WorldWideScience

Sample records for carbon footprint standards

  1. Carbon footprint: current methods of estimation.

    Science.gov (United States)

    Pandey, Divya; Agrawal, Madhoolika; Pandey, Jai Shanker

    2011-07-01

    Increasing greenhouse gaseous concentration in the atmosphere is perturbing the environment to cause grievous global warming and associated consequences. Following the rule that only measurable is manageable, mensuration of greenhouse gas intensiveness of different products, bodies, and processes is going on worldwide, expressed as their carbon footprints. The methodologies for carbon footprint calculations are still evolving and it is emerging as an important tool for greenhouse gas management. The concept of carbon footprinting has permeated and is being commercialized in all the areas of life and economy, but there is little coherence in definitions and calculations of carbon footprints among the studies. There are disagreements in the selection of gases, and the order of emissions to be covered in footprint calculations. Standards of greenhouse gas accounting are the common resources used in footprint calculations, although there is no mandatory provision of footprint verification. Carbon footprinting is intended to be a tool to guide the relevant emission cuts and verifications, its standardization at international level are therefore necessary. Present review describes the prevailing carbon footprinting methods and raises the related issues.

  2. Emerging product carbon footprint standards and schemes and their possible trade impacts

    DEFF Research Database (Denmark)

    Bolwig, Simon; Gibbon, Peter

    footprints or procedures for certification or labelling. Nonetheless, to date only a few thousand products have been footprinted. As PCFs are already becoming market access requirements for bio-fuels imported to the EU, and may also become EU market access requirements for all mass-produced goods within 10......Concern over climate change has stimulated interest in estimating the total amount of greenhouse gasses produced during the life-cycle of goods and services - i.e. during their production, transportation, sale, use and disposal. The outcome of these calculations is referred to as "product carbon...... footprints" (PCFs). The paper reviews the rationale, context, coverage and characteristics of emerging standards and certification schemes that estimate and designate PCFs, and discusses the possible impacts on trade, particularly exports from distant and developing countries. It draws on a survey of PCF...

  3. Emerging product carbon footprint standards and schemes and their possible trade impacts

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, S.; Gibbon, P.

    2009-12-15

    Concern over climate change has stimulated interest in estimating the total amount of greenhouse gasses produced during the life-cycle of goods and services - i.e. during their production, transportation, sale, use and disposal. The outcome of these calculations is referred to as 'product carbon footprints' (PCFs). The paper reviews the rationale, context, coverage and characteristics of emerging standards and certification schemes that estimate and designate PCFs, and discusses the possible impacts on trade, particularly exports from distant and developing countries. It draws on a survey of PCF certification schemes carried out during 2009, on a review of evolving international and national standards, and on a review of consumer surveys. Since 2007 one public standard, and two public and 14 private certification schemes referring to standards for calculating and communicating PCFs have become operational. Two new international standards and several new schemes, including three public ones, are due to become operational by 2011 or earlier. The private schemes are owned by a mixture of voluntary bodies and private companies, including some large retailers. Many provide assistance for reducing carbon footprints or procedures for certification or labelling. Nonetheless, to date only a few thousand products have been footprinted. As PCFs are already becoming market access requirements for bio-fuels imported to the EU, and may also become EU market access requirements for all mass-produced goods within 10-15 years, there is a danger that developing country exporters will lose out as a result. This is because: they are less likely to have the resources necessary for calculating and verifying PCFs; publicly available datasets are less likely to include processes carried out mainly in developing countries; and some existing standards do not currently include production of capital goods in their definition of product life cycles, which imparts a bias against

  4. Carbon footprinting of electronic products

    International Nuclear Information System (INIS)

    Vasan, Arvind; Sood, Bhanu; Pecht, Michael

    2014-01-01

    Highlights: • Challenges in adopting existing CF standards for electronic products are discussed. • Carbon footprint of electronic products is underestimated using existing standards. • Multipronged approach is presented to overcome the identified challenges. • Multipronged approach demonstrated on commercial and military grade DC–DC converter system. - Abstract: In order to mitigate the effects of global warming, companies are being compelled by governments, investors, and customers to control their greenhouse gas (GHG) emissions. Similar to the European Union’s legislation on the airline industry, legislation is expected to require the electronics industry to assess their product’s carbon footprint before sale or use, as the electronics industry’s contribution to global GHG emissions is comparable to the airline industry’s contribution. Thus, it is necessary for members of the electronics industry to assess their current GHG emission rates and identify methods to reduce environmental impacts. Organizations use Carbon Footprint (CF) analysis methods to identify and quantify the GHG emissions associated with the life cycle stages of their product or services. This paper discusses the prevailing methods used by organizations to estimate the CF of their electronics products and identifies the challenges faced by the electronics industry when adopting these methods in an environment of decreasing product development cycles with complex and diffuse supply chains. We find that, as a result of the inconsistencies arising from the system boundary selection methods and databases, the use of outdated LCA approaches, and the lack of supplier’s emissions-related data, the CFs of electronic products are typically underestimated. To address these challenges, we present a comprehensive approach to the carbon footprinting of electronic products that involves the use of product-group-oriented standards, hybrid life cycle assessment techniques, and the

  5. Product carbon footprint developments and gaps

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper

    2012-01-01

    Purpose - Over the last decade, multiple initiatives have been undertaken to learn how to capture the carbon footprint of a supply chain at a product level. The purpose of this paper is to focus on the process of standardization to secure consistency of product carbon footprinting (PCF) and to ou....../value - Papers that outline the standardization process for PCF have been examined, but this paper adds value by categorizing the field, outlining the latest standards, and by being the first paper to compare standards for PCF on selected criteria and identify gaps....... when conducting a PCF, and a paradox exists concerning methods for securing future standardization of PCF. Research limitations/implications - Standards for evaluating emission of greenhouse gases (GHGs) in supply chains are evaluated without consideration of other environmental impacts. In addition......, the research only compares international standards, thereby excluding national initiatives. Practical implications - Standardization efforts can be expected to shape the future practice of measuring emission of GHGs in companies and supply chains which provides a framework for reducing impacts. Originality...

  6. A better carbon footprint label

    DEFF Research Database (Denmark)

    Thøgersen, John; Nielsen, Kristian S.

    2016-01-01

    , participants saw the original Carbon Trust label and in the other condition they saw the same label, but with traffic light colors added to communicate the product’s relative performance in terms of carbon footprint. All included attributes were found to have a significant impact on consumer choices....... As expected, price and carbon footprint were negatively related to choice. Further, participants preferred organic to non-organic coffee and certification by a public authority. The effect of the carbon label is significantly stronger the more environmentally concerned the consumer is. Using colors...... to indicate relative carbon footprint significantly increases carbon label effectiveness. Hence, a carbon footprint label is more effective if it uses traffic light colors to communicate the product’s relative performance....

  7. Carbon footprint of cartons in Europe - Carbon Footprint methodology and biogenic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Elin; Karlsson, Per-Erik; Hallberg, Lisa; Jelse, Kristian

    2010-05-15

    A methodology for carbon sequestration in forests used for carton production has been developed and applied. The average Carbon Footprint of converted cartons sold in Europe has been calculated and summarised. A methodology for a EU27 scenario based assessment of end of life treatment has been developed and applied. The average Carbon Footprint represents the total Greenhouse Gas emissions from one average tonne of virgin based fibres and recycled fibres produced, converted and printed in Europe

  8. Carbon footprint estimation of municipal water cycle

    Science.gov (United States)

    Bakhshi, Ali A.

    2009-11-01

    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  9. Carbon footprinting. An introduction for organisations

    International Nuclear Information System (INIS)

    2007-08-01

    To some degree or other, every person and every organisation, either directly or indirectly, is responsible for producing carbon dioxide gas which finds its way into the atmosphere and therefore contributes to the greenhouse effect. The amount of carbon dioxide produced by a person, an organisation, a company, an industry, an event, or even a population can be quantified in what is now described as a carbon footprint. Gases other than carbon dioxide are also released to the atmosphere through man's activities and these can also be evaluated in terms of the carbon footprint. This document explains the meaning of the expression 'carbon footprint' and aims to assist businesses and organisations to determine collective and individual carbon footprints

  10. Off-gas treatment carbon footprint calculator : form and function

    Energy Technology Data Exchange (ETDEWEB)

    Kessell, L. [Good EarthKeeping Organization Inc., Corona, CA (United States); Squire, J.; Crosby, K. [Haley and Aldrich Inc., Boston, MA (United States)

    2008-07-01

    Carbon footprinting is the measurement of the impact on the environment in terms of the amount of greenhouse gases produced, measured in units of carbon dioxide released directly and indirectly by an individual, organization, process, event or product. This presentation discussed an off-gas treatment carbon footprint calculator. The presentation provided a review of off-gas treatment technologies and presented a carbon footprint model. The model included: form and function; parameters; assumptions; calculations; and off-gas treatment applications. Parameters of the model included greenhouse gases listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change, such as carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, hydrofluorocarbons, and perfluorocarbons. Assumptions of the model included stationary combustion emissions; mobile combustion emissions; indirect emissions; physical or chemical processing emissions; fugitive emissions; and de minimus emissions. The presentation also examined resource conservation and discussed three greenhouse gas footprint case studies. It was concluded that the model involved a calculator with standard calculations with clearly defined assumptions with boundaries. tabs., figs.

  11. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  12. Carbon footprinting in supply chains

    NARCIS (Netherlands)

    Boukherroub, T.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    This chapter presents an overview of the methods and challenges behind carbon footprinting at the supply chain level. We start by providing some information about the scientific background on climate change. This information is necessary to clarify the overall methodology behind carbon footprinting

  13. Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems.

    Science.gov (United States)

    Yousefi, Mohammad; Khoramivafa, Mahmud; Damghani, Abdolmajid Mahdavi

    2017-08-01

    The aims of this study were to assess the energy requirements, carbon footprint, and water footprint of sunflower production in Kermanshah province, western Iran. Data were collected from 70 sunflower production agroecosystems which were selected based on random sampling method in summer 2012. Results indicated that total input and output energy in sunflower production were 26,973.87 and 64,833.92 MJha -1 , respectively. The highest share of total input energy in sunflower agroecosystems was recorded for electricity power, N fertilizer, and diesel fuel with 35, 19, and 17%, respectively. Also, energy use efficiency, water footprint, greenhouse gas (GHG) emission, and carbon footprint were calculated as 2.40, 3.41 m 3  kg -1 , 2042.091 kg CO 2eq ha -1 , and 0.875 kg CO 2eq kg -1 , respectively. 0.18 of sunflower water footprint was related to green water footprint and the remaining 82% was related to blue water footprint. Also, the highest share of carbon footprint was related to electricity power (nearby 80%). Due to the results of this study, reducing use of fossil fuel and non-renewable energy resource and application of sufficient irrigation systems by efficient use of water resource are essential in order to achieve low carbon footprint, environmental challenges, and also sustainability of agricultural production systems.

  14. Land, carbon and water footprints in Taiwan

    International Nuclear Information System (INIS)

    Lee, Yung-Jaan

    2015-01-01

    The consumer responsibility approach uses footprints as indicators of the total direct and indirect effects of a product or consumption activity. This study used a time-series analysis of three environmental pressures to quantify the total environmental pressures caused by consumption in Taiwan: land footprint, carbon footprint, and water footprint. Land footprint is the pressure from appropriation of biologically productive land and water area. Carbon footprint is the pressure from greenhouse gas emissions. Water footprint is the pressure from freshwater consumption. Conventional carbon footprint is the total CO 2 emitted by a certain activity or the CO 2 accumulation during a product life cycle. This definition cannot be used to convert CO 2 emissions into land units. This study responds to the needs of “CO 2 land” in the footprint family by applying the carbon footprint concept used by GFN. The analytical results showed that consumption by the average Taiwan citizen in 2000 required appropriation of 5.39 gha (hectares of land with global-average biological productivity) and 3.63 gha in 2011 in terms of land footprint. The average Taiwan citizen had a carbon footprint of 3.95 gha in 2000 and 5.94 gha in 2011. These results indicate that separately analyzing the land and carbon footprints enables their trends to be compared and appropriate policies and strategies for different sectors to be proposed accordingly. The average Taiwan citizen had a blue water footprint of 801 m 3 in 2000 and 784 m 3 in 2011. By comparison, their respective global averages were 1.23 gha, 2.36 gha and 163 m 3 blue water in 2011, respectively. Overall, Taiwan revealed higher environmental pressures compared to the rest of the world, demonstrating that Taiwan has become a high footprint state and has appropriated environmental resources from other countries. That is, through its imports of products with embodied pressures and its exports, Taiwan has transferred the environmental

  15. Land, carbon and water footprints in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung-Jaan, E-mail: yungjaanlee@gmail.com

    2015-09-15

    The consumer responsibility approach uses footprints as indicators of the total direct and indirect effects of a product or consumption activity. This study used a time-series analysis of three environmental pressures to quantify the total environmental pressures caused by consumption in Taiwan: land footprint, carbon footprint, and water footprint. Land footprint is the pressure from appropriation of biologically productive land and water area. Carbon footprint is the pressure from greenhouse gas emissions. Water footprint is the pressure from freshwater consumption. Conventional carbon footprint is the total CO{sub 2} emitted by a certain activity or the CO{sub 2} accumulation during a product life cycle. This definition cannot be used to convert CO{sub 2} emissions into land units. This study responds to the needs of “CO{sub 2} land” in the footprint family by applying the carbon footprint concept used by GFN. The analytical results showed that consumption by the average Taiwan citizen in 2000 required appropriation of 5.39 gha (hectares of land with global-average biological productivity) and 3.63 gha in 2011 in terms of land footprint. The average Taiwan citizen had a carbon footprint of 3.95 gha in 2000 and 5.94 gha in 2011. These results indicate that separately analyzing the land and carbon footprints enables their trends to be compared and appropriate policies and strategies for different sectors to be proposed accordingly. The average Taiwan citizen had a blue water footprint of 801 m{sup 3} in 2000 and 784 m{sup 3} in 2011. By comparison, their respective global averages were 1.23 gha, 2.36 gha and 163 m{sup 3} blue water in 2011, respectively. Overall, Taiwan revealed higher environmental pressures compared to the rest of the world, demonstrating that Taiwan has become a high footprint state and has appropriated environmental resources from other countries. That is, through its imports of products with embodied pressures and its exports, Taiwan has

  16. The carbon footprint of cataract surgery.

    Science.gov (United States)

    Morris, D S; Wright, T; Somner, J E A; Connor, A

    2013-04-01

    Climate change is predicted to be one of the largest global health threats of the 21st century. Health care itself is a large contributor to carbon emissions. Determining the carbon footprint of specific health care activities such as cataract surgery allows the assessment of associated emissions and identifies opportunities for reduction. To assess the carbon footprint of a cataract pathway in a British teaching hospital. This was a component analysis study for one patient having first eye cataract surgery in the University Hospital of Wales, Cardiff. Activity data was collected from three sectors, building and energy use, travel and procurement. Published emissions factors were applied to this data to provide figures in carbon dioxide equivalents (CO2eq). The carbon footprint for one cataract operation was 181.8 kg CO2eq. On the basis that 2230 patients were treated for cataracts during 2011 in Cardiff, this has an associated carbon footprint of 405.4 tonnes CO2eq. Building and energy use was estimated to account for 36.1% of overall emissions, travel 10.1% and procurement 53.8%, with medical equipment accounting for the most emissions at 32.6%. This is the first published carbon footprint of cataract surgery and acts as a benchmark for other studies as well as identifying areas for emissions reduction. Within the procurement sector, dialogue with industry is important to reduce the overall carbon footprint. Sustainability should be considered when cataract pathways are designed as there is potential for reduction in all sectors with the possible side effects of saving costs and improving patient care.

  17. Carbon Footprints

    OpenAIRE

    Rahel Aichele; Gabriel Felbermayr

    2011-01-01

    Lässt sich der Beitrag eines Landes zum weltweiten Klimaschutz an der Veränderung seines CO2-Ausstoßes messen, wie es im Kyoto-Abkommen implizit unterstellt wird? Oder ist aufgrund der Bedeutung des internationalen Güterhandels der Carbon Footprint – der alle CO2-Emissionen erfasst, die durch die Absorption (d.h. Konsum und Investitionen) eines Landes entstehen – das bessere Maß? Die Autoren erstellen eine Datenbank mit den Footprints von 40 Ländern für den Zeitraum 1995–2007. Die deskriptive...

  18. Carbon Footprint Estimation in Fiber Optics Industry: A Case Study of OFS Fitel, LLC

    Directory of Open Access Journals (Sweden)

    Suresh Inakollu

    2017-05-01

    Full Text Available Detailed carbon footprinting assignments have been on the rise in more and more major manufacturing industries. The main strength of carbon footprinting is to make product manufacturers aware of carbon emissions and understand its meaning due to perceived global warming effects. Carbon foot-printing through life-cycle assessment in conjunction with greenhouse gas (GHG accounting is essential for identifying opportunities for environmental efficiencies. Case studies of goods that require more complex production elements have also been increasing, like optical fiber manufacturing. From making ultra-pure glass rods to elongating hot fibers, the whole process involves using a high volume of chemicals and extensive energy. Hence, standard numbers addressing carbon footprinting specifically for fiber optics is helpful for the quantification of greenhouse gas intensity, mitigation of global warming, and adaptation against future climate change scenarios. This paper calculates and helps standardize the emission factor for the production of optical fiber from the scope of gate-to-gate: 4.81 tonnes CO2eq per million meters of produced fiber (which is 72.92 kg CO2eq per kg of produced fiber in order to allow other industries to use this information in their own carbon footprint calculations. Since governmental regulatory agencies have largely failed to confront the risks associated with climate change borne by industries, it is essential for all industries to disclose their emissions in a standardized and comparable form in order to develop standard guidelines for all. This paper provides a practical life-cycle approach, concludes with requirements for further research and evaluation.

  19. Lebanese household carbon footprint: Measurements, analysis and challenges

    Science.gov (United States)

    Nasr, Rawad; Tall, Ibrahim; Nachabe, Nour; Chaaban, Farid

    2016-07-01

    The main purpose of this paper is to estimate the carbon footprint of a typical Lebanese household, and compare the results with international standards and trends. The estimation of this footprint will reflect the impact of the daily Lebanese household activities on the environment in terms of carbon dioxide emissions. The method used in estimating the carbon emissions is based on gathering the primary footprints from various household activities. Another proposed method that provides more accurate results is the estimation of emissions based on secondary footprint, which reflects the total emissions not only from the regular activities but also from a lifecycle perspective. Practical and feasible solutions were proposed to help reduce the amount of C02 emissions per household. This would lead to a better air quality, money savings, greenhouse gases emissions reduction and would ensure the sustainability and prosperity of future generations. A detailed survey was conducted in which the questions were focused mainly on energy, food, and transportation issues. The fourteen questions were addressed to one hundred families in different Lebanese regions coming from different social and economic backgrounds. This diversity would constitute a reflective sample of the actual Lebanese society, allowing us to extrapolate the gathered results on a national level.

  20. The carbon footprint of exported Brazilian yellow melon

    NARCIS (Netherlands)

    Brito de Figueirêdo, M.C.; Kroeze, C.; Potting, J.; Silva Barros, da V.; Sousa de Aragão, A.; Sonsol Gondim, R.; Boer, de I.J.M.

    2013-01-01

    The carbon footprint of food has become important for producers worldwide as consumers and retail companies increasingly base their purchase decisions on carbon footprint labels. In this context, our objectives is to assess the carbon footprint (CF) of Brazilian yellow melon exported from the Low

  1. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef.

    Science.gov (United States)

    Cederberg, Christel; Persson, U Martin; Neovius, Kristian; Molander, Sverker; Clift, Roland

    2011-03-01

    Effects of land use changes are starting to be included in estimates of life-cycle greenhouse gas (GHG) emissions, so-called carbon footprints (CFs), from food production. Their omission can lead to serious underestimates, particularly for meat. Here we estimate emissions from the conversion of forest to pasture in the Legal Amazon Region (LAR) of Brazil and present a model to distribute the emissions from deforestation over products and time subsequent to the land use change. Expansion of cattle ranching for beef production is a major cause of deforestation in the LAR. The carbon footprint of beef produced on newly deforested land is estimated at more than 700 kg CO(2)-equivalents per kg carcass weight if direct land use emissions are annualized over 20 years. This is orders of magnitude larger than the figure for beef production on established pasture on non-deforested land. While Brazilian beef exports have originated mainly from areas outside the LAR, i.e. from regions not subject to recent deforestation, we argue that increased production for export has been the key driver of the pasture expansion and deforestation in the LAR during the past decade and this should be reflected in the carbon footprint attributed to beef exports. We conclude that carbon footprint standards must include the more extended effects of land use changes to avoid giving misleading information to policy makers, retailers, and consumers.

  2. Carbon footprint of a music festival

    Science.gov (United States)

    Schafer, K. V.

    2009-12-01

    In an effort to curb CO2 and by extension, greenhouse gas emissions various initiatives have been taken statewide, nationally and internationally. However, benchmarks and metrics are not clearly defined for CO2 and CO2 equivalent accounting. The objective of this study is to estimate the carbon footprint of the Lincoln Park Music Festival which occurs annually in Newark, NJ. This festival runs for three days each summer and consists of music, food vendors, merchandise and a green marketplace. In order to determine the carbon footprint generated by transportation, surveys of participants were analyzed. Of the approximately 40,000 participants in 2009, 3.3% were surveyed. About 30% of respondents commuted to the festival by car with an average of 10 miles traveling distance. Transportation emission amounted to an estimated CO2 emission of 188 metric tons for all three days combined. Trash at the music festival was weighed, components estimated, and potential CO2 emission calculated if incinerated. 63% of the trash was found to be carbon based, which is the equivalent of three metric tons of CO2 if incinerated. The majority of the trash (>60%) could have been recycled, thus significantly reducing the carbon footprint. In order to limit the carbon footprint of this festival, alternative transport options would be advisable as transport accounted for the largest proportion of the carbon footprint at this festival.

  3. Mapping the Carbon Footprint of Nations.

    Science.gov (United States)

    Kanemoto, Keiichiro; Moran, Daniel; Hertwich, Edgar G

    2016-10-04

    Life cycle thinking asks companies and consumers to take responsibility for emissions along their entire supply chain. As the world economy becomes more complex it is increasingly difficult to connect consumers and other downstream users to the origins of their greenhouse gas (GHG) emissions. Given the important role of subnational entities-cities, states, and companies-in GHG abatement efforts, it would be advantageous to better link downstream users to facilities and regulators who control primary emissions. We present a new spatially explicit carbon footprint method for establishing such connections. We find that for most developed countries the carbon footprint has diluted and spread: for example, since 1970 the U.S. carbon footprint has grown 23% territorially, and 38% in consumption-based terms, but nearly 200% in spatial extent (i.e., the minimum area needed to contain 90% of emissions). The rapidly growing carbon footprints of China and India, however, do not show such a spatial expansion of their consumption footprints in spite of their increasing participation in the world economy. In their case, urbanization concentrates domestic pollution and this offsets the increasing importance of imports.

  4. The carbon footprint of global tourism

    Science.gov (United States)

    Lenzen, Manfred; Sun, Ya-Yen; Faturay, Futu; Ting, Yuan-Peng; Geschke, Arne; Malik, Arunima

    2018-06-01

    Tourism contributes significantly to global gross domestic product, and is forecast to grow at an annual 4%, thus outpacing many other economic sectors. However, global carbon emissions related to tourism are currently not well quantified. Here, we quantify tourism-related global carbon flows between 160 countries, and their carbon footprints under origin and destination accounting perspectives. We find that, between 2009 and 2013, tourism's global carbon footprint has increased from 3.9 to 4.5 GtCO2e, four times more than previously estimated, accounting for about 8% of global greenhouse gas emissions. Transport, shopping and food are significant contributors. The majority of this footprint is exerted by and in high-income countries. The rapid increase in tourism demand is effectively outstripping the decarbonization of tourism-related technology. We project that, due to its high carbon intensity and continuing growth, tourism will constitute a growing part of the world's greenhouse gas emissions.

  5. Carbon footprint of grain production in China.

    Science.gov (United States)

    Zhang, Dan; Shen, Jianbo; Zhang, Fusuo; Li, Yu'e; Zhang, Weifeng

    2017-06-29

    Due to the increasing environmental impact of food production, carbon footprint as an indicator can guide farmland management. This study established a method and estimated the carbon footprint of grain production in China based on life cycle analysis (LCA). The results showed that grain production has a high carbon footprint in 2013, i.e., 4052 kg ce/ha or 0.48 kg ce/kg for maize, 5455 kg ce/ha or 0.75 kg ce/kg for wheat and 11881 kg ce/ha or 1.60 kg ce/kg for rice. These footprints are higher than that of other countries, such as the United States, Canada and India. The most important factors governing carbon emissions were the application of nitrogen fertiliser (8-49%), straw burning (0-70%), energy consumption by machinery (6-40%), energy consumption for irrigation (0-44%) and CH 4 emissions from rice paddies (15-73%). The most important carbon sequestration factors included returning of crop straw (41-90%), chemical nitrogen fertiliser application (10-59%) and no-till farming practices (0-10%). Different factors dominated in different crop systems in different regions. To identity site-specific key factors and take countermeasures could significantly lower carbon footprint, e.g., ban straw burning in northeast and south China, stopping continuous flooding irrigation in wheat and rice production system.

  6. Product carbon footprints and their uncertainties in comparative decision contexts.

    Directory of Open Access Journals (Sweden)

    Patrik J G Henriksson

    Full Text Available In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp. farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  7. Double-counting in supply chain carbon footprinting

    NARCIS (Netherlands)

    Caro, F.; Corbett, C.J.; Tan, T.; Zuidwijk, R.A.

    2013-01-01

    Carbon footprinting is a tool for firms to determine the total greenhouse gas (GHG) emissions associated with their supply chain or with a unit of final product or service. Carbon footprinting typically aims to identify where best to invest in emission reduction efforts, and/or to determine the

  8. Assessing Water and Carbon Footprints for Green Water Resource Management

    Science.gov (United States)

    This slide presentation will focus on the following points: (1) Water footprint and carbon footprint are two criteria evaluating the greenness in urban development, (2) Two cases are examined and presented: water footprints in energy productions and carbon footprints in water ...

  9. Silk industry and carbon footprint mitigation

    Science.gov (United States)

    Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.

  10. Carbon footprint of dairy goat milk production in New Zealand.

    Science.gov (United States)

    Robertson, Kimberly; Symes, Wymond; Garnham, Malcolm

    2015-07-01

    The aim of this study was to assess the cradle-to-farm gate carbon footprint of indoor and outdoor dairy goat farming systems in New Zealand, identifying hotspots and discussing variability and methodology. Our study was based on the International Organization for Standardization standards for life cycle assessment, although only results for greenhouse gas emissions are presented. Two functional units were included: tonnes of CO2-equivalents (CO2e) per hectare (ha) and kilograms of CO2e per kilogram of fat- and protein-corrected milk (FPCM). The study covered 5 farms, 2 farming systems, and 3yr. Two methods for the calculation of enteric methane emissions were assessed. The Lassey method, as used in the New Zealand greenhouse gas inventory, provided a more robust estimate of emissions from enteric fermentation and was used in the final calculations. The alternative dry matter intake method was shown to overestimate emissions due to use of anecdotal assumptions around actual consumption of feed. Economic allocation was applied to milk and co-products. Scenario analysis was performed on the allocation method, nitrogen content of manure, manure management, and supplementary feed choice. The average carbon footprint for the indoor farms (n=3) was 11.05 t of CO2e/ha and 0.81kg of CO2e/kg of FPCM. For the outdoor farms (n=2), the average was 5.38 t of CO2e/ha and 1.03kg of CO2e/kg of FPCM. The average for all 5 farms was 8.78 t of CO2e/ha and 0.90kg of CO2e/kg of FPCM. The results showed relatively high variability due to differences in management practices between farms. The 5 farms covered 10% of the total dairy goat farms but may not be representative of an average farm. Methane from enteric fermentation was a major emission source. The use of supplementary feed was highly variable but an important contributor to the carbon footprint. Nitrous oxide can contribute up to 18% of emissions. Indoor goat farming systems produced milk with a significantly higher carbon

  11. Carbon footprint: a head-teaser

    International Nuclear Information System (INIS)

    Chandes, C.; Cahuzac, A.; Deniel, P.

    2011-01-01

    The author outlines the difficulties faced by industries to assess the impact of their activities on the environment, and more particularly their carbon footprint which is to be reduced, as well as greenhouse gas emissions. One of these difficulties for these companies is to choose among many methods and service providers to perform this carbon footprint assessment. Even if the result of this assessment could therefore be a matter of discussion, some companies may use this assessment as a marketing tool, whereas the ADEME notices that many requirements in terms of emission reduction actions are not met

  12. Carbon footprint reductions via grid energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Trevor S. [Naval Facilities Engineering Service Center, 1100 23rd Avenue, Port Huenem, CA 93043 (United States); Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas (United States); Weeks, Kelly [Department of Maritime Administration, Texas A and M University at Galveston, Galveston, TX 77553 (United States); Tucker, Coleman [Department of Management, Marketing, and Business Administration, University of Houston - Downtown, Houston, Texas 77002 (United States)

    2011-07-01

    This effort presents a framework for reducing carbon emissions through the use of large-scale grid-energy-storage (GES) systems. The specific questions under investigation herein are as follows: Is it economically sound to invest in a GES system and is the system at least carbon footprint neutral? This research will show the answer to both questions is in the affirmative. Scilicet, when utilized judiciously, grid energy storage systems can be both net present value positive as well as be total carbon footprint negative. The significant contribution herein is a necessary and sufficient condition for achieving carbon footprint reductions via grid energy storage systems.

  13. Carbon and environmental footprinting of global biofuel production

    OpenAIRE

    Hammond, Geoff P.; Seth, S.M.

    2013-01-01

    The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007-2009 out until 2019. Estimates of future global biofuel production were adopted from OECD-FAO and related projections. In order to determine the footprints associated with these (essentially 'first generation') biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and wast...

  14. Twelve metropolitan carbon footprints. A preliminary comparative global assessment

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Brown, Marilyn A.

    2010-01-01

    A dearth of available data on carbon emissions and comparative analysis between metropolitan areas make it difficult to confirm or refute best practices and policies. To help provide benchmarks and expand our understanding of urban centers and climate change, this article offers a preliminary comparison of the carbon footprints of 12 metropolitan areas. It does this by examining emissions related to vehicles, energy used in buildings, industry, agriculture, and waste. The carbon emissions from these sources - discussed here as the metro area's partial carbon footprint - provide a foundation for identifying the pricing, land use, help metropolitan areas throughout the world respond to climate change. The article begins by exploring a sample of the existing literature on urban morphology and climate change and explaining the methodology used to calculate each area's carbon footprint. The article then depicts the specific carbon footprints for Beijing, Jakarta, London, Los Angeles, Manila, Mexico City, New Delhi, New York, Sao Paulo, Seoul, Singapore, and Tokyo and compares these to respective national averages. It concludes by offering suggestions for how city planners and policymakers can reduce the carbon footprint of these and possibly other large urban areas. (author)

  15. Cooperative water network system to reduce carbon footprint.

    Science.gov (United States)

    Lim, Seong-Rin; Park, Jong Moon

    2008-08-15

    Much effort has been made in reducing the carbon footprint to mitigate climate change. However, water network synthesis has been focused on reducing the consumption and cost of freshwater within each industrial plant. The objective of this study is to illustrate the necessity of the cooperation of industrial plants to reduce the total carbon footprint of their water supply systems. A mathematical optimization model to minimize global warming potentials is developed to synthesize (1) a cooperative water network system (WNS) integrated over two plants and (2) an individual WNS consisting of two WNSs separated for each plant. The cooperative WNS is compared to the individual WNS. The cooperation reduces their carbon footprint and is economically feasible and profitable. A strategy for implementing the cooperation is suggested for the fair distribution of costs and benefits. As a consequence, industrial plants should cooperate with their neighbor plants to further reduce the carbon footprint.

