information System (INIS)

    Habib, K.; Al-Muhana, K.; Habib, A.

    2009-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the number of the fringe evolutions during the corrosion test of carbon steel in blank seawater and with seawater with different concentrations of a corrosion inhibitor. In other words, the anodic dissolution behaviors (corrosion) of the carbon steel were determined simultaneously by holographic interferometry, an electromagnetic method, and by the electrochemical impedance (EI) spectroscopy, an electronic method. So, the abrupt rate change of the number of the fringe evolutions during corrosion test (EI) spectroscopy, of the carbon steel is called electrochemical emission spectroscopy. The corrosion process of the steel samples was carried out in blank seawater and seawater with different concentrations, 5-20 ppm, of RA-41 corrosion inhibitor using the EI spectroscopy method, at room temperature. The electrochemical emission spectra of the carbon steel in different solutions represent a detailed picture of the rate change of the anodic dissolution of the steel throughout the corrosion processes. Furthermore, the optical interferometry data of the carbon steel were compared to the data, which were obtained from the EI spectroscopy. Consequently, holographic interferometric is found very useful for monitoring the anodic dissolution behaviors of metals, in which the number of the fringe evolutions of the steel samples can be determined in situ. (Author)

  6. Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels

    International Nuclear Information System (INIS)

    Marashi, P.; Pouranvari, M.; Amirabdollahian, S.; Abedi, A.; Goodarzi, M.

    2008-01-01

    Resistance spot welding was used to join austenitic stainless steel and galvanized low carbon steel. The relationship between failure mode and weld fusion zone characteristics (size and microstructure) was studied. It was found that spot weld strength in the pullout failure mode is controlled by the strength and fusion zone size of the galvanized steel side. The hardness of the fusion zone which is governed by the dilution between two base metals, and fusion zone size of galvanized carbon steel side are dominant factors in determining the failure mode

  7. Numerical predictions of dry oxidation of iron and low-carbon steel at moderately elevated temperatures

    International Nuclear Information System (INIS)

    Henshall, G.A.

    1996-11-01

    Wrought and cast low-carbon steel are candidate materials for the thick (e.g. 10 cm) outer barrier of nuclear waste packages being considered for use in the potential geological repository at Yucca Mountain. Dry oxidation is possible at the moderately elevated temperatures expected at the container surface (323-533 K or 50-260 C). Numerical predictions of dry oxidation damage were made based on experimental data for iron and low-carbon steel and parabolic oxidation theory. The Forward Euler method was implemented to integrate the parabolic rate law for arbitrary, complex temperature histories. Assuming growth of a defect-free, adherent oxide, the surface penetration of a low-carbon steel barrier following 5000 years of exposure to a severe, but repository-relevant, temperature history is predicted to be only about 0.127 mm, less than 0.13% of the expected container thickness of 10 cm. Allowing the oxide to spall upon reaching a critical thickness increases the predicted metal penetration values, but degradation is still computed to be negligible. Thus, dry oxidation is not expected to significantly degrade the performance of thick, corrosion allowance barriers constructed of low-carbon steel

  8. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    International Nuclear Information System (INIS)

    Flores, Eugenio A.; Olivares, Octavio; Likhanova, Natalya V.; Dominguez-Aguilar, Marco A.; Nava, Noel; Guzman-Lucero, Diego; Corrales, Monica

    2011-01-01

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 o C. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe +2 complexes and Fe +2 chelates with phthalamates prevented steel from further corrosion.

  9. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for the Preliminary Results of...

  10. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  11. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of...

  12. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Science.gov (United States)

    2012-04-27

    ...-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time Limits for Preliminary...) orders on corrosion-resistant carbon steel flat products (CORE) from Germany and South Korea (Korea... from Germany and South Korea: Adequacy Redetermination Memorandum,'' (April 20, 2012). The preliminary...

  13. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  14. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  15. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-350 and 731-TA-616 and 618 (Third Review)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five-Year Reviews... corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion...

  16. 76 FR 68208 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, United Arab Emirates, and Vietnam...

    Science.gov (United States)

    2011-11-03

    ... (Preliminary)] Circular Welded Carbon-Quality Steel Pipe From India, Oman, United Arab Emirates, and Vietnam... carbon-quality steel pipe from India, Oman, United Arab Emirates, and Vietnam, provided for in... Governments of India, Oman, United Arab Emirates, and Vietnam. Unless the Department of Commerce extends the...

  17. Effects of carbon content and chromium segregation on creep rupture properties of low carbon and medium nitrogen type 316 stainless steel

    International Nuclear Information System (INIS)

    Nakazawa, Takanori; Fujita, Nobuhiro; Kimura, Hidetaka; Komatsu, Hajime; Kotoh, Hiroyuki; Kaguchi, Hitoshi.

    1997-01-01

    The creep rupture properties of type 316 stainless steels containing 0.005-0.022%C and 0.07%N have been investigated at 550degC and 600degC from the aspect of the grain boundary carbide precipitation which was changed with carbon content and chromium segregation. A small amount of carbide precipitated on grain boundaries during creep, because the solubility limit of the carbide is less than 0.005%. The creep rupture ductility of this steel increased with the reduction of carbon content from 0.010% to 0.005% while it decreased with increasing carbon content from 0.010% to 0.020%. Since the amount of grain boundary carbide decreased with reducing carbon content, the increase in ductility was due to the suppression of grain boundary embrittlement caused by the carbide. The creep rupture ductility of this steel was also improved by reducing chromium segregation. This behavior was attributed to the change in carbide morphology from concentrated type to dispersed one, which reduced the grain boundary embrittlement. (author)

  18. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Kai; Wang, Yibo [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-08-15

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enriched region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.

  19. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  20. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions

    International Nuclear Information System (INIS)

    Zheng, Haibing; Li, Weihua; Ma, Fubin; Kong, Qinglin

    2014-01-01

    In the present work, the performance of an amino alcohol based surface applied inhibitor was studied by the electrochemical techniques in saturated Ca(OH) 2 solutions. The surface morphology of the carbon steel was observed by scanning electron microscope, and the energy diffraction spectrum was also tested. Results showed that the inhibitor used in this work demonstrated obvious inhibition efficiency on the carbon steel in saturated Ca(OH) 2 solutions. The inhibition mechanism of the inhibitor lies in the quick adsorption of the active component on carbon steel surface

  1. Yttrium implantation effects on extra low carbon steel and pure iron

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Clermont-Ferrand-2 Univ., Le Puy en Velay (France). Lab. Vellave d`Elaboration; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Advanced Materials, Joint Research Center, The European Commission, 21020, Ispra (Vatican City State, Holy See) (Italy); Josse-Courty, C. [Laboratoire de Recherche sur la Reactivite des Solides, UMR 56-13 CNRS, UFR Sciences et Techniques, 9 Avenue A. Savary, B.P. 400, 21011, Dijon Cedex (France)

    1999-05-25

    Extra low carbon steel and pure electrolytic iron samples were yttrium implanted using ion implantation technique. Compositions and structures of pure iron and steel samples were investigated before and after yttrium implantation by several analytical and structural techniques (RBS, SIMS, RHEED and XRD) to observe the yttrium implantation depth profiles in the samples. This paper shows the different effects of yttrium implantations (compositions and structures) according to the implanted sample nature. (orig.) 23 refs.

  2. Corrosion Inhibitor of Carbon Steel from Onion Peel Extract

    Directory of Open Access Journals (Sweden)

    Muhammad Samsudin Asep

    2018-01-01

    Full Text Available Carbon steels composed by two main elements, they are iron (Fe and carbon (C elements which widely used in industrial because of its resistance and more affordable than stainless steel, but their weakness is they have low corrosion resistance. One way to modify carbon steel is by coating them with antioxidant compounds that can delay, slow down, and prevent lipid oxidation process, which obtained from onion peel extract. Several studies on corrosion inhibitors have been performed. However, the efficiency was not reach the optimum. This study aims to examine the effect of onion peel extract concentration on the efficiency of corrosion inhibitor and characterization of the green corrosion inhibitor from onion peel extract. This research method begins by extracting onion peel to 200 ml solvent which we use aquadest and methanol and mixed with 5 grams of crushed onion peel, then let them be extracted for 60 minutes with room temperature. Once it was filtered and the solution obtained, followed by evaporating process with rotary evaporator to decrease the content of solvent. The product is ready to be used as a green corrosion inhibitor of carbon steel in 1 mol/L HCl. While the analysis used is HPLC qualitative analysis, and electroplatting process. The impedance is measured at a frequency of 100 kHz to 4 mHz with an AC current of 10mV. Inhibitor concentrations are vary between 2 ml and 4 ml of onion peel extract. Electroplatting is done within 30 minutes with 10 minutes each checking time. Furthermore, quantitative analysis was done for the analysis of corrosion rate and weight loss. Based on HPLC analysis, it is known that the extract of onion peel contains 1mg/L of quercetin, which is belong to flavonoid group as green inhibitor. While electroplatting process, aquadest solvent having average efficiency of 99,57% for 2 ml of extract, and 99,60% for 4 ml of extract. Methanol solvent having average efficiency of 99,52% for 2 ml of extract and 99

  3. Pathways to a low-carbon iron and steel industry in the medium-term : the case of Germany

    NARCIS (Netherlands)

    Arens, Marlene; Worrell, Ernst; Eichhammer, Wolfgang; Hasanbeigi, Ali; Zhang, Qi

    2017-01-01

    The iron and steel industry is a major industrial emitter of carbon dioxide globally and in Germany. If European and German climate targets were set as equal proportional reduction targets (referred to here as “flat” targets) among sectors, the German steel industry would have to reduce its carbon

  4. Zn-10.2% Fe coating over carbon steel atmospheric corrosion resistance. Comparison with zinc coating

    International Nuclear Information System (INIS)

    Arnau, G.; Gimenez, E.; Rubio, M.V.; Saura, J.J.; Suay, J.J.

    1998-01-01

    Zn-10.2% Fe galvanized coating versus hot galvanized coating over carbon steel corrosion performance has been studied. Different periods of atmospheric exposures in various Valencia Community sites, and salt spray accelerated test have been done. Carbon steel test samples have been used simultaneously in order to classify exposure atmosphere corrosivity, and environmental exposure atmosphere characteristics have been analyzed. Corrosion Velocity versus environmental parameters has been obtained. (Author) 17 refs

  5. Preliminary study on the corrosion behavior of carbon steel in Horonobe groundwater environment

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kogawa, Noritaka; Maeda, Kazuto

    2006-08-01

    It is necessary to understand the corrosion behavior of candidate overpack materials to plan the in-situ engineered barrier test at underground laboratory constructing at Horonobe and to design the overpacks suitable to Horonobe environment. The preliminary corrosion tests of carbon steel which is a candidate material for overpacks were carried out using artificial groundwater and actual groundwater sampled at Horonobe. As the results of anodic polarization experiments, the anodic polarization curves of carbon steel in buffer material were active dissolution type, and the corrosion type of carbon steel in Horonobe groundwater environment was expected to be general corrosion. The results of immersion test under air equilibrium condition showed that the degrees of corrosion localization were not exceeded the data obtained in previous studies. The trend of corrosion rates in buffer material under anaerobic condition were similar to the data obtained in previous studies. Based on the experimental results, it was confirmed that the corrosion assessment model and assumed corrosion rate in second progress report (H12 report) can be applied to the assessment for Horonobe groundwater condition. (author)

  6. Microstructure and mechanical properties of internal crack healing in a low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Ruishan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Ma, Qingxian, E-mail: maqxdme@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China); Li, Weiqi [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The behavior of internal crack healing in a low carbon steel at elevated temperatures was investigated. The internal cracks were introduced into low carbon steel samples via the drilling and compression method. The microstructure of crack healing zone was observed using optical microscopy and scanning electron microscopy. The mechanical properties of crack healing zone at room temperature were tested. The results show that there are two mechanisms of crack healing in the low carbon steel. Crack healing is caused by atomic diffusion at lower temperatures, and mainly depends on recrystallization and grain growth at higher temperatures. The microstructural evolution of crack healing zone can be divided into four stages, and the fracture morphology of crack healing zone can be classified into five stages. At the initial healing stage, the fracture exhibits brittle or low ductile dimple fracture. The ultimate fracture mode is dimple and quasi-cleavage mixed fracture. Fine grain microstructures improve the ultimate tensile strength of crack healing zone, which is even higher than that of the matrix. The strength recovery rate is higher than that of the plasticity.

  7. Effect of carbonate in slightly alkaline medium on the corrosion of maraging steel

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-01-01

    This study was carried out to ascertain the behavior of maraging steel identified as AMS. 65-12 and used in the tanks of the French plant for the reprocessing of radioactive water. This water has a pH of 9 and contains carbonate ions. The rest or corrosion potentials can be in the transpassive or active region due to radiolytic species. Therefore, the behavior of maraging steel was studied in these two regions. In the neighborhood of the active-passive transition potentials, maraging steel is corroded by means of intermediates. The corrosion potential does not change with carbonate at a constant pH. With carbonate and a low scan rate, the breakdown transpassive potentials are displaced towards more positive potentials and the passive potential region is broader, while at a high scan rate these potentials are displaced towards more negative values. After the beginning of the reverse scan, the current is again positive. These suggest that the corrosion kinetics are not the same. The diffusion coefficient of species inside the oxide layer was determined. ((orig.))

  8. Rapid nickel diffusion in cold-worked carbon steel at 320-450 °C

    Science.gov (United States)

    Arioka, Koji; Iijima, Yoshiaki; Miyamoto, Tomoki

    2015-11-01

    The diffusion coefficient of nickel in cold-worked carbon steel was determined with the diffusion couple method in the temperature range between 320 and 450 °C. Diffusion couple was prepared by electro-less nickel plating on the surface of a 20% cold-worked carbon steel. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time to 12,000 h. The diffusion coefficient (DNi) of nickel in cold-worked carbon steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 0% of nickel. The temperature dependence of DNi is expressed by DNi = (4.5 + 5.7/-2.5) × 10-11 exp (-146 ± 4 kJ mol-1/RT) m2s-1. The value of DNi at 320 °C is four orders of magnitude higher than the lattice diffusion coefficient of nickel in iron. The activation energy 146 kJ mol-1 is 54% of the activation energy 270.4 kJ mol-1 for lattice diffusion of nickel in the ferromagnetic state iron.

  9. Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere

    International Nuclear Information System (INIS)

    Li, Q.X.; Wang, Z.Y.; Han, W.; Han, E.H.

    2008-01-01

    The product formed on weathering steel exposed to salt lake atmosphere for 12 months was investigated by X-ray diffraction (XRD), infrared transmission spectroscopy (IRS), scanning electron microscopy (SEM), electron probe micro analyzer (EPMA) and electrochemical techniques. The rust was mainly composed of β-FeOOH, Fe 8 (O,OH) 16 Cl 1.3 and a little γ-FeOOH. Amorphous δ-FeOOH was only on skyward surface. The rust layer suppressed anodic reaction and facilitated the cathodic reaction. The very small value of rust resistance R r in this work indicated that the rust had poor protective ability. Cl element was rich in the whole rust layer and played an important role in accelerating the corrosion of weathering steel in salt lake atmosphere

  10. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2006-01-01

    Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of

  11. Mass attenuation coefficients, effective atomic and electron numbers of stainless steel and carbon steels with different energies

    International Nuclear Information System (INIS)

    Mohd Fakarudin Abdul Rahman; Mohd Iqbal Saripan; Nor Paiza Mohamad Hasan; Ismail Mustapha

    2011-01-01

    The total mass attenuation coefficients (μ/ ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Z eff ) and electron (N eff ) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Z eff and N eff were in good agreement. (author)

  12. Methods of making bainitic steel materials

    Science.gov (United States)

    Bakas, Michael Paul; Chu, Henry Shiu-Hung; Zagula, Thomas Andrew; Langhorst, Benjamin Robert

    2018-01-16

    Methods of making bainitic steels may involve austenitizing a quantity of steel by exposing the quantity of steel to a first temperature. A composition of the quantity of steel may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstatten ferrite. The quantity of steel may be heat-treated to form bainite by exposing the quantity of steel to a second, lower temperature. The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast.

  13. Comparison between instrumented precracked Charpy and compact specimen tests of carbon steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1980-01-01

    The General Atomic Company High Temperature Gas-Cooled Reactor (HTGR) is housed within a prestressed concrete reactor vessel (PCRV). Various carbon steel structural members serve as closures at penetrations in the vessel. A program of testing and evaluation is underway to determine the need for reference fracture toughness (K/sub IR/) and indexing procedures for these materials as described in Appendix G to Section III, ASME Code for light water reactor steels. The materials of interest are carbon steel forgings (SA508, Class 1) and plates (SA537, Classes 1 and 2) as well as weldments of these steels. The fracture toughness behavior is characterized with instrumented precracked Charpy V-votch specimens (PCVN) - slow-bend and dynamic - and compact specimens (10-mm and 25-mm thicknesses) using both linear elastic (ASTM E399) and elastic-plastic (equivalent Energy and J-Integral) analytical procedures. For the dynamic PCVN tests, force-time traces are analyzed according to the procedures of the Pressure Vessel Research Council (PVRC)/Metal Properties Council (MPC). Testing and analytical procedures are discussed and PCVN results are compared to those obtained with compact specimens

  14. Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition

    Directory of Open Access Journals (Sweden)

    Mingxing Zhou

    2017-07-01

    Full Text Available Two low carbon carbide-free bainitic steels (with and without Cr addition were designed, and each steel was treated by two kinds of heat treatment procedure (austempering and continuous cooling. The effects of Cr addition on bainitic transformation, microstructure, and properties of low carbon bainitic steels were investigated by dilatometry, metallography, X-ray diffraction, and a tensile test. The results show that Cr addition hinders the isothermal bainitic transformation, and this effect is more significant at higher transformation temperatures. In addition, Cr addition increases the tensile strength and elongation simultaneously for austempering treatment at a lower temperature. However, when the austempering temperature is higher, the strength increases and the elongation obviously decreases by Cr addition, resulting in the decrease in the product of tensile strength and elongation. Meanwhile, the austempering temperature should be lower in Cr-added steel than that in Cr-free steel in order to obtain better comprehensive properties. Moreover, for the continuous cooling treatment in the present study, the product of tensile strength and elongation significantly decreases with Cr addition due to more amounts of martensite.

  15. FATIGUE BEHAVIOR OF HOT-ROLLED STEEL INTENDED FOR COLD FORMING

    Directory of Open Access Journals (Sweden)

    Gejza Rosenberg

    2011-07-01

    Full Text Available In the work, there are presented measured tension and fatigue properties of eight low-carbon steels moulded in form of 20 kg ingots that were processed by controlled regime of rolling /cooling and then exposed to simulated effect of two coiling temperatures. The experimental results presented in the work show, that steels with ferrite-martensite or ferrite-bainitic microstructure have in comparison to ferrite-pearlitic or ferrite-carbidic microstructure better strength-plastic properties, but worse resistance to cyclic loading.

  16. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-06-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  17. Martensitic transformation and stress partitioning in a high-carbon steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Grumsen, Flemming Bjerg; Pantleon, Karen

    2012-01-01

    Martensitic transformation in a high-carbon steel was investigated with (synchrotron) X-ray diffraction at sub-zero Celsius temperature. In situ angular X-ray diffraction was applied to: (i) quantitatively determine the fractions of retained austenite and martensite; and (ii) measure the evolutio...

  18. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... Brazil and Japan, and the suspended investigation on hot-rolled steel from Russia. SUMMARY: The... Japan, and the suspended investigation on hot-rolled steel from Russia would be likely to lead to...

  19. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-10-12

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... antidumping duty investigation on hot-rolled steel from Russia. SUMMARY: The Commission hereby gives notice of... suspended investigation on hot-rolled steel from Russia would be likely to lead to continuation or...

  20. 78 FR 16252 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results...

    Science.gov (United States)

    2013-03-14

    ... Indonesia P.T. Krakatau Steel 10.21 All Others 10.21 Thailand Sahaviriya Steel Industries Public Company...] Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results of... products (``HR steel'') from India, Indonesia, and Thailand pursuant to section 751(c) of the Tariff Act of...

  1. Kinetics of electrochemical boriding of low carbon steel

    International Nuclear Information System (INIS)

    Kartal, G.; Eryilmaz, O.L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-01-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2 B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  2. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  3. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    Science.gov (United States)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  4. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  5. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Bellayer, S.; Vogt, J.B. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.fr [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-05-16

    Highlights: {yields} C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. {yields} RF plasma treatment enables nitriding for non-heated substrates. {yields} The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. {yields} Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe{sub x}N. {yields} The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N{sub 2} gas. Surface characterizations before and after N{sub 2} plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 {mu}m for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV{sub 0.005} at a plasma processing time of 8 h.

  6. Corrosion Performance of Carbon Steel in Simulated Pore Solution in the Presence of Micelles

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; De Wit, J.H.W.; Kolev, H.; Van Breugel, K.

    2011-01-01

    This study presents the results on the investigation of the corrosion behavior of carbon steel in model alkaline medium in the presence of very low concentration of polymeric nanoaggregates [0.0024 wt % polyethylene oxide (PEO)113-b-PS70 micelles]. The steel electrodes were investigated in chloride

  7. Microstructure Evolution and Chemical Analysis on Carbon Steels and Fe-Cr-Mo Alloys after FAC Simulation Tests

    International Nuclear Information System (INIS)

    Kim, Seunghyun; Kim, Taeho; Lee, Yun Ju; Kim, Ji Hyun

    2017-01-01

    Flow-accelerated corrosion (FAC) is an environment assisted degradation of structural materials, which usually occurs in pipelines of power plants. There have been many studies to investigate the fundamental mechanism and corresponding countermeasures against FAC, and recently the carbon steels have been replaced by ASTM A 335 P22, which contains approximately 2.2 wt.% of Cr and 1 wt.% of Mo. By enhancing passivity of P22 by Cr, it is reported that FAC rate has been greatly reduced. However, while corrosion behavior of Fe-based alloys is relatively well known, their behavior under high-temperature flowing water is not well investigated. In other words, effects of Cr and its corrosion and oxidation behavior is not clearly revealed. Furthermore, it is known that Mo enhances the pitting corrosion resistance of alloys however its mechanism is not clearly investigated. Recently, replacement of Mo in alloy contents has been widely studied because of the cost of Mo. Carbon steels undergo severe environmental-assisted degradation behavior so called FAC, and as its countermeasure the carbon steel has been replaced by P22 which contains Cr and Mo. It is generally known that Cr and Mo enhances passivity of Fe-based alloys however their corrosion and oxidation behavior has not been fully investigated especially in high-temperature flowing water environments. In this study, we employed HRTEM and synchrotron XAS techniques in order to investigate detailed microstructure evolution and chemical bonding of the commercialized carbon steel and the Fe-Cr-Mo alloys. From the analysis, it is found that while carbon steels exhibit porous oxide P22 exhibit oxide structures with thin Cr-rich oxide and spinel. Therefore, carbon steel undergoes severe FAC compared to P22 however effects of Cr and Mo and their behavior in high-temperature flowing water will be investigated.

  8. Porous stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sabrina de Fátima Ferreira Mariotto

    2011-01-01

    Full Text Available Porous 316L austenitic stainless steel was synthesized by powder metallurgy with relative density of 0.50 and 0.30 using 15 and 30 wt. (% respectively of ammonium carbonate and ammonium bicarbonate as foaming agents. The powders were mixed in a planetary ball mill at 60 rpm for 10 minutes. The samples were uniaxially pressed at 287 MPa and subsequently vacuum heat treated in two stages, the first one at 200 ºC for 5 hours to decompose the carbonate and the second one at 1150 ºC for 2 hours to sinter the steel. The sintered samples had a close porous structure and a multimodal pore size distribution that varied with the foaming agent and its concentration. The samples obtained by addition of 30 wt. (% of foaming agents had a more homogeneous porous structure than that obtained with 15 wt. (%. The MTT cytotoxicity test (3-[4,5-dimethylthiazol]-2,5-diphenyltetrazolium bromide was used to evaluate the mitochondrial activity of L929 cells with samples for periods of 24, 48, and 72 hours. The cytotoxicity test showed that the steel foams were not toxic to fibroblast culture. The sample with the best cellular growth, therefore the most suitable for biomedical applications among those studied in this work, was produced with 30 wt. (% ammonium carbonate. In this sample, cell development was observed after 48 hours of incubation, and there was adhesion and spreading on the material after 72 hours. Electrochemical experiments using a chloride-containing medium were performed on steel foams and compared to massive steel. The massive steel had a better corrosion performance than the foams as the porosity contributes to increase the surface area exposed to the corrosive medium.

  9. Paying the full price of steel – Perspectives on the cost of reducing carbon dioxide emissions from the steel industry

    International Nuclear Information System (INIS)

    Rootzén, Johan; Johnsson, Filip

    2016-01-01

    This study examines the impacts felt downstream of carbon pricing and investments made in CO_2 abatement within the steel industry. Using the supply of steel to a passenger car as a case study, the effects of a steel price increase on cost structures and price at each step of the supply chain were assessed. Since the prices of emission allowances under the European Union Emissions Trading System fall well below those required to unlock investments in low-CO_2 production processes in the integrated steelmaking industry this paper seeks to pave the way for a discussion on complementary policy options. The results of the analysis suggest that passing on the compliance costs of the steel industry would have only marginal impacts on costs and prices for the end-use sectors (e.g., on the production cost or selling price of the passenger car). Under the assumptions made herein, at a carbon price of 100 €/tCO_2, the retail price of a mid-sized European passenger car would have to be increased by approximately 100–125 €/car (<0.5%) to cover the projected increases in steel production costs. - Highlights: • Examines impacts downstream of investments in CO_2 abatement in the steel industry. • Show how investing in low-CO_2 processes have marginal impacts in end-user stage. • Increase in the retail price of a mid-sized passenger car would be well below 1%. • Open up for complementary policies, financing mechanisms or new business models.

  10. 75 FR 1335 - Circular Welded Carbon Steel Pipes and Tubes from Taiwan; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-01-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-008] Circular Welded Carbon Steel... review of the antidumping duty order on circular welded carbon steel pipes and tubes from Taiwan.\\1\\ On... review within the original time frame because we require additional time to obtain information from the...

  11. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  12. Corrosion behaviors and contact resistances of the low-carbon steel bipolar plate with a chromized coating containing carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ching-Yuan; Ger, Ming-Der [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China); Wu, Min-Sheng [Department of Weapon System Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-His, Tao-Yuan, 335 (China)

    2009-08-15

    This work improved the surface performance of low-carbon steel AISI 1020 by a reforming pack chromization process at low temperature (700 C) and investigated the possibility that the modified steels are used as metal bipolar plates (BPP) of PEMFCs. The steel surface was activated by electrical discharge machining (EDM) with different currents before the chromizing procedure. Experimental results indicate that a dense and homogenous Cr-rich layer is formed on the EDM carbon steels by pack chromization. The chromized coating pretreated with electrical discharge currents of 2 A has the lowest corrosion current density, 5.78 x 10{sup -8} Acm{sup -2}, evaluated by potentiodynamic polarization in a 0.5 M H{sub 2}SO{sub 4} solution and the smallest interfacial contact resistance (ICR), 11.8 m{omega}-cm{sup 2}, at 140 N/cm{sup 2}. The carbon steel with a coating containing carbides and nitrides is promising for application as metal BPPs, and this report presents the first research in producing BPPs with carbon steels. (author)

  13. Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel

    International Nuclear Information System (INIS)

    Wei, Hai-lian; Liu, Guo-quan; Xiao, Xiang; Zhang, Ming-he

    2013-01-01

    The dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel was systematically investigated at the temperatures from 900 °C to 1100 °C and strain rates from 0.01 s −1 to 10 s −1 on a Gleeble-1500 thermo-simulation machine. The flow stress constitutive equation of hot deformation for this steel was developed with the activation energy Q being about 273 kJ/mol, which is in reasonable agreement with those reported before. Activation energy analysis showed that vanadium addition in microalloyed steels seemed not to affect the activation energy much. The effect of Zener–Hollomon parameter on the characteristic points of flow curves was studied using the power law relation, and the dependence of critical strain (stress) on peak strain (stress) obeyed a linear equation. Dynamic recrystallization is the most important softening mechanism for the experimental steel during hot compression. The dynamic recrystallization kinetics model of this steel was established based on flow stress and a frequently-used dynamic recrystallization kinetics equation. Dynamic recrystallization microstructure under different deformation conditions was also observed and the dependence of steady-state grain size on the Zener–Hollomon parameter was plotted

  14. Magnetic property variation in carbon steel and chrome-molybdenum steel as a function of uniaxial stress noncoaxial with the magnetic field (abstract)

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kaminski, D.A.; Jiles, D.C.; Biner, S.B.

    1993-01-01

    Magnescope 1 magnetic measurements were made on carbon steel specimens ranging from 0.1--0.8 wt %C and on chrome-molybdenum steel specimens cut from electric power plant pipes previously in service. The carbon steel specimens were heat-treated using three procedures: (1) spheroidization, (2) quenching, and (3) quench and tempering. The specimens were subjected to uniaxial tension up to 40 ksi. The inspection head was aligned so that the magnetic field was oriented at different angles with respect to the stress axis. Magnetic properties (such as coercivity and maximum differential permeability) were extracted from digitized magnetic hysteresis loop measurements. Magnetic properties were studied as a function of stress at each angle of stress-field orientation. To our knowledge, such a comprehensive study of noncoaxial stress and field effects has never been accomplished before for such a wide variety of steel specimens. Results for the various materials are presented for different orientation angles and compared to numerical results from the noncoaxial magnetomechanical hysteresis model of Sablik et al. 2

  15. 77 FR 15718 - Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman, the United Arab...

    Science.gov (United States)

    2012-03-16

    ...-811] Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman, the United Arab... Oman (Oman), the United Arab Emirates (UAE), and the Socialist Republic of Vietnam (Vietnam). See Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman, the United Arab Emirates, and...

  16. 77 FR 73674 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, The United Arab Emirates, and Vietnam

    Science.gov (United States)

    2012-12-11

    ...)] Circular Welded Carbon-Quality Steel Pipe From India, Oman, The United Arab Emirates, and Vietnam... welded carbon-quality steel pipe from India, Oman, the United Arab Emirates, and Vietnam, provided for in... from India, Oman, the United Arab Emirates, and Vietnam were subsidized and/or dumped within the...

  17. 76 FR 78313 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam

    Science.gov (United States)

    2011-12-16

    ... (Preliminary)] Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and... India, Oman, the United Arab Emirates, and Vietnam of circular welded carbon- quality steel pipe... the Governments of India, Oman, the United Arab Emirates, and Vietnam.\\2\\ \\1\\ The record is defined in...

  18. Hydrogen degradation of 21-6-9 and medium carbon steel by disc pressure test

    International Nuclear Information System (INIS)

    Zhou, D.H.; Zhou, W.X.; Xu, Z.L.

    1986-01-01

    This paper reports the method of disc pressure test and the results for 21-6-9 stainless steel and medium carbon steel in hydrogen gas with different pressures and time of storage. The results show the hydrogen induced degradation of these two kinds of steel. An attempt was made to establish an index which uses variation of area of deformed disc to determine the degradation of ductility in a hydrogen environment. (orig.)

  19. Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys

    Directory of Open Access Journals (Sweden)

    Masafumi Matsushita

    2011-07-01

    Full Text Available Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride.

  20. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  1. Corrosion Inhibition of the Galvanic Couple Copper-Carbon Steel in Reverse Osmosis Water

    Directory of Open Access Journals (Sweden)

    Irene Carrillo

    2011-01-01

    Full Text Available The purpose of this paper is to evaluate the electrochemical behaviour of corrosion inhibition of the copper-carbon steel galvanic couple (Cu-CS, exposed to reverse osmosis water (RO used for rinsing of heat exchangers for heavy duty machinery, during manufacture. Molybdate and nitrite salts were utilized to evaluate the inhibition behaviour under galvanic couple conditions. Cu-CS couple was used as working electrodes to measure open circuit potential (OCP, potentiodynamic polarization (PP, and electrochemical impedance spectroscopy (EIS. The surface conditions were characterized by scanning electron microscopy (SEM and electron dispersive X-ray spectroscopy (EDS. The most effective concentration ratio between molybdate and nitrite corrosion inhibitors was determined. The morphological study indicated molybdate deposition on the anodic sites of the galvanic couple. The design of molybdate-based corrosion inhibitor developed in the present work should be applied to control galvanic corrosion of the Cu-CS couple during cleaning in the manufacture of heat exchangers.

  2. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    OpenAIRE

    Mejía, Ignacio; Bedolla Jacuinde, Arnoldo; Maldonado, Cuauhtémoc; Cabrera Marrero, José M.

    2011-01-01

    The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 ◦C) at a constant true strain rate of 0.001 s−1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless,...

  3. Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium

    Science.gov (United States)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2018-01-01

    The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.

  4. Modeling the wire-EDM process parameters for EN-8 carbon steel ...

    African Journals Online (AJOL)

    Modeling the wire-EDM process parameters for EN-8 carbon steel using .... The neural networks has been developed with the help of MATLAB 8.1 (R13) package .... Now, Simulation and Prediction will be performed using the trained network.

  5. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  6. Corrosion of carbon steel under anaerobic conditions in a repository for SF and HLW in Opalinus Clay. Technical report 08-12

    International Nuclear Information System (INIS)

    King, F.

    2008-10-01

    Nagra is considering carbon steel as one of the canister material options for the disposal of high level waste and spent fuel in a deep geological repository in Opalinus Clay. Following a brief period of aerobic conditions, the canister will be exposed to an anaerobic environment for much of its service life. Knowledge of the rate of anaerobic corrosion is important not only for estimating the canister lifetime but also for determining the rate of hydrogen generation. This report describes a critical review of the anaerobic corrosion behaviour of carbon steel under environmental conditions similar to those expected in the repository. The aims of the report are: 1. to recommend a (range of) long-term anaerobic corrosion rate(s) for carbon steel canisters, and 2. to justify the use of this rate in safety assessments based on a mechanistic understanding of the structure and properties of the protective corrosion product films. The review is based on selected studies from various national nuclear waste management programs, supplemented where appropriate with studies from other applications and with evidence from archaeological analogues. The corrosion rate of carbon steel decreases with time because of the formation of a protective surface film. There are differences in behaviour in bulk solution and in the presence of compacted bentonite. In bulk solution, the corrosion rate decreases to an apparent steady-state rate after a period of approximately six months, with a long-term rate of the order of 0.1 μm·.yr -1 . The surface film comprises a duplex structure, with a magnetite outer layer and a spinel-type inner layer. In compacted clay systems the rate of decrease in corrosion rate is slower, with steady state not being reached after several years of exposure. There is a significant body of evidence from apparently well-conducted experiments that indicate an anaerobic corrosion rate of the order of 1-2 μm·yr -1 in systems containing compacted clay and the

  7. Outdoor corrosion of zinc coated carbon steel, determined by thin layer activation

    International Nuclear Information System (INIS)

    Agostini, M.L.; Laguzzi, G.; De Cristofaro, N.; Stroosnijder, M.F.