  16. The carbon footprint of an Australian satellite haemodialysis unit.

    Science.gov (United States)

    Lim, Allan E K; Perkins, Anthony; Agar, John W M

    2013-06-01

    This study aimed to better understand the carbon emission impact of haemodialysis (HD) throughout Australia by determining its carbon footprint, the relative contributions of various sectors to this footprint, and how contributions from electricity and water consumption are affected by local factors. Activity data associated with HD provision at a 6-chair suburban satellite HD unit in Victoria in 2011 was collected and converted to a common measurement unit of tonnes of CO2 equivalents (t CO2-eq) via established emissions factors. For electricity and water consumption, emissions factors for other Australian locations were applied to assess the impact of local factors on these footprint contributors. In Victoria, the annual per-patient carbon footprint of satellite HD was calculated to be 10.2t CO2-eq. The largest contributors were pharmaceuticals (35.7%) and medical equipment (23.4%). Throughout Australia, the emissions percentage attributable to electricity consumption ranged from 5.2% to 18.6%, while the emissions percentage attributable to water use ranged from 4.0% to 11.6%. State-by-state contributions of energy and water use to the carbon footprint of satellite HD appear to vary significantly. Performing emissions planning and target setting at the state level may be more appropriate in the Australian context. What is known about the topic? Healthcare provision carries a significant environmental footprint. In particular, conventional HD uses substantial amounts of electricity and water. In the UK, provision of HD and peritoneal dialysis was found to have an annual per-patient carbon footprint of 7.1t CO2-eq. What does this paper add? This is the first carbon-footprinting study of HD in Australia. In Victoria, the annual per-patient carbon footprint of satellite conventional HD is 10.2t CO2-eq. Notably, the contributions of electricity and water consumption to the carbon footprint varies significantly throughout Australia when local factors are taken into

  17. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  18. Income-carbon footprint relationships for urban and rural households of Iskandar Malaysia

    Science.gov (United States)

    Majid, M. R.; Moeinzadeh, S. N.; Tifwa, H. Y.

    2014-02-01

    Iskandar Malaysia has a vision to achieve sustainable development and a low carbon society status by decreasing the amount of CO2 emission as much as 60% by 2025. As the case is in other parts of the world, households are suspected to be a major source of carbon emission in Iskandar Malaysia. At the global level, 72% of greenhouse gas emission is a consequence of household activities, which is influenced by lifestyle. Income is the most important indicator of lifestyle and consequently may influence the amount of households' carbon footprint. The main objective of this paper is to illustrate the carbon-income relationships in Iskandar Malaysia's urban and rural areas. Data were gathered through a questionnaire survey of 420 households. The households were classified into six categories based on their residential area status. Both direct and indirect carbon footprints of respondents were calculated using a carbon footprint model. Direct carbon footprint includes domestic energy use, personal travel, flight and public transportation while indirect carbon footprint is the total secondary carbon emission measurement such as housing operations, transportation operations, food, clothes, education, cultural and recreational services. Analysis of the results shows a wide range of carbon footprint values and a significance correlation between income and carbon footprint. The carbon footprints vary in urban and rural areas, and also across different urban areas. These identified carbon footprint values can help the authority target its carbon reduction programs.

  19. Income-carbon footprint relationships for urban and rural households of Iskandar Malaysia

    International Nuclear Information System (INIS)

    Majid, M R; Moeinzadeh, S N; Tifwa, H Y

    2014-01-01

    Iskandar Malaysia has a vision to achieve sustainable development and a low carbon society status by decreasing the amount of CO 2 emission as much as 60% by 2025. As the case is in other parts of the world, households are suspected to be a major source of carbon emission in Iskandar Malaysia. At the global level, 72% of greenhouse gas emission is a consequence of household activities, which is influenced by lifestyle. Income is the most important indicator of lifestyle and consequently may influence the amount of households' carbon footprint. The main objective of this paper is to illustrate the carbon-income relationships in Iskandar Malaysia's urban and rural areas. Data were gathered through a questionnaire survey of 420 households. The households were classified into six categories based on their residential area status. Both direct and indirect carbon footprints of respondents were calculated using a carbon footprint model. Direct carbon footprint includes domestic energy use, personal travel, flight and public transportation while indirect carbon footprint is the total secondary carbon emission measurement such as housing operations, transportation operations, food, clothes, education, cultural and recreational services. Analysis of the results shows a wide range of carbon footprint values and a significance correlation between income and carbon footprint. The carbon footprints vary in urban and rural areas, and also across different urban areas. These identified carbon footprint values can help the authority target its carbon reduction programs

  20. Analysis of the carbon footprint of coastal protection systems

    NARCIS (Netherlands)

    Labrujere, A.L.; Verhagen, H.J.

    2012-01-01

    When calculating the Carbon Footprint for a product or service, a direct link is made between the total amount of consumed energy and the produced amount of carbon dioxide during production. For that reason calculating the carbon footprint of various alternatives is a very straightforward method to

  1. Carbon footprint as environmental performance indicator for the manufacturing industry

    DEFF Research Database (Denmark)

    Laurent, Alexis; Olsen, Stig Irving; Hauschild, Michael Zwicky

    2010-01-01

    With the current focus on our climate change impacts, the embodied CO2 emission or "Carbon footprint" is often used as an environmental performance indicator for our products or production activities. The ability of carbon footprint to represent other types of impact like human toxicity, and hence...... the overall environmental impact is investigated based on life cycle assessments of several materials of major relevance to manufacturing industries. The dependence of the carbon footprint on the assumed scenarios for generation of thermal and electrical energy in the life cycle of the materials is analyzed......, and the appropriateness of carbon footprint as an overall indicator of the environmental performance is discussed....

  2. An Integrated Tool for Calculating and Reducing Institution Carbon and Nitrogen Footprints

    Science.gov (United States)

    Galloway, James N.; Castner, Elizabeth A.; Andrews, Jennifer; Leary, Neil; Aber, John D.

    2017-01-01

    Abstract The development of nitrogen footprint tools has allowed a range of entities to calculate and reduce their contribution to nitrogen pollution, but these tools represent just one aspect of environmental pollution. For example, institutions have been calculating their carbon footprints to track and manage their greenhouse gas emissions for over a decade. This article introduces an integrated tool that institutions can use to calculate, track, and manage their nitrogen and carbon footprints together. It presents the methodology for the combined tool, describes several metrics for comparing institution nitrogen and carbon footprint results, and discusses management strategies that reduce both the nitrogen and carbon footprints. The data requirements for the two tools overlap substantially, although integrating the two tools does necessitate the calculation of the carbon footprint of food. Comparison results for five institutions suggest that the institution nitrogen and carbon footprints correlate strongly, especially in the utilities and food sectors. Scenario analyses indicate benefits to both footprints from a range of utilities and food footprint reduction strategies. Integrating these two footprints into a single tool will account for a broader range of environmental impacts, reduce data entry and analysis, and promote integrated management of institutional sustainability. PMID:29350217

  3. [Carbon footprint of buildings in the urban agglomeration of central Liaoning, China].

    Science.gov (United States)

    Shi, Yu; Yun, Ying Xia; Liu, Chong; Chu, Ya Qi

    2017-06-18

    With the development of urbanization in China, buildings consumed lots of material and energy. How to estimate carbon emission of buildings is an important scientific problem. Carbon footprint of the central Liaoning agglomeration was studied with carbon footprint approach, geographic information system (GIS) and high-resolution remote sensing (HRRS) technology. The results showed that the construction carbon footprint coefficient of central Liaoning urban agglomeration was 269.16 kg·m -2 . The approach of interpreting total building area and spatial distribution with HRRS was effective, and the accuracy was 89%. The extraction approach was critical for total carbon footprint and spatial distribution estimation. The building area and total carbon footprint of central Liaoning urban agglomeration in descending order was Shenyang, Anshan, Fushun, Liao-yang, Yingkou, Tieling and Benxi. The annual average increment of footprint from 2011 to 2013 in descending order was Shenyang, Benxi, Fushun, Anshan, Tieling, Yingkou and Liaoyang. The accurate estimation of construction carbon footprint spatial and its distribution was of significance for the planning and optimization of carbon emission reduction.

  4. A carbon footprint simulation model for the cork oak sector

    International Nuclear Information System (INIS)

    Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia

    2016-01-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. - Highlights: • A carbon footprint simulation model (CCFM) for the

  5. A carbon footprint simulation model for the cork oak sector

    Energy Technology Data Exchange (ETDEWEB)

    Demertzi, Martha, E-mail: marthademertzi@ua.pt [Center for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Paulo, Joana Amaral, E-mail: joanaap@isa.ulisboa.pt [Center of Forest Studies (CEF), Superior Institute of Agronomy (ISA), Tapada da Ajuda, University of Lisbon, 1349-017 Lisbon (Portugal); Arroja, Luís, E-mail: arroja@ua.pt [Center for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Dias, Ana Cláudia, E-mail: acdias@ua.pt [Center for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2016-10-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. - Highlights: • A carbon footprint simulation model (CCFM) for

  6. Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities

    International Nuclear Information System (INIS)

    Chen, Guangwu; Wiedmann, Thomas; Wang, Yafei; Hadjikakou, Michalis

    2016-01-01

    Highlights: • A trans-national, multi-region input-output analysis for cities is presented. • We examine the carbon footprint network of ten cities. • The balance of emissions embodied in trade discloses a hierarchy of responsibility. • We model how emissions reductions spread through the city carbon networks. • Implications on the Chinese and Australian carbon trading schemes are discussed. - Abstract: Cities are leading actions against climate change through global networks. More than 360 global cities announced during the 2015 Paris Climate Conference that the collective impact of their commitments will deliver over half of the world’s urban greenhouse gas emissions reductions by 2020. Previous studies on multi-city carbon footprint networks using sub-national, multi-region input-output (MRIO) modelling have identified additional opportunities for addressing the negative impacts of climate change through joint actions between cities within a country. However, similar links between city carbon footprints have not yet been studied across countries. In this study we focus on inter-city and inter-country carbon flows between two trading partners in a first attempt to address this gap. We construct a multi-scale, global MRIO model to describe a transnational city carbon footprint network among five Chinese megacities and the five largest Australian capital cities. First, we quantify city carbon footprints by sectors and regions. Based on the carbon map concept we show how local emissions reductions influence other regions’ carbon footprints. We then present a city emissions ’outsourcing hierarchy’ based on the balance of emissions embodied in intercity and international trade. The differences between cities and their position in the hierarchy emphasize the need for a bespoke treatment of their responsibilities towards climate change mitigation. Finally, we evaluate and discuss the potentially significant benefits of harmonising and aligning China

  7. Hydropower's Biogenic Carbon Footprint.

    Science.gov (United States)

    Scherer, Laura; Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations.

  8. Hydropower's Biogenic Carbon Footprint

    Science.gov (United States)

    Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations. PMID:27626943

  9. Reducing Students' Carbon Footprints Using Personal Carbon Footprint Management System Based on Environmental Behavioural Theory and Persuasive Technology

    Science.gov (United States)

    Lin, Shyh-ming

    2016-01-01

    This study applied environmental behavioural theories to develop a personal carbon footprint management system and used persuasive technology to implement it. The system serves as an educational system to improve the determinants of students' low-carbon behaviours, to promote low-carbon concepts and to facilitate their carbon management. To assess…

  10. The carbon footprint of Greek households (1995–2012)

    International Nuclear Information System (INIS)

    Markaki, M.; Belegri-Roboli, A.; Sarafidis, U.; Mirasgedis, S.

    2017-01-01

    The goal of this paper is twofold: i) to investigate the carbon footprint of Greek households throughout the period 1995–2012, in order to identify the main socio-economic factors that affect GHG emissions, and ii) to evaluate the effectiveness of the implemented policies to tackle climate change. In this, a consumption-based emissions inventory approach is applied. The analysis is based on an environmentally-extended input-output model including direct CO_2 emissions from households, indirect CO_2 emissions from electricity consumption and indirect CO_2 emissions from energy used in the production of goods and services purchased by households, domestic or imported. Statistical analysis and appropriate regression models were developed in order to identify the main factors influencing the carbon footprint of Greek households. The results indicate that the observed trends during the period 1995–2008 can be attributed to the effect of high economic growth. This trend is partially counterbalanced by favorable weather conditions and the implementation of greenhouse mitigation policies and measures mainly in the supply side. Since 2008 the shrinking household income is the dominant driver. In addition, the effectiveness of energy conservation policies and measures in place is rather low, while the effect of imports is limited. - Highlights: • The factors influencing the carbon footprint of Greek households have been analyzed. • The analysis is based on consumption-based GHG inventories. • High economic growth resulted in carbon footprint increases during 1995–2008. • Carbon footprint reduction after 2008 is attributed to shrinking of household income. • Mitigation measures in power and manufacturing sectors reduced carbon footprint.

  11. Carbon footprints of cities and other human settlements in the UK

    Science.gov (United States)

    Minx, Jan; Baiocchi, Giovanni; Wiedmann, Thomas; Barrett, John; Creutzig, Felix; Feng, Kuishuang; Förster, Michael; Pichler, Peter-Paul; Weisz, Helga; Hubacek, Klaus

    2013-09-01

    A growing body of literature discusses the CO2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO2 emissions. Consumption-based CO2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only

  12. Carbon footprints of cities and other human settlements in the UK

    International Nuclear Information System (INIS)

    Minx, Jan; Pichler, Peter-Paul; Weisz, Helga; Baiocchi, Giovanni; Wiedmann, Thomas; Barrett, John; Creutzig, Felix; Feng, Kuishuang; Hubacek, Klaus; Förster, Michael

    2013-01-01

    A growing body of literature discusses the CO 2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO 2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO 2 emissions. Consumption-based CO 2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO 2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure

  13. Skallerup Klit's carbon footprint

    DEFF Research Database (Denmark)

    Zacho, Kristina Overgaard; Ørnstrup, Niels Holm; Zimmermann, Tine Marquard

    by offsetting and without making actual emission reductions. Therefore the purpose of this study is to present recommendations on how Skallerup Klit can build up their business strategy using Carbon Footprint (CFP) as a tool. The CPF is calculated and assessed by using financial data in an Input-output LCA...

  14. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities

    International Nuclear Information System (INIS)

    Newell, Joshua P.; Vos, Robert O.

    2012-01-01

    Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a ‘carbon neutral’ flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: ► Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. ► The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. ► Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. ► Interdisciplinary collaboration linking the LCA and

  15. Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach

    International Nuclear Information System (INIS)

    Dong, Huijuan; Geng, Yong; Xi, Fengming; Fujita, Tsuyoshi

    2013-01-01

    Industrial parks have become the effective strategies for government to promote sustainable economic development due to the following advantages: shared infrastructure and concentrated industrial activities within planned areas. However, due to intensive energy consumption and dependence on fossil fuels, industrial parks have become the main areas for greenhouse gas emissions. Therefore, it is critical to quantify their carbon footprints so that appropriate emission reduction policies can be raised. The objective of this paper is to seek an appropriate method on evaluating the carbon footprint of one industrial park. The tiered hybrid LCA method was selected due to its advantages over other methods. Shenyang Economic and Technological Development Zone (SETDZ), a typical comprehensive industrial park in China, was chosen as a case study park. The results show that the total life cycle carbon footprint of SETDZ was 15.29 Mt, including 6.81 Mt onsite (direct) carbon footprint, 8.47 Mt upstream carbon footprint, and only 3201 t downstream carbon footprint. Analysis from industrial sector perspectives shows that chemical industry and manufacture of general purpose machinery and special purposes machinery sector were the two largest sectors for life cycle carbon footprint. Such a sector analysis may be useful for investigation of appropriate emission reduction policies. - Highlights: ► A hybrid LCA model was employed to calculate industrial park carbon footprint. ► A case study on SETDZ is done. ► Life cycle carbon footprint of SETDZ is 15.29 Mt. ► Upstream and onsite carbon footprints account for 55.40% and 44.57%, respectively. ► Chemical industry and machinery manufacturing sectors are the two largest sectors

  16. Comparison of the carbon footprint of different patient diets in a Spanish hospital.

    Science.gov (United States)

    Vidal, Rosario; Moliner, Enrique; Pikula, Andrej; Mena-Nieto, Angel; Ortega, Agustín

    2015-01-01

    Mitigating climate change requires management strategies to reduce greenhouse gas emissions in any sector, including the health system. Carbon footprint calculations should play a key role in quantifying and communicating these emissions. Food is among the categories with low accuracy because the carbon footprint for food is still under development. We aimed to quantify the carbon footprint of different diets. Average carbon footprint for a normal diet was based on detailed composition data in Juan Ramón Jiménez Hospital (Huelva, Spain). In addition, the carbon footprints of 17 other therapeutic diets were estimated using a streamlined variation of each diet published by Benidorm Clinical Hospital (Spain). The carbon footprint was calculated for 18 hospital diets for a variety of patients. The reference menu corresponds to the normal diet provided to patients who do not have special dietary requirements. This menu has a low carbon footprint of 5.083 CO₂ eq/day. Hospital diets contribute to the carbon footprint of a hospital. The type of diet has a significant impact on the greenhouse gas emissions. A Mediterranean diet is associated with lower environmental impact than diets with more meat, in particular red meat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Klimaregnskab og Carbon Footprint beregning for Kommunekemi a/s

    DEFF Research Database (Denmark)

    Leinikka Dall, Ole; Wenzel, Henrik

    2009-01-01

    Klimaregnskab for anlægget i Nyborg og carbon footprint for: -forbrænding -uorganisk behandling -halmaskeanlæg Afrapporteret på tryk og indtastet i Simapro......Klimaregnskab for anlægget i Nyborg og carbon footprint for: -forbrænding -uorganisk behandling -halmaskeanlæg Afrapporteret på tryk og indtastet i Simapro...

  18. Carbon footprint of shopping (grocery) bags in China, Hong Kong and India

    Science.gov (United States)

    Muthu, Subramanian Senthilkannan; Li, Y.; Hu, J. Y.; Mok, P. Y.

    2011-01-01

    Carbon footprint has become a term often used by the media in recent days. The human carbon footprint is professed to be a very serious global threat and every nation is looking at the possible options to reduce it since its consequences are alarming. A carbon footprint is a measure of the impact of human activities on earth and in particular on the environment; more specifically it relates to climate change and to the total amount of greenhouse gases produced, measured in units of carbon dioxide emitted. Effort of individuals in minimizing the carbon footprint is vital to save our planet. This article reports a study of the carbon footprint of various types of shopping bags (plastic, paper, non-woven and woven) using life cycle impact assessment (LCIA) technique in two stages. The first stage (baseline study), comprised the study of the impact of different types of shopping bags in the manufacturing phase, without considering their usage and disposal phases (cradle to gate stage). The LCIA was accomplished by the IPCC 2007 method, developed by the Inter Panel on Climate Change in SIMAPRO 7.2. The GWP (Global Warming Potential) values calculated by the IPCC 2007 method for 100 years were considered as a directive to compare the carbon footprint made by the different types of shopping bags under consideration. The next stage was the study of the carbon footprint of these bags including their usage and disposal phases (cradle to grave stage) and the results derived were compared with the results derived from the baseline study, which is the major focus of this research work. The values for usage and end-of-life phases were obtained from the survey questionnaire performed amongst different user groups of shopping bags in China, Hong Kong and India. The results show that the impact of different types of shopping bags in terms of their carbon footprint potential is very high if no usage and disposal options were provided. When the carbon footprint values from different

  19. Carbon Footprint Calculator | Climate Change | US EPA

    Science.gov (United States)

    2016-12-12

    An interactive calculator to estimate your household's carbon footprint. This tool will estimate carbon pollution emissions from your daily activities and show how to reduce your emissions and save money through simple steps.

  20. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    Science.gov (United States)

    Sun, Qiang

    2017-10-01

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  1. Quantifying carbon footprint reduction opportunities for U.S. households and communities.

    Science.gov (United States)

    Jones, Christopher M; Kammen, Daniel M

    2011-05-01

    Carbon management is of increasing interest to individuals, households, and communities. In order to effectively assess and manage their climate impacts, individuals need information on the financial and greenhouse gas benefits of effective mitigation opportunities. We use consumption-based life cycle accounting techniques to quantify the carbon footprints of typical U.S. households in 28 cities for 6 household sizes and 12 income brackets. The model includes emissions embodied in transportation, energy, water, waste, food, goods, and services. We further quantify greenhouse gas and financial savings from 13 potential mitigation actions across all household types. The model suggests that the size and composition of carbon footprints vary dramatically between geographic regions and within regions based on basic demographic characteristics. Despite these differences, large cash-positive carbon footprint reductions are evident across all household types and locations; however, realizing this potential may require tailoring policies and programs to different population segments with very different carbon footprint profiles. The results of this model have been incorporated into an open access online carbon footprint management tool designed to enable behavior change at the household level through personalized feedback.

  2. Tracking urban carbon footprints from production and consumption perspectives

    International Nuclear Information System (INIS)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-01-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO 2 e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO 2 e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO 2 e/y, 44.8 Mt CO 2 e/y, 28.4 Mt CO 2 e/y, 23.7 Mt CO 2 e/y, and 19.0 Mt CO 2 e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city. (letter)

  3. Tracking urban carbon footprints from production and consumption perspectives

    Science.gov (United States)

    Lin, Jianyi; Hu, Yuanchao; Cui, Shenghui; Kang, Jiefeng; Ramaswami, Anu

    2015-05-01

    Cities are hotspots of socio-economic activities and greenhouse gas emissions. The aim of this study was to extend the research range of the urban carbon footprint (CF) to cover emissions embodied in products traded among regions and intra-city sectors. Using Xiamen City as a study case, the total urban-related emissions were evaluated, and the carbon flows among regions and intra-city sectors were tracked. Then five urban CF accountings were evaluated, including purely geographic accounting (PGA), community-wide infrastructure footprint (CIF), and consumption-based footprint (CBF) methods, as well as the newly defined production-based footprint (PBF) and purely production footprint (PPF). Research results show that the total urban-related emissions of Xiamen City in 2010 were 55.2 Mt CO2e/y, of which total carbon flow among regions or intra-city sectors accounted for 53.7 Mt CO2e/y. Within the total carbon flow, import and export respectively accounted for 59 and 65%, highlighting the importance of emissions embodied in trade. By regional trade balance, North America and Europe were the largest net carbon exported-to regions, and Mainland China and Taiwan the largest net carbon imported-from regions. Among intra-sector carbon flows, manufacturing was the largest emission-consuming sector of the total urban carbon flow, accounting for 77.4, and 98% of carbon export was through industrial products trade. By the PBF, PPF, CIF, PGA and CBF methods, the urban CFs were respectively 53.7 Mt CO2e/y, 44.8 Mt CO2e/y, 28.4 Mt CO2e/y, 23.7 Mt CO2e/y, and 19.0 Mt CO2e/y, so all of the other four CFs were higher than the CBF. All of these results indicate that urban carbon mitigation must consider the supply chain management of imported goods, the production efficiency within the city, the consumption patterns of urban consumers, and the responsibility of the ultimate consumers outside the city.

  4. The carbon footprint of French people's consumption: evolution from 1990 to 2007

    International Nuclear Information System (INIS)

    Pasquier, Jean-Louis; Moreau, Sylvain; Bottin, Anne; Boitard, Corinne

    2012-03-01

    The carbon footprint calculated by the statistical service of the French ministry in charge of sustainable development represents the amount of greenhouse gases emitted in order to satisfy French consumption, including emissions connected to imports. In 2007, the carbon footprint per capita in France amounted to 12 tons of CO 2 -equivalent per year, compared to 8 tons per person emitted from the French metropolitan territory. From 1990 to 2007, the carbon footprint per capita increased by 5%, whereas the average per capita emissions on the territory decreased by 15%. During this period, emissions connected to imports increased by 64%, reaching almost 50% of the French carbon footprint in 2007. (author)

  5. Using hybrid method to evaluate carbon footprint of Xiamen City, China

    International Nuclear Information System (INIS)

    Lin, Jianyi; Liu, Yuan; Meng, Fanxin; Cui, Shenghui; Xu, Lilai

    2013-01-01

    For more holistic inventory estimation, this paper uses a hybrid approach to access the carbon footprint of Xiamen City in 2009. Besides carbon emissions from the end-use sector activities (called Scope 1+2 by WRI/WBCSD) in normal research, carbon emissions from the cross-boundary traffic and the embodied energy of key urban imported materials (namely Scope 3) were also included. The results are as follow: (1) Carbon emissions within Scope 1+2 only take up 66.14% of total carbon footprint, while emissions within Scope 3 which have usually been ignored account for 33.84%. (2) Industry is the most carbon-intensive end use sector which contributes 32.74% of the total carbon footprint and 55.13% of energy use emissions in Scope 1+2. (3) The per capita carbon footprint of Xiamen is just about one-third of that in Denver. (4) Comparing with Denver, the proportion of embodied emissions in Xiamen was 10.60% higher than Denver. Overall, Xiamen is relatively a low-carbon city with characters of industrial carbon-intensive and high embodied emissions. Further analysis indicates that the urbanization and industrialization in Xiamen might cause more material consumption and industrial emissions. These highlight the importance of management for Scope 3 emissions in the developing cities. - Highlights: • Carbon emissions from Scope 1+2+3 are calculated for Xiamen City, China. • Carbon footprint in Xiamen is industrial carbon-intensive and high embodied emissions. • Management for Scope 3 emissions in the developing cities is important

  6. Carbon footprint of construction using industrialised building system

    Science.gov (United States)

    Lim, P. Y.; Yahya, K.; Aminudin, E.; Zakaria, R.; Haron, Z.; Mohamad Zin, R.; Redzuan, A. A. H.

    2017-11-01

    Industrialised Building System (IBS) is more sustainable to the environment as compared to the conventional construction methods. However, the construction industry in Malaysia has low acceptance towards IBS due to the resistance to change and also lack of awareness towards sustainability development. Therefore, it is important to study the amount carbon footprint produced by IBS during its manufacturing and construction stage, and also the amount of carbon footprint produced by one meter square of gross floor area of IBS construction using Life Cycle Assessment (LCA) to ease future research through the comparison of the carbon footprint of IBS with the conventional building system. As a result, a case study on a residential type of construction in the vicinity of Johor Bahru, Malaysia was carried out to obtain the necessary data and result. From the data analysis, the amount of greenhouse gases (GHG) for a residential type IBS construction based on the raw materials and resources involved to manufacture and construct IBS components is 0.127 tonnes fossil CO2Eq per meter square. Raw material that contributed to the most amount of carbon footprint is Ordinary Portland Cement (OPC), followed by steel bars, autoclaved aerated blocks and diesel. The LCA data acquired will be very useful in implementing IBS in the residential type construction. As a result, the awareness towards sustainable construction using IBS can be improved.

  7. Carbon footprint hotspots of prefabricated sandwich panels for hostel construction in Perlis

    Science.gov (United States)

    Razali, Norashikin; Ayob, Afizah; Chandra, Muhammad Erwan Shah; Zaki, Mohd Faiz Mohammad; Ahmad, Abdul Ghapar

    2017-10-01

    Sustainable design and construction have gained increasing research interest, and reduction of carbon from building construction has become the main focus of environmental strategies in Malaysia. This study uses life cycle assessment and life cycle inventory analysis frameworks to estimate the amount of carbon footprint expressed in carbon dioxide equivalent tons (CO2e) produced by manufacturing prefabricated Industrialized Building System sandwich panels and its installation for a five-story hostel in Perlis, Malaysia. Results show that the carbon footprint hotspots were centered on boiler machine operation and cement with 4.52 and 369.04 tons CO2e, respectively. This finding is due to the extensive energy used for steam heating and high engine rating for the boiler. However, for cement, the carbon footprint hotspots are caused by the large quantity of cement applied in shotcrete mixture and its high extraction and production CO2 emission values. The overall onsite materials generated 96.36% of the total carbon footprint. These carbon footprint hotspot results constitute a necessary base for the Malaysian government in accomplishing an adequate dimensioning of carbon emissions in the building sector.

  8. A carbon footprint simulation model for the cork oak sector.

    Science.gov (United States)

    Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia

    2016-10-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2011-01-01

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO 2 e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  10. What Is My Carbon Footprint?

    Science.gov (United States)

    Galluzzo, Benjamin J.; McGivney-Burelle, Jean; Wagstrom, Rikki B.

    2016-01-01

    Human beings are having a profound impact on the environment. The opportunity to investigate this timely issue during one or two class periods gives algebra and precalculus students insight into a sustainability topic of great international concern--carbon footprints. Students use mathematical thinking in matters that are pertinent to their…

  11. Mapping the carbon footprint of EU regions

    Science.gov (United States)

    Ivanova, Diana; Vita, Gibran; Steen-Olsen, Kjartan; Stadler, Konstantin; Melo, Patricia C.; Wood, Richard; Hertwich, Edgar G.

    2017-05-01

    While the EU Commission has encouraged Member States to combine national and international climate change mitigation measures with subnational environmental policies, there has been little harmonized effort towards the quantification of embodied greenhouse gas (GHG) emissions from household consumption across European regions. This study develops an inventory of carbon footprints associated with household consumption for 177 regions in 27 EU countries, thus, making a key contribution for the incorporation of consumption-based accounting into local decision-making. Footprint calculations are based on consumer expenditure surveys and environmental and trade detail from the EXIOBASE 2.3 multiregional input-output database describing the world economy in 2007 at the detail of 43 countries, 5 rest-of-the-world regions and 200 product sectors. Our analysis highlights the spatial heterogeneity of embodied GHG emissions within multiregional countries with subnational ranges varying widely between 0.6 and 6.5 tCO2e/cap. The significant differences in regional contribution in terms of total and per capita emissions suggest notable differences with regards to climate change responsibility. The study further provides a breakdown of regional emissions by consumption categories (e.g. housing, mobility, food). In addition, our region-level study evaluates driving forces of carbon footprints through a set of socio-economic, geographic and technical factors. Income is singled out as the most important driver for a region’s carbon footprint, although its explanatory power varies significantly across consumption domains. Additional factors that stand out as important on the regional level include household size, urban-rural typology, level of education, expenditure patterns, temperature, resource availability and carbon intensity of the electricity mix. The lack of cross-national region-level studies has so far prevented analysts from drawing broader policy conclusions that hold

  12. Impacts of software and its engineering on the carbon footprint of ICT

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Eva, E-mail: e.kern@umwelt-campus.de [Institute for Software Systems, Environmental Campus Birkenfeld, Campusallee, D-55761 Birkenfeld (Germany); Dick, Markus, E-mail: sustainablesoftwareblog@gmail.com [Fritz-Wunderlich-Straße 14, D-66869 Kusel (Germany); Naumann, Stefan, E-mail: s.naumann@umwelt-campus.de [Institute for Software Systems, Environmental Campus Birkenfeld, Campusallee, D-55761 Birkenfeld (Germany); Hiller, Tim, E-mail: tim.hiller@gmx.com [Institute for Software Systems, Environmental Campus Birkenfeld, Campusallee, D-55761 Birkenfeld (Germany)

    2015-04-15

    The energy consumption of information and communication technology (ICT) is still increasing. Even though several solutions regarding the hardware side of Green IT exist, the software contribution to Green IT is not well investigated. The carbon footprint is one way to rate the environmental impacts of ICT. In order to get an impression of the induced CO{sub 2} emissions of software, we will present a calculation method for the carbon footprint of a software product over its life cycle. We also offer an approach on how to integrate some aspects of carbon footprint calculation into software development processes and discuss impacts and tools regarding this calculation method. We thus show the relevance of energy measurements and the attention to impacts on the carbon footprint by software within Green Software Engineering.