    2001-01-01

    Thin Layer Activation was applied in the frame of a European programme addressed to the evaluation of the corrosion the behaviour of different steels. This included outdoor exposure of zinc coated carbon steel in a rural-marine climatic environment, for a period of several months. The zinc layer of specimens was 10 micrometers thick. For the TLA studies 65Zn radio nuclides were produced along the full depth of the coating, by a cyclotron accelerated deuteron beam. For quantification of the material release, activity versus depth was determined using different thickness of Zn coatings on top the carbon steel. After exposure corrosion product were removed from the surface using a pickling solution and the residual activity was determined by gamma spectrometry. The high sensitivity of the method allowed the evaluation of relatively small thickness losses (i.e. 1.2 micrometer). Thickness loss results, obtained by the TLA method, were compared with those arising from the Atomic Absorption analysis of zinc detected in the pickling solutions. A good agreement was observed between the different methods

  8. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  9. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface

    Science.gov (United States)

    Zhang, Bin; Xue, Yong; Qiang, Li; Gao, Kaixong; Liu, Qiao; Yang, Baoping; Liang, Aiming; Zhang, Junyan

    2017-11-01

    Friction properties of carbon nanotubes have been widely studied and reported, however, the friction properties of carbon nanotubes related on state of itself. It is showing superlubricity under nanoscale, but indicates high shear adhesion as aligned carbon nanotube film. However, friction properties under high load (which is commonly in industry) of carbon nanotube films are seldom reported. In this paper, carbon nanotube films, via mechanical rubbing method, were obtained and its tribology properties were investigated at high load of 5 to 15 N. Though different couple pairs were employed, the friction coefficients of carbon nanotube films are nearly the same. Compared with bare stainless steel, friction coefficients and wear rates under carbon nanotube films lubrication reduced to, at least, 1/5 and 1/(4.3-14.5), respectively. Friction test as well as structure study were carried out to reveal the mechanism of the significant reduction wear and friction on steel surface. One can conclude that sliding and densifying of carbon nanotubes at sliding interface contribute to the sufficient decrease of friction coefficients and wear rates.

  10. Some observations on the carburization of type 316 stainless steel foil in a low carbon activity sodium environment

    International Nuclear Information System (INIS)

    Thorley, A.W.; Jeffcoat, P.J.

    1982-01-01

    Work currently being undertaken to establish the equilibrium composition of carbides which form in stainless steel foils during their exposure to low carbon activity sodium environment is described. The time it takes the carbon to reach equilibrium during exposure to sodium of different carbon activity is discussed. The lowest carbon activity measureable in test loops where the sodium is just above carburizing to stainless steel is reported. Analytical techniques are used to determine the composition of the carbide and the austenite matrix and hence estimate the carbon activity of the equilibrium structure. This provides a comparison with carbon activity values determined by alternative methods such as the Harwell Carbon Meter and nickel tab techniques

  11. The development of RFT technique for carbon steel tubes in balance-of-plant heat exchangers

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Kim, Han Jong; Moon, Yong Sick; Kim, Jae Dong; Kim, Wang Bae; Nam, Min Woo

    2005-01-01

    The NDT method of carbon steel tubes is applied RFT technique. As other NDT methods, It is surprising that RFT has been rapidly developed over the past decade. These improvements have resulted in multi-frequency system, dual driver probes and development of analysis technique. Also these improvements give some profit to power plants as well as general industry. Therefore, the purpose of this study is to improve the reliability of RFT technique for carbon steel tubes. To uplift RFT technique, probes, calibration standards and specimen was developed.

  12. A coupled carbonation-rust formation mechanical damage model for steel corrosion in reinforced concrete

    International Nuclear Information System (INIS)

    Nguyen, Huyen; Bary, B.; L'Hostis, Valerie; DeLarrard, T.

    2014-01-01

    This paper aims at presenting a strategy to simulate the corrosion of steel reinforcement due to carbonation of concrete in atmospheric environment. We propose a model coupling drying, carbonation, diffusion of oxygen, formation of rust and mechanics to describe these phenomena. The rust layer is assumed to be composed of two sub-layers with different elastic modulus. An unstable layer with a low modulus (from 0.1 to 5 GPa) is located next to the transformed medium, and another more stable one with a higher modulus (from 100 to 150 GPa) at the interface with steel reinforcement. This model is applied to a numerical meso-structure composed of 4 phases: mortar matrix, randomly distributed aggregates, steel rebar and rust layers to underline the effect of aggregates on damage initiation and corresponding crack pattern of concrete cover. (authors)

  13. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki [and others

    1997-04-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  14. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    International Nuclear Information System (INIS)

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki

    1997-01-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program

  15. CO{sub 2} corrosion resistance of carbon steel in relation with microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, Nathalie, E-mail: nochoa@usb.ve [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Vega, Carlos [Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Aptdo., 89000, Caracas (Venezuela, Bolivarian Republic of); Pébère, Nadine; Lacaze, Jacques [Université de Toulouse, CIRIMAT, UPS/INPT/CNRS, ENSIACET, 4 Allée Emile Monso, CS 44362, 31030 Toulouse Cedex 4 (France); Brito, Joaquín L. [Laboratorio de Físico-química de Superficies, Centro de Química, Instituto Venezolano de Investigaciones Cientificas (IVIC), Carretera Panamericana, Km 11, Altos de Pipe, Estado Miranda (Venezuela, Bolivarian Republic of)

    2015-04-15

    The microstructural effects on the corrosion resistance of an API 5L X42 carbon steel in 0.5 M NaCl solution saturated with CO{sub 2} was investigated. Four microstructures were considered: banded (B), normalized (N), quenched and tempered (Q&T), and annealed (A). Electrochemical measurements (polarization curves and electrochemical impedance spectroscopy) were coupled with surface analyses (scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS)) to characterize the formation of the corrosion product layers. Electrochemical results revealed that corrosion resistance increased in the following order: B < N < Q&T < A. From the polarization curves it was shown that specifically, cathodic current densities were affected by microstructural changes. SEM images indicated that ferrite dissolved earlier than cementite and a thin layer of corrosion products was deposited on the steel surface. XPS analyses revealed that this layer was composed of a mixture of iron carbonate and non-dissolved cementite. It was also found that the quantity of FeCO{sub 3} content on the steel surface was greater for Q&T and A microstructures. These results, in agreement with the electrochemical data, indicate that the deposition mechanism of iron carbonate is closely related to the morphology of the non-dissolved cementite, determining the protective properties of the corrosion product layers. - Highlights: • The effect of change in microstructure on CO{sub 2} corrosion resistance was evaluated. • An API 5LX 42 carbon steel was immersed in a 0.5 M NaCl solution saturated with CO{sub 2}. • Banded, normalized, quenched-tempered and annealed microstructures were considered. • Electrochemical measurements were coupled with surface analysis. • Morphology and distribution of undissolved Fe{sub 3}C control corrosion kinetics.

  16. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    Science.gov (United States)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  17. The CCT diagrams of ultra low carbon bainitic steels and their impact toughness properties

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Jeziorski, L.

    1998-01-01

    The CCT diagrams of ULCB N i steels, HN3MV, HN3MVCu having 5.1% Ni and 3.5% Ni and Cu bearing steels; HN3M1.5Cu, HSLA 100 have been determined. The reduced carbon concentration in steel, in order to prevent the formation of cementite, allowed for using nickel, manganese, chromium and molybdenum to enhance hardenability and refinement of the bainitic microstructures by lowering B S temperature. Copper and microadditions of vanadium and niobium are successfully used for precipitation strengthening of steel both in thermomechanically or heat treated conditions. Very good fracture toughness at low temperatures and high yield strength properties of HN3MVCu and HN3MV steels allowed for fulfillment of the requirements for steel plates for pressure vessels and cryogenic applications. (author)

  18. Evaluation of carbons exposed to the Three Mile Island accident

    International Nuclear Information System (INIS)

    Deitz, V.R.; Romans, J.B.; Bellamy, R.R.

    1981-01-01

    One of the lines of defense that served to mitigate the radiological effects of the accident at Three Mile Island was the activated carbon installed in ventilation air flows. Filters in the Auxiliary and Fuel Handling Buildings of Unit 2 adsorbed tens to hundreds of curies of iodine-131, preventing the release to the environment. The carbon exposed to the accident has been replaced and the spent carbon has been analyzed in the laboratory. Independent analyses were performed for the two filter trains in both the Auxiliary and Fuel Handling Buildings, replaced at various times after the accident. The results of these analyses are compared to new (unexposed) carbons

  19. Depositing Nickel-based Hardfacing to Join Carbon Steel and Cast Iron

    Directory of Open Access Journals (Sweden)

    Tomás Fernández-Columbié

    2016-10-01

    Full Text Available The objective of this investigation is to determine the micro-structural behavior of a joint between cast iron and carbon steel by depositing a nickel-based substrate in the carbon steel. The filler was added through Shielded Metal Arc Welding using Castec 3099 (UTP 8 electrodes while the base materials were joined through Gas Tungsten Arc Welding with ER 70S – A1 bare electrodes. The Schaeffler diagram was used to analyze the chemical composition of the resulting weld beads. The results of the analysis performed on the welded area and the heat influence zone indicated the formation of acicular structures near the welded line when Castec 3099 electrodes are used and the formation of skeletal ferrite on the heat influence zone during the application of this welding process. An austenitic mixture is formed when ER 70S – A1 electrodes are used.

  20. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Straede, C.A.

    1992-01-01

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x10 18 ions cm -2 ). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  1. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  2. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  3. Marine Atmospheric Corrosion of Carbon Steel: A Review

    OpenAIRE

    Alc?ntara, Jenifer; de la Fuente, Daniel; Chico, Bel?n; Simancas, Joaqu?n; D?az, Iv?n; Morcillo, Manuel

    2017-01-01

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter’s great importance to human society. About half of the world’s population lives in coastal regions and the industrialisation of developing countries tends to concentrate production pl...

  4. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  5. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  6. Hot corrosion behaviour of austenitic steel-303 in molten chloride and carbonate salts

    International Nuclear Information System (INIS)

    Mohd Misbahul Amin; Shamsul Baharin Jamaludin; Che Mohd Ruzaidi Ghazali; Khairel Rafezi Ahmad

    2007-01-01

    The investigations are presented for the hot corrosion behaviors of Austenitic Steel-303, under influence of the molten chloride and carbonate salts viz KCl and K 2 CO 3 , oxidised at 1123 K for the period of 60 hour at atmospheric condition. The oxidation kinetic are effect of molten chloride and carbonate salts deposition on the oxidation rate were determined. The susceptibility to suffer a deleterious attack on the alloy by internal corrosion increases with increasing the time. In general, the corrosion resistance austenitic steel-303 in molten carbonate salts is much higher than chloride melt, being an active oxidizing agent providing oxygen during fluxing reaction. However, due to profuse evolution of CO/ CO 2 heavy mass losses are observed during corrosion and scales are porous. The test included mass change monitoring and surface layers were examined by means of scanning electron microscopy (SEM) studies. (author)

  7. Corrosion control of carbon steel using inhibitor of banana peel extract in acid diluted solutions

    Science.gov (United States)

    Komalasari; Utami, S. P.; Fermi, M. I.; Aziz, Y.; Irianti, R. S.

    2018-04-01

    Issues of corrosion happened in pipes, it was used as fluid transportation in the chemical industry. Corrosion cannot be preventing, however it could be controlled or blocked. Inhibitor addition is one of the method to control the corrosion inside the pipe. Corrosion inhibitors consisted of inorganic and organic compound inhibitors. Organic inhibitor is composed from synthetic and natural material. This study focused to evaluate the inhibition’s efficiency from banana peel to carbon steel in different concentration of inhibitor and immersing time in acid solution variation. The research employed inhibitor concentration of 0 gram/liter, 2 gram/liter, 4 gram/liter and 6 gram/liter, immersed time of carbon steel for 2, 4, 6, 8 and 10 hours. It was immersed in chloride acid solution of 0.5 M and 1.5 M. Carbon Steel AISI 4041 was used as specimen steel. Results were analyzed using corrosion rate evaluation for each specimens and inhibitor efficiencies determination. It was found that the specimen without inhibitor yielded fast corrosion rate in long immersing time and high concentration of HCl. However, the specimens with inhibitor gave lowest corrosion rate which was 78.59% for 6 gram/litre and 10 hours in 0.5 M HCl.

  8. Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder

    International Nuclear Information System (INIS)

    Park, Tae Jun; Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

    2012-01-01

    Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work

  9. Comparative Study of API 5L X60 and ASTM 572 Gr50 Steel Exposed to Crude Oil and Seawater

    Directory of Open Access Journals (Sweden)

    Marcy Viviana Chiquillo Márquez

    2018-04-01

    Full Text Available In the petroleum industry, the biphasic conditions in storage and separation tanks allow that the material to remain exposed to two different environments, causing its deterioration. In this article, an evaluation is made of the corrosive behavior and Vickers microhardness (HV of two high strength low alloy (HSLA steels and how their surfaces are characterized. The ASTM 572 Gr50 steel showed a lower corrosion rate in all systems after being immersed for 720 and 1440 hours. Characterizing the surface by means of Scanning Electron Microscopy (SEM showed uniform and localized corrosion for the both steels, and revealed that the ASTM 572 Gr50 steel shows pitting corrosion in crude oil systems. The electrochemical results revealed that the corrosion potential of API X60 steel was more negative; however the ASTM 572 Gr50 steel had a higher current density and a lower polarization resistance when immersed in an oil/seawater mixture. It also observed that, after being immersed in the corrosive fluids, the microstructures of the steels were not modified and variations in their microhardness (HV were minute.

  10. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  11. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  12. Behavior of portal frames of steel hollow sections exposed to fire

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This paper presents a numerical study concerning the behavior of hollow sections steel portal frames exposed to fire. A model is developed to employ both thermal and structural responses incorporating material and geometric non-linearities. To establish the failure mechanism of a frame under fire conditions, a failure criterion is proposed and validated against available experimental data. The failure temperatures predicted through the suggested failure criterion show good agreement compared to the experimental results. A parametric study is then conducted using the calibrated model to focus on failure mechanisms and associated failure temperatures. Variables considered are fire condition and rafter’s inclination angle. The assessment of frame performance is based on the generated failure mechanism and enhancement of failure temperature due to the chosen parameters. Results indicate that the studied variables strongly affect the failure mechanisms of portal frames. Contradictory, their effects on the failure temperature are minimal. Finally, the study presents vital outlines for the designer to find out and hence trace the failure mechanism prior to the completion of the final design stage. Only at this point, the optimum fire protection or adequate section capacity can be accomplished and may seriously be implemented in the field of industrial steel constructions.

  13. A serviceability approach for carbon steel piping to intermittent high temperatures

    International Nuclear Information System (INIS)

    Ratiu, M.D.; Moisidis, N.T.

    1996-01-01

    Carbon steel piping (e.g., ASME SA-106, SA-53), is installed in many industrial applications (i.e. diesel generator at NPP) where the internal gas flow subjects the piping to successive short time exposures at elevated temperatures up to 1,100 F. A typical design of this piping without consideration for creep-fatigue cumulative damage is at least incomplete if not inappropriate. Also, a design for creep-fatigue, usually employed for long-term exposure to elevated temperatures, would be too conservative and will impose replacement of the carbon steel piping with heat-resistant CrMo steel piping. The existing ASME Standard procedures do not explicitly provide acceptance criteria for the design qualification to withstand these intermittent exposures to elevated temperatures. The serviceability qualification proposed is based on the evaluation of equivalent full temperature cycles which are presumed/expected to be experienced by the exhaust piping during the design operating life of the diesel engine. The proposed serviceability analysis consists of: (a) determination of the permissible stress at elevated temperatures, and (b) estimation of creep-fatigue damage for the total expected cycles of elevated temperature exposures following the procedure provided in ASME Code Cases N-253-6 and N-47-28

  14. The relationship between microbial metabolic activity and biocorrosion of carbon steel.

    Science.gov (United States)

    Dzierzewicz, Z; Cwalina, B; Chodurek, E; Wilczok, T

    1997-12-01

    The effect of metabolic activity (expressed by generation time, rate of H2S production and the activity of hydrogenase and adenosine phosphosulphate (APS)-reductase enzymes) of the 8 wild strains of Desulfovibrio desulfuricans and of their resistance to metal ions (Hg2+, Cu2+, Mn2+, Zn2+, Ni2+, Cr3+) on the rate of corrosion of carbon steel was studied. The medium containing lactate as the carbon source and sulphate as the electron acceptor was used for bacterial metabolic activity examination and in corrosive assays. Bacterial growth inhibition by metal ions was investigated in the sulphate-free medium. The rate of H2S production was approximately directly proportional to the specific activities of the investigated enzymes. These activities were inversely proportional to the generation time. The rate of microbiologically induced corrosion (MIC) of carbon steel was directly proportional to bacterial resistance to metal ions (correlation coefficient r = 0.95). The correlation between the MIC rate and the activity of enzymes tested, although weaker, was also observed (r = 0.41 for APS-reductase; r = 0.69 for hydrogenase; critical value rc = 0.30, p = 0.05, n = 40).

  15. Comparison of the monotonic and cyclic mechanical properties of ultrafine-grained low carbon steels processed by continuous and conventional equal channel angular pressing

    International Nuclear Information System (INIS)

    Niendorf, T.; Böhner, A.; Höppel, H.W.; Göken, M.; Valiev, R.Z.; Maier, H.J.

    2013-01-01

    Highlights: ► UFG low-carbon steel was successfully processed by continuous ECAP-Conform. ► Continuously processed UFG steel shows high performance. ► High monotonic strength and good ductility. ► Microstructural stability under cyclic loading in the LCF regime. ► Established concepts can be used for predicting the properties. - Abstract: In the current study the mechanical properties of ultra-fine grained low carbon steel processed by conventional equal channel angular pressing and a continuous equal channel angular pressing-Conform process were investigated. Both monotonic and cyclic properties were determined for the steel in either condition and found to be very similar. Microstructural analyses employing electron backscatter diffraction were used for comparison of the low carbon steels processed by either technique. Both steels feature very similar grain sizes and misorientation angle distributions. With respect to fatigue life the low carbon steel investigated shows properties similar to ultra-fine grained interstitial-free steel processed by conventional equal channel angular pressing, and thus, the general fatigue behavior can be addressed following the same routines as proposed for interstitial-free steel. In conclusion, the continuously processed material exhibits very promising properties, and thus, equal channel angular pressing-Conform is a promising tool for production of ultra-fine grained steels in a large quantity

  16. An assessment of carbon steel overpacks for radioactive waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Bland, I.D.; Taylor, K.J.; Sharland, S.; Tasker, P.

    1986-01-01

    The report summarizes the results obtained at Harwell in the second phase of a project evaluating the corrosion behaviour of high-level waste overpacks in geological disposal. It has concentrated on the use of carbon steel in granitic and argillaceous environments, and has aimed at estimating the corrosion allowance required to achieve a 1000-year overpack life. Experimental and mathematical modelling studies have indicated that 200 mm of steel should be more than sufficient to prevent overpack penetration by general or localized corrosion. A theoretical assessment of the possible effects of micro-organisms on overpack corrosion has concluded that such species are likely to be found in repositories, but that only a fraction of their population should be corrosive towards carbon steel. Making the pessimistic assumption that all organic carbon in a 500 mm bentonite backfill is utilized by corrosive sulphate reducing bacteria, it has been estimated that this will result in an additional metal loss of 13 mm. One form of corrosion which cannot be dealt with by the corrosion allowance approach is stress corrosion cracking, since even at the lowest reported propagation rates, a metal thickness exceeding 3 m would be penetrated in 1000 years. It has been concluded that the possibility of stress corrosion cannot be dismissed, but, because the process requires a certain minimum stress level before it can occur, it should be possible to avoid the problem by giving the overpacks a stress relief heat treatment. Tests in a model environment have shown that a heat treatment designed to reduce fabrication stresses to 50% of the yield strengh should be sufficient to prevent cracking. It is recommended that this conclusion be substantiated by scaled-up experiments with model overpacks. The report draws further attention to degradation by hydrogen embrittlement

  17. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    Science.gov (United States)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  18. Study of occupational health impact of atmospheric pollution on exposed workers at an iron and steel complex by using neutron activation analysis of scalp hair

    International Nuclear Information System (INIS)

    Chai, Z.F.; Qian, Q.F.; Feng, X.Q.; Zhang, P.Q.; Liu, N.Q.; Feng, W.Y.

    2004-01-01

    The occupational health impact of atmospheric pollution on exposed workers at one iron and steel complex was studied by instrumental neutron activation analysis of workers' hair samples and medical examination. The experimental results indicate that there is a positive correlation between the high inhalation amounts of iron and other trace elements by the exposed workers and the symptom of their high blood pressure and hypoglycemia, which implies that the atmospheric environment polluted by iron and steel industry has an adverse health impact on the exposed workers. The measures to relieve and abate the occupational diseases caused by air-borne particulate matter should be taken. (author)

  19. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    Science.gov (United States)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  20. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Sherar, B.W.A. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Power, I.M. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Keech, P.G.; Mitlin, S. [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada); Southam, G. [Department of Earth Sciences, University of Western Ontario, London, ON, N6A 5B7 (Canada); Shoesmith, D.W., E-mail: dwshoesm@uwo.c [Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 (Canada)

    2011-03-15

    Research highlights: Compares inorganic sulfide and sulfate reducing bacteria (SRB) on steel corrosion. Mackinawite was the dominant iron sulfide phase. SRBs can form nanowires, presumably grown to acquire energy. - Abstract: This article compares the electrochemical effects induced by inorganic sulfide and sulfate reducing bacteria on the corrosion of carbon steel - a subject of concern for pipelines. Biological microcosms, containing varying concentrations of bioorganic content, were studied to investigate changes to the morphology of biofilms and corrosion product deposits. Raman analysis indicated mackinawite (FeS{sub 1-x}) was the dominant iron sulfide phase grown both abiotically and biotically. A fascinating feature of biological media, void of an organic electron donor, was the formation of putative nanowires that may be grown to acquire energy from carbon steel by promoting the measured cathodic reaction.

  1. Analysis of corrosion products of carbon steel in wet bentonite

    International Nuclear Information System (INIS)

    Osada, K.; Nagano, T.; Kozai, N.; Nakashima, S.; Nakayama, S.; Muraoka, S.

    1991-01-01

    The following conclusions were obtained; (1) At 40degC, the average corrosion rate of SS41 carbon steel in wet bentonite was 0.025 mm/y. This is smaller than the value of 0.042 mm/y obtained in pure water at 40degC. However, at 95degC, the corrosion rate of SS41 carbon steel in wet bentonite was 0.27 mm/y, which is much larger than that in pure water at 95degC. (2) At 95degC, γ-FeO(OH) (lepidocrocite) was formed only in wet bentonite, and it was absent in pure water. Evaporation of moisture resulted in the formation of partial covering of bentonite, which promoted local corrosion. Consequently, γ-FeO(OH) was considered to be formed. (3) In wet bentonite at 95degC, α-Fe 2 O 3 (hematite) can be identified by means of colorimetry. The color of corrosion products is orangish, indicating the contribution of α-Fe 2 O 3 in iron hydroxides. (author)

  2. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity

    International Nuclear Information System (INIS)

    Schutz, Marta K.; Moreira, Rebeca; Tribollet, Bernard; Vivier, Vincent; Bildstein, Olivier; Lartigue, Jean-Eric; Libert, Marie; Schlegel, Michel L.

    2014-01-01

    The availability of respiratory substrates, such as H 2 and Fe(II,III) solid corrosion products within nuclear waste repository, will sustain the activities of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB). This may have a direct effect on the rate of carbon steel corrosion. This study investigates the effects of Shewanella oneidensis (an HOB and IRB model organism) on the corrosion rate by looking at carbon steel dissolution in the presence of H 2 as the sole electron donor. Bacterial effect is evaluated by means of geochemical and electrochemical techniques. Both showed that the corrosion rate is enhanced by a factor of 2-3 in the presence of bacteria. The geochemical experiments indicated that the composition and crystallinity of the solid corrosion products (magnetite and vivianite) are modified by bacteria. Moreover, the electrochemical experiments evidenced that the bacterial activity can be stimulated when H 2 is generated in a small confinement volume. In this case, a higher corrosion rate and mineralization (vivianite) on the carbon steel surface were observed. The results suggest that the mechanism likely to influence the corrosion rate is the bioreduction of Fe(III) from magnetite coupled to the H 2 oxidation. (authors)

  3. Effect of magnesium ions on the initial oxidation stages of carbon steel

    International Nuclear Information System (INIS)

    Subramanian, H.; Subramanian, Veena; Rangarajan, S.; Narasimhan, S.V.; Velmurugan, S.

    2012-09-01

    Metal Ion Passivation (MIP) is a technique in which passivating ions get into the oxide of structural materials and modifies the oxide in such a way as to reduce the corrosion and corrosion release rates. Magnesium ions are found to be efficient in passivating carbon steel. This study is an attempt to understand the role of magnesium ions during the early stage of film growth on carbon steel. The study reveals that in the presence of Mg, the initial oxide film formed by the application of potential had a different electrochemical property. The microstructure of the parent alloy of steel also interacted differently with Mg during the film formation. The ferrite film was grown on carbon steel by applying 0.1 V (vs SCE) in borate buffer (pH=9, 85 deg. C). The formation and coverage of film on the surface was ascertained by measuring the steady state current density as a function of time. The steady state current density was achieved faster when Mg was present in the solution. The thin film formed was characterized by both by electrochemical impedance spectroscopy and atomic force microscopy. The formation of a passive film (at 0.1 V vs SCE) was evident in both with and without Mg cases, with total impedance of the system increasing by an order of magnitude compared to the film formed at OCP (∼ - 0.825 V vs SCE). The data was fitted to an equivalent circuit representing a metal covered with a porous film. The fit parameters were significantly different for Mg containing system and the charge transfer resistance at oxide/solution interface was observed to be two times higher. The capacitance of the film was also higher in presence of Mg indicating a thinner film. The thin films on carbon steel were characterized by AFM in semi contact mode. The surfaces were found to be covered with fine oxide. Two morphologically different regions could be identified on the surface and they were assigned as pearlite and ferrite regions. One of the most notable observations was the

  4. Review of CO2 Reduction Technologies using Mineral Carbonation of Iron and Steel Making Slag in Malaysia

    Science.gov (United States)

    Norhana Selamat, Siti; Nor, Nik Hisyamudin Muhd; Rashid, Muhammad Hanif Abdul; Fauzi Ahmad, Mohd; Mohamad, Fariza; Ismail, Al Emran; Fahrul Hassan, Mohd; Turan, Faiz Mohd; Zain, Mohd Zamzuri Mohd; Abu Bakar, Elmi; Seiji, Yokoyama

    2017-10-01

    Climate change, greenhouse gas effect, and global warming is envisioning to turn more awful and more terrible by year. Since the leading cause of global warming is uncontrolled CO2 in atmosphere. The amount of unused steel slag is expected to increment later on, steel industries is one of the mechanical industries that contribute the CO2 emission. That because this businesses deliver carbon in light of powers reductant and substantial volume of steel. The changes of atmosphere these day is truly developing concern and that make steel creator are confronted with test of discovering methods for bringing down CO2 emission. Malaysia is working decidedly in the diminishment of CO2 gas. There are a few techniques in decreasing the amount of CO2 in the air as underlined by the Intergovernmental Panel of Climate Change (IPCC), an organization under the United Country however CCS is an extremely encouraging innovation to moderate CO2 emission in air. Mineral carbonation is another technique to store carbon dioxide permanently, long term stability and vast capacity.

  5. Influence of Surface Roughness and Agitation on the Morphology of Magnetite Films Electrodeposited on Carbon Steel Substrates

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2016-11-01

    Full Text Available In this work, we investigated the effects of surface roughness and agitation on the morphology of magnetite films electrodeposited from alkaline Fe(III-triethanolamine (TEA solutions on carbon steel substrates. The surface roughness of the carbon steel substrates was maintained in the range of 1.64–0.06 μm by using mechanical grinding and polishing methods. The agitation speed was set at 0 and 900 rpm during the electrodeposition process. The particle size and surface roughness value of the magnetite films gradually decreased with decreasing substrate roughness. However, the influence of the substrate roughness on the thickness of the magnetite film was negligible. The morphology of the magnetite film fabricated at 900 rpm appeared to be highly faceted compared to that of the magnetite film produced at 0 rpm. The thickness and surface roughness of the magnetite film significantly increased with the agitation speed, which also significantly affected the electrodeposition efficiency. The effects of substrate surface roughness and agitation on the morphology of magnetite films electrodeposited on carbon steel substrates were also discussed. The obtained results provide critical information for the simulation of magnetite deposits on carbon steel pipes in the secondary systems of nuclear power plants.

  6. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wang, Bin; Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Jin, Xiaoyue; Du, Jiancheng; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-12-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10{sup 22} m{sup −3}–1.4 × 10{sup 23} m{sup −3}. The atomic ionization degrees of iron, carbon and boron are 10{sup −16}–10{sup −3}, and 10{sup −23}–10{sup −6}, 10{sup −19}–10{sup −4}, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  7. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    International Nuclear Information System (INIS)

    Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming

    2014-01-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10 22 m −3 –1.4 × 10 23 m −3 . The atomic ionization degrees of iron, carbon and boron are 10 −16 –10 −3 , and 10 −23 –10 −6 , 10 −19 –10 −4 , respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed

  8. Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels

    International Nuclear Information System (INIS)

    Im, Young-Roc; Lee, Byeong-Joo; Oh, Yong Jun; Hong, Jun Hwa; Lee, Hu-Chul

    2004-01-01

    The effects of the microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels were examined. A four-point bend test and double-notched bend specimens were used to measure the cleavage fracture strength of the alloys and identify the cleavage initiating micro-cracks, respectively. The cleavage fracture strength and DBTT of Mn-Ni-Mo bainitic steels were strongly affected by the alloy carbon content. The decrease in the alloy carbon content resulted in a decrease in the inter-lath cementite-crowded layers and higher cleavage fracture strength. Micro-cracks that formed across the inter-lath cementite-crowded layers were observed to initiate cleavage fracture. The width of these inter-lath cementite-crowded layers was accepted as a cleavage initiating micro-crack size in the micro-mechanical modeling of the cleavage fracture, and the measured cleavage strength values of the bainitic Mn-Ni-Mo steels were well represented by the modified Griffith relationship

  9. Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel

    International Nuclear Information System (INIS)

    Wang, Chengduo; Qiu, Hai; Kimura, Yuuji; Inoue, Tadanobu

    2016-01-01

    The tempered lath martensite and its crack propagation have significant influence on the ductility and toughness of the warm tempformed medium-carbon steel. The martensitic microstructures of these medium-carbon steels are transformed from twinned austenite and the orientation relationship of lath martensite (α′) with prior austenite (γ) is distinctive. In the present paper we investigate the microstructure and fracture mode of a quenched and tempered 0.4%C-2%Si-1%Cr-1%Mo steel using electron backscatter diffraction technique. The results showed that the orientation relationship between γ and α′ is Greninger-Troiano (G-T) relationship. A single γ grain was divided into 4 packets and each packet was subdivided into 3 blocks. The misorientation angles between adjacent blocks were ~54.3° or ~60.0° in a packet. Most γ grains were twins sharing a {111} γ plane. There were 7 packets in a twinned γ grain and the twin boundaries were in a special packet. Besides the common packet, there were three packets in each twin. Being different from the cleavage fracture along the {001} planes in conventional martensitic steels, both cleavage and intergranular cracks were present in our medium-carbon steel. The former was in the larger blocks and it propagated along the {001}, {011}, and {112} planes. The latter propagated along the block, packet, or prior austenite boundaries. The intergranular cracks were generally in the fine block region. These results suggested that the block size is the key factor in controlling the brittle fracture mode of lath martensitic steel.

  10. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH

    International Nuclear Information System (INIS)

    Singh, J.K.; Singh, D.D.N.

    2012-01-01

    Highlights: ► LAS rebars corrode 2–3 times slower than PCS in concrete pore solution and mortars. ► Raman and XRD studies show that goethite and maghemite phases of rusts formed on LAS. ► On PCS unstable phases of lepidocrocite and akaganite are formed. ► EIS confirms more stable rust on LAS than on PCS. ► A model is proposed to explain formation of passive film on surface of steels. - Abstract: Correlation of corrosion characteristics and nature of rusts on low alloy (LA) and plain carbon (PC) steels exposed in simulated concrete pore solution of different pH is studied. Rusts formed under wet/dry conditions are examined by Raman spectroscopy and X-ray diffraction. LA rust is more adherent compared to PC as confirmed by measurement of weight in gain and electrochemical studies. EIS results show improvement in protective properties of steels with passage of time. Both steels are found prone to pitting attack in chloride contaminated pore solution. Rebars embedded in concrete exhibit same trend as recorded in solution exposure tests.