  13. Impacts of software and its engineering on the carbon footprint of ICT

    International Nuclear Information System (INIS)

    Kern, Eva; Dick, Markus; Naumann, Stefan; Hiller, Tim

    2015-01-01

    The energy consumption of information and communication technology (ICT) is still increasing. Even though several solutions regarding the hardware side of Green IT exist, the software contribution to Green IT is not well investigated. The carbon footprint is one way to rate the environmental impacts of ICT. In order to get an impression of the induced CO 2 emissions of software, we will present a calculation method for the carbon footprint of a software product over its life cycle. We also offer an approach on how to integrate some aspects of carbon footprint calculation into software development processes and discuss impacts and tools regarding this calculation method. We thus show the relevance of energy measurements and the attention to impacts on the carbon footprint by software within Green Software Engineering

  14. The carbon footprint of Australian health care.

    Science.gov (United States)

    Malik, Arunima; Lenzen, Manfred; McAlister, Scott; McGain, Forbes

    2018-01-01

    Carbon footprints stemming from health care have been found to be variable, from 3% of the total national CO 2 equivalent (CO 2 e) emissions in England to 10% of the national CO 2 e emissions in the USA. We aimed to measure the carbon footprint of Australia's health-care system. We did an observational economic input-output lifecycle assessment of Australia's health-care system. All expenditure data were obtained from the 15 sectors of the Australian Institute of Health and Welfare for the financial year 2014-15. The Australian Industrial Ecology Virtual Laboratory (IELab) data were used to obtain CO 2 e emissions per AUS$ spent on health care. In 2014-15 Australia spent $161·6 billion on health care that led to CO 2 e emissions of about 35 772 (68% CI 25 398-46 146) kilotonnes. Australia's total CO 2 e emissions in 2014-15 were 494 930 kilotonnes, thus health care represented 35 772 (7%) of 494 930 kilotonnes total CO 2 e emissions in Australia. The five most important sectors within health care in decreasing order of total CO 2 e emissions were: public hospitals (12 295 [34%] of 35 772 kilotonnes CO 2 e), private hospitals (3635 kilotonnes [10%]), other medications (3347 kilotonnes [9%]), benefit-paid drugs (3257 kilotonnes [9%]), and capital expenditure for buildings (2776 kilotonnes [8%]). The carbon footprint attributed to health care was 7% of Australia's total; with hospitals and pharmaceuticals the major contributors. We quantified Australian carbon footprint attributed to health care and identified health-care sectors that could be ameliorated. Our results suggest the need for carbon-efficient procedures, including greater public health measures, to lower the impact of health-care services on the environment. None. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  15. Baseline effects on carbon footprints of biofuels: The case of wood

    International Nuclear Information System (INIS)

    Johnson, Eric; Tschudi, Daniel

    2012-01-01

    As biofuel usage has boomed over the past decade, so has research and regulatory interest in its carbon accounting. This paper examines one aspect of that carbon accounting: the baseline, i.e. the reference case against which other conditions or changes can be compared. A literature search and analysis identified four baseline types: no baseline; reference point; marginal fossil fuel; and biomass opportunity cost. The fourth one, biomass opportunity cost, is defined in more detail, because this is not done elsewhere in the literature. The four baselines are then applied to the carbon footprint of a wood-fired power plant. The footprint of the resulting wood-fired electricity varies dramatically, according to the type of baseline. Baseline type is also found to be the footprint's most significant sensitivity. Other significant sensitivities are: efficiency of the power plant; the growth (or re-growth) rate of the forest that supplies the wood; and the residue fraction of the wood. Length of the policy horizon is also an important factor in determining the footprint. The paper concludes that because of their significance and variability, baseline choices should be made very explicit in biofuel carbon footprints. - Highlights: ► Four baseline types for biofuel footprinting are identified. ► One type, ‘biomass opportunity cost’, is defined mathematically and graphically. ► Choice of baseline can dramatically affect the footprint result. ► The ‘no baseline’ approach is not acceptable. ► Choice between the other three baselines depends on the question being addressed.

  16. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  17. Carbon footprint associated with four disposal scenarios for urban pruning waste.

    Science.gov (United States)

    Araújo, Yuri Rommel Vieira; de Góis, Monijany Lins; Junior, Luiz Moreira Coelho; Carvalho, Monica

    2018-01-01

    The inadequate disposal of urban pruning residues can cause significant environmental impacts. The objective of the study presented herein was to quantify the carbon footprint and analyze four disposal scenarios for the urban pruning waste of the city of Joao Pessoa (Northeast Brazil). Software SimaPro was utilized for the quantification of the carbon footprint, with the IPCC 2013 GWP 100y impact evaluation method. The end-of-life treatments considered were sanitary landfilling (with and without collection of methane), simple municipal incineration, and reutilization of wood (transformation into briquettes). The results indicated that simple disposal in sanitary landfill generated 136.34 kg CO 2 /t urban pruning waste collected (highest carbon footprint), sanitary landfill with methane collection emitted 113.43 kg CO 2 /t waste, municipal incineration generated 71.31 kg CO 2 /t waste, and reutilization of woody residues was the scenario with the lowest carbon footprint, with 27.82 kg CO 2 /t waste. This study demonstrated that reutilization of biomass, besides being environmentally viable, presents the potential to contribute to the city's environmental quality, including the possibility of being used to obtain carbon credits.

  18. Corporate Carbon Footprint Arla Foods amba

    DEFF Research Database (Denmark)

    Birkved, Morten; Poulsen, Jan; Shonfield, Peter

    2009-01-01

    to affect consumers’ purchasing decisions Recognising the potentially important impact of climate change on its business, as well as its wider social responsibility to effectively manage its GHG emissions, Arla Foods has commissioned PE North West Europe to carry out a corporate carbon footprint analysis...

  19. Baseline effects on carbon footprints of biofuels: The case of wood

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Eric, E-mail: johnsonatlantic@gmail.com [Atlantic Consulting, 8136 Gattikon (Switzerland); Tschudi, Daniel [ETH, Berghaldenstrasse 46, 8800 Thalwil (Switzerland)

    2012-11-15

    As biofuel usage has boomed over the past decade, so has research and regulatory interest in its carbon accounting. This paper examines one aspect of that carbon accounting: the baseline, i.e. the reference case against which other conditions or changes can be compared. A literature search and analysis identified four baseline types: no baseline; reference point; marginal fossil fuel; and biomass opportunity cost. The fourth one, biomass opportunity cost, is defined in more detail, because this is not done elsewhere in the literature. The four baselines are then applied to the carbon footprint of a wood-fired power plant. The footprint of the resulting wood-fired electricity varies dramatically, according to the type of baseline. Baseline type is also found to be the footprint's most significant sensitivity. Other significant sensitivities are: efficiency of the power plant; the growth (or re-growth) rate of the forest that supplies the wood; and the residue fraction of the wood. Length of the policy horizon is also an important factor in determining the footprint. The paper concludes that because of their significance and variability, baseline choices should be made very explicit in biofuel carbon footprints. - Highlights: Black-Right-Pointing-Pointer Four baseline types for biofuel footprinting are identified. Black-Right-Pointing-Pointer One type, 'biomass opportunity cost', is defined mathematically and graphically. Black-Right-Pointing-Pointer Choice of baseline can dramatically affect the footprint result. Black-Right-Pointing-Pointer The 'no baseline' approach is not acceptable. Black-Right-Pointing-Pointer Choice between the other three baselines depends on the question being addressed.

  20. Measuring Urban Carbon Footprint from Carbon Flows in the Global Supply Chain.

    Science.gov (United States)

    Hu, Yuanchao; Lin, Jianyi; Cui, Shenghui; Khanna, Nina Zheng

    2016-06-21

    A global multiregional input-output (MRIO) model was built for eight Chinese cities to track their carbon flows. For in-depth understanding of urban carbon footprint from the perspectives of production, consumption, and trade balance, four kinds of footprints and four redefined measurement indicators were calculated. From the global supply chain, urban carbon inflows from Mainland China were larger than outflows, while the carbon outflows to European, principal North American countries and East Asia were much larger than inflows. With the rapid urbanization of China, Construction was the largest consumer and Utilities was the largest producer. Cities with higher consumption (such as Dalian, Tianjin, Shanghai, and Beijing) should change their consumption patterns, while cities with lower production efficiency (such as Dalian, Shanghai, Ningbo, and Chongqing) should improve their technology. The cities of net carbon consumption tended to transfer carbon emissions out of them by trading in carbon-intensive products, while the cities of net carbon production tended to produce carbon-intensive products for nonlocal consumers. Our results indicated that urban carbon abatement requires not only rational consumption and industrial symbiosis at the city level, but also tighter collaboration along all stages of the global supply chain.

  1. Carbon footprint of urban source separation for nutrient recovery.

    Science.gov (United States)

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Estimation of the carbon footprint of the Galician fishing activity (NW Spain)

    International Nuclear Information System (INIS)

    Iribarren, Diego; Vazquez-Rowe, Ian; Hospido, Almudena; Moreira, Maria Teresa; Feijoo, Gumersindo

    2010-01-01

    The food production system as a whole is recognized as one of the major contributors to environmental impacts. Accordingly, food production, processing, transport and consumption account for a relevant portion of the greenhouse gas (GHG) emissions associated with any country. In this context, there is an increasing market demand for climate-relevant information regarding the global warming impact of consumer food products throughout the supply chains. This article deals with the assessment of the carbon footprint of seafood products as a key subgroup in the food sector. Galicia (NW Spain) was selected as a case study. The analysis is based on a representative set of species within the Galician fishing sector, including species obtained from coastal fishing (e.g. horse mackerel, Atlantic mackerel, European pilchard and blue whiting), offshore fishing (e.g. European hake, megrim and anglerfish), deep-sea fishing (skipjack and yellowfin tuna), extensive aquaculture (mussels) and intensive aquaculture (turbot). The carbon footprints associated with the production-related activities of each selected species were quantified following a business-to-business approach on the basis of 1 year of fishing activity. These individual carbon footprints were used to calculate the carbon footprint for each of the different Galician fisheries and culture activities. Finally, the lump sum of the carbon footprints for coastal, offshore and deep-sea fishing and extensive and intensive aquaculture brought about the carbon footprint of the Galician fishing activity (i.e., capture and culture). A benchmark for quantifying and communicating emission reductions was then provided, and opportunities to reduce the GHG emissions associated with the Galician fishing activity could be prioritized.

  3. Estimation of the carbon footprint of the Galician fishing activity (NW Spain).

    Science.gov (United States)

    Iribarren, Diego; Vázquez-Rowe, Ian; Hospido, Almudena; Moreira, María Teresa; Feijoo, Gumersindo

    2010-10-15

    The food production system as a whole is recognized as one of the major contributors to environmental impacts. Accordingly, food production, processing, transport and consumption account for a relevant portion of the greenhouse gas (GHG) emissions associated with any country. In this context, there is an increasing market demand for climate-relevant information regarding the global warming impact of consumer food products throughout the supply chains. This article deals with the assessment of the carbon footprint of seafood products as a key subgroup in the food sector. Galicia (NW Spain) was selected as a case study. The analysis is based on a representative set of species within the Galician fishing sector, including species obtained from coastal fishing (e.g. horse mackerel, Atlantic mackerel, European pilchard and blue whiting), offshore fishing (e.g. European hake, megrim and anglerfish), deep-sea fishing (skipjack and yellowfin tuna), extensive aquaculture (mussels) and intensive aquaculture (turbot). The carbon footprints associated with the production-related activities of each selected species were quantified following a business-to-business approach on the basis of 1year of fishing activity. These individual carbon footprints were used to calculate the carbon footprint for each of the different Galician fisheries and culture activities. Finally, the lump sum of the carbon footprints for coastal, offshore and deep-sea fishing and extensive and intensive aquaculture brought about the carbon footprint of the Galician fishing activity (i.e., capture and culture). A benchmark for quantifying and communicating emission reductions was then provided, and opportunities to reduce the GHG emissions associated with the Galician fishing activity could be prioritized. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The carbon footprints of home and in-center maintenance hemodialysis in the United Kingdom.

    Science.gov (United States)

    Connor, Andrew; Lillywhite, Robert; Cooke, Matthew W

    2011-01-01

    Climate change presents a global health threat. However, the provision of healthcare, including dialysis, is associated with greenhouse gas emissions. The aim of this study was to determine the carbon footprints of the differing modalities and treatment regimes used to deliver maintenance hemodialysis (HD), in order to inform carbon reduction strategies at the level of both individual treatments and HD programs. This was a component analysis study adhering to PAS2050. Emissions factors were applied to data that were collected for building energy use, travel and procurement. Thrice weekly in-center HD has a carbon footprint of 3.8 ton CO2 Eq per patient per year. The majority of emissions arise within the medical equipment (37%), energy use (21%), and patient travel (20%) sectors. The carbon footprint of providing home HD varies with the regime. For standard machines: 4 times weekly (4 days, 4.5 hours), 4.3 ton CO2 Eq; 5 times weekly (5 days, 4 hours), 5.1 ton CO2 Eq ; short daily (6 days, 2 hours), 5.2 ton CO2 Eq; nocturnal (3 nightly, 7 hours), 3.9 ton CO2 Eq; and nocturnal (6 nightly, 7 hours), 7.2 ton CO2 Eq. For NxStage equipment: short daily (5.5 days, 3 hours), 1.8 ton CO2 Eq; 6 nightly nocturnal (2.1 ton CO2 Eq). The carbon footprint of HD is influenced more by the frequency of treatments than by their duration. The anticipated rise in the prevalence of home HD patients, dialyzing more frequently and for longer than in-center patients, will increase the emissions associated with HD programs (despite reductions in patient travel emissions). Emerging technologies, such as NxStage, might offer a solution to this problem. © 2011 The Authors. Hemodialysis International © 2011 International Society for Hemodialysis.

  5. Life cycle carbon footprint of shale gas: review of evidence and implications.

    Science.gov (United States)

    Weber, Christopher L; Clavin, Christopher

    2012-06-05

    The recent increase in the production of natural gas from shale deposits has significantly changed energy outlooks in both the US and world. Shale gas may have important climate benefits if it displaces more carbon-intensive oil or coal, but recent attention has discussed the potential for upstream methane emissions to counteract this reduced combustion greenhouse gas emissions. We examine six recent studies to produce a Monte Carlo uncertainty analysis of the carbon footprint of both shale and conventional natural gas production. The results show that the most likely upstream carbon footprints of these types of natural gas production are largely similar, with overlapping 95% uncertainty ranges of 11.0-21.0 g CO(2)e/MJ(LHV) for shale gas and 12.4-19.5 g CO(2)e/MJ(LHV) for conventional gas. However, because this upstream footprint represents less than 25% of the total carbon footprint of gas, the efficiency of producing heat, electricity, transportation services, or other function is of equal or greater importance when identifying emission reduction opportunities. Better data are needed to reduce the uncertainty in natural gas's carbon footprint, but understanding system-level climate impacts of shale gas, through shifts in national and global energy markets, may be more important and requires more detailed energy and economic systems assessments.

  6. Carbon Footprint Linked to transport infrastructures

    International Nuclear Information System (INIS)

    Crespo Garcia, L.; Jimenez Arroyo, F.

    2013-01-01

    Quantification of emissions of greenhouse effect gases associated to transport infrastructures has been addressed in different ways. The first tools for this purpose appeared with the application of ISO 14040 standards (Life cycle analysis) that, applied to the particular case of energetic resources, led to a new concept known as carbon footprint. There is a specific standard for this quantification (ISO 14064) according to which, for the case of infrastructures, emissions and environmental effects linked to the whole life cycle are assessed taking into account all the stages: building, exploitation, maintenance and dismantling. the key point to perform this analysis is the accurate definition of a calculation methodology to be applied to the inventory of activities covered, in order to avoid information lacks, overlaps or redundancies. Quantification tools for emissions are effectively a reality, but social and political will, supported by strong economical reasons recognizing energy as a vital resource, is necessary for these tools to be developed, enhanced and used in a systematic way as a key decision element to choice among different transport alternatives. (Author) 23 refs.

  7. Carbon footprint of aerobic biological treatment of winery wastewater.

    Science.gov (United States)

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  8. Carbon Footprint Analysis of Municipalities – Evidence from Greece

    Directory of Open Access Journals (Sweden)

    K. Angelakoglou

    2015-11-01

    Full Text Available The economical crisis that hit Greece after 2009, significantly affected its energy consumption profile due to the increased price of domestic heating oil and gasoline. The specific study aims at the quantification of the carbon dioxide emissions in municipal level due to energy and fuel consumption. Three different municipalities in North Greece (Kavala, Alexandroupolis and Drama were assessed with the application of three different carbon footprint estimation approaches in each one of them, including two life cycle assessment methods. Results ranged from 511,799 to 571,000, 435,250 to 489,000 and 355,207 to 398,000 tons CO2 and tons CO2-eq. for Kavala, Alexandroupolis and Drama respectively. The analysis per energy type indicated the electrical energy consumption as the key factor affecting the results due to the relatively high CO2 emission coefficient of the electricity produced in Greece. The analysis per sector indicated that a percentage of nearly 75% of the total carbon footprint is assigned to the building sector whereas the private and commercial transport is accountable for the rest. Municipal activities (buildings, facilities, lighting and fleet contributed to a small percentage to the total carbon footprint (approx. 3-8%.

  9. Teaching Quantitative Reasoning for Nonscience Majors through Carbon Footprint Analysis

    Science.gov (United States)

    Boose, David L.

    2014-01-01

    Quantitative reasoning is a key intellectual skill, applicable across disciplines and best taught in the context of authentic, relevant problems. Here, I describe and assess a laboratory exercise that has students calculate their "carbon footprint" and evaluate the impacts of various behavior choices on that footprint. Students gather…

  10. Quantifying the global and distributional aspects of American household carbon footprint

    International Nuclear Information System (INIS)

    Weber, Christopher L.; Matthews, H. Scott

    2008-01-01

    Analysis of household consumption and its environmental impact remains one of the most important topics in sustainability research. Nevertheless, much past and recent work has focused on domestic national averages, neglecting both the growing importance of international trade on household carbon footprint and the variation between households of different income levels and demographics. Using consumer expenditure surveys and multi-country life cycle assessment techniques, this paper analyzes the global and distributional aspects of American household carbon footprint. We find that due to recently increased international trade, 30% of total US household CO 2 impact in 2004 occurred outside the US. Further, households vary considerably in their CO 2 responsibilities: at least a factor of ten difference exists between low and high-impact households, with total household income and expenditure being the best predictors of both domestic and international portions of the total CO 2 impact. The global location of emissions, which cannot be calculated using standard input-output analysis, and the variation of household impacts with income, have important ramifications for polices designed to lower consumer impacts on climate change, such as carbon taxes. The effectiveness and fairness of such policies hinges on a proper understanding of how income distributions, rebound effects, and international trade affect them. (author)

  11. Carbon footprint from dairy farming system

    DEFF Research Database (Denmark)

    Della Riva, A.; Kristensen, Troels; De Marchi1, M.

    2014-01-01

    Aim of the present study was to estimate the carbon footprint (CF) of milk production at farm gate considering two dairy cattle breeds, Holstein Friesian (HF) and Jersey (JE). Using Italian inventory data the emissions of CO2eq per kg ECM for dairy herds of HF and JE breed were estimated. The res......Aim of the present study was to estimate the carbon footprint (CF) of milk production at farm gate considering two dairy cattle breeds, Holstein Friesian (HF) and Jersey (JE). Using Italian inventory data the emissions of CO2eq per kg ECM for dairy herds of HF and JE breed were estimated....... The results show 0.80 kg CO2eq/kg ECM in JE herd, while 0.96 kg CO2eq/kg ECM in HF herd. The main differences were due to the level of dry matter intake, milk yield and fertility traits. Indeed, JE herd showed a lower milk yield than HF herd, a lower DMI and better fertility, determining less production...

  12. Product carbon footprint assessment supporting the green supply chain construction in household appliance manufacturers

    Science.gov (United States)

    Chen, Jianhua; Sun, Liang; Guo, Huiting

    2017-11-01

    Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.

  13. Do parents leave a smaller carbon footprint?

    DEFF Research Database (Denmark)

    Nordström, Leif Jonas; Shogren, Jason F.; Thunström, Linda

    Do parents leave a smaller carbon footprint? While becoming a parent is transformational as one focuses more on the future, the time constraints are more binding right now. Using a unique data set that allows us to compare CO2 emissions from Swedish two-adult households with and without children......, we find becoming a Swedish parent causes a person to leave a larger carbon ootprint—due to changes in transportation patterns and food consumption choices....

  14. Carbon footprints and legitimation strategies: Symbolism or action?

    Energy Technology Data Exchange (ETDEWEB)

    Hrasky, S. [Univ. of Tasmania (Australia)

    2009-07-01

    The term 'carbon footprint' is now firmly entrenched in the common vernacular where it tends to function ideographically, representing a range of concerns about environmental impacts and degradation. Political and consumer concern about the related issues of carbon emissions, climate change and global warming has been heightened by a number of factors. It is often claimed that, along with the US, Australia has one of the heaviest carbon footprints. However, according to KPMG's (2008) survey results only 32 per cent of the Australian companies included in its survey report specifically on their carbon footprints. Nonetheless, KPMG (2007) reports that around 85 per cent of the 500 largest listed Australian companies do report on the related issues of climate change and greenhouse gas emissions. Motivations for making such disclosures can vary widely but legitimacy theory has been used extensively to explain environmental disclosure decisions in the context of maintaining an implicit social contract between the company and its stakeholders. While, prima facie, increased levels of voluntary disclosures may be a constructive outcome there is the associated risk that, in pursuit of legitimation, such disclosure can actually 'thicken' the corporate veil. This can occur because organizational action to maintain the social contact can be both symbolic and behavioral. That is, the disclosure response might be calculated to create a positive impression of the firm's activities with no associated change in operations (symbolism) or it might convey a message about how operational changes have been effected that are more consistent with societal expectations. This study examines the disclosure strategies of large Australian companies in light of the heightened societal awareness and concern about issues related to carbon footprints. This first aim is to determine whether, consistent with a general need for legitimation, companies are addressing

  15. Quantification of carbon footprint of urban roads via life cycle assessment

    DEFF Research Database (Denmark)

    Mao, Ruichang; Duan, Huabo; Dong, Dan

    2017-01-01

    assessment method. For given years (ranged from 2004 to 2013), various activities of urban roads (e.g. newly planned road construction, maintenance of road in use, and road renovation and demolition) have been examined in this study. The results show that the total carbon footprint from urban roads...... in Shenzhen was 260 (±20) thousand tons CO2e in 2013. The major contributor was the materials use (embodied impact) from newly constructed roads, which accounts for 52.3% of the total carbon footprint, followed by the maintenance stage (24.3%). The eco-design process of road construction plays a vital role...... studies attempted to examine the impacts from transport infrastructure, especially at a city or country level. This paper, taking Shenzhen in China (a fast developing megacity) as the case study, is specially designed to quantify the carbon footprint of the urban roads by using streamlined life cycle...

  16. Antagonism in the carbon footprint between beef and dairy ...

    African Journals Online (AJOL)

    The higher increase in production (milk) of intensive dairy cows, compared to the increase in production (calf weight) of intensive beef cows, explains the antagonism in the carbon footprint between different beef and dairy production systems. Unfortunately, carbon sequestration estimates have been neglected and thus the ...

  17. Future electricity: the challenge of reducing both carbon and water footprint

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2016-01-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the ‘greenest’ IEA scenario (with the smallest carbon footprint)

  18. Urban planning and industry in Spain: A novel methodology for calculating industrial carbon footprints

    International Nuclear Information System (INIS)

    Zubelzu, Sergio; Álvarez, Roberto

    2015-01-01

    In this paper we present a methodology for calculating the carbon footprint of the industrial sector during the urban planning stage in order to clearly develop and implement preventive measures. The methodology created focuses on industrial urban planning procedures and takes into account urban infrastructure in the characterization of GHG emissions. It allows for the implementation of preventive measures based on sustainability design criteria. The methodology was derived for specific industrial activity categories and was tested on a group of municipalities in a province south of Madrid, Spain. The results indicate that the average carbon footprint of industrial activities varies between 137.36 kgCO 2eq /m 2 e and 607.25 kgCO 2eq /m 2 e depending on the activity. Gas and electricity are the most important emissions sources for the most polluting industrial activities (chemical and nonmetal mineral products), while transportation is the most important source for every other activity. Municipalities can have a decisive influence on the industrial carbon footprint because, except for waste management and two industrial activities related to electricity, the majority of reductions can be achieved through urban planning decision variables. -- Highlights: •Model to calculate industrial carbon footprint in urban planning stage is proposed. •Specific industrial activities planned have a strong effect on carbon footprint. •Gas and electricity are the most relevant sources for the most pollutant industries. •Transport is relevant source for the less pollutant industries. •Municipalities can decisively influence on industrial carbon footprint

  19. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  20. Interactive effects of carbon footprint information and its accessibility on value and subjective qualities of food products.

    Science.gov (United States)

    Kimura, Atsushi; Wada, Yuji; Kamada, Akiko; Masuda, Tomohiro; Okamoto, Masako; Goto, Sho-ichi; Tsuzuki, Daisuke; Cai, Dongsheng; Oka, Takashi; Dan, Ippeita

    2010-10-01

    We aimed to explore the interactive effects of the accessibility of information and the degree of carbon footprint score on consumers' value judgments of food products. Participants (n=151, undergraduate students in Japan) rated their maximum willingness to pay (WTP) for four food products varying in information accessibility (active-search or read-only conditions) and in carbon footprint values (low, middle, high, or non-display) provided. We also assessed further effects of information accessibly and carbon footprint value on other product attributes utilizing the subjective estimation of taste, quality, healthiness, and environmental friendliness. Results of the experiment demonstrated an interactive effect of information accessibility and the degree of carbon emission on consumer valuation of carbon footprint-labeled food. The carbon footprint value had a stronger impact on participants' WTP in the active-search condition than in the read-only condition. Similar to WTP, the results of the subjective ratings for product qualities also exhibited an interactive effect of the two factors on the rating of environmental friendliness for products. These results imply that the perceived environmental friendliness inferable from a carbon footprint label contributes to creating value for a food product.

  1. The carbon footprint of behavioural support services for smoking cessation.

    Science.gov (United States)

    Smith, Anna Jo Bodurtha; Tennison, Imogen; Roberts, Ian; Cairns, John; Free, Caroline

    2013-09-01

    To estimate the carbon footprint of behavioural support services for smoking cessation: text message support, telephone counselling, group counselling and individual counselling. Carbon footprint analysis. Publicly available data on National Health Service Stop Smoking Services and per unit carbon emissions; published effectiveness data from the txt2stop trial and systematic reviews of smoking cessation services. Carbon dioxide equivalents (CO2e) per 1000 smokers, per lifetime quitter, and per quality-adjusted life year gained, and cost-effectiveness, including social cost of carbon, of smoking cessation services. Emissions per 1000 participants were 8143 kg CO2e for text message support, 8619 kg CO2e for telephone counselling, 16 114 kg CO2e for group counselling and 16 372 kg CO2e for individual counselling. Emissions per intervention lifetime quitter were 636 (95% CI 455 to 958) kg CO2e for text message support, 1051 (95% CI 560 to 2873) kg CO2e for telephone counselling, 1143 (95% CI 695 to 2270) kg CO2e for group counselling and 2823 (95% CI 1688 to 6549) kg CO2e for individual counselling. Text message, telephone and group counselling remained cost-effective when cost-effectiveness analysis was revised to include the environmental and economic cost of damage from carbon emissions. All smoking cessation services had low emissions compared to the health gains produced. Text message support had the lowest emissions of the services evaluated. Smoking cessation services have small carbon footprints and were cost-effective after accounting for the societal costs of greenhouse gas emissions.

  2. Interannual Variations of the Carbon Footprint and Carbon Eco-efficiency in Agro-ecosystem of Beijing, China

    Directory of Open Access Journals (Sweden)

    TIAN Zhi-hui

    2015-12-01

    Full Text Available Suburban farmland ecosystems are known to be affected by intensive land use/cover change (LUCC during the process of urbanization in Beijing. We investigated inter-annual changes in carbon sequestration, source, footprint, and eco-efficiency from 2004 to 2012 in the agro-ecosystem of suburban Beijing. Our findings indicated that: (1 Carbon sink increased 2.8 percent annually and the average annual carbon storage amount was 1 058 200 t, with food crops constituting the highest proportion at 80.4% of carbon storage in farmland ecosystems, of which maize contributed 68.5% as the largest constituent; (2 Carbon emission in the system showed a gradually decreasing trend, with agricultural chemicals as significant contributors. The annual average carbon emission was 276 000 tons in the Beijing farmland ecosystem, and decreased approximately 1.3 percent per year. The largest amount of carbon emissions came from agricultural chemicals at 85.4%, of which nitrogen fertilizer was the biggest contributor at 83.7%; ( 3 The carbon footprint also showed a decreasing trend along with an ecological surplus of carbon. The average carbon footprint was 5.71 hm2 in the Beijing farmland ecosystem with decreasing rate at 5.5% annually; however, the carbon surplus showed a downward trend due to reduction in the amount of arable land; (4 Finally, the increasing carbon sink capacity led to higher carbon eco-efficiency, with an annual average of 3.854 kg C·kg-1 CE, carbon sequestration was greater than the amount of carbon released. In summary, the agro-ecosystem in suburban Beijing has sustained a relatively high carbon eco-efficiency, and agricultural production continues to have high sustainability potential.

  3. Effects of Globalisation on Carbon Footprints of Products

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Hauschild, Michael Zwicky

    2009-01-01

    Outsourcing of production from the industrialised countries to the newly industrialised economies holds the potential to increase wealth in both places, but what are the environmental costs of the globalised manufacturing systems? This paper looks into the changes in carbon footprint...

  4. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay.

    Science.gov (United States)

    Picasso, Valentín D; Modernel, Pablo D; Becoña, Gonzalo; Salvo, Lucía; Gutiérrez, Lucía; Astigarraga, Laura

    2014-11-01

    Livestock production has been challenged as a large contributor to climate change, and carbon footprint has become a widely used measure of cattle environmental impact. This analysis of fifteen beef grazing systems in Uruguay quantifies the range of variation of carbon footprint, and the trade-offs with other relevant environmental variables, using a partial life cycle assessment (LCA) methodology. Using carbon footprint as the primary environmental indicator has several limitations: different metrics (GWP vs. GTP) may lead to different conclusions, carbon sequestration from soils may drastically affect the results, and systems with lower carbon footprint may have higher energy use, soil erosion, nutrient imbalance, pesticide ecotoxicity, and impact on biodiversity. A multidimensional assessment of sustainability of meat production is therefore needed to inform decision makers. There is great potential to improve grazing livestock systems productivity while reducing carbon footprint and other environmental impacts, and conserving biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Carbon footprint of robotically-assisted laparoscopy, laparoscopy and laparotomy: a comparison.

    Science.gov (United States)

    Woods, Demetrius L; McAndrew, Thomas; Nevadunsky, Nicole; Hou, June Y; Goldberg, Gary; Yi-Shin Kuo, Dennis; Isani, Sara

    2015-12-01

    To date there have been no comprehensive, comparative assessments of the environmental impact of surgical modalities. Our study seeks to quantify and compare the total greenhouse gas emissions, or 'carbon footprint', attributable to three surgical modalities. A review of 150 staging procedures, employing laparotomy (LAP), conventional laparoscopy (LSC) or robotically-assisted laparoscopy (RA-LSC), was performed. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and converted into their equivalent mass of carbon dioxide (kg CO(2) e) release into the environment. The carbon footprint is the sum of the waste production and energy consumption during each surgery (kg CO(2) e). The total carbon footprint of a RA-LSC procedure is 40.3 kg CO(2) e/patient (p < 0.01). This represents a 38% increase over that of LSC (29.2 kg CO(2) e/patient; p < 0.01) and a 77% increase over LAP (22.7 kg CO(2) e/patient; p < 0.01). Our results provide clinicians, administrators and policy-makers with knowledge of the environmental impact of their decisions to facilitate adoption of sustainable practices. Copyright © 2015 John Wiley & Sons, Ltd.

  6. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.