  11. Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel

    International Nuclear Information System (INIS)

    Fu Hanguang; Xiao Qiang; Kuang Jiacai; Jiang Zhiqiang; Xing Jiandong

    2007-01-01

    A new type of wear resistant low carbon Fe-B cast steel with granular borides can be obtained by alloying with titanium and cerium rare earth (RE). As a result, the as-cast eutectic boride structures of Fe-B cast steel are greatly refined and a blocky, less interconnected boride network is obtained from continuous ledeburite. After heat treatment, the boride eutectic in the modified Fe-B cast steel is in the form of a granular boride structure that appears to be isolated particles The guide rollers made of modified low carbon Fe-B cast steel show excellent wear resistance and thermal fatigue resistance in high speed wire mills

  12. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    OpenAIRE

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  13. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  14. Evolution of carbon steel corrosion in feedwater conditions reproduce by the Fortrand loop

    International Nuclear Information System (INIS)

    Delaunay, Sophie; Bescond, Aurelien; Mansour, Carine; Bretelle, Jean-Luc

    2012-09-01

    Fouling and tubes support plate blockage of steam generators (SG) are major problems in the secondary circuit of pressurized water reactor (PWR) plants. Corrosion products (CP) responsible of these phenomena are mainly constituted of magnetite. Limit the amount of these CP, generated in the feedwater system and transported to SG, constitutes one way to limit fouling and blockage of SGs. This work requires the understanding of CP behaviour in the feedwater system conditions. A specific experimental circulating water loop, FORTRAND, was built at EDF to follow the formation, the transport and the deposition of iron oxides in representative conditions of the secondary circuit feedwater system. The test section operating at high temperature (up to 250 deg. C) is made in carbon steel and includes three removable segments while all the other parts of the loop are made in stainless steel. First results confirm the formation of iron oxides on carbon steel and stainless steel surface in the conditions of PWR secondary circuits. The surface characterizations show that magnetite is the corrosion product formed on carbon steel and stainless steel at 220 deg. C and goethite is formed at room temperature on stainless steel. The aim of the most recent tests performed in FORTRAND loop was to follow the evolution of corrosion in the feedwater conditions. Tests were performed in one-phase flow conditions at 150 L.h -1 with a linear velocity of 0.82 m/s at 220 deg. C in morpholine/ammonia/hydrazine medium, at pH 25C equal to 9.2. To conduct this study, a removable segment constituted by ten tubes was added to the loop. Several tests were performed to follow the deposit thickness, the iron lost in solution and the oxide morphology with time from two to nine hundred sixty hours. Chemical conditions were controlled and the reproducibility of the results was confirmed by the observation of three tubes at each test. SEM pictures present kinetics with three steps: after the first hours the

  15. Corrosion resistance of Ultra-Low-Carbon 19% Cr-11% Ni stainless steel for nuclear fuel reprocessing plants in nitric acid

    International Nuclear Information System (INIS)

    Ariga, Tamako; Takagi, Yoshio; Inazumi, Toru; Masamura, Katsumi; Sukekawa, M.

    1995-01-01

    An Ultra-Low-Carbon 19% Cr-11% Ni Stainless Steels used in nuclear fuel reprocessing plants where highly corrosion resistance in nitric acid is required has been developed. This steel has optimized the chemistry composition to decrease inclusions and deformation-induced martensitic transformation. The formation of deformation-induced martensite has the potential danger of accelerating corrosion in nitric acid. In this paper, effects of cold reduction and martensitic transformation on corrosion resistance of Ultra-Low-Carbon Stainless Steels in nitric acid are discussed. The developed steel showed excellent corrosion resistance during long-term exposure to nitric acid. (author)

  16. Temperature thresholds for surface blistering of platinum and stainless steel exposed to curium-242 alpha radiations

    International Nuclear Information System (INIS)

    McDonell, W.R.; Dillich, S.

    1981-01-01

    Implantation of helium in materials exposed to alpha-emitting radionuclides such as 242 Cm causes surface blistering at elevated temperatures. The temperature thresholds for such blistering are of practical importance to the selection of suitable container materials for radionuclides, and are of fundamental interest with regard to the mechanisms of helium blistering of materials in radiation environments. The purpose of this investigation was to establish temperature thresholds for surface blistering of platinum and stainless-steel container materials by post-irradiation heating of specimens exposed at room temperature to alpha particles from an external 242 Cm source. These thresholds were compared with (1) the analogous temperature thresholds for surface blistering of materials exposed to external beams of accelerator helium ions, and (2) thresholds for swelling and grain-boundary cracking of materials in which helium is generated internally by (n,α) reactions during reactor exposures

  17. Distribution of radionuclides during melting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  18. Effects of LWR environments on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    SME Boiler and Pressure Vessel Code provides construction of nuclear power plant components. Figure I-90 Appendix I to Section III of the Code specifies fatigue design curves for structural materials. While effects of environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A 106-Gr B carbon steel and A533-Gr B low-alloy steel in water

  19. Improvement of the corrosion and tribological properties of CSS-42L aerospace bearing steel using carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fangfang; Zhou, Chungen; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Zhang, Hu

    2017-01-15

    Highlights: • The corrosion and tribological properties of an aerospace bearing steel CSS-42L was investigated. • Carbon ion implantation was conducted and an amorphous layer formed at the near surface of CSS-42L steel. • The enhanced Cr diffusion and the decreased free electrons are contributed to the improvement of corrosion properties. • The external hard layer has positive effect on the wear resistance. - Abstract: The aerospace bearings steel CSS-42L was ion implanted by carbon with implantation fluxes of 5 × 10{sup 16} ions cm{sup −2}. The composition, microstructure and hardness of the carbon implanted samples were characterized using X-ray photoelectron spectroscopy, Auger electron spectroscopy, X-ray diffraction, and nanoindentation tests. The corrosion and tribological properties were also evaluated in the present work. The results shown that carbon implantation produced an amorphous layer and graphitic bounds formed at the near surface of CSS-42L steel. In the electrochemical test, the carbon implanted samples suggested lower current densities and corrosion rates. Carbon ion implanted samples shown a relative Cr-enrichment at the surface as compared with nonimplanted samples. The improved corrosion resistance is believed to be related to the formed amorphous layer, the enhancement of Cr diffusion in the carbon implantation layer which contributed the formation of passive film on the surface, the decrease of free electrons which caused by the increase of carbon fraction. The external hard layer had positive effect on the wear resistance, reducing strongly the friction coefficient about 30% and the abrasive-adhesive mechanism present in the unimplanted samples was not modified by the implantation process.

  20. The role of carbon in the breakaway oxidation of mild steel in high pressure carbon dioxide

    International Nuclear Information System (INIS)

    Surman, P.L.; Brown, A.M.

    1974-01-01

    The rate controlling step in the oxidation of iron and mild steel in CO 2 is the diffusion of iron across the inner of two layers of magnetite scale. Cation diffusion is directed towards available oxidant and hence tends to produce fresh oxide in freely available space. The initial oxidation process is thus protective and stress-free. As oxidation proceeds the gaseous reaction product, carbon monoxide, tends to accumulate at the oxide/metal interface. Eventually this leads to simultaneous carbon deposition and oxide formation. This carbon contamination allows oxidant access to oxide crystallite 'jacking points', and hence volume expansion and stressed breakaway corrosion can occur. Experiments designed to simulate the promotion, propagation and healing of breakaway oxidation and to define the conditions for carbon deposition are reported. (author)

  1. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  2. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shubina, V., E-mail: varvara.shubina2014@gmail.com [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Gaillet, L. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Ababou-Girard, S. [Institut de Physique de Rennes, Département Matériaux et Nanosciences, UMR 6251 CNRS, Université Rennes 1, 35000 Rennes-Cedex (France); Gaudefroy, V. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Chaussadent, T.; Farças, F. [Université Paris-Est, IFSTTAR, MAST, CPDM, F-77447 Marne-la-Vallée (France); Meylheuc, T. [INRA, UMR1319 Micalis, F-78352 Jouy-en-Josas (France); AgroParisTech, UMR Micalis, F-78352 Jouy-en-Josas (France); Dagbert, C. [2 Chemin de la Grand’côte, 36270 Éguzon-Chantôme (France); Creus, J. [LaSIE, UMR7356, Université de La Rochelle, Pôle Sciences et Technologie, Bâtiment Marie Curie, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2015-10-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L{sup −1}, the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe{sup 2+} and Fe{sup 3+} mixed-oxide layer and the outer layer, mostly composed of Fe{sup 3+} associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties.

  3. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shubina, V.; Gaillet, L.; Ababou-Girard, S.; Gaudefroy, V.; Chaussadent, T.; Farças, F.; Meylheuc, T.; Dagbert, C.; Creus, J.

    2015-01-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L −1 , the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe 2+ and Fe 3+ mixed-oxide layer and the outer layer, mostly composed of Fe 3+ associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties

  4. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. The Commission further...

  5. Microstructures and mechanical properties of duplex low carbon steel

    Science.gov (United States)

    Alfirano; Eben, U. S.; Hidayat, M.

    2018-04-01

    The microstructures behavior of duplex cold-rolled low carbon steel for automotive applications has been investigated. Intercritical annealing treatment is commonly used to develop a duplex low carbon steel containing ferrite and martensite. To get a duplex phase ferrite and martensite, the specimens were heated at inter-critical annealing temperature of 775°C - 825°C, for heating time up to 20 minutes, followed by water-quenched. The hardness of specimens was studied. The optical microscopy was used to analyze the microstructures. The optimal annealing conditions (martensite volume fraction approaching 20%) at 775°C with a heating time of 10 minutes was achieved. The highest hardness value was obtained in cold-rolled specimens of 41% in size reduction for intercritical annealing temperature of 825°C. In this condition, the hardness value was 373 HVN. The correlation between intercritical annealing temperature and time can be expressed in the transformation kinetics as fγ/fe = 1-exp(-Ktn) wherein K and n are grain growth rate constant and Avrami’s exponent, respectively. From experiment, the value of K = 0.15 and n = 0.461. Using the relationship between temperatures and heating time, activation energy (Q) can be calculated that is 267 kJ/mol.

  6. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  7. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  8. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    International Nuclear Information System (INIS)

    Cui, W.F.; Zhang, S.X.; Jiang, Y.; Dong, J.; Liu, C.M.

    2011-01-01

    Highlights: → Mechanical properties and microstructures of low carbon bainite steel are examined. → Cu-P alloying promotes strengthening and uniform plastic deformation. → Cu-P alloying delays recovery process during rolling interval. → Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  9. Mechanical properties and hot-rolled microstructures of a low carbon bainitic steel with Cu-P alloying

    Energy Technology Data Exchange (ETDEWEB)

    Cui, W.F., E-mail: wenfangcui@yahoo.com.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Zhang, S.X. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Jiang, Y. [School of Chemical Engineering, University of Queensland, Brisbane 4072 (Australia); Dong, J. [Technology Center of Laiwu Iron and Steel (Group) Co. Ltd., Laiwu 271104 (China); Liu, C.M. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2011-08-15

    Highlights: {yields} Mechanical properties and microstructures of low carbon bainite steel are examined. {yields} Cu-P alloying promotes strengthening and uniform plastic deformation. {yields} Cu-P alloying delays recovery process during rolling interval. {yields} Lowering rolling temperature is favorable to increasing toughness. - Abstract: A low carbon bainitic steel with Cu-P alloying was developed. The new steel aims to meet the demand of high strength, high toughness and resistance to chloride ion corrosion for the components used in the environment of sea water and oceanic atmosphere. Mechanical properties of the steel were tested and strengthening and toughening mechanisms were analyzed by comparing hot-rolled microstructures of the low carbon bainitic steels with and without Cu-P alloying. The results show that Cu-P alloying provided strong solution strengthening with weak effect on ductility. The toughness loss caused by Cu-P alloying could be balanced by increasing the amount of martensite/remained austenite (M/A island) at lower finishing temperature. The static recovery process during rolling interval was delayed by the interaction of phosphorous, copper atoms with dislocations, which was favorable to the formation of bainitic plates. Super-fine Nb(C, N) particles precipitated on dislocations had coherency with bainite ferrite at 830 deg. C finishing temperature. Raising finishing temperature to 880 deg. C, Nb(C, N) particles were prone to coarsening and losing coherency. It was also found that no accurate lattice match relationship among retained austenite, martensite and bainite in granular bainitic microstructure.

  10. Nb(C,N) precipitation kinetics in the bainite region of a low-carbon Nb-microalloyed steel

    International Nuclear Information System (INIS)

    Park, J.S.; Lee, Y.K.

    2007-01-01

    Nb(C,N) precipitation in the bainite region (580-660 deg. C) of a low-carbon Nb-microalloyed steel was investigated by electrical resistivity and transmission electron microscopy. Nb(C,N) particles started precipitating after 100-200 s at isothermal temperatures after bainite transformation and cementite formation, and precipitation finished in 1000-2000 s. The precipitation-time-temperature diagram of Nb(C,N) in the bainite region of a low-carbon microalloyed steel was a type of C-curve, with a nose temperature of about 615 deg. C

  11. Formation of the self-assembled structures by the ultrasonic cavitation erosion-corrosion effect on carbon steel

    Directory of Open Access Journals (Sweden)

    Dayun Yan

    2015-11-01

    Full Text Available The cavitation erosion-corrosion effect on the metal surface always forms irregular oxide structures. In this study, we reported the formation of regular self-assembled structures of amorphous nanoparticles around the cavitation erosion pits on carbon steel upon the ultrasonic cavitation in methylene blue solution. Each self-assembled structure was composed of linearly aligned nanoparticles of about 100 nm. The formation of self-assembled structures might be due to the combined effect of corrosion, specific sonochemical reaction in methylene blue solution, and the magnetic domain structures on the carbon steel.

  12. Corrosion of ferritic steels by molten lithium: Influence of competing thermal gradient mass transfer and surface product reactions

    International Nuclear Information System (INIS)

    Tortorelli, P.F.

    1987-10-01

    An Fe-12Cr-1MoVW steel was exposed to thermally convective lithium for 6962 h. Results showed that the weight change profile of Fe-12Cr-1MoVW steel changed substantially as the maximum loop temperature was raised from 500 to 600 0 C. Furthermore, for a particular loop experiment, changes in the structure and composition of the exposed surfaces did not reflect typical thermal gradient mass transfer effects for all elements: the surface concentration of chromium was often a maximum at intermediate temperatures, while nickel (present at low concentrations in the starting material) tended to be transported to the coldest part of the loop. Such data were interpreted in terms of a qualitative model in which there are different dominant reactions or the various constituents of the ferritic steels (surface product formation involving nitrogen and/or carbon and solubility-driven elemental transport). This competition among different reactions is important in evaluating overall corrosion behavior and the effects of temperature. The overall corrosion rate of the 12Cr-1MoVW steel was relatively low when compared to that for austenitic stainless steel exposed under similar conditions

  13. Anticorrosion protection of carbon steel by electrodeposition of niobium in melted fluorides

    International Nuclear Information System (INIS)

    Almeida, M.E. de; Robin, A.

    1990-01-01

    The results about niobium electrodeposition over carbon steel from K sub(2) Nb F sub(7) solutions, on LiF-Na F-KF eutetic at 750 sup(0)C and over the corrosion resistance of obtainment deposit from acid media are presented. (author)

  14. Application of phosphating techniques to aluminium and carbon steel surfaces using nitro guanidine as oxidizing agent

    International Nuclear Information System (INIS)

    Briseno M, S.A.

    1995-01-01

    Phosphate coatings are inorganic crystalline deposits laid down uniformly on properly prepared surfaces by a chemical reaction with the treated base metal. The reaction consists in dissolving some surface metal by acid attack and then causing surface neutralization of the phosphate solution with consequent precipitation of the phosphate coating. Phosphate coatings do not provide appreciable corrosion protection in themselves. They are useful mainly as a base for paints, ensuring good adherence of paint to steel and decreasing the tendency for corrosion to under cut the paint film at scratches or other defects. In this work firstly were realized phosphate on standard carbon steel, employing technical of cold phosphate (at 40 Centigrade degrees and with a treatment time of 30 minutes) and hot phosphate (at 88 Centigrade degrees and with a treatment time of 15 minutes), where with this last were obtained the best results. Both methods used phosphate solutions of Zn/Mn and using as catalyst Nitro guanidine. Aluminium surfaces were phosphate used solutions of Cr and as catalyst Sodium bi fluoride. The phosphating on this surface were realized at temperature of 50 Centigrade degrees and with a treatment time of 10 minutes. In this work were obtained a new phosphate coatings on steel surfaces, these coatings were realized with a phosphate solution manufactured with the precipitates gathered during the hot phosphating on carbon steel. These coatings show excellent physical characteristics and of corrosion resistance. Were determined the physical testings of the coatings phosphate obtained on carbon steel and aluminium surfaces. These testing were: roughness, thickness, microhardness and adhesion. The best results were showed in carbon steel phosphate with precipitated solutions. The technical of analysis for activation with thermic neutrons was used to determine the phosphate coatings composition. Finally, corrosion testings were realized by means of two methods

  15. Effect of steel structure and defects on reliability of parts of impact mechanisms

    Science.gov (United States)

    Popelyukh, AI; Repin, AA; Alekseev, SE

    2018-03-01

    The paper discusses selection of materials suitable for manufacturing critical parts of impact mechanisms. It is shown that in order to extend life of parts exposed to high dynamic loading, it is expedient to use medium- and high-carbon alloy-treated steels featuring low impurity with nonmetallic inclusions and high hardening characteristics. Application of thermally untreated parts is undesirable as steel having ferrite–pearlite structure possesses low fatigue strength. Aimed to ensure high reliability of parts with a hardness of 42–55 HRC, steel should be reinforced by thermal treatement with the formation of multicomponent martensite–bainite structure. High-quality production should include defectoscopy and incoming material control.

  16. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J.A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6% and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  17. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J. A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  18. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Heavy reflector experiments composed of carbon steel and nickel in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Silva, Graciete Simoes de Andrade e; Mura, Luis Felipe; Jerez, Rogerio; Mendonca, Arlindo Gilson; Fuga, Rinaldo

    2013-01-01

    The heavy reflector experiments performed in the IPEN/Mb-01 research reactor facility comprise a set of critical configurations employing the standard 28x26-fuel-rod configuration. The heavy reflector either, carbon steel or nickel plates was placed at one of the faces of the IPEN/MB-01 reactor. Criticality is achieved by inserting the control banks BC1 and BC2 to the critical position. 32 plates around 0.3 mm thick were used in all the experiment. The chosen distance between last fuel rod row and the first laminate for all types of laminates was 5.5 mm. Considering initially the carbon steel case, the experimental data reveal that the reactivity decreases up to the fifth plate and after that it increases, becomes nearly zero (which was equivalent to initial zero excess reactivity with zero plates) for the 28 plates case and reaches a value of 42.73 pcm when the whole set of 32 plates are inserted in the reflector. This is a very striking result because it demonstrates that when all 32 plates are inserted in the reflector there is a net gain of reactivity. The reactivity behavior demonstrates all the physics events already mentioned in this work. When the number of plates are small (around 5), the neutron absorption in the plates is more important than the neutron reflection and the reactivity decreases. This condition holds up to a point where the neutron reflection becomes more important than the neutron absorption in the plates and the reactivity increases. The experimental data for the nickel case shows the main features of the carbon steel case, but for the carbon steel case the reactivity gain is small, thus demonstrating that carbon steel or essentially iron has not the reflector capability as the nickel laminates do. The measured data of nickel plates show a higher reactivity gain, thus demonstrating that nickel is a better reflector than iron. The theoretical analysis employing MCNP5 and ENDF/B-VII.0 show that the calculated results have good results up to

  20. On the formation of protective sulphide coatings on carbon steel surfaces

    International Nuclear Information System (INIS)

    Das, C.; Venkateswaran, G.

    1987-01-01

    A chemical method for protecting carbon steel surfaces by forming pyrrhotite/pyrite coatings has been developed. The protective nature of the coatings has been studied by weight loss kinetics, scanning electron microscopy and electrochemical measurements. A comparison is drawn between the protective nature of pyrite coating with that of magnetite coating. (author)

  1. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media

    International Nuclear Information System (INIS)

    Avci, R.; Davis, B.H.; Wolfenden, M.L.; Beech, I.B.; Lucas, K.; Paul, D.

    2013-01-01

    Highlights: •In carbon steel, pits are initiated in the immediate surroundings of MnS inclusions. •Unlike stainless steel, MnS inclusions do not dissolve during pit initiation. •The presence of biofilms accelerates pit growth and development. -- Abstract: In a saline anaerobic sulfidogenic environment, pitting on 1018 carbon steel was initiated within a 20–30 nm zone at the MnS inclusion boundary. Nanoscale analysis was performed using scanning electron microscopy and a scanning Auger nanoprobe. The pitting was more pronounced in the presence of a biofilm of sulfate-reducing bacteria than in abiotic sulfide medium. It is proposed that initiation of an anodic reaction leading to dissolution of Fe matrix and subsequent pitting of steel in MnS inclusion boundary regions is due to disorder and strain exerted on the Fe matrix by MnS contamination of the interface from metallurgical processes

  2. Effect of cloric acid concentration on corrosion behavior of Ni/Cr coated on carbon steel

    Science.gov (United States)

    Desiati, Resetiana Dwi; Sugiarti, Eni; Thosin, K. A. Zaini

    2018-05-01

    Corrosion is one of the causes of metal degradation. Carbon steel (Fe) is easy to corrode in the extreme environment. Coating on carbon steel is required to improve corrosion resistance owing to protection or hindrance to extreme environmental conditions. In this present work, carbon steel was coated by electroplating techniques for nickel and pack cementation for chrome. The corrosion rate test was performed by Weight Loss method on FeNiCr, FeNi, FeCr and uncoated Fe as comparator which was dyed in 37% HCl and 25% HCl which had previously been measured dimension and mass. The immersion test result of FeNiCr and FeNi specimen were better than FeCr and uncoated Fe in terms of increasing corrosion resistance. The corrosion rate for 56 hours in 37% HCl for FeNiCr was 1.592 mm/y and FeNi was 3.208 mm/y, FeCr only lasted within 32 hours with corrosion rate was 6.494 mm/y. Surface of the sample after the corrosion test there was pitting, crevice corrosion and alloy cracking caused by chloride. The higher the concentration of HCl the faster the corrosion rate.

  3. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  4. Anaerobic corrosion of carbon steel under unsaturated conditions in a nuclear waste deep geological repository

    International Nuclear Information System (INIS)

    Kwong, G.; Wang, St.; Newman, R.C.

    2009-01-01

    Full text of publication follows: Anaerobic corrosion behaviour of carbon steel in humid conditions, but not submerged in aqueous solution, was studied based on hydrogen generation. Initial tests monitored the hydrogen evolution from carbon steel in a high humidity environment (≥ 75% RH) at near-ambient temperature (30 C) using a high sensitivity pressure gauge system (sensitivity of 0.01 μm.a -1 ). The presence of hydrogen in test runs that showed no, or minimal, pressure increase was confirmed by a solid-state potentiometric hydrogen sensor which has the capability of detecting hydrogen partial pressure as low as 10 -6 bar or a corrosion rate of 1.5 * 10 -4 μm.a -1 . Preliminary results indicate that a corrosion rate as high as 0.2 μm.a -1 can be sustained for steel coated with salt at 100% RH. Higher corrosion rates (as high as 0.8 μm.a -1 ) were obtained in less humid environment (71% RH). Without a salt deposit, pickled steel in humid environment (as high as 100% RH) also showed detectable corrosion for a period up to 800 hours, during which 0.8 kPa of hydrogen was accumulated prior to the apparent arrest of corrosion, representing a metal loss of 3 nm. Corrosion scales are also identified with x-ray photoelectron spectroscopy (XPS) as well as by mass change monitoring using a quartz crystal microbalance. Corrosion mechanisms and prediction for longer-term exposure will be discussed. Results will be useful in predicting long-term carbon steel corrosion behaviour and improving the current knowledge of hydrogen gas evolution in a deep geological repository for nuclear waste. (authors)

  5. Effect of young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamless tubes

    Science.gov (United States)

    Karanjule, D. B.; Bhamare, S. S.; Rao, T. H.

    2018-04-01

    Cold drawing is widely used deformation process for seamless tube manufacturing. Springback is one of the major problem faced in tube drawing. Springback is due to the elastic energy stored in the tubes during forming process. It is found that this springback depends upon Young’s modulus of the material. This paper reports mechanical testing of three grades of steels viz. low carbon steel, medium carbon steel and high carbon steel to measure their Young’s modulus and corresponding springback. The results shows that there is 10-20 % variation in the Young’s modulus and inverse proportion between the springback and Young’s modulus. More the percentage of carbon, more the strength, less the value of Young’s modulus and more will springback. The study further leads to identify optimum die semi angle of 15 degree, land width of 10 mm and drawing speed of 8, 6 and 4 m/min for least springback in all the three grades respectively and die semi angle as a most dominant factor causing springback.

  6. Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

    Directory of Open Access Journals (Sweden)

    İlker Bekir Topçu

    2008-01-01

    Full Text Available The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 500, 800, and 950∘C temperatures for 3 hours and tensile tests were carried out. Effect of temperature on mechanical behavior of S220 and S420 were determined. All mechanical properties were reduced due to the temperature increase of the steel rebars. It is seen that mechanical properties of S420 steel was influenced more than S220 steel at elevated temperatures.

  7. Microhardness tests of stainless steel 52100 implanted with nitrogen and carbon dioxide

    CERN Document Server

    Mardanian, M; Taheri, Z

    2003-01-01

    In this research work, samples of stainless steel 52100 disks were implanted with nitrogen and carbon dioxide ions at the energy of 90 keV. Microhardness measurement were performed to determine the hardness of the surface. The N-2 sup + implanted steels at the doses of 1x10 sup 1 8 ions cm sup sub 2 gave the highest hardness of 49.70%, while for the CO sub 2 sup + ions implantation, the hardness of 17% and 5% were obtained at the doses of 3x10 sup 1 8 and 1x10 sup 1 9 ions cm sup - 2, respectively. To support the interpretation of our microhardness results the implanted surface were analyzed by the use of XRD method. Our results indicated that the hardness of the N sub 2 sup + implanted samples are due to formation of beta-Cr N phase in the surface layer, while in the CO sub 2 + implanted samples no observation of carbon as graphite or carbide was made. In addition, the absence of any hump in the XRD spectrum indicating that carbon is not in the amorphous phase either.

  8. Secondary electron yields of carbon-coated and polished stainless steel

    International Nuclear Information System (INIS)

    Ruzic, D.; Moore, R.; Manos, D.; Cohen, S.

    1982-01-01

    To increase the power throughput to a plasma of an existing lower hybrid waveguide, secondary electron production on the walls and subsequent electron multiplication must be reduced. Since carbon has a low secondary electron coefficient (delta), measurements were performed for several UHV compatible carbon coatings (Aquadag/sup X/, vacuum pyrolyzed Glyptal/sup X/, and lamp black deposited by electrophoresis) as a function of primary beam voltage (35 eV to 10 keV), surface roughness (60 through 600 grit mechanical polishing and electropolishing), coating thickness, and angle of incidence (theta). Also measured were uncoated stainless steel, Mo, Cu, Ti, TiC, and ATJ graphite. The yields were obtained by varying the sample bias and measuring the collected current while the samples were in the electron beam of a scanning Auger microprobe. This technique allows delta measurements of Auger characterized surfaces with < or =0.3 mm spatial resolution. Results show delta to have a typical energy dependence, with a peak occurring at 200 to 300 eV for normal incidence, and at higher energy for larger theta. In general, delta increases with theta more for smooth surfaces than for rough ones. Ninety percent of the secondary electrons have energies less than 25 eV. Some carbonized coating and surface treatment combinations give delta/sub max/ = 0.88 +- 0.01 for normal electron beam incidence: a reduction of almost 40% compared to untreated stainless steel

  9. 75 FR 4779 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Preliminary Results of...

    Science.gov (United States)

    2010-01-29

    ...-Quality Steel Plate Products From Italy: Preliminary Results of Antidumping Duty Administrative Review... administrative review of the antidumping duty order on certain cut-to-length carbon- quality steel plate products... that the Department conduct an administrative review of its sales and entries of subject merchandise...

  10. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    International Nuclear Information System (INIS)

    Huet, Bruno; L'Hostis, Valerie; Le Bescop, Patrick; Idrissi, Hassane

    2004-01-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  11. Long-term prediction of reinforced concrete structures - Use of thermodynamic data to assess steel corrosion in carbonated concrete

    Energy Technology Data Exchange (ETDEWEB)

    Huet, Bruno [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France)]|[Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France); L' Hostis, Valerie; Le Bescop, Patrick [Laboratoire d' Etude du Comportement des Betons et Argiles, DEN/DPC/SCCME/LECBA, Bat. 158, CEA Saclay, 91191 Gif sur Yvette cedex (France); Idrissi, Hassane [Laboratoire de Physico-Chimie Industrielle, LPCI, INSA de Lyon, Bat. Leonard de Vinci, 20 av. Albert Einstein, 69621 Villeurbanne cedex (France)

    2004-07-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of the steels have to be assessed and modelled. When nuclear wastes are embedded in reinforced concrete containers, the chemical environment of the reinforcement is progressively modified, due to the diffusion of the carbonation front inside the concrete matrix. This modification leads to the variation of the properties of the iron oxides formed at the steel/concrete interface, and the active corrosion can be initiated. In order to understand and modelled the mechanisms of steel corrosion in concrete, the equilibrium of two main systems must be separately described with the help of thermodynamic data issued from the literature: - The mineral phases, lime and calcium silicate hydrate (C-S-H), in equilibrium with the pore solution during the propagation of the carbonation front; - The iron oxides in equilibrium with the aqueous solution. For this purpose, the nature of aqueous species present in the pore solution was calculated in the whole range of pH encountered during the cement paste degradation by carbonation. As a matter of fact, as the pH decreases, calcium concentration decreases and silicates concentration increases due to the calcium carbonate formation and C-S-H dissolution. The pH of a carbonated concrete ranges between 8.3 and 10, depending on the partial pressure of carbon dioxide in the porosity and the conversion degree of carbonation. In this pH range, the iron oxides equilibria were analysed as a function of the redox potential and aqueous species (carbonates and sulphates present in the solution) present inside the solution. In a reductive solution and in presence of carbonates, the high solubility of iron oxides may prevent passivation or generate the dissolution of the passive film. Moreover, the relevance of thermodynamics calculations has been confirmed by corrosion tests of mild steel

  12. Failure prediction of low-carbon steel pressure vessel and cylindrical models

    International Nuclear Information System (INIS)

    Zhang, K.D.; Wang, W.

    1987-01-01

    The failure loads predicted by failure assessment methods (namely the net-section stress criterion; the EPRI engineering approach for elastic-plastic analysis; the CEGB failure assessment route; the modified R6 curve by Milne for strain hardening; and the failure assessment curve based on J estimation by Ainsworth) have been compared with burst test results on externally, axially sharp notched pressure vessel and open-ended cylinder models made from typical low-carbon steel St45 seamless tube which has a transverse true stress-strain curve of straight-line and parabola type and a high value of ultimate strength to yield. It was concluded from the comparison that whilst the net-section stress criterion and the CEGB route did not give conservative predictions, Milne's modified curve did give a conservative and good prediction; Ainsworth's curve gave a fairly conservative prediction; and EPRI solutions also could conditionally give a good prediction but the conditions are still somewhat uncertain. It is suggested that Milne's modified R6 curve is used in failure assessment of low-carbon steel pressure vessels. (author)

  13. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    International Nuclear Information System (INIS)

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels

  14. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    Science.gov (United States)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  15. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  16. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Liu, H.; Hu, Y.; Zhou, L.; Zheng, B. [Department of Chemistry and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2009-03-15

    Sulfate-reducing bacteria (SRB) have been identified as the main corrosive microorganisms causing unpredictable failure of materials. In this present work, a strain of thermophile SRB isolated from Bohai oilfield of China has been characterized and preliminarily identified. Furthermore, its effects on carbon steel at 60 C in SRB culture media were studied by electrochemical methods such as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), and weight loss measurements. The results show that the bacteria belong to Desulfotomaculum. The optimum growth temperature and pH of the bacteria were 60 C and 7.0, respectively. Weight loss measurements suggested that the corrosion rate of carbon steel in the culture media inoculated with thermophile SRB at 60 C was 2.2 times less than that at 37 C. At 60 C, SRB shifted the freely corroding potential of carbon steel toward a more positive value in the first 10 days, which later change to a negative value. Results obtained from potentiodynamic polarization and EIS were in good agreement. The changes in biofilm structure with increase in bacteria supply offers some kind of protection to the base material in the early culture days at 60 C. Subsequently, it accelerated corrosion. Energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) methods indicate that corrosion products such as iron sulfides (FeS{sub x}) in biofilm play an important role in the biocorrosion process. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  18. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    Energy Technology Data Exchange (ETDEWEB)

    Sarkari Khorrami, Mahmoud; Mostafaei, Mohammad Ali; Pouraliakbar, Hesam, E-mail: hpouraliakbar@alum.sharif.edu; Kokabi, Amir Hossein

    2014-07-01

    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic–martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain growth phenomenon along with the amount and the composition of carbides and intergranular martensite. Acquired mechanical characteristics of weld in the case of using filler metal are significantly higher than those of autogenous one. Accordingly, ultimate tensile strength (UTS), hardness, and absorbed energy during tensile test of weld metal are increased from 662 MPa to 910 MPa, 140 Hv to 385 Hv, and 53.6 J m{sup −3} to 79 J m{sup −3}, respectively by filler metal addition. From fracture surfaces, predominantly ductile fracture is observed in the specimen welded with filler metal while mainly cleavage fracture occurs in the autogenous weld metal.

  19. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  20. Chemistry conditions in crevices of carbon steel and stainless steel: a comparative study

    International Nuclear Information System (INIS)

    Pushpalata, R.; Veena, S.; Chandran, Sinu; Mohan, T.V.K.; Rangarajan, S.; Narasimhan, S.V.

    2008-01-01

    Occurrence of crevice corrosion in the steam generator tubes of nuclear power plants may lead to transport of radioactivity to the secondary side. It is expected that effect of crevice corrosion will be more pronounced in a passive material like stainless steel (SS) as compared to carbon steel (CS). Theoretical modeling of the dynamics of crevice chemistry calls for experimental data with respect to various water chemistry parameters like pH, conductivity and concentrations of the ionic species in typical crevices of different geometry (aspect ratio of length and width). This paper presents the experimental results obtained with crevices in CS -106 B, SS-304 (nano grain) and SS 316 blocks (varying dimensions) exposed to a medium containing 1 ppm of lithium and chloride ion each for 10 days in static autoclave at 245 deg C. The bulk solution pH showed a reduction in alkalinity and slight increase in conductivity. In case of CS about 58 times increase in Cl - was observed in the smaller crevice of dimension 1 mm (width) x 25 mm (depth) whereas it was only ∼ 12 times in the bigger crevice (2 mm x 39 mm). Other anionic impurities like SO 4 2- and Br - present as impurities in NaCI were also found to be concentrated in the crevices whereas not much increase in cationic impurities was observed. In a similar experiment with SS blocks with crevice dimension comparable to diffusion layer thickness, appreciable increase in chloride concentration was observed. Electrochemical experiments were also carried out in deaerated NaCI (3.5%) solution at 25 deg C with CS, SS-304 (nano grain) and SS-316 (normal-grain) coupons. The OCP was -297 mV for SS-316 whereas for SS-304 coupon the OCP was -339 mV. Potentiodynamic anodic polarization curve showed a passive behavior up to 0.0V and then a sudden increase in anodic current. On nano-grained SS, a yellowish film on the surface was observed with a large number of pits whereas severe general corrosion was observed in the normal

  1. 78 FR 72863 - Circular Welded Carbon-Quality Steel Pipe From the People's Republic of China: Continuation of...