    Science.gov (United States)

    O'Brien, D; Capper, J L; Garnsworthy, P C; Grainger, C; Shalloo, L

    2014-03-01

    Life-cycle assessment (LCA) is the preferred methodology to assess carbon footprint per unit of milk. The objective of this case study was to apply an LCA method to compare carbon footprints of high-performance confinement and grass-based dairy farms. Physical performance data from research herds were used to quantify carbon footprints of a high-performance Irish grass-based dairy system and a top-performing United Kingdom (UK) confinement dairy system. For the US confinement dairy system, data from the top 5% of herds of a national database were used. Life-cycle assessment was applied using the same dairy farm greenhouse gas (GHG) model for all dairy systems. The model estimated all on- and off-farm GHG sources associated with dairy production until milk is sold from the farm in kilograms of carbon dioxide equivalents (CO2-eq) and allocated emissions between milk and meat. The carbon footprint of milk was calculated by expressing GHG emissions attributed to milk per tonne of energy-corrected milk (ECM). The comparison showed that when GHG emissions were only attributed to milk, the carbon footprint of milk from the Irish grass-based system (837 kg of CO2-eq/t of ECM) was 5% lower than the UK confinement system (884 kg of CO2-eq/t of ECM) and 7% lower than the US confinement system (898 kg of CO2-eq/t of ECM). However, without grassland carbon sequestration, the grass-based and confinement dairy systems had similar carbon footprints per tonne of ECM. Emission algorithms and allocation of GHG emissions between milk and meat also affected the relative difference and order of dairy system carbon footprints. For instance, depending on the method chosen to allocate emissions between milk and meat, the relative difference between the carbon footprints of grass-based and confinement dairy systems varied by 3 to 22%. This indicates that further harmonization of several aspects of the LCA methodology is required to compare carbon footprints of contrasting dairy systems. In

  7. City Carbon Footprint Networks

    Directory of Open Access Journals (Sweden)

    Guangwu Chen

    2016-07-01

    Full Text Available Progressive cities worldwide have demonstrated political leadership by initiating meaningful strategies and actions to tackle climate change. However, the lack of knowledge concerning embodied greenhouse gas (GHG emissions of cities has hampered effective mitigation. We analyse trans-boundary GHG emission transfers between five Australian cities and their trading partners, with embodied emission flows broken down into major economic sectors. We examine intercity carbon footprint (CF networks and disclose a hierarchy of responsibility for emissions between cities and regions. Allocations of emissions to households, businesses and government and the carbon efficiency of expenditure have been analysed to inform mitigation policies. Our findings indicate that final demand in the five largest cities in Australia accounts for more than half of the nation’s CF. City households are responsible for about two thirds of the cities’ CFs; the rest can be attributed to government and business consumption and investment. The city network flows highlight that over half of emissions embodied in imports (EEI to the five cities occur overseas. However, a hierarchy of GHG emissions reveals that overseas regions also outsource emissions to Australian cities such as Perth. We finally discuss the implications of our findings on carbon neutrality, low-carbon city concepts and strategies and allocation of subnational GHG responsibility.

  8. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    Directory of Open Access Journals (Sweden)

    Chunyan Chai

    2015-03-01

    Full Text Available With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O, Sequencing Batch Reactor (SBR and Oxygen Ditch, considering four different sludge treatment alternatives for small-to-medium-sized WWTPs. Following the life cycle approach, process design data and emission factors were used by the model to calculate the carbon footprint. Results found that direct emissions of CO2 and N2O, and indirect emissions of electricity use, are significant contributors to the carbon footprint. Although sludge anaerobic digestion and biogas recovery could significantly contribute to emission reduction, it was less beneficial for Oxygen Ditch than the other two treatment technologies due to its low sludge production. The influence of choosing “high risk” or “low risk” N2O emission factors on the carbon footprint was also investigated in this study. Oxygen Ditch was assessed as “low risk” of N2O emissions while SBR was “high risk”. The carbon footprint of A–A–O with sludge anaerobic digestion and energy recovery was more resilient to changes of N2O emission factors and control of N2O emissions, though process design parameters (i.e., effluent total nitrogen (TN concentration, mixed-liquor recycle (MLR rates and solids retention time (SRT and operation conditions (i.e., nitrite concentration are critical for reducing carbon footprint of SBR. Analyses of carbon footprints suggested that aerobic treatment of sludge not only favors the generation of large amounts of CO2, but also the emissions of N2O, so the rationale of reducing aerobic treatment and

  9. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  10. Carbon and energy footprint analysis of tannery wastewater treatment: A Global overview

    Directory of Open Access Journals (Sweden)

    Francesca Giaccherini

    2017-06-01

    Full Text Available In this study the carbon footprint and power demand of tannery wastewater treatment processes for the largest bovine leather producing regions were quantified and analysed. Moreover, we present a case in which we benchmarked the carbon footprint and energy demand analysis of tannery wastewater treatment to municipal wastewater treatment. We quantified the greenhouse gas direct and indirect emissions from tannery wastewater treatment facilities. Our results show that the total CO2-equivalent emission for tannery wastewater treatment is 1.49 103 tCO2,eq d−1. Moreover, the energy intensity of tannery wastewater treatment processes are evaluated at 3.9 kWh kg−1bCOD,removed, compared to 1.4 kWh kg−1bCOD,removed of municipal wastewater treatment processes. Based on this work in the field of tannery wastewater treatment, an effort to innovate suitable treatment trains and technologies has the strong potential to reduce the carbon footprint.

  11. Carbon footprint and cost-effectiveness of cataract surgery.

    Science.gov (United States)

    Venkatesh, Rengaraj; van Landingham, Suzanne W; Khodifad, Ashish M; Haripriya, Aravind; Thiel, Cassandra L; Ramulu, Pradeep; Robin, Alan L

    2016-01-01

    This article raises awareness about the cost-effectiveness and carbon footprint of various cataract surgery techniques, comparing their relative carbon emissions and expenses: manual small-incision cataract surgery (MSICS), phacoemulsification, and femtosecond laser-assisted cataract surgery. As the most commonly performed surgical procedure worldwide, cataract surgery contributes significantly to global climate change. The carbon footprint of a single phacoemulsification cataract surgery is estimated to be comparable to that of a typical person's life for 1 week. Phacoemulsification has been estimated to be between 1.4 and 4.7 times more expensive than MSICS; however, given the lower degree of postoperative astigmatism and other potential complications, phacoemulsification may still be preferable to MSICS in relatively resource-rich settings requiring high levels of visual function. Limited data are currently available regarding the environmental and financial impact of femtosecond laser-assisted cataract surgery; however, in its current form, it appears to be the least cost-effective option. Cataract surgery has a high value to patients. The relative environmental impact and cost of different types of cataract surgery should be considered as this treatment becomes even more broadly available globally and as new technologies are developed and implemented.

  12. [Spatial and temporal patterns of the ecological compensation criterion in Jiangxi Province, China based on carbon footprint.

    Science.gov (United States)

    Hu, Xiao Fei; Zou, Yan; Fu, Chun

    2017-02-01

    Carbon footprint is a new method to measure carbon emissions, and the ecological compensation criterion can be determined according to the regional carbon footprint and carbon carrying capacity. The spatial and temporal patterns of ecological compensation criterion were studied among 11 cities in Jiangxi Province using carbon footprint, carbon capacity and carbon surplus/deficit models. Our results found that carbon footprint in Jiangxi Province showed a rapid growth trend from 2000 to 2013, with an average annual growth rate of 8.7%. The carbon carrying capacity always remained surplus, but the net carbon surplus amount decreased from 2000 to 2013. Among the 11 cities, Nanchang and Jiujiang made the biggest contribution to total carbon emission, and Ganzhou, Ji'an and Shangrao had provided the largest contribution to carbon total absorption. In 2013, the total carbon surplus amount was 2.273 billion yuan in Jiangxi Province. Ganzhou, Ji'an, Fuzhou and Shangrao should be given priority to ecological compensation money. These results could provide a scientific basis for the establishment of ecological compensation mechanism in Jiangxi Province and the transfer of CO 2 emission rights.

  13. Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Meyer-Aurich, A; Olesen, Jørgen E

    2014-01-01

    Many current organic arable agriculture systems are challenged by a dependency on imported livestock manure from conventional agriculture. At the same time organic agriculture aims at being climate friendly. A life cycle assessment is used in this paper to compare the carbon footprints of different....... The results showed significantly lower carbon footprint of the crops from the ‘Biogas’ rotation (assuming that biogas replaces fossil gas) whereas the remaining crop rotations had comparable carbon footprints per kg cash crop. The study showed considerable contributions caused by the green manure crop (grass......-clover) and highlights the importance of analysing the whole crop rotation and including soil carbon changes when estimating carbon footprints of organic crops especially where green manure crops are included....

  14. Carbon and environmental footprinting of low carbon UK electricity futures to 2050

    International Nuclear Information System (INIS)

    Alderson, Helen; Cranston, Gemma R.; Hammond, Geoffrey P.

    2012-01-01

    Electricity generation contributes a large proportion of the total greenhouse gas emissions in the United Kingdom (UK), due to the predominant use of fossil fuel (coal and natural gas) combustion for this purpose. A range of future UK energy scenarios has been employed to determine their resulting environmental and carbon footprints. Methodologies have been established to calculate these footprints for the UK electricity supply industry on both a historic timescale and in accordance with the three selected scenarios. The latter scenarios, developed by the UK SUPERGEN Consortium on ‘Highly Distributed Power Systems’ (HDPS), were characterised as ‘Business As Usual’ (BAU), ‘Low Carbon’ (LC) and ‘Deep Green’ (DG) futures, and yielded possible electricity demands out to 2050. It was found that the environmental footprint of the current power network is 41 million (M) global hectares (gha). If future trends follow a ‘Business As Usual’ scenario, then this footprint is observed to fall to about 25 Mgha in 2050. The LC scenario implies an extensive penetration of micro-generators in the home to satisfy heat and power demands. However, these energy requirements are minimised by way of improved insulation of the building fabric and other demand reduction measures. In contrast, the DG scenario presupposes a network where centralised renewable energy technologies – mainly large-scale onshore and offshore wind turbines - have an important role in the power generation. However, both the LC and DG scenarios were found to lead to footprints of less than 4 Mgha by 2050. These latter two scenarios were found to give rise to quite similar trajectories over the period 2010–2050. They are therefore more likely to reflect an effective transition pathway in terms of meeting the 2050 UK CO 2 reduction targets associated with decarbonisation of its power network. However, this appears unlikely to be achieved by 2030–2040 as advocated by the UK Government

  15. Barriers to Mitigate Carbon Footprint in a Selected Academic Institution in Bacoor City, Cavite, Philippines

    Science.gov (United States)

    Adanza, Jonathan R.

    2016-01-01

    Carbon footprint is an environmental menace that needs to be addressed at once. Various mitigating measures were proposed and yet manifestations of its proliferation are very much observable. This study seeks to determine primarily the barriers of non-adherence to identified measures to mitigate carbon footprint in the environment. Using the mixed…

  16. Application of the DIY carbon footprint calculator to a wastewater ...

    African Journals Online (AJOL)

    In order to manage the energy budget and develop climate-friendly technological ... step involves the development of strategies to reduce the carbon footprint. ..... Intelligent management systems: aeration of the activated sludge process.

  17. Mitigating climate change by minimising the carbon footprint and ...

    African Journals Online (AJOL)

    The analysis determines that lower scaled, spatially economical structures using low embodied energy materials will positively contribute to reduced carbon footprints and thus climate change mitigation strategies. The outcomes of the article also set a benchmark for prospective life-cycle assessments (LCA) and establish ...

  18. Computers and the Environment: Minimizing the Carbon Footprint

    Science.gov (United States)

    Kaestner, Rich

    2009-01-01

    Computers can be good and bad for the environment; one can maximize the good and minimize the bad. When dealing with environmental issues, it's difficult to ignore the computing infrastructure. With an operations carbon footprint equal to the airline industry's, computer energy use is only part of the problem; everyone is also dealing with the use…

  19. Carbon Footprint estimation for a Sustainable Improvement of Supply Chains: State of the Art

    Directory of Open Access Journals (Sweden)

    Pilar Cordero

    2013-07-01

    Full Text Available Purpose: This paper examines the current methodologies and approaches developed to estimate carbon footprint in supply chains and the studies existing in the literature review about the application of these methodologies and other new approaches proposed by some authors.Design/methodology/approach: Literature review about methodologies developed by some authors for determining greenhouse gases emissions throughout the supply chain of a given sector or organization.Findings and Originality/value: Due to its usefulness for the design and management of a sustainable supply chain management, methodologies for calculating carbon footprint across the supply chain are recommended by many authors not only to reduce GHG emissions but also to optimize it in a cost-effective manner. Although these approaches are in first stages of development and the literature is scarce, different methodologies for estimating CF emissions which include EIO analysis models and standardized methods and guidance have been developed, some of them applicable to supply chains especially methodologies for calculating CF of a specific economic sector supply chain in a territory or country and for calculating CF of an organization applicable to the estimation of GHG emissions of a specific company supply chain.

  20. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay

    NARCIS (Netherlands)

    Picasso, V.D.; Modernel Hristoff, P.D.; Becona, G.; Salvo, L.; Gutierrez, L.; Astigarraga, L.

    2014-01-01

    Livestock production has been challenged as a large contributor to climate change, and carbon footprint has become a widely used measure of cattle environmental impact. This analysis of fifteen beef grazing systems in Uruguay quantifies the range of variation of carbon footprint, and the trade-offs

  1. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  2. The carbon footprint of a renal service in the United Kingdom.

    Science.gov (United States)

    Connor, A; Lillywhite, R; Cooke, M W

    2010-12-01

    Anthropogenic climate change presents a major global health threat. However, the very provision of healthcare itself is associated with a significant environmental impact. Carbon footprinting techniques are increasingly used outside of the healthcare sector to assess greenhouse gas emissions and inform strategies to reduce them. This study represents the first assessment of the carbon footprint of an individual specialty service to include both direct and indirect emissions. This was a component analysis study. Activity data were collected for building energy use, travel and procurement. Established emissions factors were applied to reconcile this data to carbon dioxide equivalents (CO(2)eq) per year. The Dorset Renal Service has a carbon footprint of 3006 tonnes CO(2)eq per annum, of which 381 tonnes CO(2)eq (13% of overall emissions) result from building energy use, 462 tonnes CO(2)eq from travel (15%) and 2163 tonnes CO(2)eq (72%) from procurement. The contributions of the major subsectors within procurement are: pharmaceuticals, 1043 tonnes CO(2)eq (35% of overall emissions); medical equipment, 753 tonnes CO(2)eq (25%). The emissions associated with healthcare episodes were estimated at 161 kg CO(2)eq per bed day for an inpatient admission and 22 kg CO(2)eq for an outpatient appointment. These results suggest that carbon-reduction strategies focusing upon supply chain emissions are likely to yield the greatest benefits. Sustainable waste management and strategies to reduce emissions associated with building energy use and travel will also be important. A transformation in the way that clinical care is delivered is required, such that lower carbon clinical pathways, treatments and technologies are embraced. The estimations of greenhouse gas emissions associated with outpatient appointments and inpatient stays calculated here may facilitate modelling of the emissions of alternative pathways of care.

  3. Carbon footprint of patient journeys through primary care: a mixed methods approach.

    Science.gov (United States)

    Andrews, Elizabeth; Pearson, David; Kelly, Charlotte; Stroud, Laura; Rivas Perez, Martin

    2013-09-01

    The NHS has a target of cutting its carbon dioxide (CO2) emissions by 80% below 1990 levels by 2050. Travel comprises 17% of the NHS carbon footprint. This carbon footprint represents the total CO2 emissions caused directly or indirectly by the NHS. Patient journeys have previously been planned largely without regard to the environmental impact. The potential contribution of 'avoidable' journeys in primary care is significant. To investigate the carbon footprint of patients travelling to and from a general practice surgery, the issues involved, and potential solutions for reducing patient travel. A mixed methods study in a medium-sized practice in Yorkshire. During March 2012, 306 patients completed a travel survey. GIS maps of patients' travel (modes and distances) were produced. Two focus groups (12 clinical and 13 non-clinical staff) were recorded, transcribed, and analysed using a thematic framework approach. The majority (61%) of patient journeys to and from the surgery were made by car or taxi; main reasons cited were 'convenience', 'time saving', and 'no alternative' for accessing the surgery. Using distances calculated via ArcGIS, the annual estimated CO2 equivalent carbon emissions for the practice totalled approximately 63 tonnes. Predominant themes from interviews related to issues with systems for booking appointments and repeat prescriptions; alternative travel modes; delivering health care; and solutions to reducing travel. The modes and distances of patient travel can be accurately determined and allow appropriate carbon emission calculations for GP practices. Although challenging, there is scope for identifying potential solutions (for example, modifying administration systems and promoting walking) to reduce 'avoidable' journeys and cut carbon emissions while maintaining access to health care.

  4. Achieving transparency in carbon labelling for construction materials – Lessons from current assessment standards and carbon labels

    International Nuclear Information System (INIS)

    Wu, Peng; Low, Sui Pheng; Xia, Bo; Zuo, Jian

    2014-01-01

    Highlights: • The evolution of international GHG standards is reviewed. • The evolution of international carbon labelling schemes is reviewed. • The transparency requirements in carbon labelling schemes are revealed. • Key recommendations are provided to improve transparency in carbon labelling. - Abstract: The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO 2 Measured Label and the Reducing CO 2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The

  5. Improving farming practices reduces the carbon footprint of spring wheat production.

    Science.gov (United States)

    Gan, Yantai; Liang, Chang; Chai, Qiang; Lemke, Reynald L; Campbell, Con A; Zentner, Robert P

    2014-11-18

    Wheat is one of the world's most favoured food sources, reaching millions of people on a daily basis. However, its production has climatic consequences. Fuel, inorganic fertilizers and pesticides used in wheat production emit greenhouse gases that can contribute negatively to climate change. It is unknown whether adopting alternative farming practices will increase crop yield while reducing carbon emissions. Here we quantify the carbon footprint of alternative wheat production systems suited to semiarid environments. We find that integrating improved farming practices (that is, fertilizing crops based on soil tests, reducing summerfallow frequencies and rotating cereals with grain legumes) lowers wheat carbon footprint effectively, averaging -256 kg CO2 eq ha(-1) per year. For each kg of wheat grain produced, a net 0.027-0.377 kg CO2 eq is sequestered into the soil. With the suite of improved farming practices, wheat takes up more CO2 from the atmosphere than is actually emitted during its production.

  6. Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter.

    Science.gov (United States)

    Iriarte, Alfredo; Almeida, Maria Gabriela; Villalobos, Pablo

    2014-02-15

    Nowadays, the new international market demands challenge the food producing countries to include the measurement of the environmental impact generated along the production process for their products. In order to comply with the environmentally responsible market requests the measurement of the greenhouse gas emissions of Ecuadorian agricultural goods has been promoted employing the carbon footprint concept. Ecuador is the largest exporter of bananas in the world. Within this context, this study is a first assessment of the carbon footprint of the Ecuadorian premium export banana (Musa AAA) using a considerable amount of field data. The system boundaries considered from agricultural production to delivery in a European destination port. The data collected over three years permitted identifying the hot spot stages. For the calculation, the CCaLC V3.0 software developed by the University of Manchester is used. The carbon footprint of the Ecuadorian export banana ranged from 0.45 to 1.04 kg CO2-equivalent/kg banana depending on the international overseas transport employed. The principal contributors to the carbon footprint are the on farm production and overseas transport stages. Mitigation and reduction strategies were suggested for the main emission sources in order to achieve sustainable banana production. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Carbon footprint of milk from sheep farming systems in northern Spain including soil carbon sequestration in grasslands

    DEFF Research Database (Denmark)

    Batalla, Inma M.; Knudsen, Marie Trydeman; Mogensen, Lisbeth

    2015-01-01

    The link between climate change and livestock production has made carbon footprint based on life cycle assessment a world-wide indicator to assess and communicate the amount of greenhouse gases emitted per unit of product. Nevertheless, the majority of studies have not included soil carbon seques...

  8. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    Science.gov (United States)

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Assessment of the Carbon Footprint, Social Benefit of Carbon Reduction, and Energy Payback Time of a High-Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Allen H. Hu

    2016-12-01

    Full Text Available Depleting fossil fuel sources and worsening global warming are two of the most serious world problems. Many renewable energy technologies are continuously being developed to overcome these challenges. Among these technologies, high-concentration photovoltaics (HCPV is a promising technology that reduces the use of expensive photovoltaic materials to achieve highly efficient energy conversion. This reduction process is achieved by adopting concentrating and tracking technologies. This study intends to understand and assess the carbon footprint and energy payback time (EPBT of HCPV modules during their entire life cycles. The social benefit of carbon reduction is also evaluated as another indicator to assess the energy alternatives. An HCPV module and a tracker from the Institute of Nuclear Energy Research (INER were applied, and SimaPro 8.0.2 was used for the assessment. The functional unit used in this study was 1 kWh, which is produced by HCPV, and inventory data was sourced from Ecoinvent 3.0 and the Taiwan carbon footprint calculation database. The carbon footprint, EPBT, and social benefit of carbon reduction were evaluated as 107.69 g CO2eq/kWh, 2.61 years, and 0.022 USD/kWh, respectively. Direct normal irradiation (DNI, life expectancy, and the degradation rate of HCPV system were subjected to sensitivity analysis. Results show that the influence of lifetime assumption under a low DNI value is greater than those under high DNI values. Degradation rate is also another important factor when assessing the carbon footprint of HCPV under a low DNI value and a long lifetime assumption. The findings of this study can provide several insights for the development of the Taiwanese solar industry.

  10. Pengaruh Paradigma Lingkungan dan Personal Value terhadap Carbon Footprint Mahasiswa

    OpenAIRE

    Malisi, Ali Sibro; Nadiroh, Nadiroh

    2017-01-01

    The objective of the research was aimed to finding the influence of environmental paradigm and personal value on environmental issues. Here, the effect of environmental paradigm and personal value on environmental using Carbon Footprint Analysis were evaluated on students at Universitas Negeri Jakarta. This research uses quantitative expost facto method with sample of 194 students. The results showed that there is influence of environmental paradigm and personal value to total carbon footprin...

  11. Carbon footprint of the Danish electricity transmission and distribution systems

    DEFF Research Database (Denmark)

    Turconi, Roberto; Astrup, Thomas Fruergaard

    . The purpose was to evaluate the potential importance of environmental impacts associated with T&D in current and future electricity systems. Including the emissions from electricity T&D is needed to provide a full carbon footprint of electricity systems, and is essential to properly assess the environmental...

  12. Estimation of the Carbon Footprint and Global Warming Potential in Rice Production Systems

    International Nuclear Information System (INIS)

    Dastan, S.; Soltani, F.; Noormohamadi, G.; Madani, H.; Yadi, R.

    2016-01-01

    Optimal management approaches can be adopted in order to increase crop productivity and lower the carbon footprint of grain products. The objective of this study was to estimate the carbon (C) footprint and global warming potential of rice production systems. In this experiment, rice production systems (including SRI, improved and conventional) were studied. All activities, field operations and data in production methods and at different input rates were monitored and recorded during 2012. Results showed that average global warming potential across production systems was equal to 2803.25 kg CO 2 -eq ha-1. The highest and least global warming potential were observed in the SRI and conventional systems, respectively. global warming potential per unit energy input was the least and most in SRI and conventional systems, respectively. Also, the SRI and conventional systems had the maximum and minimum global warming potential per unit energy output, respectively. SRI and conventional system had the greatest and least global warming potential per unit energy output, respectively. Therefore, the optimal management approach found in SRI resulted in a reduction in GHGs, global warming potential and the carbon footprint.

  13. Application of the DIY carbon footprint calculator to a wastewater ...

    African Journals Online (AJOL)

    ... own 'green' energy by using anaerobically produced methane gas as a green energy alternative. This investigation demonstrates how the baseline carbon footprint of a wastewater treatment works can be reduced by considering viable options such as biogas to power generation, process re-design and drives to improve ...

  14. Author Correction: The carbon footprint of global tourism

    Science.gov (United States)

    Lenzen, Manfred; Sun, Ya-Yen; Faturay, Futu; Ting, Yuan-Peng; Geschke, Arne; Malik, Arunima

    2018-06-01

    In the version of this Article originally published, in the penultimate paragraph of the section "Gas species and supply chains", in the sentence "In this assessment, the contribution of air travel emissions amounts to 20% (0.9 GtCO2e) of tourism's global carbon footprint..." the values should have read "12% (0.55 GtCO2e)"; this error has now been corrected, and Supplementary Table 9 has been amended to clarify this change.

  15. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    Science.gov (United States)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  16. Carbon Footprint Reduction in Transportation Activity by Emphasizing the Usage of Public Bus Services Among Adolescents

    Science.gov (United States)

    Sukor, Nur Sabahiah Abdul; Khairiyah Basri, Nur; Asmah Hassan, Sitti

    2017-08-01

    Transportation is one of the sectors that contributes to the Greenhouse Gases (GHGs) emissions. In terms of carbon footprint, transportation is among the major contributors of high carbon intensity in the urban area. This study was conducted to reduce the carbon footprint contributed by the transportation sector in Penang Island by emphasizing the use of public buses. Secondary school students were the target group for this study. They were asked to report their daily travel behaviour and fuel consumption in a travel journal. The fuel consumption data from the travel journal were used to calculate each individual’s carbon emission level. After the analyses, the value of carbon emissions was revealed to the students. Next, they were encouraged to use public transport in a motivation session and were asked to record their fuel consumption in the travel journal once again. The results showed that there was a significant difference in fuel consumption before and after the motivation session, as the students preferred to use public buses instead of private vehicles after the motivation session. This indicates that the motivation programme had been successful in creating the awareness towards carbon footprint reduction among the adolescents.

  17. Interannual Variations of the Carbon Footprint and Carbon Eco-efficiency in Agro-ecosystem of Beijing, China

    OpenAIRE

    TIAN Zhi-hui; MA Xiao-yan; LIU Rui-han

    2015-01-01

    Suburban farmland ecosystems are known to be affected by intensive land use/cover change (LUCC) during the process of urbanization in Beijing. We investigated inter-annual changes in carbon sequestration, source, footprint, and eco-efficiency from 2004 to 2012 in the agro-ecosystem of suburban Beijing. Our findings indicated that: (1) Carbon sink increased 2.8 percent annually and the average annual carbon storage amount was 1 058 200 t, with food crops constituting the highest proportion at ...

  18. Product and corporate carbon footprint using the compound method based on financial accounts. The case of Osorio wind farms

    International Nuclear Information System (INIS)

    Alvarez, Sergio; Sosa, María; Rubio, Agustín

    2015-01-01

    Highlights: • We applied novel organisation-product-based-life-cycle assessment to Osorio Wind Farms. • This study includes sources, phases and areas previously unreported for the wind power sector. • MC3 assess carbon footprint in a practical and comprehensive manner. • MC3 is suitable for its application in major international projects. - Abstract: The challenge of developing clean and renewable energy sources is becoming ever more urgent. Over the last decade, the concept of carbon footprint has been used to report direct and indirect greenhouse gas emissions and as a support for sustainable consumption decisions. However, the discrepancies in the approaches based on either the product or corporate carbon footprint can seriously hinder its successful implementation. The so-called compound method based on financial accounts is a tiered hybrid method which enables the calculation of both the product and corporate carbon footprint. This work aims to assess this method as a tool for carbon footprint through its implementation in a comprehensive life-cycle assessment of the Osorio Wind Farms in Brazil. The total cumulative life-cycle emissions are 362.455 t CO 2 eq, representing 18.33 gr CO 2 eq per kW h delivered to the Brazilian national power grid. The difference with regard to previous works derives from its broader scope and different assumptions. In this study the comparable value from wind turbine manufacture, transport and construction is 8.42 gr CO 2 eq per kW h, 56% lower than the mean figure reported by Arvesen and Hertwich (2012). This study includes sources, phases and areas previously unreported in the carbon footprint reviews for the wind power sector. We conclude that the compound method based on financial accounts is a practical method that allows the definition of a more comprehensive goal and scope. Its implementation at Osorio Wind Farms demonstrates the method’s suitability for application in major international projects and

  19. [Carbon footprint in five third-level health care centers in Peru, 2013].

    Science.gov (United States)

    Bambarén-Alatrista, Celso; Alatrista-Gutiérrez, María Del Socorro

    2016-06-01

    This study was performed to calculate the carbon footprint generated by third-level health care centers located in Lima, Peru, in 2013. Reports were obtained on the consumption of energy resources and water as well as on waste generation from the five centers, which contributed to climate change with an emission of 14,462 teq of CO2. A total of 46% of these emissions were associated with fuel consumption by the powerhouse, power generators, and transport vehicles; 44% was related to energy consumption; and the remaining 10% was related to the use of water and generation of solid hospital waste. CO2, N2O, and CH4 are the greenhouse gases included in the estimated carbon footprint. Our results show that hospitals have a negative environmental impact, mainly due to fossil fuel consumption.

  20. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.

    Science.gov (United States)

    Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2011-11-15

    Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Minimizing the Carbon Footprint for the Time-Dependent Heterogeneous-Fleet Vehicle Routing Problem with Alternative Paths

    Directory of Open Access Journals (Sweden)

    Wan-Yu Liu

    2014-07-01

    Full Text Available Torespondto the reduction of greenhouse gas emissions and global warming, this paper investigates the minimal-carbon-footprint time-dependent heterogeneous-fleet vehicle routing problem with alternative paths (MTHVRPP. This finds a route with the smallestcarbon footprint, instead of the shortestroute distance, which is the conventional approach, to serve a number of customers with a heterogeneous fleet of vehicles in cases wherethere may not be only one path between each pair of customers, and the vehicle speed differs at different times of the day. Inheriting from the NP-hardness of the vehicle routing problem, the MTHVRPP is also NP-hard. This paper further proposes a genetic algorithm (GA to solve this problem. The solution representedbyour GA determines the customer serving ordering of each vehicle type. Then, the capacity check is used to classify multiple routes of each vehicle type, and the path selection determines the detailed paths of each route. Additionally, this paper improves the energy consumption model used for calculating the carbon footprint amount more precisely. Compared with the results without alternative paths, our experimental results show that the alternative path in this experimenthas a significant impact on the experimental results in terms of carbon footprint.

  2. Method for calculating carbon footprint of cattle feeds – including contribution from soil carbon changes and use of cattle manure

    DEFF Research Database (Denmark)

    Mogensen, Lisbeth; Kristensen, Troels; Nguyen, T Lan T

    2014-01-01

    fodder crop, an individual production scheme was set up as the basis for calculating the carbon footprint (CF). In the calculations, all fodder crops were fertilized by artificial fertilizer based on the assumption that the environmental burden of using manure is related to the livestock production......Greenhouse gas emissions (GHG) related to feed production is one of the hotspots in livestock production. The aim of this paper was to estimate the carbon footprint of different feedstuffs for dairy cattle using life cycle assessment (LCA). The functional unit was ‘1 kg dry matter (DM) of feed...

  3. Comparing Carbon and Water Footprints for Beef Cattle Production in Southern Australia

    Directory of Open Access Journals (Sweden)

    Bradley G. Ridoutt

    2011-12-01

    Full Text Available Stand-alone environmental indicators based on life cycle assessment (LCA, such as the carbon footprint and water footprint, are becoming increasingly popular as a means of directing sustainable production and consumption. However, individually, these metrics violate the principle of LCA known as comprehensiveness and do not necessarily provide an indication of overall environmental impact. In this study, the carbon footprints for six diverse beef cattle production systems in southern Australia were calculated and found to range from 10.1 to 12.7 kg CO2e kg−1 live weight (cradle to farm gate. This compared to water footprints, which ranged from 3.3 to 221 L H2Oe kg−1 live weight. For these systems, the life cycle impacts of greenhouse gas (GHG emissions and water use were subsequently modelled using endpoint indicators and aggregated to enable comparison. In all cases, impacts from GHG emissions were most important, representing 93 to 99% of the combined scores. As such, the industry’s existing priority of GHG emissions reduction is affirmed. In an attempt to balance the demands of comprehensiveness and simplicity, to achieve reliable public reporting of the environmental impacts of a large number of products across the economy, a multi-indicator approach based on combined midpoint and endpoint life cycle impact assessment modelling is proposed. For agri-food products, impacts from land use should also be included as tradeoffs between GHG emissions, water use and land use are common.

  4. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Haina Wang

    2015-11-01

    Full Text Available The theory on the carbon footprint of agriculture can systematically evaluate the carbon emissions caused by artificial factors from the agricultural production process, which is the theoretical basis for constructing low-carbon agriculture and has important guiding significance for realizing low-carbon agriculture. Based on farm production survey data from Jilin Province in 2014, this paper aims to obtain a clear understanding of the carbon footprint of maize production through the following method: (1 one ton of maize production was evaluated systematically by using the Life Cycle Assessment (LCA; (2 the carbon emissions of the whole system were estimated based on field measurement data, (3 using the emission factors we estimated Jilin’s carbon footprint for the period 2006–2013, and forecasted it for the period from 2014 to 2020 using the grey system model GM (1, 1.