    Science.gov (United States)

    2013-12-04

    ...-Quality Steel Pipe From the People's Republic of China: Continuation of Antidumping Duty Order AGENCY... circular welded carbon-quality steel pipe (``circular welded pipe'') from the People's Republic of China...\\ See Initiation of Five-Year (``Sunset'') Review, 78 FR 33063 (June 3, 2013). \\2\\ See Circular Welded...

  2. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  3. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado 10400, La Habana (Cuba); Caleyo, F. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Rivas, D.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2010-03-15

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  4. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Rivas, D.; Hallen, J.M.

    2010-01-01

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  5. Effect of High-Temperature Thermomechanical Treatment on the Brittle Fracture of Low-Carbon Steel

    Science.gov (United States)

    Smirnov, M. A.; Pyshmintsev, I. Yu.; Varnak, O. V.; Mal'tseva, A. N.

    2018-02-01

    The effect of high-temperature thermomechanical treatment (HTMT) on the brittleness connected with deformation-induced aging and on the reversible temper brittleness of a low-carbon tube steel with a ferrite-bainite structure has been studied. When conducting an HTMT of a low-alloy steel, changes should be taken into account in the amount of ferrite in its structure and relationships between the volume fractions of the lath and the acicular bainite. It has been established that steel subjected to HTMT undergoes transcrystalline embrittlement upon deformation aging. At the same time, HTMT, which suppresses intercrystalline fracture, leads to a weakening of the development of reversible temper brittleness.

  6. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs

  7. Effects of niobium addition on the structure and properties of medium and high carbon steels. v. 1,2

    International Nuclear Information System (INIS)

    Mei, P.R.

    1983-01-01

    An evaluation about the use of niobium in medium and high carbon steels, with ferritic-pearlitic structure, through the understanding of niobium actuaction mechanism in the structure, and consequently in the mechanical properties of those steels is done. (E.G.) [pt

  8. Corrosion of path A PCA and 12 Cr-1 MoVW steel in thermally convective lithium

    International Nuclear Information System (INIS)

    Tortorelli, P.F.; DeVan, J.H.

    1984-01-01

    Exposure of path A PCA alloys to thermally convective lithium for 6700 h at 600 and 570 0 C resulted in corrosion reactions that were similar to what is observed for other austenitic alloys exposed under similar conditions. It corroded more rapidly than type 316 stainless steel, and the presence of nitride stringers in PCA did not affect the measured weight losses. Consideration of the weight change and surface analysis data for 12 Cr-1 MoVW steel exposed to thermally convective lithium between 500 and 350 0 C for 10,088 h revealed that reactions with carbon and nitrogen were probably the principal corrosion processes for this alloy in this temperature range. Corrosion was not severe

  9. Mechanistic model of stress corrosion cracking (scc) of carbon steel in acidic solution with the presence of H2s

    International Nuclear Information System (INIS)

    Asmara, Y P; Juliawati, A; Sulaiman, A; Jamiluddin

    2013-01-01

    In oil and gas industrial environments, H 2 S gas is one of the corrosive species which should be a main concern in designing infrastructure made of carbon steel. Combination between the corrosive environment and stress condition will cause degradation of carbon steel increase unpredictably due to their simultaneous effects. This paper will design a model that involves electrochemical and mechanical theories to study crack growth rate under presence of H 2 S gas. Combination crack and corrosion propagation of carbon steel, with different hydrogen concentration has been investigated. The results indicated that high concentration of hydrogen ions showed a higher crack propagation rate. The comparison between corrosion prediction models and corrosion model developed by researchers used to verify the model accuracy showed a good agreement

  10. The kinetics of pitting corrosion of carbon steel

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Sooi, Z.

    1988-02-01

    The development of an improved statistical method for analysing pit growth data to take account of the difference in area of laboratory specimens and full sized high level nuclear waste containers is described. Statistical analysis of data from pit growth experiments with large area (460 cm 2 ) plates of BS 4360 steel have indicated that the depth distributions correlate most closely with a limited distribution function. This correlation implies that previous statistical analyses to estimate the maximum pit depths in full size containers, which were made using unlimited distribution functions, will be pessimistic. An evaluation of the maximum feasible pitting period based on estimating the period during which the oxygen diffusion flux is sufficient to stabilise a passive film on carbon steel containers has indicated that this is of the order of 125 years rather than the full 1000 year container life. The estimate is sensitive to the value of the leakage current assumed to flow through the passive film, and therefore work is planned to measure this accurately in relevant granitic environments. (author)

  11. Plasticity of low carbon steel in a hot state

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, V P; Rizol' , A I; Shram, N N [Ural' skij Nauchno-Issledovatel' skij Inst. Chernykh Metallov, Sverdlovsk (USSR)

    1977-07-01

    The hot ductility (in tapered-specimen piersing test and the in wedge-shaped specimen rolling test) is studied of the Armeo-type low carbon steel produced by vacuum induction and open hearth techniques. The variations of the chemical composition within specified ranges, particularly as regards sulphur, oxygen and the Mn/S ratio, have a marked effect on the processing ductility. The temperature range of brittle fracture and acceptable hot working reductions as functions of the chemical composition have been revealed.

  12. Plasticity of low carbon steel in a hot state

    International Nuclear Information System (INIS)

    Konovalov, V.P.; Rizol', A.I.; Shram, N.N.

    1977-01-01

    The hot ductility (in tapered-specimen piersing test and the in wedge-shaped specimen rolling test) is studied of the Armeo-type low carbon steel produced by vacuum induction and open hearth techniques. The variations of the chemical composition within specified ranges, particularly as regards sulphur, oxygen and the Mn/S ratio, have a marked effect on the processing ductility. The temperature range of brittle fracture and acceptable hot working reductions as functions of the chemical composition have been revealed

  13. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  14. Bainite Formation in Medium-Carbon Low-Silicon Spring Steels Accounting for Chemical Segregation

    NARCIS (Netherlands)

    Goulas, C.; Mecozzi, M.G.; Sietsma, J.

    2016-01-01

    In this paper, the effect of chemical inhomogeneity on the isothermal bainite formation is investigated in medium-carbon low-silicon spring steel by dilatometry and microscopy. The analysis of the microstructure at different times during transformation shows that chemical segregation of

  15. Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel

    International Nuclear Information System (INIS)

    Fernandes, Marcolino; Pires, Jose Carlos; Cheung, Noe; Garcia, Amauri

    2003-01-01

    Nonmetallic inclusions are harmful to the mechanical properties of every kind of steel produced worldwide. The greater the size of the inclusion present in the structure of a determined kind of steel, the greater its negative effect on the quality of the steel. Therefore, the objective of this work was to investigate the size, the quantity, the shape and the chemical composition of nonmetallic inclusions formed throughout the refining process of silicon-killed, low-carbon steel, as a function of the treatment time in a ladle furnace, trying to ensure the flotation of inclusions bigger than 25 μm. This investigation was carried out using a scanning electron microscope (SEM), with an analysis system using energy dispersive spectometry (EDS). Based on this work, it was possible to know more precisely the nature of the inclusions, the necessary time to ensure flotation of large inclusions, the efficiency of the slag to capture the inclusions, and the inclusion level of the steel throughout its refining process to try to obtain a higher quality steel product

  16. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  17. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite...... obtained by low-temperature gaseous carburizing of AISI 316. X-ray diffraction was applied for the determination of lattice spacing depth profiles by destructive depth profiling and reconstruction of the original lattice spacing profiles from the measured, diffracted intensity weighted, values....... The compressive stress depth distributions correlate with the depth distribution of the strain-free lattice parameter, the latter being a measure for the depth distribution of carbon in expanded austenite. Elastically accommodated compressive stress values as high as -2.7 GPa were obtained, which exceeds...

  18. The effect of sulphite on crevice corrosion and pitting on various steels in 0.5 M sodium chloride

    International Nuclear Information System (INIS)

    Hemmingsen, T.; Nielsen, L.V.; Maahn, E.

    1992-01-01

    A carbon steel, st 37, and two stainless steels, AISI 304 SS and AISI 316 SS were exposed to 0.5 M NaCl with 10 mM sulphite under anaerobic conditions. The sulphite ions may, under these conditions, be reduced to sulphide ions, and cause pitting or crevice corrosion. Electrochemical and bottle-test experiments were done to determine the effect of the sulphite addition. These effects were highly dependant on the pH

  19. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    Science.gov (United States)

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  20. 76 FR 3612 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-008] Circular Welded Carbon Steel... Steel Pipes and Tubes From Taiwan: Notice of Partial Rescission of Antidumping Duty Administrative... complete the preliminary results of this review within the original time frame because we require...

  1. Adsorption study of CO and H2O on carbon materials, Ni and stainless steel

    International Nuclear Information System (INIS)

    Kato, S.

    1991-01-01

    Adsorption of CO and water vapor on single crystalline graphite, diamond and an amorphous carbon film at room temperature was investigated by low energy ion scattering (ISS) and compared with stainless steel and nickel surfaces. Even for a CO exposure up to 10 4 L, the C intensity stayed constant and no O peak appeared in the ISS spectra from graphite while Ni and O intensities from Ni surface changed strikingly. Intensities of FE and O signals from stainless steel seriously decrease and increase with increasing exposure of H 2 O, respectively, but did not reach saturation even at an exposure of 10 3 L. On the other hand, C and O intensities from carbon surfaces changed moderately to reach saturation at an exposure of some 100 L. These results indicate that CO and H 2 O do not adsorb significantly on carbon surfaces in contrast to nickel and stainless steel surfaces. As a by-product survival probabilities of scattered He + ions from graphite for the primary energy of 0.6-2 keV were measured to be in a range of 10 -4 to 10 -2 and the survival parameter was deduced to be 5.0 x 10 7 cm s -1 . (author)

  2. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ....A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and carbon-silicon steel may convert to graphite. (b) (Reproduces 124.2.B.) Upon prolonged exposure to...

  3. On cobalt effect on structural and phase transformations during tempering carbon-containing steels of Fe-Ni-Mo system

    International Nuclear Information System (INIS)

    Rakhshtadt, A.G.; Khovova, O.M.; Kan, A.V.; Perkas, M.D.; Kudryavtsev, A.N.; Rodionov, Yu.L.

    1990-01-01

    Methods of resistometry, colorimetry, X-ray diffraction chemical and electrochemical phase analyses, Moessbauer spectroscopy and field-ion mass spectrometry are used to study the nature of precipitation hardening of carbon containing Fe-Ni-Mo martensitic steels. Cobalt contribution to formation of phase composition and structural state of steels during tempering is analyzed. Realization conditions of effective combined (carbide-intermetallide) hardening of the investigated system steels are determined

  4. Corrosion of N80 carbon steel in oil field formation water containing CO2 in the absence and presence of acetic acid

    International Nuclear Information System (INIS)

    Zhu, S.D.; Fu, A.Q.; Miao, J.; Yin, Z.F.; Zhou, G.S.; Wei, J.F.

    2011-01-01

    Highlights: → Effects of temperature and HAc concentration on N80 carbon steel were investigated. → Temperature increased corrosion rate of N80 and precipitation rate of FeCO 3 . → HAc increased corrosion rate of N80 and enhanced the local corrosion attack (pitting). → FeCO 3 was still the main composition of corrosion products in the presence of HAc. → There was a transition region between CO 2 corrosion control and HAc corrosion control. - Abstract: Corrosion behaviour of N80 carbon steel in formation water containing CO 2 was studied by polarization curve technique, electrochemical impedance spectroscopy, weight loss test, scanning electron microscope, and X-ray diffraction. Effects of temperature and acetic acid concentration on the corrosion behaviour of N80 carbon steel were discussed. The results showed that increasing temperature not only enhanced the dissolution of steel substrate, but also promoted the precipitation of FeCO 3 , the addition of acetic acid enhanced localized corrosion attack on N80 carbon steel. FeCO 3 was the main corrosion product. And there was a transition region between CO 2 corrosion control and HAc corrosion control.

  5. Properties of Reinforced Concrete Steel Rebars Exposed to High Temperatures

    OpenAIRE

    Topçu, İlker Bekir; Karakurt, Cenk

    2008-01-01

    The deterioration of the mechanical properties of yield strength and modulus of elasticity is considered as the primary element affecting the performance of steel structures under fire. In this study, hot-rolled S220 and S420 reinforcement steel rebars were subjected to high temperatures to investigate the fire performance of these materials. It is aimed to determine the remaining mechanical properties of steel rebars after elevated temperatures. Steels were subjected to 20, 100, 200, 300, 5...

  6. Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2016-02-01

    Full Text Available High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 °C for 50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded at 800 °C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3 layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3-mixed layer. The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

  7. General corrosion of carbon steels in high temperature water

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-04-01

    This short paper seeks to provide a summary of the main knowledge about the general corrosion of carbon steels in high temperature water. In pure water or slightly alkaline deaerated water, steels develop a protective coating of magnetite in a double layer (Potter and Mann oxide) or a single layer (Bloom oxide). The morphology of the oxide layer and the kinetics of corrosion depend on the test parameters controlling the solubility of iron. The parameters exercising the greatest influence are partial hydrogen pressure and mass transfer: hydrogen favours the solubilization of the magnetite; the entrainment of the dissolved iron prevents a redeposition of magnetite on the surface of the steel. Cubic or parabolic in static conditions, the kinetics of corrosion tends to be linear in dynamic conditions. In dynamic operation, corrosion is at least one order of magnitude lower in water with a pH of 10 than in pure water with a pH of 7. The activation energy of corrosion is 130 kJ/mol (31 kcal/mol). This results in the doubling of corrosion at around 300 deg C for a temperature increase of 15 deg C. Present in small quantities (100-200 ppb), oxygen decreases general corrosion but increases the risk of pitting corrosion - even for a low chloride content - and stress corrosion cracking or corrosion-fatigue. The steel composition has probably an influence on the kinetics of corrosion in dynamic conditions; further work would be required to clarify the effect of some residual elements. (author). 31 refs., 9 figs., 2 tabs

  8. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    International Nuclear Information System (INIS)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun

    2016-01-01

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  9. Microstructure and Mechanical Properties of Inconel 625 Alloy on Low Carbon Steel by Heat Treatment after Overlay Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungpil; Jang, Jaeho; Kim, Jungsoo; Kim, Byung Jun; Sohn, Keun Yong; Nam, Dae-Geun [Korea Institute of Industrial Technology, Busan (Korea, Republic of)

    2016-08-15

    Overlay welding technique is one of methods used to improve metal mechanical properties such as strength, toughness and corrosion resistance. Generally, Inconel 625 alloy is used for overlay welding layer on low carbon steels for economic consideration. However, the method produces some problems in the microstructure of the cast structure and some defects, caused by the elevated temperatures of the overlay process. To resolve these problems, heat treatments are required. In this study, Inconel 625 alloy was welded on a low carbon steel by the overlay welding process to investigate the resulting microstructure and mechanical properties. A double heat treatment was performed to improve the mechanical properties of the welding and substrate layers. It was found that Inconel 625 alloy had an austenite microstructure after the first heat treatment, but the low carbon steel had a ferrite-pearlite microstructure after the second heat treatment. After the double heat treatment, the sample showed the optimum hardness because of grain refinement and homogenization of the microstructure.

  10. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Ashassi-Sorkhabi, H., E-mail: habib_ashassi@yahoo.com [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Moradi-Haghighi, M. [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Zarrini, G. [Microbiology laboratory, Biology Department, Science Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-02-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO{sub 2} deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: Black-Right-Pointing-Pointer A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. Black-Right-Pointing-Pointer This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. Black-Right-Pointing-Pointer In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  11. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Moradi-Haghighi, M.; Zarrini, G.

    2012-01-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO 2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  12. Crystallographic features of lath martensite in low-carbon steel

    International Nuclear Information System (INIS)

    Kitahara, Hiromoto; Ueji, Rintaro; Tsuji, Nobuhiro; Minamino, Yoritoshi

    2006-01-01

    Electron backscattering diffraction with field-emission scanning electron microscopy was used to analyze crystallographically the lath martensite structure in a 0.20% carbon steel. The crystallographic features of the lath martensite structure, of the order of the prior austenite grain size or larger, were clarified. Although the orientations of the martensite crystals were scattered around the ideal variant orientations, the martensite in this steel maintained the Kurdjumov-Sachs (K-S) orientation relationship. The procedures of the crystallographic analysis of the martensite (ferrite) phase with the K-S orientation relationship were explained in detail. Variant analysis showed that all 24 possible variants did not necessarily appear within a single prior austenite grain and that all six variants did not necessarily appear within each packet. Specific combinations of two variants appeared within local regions (sub-blocks), indicating a strict rule for variant selection. Prior austenite grain boundaries and most of the packet boundaries were clearly recognized. However, it was difficult to determine the block boundaries within the sub-blocks

  13. The corrosion behaviour of carbon steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low- and intermediate-level waste. Since gas production is mainly due to the corrosion of carbon steel, it is important to have as reliable data as possible on the corrosion rate of steel in anaerobic cement. A review of the literature shows that the corrosion current densities lie in the range 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 .a). Corrosion rates of this order of magnitude are technically irrelevant, with the result that there is very little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. Given the current situation, it would appear somewhat risky to accept the lower value for hydrogen production as proven. Proposals are made for experiments which would reduce this element of uncertainty. (author) 10 figs., 35 refs

  14. Effect of heat treatment on carbon steel pipe welds

    International Nuclear Information System (INIS)

    Mohamad Harun.

    1987-01-01

    The heat treatment to improve the altered properties of carbon steel pipe welds is described. Pipe critical components in oil, gasification and nuclear reactor plants require adequate room temperature toughness and high strength at both room and moderately elevated temperatures. Microstructure and microhardness across the welds were changed markedly by the welding process and heat treatment. The presentation of hardness fluctuation in the welds can produce premature failure. A number of heat treatments are suggested to improve the properties of the welds. (author) 8 figs., 5 refs

  15. 76 FR 42679 - Certain Hot-Rolled Carbon Steel Flat Products From India: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-07-19

    .... Steel''), Nucor Corporation (``Nucor''), and ArcelorMittal USA Inc. DATES: Effective Date: July 19, 2011..., 2011. We received briefs from U.S. Steel and Nucor and a rebuttal brief from Tata.\\5\\ On May 17, the... India, dated April 14, 2011; Letter from Nucor to the Department, regarding Certain Hot-Rolled Carbon...

  16. Corrosion of carbon steel under waste disposal conditions

    International Nuclear Information System (INIS)

    Marsh, G.

    1990-01-01

    The corrosion of carbon steel has been studied in the United Kingdom under granitic groundwater conditions, with pH between 5 and 10 and possibly substantial amounts of Cl - , SO 4 2- and HCO 3 - /CO 3 2- . Corrosion modes considered include uniform corrosion under both aerobic and anaerobic conditions; passive corrosion; localized attack in the form of pitting or crevice corrosion; and environmentally assisted cracking - hydrogen embrittlement or stress corrosion cracking. Studies of these processes are being carried out in order to predict the metal thicknesses required to give container lifetimes of 500 to 1000 years. A simple uniform corrosion model predicts a corrosion rate of around 13.4 μm/a at 20C, rising to 69 μm/a at 50C and 208 μm/a at 90C. A radiation dose of 10 5 rad/h and a G-value of 2.8 for the production of oxidizing species would account for an increase in corrosion rate of 7 μm/a. This model overestimates slightly the results actually achieved for experimental samples exposed for two years, the difference being due to a protective film formed on the samples. These corrosion rates predict that the container must be 227 mm thick to withstand uniform corrosion; however, they predict very high levels of hydrogen production. Conditions will be favourable for localized or pitting corrosion for about 125 years, leading to a maximum penetration of 160 mm. Since the exposure environment cannot be predicted precisely, one cannot state that stress corrosion cracking is impossible. Thus the container must be stress relieved. Other corrosion mechanisms such as microbial corrosion and hydrogen embrittlement are not considered significant

  17. Carbon/PEEK composite materials as an alternative for stainless steel/titanium hip prosthesis: a finite element study.

    Science.gov (United States)

    Rezaei, Farshid; Hassani, Kamran; Solhjoei, Nosratollah; Karimi, Alireza

    2015-12-01

    Total hip replacement (THR) has been ranked within the most typical surgical processes in the world. The durability of the prosthesis and loosening of prosthesis are the main concerns that mostly reported after THR surgeries. In THR, the femoral prosthesis can be fixed by either cement or cementless methods in the patient's bones. In both procedures, the stability of the prosthesis in the hosted bone has a key asset in its long-term durability and performance. This study aimed to execute a comparative finite element simulation to assess the load transfer between the prosthesis, which is made of carbon/PEEK composite and stainless steel/titanium, and the femur bone. The mechanical behavior of the cortical bone was assumed as a linear transverse isotropic while the spongy bone was modeled like a linear isotropic material. The implants were made of stainless steel (316L) and titanium alloy as they are common materials for implants. The results showed that the carbon/PEEK composites provide a flatter load transfer from the upper body to the leg compared to the stainless steel/titanium prosthesis. Furthermore, the results showed that the von Mises stress, principal stress, and the strain in the carbon/PEEK composites prosthesis were significantly lower than that made of the stainless steel/titanium. The results also imply that the carbon/PEEK composites can be applied to introduce a new optimum design for femoral prosthesis with adjustable stiffness, which can decrease the stress shielding and interface stress. These findings will help clinicians and biomedical experts to increase their knowledge about the hip replacement.

  18. Intergranular stress corrosion cracking of low alloy and carbon steels in high temperature pure water

    International Nuclear Information System (INIS)

    Tsubota, M.; Sakamoto, H.; Tsuzuki, R.

    1993-01-01

    Stress corrosion cracking (SCC) behavior of low alloy steels (A508 and SNCM630) and a carbon steel (SGV480) in high temperature water has been examined with relation to the heat treatment condition, including a long time aging, and the mechanical properties. Intergranular stress corrosion cracking (IGSCC) as observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed a close relationship between hardness and SCC susceptibility. From the engineering point of view, it was concluded that adequate SR (stress relief) or tempering heat treatment is necessary to avoid the IGSCC of the welded structures made of low alloy and carbon steels. A508 heat treated with specified quench and temper did not show the SCC susceptibility, even after aging 10000 hours at 350, 400 and 450 degrees C. Tensile properties corresponding to the critical hardness for SSC susceptibility coincided with the values at the 'necking point' in the true stress-strain curve. Ductile-brittle transition observed in the fracture toughness test also occurred at around the critical hardness for SCC susceptibility. Therefore, it was conjectured that the limitation of plasticity was an absolute cause for the SCC susceptibility of the steels

  19. A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen.

    Science.gov (United States)

    Nanninga, N; Slifka, A; Levy, Y; White, C

    2010-01-01

    Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications.

  20. Open site tests on corrosion of carbon steel containers for radioactive waste forms

    International Nuclear Information System (INIS)

    Barinov, A.S.; Ojovan, M.I.; Ojovan, N.V.; Startceva, I.V.; Chujkova, G.N.

    1999-01-01

    Testing of waste containers under open field conditions is a component part of the research program that is being carried out at SIA Radon for more than 20 years to understand the long-term behavior of radioactive waste forms and waste packages. This paper presents the preliminary results of these ongoing studies. The authors used a typical NPP operational waste, containing 137 Cs, 134 Cs, and 60 Co as the dominant radioactive constituents. Bituminized and vitrified waste samples with 30--50 wt.% waste loading were prepared. Combined effects of climatic factors on corrosion behavior of carbon steel containers were estimated using gravimetric and chemical analyses. The observations suggest that uniform corrosion of containers prevails under open field conditions. The upper limits for the lifetime of containers were derived from calculations based on the model of atmospheric steel corrosion. Estimated lifetime values range from 300 to 600 years for carbon steel containers with the wall thickness of 2 mm containing vitrified waste, and from 450 to 500 years for containers with the wall thickness of 2.5 mm that were used for bituminized waste. However, following the most conservative method, pitting corrosion may cause container integrity failure after 60 to 90 years of exposure

  1. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  2. 78 FR 55057 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2013-09-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... Department) is conducting an administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea), covering the period [[Page 55058...

  3. 78 FR 16247 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea; Final Results of...

    Science.gov (United States)

    2013-03-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... preliminary results of the administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea).\\1\\ This review covers seven manufacturers...

  4. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... Commerce (the Department) initiated an administrative review of the countervailing duty order on corrosion- resistant carbon steel flat products from the Republic of Korea covering the period January 1, 2009, through...

  5. Characterization of transfer layers on steel surfaces sliding against diamondlike carbon in dry nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, A.; Bindal, C.; Pagan, J. [Argonne National Lab., IL (United States); Wilbur, P. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering

    1995-03-01

    Transfer layers on sliding steel surfaces play important roles in tribological performance of diamondlike carbon films. This study investigated the nature of transfer layers formed on M50 balls during sliding against diamondlike carbon (DLC) films (1.5 {mu}m thick) prepared by ion-beam deposition. Long-duration sliding tests were performed with steel balls sliding against the DLC coatings in dry nitrogen at room temperature and zero humidity. Test results indicated that the friction coefficients of test pairs were initially 0.12 but decreased steadily with sliding distance to 0.02-0.03 and remained constant throughout the tests, which lasted for more than 250,000 sliding cycles (30 km). This low-friction regime appeared to coincide with the formation of a carbon-rich transfer layer on the sliding surfaces of M50 balls. Micro-laser-Raman spectroscopy and electron microscopy were used to elucidate the structure and chemistry of these transfer layers and to reveal their possible role in the wear and friction behavior of DLC-coated surfaces.

  6. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    Science.gov (United States)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures ( 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  7. Influence Voltage Pulse Electrical Discharge In The Water at the Endurance Fatigue Of Carbon Steel

    Directory of Open Access Journals (Sweden)

    I.A. Vakulenko

    2016-05-01

    Full Text Available Effect of pulses of electrical discharge in the water at the magnitude of the limited endurance under cyclic loading thermally hardened carbon steel was investigated. Observed increase stamina during cyclic loading a corresponding increase in the number of accumulated dislocations on the fracture surface. Using the equation of Cofino-Manson has revealed a decrease of strain loading cycle after treatment discharges. For field-cycle fatigue as a result of processing the voltage pulses carbon steel structure improvement, followed by growth of limited endurance decrease per cycle of deformation. With increasing amplitude of the voltage loop gain stamina effect on metal processing voltage pulses is reduced. The results can be used to extend the life of parts that are subject to cyclic loading.

  8. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  9. Influence of alkali, silicate, and sulfate content of carbonated concrete pore solution on mild steel corrosion behavior

    International Nuclear Information System (INIS)

    L'Hostis, V.; Huet, B.; Tricheux, L.; Idrissi, H.

    2010-01-01

    The increase in the rebar corrosion rate due to the concrete carbonation is the major cause of reinforced concrete degradation. The aim of this study was to investigate the corrosion behavior of mild steel rebars in simulated carbonated concrete solution. For this purpose, thermodynamic calculations, electrochemical techniques, gravimetric measurements, and surface analyses were used. Thermodynamic investigations of the nature of the interstitial solution provides an estimation of the influence of sulfate (SO 4 2- ) and alkali (Na + , K + ) content on carbonate alkalinity of the CO 2 /H 2 O open system (pCO 2 =0. 3 mbar). in this system, calcium-silicate hydrates (C-S-H) remain thermodynamically unstable and amorphous silica controls silicate aqueous content at 100 ppm. Electrochemical results highlight a decrease in the corrosion rate with increasing carbonate alkalinity and the introduction of silicate. The introduction of sulfate at fixed carbonate alkalinity shows a dual effect: at high carbonate alkalinity, the corrosion rate is increased whereas at low carbonate alkalinity, corrosion rate is decreased. Those results are supported by surface analysis. Authors conclude that silicate and sulfate release from cement hydrates and fixation of alkali on carbonated hydrates are key parameters to estimate mild steel corrosion in carbonated concrete. (authors)

  10. Production, energy, and carbon emissions: A data profile of the iron and steel industry

    International Nuclear Information System (INIS)

    Battles, S.J.; Burns, E.M.; Adler, R.K.

    1999-01-01

    The complexities of the manufacturing sector unquestionably make energy-use analysis more difficult here than in other energy-using sectors. Therefore, this paper examines only one energy-intensive industry within the manufacturing sector--blast furnaces and steel mills (SIC 3312). SIC 3312, referred to as the iron and steel industry in this paper, is profiled with an examination of the products produced, how they are produced, and energy used. Energy trends from 1985 to 1994 are presented for three major areas of analysis. The first major area includes trends in energy consumption and expenditures. The next major area includes a discussion of energy intensity--first as to its definition, and then its measurement. Energy intensities presented include the use of different (1) measures of total energy, (2) energy sources, (3) end-use energy measures, (4) energy expenditures, and (5) demand indicators-economic and physical values are used. The final area of discussion is carbon emissions. Carbon emissions arise both from energy use and from certain industrial processes involved in the making of iron and steel. This paper focuses on energy use, which is the more important of the two. Trends are examined over time

  11. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-04-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C.

  12. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    International Nuclear Information System (INIS)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-01-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C

  13. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    Directory of Open Access Journals (Sweden)

    Hassoune Mohammed

    2018-01-01

    Full Text Available The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA, at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater, over the whole range of temperatures studied. The inhibition efficiency (IE% increases with increasing DMEA concentration; it reaches highest value for a concentration around 0.125 mol.L-1. Potentiodynamic polarization data show that, the compound studied in this research predominantly act as anodic-type inhibitor. The EIS study reveals that the addition of DMEA decreases the corrosion rate of carbon steel in neutral sodium chloride solution, due to the fact that the inhibitor molecules are strongly adsorbed on the active sites following Langmuir isotherm, thus leading to the formation of a stable protective film on the steel surface which is able to keep the metal/solution interface in a passive state. Furthermore, the values of the activation parameters, i.e. ΔHa and Ea obtained in this study indicate that the adsorption process of DMEA is endothermic and could be mainly attributed to chemisorption, respectively.

  14. On the carbide formation in high-carbon stainless steel

    International Nuclear Information System (INIS)

    Mujahid, M.; Qureshi, M.I.

    1996-01-01

    Stainless steels containing high Cr as well as carbon contents in excess of 1.5 weight percent have been developed for applications which require high resistance erosion and environmental corrosion. Formation of carbides is one of important parameters for controlling properties of these materials especially erosion characteristics. Percent work includes the study of different type of carbides which from during the heat treatment of these materials. It has been found that precipitation of secondary carbides and the nature of matrix transformation plays an important role in determining the hardness characteristics of these materials. (author)

  15. Conversion electron Moessbauer study of low carbon steel polarized in aqueous sulfate solution containing sulfite in low concentration

    International Nuclear Information System (INIS)

    Vertes, Cs.; Lakatos-Varsanyi, M.; Vertes, A.; Kuzmann, E.; Meisel, W.; Guetlich, P.

    1992-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5 M Na 2 SO 4 +0.001 M NaHSO 3 at pH=3.5 and 6.5. The found major components at pH=3.5 were: γ-FeOOH and Fe 3 C, and also FeSO 4 .H 2 O could be identified on the surface of the low carbon steel as a minor component. At pH=6.5, the passive film contained only amorphous iron(III)-oxide or oxyhydroxide. (orig.)

  16. The study of the corrosion protection of the low-carbon steel using film-products

    International Nuclear Information System (INIS)

    Aiancului, L.; Millet, Jean-Pierre

    2001-01-01

    The paper reports studies on the efficiency of the film-inhibitors that covered low-carbon steel placed in a humid medium, and also, the optimization of the working conditions to improve the resistance to corrosion. The analyzes were done in the Industrial Physical - Chemical Laboratories of INSA - Lyon by electrochemical stationary techniques. The experimental device was a potentiometer of type EGG PAR (Princeton Applied Research). It was connected with a computer and three potential electrodes introduced in a cell with NaCl 30 g/l solution to acquire the data and to process the information. The film-products used were organic hydrosoluble polymers with diphosphonic 'heads' that permit a very good absorption at the metallic surface. This research is used to protect the installations of low-carbon steel against the atmospheric and high temperature corrosion. (authors)

  17. Radioisotope methods of investigations of phenomenons at phases border of steel - atmosphere in gaseous processes of thermochemical treatment of steel

    International Nuclear Information System (INIS)

    L'utse-Birk, A.; Bel'ski, V.; Vez'ranovski, Eh.; Valis', L.

    1979-01-01

    Radioisotope methods of investigations of the processes of thermochemical treatment of steels are valuable, and in some cases, the only means for analysis of complicated mechanisms of diffusion, absorption and chemical reactions, going on in some technological processes. New specific methods are stated for investigation of processes on the border between steel and gaseous atmosphere. Quantative method nas been developed for investigation of the kinetics of carbon transfere (labelled by carbon-14) from steel into gases. Hydrocarbons and their derivatives are adsorbed selectivelly and beta-activity of the compound is measured in the presence of liquid scintillators. Limiting detectable amount of carbon equals to 0.5μg. Application of labelled (by radioisotope iron-59) iron in steel has ensured a possibility to determine its participation in reactions with chromium and titanum coating atmospheres. Application of hydrocarbons labelled by carbon-14 in the composition of titanum coating atmosphere has permitted to determine, in comparison with investigation of carbon diffusion in steel, participation of two different carbon sources in the forming of the TiC layer on steel and has led to the optimization of processes, especially for low-carbon steels [ru

  18. 76 FR 72173 - Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman, the United Arab...

    Science.gov (United States)

    2011-11-22

    ...-552-810] Circular Welded Carbon-Quality Steel Pipe From India, the Sultanate of Oman, the United Arab... Steel Pipe from India, Oman, the United Arab Emirates, and Vietnam, dated October 26, 2011 (hereinafter... pipe from India, the Sultanate of Oman (``Oman''), the United Arab Emirates (``the UAE''), and the...

  19. 77 FR 21527 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Science.gov (United States)

    2012-04-10

    ... from the Republic of Korea. The review covers one manufacturer/ exporter. The period of review is...-Quality Steel Plate Products From the Republic of Korea: Final Results of Antidumping Duty Administrative... duty order on certain cut-to-length carbon-quality steel plate products (CTL plate) from the Republic...

  20. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...