  5. Future electricity: The challenge of reducing both carbon and water footprint.

    Science.gov (United States)

    Mekonnen, Mesfin M; Gerbens-Leenes, P W; Hoekstra, Arjen Y

    2016-11-01

    We estimate the consumptive water footprint (WF) of electricity and heat in 2035 for the four energy scenarios of the International Energy Agency (IEA) and a fifth scenario with a larger percentage of solar energy. Counter-intuitively, the 'greenest' IEA scenario (with the smallest carbon footprint) shows the largest WF increase over time: an increase by a factor four over the period 2010-2035. In 2010, electricity from solar, wind, and geothermal contributed 1.8% to the total. The increase of this contribution to 19.6% in IEA's '450 scenario' contributes significantly to the decrease of the WF of the global electricity and heat sector, but is offset by the simultaneous increase of the use of firewood and hydropower. Only substantial growth in the fractions of energy sources with small WFs - solar, wind, and geothermal energy - can contribute to a lowering of the WF of the electricity and heat sector in the coming decades. The fifth energy scenario - adapted from the IEA 450 scenario but based on a quick transition to solar, wind and geothermal energy and a minimum in bio-energy - is the only scenario that shows a strong decline in both carbon footprint (-66%) and consumptive WF (-12%) in 2035 compared to the reference year 2010. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Low Carbon Footprint Routes for Bird Watching

    Directory of Open Access Journals (Sweden)

    Wei-Ta Fang

    2015-03-01

    Full Text Available Bird watching is one of many recreational activities popular in ecotourism. Its popularity, therefore, prompts the need for studies on energy conservation. One such environmentally friendly approach toward minimizing bird watching’s ecological impact is ensuring a reduced carbon footprint by using an economic travel itinerary comprising a series of connected routes between tourist attractions that minimizes transit time. This study used a travel-route planning approach using geographic information systems to detect the shortest path, thereby solving the problems associated with time-consuming transport. Based on the results of road network analyses, optimal travel-route planning can be determined. These methods include simulated annealing (SA and genetic algorithms (GA. We applied two algorithms in our simulation research to detect which one is an appropriate algorithm for running carbon-routing algorithms at the regional scale. SA, which is superior to GA, is considered an excellent approach to search for the optimal path to reduce carbon dioxide and high gasoline fees, thereby controlling travel time by using the shortest travel routes.

  7. Limitations of carbon footprint as indicator of environmental sustainability.

    Science.gov (United States)

    Laurent, Alexis; Olsen, Stig I; Hauschild, Michael Z

    2012-04-03

    Greenhouse gas accountings, commonly referred to with the popular term carbon footprints (CFP), are a widely used metric of climate change impacts and the main focus of many sustainability policies among companies and authorities. However, environmental sustainability concerns not just climate change but also other environmental problems, like chemical pollution or depletion of natural resources, and the focus on CFP brings the risk of problem shifting when reductions in CFP are obtained at the expense of increase in other environmental impacts. But how real is this risk? Here, we model and analyze the life cycle impacts from about 4000 different products, technologies, and services taken from several sectors, including energy generation, transportation, material production, infrastructure, and waste management. By investigating the correlations between the CFP and 13 other impact scores, we show that some environmental impacts, notably those related to emissions of toxic substances, often do not covary with climate change impacts. In such situations, carbon footprint is a poor representative of the environmental burden of products, and environmental management focused exclusively on CFP runs the risk of inadvertently shifting the problem to other environmental impacts when products are optimized to become more "green". These findings call for the use of more broadly encompassing tools to assess and manage environmental sustainability.

  8. The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: The role of hydropower in an emerging economy.

    Science.gov (United States)

    Bello, Mufutau Opeyemi; Solarin, Sakiru Adebola; Yen, Yuen Yee

    2018-08-01

    The primary objective of this paper is to investigate the isolated impacts of hydroelectricity consumption on the environment in Malaysia as an emerging economy. We use four different measures of environmental degradation including ecological footprint, carbon footprint, water footprint and CO 2 emission as target variables, while controlling for GDP, GDP square and urbanization for the period 1971 to 2016. A recently introduced unit root test with breaks is utilized to examine the stationarity of the series and the bounds testing approach to cointegration is used to probe the long run relationships between the variables. VECM Granger causality technique is employed to examine the long-run causal dynamics between the variables. Sensitivity analysis is conducted by further including fossil fuels in the equations. The results show evidence of an inverted U-shaped relationship between environmental degradation and real GDP. Hydroelectricity is found to significantly reduce environmental degradation while urbanization is also not particularly harmful on the environment apart from its effect on air pollution. The VECM Granger causality results show evidence of unidirectional causality running from hydroelectricity and fossil fuels consumption to all measures of environmental degradation and real GDP per capita. There is evidence of feedback hypothesis between real GDP to all environmental degradation indices. The inclusion of fossil fuel did not change the behavior of hydroelectricity on the environment but fossil fuels significantly increase water footprint. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Cradle-to-farm gate analysis of milk carbon footprint: a descriptive review

    Directory of Open Access Journals (Sweden)

    Giacomo Pirlo

    2012-01-01

    Full Text Available Twenty-four life cycle assessment studies which estimated the carbon footprint of milk production in countries with modern dairy farming were examined. It proved difficult to compare the studies because of the strong discrepancies between them. The aim of this review was to examine the characteristics of LCA studies on milk production in order to understand how the variability of results can be explained. The main reason is the different methodologies adopted. However, other variables were considered: production system, stocking rate, milk productivity, mitigation strategies. Life Cycle Assessment is a promising tool for benchmarking carbon footprint among different countries or production systems. This approach could also be used as a mitigation indicator in the enforcement of political decision. Two major factors are needed for a practical application: i a widely accepted methodology and ii direct measurements of greenhouse gases in specific contests.

  10. Minimizing the carbon footprint of material handling equipment: Comparison of electric and LPG forklifts

    Energy Technology Data Exchange (ETDEWEB)

    Facchini, F.; Mummolo, G.; Mossa, G.; Digiesi, S.; Boenzi, F.; Verriello, R.

    2016-07-01

    Purpose: The aim of this study is to identify the best Material Handling Equipment (MHE) to minimize the carbon footprint of inbound logistic activities, based on the type of the warehouse (layout, facilities and order-picking strategy) as well as the weight of the loads to be handled. Design/methodology/approach: A model to select the best environmental MHE for inbound logistic activities has been developed. Environmental performance of the MHE has been evaluated in terms of carbon Footprint (CF). The model is tested with a tool adopting a VBA macro as well as a simulation software allowing the evaluation of energy and time required by the forklift in each phase of the material handling cycle: picking, sorting and storing of the items. Findings: Nowadays, it is not possible to identify ‘a priori’ a particular engine equipped forklift performing better than others under an environmental perspective. Consistently, the application of the developed model allows to identify the best MHE tailored to each case analyzed. Originality/value: This work gives a contribution to the disagreement between environmental performances of forklifts equipped with different engines. The developed model can be considered a valid support for decision makers to identify the best MHE minimizing the carbon footprint of inbound logistic activities.

  11. Minimizing the carbon footprint of material handling equipment: Comparison of electric and LPG forklifts

    International Nuclear Information System (INIS)

    Facchini, F.; Mummolo, G.; Mossa, G.; Digiesi, S.; Boenzi, F.; Verriello, R.

    2016-01-01

    Purpose: The aim of this study is to identify the best Material Handling Equipment (MHE) to minimize the carbon footprint of inbound logistic activities, based on the type of the warehouse (layout, facilities and order-picking strategy) as well as the weight of the loads to be handled. Design/methodology/approach: A model to select the best environmental MHE for inbound logistic activities has been developed. Environmental performance of the MHE has been evaluated in terms of carbon Footprint (CF). The model is tested with a tool adopting a VBA macro as well as a simulation software allowing the evaluation of energy and time required by the forklift in each phase of the material handling cycle: picking, sorting and storing of the items. Findings: Nowadays, it is not possible to identify ‘a priori’ a particular engine equipped forklift performing better than others under an environmental perspective. Consistently, the application of the developed model allows to identify the best MHE tailored to each case analyzed. Originality/value: This work gives a contribution to the disagreement between environmental performances of forklifts equipped with different engines. The developed model can be considered a valid support for decision makers to identify the best MHE minimizing the carbon footprint of inbound logistic activities.

  12. Minimizing the carbon footprint of material handling equipment: Comparison of electric and LPG forklifts

    Directory of Open Access Journals (Sweden)

    Francesco Facchini

    2016-12-01

    Full Text Available Purpose: The aim of this study is to identify the best Material Handling Equipment (MHE to minimize the carbon footprint of inbound logistic activities, based on the type of the warehouse (layout, facilities and order-picking strategy as well as the weight of the loads to be handled. Design/methodology/approach: A model to select the best environmental MHE for inbound logistic activities has been developed. Environmental performance of the MHE has been evaluated in terms of carbon Footprint (CF. The model is tested with a tool adopting a VBA macro as well as a simulation software allowing the evaluation of energy and time required by the forklift in each phase of the material handling cycle: picking, sorting and storing of the items. Findings: Nowadays, it is not possible to identify ‘a priori’ a particular engine equipped forklift performing better than others under an environmental perspective. Consistently, the application of the developed model allows to identify the best MHE tailored to each case analyzed.   Originality/value: This work gives a contribution to the disagreement between environmental performances of forklifts equipped with different engines. The developed model can be considered a valid support for decision makers to identify the best MHE minimizing the carbon footprint of inbound logistic activities.

  13. Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems

    NARCIS (Netherlands)

    Ibidhi, R.; Hoekstra, Arjen Ysbert; Gerbens-Leenes, Winnie; Chouchane, Hatem

    2017-01-01

    Meat production puts larger demands on water and land and results in larger greenhouse gas emissions than alternative forms of food. This study uses footprint indicators, the water, land and carbon footprint, to assess natural resources use and greenhouse gas emissions for sheep and chicken meat

  14. Comparison of carbon footprints of steel versus concrete pipelines for water transmission.

    Science.gov (United States)

    Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie

    2016-05-01

    The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.

  15. Carbon footprint and ammonia emissions of California beef production systems.

    Science.gov (United States)

    Stackhouse-Lawson, K R; Rotz, C A; Oltjen, J W; Mitloehner, F M

    2012-12-01

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH(3)) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH(3) emissions from representative beef production systems in California. The IFSM is a process-level farm model that simulates crop growth, feed production and use, animal growth, and the return of manure nutrients back to the land to predict the environmental impacts and economics of production systems. Ammonia emissions are determined by summing the emissions from animal housing facilities, manure storage, field applied manure, and direct deposits of manure on pasture and rangeland. All important sources and sinks of methane, nitrous oxide, and carbon dioxide are predicted from primary and secondary emission sources. Primary sources include enteric fermentation, manure, cropland used in feed production, and fuel combustion. Secondary emissions occur during the production of resources used on the farm, which include fuel, electricity, machinery, fertilizer, and purchased animals. The carbon footprint is the net exchange of all GHG in carbon dioxide equivalent (CO(2)e) units per kg of HCW produced. Simulated beef production systems included cow-calf, stocker, and feedlot phases for the traditional British beef breeds and calf ranch and feedlot phases for Holstein steers. An evaluation of differing production management strategies resulted in ammonia emissions ranging from 98 ± 13 to 141 ± 27 g/kg HCW and carbon footprints of 10.7 ± 1.4 to 22.6 ± 2.0 kg CO(2)e/kg HCW. Within the British beef production cycle, the cow-calf phase was responsible for 69 to 72% of total GHG emissions with 17 to 27% from feedlot sources. Holstein steers that entered the beef production system as a by-product of dairy production had the lowest carbon footprint because the emissions

  16. Carbon footprinting of emergency medical services systems: a proof-of-concept study.

    Science.gov (United States)

    Blanchard, Ian; Brown, Lawrence H

    2009-01-01

    In this proof-of-concept study, we evaluated the availability of emergency medical services (EMS) system energy consumption data required to calculate a carbon footprint. Two diverse North American EMS systems with more than 125,000 combined annual unit responses agreed to report their energy consumption for the last fiscal or calendar year using a data-collection tool based on Carbon Trust recommendations. They also identified the source of information (e.g., bills, logs, receipts), whether the amounts reported were directly measured or estimated, and whether any of the amounts were prorated from shared facilities (e.g., electricity for a shared office building). For this proof-of-concept study, we report only descriptive data about the availability of data and aggregate carbon emissions. Both systems reported diesel fuel, gasoline, and electricity consumption. One system used natural gas; one system used aviation fuel. Direct measurement of consumption using utility bills and statements was possible for these energy types. One system prorated natural gas and electricity usage; one system was able to estimate commercial air travel. Annual carbon dioxide (CO(2)) emissions for these two systems totaled 11.1 million pounds of CO(2). The largest source of CO(2) emissions was diesel fuel (39%), followed by electricity (23%). These EMS systems were able to provide the data necessary to determine their carbon footprints. Future research could include broader study to establish EMS-specific norms for carbon emissions, benchmarking of these metrics between different EMS systems, and the assessment of programs designed to reduce EMS carbon emissions.

  17. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition.

    Science.gov (United States)

    Singh, Raman Jeet; Ahlawat, I P S

    2015-05-01

    Two of the most pressing sustainability issues are the depletion of fossil energy resources and the emission of atmospheric green house gases like carbon dioxide to the atmosphere. The aim of this study was to assess energy budgeting and carbon footprint in transgenic cotton-wheat cropping system through peanut intercropping with using 25-50% substitution of recommended dose of nitrogen (RDN) of cotton through farmyard manure (FYM) along with 100% RDN through urea and control (0 N). To quantify the residual effects of previous crops and their fertility levels, a succeeding crop of wheat was grown with varying rates of nitrogen, viz. 0, 50, 100, and 150 kg ha(-1). Cotton + peanut-wheat cropping system recorded 21% higher system productivity which ultimately helped to maintain higher net energy return (22%), energy use efficiency (12%), human energy profitability (3%), energy productivity (7%), carbon outputs (20%), carbon efficiency (17%), and 11% lower carbon footprint over sole cotton-wheat cropping system. Peanut addition in cotton-wheat system increased the share of renewable energy inputs from 18 to 21%. With substitution of 25% RDN of cotton through FYM, share of renewable energy resources increased in the range of 21% which resulted into higher system productivity (4%), net energy return (5%), energy ratio (6%), human energy profitability (74%), energy productivity (6%), energy profitability (5%), and 5% lower carbon footprint over no substitution. The highest carbon footprint (0.201) was recorded under control followed by 50 % substitution of RDN through FYM (0.189). With each successive increase in N dose up to 150 kg N ha(-1) to wheat, energy productivity significantly reduced and share of renewable energy inputs decreased from 25 to 13%. Application of 100 kg N ha(-1) to wheat maintained the highest grain yield (3.71 t ha(-1)), net energy return (105,516 MJ ha(-1)), and human energy profitability (223.4) over other N doses applied to wheat

  18. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia

    Directory of Open Access Journals (Sweden)

    Utomo Dwi Hatmoko Jati

    2018-01-01

    Full Text Available Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG emissions, to quantify them in terms of carbon dioxide equivalents (CO2e as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31% off-site activities and 36.640 tonnes CO2e (51.687% on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%, and material transportation accounted 24.921 (35.155%. These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.

  19. Measuring Carbon Footprint of Flexible Pavement Construction Project in Indonesia

    Science.gov (United States)

    Hatmoko, Jati Utomo Dwi; Hidayat, Arif; Setiawati, Apsari; Prasetyo, Stefanus Catur Adi

    2018-02-01

    Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG) emissions, to quantify them in terms of carbon dioxide equivalents (CO2e) as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31%) off-site activities and 36.640 tonnes CO2e (51.687%) on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%), and material transportation accounted 24.921 (35.155%). These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.

  20. Establishment of the carbon label mechanism of coal chemical products based oncarbon footprint

    Directory of Open Access Journals (Sweden)

    Wu Bishan

    Full Text Available ABSTRACT After redefining the carbon footprint and carbon label, the paper analyzesthe significance of the carbon labels under the background of the low carbon economy development, and establishes the concept of model of the carbon labels mechanism to chemical products. At the same time, the paper quantitatively studies carbon label data sourceof three kinds of coal chemical industry power products, which are fromhaving not CCS technologies of supercritical boiler of coal, using CCS technologies of supercritical boiler of coal and adopting CCS and IGCC technologies to power generation in CCI. Based on the three kinds of differences, the paper puts forward of establishing the carbon labels mechanism of chemical products under the low carbon consumption.

  1. Carbon footprint of electronic devices

    Science.gov (United States)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  2. Research developments in methods to reduce the carbon footprint of the food system: a review.

    Science.gov (United States)

    Xu, Zhongyue; Sun, Da-Wen; Zeng, Xin-An; Liu, Dan; Pu, Hongbin

    2015-01-01

    Global warming is a worldwide issue with its evident impact across a wide range of systems and sectors. It is caused by a number of greenhouse gases (GHGs) emissions, in which food system has made up of a large part. Recently, reduction of GHG emissions has become an urgent issue to be resolved in the food system. Many governments and organizations are making great endeavors to alleviate the adverse effect of this phenomenon. In this review, methods to reduce the carbon footprint within the life cycle of a food system are presented from the technical, consumption behavior and environmental policies perspectives. The whole food system including raw material acquisition, processing, packaging, preservation, transportation, consumption, and disposal are covered. Improving management techniques, and adopting advanced technology and equipment are critical for every stage of a food system. Rational site selection is important to alleviate the influence of land use change. In addition, environmental choices of packaging stage, reduction in refrigeration dependence, and correct waste treatment are essential to reduce the total carbon footprint of the production. However, only technical methods cannot radically reverse the trend of climate change, as consumption behaviors present a great deal of influence over climate change. Appropriate purchase patterns and substitution within food product categories by low carbon products can reduce GHG emissions. Development of methods to calculate the carbon footprint of every kind of food and its processing technology enable people to make environmental choice. Policy can shape and cultivate the new code of consumption and influence the direction of emerging technology and science. From political perspectives, government intervention and carbon offset are common tools, especially for carbon tax and a real or implicit price of carbon. Finally, by mitigating the methodologies described above, the rate and magnitude of climate changes

  3. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption.

    Science.gov (United States)

    Hammond, Geoffrey P; Li, Bo

    2016-09-01

    Environmental or 'ecological' footprints have been widely used in recent years as indicators of resource consumption and waste absorption presented in terms of biologically productive land area [in global hectares (gha)] required per capita with prevailing technology. In contrast, 'carbon footprints' are the amount of carbon (or carbon dioxide equivalent) emissions for such activities in units of mass or weight (like kilograms per functional unit), but can be translated into a component of the environmental footprint (on a gha basis). The carbon and environmental footprints associated with the world production of liquid biofuels have been computed for the period 2010-2050. Estimates of future global biofuel production were adopted from the 2011 International Energy Agency (IEA) 'technology roadmap' for transport biofuels. This suggests that, although first generation biofuels will dominate the market up to 2020, advanced or second generation biofuels might constitute some 75% of biofuel production by 2050. The overall environmental footprint was estimated to be 0.29 billion (bn) gha in 2010 and is likely to grow to around 2.57 bn gha by 2050. It was then disaggregated into various components: bioproductive land, built land, carbon emissions, embodied energy, materials and waste, transport, and water consumption. This component-based approach has enabled the examination of the Manufactured and Natural Capital elements of the 'four capitals' model of sustainability quite broadly, along with specific issues (such as the linkages associated with the so-called energy-land-water nexus). Bioproductive land use was found to exhibit the largest footprint component (a 48% share in 2050), followed by the carbon footprint (23%), embodied energy (16%), and then the water footprint (9%). Footprint components related to built land, transport and waste arisings were all found to account for an insignificant proportion to the overall environmental footprint, together amounting to

  4. Making the Invisible Visible: How Students Make Use of Carbon Footprint Calculator in Environmental Education

    Science.gov (United States)

    Edstrand, Emma

    2016-01-01

    Problems concerning carbon dioxide emissions and other climate change-related issues are on the global political agenda and constantly debated in media. Such issues are important for individuals to enable active participation in society. This study has a particular interest in the use of carbon footprint calculators (tools for calculating carbon…

  5. An estimated carbon footprint of NHS primary dental care within England. How can dentistry be more environmentally sustainable?

    Science.gov (United States)

    Duane, B; Lee, M Berners; White, S; Stancliffe, R; Steinbach, I

    2017-10-27

    Introduction National Health Service (NHS) England dental teams need to consider from a professional perspective how they can, along with their NHS colleagues, play their part in reducing their carbon emissions and improve the sustainability of the care they deliver. In order to help understand carbon emissions from dental services, Public Health England (PHE) commissioned a calculation and analysis of the carbon footprint of key dental procedures.Methods Secondary data analysis from Business Services Authority (BSA), Health and Social Care Information Centre (HSCIC) (now called NHS Digital, Information Services Division [ISD]), National Association of Specialist Dental Accountants (NASDA) and recent Scottish papers was undertaken using a process-based and environmental input-output analysis using industry established conversion factors.Results The carbon footprint of the NHS dental service is 675 kilotonnes carbon dioxide equivalents (CO2e). Examinations contributed the highest proportion to this footprint (27.1%) followed by scale and polish (13.4%) and amalgam/composite restorations (19.3%). From an emissions perspective, nearly 2/3 (64.5%) of emissions related to travel (staff and patient travel), 19% procurement (the products and services dental clinics buy) and 15.3% related to energy use.Discussion The results are estimates of carbon emissions based on a number of broad assumptions. More research, education and awareness is needed to help dentistry develop low carbon patient pathways.

  6. North and south: Regional footprints on the transition pathway towards a low carbon, global economy

    International Nuclear Information System (INIS)

    Cranston, G.R.; Hammond, G.P.

    2010-01-01

    Environmental or 'ecological' footprints are indicators of resource consumption and waste absorption transformed on the basis of biologically productive land area required per capita with prevailing technology. They represent a partial measure of the extent to which the planet, its regions, or nations are moving along a sustainable development pathway. Such footprints vary between countries at different stages of economic development and varying geographic characteristics. A correlation equation for national environmental footprints is used, alongside international projections of population growth and gross regional income, to estimate the relative contributions of the peoples of the industrialised North and populous South that would be needed in order to secure climate-stabilising carbon reductions out to about 2100. The four so-called 'marker scenarios' produced by the Intergovernmental Panel on Climate Change are used to estimate the degree of energy efficiency improvement and carbon mitigation that is feasible. The present footprint projections suggest that a reduction in the consumption of biophysical assets across both the developing and industrialised world is indeed possible. However, the developing world's footprint is shown to overshoot that of the industrialised countries by around 2010-2015. It then levels out and starts to fall, on the most optimistic scenario, by about 2050. In order to achieve global sustainability in the 21st Century a serious commitment to environmental protection is required in both the industrialised North and the 'majority South'. That implies balancing population growth, economic well-being, and environmental impacts in the interests of all the people and wildlife on 'Spaceship Earth'.

  7. Carbon footprint of apple and pear : orchards, storage and distribution

    OpenAIRE

    Figueiredo, F.; Castanheira, E.G.; Feliciano, M.; Rodrigues, M.A.; Peres, A.; Maia, F.; Ramos, A.; Carneiro, J.P.; Coroama, V.C.; Freire, F.

    2013-01-01

    Apple and pear represent 51% of fresh fruit orchards in Portugal. This paper presents a life-cycle (LC) greenhouse gas (GHG) assessment (so-called carbon footprint) of 3 apple and 1 pear Portuguese production systems. An LC model and inventory were implemented, encompassing the farm stage (cultivation of fruit trees in orchards), storage and distribution (transport to retail). The functional unit considered in this study was 1 kg of distributed fruit (at retail). Four different LC inventories...

  8. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing

    International Nuclear Information System (INIS)

    Zhang, Yan; Zheng, Hongmei; Fath, Brian D.

    2014-01-01

    Cities consume 80% of the world's energy; therefore, analyzing urban energy metabolism and the resulting carbon footprint provides basic data for formulating target carbon emission reductions. While energy metabolism includes both direct and indirect consumptions among sectors, few researchers have studied indirect consumption due to a lack of data. In this study, we used input–output analysis to calculate the energy flows among directly linked sectors. Building on this, we used ecological network analysis to develop a model of urban energy flows and also account for energy consumption embodied by the flows among indirectly linked sectors (represented numerically as paths with a length of 2 or more). To illustrate the model, monetary input–output tables for Beijing from 2000 to 2010 were analyzed to determine the embodied energy consumption and associated carbon footprints of these sectors. This analysis reveals the environmental pressure based on the source (energy consumption) and sink (carbon footprint) values. Indirect consumption was Beijing's primary form, and the carbon footprint therefore resulted mainly from indirect consumption (both accounting for ca. 60% of the total, though with considerable variation among sectors). To reduce emissions, the utilization efficiency of indirect consumption must improve. - Highlights: • We quantified the embodied energy transfers among Beijing's socioeconomic sectors. • We calculated the sectors' intensity of energy consumption and carbon footprint. • The indirect energy consumption was higher than the direct for all sectors. • The high-indirect-consumption sectors are at the end of industrial supply chains. • High-indirect-consumption sectors can improve upstream products energy efficiency

  9. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms.

    Science.gov (United States)

    Robert Kiefer, Lukas; Menzel, Friederike; Bahrs, Enno

    2015-04-01

    Allocation of greenhouse gas emissions (GHG) in Life Cycle Assessments (LCA) is challenging especially when multi-functionality of dairy farms, which do not only produce milk but also meat is considered. Moreover, some farms fulfill a wide range of additional services for society such as management of renewable natural resources as well as preservation of biodiversity and cultural landscapes. Due to the increasing degradation of ecosystems many industrialized as well as developing countries designed payment systems for environmental services. This study examines different allocation methods of GHG for a comparatively large convenience sample of 113 dairy farms located in grassland-based areas of southern Germany. Results are carbon footprints of 1.99 kg CO2eq/kg of fat and protein corrected milk (FPCM) on average if "no allocation" for coupled products is performed. "Physical allocation" results in 1.53 kg CO2eq/kg FPCM and "conventional economic allocation" in 1.66 kg CO2eq/kg FPCM on average if emissions are apportioned between milk and meat. Economic allocation which includes ecosystem services for society based on the farm net income as a new aspect in this study results in a carbon footprint of 1.5 kg CO2eq/kg FPCM on average. System expansion that puts greater emphasis on coupled beef production accounts for a carbon footprint of 0.68 kg CO2eq/kg FPCM on average. Intense milk production systems with higher milk yields show better results based on "no allocation", "physical allocation" and "conventional economic allocation". By contrast, economic allocation, which takes into account ecosystem services favors extensive systems, especially in less favored areas. This shows that carbon footprints of dairy farms should not be examined one-dimensionally based on the amount of milk and meat that is produced on the farm. Rather, a broader perspective is necessary that takes into account the multi-functionality of dairy farms especially in countries where a wide

  10. Corporate carbon footprint for country Climate Change mitigation: A case study of a tannery in Turkey.

    Science.gov (United States)

    Kılıç, Eylem; Puig, Rita; Zengin, Gökhan; Zengin, Candaş Adıgüzel; Fullana-I-Palmer, Pere

    2018-09-01

    Assessment of carbon emissions and environmental impact of production is indispensable to achieve a sustainable industrial production in Turkey, especially for those companies willing to compete in new international green markets. In this case study, corporate carbon footprint of a representative Turkish tanning company was analyzed. Inventory and impact data are presented to help in the environmental decision-making process. The results indicate that significant environmental impacts were caused during the landfilling of solid wastes as well as the production of the electricity and fuel required in the tannery. Turkish tannery inventory data presented here for the first time will be useful for leather tanning company managers to calculate sustainability key indicators. Improving alternatives at country level were identified (increasing the renewable sources on electricity production and promote energy recovery in landfills) which would be useful not only to decrease greenhouse gas (GHG) emissions of tanning sector but also of other industries requiring electricity and producing organic wastes. Considering the substantial contribution of industrial processes to the Turkish carbon emissions (15.7%) (TUIK, 2013), work done on those areas would provide a sound improvement in environmental profile of Turkey. The importance to promote a national strategy to reduce GHG emissions in Turkey was discussed here, as well as its relation to corporate carbon footprint assessments. One of the significant points revealed from the case study is the lack of published country specific emission factors for Turkey, which is a fundamental prerequisite to promote corporate carbon footprint assessment within the country. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    Science.gov (United States)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  12. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    International Nuclear Information System (INIS)

    Yuksel, Tugce; Michalek, Jeremy J; Tamayao, Mili-Ann M; Hendrickson, Chris; Azevedo, Inês M L

    2016-01-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally. (letter)

  13. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    DEFF Research Database (Denmark)

    Brandao, Miguel; Levasseur, Annie; Kirschbaum, Miko U. F.

    2013-01-01

    . However, there is still no overall consensus on the most appropriate ways of considering and quantifying it. Method: This paper reviews and discusses six available methods for accounting for the potential climate impacts of carbon sequestration and temporary storage or release of biogenic carbon in LCA...... footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon...

  14. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Variation in carbon footprint of milk due to management differences between Swedish dairy farms

    DEFF Research Database (Denmark)

    Henriksson, Maria; Flysjö, Anna Maria; Cederberg, Christel

    2011-01-01

    To identify mitigation options to reduce greenhouse gas (GHG) emissions from milk production (i.e. the carbon footprint (CF) of milk), this study examined the variation in GHG emissions among dairy farms using data from previous CF studies on Swedish milk. Variations between farms in these produc...

  16. Calculation of the Carbon Footprint to Determine Sustainability Status: A Comparative Analysis of Some Selected Planned and Unplanned Areas of Dhaka Megacity

    Science.gov (United States)

    Iqbal, S. M. S.

    2015-12-01

    Resource scarcity is considered to be one of the most serious issues plaguing Dhaka city. Because of the massive pressure of increasing population (15.931 million), a very unsustainable situation is waiting for this city in the upcoming future. It is inevitable to know how far this city is from being sustainable. This paper embodies the comparative analysis of the carbon footprint of four different areas in Dhaka city. It is considered as one of the most important key indicators of sustainability. It calculates the amount of biologically productive land in order to produce all the resources consumed by an individual or a particular community. This research has been conducted in both the planned and unplanned areas of this city. Among compound, component and direct method, component method was used to calculate the carbon footprint. Primary data were collected from door to door questionnaire survey. Total 371 samples were drawn from all the study areas at 95 % confidence level and 5% confidence interval. After finishing data analysis it was clear that the per capita carbon footprint of the selected study areas exceeds the per capita biocapacity of Dhaka city. And there exists a huge variation between the planned and unplanned areas of Old Dhaka and New Dhaka. Per capita carbon footprint of Gulshan & Jhigatola (part of New Dhaka) is higher than the per capita carbon footprint of Gandaria & Wari (part of Old Dhaka) that means resource stress is higher in Gulshan & Jhigatola in comparison with Gandaria & Wari because of the difference of daily consumption pattern. One of the most important findings of this study is that the per capita carbon footprint is the highest in Gulshan (1.2407 gha) among all the study areas and it is 85.56 times greater than the per capita biocapacity of Dhaka city (0.0145 gha) that means a single resident of this area needs 1.2407 gha land in order to support his/her demand on nature but only 0.0145 gha land (in an average) is available for

  17. Carbon Footprint of Housing in the Leeds City Region - A Best Practice Scenario Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, John; Dawkins, Elena (Stockholm Environment Inst. (Sweden))|(Univ. of York, Heslington, York YO10 5DD (United Kingdom))

    2008-06-15

    The Stockholm Environment Institute (SEI) was commissioned by the Environment Agency to carry out a carbon footprint analysis of the housing sector, using the Leeds City Region (LCR) as an example. The aim was to determine our ability to meet the 80 per cent by 2050 challenge of energy efficiency in the housing sector. The study relates specifically to LCR but its findings will help any planning and development teams make the right decisions and gain the resources necessary to meet carbon budgets at regional and local levels. With a growing population and an additional 263,000 housing units to be built within LCR by 2026, the housing sector would need to reduce its expected total carbon dioxide emissions by 38 million tonnes between 2010 and 2026 to be on track for 80 per cent savings in 2050. The report outlines the most detailed analysis to date of the required measures to deliver a growth-based regional housing strategy, alongside reducing carbon emissions. If the city region's new and existing housing is to attain the levels of energy efficiency necessary to deliver these carbon savings, big changes will be required in the way we build, maintain and run our homes over the next 20 years. There are pockets of good practice already in the region and the study shows that by combining innovative measures on construction standards, improvements to existing housing, low and zero carbon technologies and changing behaviour of householders, LCR can achieve the necessary savings to meet its carbon budget

  18. Progress and Prospects for Tourism Footprint Research

    Directory of Open Access Journals (Sweden)

    Shuxin Wang

    2017-10-01

    Full Text Available The tourism footprint family comprises the tourism ecological footprint (TEF, the tourism carbon footprint (TCF and the tourism water footprint (TWF. The tourism footprint represents an important tool for quantitatively assessing the impact of tourism activities on the ecosystem of a tourist destination. This paper systematically reviews the relevant literature on TEF, TCF and TWF, analyses and summarizes the main progress and failures in the analytical frameworks, research methods, measurement results, environmental impacts and reductions in the tourism footprint. This paper also proposes areas for further developing the tourism footprint research, including unifying the analytical frameworks and boundaries of the tourism footprint, distinguishing the geographical scope of the tourism footprint effectively, improving the process of analyzing the environmental impact of the tourism footprint, measuring the tourism footprint scientifically and roundly, performing space-time calculations of the tourism footprint, and expanding the tourism footprint family by introducing new members. Accordingly, this paper is devoted to the continued study of the tourism footprint.

  19. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.

    Science.gov (United States)

    Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin

    2017-02-01

    Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H 2 SO 4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO 2 eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Water and energy link in the cities of the future - achieving net zero carbon and pollution emissions footprint.

    Science.gov (United States)

    Novotny, V

    2011-01-01

    This article discusses the link between water conservation, reclamation, reuse and energy use as related to the goal of achieving the net zero carbon emission footprint in future sustainable cities. It defines sustainable ecocities and outlines quantitatively steps towards the reduction of energy use due to water and used water flows, management and limits in linear and closed loop water/stormwater/wastewater management systems. The three phase water energy nexus diagram may have a minimum inflection point beyond which reduction of water demand may not result in a reduction of energy and carbon emissions. Hence, water conservation is the best alternative solution to water shortages and minimizing the carbon footprint. A marginal water/energy chart is developed and proposed to assist planners in developing future ecocities and retrofitting older communities to achieve sustainability.

  1. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil.

    Science.gov (United States)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-06-17

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H'), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments.

  2. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China.

    Science.gov (United States)

    Song, Guobao; Li, Mingjing; Semakula, Henry Musoke; Zhang, Shushen

    2015-10-01

    Strategies for reducing food waste and developing sustainable diets require information about the impacts of consumption behavior and waste generation on climatic, water, and land resources. We quantified the carbon, water, and ecological footprints of 17,110 family members of Chinese households, covering 1935 types of foods, by combining survey data with available life-cycle assessment data sets. We also summarized the patterns of both food consumption and waste generation and analyzed the factors influencing the observed trends. The average person wasted (consumed) 16 (415) kg of food at home annually, equivalent to 40 (1080) kg CO2e, 18 (673) m(3), and 173 (4956) gm(2) for the carbon, water and ecological footprints, respectively. The generation of food waste was highly correlated with consumption for various food groups. For example, vegetables, rice, and wheat were consumed the most and accounted for the most waste. In addition to the three plant-derived food groups, pork and aquatic products also contributed greatly to embedded footprints. The data obtained in this study could be used for assessing national food security or the carrying capacity of resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization.

    Science.gov (United States)

    Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco

    2018-02-15

    The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Water and Carbon Footprint of Wine: Methodology Review and Application to a Case Study

    Directory of Open Access Journals (Sweden)

    Sara Rinaldi

    2016-07-01

    Full Text Available Life cycle assessments (LCAs play a strategic role in improving the environmental performance of a company and in supporting a successful marketing communication. The high impact of the food industry on natural resources, in terms of water consumption and greenhouse gases emission, has been focusing the attention of consumers and producers towards environmentally sustainable products. This work presents a comprehensive approach for the joint evaluation of carbon (CF and water (WF footprint of the wine industry from a cradle to grave perspective. The LCA analysis is carried out following the requirements of international standards (ISO/TS 14067 and ISO 14046. A complete review of the water footprint methodology is presented and guidelines for all the phases of the evaluation procedure are provided, including acquisition and validation of input data, allocation, application of analytic models, and interpretation of the results. The strength of this approach is the implementation of a side-by-side CF vs. WF assessment, based on the same system boundaries, functional unit, and input data, that allows a reliable comparison between the two indicators. In particular, a revised methodology is presented for the evaluation of the grey water component. The methodology was applied to a white and a red wine produced in the same company. A comparison between the two products is presented for each LCA phase along with literature results for similar wines.

  5. Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area

    Science.gov (United States)

    Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin

    2013-04-01

    Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C

  6. Energy use and carbon footprints differ dramatically for diverse wastewater-derived carbonaceous substrates: An integrated exploration of biokinetics and life-cycle assessment.

    Science.gov (United States)

    Li, Yanbo; Wang, Xu; Butler, David; Liu, Junxin; Qu, Jiuhui

    2017-03-21

    Energy neutrality and reduction of carbon emissions are significant challenges to the enhanced sustainability of wastewater treatment plants (WWTPs). Harvesting energy from wastewater carbonaceous substrates can offset energy demands and enable net power generation; yet, there is limited research about how carbonaceous substrates influence energy and carbon implications of WWTPs with integrated energy recovery at systems-level. Consequently, this research uses biokinetics modelling and life cycle assessment philology to explore this notion, by tracing and assessing the quantitative flows of energy embodied or captured, and by exploring the carbon footprint throughout an energy-intensive activated sludge process with integrated energy recovery facilities. The results indicate that energy use and carbon footprint per cubic meter of wastewater treated, varies markedly with the carbon substrate. Compared with systems driven with proteins, carbohydrates or other short-chain fatty acids, systems fed with acetic acid realized energy neutrality with maximal net gain of power from methane combustion (0.198 kWh) and incineration of residual biosolids (0.153 kWh); and also achieved a negative carbon footprint (72.6 g CO 2 ). The findings from this work help us to better understand and develop new technical schemes for improving the energy efficiency of WWTPs by repurposing the stream of carbon substrates across systems.

  7. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia.

    Science.gov (United States)

    Malakahmad, Amirhossein; Abualqumboz, Motasem S; Kutty, Shamsul Rahman M; Abunama, Taher J

    2017-12-01

    Malaysian authorities has planned to minimize and stop when applicable unsanitary dumping of waste as it puts human health and the environment at elevated risk. Cost, energy and revenue are mostly adopted to draw the blueprint of upgrading municipal solid waste management system, while the carbon footprint emissions criterion rarely acts asa crucial factor. This study aims to alert Malaysian stakeholders on the uneven danger of carbon footprint emissions of waste technologies. Hence, three scenarios have been proposed and assessed mainly on the carbon footprint emissions using the 2006 IPCC methodology. The first scenario is waste dumping in sanitary landfills equipped with gas recovery system, while the second scenario includes anaerobic digestion of organics and recycling of recyclable wastes such as plastic, glass and textile wastes. The third scenario is waste incineration. Besides the carbon footprint emissions criterion, other environmental concerns were also examined. The results showed that the second scenario recorded the lowest carbon footprint emissions of 0.251t CO 2 eq./t MSW while the third scenario had the highest emissions of 0.646t CO 2 eq./t MSW. Additionally, the integration between anaerobic digestion and recycling techniques caused the highest avoided CO 2 eq. emissions of 0.74t CO 2 eq./t MSW. The net CO 2 eq. emissions of the second scenario equaled -0.489t CO 2 eq./t MSW due to energy recovery from the biogas and because of recycled plastic, glass and textile wastes that could replace usage of raw material. The outcomes also showed that the first scenario generates huge amount of leachate and hazardous air constituents. The study estimated that a ton of dumped waste inside the landfills generates approximately 0.88m 3 of trace risky compounds and 0.188m 3 of leachate. As for energy production, the results showed that the third scenario is capable of generating 639kWh/t MSW followed by the second scenario with 387.59kWh/t MSW. The first

  8. Life Cycle Assessment on Carbon Footprint of Winter Wheat-Summer Maize Cropping System Based on Survey Data of Gaomi in Shandong Province, China

    Directory of Open Access Journals (Sweden)

    ZHU Yong-chang

    2017-08-01

    Full Text Available Grain production can generate huge amount of greenhouse gases through raw material production and energy comsumption, nitrogen fertilizer amendment and farming machinery operation. Based questionnaire survey of raw material inputs and management of wheat-maize cropping system in Gaomi, Shandong Province, carbon footprint of grain production was calculated using life cycle assessment methodology. Carbon footprint per unit area of wheat, maize, and winter wheat-summer maize cropping system were 5 183.33, 3 778.09 kg CO2-eq·hm-2 and 8 961.42 kg CO2-eq·hm-2, carbon footprint per unit grain yield were 0.69, 0.40 kg CO2-eq·kg-1 and 0.53 kg CO2-eq·kg-1, carbon footprint per unit net present value were 1.82, 0.40 kg CO2-eq·yuan-1 and 0.44 kg CO2-eq·yuan-1, respectively. Greenhouse gas(GHG emission of winter wheat-summer maize cropping system mainly came from nitrogen fertilizer production(48.30% and nitrogen fertilizer application(12.04%, irrigation electricity consumption(12.94% and machinery oil consumption(11.20%. Optimizing the application of fertilizer, reducing the amount of nitrogen fertilizer and saving water irrigation were important ways to realize the clean production.

  9. Tools to support GHG emissions reduction : a regional effort, part 1 - carbon footprint estimation and decision support.

    Science.gov (United States)

    2010-09-01

    Tools are proposed for carbon footprint estimation of transportation construction projects and decision support : for construction firms that must make equipment choice and usage decisions that affect profits, project duration : and greenhouse gas em...

  10. Carbon Footprint of Inbound Tourism to Iceland: A Consumption-Based Life-Cycle Assessment including Direct and Indirect Emissions

    Directory of Open Access Journals (Sweden)

    Hannah Sharp

    2016-11-01

    Full Text Available The greenhouse gas (GHG emissions caused by tourism have been studied from several perspectives, but few studies exist that include all direct and indirect emissions, particularly those from aviation. In this study, an input/output-based hybrid life-cycle assessment (LCA method is developed to assess the consumption-based carbon footprint of the average tourist including direct and indirect emissions. The total inbound tourism-related GHG emissions are also calculated within a certain region. As a demonstration of the method, the full carbon footprint of an average tourist is assessed as well as the total GHG emissions induced by tourism to Iceland over the period of 2010–2015, with the presented approach applicable in other contexts as well. Iceland provides an interesting case due to three features: (1 the tourism sector in Iceland is the fastest-growing industry in the country with an annual growth rate of over 20% over the past five years; (2 almost all tourists arrive by air; and (3 the country has an almost emissions-free energy industry and an import-dominated economy, which emphasise the role of the indirect emissions. According to the assessment, the carbon footprint for the average tourist is 1.35 tons of CO2-eq, but ranges from 1.1 to 3.2 tons of CO2-eq depending on the distance travelled by air. Furthermore, this footprint is increasing due to the rise in average flight distances travelled to reach the country. The total GHG emissions caused by tourism in Iceland have tripled from approximately 600,000 tons of CO2-eq in 2010 to 1,800,000 tons in 2015. Aviation accounts for 50%–82% of this impact (depending on the flight distance underlining the importance of air travel, especially as tourism-related aviation is forecasted to grow significantly in the near future. From a method perspective, the carbon footprinting application presented in the study would seem to provide an efficient way to study both the direct and indirect

  11. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan

    International Nuclear Information System (INIS)

    Hussain, Majid; Naseem Malik, Riffat; Taylor, Adam

    2017-01-01

    This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0 m 3 of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumption in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. - Highlights: • We conducted the first carbon footprint assessment of particleboard produced in Pakistan. • System boundary comprised raw materials acquisition, particleboard manufacture and

  12. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Majid [Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Department of Forestry and Wildlife Management, University of Haripur, Hattar Road Haripur, 22620, Khyber Pakhtunkhwa (Pakistan); Naseem Malik, Riffat, E-mail: r_n_malik2000@yahoo.co.uk [Department of Forestry and Wildlife Management, University of Haripur, Hattar Road Haripur, 22620, Khyber Pakhtunkhwa (Pakistan); Taylor, Adam, E-mail: mtaylo29@utk.edu [Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996-4570 (United States)

    2017-05-15

    This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0 m{sup 3} of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumption in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. - Highlights: • We conducted the first carbon footprint assessment of particleboard produced in Pakistan. • System boundary comprised raw materials acquisition, particleboard

  13. Design incentives to increase vehicle size created from the U.S. footprint-based fuel economy standards

    International Nuclear Information System (INIS)

    Whitefoot, Kate S.; Skerlos, Steven J.

    2012-01-01

    The recently amended U.S. Corporate Average Fuel Economy (CAFE) standards determine fuel-economy targets based on the footprint (wheelbase by track width) of vehicles such that larger vehicles have lower fuel-economy targets. This paper considers whether these standards create an incentive for firms to increase vehicle size by presenting an oligopolistic-equilibrium model in which automotive firms can modify vehicle dimensions, implement fuel-saving technology features, and trade off acceleration performance and fuel economy. Wide ranges of scenarios for consumer preferences are considered. Results suggest that the footprint-based CAFE standards create an incentive to increase vehicle size except when consumer preference for vehicle size is near its lower bound and preference for acceleration is near its upper bound. In all other simulations, the sales-weighted average vehicle size increases by 2–32%, undermining gains in fuel economy by 1–4 mpg (0.6–1.7 km/L). Carbon-dioxide emissions from these vehicles are 5–15% higher as a result (4.69×10 11 –5.17×10 11 kg for one year of produced vehicles compared to 4.47×10 11 kg with no size changes), which is equivalent to adding 3–10 coal-fired power plants to the electricity grid each year. Furthermore, results suggest that the incentive is larger for light trucks than for passenger cars, which could increase traffic safety risks. - Highlights: ► New U.S. fuel-economy standards may create an incentive to increase vehicle size. ► We model firms as choosing vehicle designs and prices in oligopolistic equilibrium. ► Vehicle size increases 2–32% for 20 out of 21 scenarios of consumer preferences. ► Increases in size reduce fuel economy gains from 5–13%, resulting in 5–15% higher CO 2 emissions. ► Incentive is larger for trucks than cars, which may increase traffic safety risks.

  14. Practices to Reduce Milk Carbon Footprint on Grazing Dairy Farms in Southern Uruguay: Case Studies.

    Science.gov (United States)

    Carbon footprint (CF) is an increasingly relevant indicator to estimate the impact of a product on climate change. This study followed international guidelines to quantify the CF of milk produced on 24 dairy farms in Uruguay. Cows were grazed all year and supplemented with concentrate feeds. These d...

  15. Generic model for calculating carbon footprint of milk using four different LCA modelling approaches

    DEFF Research Database (Denmark)

    Dalgaard, Randi; Schmidt, Jannick Højrup; Flysjö, Anna

    2014-01-01

    The aim of the study is to develop a tool, which can be used for calculation of carbon footprint (using a life cycle assessment (LCA) approach) of milk both at a farm level and at a national level. The functional unit is ‘1 kg energy corrected milk (ECM) at farm gate’ and the applied methodology...

  16. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.

  17. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.

  18. Replacement of soybean meal in compound feed by European protein sources : effects on carbon footprint

    NARCIS (Netherlands)

    Boer, de H.C.; Krimpen, van M.M.; Blonk, H.; Tyszler, M.

    2014-01-01

    The overall aim was to investigate if soybean products from South American can be replaced by protein sources produced in Europe in a sustainable way. Based on data from literature, and based on the systematics of the FeedPrint programme, the nutritional value and the carbon footprint (CFP) of these

  19. Carbon footprint of conventional and organic beef production systems: An Italian case study.

    Science.gov (United States)

    Buratti, C; Fantozzi, F; Barbanera, M; Lascaro, E; Chiorri, M; Cecchini, L

    2017-01-15

    Beef cattle production is a widespread activity in Italy in the agricultural field and determines an important impact on environment and resources consumption. Carbon footprint evaluation is thus necessary to evaluate the contributions of the different stages and the possible improvements of the production chain. In this study, two typical Italian beef production systems, a conventional and an organic one are investigated in order to evaluate the greenhouse gas emissions from "cradle to gate farm" by a Life Cycle Assessment (LCA) approach; the carbon footprint (CF) per 1kg of live weight meat is calculated. The contributions from feed production, enteric fermentation, and manure management are taken into account, in order to compare the life cycle of the two productions; also the carbon balance in soil is evaluated, in order to verify the impact in a life cycle perspective. The results of CF calculation of the two farms show that organic system (24.62kgCO 2eq /kg live weight) produce more GHG emissions than the conventional one (18.21kgCO 2eq /kg live weight) and that the enteric fermentation is the more heavy contribution, with a range of 50-54% of the global CF value. Improvements of the production chain could be realized by accurate feeding strategies, in order to obtain reduction of methane emissions from enteric digestion of cattles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Carbon Footprint Linked to transport infrastructures; La huella de carbono en las infraestructuras de transporte

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Jimenez Arroyo, F.

    2013-06-01

    Quantification of emissions of greenhouse effect gases associated to transport infrastructures has been addressed in different ways. The first tools for this purpose appeared with the application of ISO 14040 standards (Life cycle analysis) that, applied to the particular case of energetic resources, led to a new concept known as carbon footprint. There is a specific standard for this quantification (ISO 14064) according to which, for the case of infrastructures, emissions and environmental effects linked to the whole life cycle are assessed taking into account all the stages: building, exploitation, maintenance and dismantling. the key point to perform this analysis is the accurate definition of a calculation methodology to be applied to the inventory of activities covered, in order to avoid information lacks, overlaps or redundancies. Quantification tools for emissions are effectively a reality, but social and political will, supported by strong economical reasons recognizing energy as a vital resource, is necessary for these tools to be developed, enhanced and used in a systematic way as a key decision element to choice among different transport alternatives. (Author) 23 refs.

  1. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption

    OpenAIRE

    Hammond, Geoffrey P.; Li, Bo

    2016-01-01

    Abstract Environmental or ?ecological? footprints have been widely used in recent years as indicators of resource consumption and waste absorption presented in terms of biologically productive land area [in global hectares (gha)] required per capita with prevailing technology. In contrast, ?carbon footprints? are the amount of carbon (or carbon dioxide equivalent) emissions for such activities in units of mass or weight (like kilograms per functional unit), but can be translated into a compon...

  2. Carbon Footprint in Flexible Ureteroscopy: A Comparative Study on the Environmental Impact of Reusable and Single-Use Ureteroscopes.

    Science.gov (United States)

    Davis, Niall F; McGrath, Shannon; Quinlan, Mark; Jack, Gregory; Lawrentschuk, Nathan; Bolton, Damien M

    2018-03-01

    There are no comparative assessments on the environmental impact of endourologic instruments. We evaluated and compared the environmental impact of single-use flexible ureteroscopes with reusable flexible ureteroscopes. An analysis of the typical life cycle of the LithoVue™ (Boston Scientific) single-use digital flexible ureteroscope and Olympus Flexible Video Ureteroscope (URV-F) was performed. To measure the carbon footprint, data were obtained on manufacturing of single-use and reusable flexible ureteroscopes and from typical uses obtained with a reusable scope, including repairs, replacement instruments, and ultimate disposal of both ureteroscopes. The solid waste generated (kg) and energy consumed (kWh) during each case were quantified and converted into their equivalent mass of carbon dioxide (kg of CO 2 ) released. Flexible ureteroscopic raw materials composed of plastic (90%), steel (4%), electronics (4%), and rubber (2%). The manufacturing cost of a flexible ureteroscope was 11.49 kg of CO 2 per 1 kg of ureteroscope. The weight of the single-use LithoVue and URV-F flexible ureteroscope was 0.3 and 1 kg, respectively. The total carbon footprint of the lifecycle assessment of the LithoVue was 4.43 kg of CO 2 per endourologic case. The total carbon footprint of the lifecycle of the reusable ureteroscope was 4.47 kg of CO 2 per case. The environmental impacts of the reusable flexible ureteroscope and the single-use flexible ureteroscope are comparable. Urologists should be aware that the typical life cycle of urologic instruments is a concerning source of environmental emissions.

  3. A method for calculating a land-use change carbon footprint (LUC-CFP) for agricultural commodities - applications to Brazilian beef and soy, Indonesian palm oil.

    Science.gov (United States)

    Persson, U Martin; Henders, Sabine; Cederberg, Christel

    2014-11-01

    The world's agricultural system has come under increasing scrutiny recently as an important driver of global climate change, creating a demand for indicators that estimate the climatic impacts of agricultural commodities. Such carbon footprints, however, have in most cases excluded emissions from land-use change and the proposed methodologies for including this significant emissions source suffer from different shortcomings. Here, we propose a new methodology for calculating land-use change carbon footprints for agricultural commodities and illustrate this methodology by applying it to three of the most prominent agricultural commodities driving tropical deforestation: Brazilian beef and soybeans, and Indonesian palm oil. We estimate land-use change carbon footprints in 2010 to be 66 tCO2 /t meat (carcass weight) for Brazilian beef, 0.89 tCO2 /t for Brazilian soybeans, and 7.5 tCO2 /t for Indonesian palm oil, using a 10 year amortization period. The main advantage of the proposed methodology is its flexibility: it can be applied in a tiered approach, using detailed data where it is available while still allowing for estimation of footprints for a broad set of countries and agricultural commodities; it can be applied at different scales, estimating both national and subnational footprints; it can be adopted to account both for direct (proximate) and indirect drivers of land-use change. It is argued that with an increasing commercialization and globalization of the drivers of land-use change, the proposed carbon footprint methodology could help leverage the power needed to alter environmentally destructive land-use practices within the global agricultural system by providing a tool for assessing the environmental impacts of production, thereby informing consumers about the impacts of consumption and incentivizing producers to become more environmentally responsible. © 2014 John Wiley & Sons Ltd.

  4. Life Cycle Assessment and Carbon Footprint in the Wine Supply-Chain

    Science.gov (United States)

    Pattara, Claudio; Raggi, Andrea; Cichelli, Angelo

    2012-06-01

    Global warming represents one of the most critical internationally perceived environmental issues. The growing, and increasingly global, wine sector is one of the industries which is under increasing pressure to adopt approaches for environmental assessment and reporting of product-related greenhouse gas emissions. The International Organization for Vine and Wine has recently recognized the need to develop a standard and objective methodology and a related tool for calculating carbon footprint (CF). This study applied this tool to a wine previously analyzed using the life cycle assessment (LCA) methodology. The objective was to test the tool as regards both its potential and possible limitations, and thus to assess its suitability as a standard tool. Despite the tool's user-friendliness, a number of limitations were noted including the lack of accurate baseline data, a partial system boundary and the impossibility of dealing with the multi-functionality issue. When the CF and LCA results are compared in absolute terms, large discrepancies become obvious due to a number of different assumptions, as well as the modeling framework adopted. Nonetheless, in relative terms the results seem to be quite consistent. However, a critical limitation of the CF methodology was its focus on a single issue, which can lead to burden shifting. In conclusion, the study confirmed the need for both further improvement and adaptation to additional contexts and further studies to validate the use of this tool in different companies.

  5. Assessment of carbon footprint and energy performance of the extra virgin olive oil chain in Umbria, Italy.

    Science.gov (United States)

    Rinaldi, S; Barbanera, M; Lascaro, E

    2014-06-01

    The cradle to grave carbon footprint (CF) and energy footprint (EF) analysis of extra virgin olive oil (EVOO) produced in the Province of Perugia (Umbria, Italy) is assessed. In this study, olive orchard cultivation, EVOO extraction, bottling, packaging, storage at -18°C and distribution in the main importing countries were studied from a life cycle assessment perspective, with the main objective of identifying the processes with the largest environmental impacts. The selected functional unit was 1L of EVOO, packaged for distribution. Inventory data was gathered mainly through both direct communication using questionnaires and direct measurements. To determine the CF the ISO/TS 14067:2013 was followed while the EF was evaluated according to ISO standards 14040 and 14044. Results showed that the most impacting process is the distribution, mainly due to the choice of employing air transport. The main other hot spots identified were the olive orchard fertilization, EVOO freezing during its storage at the olive mill factory and the manufacture of glass bottles. Suggested improvement opportunities included shifts in the EVOO transportation policy, the introduction of lighter glass bottles in the bottling process, the use of cooling agent with lower global warming potential and the employment of biodiesel in the farming machineries. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    Science.gov (United States)

    Sobhani, Reza

    Arid and semi-arid regions throughout the world face water scarcity. Conventional water supply portfolio of these regions encompassed limited surface water, groundwater, and imported water. Current technological innovations technically and economically supplemented new water sources i.e., reclaimed water, desalted water and the groundwater sources that were not potable. The need for more efficient and alternative sources of drinking water supply necessitates studying the impediments e.g., intensive energy required, and emerging concern of the carbon emission. This dissertation discusses the challenges of energy footprint and its carbon emission among the processes involved in water supplies in the aforementioned regions. The conducted studies present time-dependent energy footprint analyses of different water reclamation and reuse processes. This study discusses the energy consumption in four main energy intensive processes inclusive of: activated sludge, microfiltration, reverse osmosis, and advanced oxidation with UV/ H2O2. The results indicate how the diurnal variations of different environmental parameters (e.g. flow and pollutant concentration) amplify the energy footprint variation among these processes. Meanwhile, the results show, due to the different power sources diurnally employed to provide electrical energy, the energy-associated carbon emission has more drastic variation in diurnal period compared to the energy footprint variation. In addition, this study presents the energy footprint of a modular process for treating local brackish groundwater by employing a combination of pellet reactor for radium and hardness minimization, reverse osmosis with intermediate precipitation, and concentrated brine crystallization to achieve high recovery with zero liquid discharge. Also it compares the energy footprint of the aforementioned process with the alternative option (i.e. desalted seawater conveyance with substantial lift). Finally, in coastal regions

  7. Addressing Desalination’s Carbon Footprint: The Israeli Experience

    Directory of Open Access Journals (Sweden)

    Alon Tal

    2018-02-01

    Full Text Available Given the extraordinary proliferation of seawater desalination plants, Israel’s transition to become a country that almost exclusively relies on desalination for municipal water supply is instructive as a case study, especially given concerns about the technology’s prodigious carbon footprint. This article offers a detailed description of the country’s desal experience with a focus on the associated energy requirements, environmental policies and perspectives of decision makers. Israel’s desalination plants are arguably the most energy-efficient in the world. The present consensus among government engineers, however, is that meaningful improvements in energy efficiency are unlikely in the foreseeable future. Official evaluations of increased introduction of solar-driven reverse osmosis (RO processes concluded that mitigation of greenhouse gases will have to be attained in industries other than the water sector. The article details myriad environmental benefits that desalination has brought the country. However, it argues that given the imperative of stabilizing atmospheric concentration of carbon, and the modest renewable energy supply to Israel’s national grid to date, public policy can no longer offer the water industry a path of least resistance. Present plans envision a significant expansion of Israel’s desal infrastructure, requiring a far higher commitment to renewable energy supply and regulations phasing down present energy demands.

  8. The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria; Henriksson, Maria; Cederberg, Christel

    2011-01-01

    The carbon footprint (CF) of milk production was analysed at the farm gate for two contrasting production systems; an outdoor pasture grazing system in New Zealand (NZ) and a mainly indoor housing system with pronounced use of concentrate feed in Sweden (SE). The method used is based on the conce......The carbon footprint (CF) of milk production was analysed at the farm gate for two contrasting production systems; an outdoor pasture grazing system in New Zealand (NZ) and a mainly indoor housing system with pronounced use of concentrate feed in Sweden (SE). The method used is based...... on the conceptual framework of lifecycle assessment (LCA), but only for greenhouse gas (GHG) emissions. National average data were used to model the dairy system in each country. Collection of inventory data and calculations of emissions were harmonised to the greatest extent possible for the two systems...

  9. Energy-use pattern and carbon footprint of rain-fed watermelon production in Iran

    Directory of Open Access Journals (Sweden)

    Allahyar Mohammadi-Barsari

    2016-06-01

    Full Text Available The analysis of energy-use patterns and carbon footprint is useful in achieving sustainable development in agriculture. Energy-use indices and carbon footprint for rain-fed watermelon production were studied in the Kiashahr region of Northern Iran. Data were collected from 58 farmers using a self-structured questionnaire during the growing season of 2013. The Cobb–Douglas model and sensitivity analysis were used to evaluate the effects of energy input on rain-fed watermelon yield. The findings demonstrated that chemical fertilizers consumed the highest percentage of total energy input (75.2%, followed by diesel fuel (12.9%. The total energy input was 16594.74 MJ ha−1 and total energy output was 36275.24 MJ ha−1. The results showed that the energy-use ratio was 2.19, energy productivity was 1.15 kg MJ−1, energy intensity was 0.87 MJ kg−1, and net energy gain was 19680.60 MJ ha−1. Direct and indirect energy for watermelon production were calculated as 2374.4 MJ ha−1 (14.3% and 14220.3 MJ ha−1 (85.7%, respectively. The share of renewable energy was 1.4%. This highlights the need to reduce the share of non-renewable energy and improve the sustainability of rain-fed watermelon production in Northern Iran. The study of carbon footprint showed that the chemical fertilizer caused the highest percentage of greenhouse gas emissions (GHG followed by machinery with 52.6% and 23.8% of total GHG emissions, respectively. The results of the Cobb–Douglas model and sensitivity analysis revealed that increasing one MJ of energy input of human labor, machinery, diesel fuel, chemical fertilizers, biocides, and seed changed the yield by 1.03, 0.96, 0.19, −0.97, 0.16, and 0.22 kg, respectively, in the Kiashahr region of Northern Iran. Providing some of the nitrogen required for crop growth through biological alternatives, renewing old power tillers, and using conservation tillage machinery may enhance energy efficiency and mitigate

  10. Limitations of Carbon Footprint as Indicator of Environmental Sustainability

    DEFF Research Database (Denmark)

    Laurent, Alexis; Olsen, Stig I.; Hauschild, Michael Z.

    2012-01-01

    change but also other environmental problems, like chemical pollution or depletion of natural resources, and the focus on CFP brings the risk of problem shifting when reductions in CFP are obtained at the expense of increase in other environmental impacts. But how real is this risk? Here, we model...... runs the risk of inadvertently shifting the problem to other environmental impacts when products are optimized to become more “green”. These findings call for the use of more broadly encompassing tools to assess and manage environmental sustainability.......Greenhouse gas accountings, commonly referred to with the popular term carbon footprints (CFP), are a widely used metric of climate change impacts and the main focus of many sustainability policies among companies and authorities. However, environmental sustainability concerns not just climate...

  11. Our building is smarter than your building: The use of competitive rivalry to reduce energy consumption and linked carbon footprint

    Directory of Open Access Journals (Sweden)

    Carolyn McGibbon

    2014-12-01

    Full Text Available This research is located within the smart city discourse and explores the linkage between smart buildings and an intelligent community, employing the University of Cape Town as a case study. It is also situated within the research stream of Green Information Systems, which examines the confluence between technology, people, data and processes, in order to achieve environmental objectives such as reduced energy consumption and its associated carbon footprint. Since approximately 80% of a university’s carbon footprint may be attributed to electricity consumption and as the portion of energy used inefficiently by buildings is estimated at 33% an argument may be made for seeing a campus as a “living laboratory” for energy consumption experiments in smart buildings. Integrated analytics were used to measure, monitor and mitigate energy consumption, directly linked to carbon footprinting. This paper examines a pilot project to reduce electricity consumption through a smart building competition. The lens used for this research was the empirical framework provided by the International Sustainable Campus Network/Global University Leadership Forum Charter. Preliminary findings suggest a link between the monitoring of smart buildings and behaviour by a segment of the intelligent community in the pursuit of a Sustainable Development strategy.

  12. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman

    2016-01-01

    with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N......A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized...... carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground...

  13. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade.

    Science.gov (United States)

    Steen-Olsen, Kjartan; Weinzettel, Jan; Cranston, Gemma; Ercin, A Ertug; Hertwich, Edgar G

    2012-10-16

    A nation's consumption of goods and services causes various environmental pressures all over the world due to international trade. We use a multiregional input-output model to assess three kinds of environmental footprints for the member states of the European Union. Footprints are indicators that take the consumer responsibility approach to account for the total direct and indirect effects of a product or consumption activity. We quantify the total environmental pressures (greenhouse gas emissions: carbon footprint; appropriation of biologically productive land and water area: land footprint; and freshwater consumption: water footprint) caused by consumption in the EU. We find that the consumption activities by an average EU citizen in 2004 led to 13.3 tCO(2)e of induced greenhouse gas emissions, appropriation of 2.53 gha (hectares of land with global-average biological productivity), and consumption of 179 m(3) of blue water (ground and surface water). By comparison, the global averages were 5.7 tCO(2)e, 1.23 gha, and 163 m(3) blue water, respectively. Overall, the EU displaced all three types of environmental pressures to the rest of the world, through imports of products with embodied pressures. Looking at intra-EU displacements only, the UK was the most important displacer overall, while the largest net exporters of embodied environmental pressures were Poland (greenhouse gases), France (land), and Spain (freshwater).

  14. Carbon footprint analysis as a tool for energy and environmental management in small and medium-sized enterprises

    Science.gov (United States)

    Giama, E.; Papadopoulos, A. M.

    2018-01-01

    The reduction of carbon emissions has become a top priority in the decision-making process for governments and companies, the strict European legislation framework being a major driving force behind this effort. On the other hand, many companies face difficulties in estimating their footprint and in linking the results derived from environmental evaluation processes with an integrated energy management strategy, which will eventually lead to energy-efficient and cost-effective solutions. The paper highlights the need of companies to establish integrated environmental management practices, with tools such as carbon footprint analysis to monitor the energy performance of production processes. Concepts and methods are analysed, and selected indicators are presented by means of benchmarking, monitoring and reporting the results in order to be used effectively from the companies. The study is based on data from more than 90 Greek small and medium enterprises, followed by a comprehensive discussion of cost-effective and realistic energy-saving measures.

  15. The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant

    Directory of Open Access Journals (Sweden)

    Emanuele Bonamente

    2015-10-01

    Full Text Available The Multifunctional Environmental Energy Tower (MEET is a single, vertical, stand-alone renewable energy plant designed to decrease the primary energy consumption from fossil fuels, to reduce greenhouse gas emissions, to maximize the energy production from renewable sources available in place and to minimize land use. A feasibility case study was performed for the city of Rome, Italy. Several technologies are exploited and integrated in a single system, including a photovoltaic plant, a geothermal plant and a biomass digester for urban organic waste and sewage sludge. In the proposed configuration, the MEET could cover more than 11% of the electric power demand and up to 3% of the space heating demand of the surrounding urban area. An LCA analysis evaluates the environmental impact in a cradle-to-grave approach for two impact categories: global warming (carbon footprint and land use (land occupation and land transformation. The functional unit is a mix of electric (49.1% and thermal (50.9% energy (kWhmix. The carbon footprint is 48.70 g CO2eq/kWhmix; the land transformation is 4.058 m2/GWhmix; and the land occupation is 969.3 m2y/GWhmix. With respect to other energy production technologies, the carbon footprint is lower and similar to the best-performing ones (e.g., co-generation from wood chips; both of the land use indicators are considerably smaller than the least-impacting technologies. A systematic study was finally performed, and possible optimizations of the original design are proposed. Thanks to the modular design, the conceptual idea can be easily applied to other urban and non-urban scenarios.

  16. Carbon footprint of construction, operation and maintenance of waterways and traffic; Merenkulun ja liikenteen hiilijalanjaelki. Osa 1: Merenkulun hiilijalanjaelki, Osa 2: Tie-, rata- ja meriliikenteen hiilijalanjaeljet

    Energy Technology Data Exchange (ETDEWEB)

    Illman, J.; Kumpulainen, A.; Pesola, A.; Vanhanen, J.

    2012-07-01

    In 2010, the Finnish Transport Agency launched a project to study the carbon footprint of the construction, use and maintenance of Finland's transport network infrastructure. This report presents the results of the second phase, where the carbon footprint was calculated for the coastal ports and fairways used for merchant shipping (part 1 of this report). In addition, the carbon footprint of traffic operating on the road and rail networks and on the coastal fairways was calculated (part 2 of this report). The carbon footprints of four Finnish coastal merchant shipping ports and the fairways leading into them were calculated during a 100-year period. Based on these four cases and statistics the rest of the coastal ports were categorised into four groups: passenger ports, unitized cargo ports, bulk ports and liquid bulk ports. Based on this categorisation the carbon footprint for the infrastructure of coastal merchant shipping was estimated. A carbon footprint tool was developed to enable the modelling of the impacts of different port and fairway planning parameters on the life-cycle emissions. The main source of emissions in the selected cases was the energy used during the use phase: the fuel used by the machinery or the electricity consumed during the operation of the port. In the construction of the examined ports and fairways, the materials used, their transportation and installation do not have a significant impact on the life-cycle emissions. The carbon footprint of Finland's coastal merchant shipping ports and fairways (35 ports and 3 230 km of fairways) during the 100-year period was estimated at 150 000 tCO{sub 2}/a. The emissions of ports vary between 1 900-15 000 tCO{sub 2}/a. The largest sources of emissions do not always originate from the use phase as in the selected cases. The emissions of construction and maintenance can be larger than of the use phase in ports that occupy a large area of land in relation to the amount of traffic flowing

  17. Climate consequences of low-carbon fuels: The United States Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Hill, Jason; Tajibaeva, Liaila; Polasky, Stephen

    2016-01-01

    A common strategy for reducing greenhouse gas (GHG) emissions from energy use is to increase the supply of low-carbon alternatives. However, increasing supply tends to lower energy prices, which encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions. Here, we explore how policies that encourage the production of low-carbon fuels may result in increased GHG emissions because the resulting increase in energy use overwhelms the benefits of reduced carbon intensity. We describe how climate change mitigation strategies should follow a simple rule: a low-carbon fuel with a carbon intensity of X% that of a fossil fuel must displace at least X% of that fossil fuel to reduce overall GHG emissions. We apply this rule to the United States Renewable Fuel Standard (RFS2). We show that absent consideration of the fuel market rebound effect, RFS2 appears to reduce GHG emissions, but once the fuel market rebound effect is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets are met. - Highlights: • Low-carbon fuels partially displace petroleum via fuel market rebound effect. • Synthesis of recent analyses shows incomplete petroleum displacement by biofuels. • Fuel market rebound effect can reduce or reverse climate benefit of low-carbon fuels. • Fossil fuel displacement must exceed relative carbon footprint of a low-carbon fuel. • The Renewable Fuel Standard increases greenhouse gas emissions when mandate is met.

  18. The carbon footprint of acute care: how energy intensive is critical care?

    Science.gov (United States)

    Pollard, A S; Paddle, J J; Taylor, T J; Tillyard, A

    2014-09-01

    Climate change has the potential to threaten human health and the environment. Managers in healthcare systems face significant challenges to balance carbon mitigation targets with operational decisions about patient care. Critical care units are major users of energy and hence more evidence is needed on their carbon footprint. The authors explore a methodology which estimates electricity use and associated carbon emissions within a Critical Care Unit (CCU). A bottom-up model was developed and calibrated which predicted the electricity consumed and carbon emissions within a CCU based on the type of patients treated and working practices in a case study in Cornwall, UK. The model developed was able to predict the electricity consumed within CCU with an error of 1% when measured against actual meter readings. Just under half the electricity within CCU was used for delivering care to patients and monitoring their condition. A model was developed which accurately predicted the electricity consumed within a CCU based on patient types, medical devices used and working practice. The model could be adapted to enable it to be used within hospitals as part of their planning to meet carbon reduction targets. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  19. Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope

    International Nuclear Information System (INIS)

    Proietti, Stefania; Desideri, Umberto; Sdringola, Paolo; Zepparelli, Francesco

    2013-01-01

    Highlights: ► Environmental and energy assessment of thermal insulating materials in building envelope. ► Carbon footprint of a reflective foil, conceived and produced by an Italian company. ► Study conducted according to principles of LCA – Life Cycle Assessment. ► Identification of main impacting processes and measures for reducing emissions. ► Comparison with traditional insulating materials (EPS and rockwool). - Abstract: The present study aims at assessing environmental and energy compatibility of different solutions of thermal insulation in building envelope. In fact a good insulation results in a reduction of heating/cooling energy consumptions; on the other hand construction materials undergo production, transformation and transport processes, whose energy and resources consumptions may lead to a significant decrease of the environmental benefits. The paper presents a detailed carbon footprint of a product (CFP, defined as the sum of greenhouse gas emissions and removals of a product system, expressed in CO 2 equivalents), which is a reflective foil conceived and produced by an Italian company. CFP can be seen as a Life Cycle Assessment with climate change as the single impact category; it does not assess other potential social, economic and environmental impacts arising from the provision of products. The analysis considers all stages of the life cycle, from the extraction of raw materials to the product’s disposal, i.e. “from cradle to grave”; it was carried out according to UNI EN ISO 14040 and 14044, and LCA modelling was performed using SimaPro software tool. On the basis of obtained results, different measures have been proposed in order to reduce emissions in the life cycle and neutralize residual carbon footprint. The results allowed to make an important comparison concerning the environmental performance of the reflective foil in comparison with other types of insulating materials

  20. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.

    Science.gov (United States)

    Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo

    2015-08-18

    Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.

  1. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour.

    Science.gov (United States)

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-03-04

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein-based pasta products proved to cause 0.57 kg CO₂ equivalents (CO₂eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  2. China’s Carbon Footprint Based on Input-Output Table Series: 1992–2020

    Directory of Open Access Journals (Sweden)

    Haitao Zheng

    2017-03-01

    Full Text Available Reducing carbon emissions is a major concern for China’s future. This paper explores the embodied carbon footprint of Chinese final demand from the point of view of industries. It uses the Matrix Transformation Technique (MTT to update the input-output table series from 1992 to 2020 in China. Then, we measure the embodied carbon emissions for the period 1992–2020 from 29 industry producers to the final demand, covering urban and rural residential consumption, government consumption, fixed capital formation, and net exports. The results show that construction, other services, wholesale, retail trade, accommodation and catering, industrial machinery and equipment, transport, storage and postal services, and manufacture of foods and tobacco are the industries with the greatest carbon emissions from producers, while fixed capital formation and urban consumption are the largest emitters from the perspective of final demand. The embodied carbon emission multipliers for most of the industries are decreasing, while the total carbon emissions are increasing each year. The ratio of emissions from residential consumption in terms of total emissions is decreasing. Each industry has a different main final demand-driven influencing factor on emission and, for each type of final demand, there are different industries with higher emissions.

  3. Taiwan’s Ecological Footprint (1994–2011

    Directory of Open Access Journals (Sweden)

    Yung-Jaan Lee

    2014-09-01

    Full Text Available According to the 2011 edition of the National Footprint Accounts (NFA published by the Global Footprint Network (GFN, humankind consumed the resources and services of 1.5 planets in 2008; the corresponding number in 1961 was 0.7 planets. North Americans have an ecological footprint of 8.7 global hectares per person whereas Africans have a footprint of only 1.4 global hectares per person. The global mean biological capacity is only 1.8 global hectares per person so human beings are overshooting ecological resources. The ecological footprint measures the resources that are consumed by humans from the biosphere, and serves as an index of the sustainability of development. The NFA includes the ecological footprints of over 200 countries and regions, but not Taiwan. Hence, Taiwan must establish and update its own ecological footprint databases. Ecological footprint is one indicator of the sustainability of development, and can be compared across nations. This study extends previous studies by analyzing Taiwan’s ecological footprint from 2008–2011. With reference to the ecological footprint accounts of the Global Footprint Network and the Taiwan’s ecological footprint analysis for 1997–2007, this study presents Taiwan’s ecological footprint from 2008–2011. Most of the data that are used herein are taken from the Food and Agriculture Organization, the International Energy Agency, Taiwan’s Council of Agriculture and Taiwan’s National Development Council. The results thus obtained reveal that Taiwan’s ecological footprint from 2008–2011 exceeded that from 1997–2007. To respond to this trend toward un-sustainable development and to help Taiwan move toward sustainability, carbon reduction and energy saving policies should be implemented to effectively manage Taiwan’s ecological resources.

  4. The Nitrogen Footprint Tool for Institutions: What it is and how it compares to the Campus Carbon Calculator

    Science.gov (United States)

    Castner, E.; Leach, A. M.; Galloway, J. N.; Andrews, J.

    2015-12-01

    Nitrogen footprints (NF) connect entities with the reactive nitrogen (Nr; all species of nitrogen except N2) lost to the environment as a result of their activities. While necessary to life, excess Nr can be detrimental to ecosystem and human health, causing impacts such as smog, eutrophication, biodiversity loss, and climate change. The NF tool was recently developed to help institutions measure and reduce their environmental impact. This tool accounts for the NF from energy usage, food production and consumption, fertilizer usage, research animals, and agricultural activities. The tool also provides scenario analysis to help institutions reduce their NF and establish a reduction target. Currently in a testing phase, seven institutions have used the tool to calculate their NF, and six additional institutions have calculations in progress. Many institutions interested in sustainability have already calculated their carbon footprint (CF), which reports the total greenhouse gas emissions resulting from institution activities. The University of New Hampshire Sustainability Institute (UNHSI) Campus Carbon Calculator, developed in 2001, is used by thousands of institutions in the United States. While important, the CF addresses just one aspect of an institution's environmental impact: global climate change. The NF broadens this perspective by connecting to additional environmental impacts that are both global and local. The data requirements for the CF and NF have a significant overlap, especially in the energy sector. Given the similarity of data requirements and the benefits of considering the two footprints together, the two tools are in the preliminary stages of being merged. We will first provide an overview of the NF tool for institutions. We will then compare available NF and CF results from multiple institutions to assess trends and correlations and to determine the impact of different scenarios on both footprints.

  5. How to Calculate Your Institution's Nitrogen Footprint ...

    Science.gov (United States)

    The Nitrogen Footprint Tool (NFT) allows institutions to estimate and manage their nitrogen footprint, and EPA’s Sustainable and Healthy Communities program is supporting an effort to test and expand this approach at multiple colleges, universities and institutions across the US. The growing awareness of sustainability has prompted many institutions of higher education to assess and manage their environmental impact. Many universities have programs to decrease their carbon footprint, but carbon represents just one facet of an institution’s environmental impact. Nitrogen is also important because a university’s nitrogen loss to the environment contributes to smog, soil acidification, eutrophication, biodiversity loss, the enhanced greenhouse effect, stratospheric ozone depletion, and more. The attached data template and user’s manual was based on the first NFT created for a university (University of Virginia), and tested in 6 additional institutions (including University of New Hampshire, Brown University, Eastern Mennonite University, Colorado State University). The footprint includes nitrogen released to the environment due to: 1) food consumption; 2) food production, reported by specific food categories (vegetable products, seafood, dairy and eggs, meat); 3) research animals; 4) transportation, including fleet vehicles and commuter vehicles; 5) fertilizer application; and 6) utilities, separated into electricity and heating. The data template and

  6. [Carbon footprint of wheat-summer direct-seeding peanut planting system in Shandong Pro-vince, China].

    Science.gov (United States)

    Ziu, Xiao Xia; Zhang, Xiao Jun; Wang, Yue Fu; Wang, Ming Lun

    2018-03-01

    Clarifying the carbon emissions in wheat-summer direct-seeding peanut planting (W-P) system could help realize the synergistic effects of high yield and low carbon emissions. Based on whole life cycle method, we constructed a carbon footprint model to calculate the carbon emissions of W-P system. We found that the net income of W-P system was 71.2%-88.3% higher than that of wheat-maize rotation (W-M) system. The carbon emissions per unit area under W-P system was 6977.9-8018.5 kg·hm -2 , being 6.2% higher than that of W-M system. The carbon emission of per net income under W-P system was 0.23-0.28 kg CO 2 -eq·yuan -1 , which was 37.4%-44.1% lower than that of W-M system. Combining the net income and carbon emissions of per net income, W-P system could achieve synergistic effects of high yield and low carbon emissions, which would fulfill the targets of agricultural supply-side structural reform with optimizing supply, enhancing quality and efficiency, and increasing income of peasants.

  7. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan.

    Science.gov (United States)

    Hussain, Majid; Naseem Malik, Riffat; Taylor, Adam

    2017-05-01

    This study quantified the carbon footprint of particleboard production in Pakistan using a cradle-to-gate life cycle assessment approach. The system boundary comprised raw materials acquisition, transport, particleboard manufacture and finished product distribution. Primary data were collected through surveys and meetings with particleboard manufacturers. Secondary data were taken from the literature. Greenhouse gas emissions from off-site industrial operations of the particleboard industry represented 52% of the total emissions from the production of 1.0m 3 of particleboard in Pakistan. The on-site industrial operations cause direct greenhouse gas emissions and accounted for 48% of the total emissions. These operations included energy consumption in stationary sources, the company-owned vehicle fleet, and the distribution and marketing of the finished product. The use of natural gas combustion in the stationary and mobile sources, raw material transport and urea-formaldehyde resin production chain accounted for the highest emissions from the particleboard production chain in Pakistan. The identification of the major hotspots in the particleboard production chain can assist the wood panel industry to improve their environmental profile. More efforts are needed to investigate the urea-formaldehyde resin production chain and substitution of roundwood with wood and agri-residues to assess the potential improvements. In addition, renewable energy sources should be encouraged to avoid greenhouse gas emissions by substituting fossil energy. This study also provides a benchmark for future research work to formulate comprehensive greenhouse gas emissions reduction plans, because no previous research work is available on the carbon footprint of particleboard production in Pakistan. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reducing the carbon footprint of fuels and petrochemicals. Preprints

    International Nuclear Information System (INIS)

    Ernst, S.; Balfanz, U.; Buchholz, S.; Lichtscheidl, J.; Marchionna, M.; Nees, F.; Santacesaria, E.

    2012-01-01

    Within the DGMK conference between 08th and 10th October, 2012, in Berlin (Federal Republic of Germany) the following lectures were held: (1) Energy demand and mix for global welfare and stable ecosystems (A. Jess); (2) The EU's roadmap for moving to a low-carbon economy - Aspirations and reality for refiners (J. Lichtscheidl); (3) Applications of CCS technology to the oil and gas industries (M. Marchionna); (4) A new chemical system solution for acid gas removal (M. Seiler); (5) Hydrogenation of carbon dioxide towards synthetic natural gas - A route to effective future energy storage (M. Schoder); (6) Bio-MTBE - How to reduce CO 2 footprint in fuels with a well known premium gasoline component (O. Busch); (7) Use of waste materials for Biodiesel production (R. Vitiello); (8) From algae to diesel and kerosene - Tailored fuels via selective catalysis (C. Zhao); (9) Chemo-catalytic valorization of cellulose (R. Palkovits); (10) Cellulosic ethanol: Potential, technology and development status (M. Rarbach); (11) Methanation of carbon oxides - History, status quo and future perspectives (W. Kaltner); (12) Chemical storage of renewable electricity in hydrocarbon fuels via H 2 (H. Eilers); (13) Materials for the 21st century: Can the carbon come from CO 2 (S. Kissling); (14) Effect of CO 2 admixture on the catalytic performance of Ni-Nb-M-O catalysts in oxidative dehydrogenation of ethane to ethylene (A. Qiao); (15) Oxidative dehydrogenation of light alkanes (A. Meiswinkel); (16) Low carbon fuel and chemical production from waste gases (S. Simpson); (17) Methanol to propylene: From development to commercialization (S. Haag); (18) On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts (X. Sun); (19) Mn-Na 2 WO 4 /SiO 2 - An industrial catalyst for methane coupling (M. Yildiz); (20) Biorefineries - Prerequisites for the realization of a future bioeconomy (K. Wagemann); (21) A new process for the valorisation of a bio

  9. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Directory of Open Access Journals (Sweden)

    Antonia Nette

    2016-03-01

    Full Text Available Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq (31% per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta.

  10. A Comparison of Carbon Footprint and Production Cost of Different Pasta Products Based on Whole Egg and Pea Flour

    Science.gov (United States)

    Nette, Antonia; Wolf, Patricia; Schlüter, Oliver; Meyer-Aurich, Andreas

    2016-01-01

    Feed and food production are inter alia reasons for high greenhouse gas emissions. Greenhouse gas emissions could be reduced by the replacement of animal components with plant components in processed food products, such as pasta. The main components currently used for pasta are semolina, and water, as well as additional egg. The hypothesis of this paper is that the substitution of whole egg with plant-based ingredients, for example from peas, in such a product might lead to reduced greenhouse gas emissions (GHG) and thus a reduced carbon footprint at economically reasonable costs. The costs and carbon footprints of two pasta types, produced with egg or pea protein, are calculated. Plant protein–based pasta products proved to cause 0.57 kg CO2 equivalents (CO2eq) (31%) per kg pasta less greenhouse gas emissions than animal-based pasta, while the cost of production increases by 10% to 3.00 €/kg pasta. PMID:28231112

  11. Carbon footprint of the rice (Oryza sativa production system in the municipality of Campoalegre, Huila, Colombia

    Directory of Open Access Journals (Sweden)

    Hernán J. Andrade

    2014-01-01

    Full Text Available Carbon footprint is a useful tool to estimate the impact of any production system on climate change, specifically in the net emission or fixation of greenhouse gasses (GHG. The rice cropping system has a large food, social and economical importance in the world; however, it is a net GHG-emitting productive system. The objective of this study was estimating the carbon footprint of the rice production in Campoalegre, Huila, Colombia. A total of 21 rice productive units, located at less than 15 kmfrom the center of the municipality and with gravity irrigation, was selected. Through semi-structured interviews, all activities that emit GHGs, from land preparation to harvest grain, were investigated. It was consulted to producers and managers about the use of nitrogen fertilizers and fossil fuels and the yield of rice grain in each production unit. Factor of emission and warming-equivalence among GHG recommended by Intergovernmental Panel on Climate Change were employed. Carbon fixation rates estimated in Tolima were used to found alternative systems for mitigation of these emissions. It was found a total emission of 998.1 ± 365.3 kg CO2e/ha/cycle (163.3 ± 55.8 kg CO2e/t, having nitrogen fertilization being the greatest contribution (65%. Mitigation of this GHG emission would imply the establishment and management of 0.5 ha of cacao plantations without shade trees or coffee plantations with shade trees or 1.4 ha of monoculture coffee plantations.

  12. Spatio-Temporal Dynamic Analysis of Sustainable Development in China Based on the Footprint Family

    Science.gov (United States)

    Ma, Caihong; Zhao, Xiangui; Wang, Xiaoyu

    2018-01-01

    The existing index systems on sustainable evaluation are mostly based on a multi index comprehensive evaluation method. The main disadvantage of this approach is that the selection and assignment of evaluation indexes are greatly influenced by subjective factors, which can result in poor comparability of results. By contrast, the Footprint Family (including ecological footprint, carbon footprint, and water footprint) is not affected by subjective factors. The Footprint Family also covers the basic tenets of sustainable development. This paper proposes use of a sustainable development evaluation index system based on the principle of the Footprint Family, and including the ecological pressure index (EPI), the ecological occupancy index (EOI), the ecological economic coordination index (EECI), the GHG (Greenhouse Gas) emission index (CEI), the water resources stress index (WSI), and the sustainable development index (SDI). Furthermore, a standard for grading the evaluated results based on global benchmarks is formulated. The results of an empirical study in China were the following. The development situation deteriorated from 1990 to 2015. The results showed that the SDI decreased from a medium level (grade 5) to a lower-medium level (grade 4). The results of this empirical study also showed that the method of evaluation can avoid the influence of subjective factors and can be used in the evaluation of sustainable development for various temporal and spatial conditions. PMID:29389886

  13. Spatio-Temporal Dynamic Analysis of Sustainable Development in China Based on the Footprint Family.

    Science.gov (United States)

    Zhao, Jing; Ma, Caihong; Zhao, Xiangui; Wang, Xiaoyu

    2018-02-01

    The existing index systems on sustainable evaluation are mostly based on a multi index comprehensive evaluation method. The main disadvantage of this approach is that the selection and assignment of evaluation indexes are greatly influenced by subjective factors, which can result in poor comparability of results. By contrast, the Footprint Family (including ecological footprint, carbon footprint, and water footprint) is not affected by subjective factors. The Footprint Family also covers the basic tenets of sustainable development. This paper proposes use of a sustainable development evaluation index system based on the principle of the Footprint Family, and including the ecological pressure index ( EPI ), the ecological occupancy index ( EOI ), the ecological economic coordination index ( EECI ), the GHG (Greenhouse Gas) emission index ( CEI ), the water resources stress index ( WSI ), and the sustainable development index ( SDI ). Furthermore, a standard for grading the evaluated results based on global benchmarks is formulated. The results of an empirical study in China were the following. The development situation deteriorated from 1990 to 2015. The results showed that the SDI decreased from a medium level (grade 5) to a lower-medium level (grade 4). The results of this empirical study also showed that the method of evaluation can avoid the influence of subjective factors and can be used in the evaluation of sustainable development for various temporal and spatial conditions.

  14. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.

    Science.gov (United States)

    Hauggaard-Nielsen, Henrik; Lachouani, Petra; Knudsen, Marie Trydeman; Ambus, Per; Boelt, Birte; Gislum, René

    2016-01-15

    A three-season field experiment was established and repeated twice with spring barley used as cover crop for different perennial grass-legume intercrops followed by a full year pasture cropping and winter wheat after sward incorporation. Two fertilization regimes were applied with plots fertilized with either a high or a low rate of mineral nitrogen (N) fertilizer. Life cycle assessment (LCA) was used to evaluate the carbon footprint (global warming potential) of the grassland management including measured nitrous oxide (N2O) emissions after sward incorporation. Without applying any mineral N fertilizer, the forage legume pure stand, especially red clover, was able to produce about 15 t above ground dry matter ha(-1) year(-1) saving around 325 kg mineral Nfertilizer ha(-1) compared to the cocksfoot and tall fescue grass treatments. The pure stand ryegrass yielded around 3t DM more than red clover in the high fertilizer treatment. Nitrous oxide emissions were highest in the treatments containing legumes. The LCA showed that the low input N systems had markedly lower carbon footprint values than crops from the high N input system with the pure stand legumes without N fertilization having the lowest carbon footprint. Thus, a reduction in N fertilizer application rates in the low input systems offsets increased N2O emissions after forage legume treatments compared to grass plots due to the N fertilizer production-related emissions. When including the subsequent wheat yield in the total aboveground production across the three-season rotation, the pure stand red clover without N application and pure stand ryegrass treatments with the highest N input equalled. The present study illustrate how leguminous biological nitrogen fixation (BNF) represents an important low impact renewable N source without reducing crop yields and thereby farmers earnings. Copyright © 2015. Published by Elsevier B.V.

  15. Energy and nutrient density of foods in relation to their carbon footprint.

    Science.gov (United States)

    Drewnowski, Adam; Rehm, Colin D; Martin, Agnes; Verger, Eric O; Voinnesson, Marc; Imbert, Philippe

    2015-01-01

    A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing. We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents. GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient-composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal. Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets. Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. © 2015 American Society for Nutrition.

  16. The Awareness of Turkish High School Students about Carbon Footprint and the Effects of the High School Biology Curriculum on This Awareness

    Science.gov (United States)

    Öz-Aydin, Serap

    2016-01-01

    Carbon emissions which are one of the most important human sourced causes of global climate change continue to rise rapidly despite all efforts to minimize these emissions. Carbon footprint (CF) education is significant in terms of changing the present situation. The aim of this study is to determine the awareness of high school students about the…

  17. Long term strategy for electricity generation in Peninsular Malaysia – Analysis of cost and carbon footprint using MESSAGE

    International Nuclear Information System (INIS)

    Fairuz, S.M.C.; Sulaiman, M.Y.; Lim, C.H.; Mat, S.; Ali, B.; Saadatian, O.; Ruslan, M.H.; Salleh, E.; Sopian, K.

    2013-01-01

    Malaysia envisages becoming a developed nation by 2020. To sustain industrial expansion and attract investments Malaysia must introduce new energy strategies. These strategies should also moderate carbon footprint. The new energy strategies introduced by the government are (i) installation of nuclear power plant by 2021, (ii) import of Sarawak hydropower from 2015 and (iii) enhancement of use of renewable energy from 2015. In this paper we analyze the cost and resulting carbon footprint of energy expansion for 12 energy scenes (inclusive of new strategies) to produce electricity for Peninsular Malaysia for the period 2009–2030. We use a computer model MESSAGE to provide optimization. The best strategy is for the following accumulated percentage of energy resource in the fuel mix: 49.3% (natural gas), 28.4% (coal), 4.06% (nuclear), 2.98% (hydropower), 4.45% (renewable), 10.82% (import hydropower). The minimum cost of expanding this strategy from 2009 until 2030 is USD6.090B. The CO 2 emission index of this strategy is 0.329 t/MWh. The accumulated carbon dioxide emission for this period is 1825.96 Mton CO 2 eq. -- Highlights: •We analyzed the cost of energy expansion and resulting carbon emission using software MESSAGE. •We studied the energy situation for the next 20 years beginning 2009 for Peninsular Malaysia. •We maintained the present energy resources of natural gas, coal and internal hydropower. •We included nuclear, hydropower import and renewable energy as new strategies

  18. Reducing tourist carbon footprint through strategic mapping of the existing hotel stock - Attica

    Science.gov (United States)

    Pieri, Stella Panayiota; Stamos, Athanasios; Tzouvadakis, Ioannis

    2016-09-01

    The tourist carbon footprint (TCF) is the measure of the total amount of carbon dioxide (CO 2) tourists emit by travelling from origin to destination and by participating in tourism - and leisure - related activities considering all relevant sources, sinks and storage within the spatial boundary of the destination. This paper presents a method of assessing the part of TCF associated with tourist transport at the tourist destination and proposes iso-pollutant contours as the most effective method of mapping TFC in relation to hotel location by using the prefecture of Attica in Greece as an example. The paper demonstrates for the first time how important is hotel location as a determinant factor of TCF and also proposes measures to reduce CO 2 emissions through the implementation of policies that are environmentally friendly and are aiming to facilitate the transport of the tourists and promote the use of public transport.

  19. Carbon Footprint Analysis for a GRAPE Production Case Study

    Science.gov (United States)

    Sirca, C.; Marras, S.; Masia, S.; Duce, P.; Zara, P.; Spano, D.

    2013-12-01

    Agriculture activities can play a double role in emitting or sequestering carbon from the atmosphere. Mitigation of greenhouse gas (GHG) emissions in agriculture is one of the most urgent research subjects in the framework of enhancing environmental stewardship. However, little is known about the role of the agriculture in the global carbon balance, since most of the studies applied the Eddy Covariance technique in natural or semi-natural ecosystems to investigate their role in mitigate the anthropogenic carbon release. The application of the Eddy Covariance technique in agricultural systems could greatly improve our knowledge about their role on the global carbon budget and help in modeling the related processes. In addition, there is a growing request from producers, trade companies, and customers on the assessment of the environmental impact of a production process related to agricultural high quality products. In recent years, particular attention was put on the estimation of GHG emissions deriving from productive processes. In this context, a useful tool is the Life Cycle Assessment (LCA), which represents a methodology to estimate GHG emissions related to the entire life cycle of a product. The Carbon Footprint (CF) analysis represents a subset of the LCA, which only considers CO2 emissions with an impact on climate change. With respect to the wine industry, most of studies focused on the CF analysis related to the wine making process in the cellar, while a few studies analyzed the GHG emissions related to the grape production. The aim of this work was to quantify the CO2 emissions due to the grape production and emphasize the double role of a vineyard as a carbon sink or source. An Eddy Covariance station was set up in a representative vineyard located in the Mediterranean Basin (Sardinia, Italy) to measure the net carbon exchange between the surface and the atmosphere. The CF analysis was also conducted to compute the carbon balance of the grape production

  20. The energy and emissions footprint of water supply for Southern California

    International Nuclear Information System (INIS)

    Fang, A J; Newell, Joshua P; Cousins, Joshua J

    2015-01-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water–energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal

  1. The energy and emissions footprint of water supply for Southern California

    Science.gov (United States)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  2. The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment

    International Nuclear Information System (INIS)

    Messagie, Maarten; Mertens, Jan; Oliveira, Luis; Rangaraju, Surendraprabu; Sanfelix, Javier; Coosemans, Thierry; Van Mierlo, Joeri; Macharis, Cathy

    2014-01-01

    Highlights: • This paper brings a temporal resolution in LCA of electricity generation. • Dynamic life cycle assessment of electricity production in Belgium for 2011. • The overall average GWP per kW h is 0.184 kg CO 2 eq/kW h. • The carbon footprint of Belgian electricity ranges from 0.102 to 0.262 kg CO 2 eq/kW h. - Abstract: In the booming research on the environmental footprint of, for example, electrical vehicles, heat pumps and other (smart) electricity consuming appliances, there is a clear need to know the hourly CO 2 content of one kW h of electricity. Since the CO 2 footprint of electricity can vary every hour; the footprint of for example an electric vehicle is influenced by the time when the vehicle is charged. With the availability of the hourly CO 2 content of one kW h, a decision support tool is provided to fully exploit the advantages of a future smart grid. In this paper, the GWP (Global Warming Potential) per kW h for each hour of the year is calculated for Belgium using a Life Cycle Assessment (LCA) approach. This enables evaluating the influence of the electricity demand on the greenhouse gas emissions. Because of the LCA approach, the CO 2 equivalent content does not only reflect activities related to the production of the electricity within a power plant, but includes carbon emissions related to the building of the infrastructure and the fuel supply chain. The considered feedstocks are nuclear combustible, oil, coal, natural gas, biowaste, blast furnace gas, and wood. Furthermore, renewable electricity production technologies like photovoltaic cells, hydro installations and wind turbines are covered by the research. The production of the wind turbines and solar panels is more carbon intensive (expressed per generated kW h of electricity) than the production of other conventional power plants, due to the lower electricity output. The overall average GWP per kW h is 0.184 kg CO 2 eq/kW h. Throughout the 2011 this value ranges from a

  3. Reducing the carbon footprint of fuels and petrochemicals. Preprints

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Balfanz, U.; Buchholz, S.; Lichtscheidl, J.; Marchionna, M.; Nees, F.; Santacesaria, E. (eds.)

    2012-07-01

    Within the DGMK conference between 08th and 10th October, 2012, in Berlin (Federal Republic of Germany) the following lectures were held: (1) Energy demand and mix for global welfare and stable ecosystems (A. Jess); (2) The EU's roadmap for moving to a low-carbon economy - Aspirations and reality for refiners (J. Lichtscheidl); (3) Applications of CCS technology to the oil and gas industries (M. Marchionna); (4) A new chemical system solution for acid gas removal (M. Seiler); (5) Hydrogenation of carbon dioxide towards synthetic natural gas - A route to effective future energy storage (M. Schoder); (6) Bio-MTBE - How to reduce CO{sub 2} footprint in fuels with a well known premium gasoline component (O. Busch); (7) Use of waste materials for Biodiesel production (R. Vitiello); (8) From algae to diesel and kerosene - Tailored fuels via selective catalysis (C. Zhao); (9) Chemo-catalytic valorization of cellulose (R. Palkovits); (10) Cellulosic ethanol: Potential, technology and development status (M. Rarbach); (11) Methanation of carbon oxides - History, status quo and future perspectives (W. Kaltner); (12) Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2} (H. Eilers); (13) Materials for the 21st century: Can the carbon come from CO{sub 2} (S. Kissling); (14) Effect of CO{sub 2} admixture on the catalytic performance of Ni-Nb-M-O catalysts in oxidative dehydrogenation of ethane to ethylene (A. Qiao); (15) Oxidative dehydrogenation of light alkanes (A. Meiswinkel); (16) Low carbon fuel and chemical production from waste gases (S. Simpson); (17) Methanol to propylene: From development to commercialization (S. Haag); (18) On the impact of olefins and aromatics in the methanol-to-hydrocarbon conversion over H-ZSM-5 catalysts (X. Sun); (19) Mn-Na{sub 2}WO{sub 4}/SiO{sub 2} - An industrial catalyst for methane coupling (M. Yildiz); (20) Biorefineries - Prerequisites for the realization of a future bioeconomy (K. Wagemann); (21) A new process

  4. Method to assess the carbon footprint at product level in the dairy industry

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria; Thrane, Mikkel; Hermansen, John Erik

    2014-01-01

    associated with raw milk are allocated based on a weighted fat and protein content (1:1.4). Data from the dairy company Arla Foods give 1.1, 8.1, 6.5, 7.4 and 1.2 kg carbon dioxide equivalents per kg of fresh dairy product, butter and butter blend, cheese, milk powder and whey based product, and other......A model to calculate the farm-to-customer carbon footprint (CF) for different dairy product groups is presented. As the largest share of the CF of dairy products occurs at farm level, it is decisive how the emissions from raw milk production are allocated between different products. Impacts......, respectively. One critical aspect is how the by-product ‘whey’ is dealt with. No emissions are allocated to the milk solid whey, which is why products containing whey have an apparent low impact. Underlying methodological assumptions are open to debate and further research is needed concerning the CF impact...

  5. Carbon footprint of forest and tree utilization technologies in life cycle approach

    Science.gov (United States)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined

  6. A sustainable on-line CapLC method for quantifying antifouling agents like irgarol-1051 and diuron in water samples: Estimation of the carbon footprint.

    Science.gov (United States)

    Pla-Tolós, J; Serra-Mora, P; Hakobyan, L; Molins-Legua, C; Moliner-Martinez, Y; Campins-Falcó, P

    2016-11-01

    In this work, in-tube solid phase microextraction (in-tube SPME) coupled to capillary LC (CapLC) with diode array detection has been reported, for on-line extraction and enrichment of booster biocides (irgarol-1051 and diuron) included in Water Frame Directive 2013/39/UE (WFD). The analytical performance has been successfully demonstrated. Furthermore, in the present work, the environmental friendliness of the procedure has been quantified by means of the implementation of the carbon footprint calculation of the analytical procedure and the comparison with other methodologies previously reported. Under the optimum conditions, the method presents good linearity over the range assayed, 0.05-10μg/L for irgarol-1051 and 0.7-10μg/L for diuron. The LODs were 0.015μg/L and 0.2μg/L for irgarol-1051 and diuron, respectively. Precision was also satisfactory (relative standard deviation, RSDcarbon footprint values for the proposed procedure consolidate the operational efficiency (analytical and environmental performance) of in-tube SPME-CapLC-DAD, in general, and in particular for determining irgarol-1051 and diuron in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The potential role of carbon labeling in a green economy

    International Nuclear Information System (INIS)

    Cohen, Mark A.; Vandenbergh, Michael P.

    2012-01-01

    Over the past several years, labeling schemes that focus on a wide range of environmental and social metrics have proliferated. Although little empirical evidence has been generated yet with respect to carbon footprint labels, much can be learned from our experience with similar product labels. We first review the theory and evidence on the role of product labeling in affecting consumer and firm behavior. Next, we consider the role of governments and nongovernmental organizations, concluding that international, multistakeholder organizations have a critical part to play in setting protocols and standards. We argue that it is important to consider the entire life cycle of a product being labeled and develop an international standard for measurement and reporting. Finally, we examine the potential impact of carbon product labeling, discussing methodological and trade challenges and proposing a framework for choosing products best suited for labeling. - Highlights: ► Economic theory provides rationale for product information on carbon footprint. ► Small but growing evidence that labels will affect demand and product choice. ► International protocol using multi-stakeholder process is needed. ► Product priority should be based on life-cycle emissions and likely behavior changes. ► International trade law poses low risk for voluntary private carbon footprint labels.

  8. A Practical Guide for Physicians and Health Care Workers to Reduce Their Carbon Footprint in Daily Clinical Work.

    Science.gov (United States)

    Storz, Maximilian Andreas

    2018-03-12

    With Earth Overshoot Day having recently passed, there is no space for complacency regarding taking care of our planet. On August 2, 2017, humanity used nature's resource budget for the entire year. For decades, we have lived far beyond our means by overexploiting natural resources and spewing pollution, such as microplastics and industrial chemicals, into our environment. On the other hand, public awareness of human-induced climate change has also increased since the 1980s. The frequent media coverage about extreme weather conditions and natural disasters, such as Hurricane Irma in 2017, serves as an important reminder that anthropogenic climate change is happening now.Adverse health conditions associated with climate change include an increased prevalence of diseases and disorders. Although we all contribute to this development, as physicians we also have the privileged duty to protect global human health. Therefore, we should make every effort to cut down our own carbon footprint and adapt a more sustainable lifestyle.The aim of this commentary is to provide feasible tips and strategies to effectively reduce one's individual carbon footprint, with a special focus on daily clinical and hospital work. Not only are these strategies easy to implement in daily clinical routine, but most of them are associated with important health benefits.

  9. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.

    Science.gov (United States)

    Rodriguez-Caballero, A; Aymerich, I; Marques, Ricardo; Poch, M; Pijuan, M

    2015-03-15

    A continuous, on-line quantification of the nitrous oxide (N2O) emissions from a full-scale sequencing batch reactor (SBR) placed in a municipal wastewater treatment plant (WWTP) was performed in this study. In general, N2O emissions from the biological wastewater treatment system were 97.1 ± 6.9 g N2O-N/Kg [Formula: see text] consumed or 6.8% of the influent [Formula: see text] load. In the WWTP of this study, N2O emissions accounted for over 60% of the total carbon footprint of the facility, on average. Different cycle configurations were implemented in the SBR aiming at reaching acceptable effluent values. Each cycle configuration consisted of sequences of aerated and non-aerated phases of different time length being controlled by the ammonium set-point fixed. Cycles with long aerated phases showed the largest N2O emissions, with the consequent increase in carbon footprint. Cycle configurations with intermittent aeration (aerated phases up to 20-30 min followed by short anoxic phases) were proven to effectively reduce N2O emissions, without compromising nitrification performance or increasing electricity consumption. This is the first study in which a successful operational strategy for N2O mitigation is identified at full-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Integrating Role-Play with Case Study and Carbon Footprint Monitoring: A Transformative Approach to Enhancing Learners' Social Behavior for a More Sustainable Environment

    Science.gov (United States)

    Oliver, Simon

    2016-01-01

    Learners were separated into groups representing the interests of parties that typically negotiate environmental affairs in real world scenarios (conservationists, scientists, politicians, NGOs, stakeholders), and tasked with preparing role-play simulations using a variety of flipped learning techniques. Learners' carbon footprints were monitored…

  11. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems.

    Science.gov (United States)

    MacNeill, Andrea J; Lillywhite, Robert; Brown, Carl J

    2017-12-01

    Climate change is a major global public health priority. The delivery of health-care services generates considerable greenhouse gas emissions. Operating theatres are a resource-intensive subsector of health care, with high energy demands, consumable throughput, and waste volumes. The environmental impacts of these activities are generally accepted as necessary for the provision of quality care, but have not been examined in detail. In this study, we estimate the carbon footprint of operating theatres in hospitals in three health systems. Surgical suites at three academic quaternary-care hospitals were studied over a 1-year period in Canada (Vancouver General Hospital, VGH), the USA (University of Minnesota Medical Center, UMMC), and the UK (John Radcliffe Hospital, JRH). Greenhouse gas emissions were estimated using primary activity data and applicable emissions factors, and reported according to the Greenhouse Gas Protocol. Site greenhouse gas evaluations were done between Jan 1 and Dec 31, 2011. The surgical suites studied were found to have annual carbon footprints of 5 187 936 kg of CO 2 equivalents (CO 2 e) at JRH, 4 181 864 kg of CO 2 e at UMMC, and 3 218 907 kg of CO 2 e at VGH. On a per unit area basis, JRH had the lowest carbon intensity at 1702 kg CO 2 e/m 2 , compared with 1951 kg CO 2 e/m 2 at VGH and 2284 kg CO 2 e/m 2 at UMMC. Based on case volumes at all three sites, VGH had the lowest carbon intensity per operation at 146 kg CO 2 e per case compared with 173 kg CO 2 e per case at JRH and 232 kg CO 2 e per case at UMMC. Anaesthetic gases and energy consumption were the largest sources of greenhouse gas emissions. Preferential use of desflurane resulted in a ten-fold difference in anaesthetic gas emissions between hospitals. Theatres were found to be three to six times more energy-intense than the hospital as a whole, primarily due to heating, ventilation, and air conditioning requirements. Overall, the carbon footprint of surgery in the

  12. Carbon Footprint of Tree Nuts Based Consumer Products

    Directory of Open Access Journals (Sweden)

    Roberto Volpe

    2015-11-01

    Full Text Available This case study shows results of a calculation of carbon footprint (CFP resulting from the production of nuts added value products for a large consumer market. Nuts consumption is increasing in the world and so is the consumer awareness of the environmental impact of goods, hence the calculation of greenhouse gas (GHG emissions of food production is of growing importance for producers. Calculation of CO2eq emissions was performed for all stages of the production chain to the final retail point for flour, grains, paste, chocolate covered nuts and spreadable cream produced from almonds, pistachios and hazelnuts grown and transformed in Italy and for peanuts grown in Argentina and transformed in Italy. Data from literature was used to evaluate CFP of raw materials, emissions from transport and packing were calculated using existing models, while emissions deriving from transformation were calculated empirically by multiplying the power of production lines (electrical and/or thermal by its productivity. All values were reported in kg of CO2 equivalent for each kg of packed product (net weight. Resulting values ranged between 1.2 g of CO2/kg for a 100 g bag of almond to 4.8 g of CO2/kg for the 100 g bag of chocolate covered almond. The calculation procedure can be well used for similar cases of large consumer food productions.

  13. Measuring your water footprint: What's next in water strategy

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2008-01-01

    By now, carbon neutrality is such a catchphrase in the world of responsible business, it’s impossible to ignore the carbon footprint of a new product or service. But with the exception of a few companies like Coca-Cola, Nestlé and Suez, the concept of water neutrality, or measuring your water

  14. Surveying the Environmental Footprint of Urban Food Consumption

    DEFF Research Database (Denmark)

    Goldstein, Benjamin Paul; Birkved, Morten; Fernandez, John

    2017-01-01

    Assessments of urban metabolism (UM) are well situated to identify the scale, components, and direction of urban and energy flows in cities and have been instrumental in benchmarking and monitoring the key levers of urban environmental pressure, such as transport, space conditioning......, and electricity. Hitherto, urban food consumption has garnered scant attention both in UM accounting (typically lumped with “biomass”) and on the urban policy agenda, despite its relevance to local and global environmental pressures. With future growth expected in urban population and wealth, an accounting...... of the environmental footprint from urban food demand (“foodprint”) is necessary. This article reviews 43 UM assessments including 100 cities, and a total of 132 foodprints in terms of mass, carbon footprint, and ecological footprint and situates it relative to other significant environmental drivers (transport...

  15. Gate-to-Gate Life Cycle Assessment for Determining Carbon Footprint of Catalytic Converter Assembly Process

    Directory of Open Access Journals (Sweden)

    A. N. Mustfizul Karim

    2017-03-01

    Full Text Available With the pursuit of embracing the circular economy, having upward trend in vehicle sales and environmental concern, sustainability has become an imperative part of the global automotive manufacturing strategies. One of the tactics to achieve this sustainable goal is to conserve and enhance the resource base by salvaging the embedded values from end-of-life product and for which, the remanufacturing can be considered as one of the most prominent epitome. Even though many of the auto parts like engine, transmissions, starters, alternators and etc. have been assessed for remanufacturability since last few decades, being a major component of a car body the Catalytic Converter (CC still remains unfocused in literature. However, to examine the remanufacturability of CC, a comprehensive study for assessing its economic, social, and environmental impact is inevitable. Therefore, with an underlying aim of designing the remanufacturable CC, in this endeavour an attempt has made to evaluate the environmental impact of its welding operations by means of energy consumption through gate-to-gate life cycle assessment. Real life data are collected from a Local Malaysian CC manufacturer. The obtained results show that the welding section has a carbon footprint of 0.203 kgCO2e/unit with major emission coming from the plasma arc welding. In addition to that, it is also observed that the value of carbon footprint is not only sensitive to the emission factor and processing time, but also it is responsive to the nature of the processing operations. Certainly, this observation will motivate to change the product design from the prospect of remanufacturing.

  16. Integrating ecological, carbon and water footprint into a "footprint family" of indicators: Definition and role in tracking human pressure on the planet

    NARCIS (Netherlands)

    Galli, A.; Wiedmann, T.O.; Ercin, Ertug; Knoblauch, D.; Ewing, B.R.; Giljum, S.

    2012-01-01

    In recent years, attempts have been made to develop an integrated Footprint approach for the assessment of the environmental impacts of production and consumption. In this paper, we provide for the first time a definition of the “Footprint Family” as a suite of indicators to track human pressure on

  17. Energy footprint and carbon emission reduction using off-the-grid solar-powered mixing for lagoon treatment.

    Science.gov (United States)

    Jiang, Yuyuan; Bebee, Brian; Mendoza, Alvaro; Robinson, Alice K; Zhang, Xiaying; Rosso, Diego

    2018-01-01

    Mixing is the driver for the energy footprint of water resource recovery in lagoons. With the availability of solar-powered equipment, one potential measure to decrease the environmental impacts of treatment is to transition to an off-the-grid treatment. We studied the comparative scenarios of an existing grid-powered mixer and a solar-powered mixer. Testing was conducted to monitor the water quality, and to guarantee that the effluent concentrations were maintained equally between the two scenarios. Meanwhile, the energy consumption was recorded with the electrical energy monitor by the wastewater treatment utility, and the carbon emission changes were calculated using the emission intensity of the power utility. The results show that after the replacement, both energy usage and energy costs were significantly reduced, with the energy usage having decreased by 70% and its cost by 47%. Additionally, carbon-equivalent emission from electricity importation dropped by 64%, with an effect on the overall carbon emissions (i.e., including all other contributions from the process) decreasing from 3.8% to 1.5%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Carbon footprint of Canadian dairy products: calculations and issues.

    Science.gov (United States)

    Vergé, X P C; Maxime, D; Dyer, J A; Desjardins, R L; Arcand, Y; Vanderzaag, A

    2013-09-01

    The Canadian dairy sector is a major industry with about 1 million cows. This industry emits about 20% of the total greenhouse gas (GHG) emissions from the main livestock sectors (beef, dairy, swine, and poultry). In 2006, the Canadian dairy herd produced about 7.7 Mt of raw milk, resulting in about 4.4 Mt of dairy products (notably 64% fluid milk and 12% cheese). An integrated cradle-to-gate model (field to processing plant) has been developed to estimate the carbon footprint (CF) of 11 Canadian dairy products. The on-farm part of the model is the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES). It considers all GHG emissions associated with livestock production but, for this study, it was run for the dairy sector specifically. Off-farm GHG emissions were estimated using the Canadian Food Carbon Footprint calculator, (cafoo)(2)-milk. It considers GHG emissions from the farm gate to the exit gate of the processing plants. The CF of the raw milk has been found lower in western provinces [0.93 kg of CO2 equivalents (CO2e)/L of milk] than in eastern provinces (1.12 kg of CO2e/L of milk) because of differences in climate conditions and dairy herd management. Most of the CF estimates of dairy products ranged between 1 and 3 kg of CO2e/kg of product. Three products were, however, significantly higher: cheese (5.3 kg of CO2e/kg), butter (7.3 kg of CO2e/kg), and milk powder (10.1 kg of CO2e/kg). The CF results depend on the milk volume needed, the co-product allocation process (based on milk solids content), and the amount of energy used to manufacture each product. The GHG emissions per kilogram of protein ranged from 13 to 40 kg of CO2e. Two products had higher values: cream and sour cream, at 83 and 78 kg of CO2e/kg, respectively. Finally, the highest CF value was for butter, at about 730 kg of CO2e/kg. This extremely high value is due to the fact that the intensity indicator per kilogram of product is high and that butter is almost exclusively

  19. Can carbon footprint serve as proxy of the environmental burden from urban consumption patterns?

    DEFF Research Database (Denmark)

    Kalbar, Pradip; Birkved, Morten; Karmakar, Subhankar

    2017-01-01

    (covering consumption of materials for the construction of dwellings) and use of energy in terms of thermal energy, and electricity. The results for the individual consumption components showed a strong correlation between CFP and nearly all other impact indicators for all the applied LCIA methods However...... urbanized areas. Applying four different Life Cycle Impact Assessment (LCIA) methods environmental impact profiles were determined for the consumption patterns of 1281 Danish urban residents. Six main consumption components were distinguished including road transport, air travel, food, accommodation......Carbon footprint (CFP) is widely applied as an indicator when assessing environmental sustainability of products and services. The objective of the present study is to evaluate the validity of CFP as overall environmental indicator for representing the environmental burden of residents from...

  20. Dinosaur footprints in the Upper Turonian-Coniacian limestone in the Krnica Bay (NE Istria, Croatia

    Directory of Open Access Journals (Sweden)

    Alenka Mauko

    2003-06-01

    Full Text Available Three isolated footprints and one trackway that can be attributed to bipedal dinosaur, from a limestone bed in vicinity of Požara promontory, Krnica Bay, are described. According to the stratigraphic position the footprints are late Turonian to Coniacian in age.This is the first record of dinosaur remains in the Turonian-Coniacian and the youngest footprint site on the Adriatic-Dinaric Carbonate Platform described thus far.

  1. The environmental cost of subsistence: Optimizing diets to minimize footprints

    International Nuclear Information System (INIS)

    Gephart, Jessica A.; Davis, Kyle F.; Emery, Kyle A.; Leach, Allison M.; Galloway, James N.; Pace, Michael L.

    2016-01-01

    The question of how to minimize monetary cost while meeting basic nutrient requirements (a subsistence diet) was posed by George Stigler in 1945. The problem, known as Stigler's diet problem, was famously solved using the simplex algorithm. Today, we are not only concerned with the monetary cost of food, but also the environmental cost. Efforts to quantify environmental impacts led to the development of footprint (FP) indicators. The environmental footprints of food production span multiple dimensions, including greenhouse gas emissions (carbon footprint), nitrogen release (nitrogen footprint), water use (blue and green water footprint) and land use (land footprint), and a diet minimizing one of these impacts could result in higher impacts in another dimension. In this study based on nutritional and population data for the United States, we identify diets that minimize each of these four footprints subject to nutrient constraints. We then calculate tradeoffs by taking the composition of each footprint's minimum diet and calculating the other three footprints. We find that diets for the minimized footprints tend to be similar for the four footprints, suggesting there are generally synergies, rather than tradeoffs, among low footprint diets. Plant-based food and seafood (fish and other aquatic foods) commonly appear in minimized diets and tend to most efficiently supply macronutrients and micronutrients, respectively. Livestock products rarely appear in minimized diets, suggesting these foods tend to be less efficient from an environmental perspective, even when nutrient content is considered. The results' emphasis on seafood is complicated by the environmental impacts of aquaculture versus capture fisheries, increasing in aquaculture, and shifting compositions of aquaculture feeds. While this analysis does not make specific diet recommendations, our approach demonstrates potential environmental synergies of plant- and seafood-based diets. As a result, this study

  2. The environmental cost of subsistence: Optimizing diets to minimize footprints

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, Jessica A.; Davis, Kyle F. [University of Virginia, Department of Environmental Sciences, 291 McCormick Road, Charlottesville, VA 22904 (United States); Emery, Kyle A. [University of Virginia, Department of Environmental Sciences, 291 McCormick Road, Charlottesville, VA 22904 (United States); University of California, Santa Barbara. Marine Science Institute, Santa Barbara, CA 93106 (United States); Leach, Allison M. [University of New Hampshire, 107 Nesmith Hall, 131 Main Street, Durham, NH, 03824 (United States); Galloway, James N.; Pace, Michael L. [University of Virginia, Department of Environmental Sciences, 291 McCormick Road, Charlottesville, VA 22904 (United States)

    2016-05-15

    The question of how to minimize monetary cost while meeting basic nutrient requirements (a subsistence diet) was posed by George Stigler in 1945. The problem, known as Stigler's diet problem, was famously solved using the simplex algorithm. Today, we are not only concerned with the monetary cost of food, but also the environmental cost. Efforts to quantify environmental impacts led to the development of footprint (FP) indicators. The environmental footprints of food production span multiple dimensions, including greenhouse gas emissions (carbon footprint), nitrogen release (nitrogen footprint), water use (blue and green water footprint) and land use (land footprint), and a diet minimizing one of these impacts could result in higher impacts in another dimension. In this study based on nutritional and population data for the United States, we identify diets that minimize each of these four footprints subject to nutrient constraints. We then calculate tradeoffs by taking the composition of each footprint's minimum diet and calculating the other three footprints. We find that diets for the minimized footprints tend to be similar for the four footprints, suggesting there are generally synergies, rather than tradeoffs, among low footprint diets. Plant-based food and seafood (fish and other aquatic foods) commonly appear in minimized diets and tend to most efficiently supply macronutrients and micronutrients, respectively. Livestock products rarely appear in minimized diets, suggesting these foods tend to be less efficient from an environmental perspective, even when nutrient content is considered. The results' emphasis on seafood is complicated by the environmental impacts of aquaculture versus capture fisheries, increasing in aquaculture, and shifting compositions of aquaculture feeds. While this analysis does not make specific diet recommendations, our approach demonstrates potential environmental synergies of plant- and seafood-based diets. As a result

  3. Potential for improving the carbon footprint of butter and blend products

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    2011-01-01

    cycle assessment was used to account for all greenhouse gas emissions from cow to consumer. A critical aspect when calculating the CF is how emissions are allocated between different products. Here, allocation of raw milk between products was based on a weighted fat and protein content (1:1.7), based...... on the price paid for raw milk to dairy farmers. The CF (expressed as carbon dioxide equivalents, CO2e) for 1 kg of butter or blend (assuming no product waste at consumer) ranged from 5.2 kg (blend with 60% fat content) to 9.3 kg of CO2e (butter in 250-g tub). When including product waste at the consumer level...... footprint (CF) of butter and dairy blend products, with the focus on fat content and size and type of packaging (including product waste at the consumer level). The products analyzed were butter with 80% fat in 250-g wrap, 250-g tub, and 10-g mini tub, and blends with 80% and 60% fat in 250-g tubs. Life...

  4. Environmental impact of an Italian wine bottle: Carbon and water footprint assessment.

    Science.gov (United States)

    Bonamente, Emanuele; Scrucca, Flavio; Rinaldi, Sara; Merico, Maria Cleofe; Asdrubali, Francesco; Lamastra, Lucrezia

    2016-08-01

    The food sector represents one of the major impacting sectors from an environmental point of view and, among all the products, wine emerges as one of the most studied by the literature. Single-issue approaches are commonly used, but a more comprehensive analysis is desirable, since a single indicator does not properly track the pressure on the environment. This paper presents a combined carbon and water footprint assessment, with a cradle to grave approach, for a protected designation of origin Italian red wine, and suggests a correlation among the two indicators across the life cycle phases. A total CF equal to 1.07±0.09kgCO2eq/bottle and a total WF equal to 580±30l/bottle were calculated for the studied product and a direct proportionality was found between the total CF and the sum of WFgrey(indirect) and WFblue. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    Science.gov (United States)

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment

  6. Assessing potential impacts of phosphate precipitation on nitrous oxide emissions and the carbon footprint of wastewater treatment plants.

    Science.gov (United States)

    Kosse, Pascal; Lübken, Manfred; Schmidt, Torsten C; Lange, Ruben-Laurids; Wichern, Marc

    2018-02-15

    Metal salts are widely used for the precipitation of phosphorus during wastewater treatment transforming soluble orthophosphate to an insoluble salt. In practice, more complex reactions are taking place including a reduction of the chemical solubility of dissolved greenhouse gases, such as nitrous oxide, present in the wastewater stream. In this respect, it was postulated that phosphorous precipitation will lead to artificial N 2 O stripping and hence to an increased carbon footprint of wastewater treatment plants. From lab-scale experiments utilizing N 2 O-saturated synthetic sewage solutions, it was evidenced that metal salt addition leads to N 2 O stripping with 20.8 g N 2 O per liter for a FeCl 2 -based precipitant to 26.4 g N 2 O per liter for a Al n (OH) m Cl3 n-m -based precipitant. Taking this maximum potential stripping effect into account for a carbon footprint analysis, a potential contribution of 16.11 kg CO 2,eq ·PE -1 ·a -1 was calculated in a case study, where FeCl 3 was considered. With respect to the defined system boundary conditions, the overall on-site and off-site CO 2 emissions were raised by 34% from 46.87 kg CO 2,eq ·PE -1 ·a -1 to 62.97 kg CO 2,eq ·PE -1 ·a -1 through CO 2,eq coming from phosphorous precipitation.

  7. Our building is smarter than your building: The use of competitive rivalry to reduce energy consumption and linked carbon footprint

    OpenAIRE

    Carolyn McGibbon; Jacques Ophoff; Jean-Paul Van Belle

    2014-01-01

    This research is located within the smart city discourse and explores the linkage between smart buildings and an intelligent community, employing the University of Cape Town as a case study. It is also situated within the research stream of Green Information Systems, which examines the confluence between technology, people, data and processes, in order to achieve environmental objectives such as reduced energy consumption and its associated carbon footprint. Since approximately 80% of a unive...

  8. Ability of carbon footprint to reflect the environmental burden of a product or service – an empirical study

    DEFF Research Database (Denmark)

    Laurent, Alexis; Olsen, Stig Irving; Hauschild, Michael Zwicky

    arise if one decides to expand the outlook to include other environmental impacts, which are commonly evaluated in Life Cycle Assessments (LCA). In that perspective, over 500 products/services and two concrete cases are investigated, using the EDIP-methodology and the USEtoxTM-based toxicity......-related impacts, each one updated with the latest set of characterization factors and with normalization references for the emission year 2004. Outcome of the study shows that carbon footprinting coincides well with the LCA-based global warming assessment, though divergences rise whenever NMVOC show a significant...

  9. Ecological Pressure of Carbon Footprint in Passenger Transport: Spatio-Temporal Changes and Regional Disparities

    Directory of Open Access Journals (Sweden)

    Fei Ma

    2018-01-01

    Full Text Available Passenger transport has become a significant producer of carbon emissions in China, thus strongly contributing to climate change. In this paper, we first propose a model of ecological pressure of the carbon footprint in passenger transport (EPcfpt. In the model, the EPcfpt values of all the provinces and autonomous regions of China are calculated and analyzed during the period of 2006–2015. For the outlier EPcfpt values of Beijing, Shanghai and Tianjin, the research areas are classified into two scenarios: the first scenario (all the provinces and autonomous regions and the second scenario (not including Beijing, Shanghai and Tianjin. The global spatial autocorrelation analysis of the first scenario shows that the EPcfpt might be randomly distributed, while it shows positive spatial autocorrelation in the second scenario. Furthermore, we carry out the local spatial autocorrelation analysis of the second scenario, and find that the low aggregation areas are the most common type and are mainly located in the west of China. Then the disparities in EPcfpt between China’s Eight Comprehensive Economic Zones are further analyzed. Finally, we put forward a number of policy recommendations in relation to the spatio-temporal changes and the regional disparities of EPcfpt in China. This study provides related references for proposing effective policy measures to reduce the ecological pressure of carbon emissions from the passenger transport sector.

  10. ADDRESSING WATER FOOTPRINT CONCEPT: A DEMONSTRABLE STRATEGY FOR PAPERMAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    Jing Shen,

    2012-05-01

    Full Text Available Since the introduction of the water footprint concept in 2002, in the context of humankind’s ever-increasing awareness of the valuable global freshwater resources, it has received more and more attention. The application of this relatively new concept has been expected to provide ecological and environmental benefits. For the water-intensive papermaking industry, it seems that water footprint needs to be addressed. The water footprint of cellulosic paper can be divided into three components, including its green water footprint, blue water footprint, and grey water footprint, which may be accounted for by considering the individual contributions of wood or non-wood materials, pulp production processes, effluent discharge to the receiving water bodies, process chemicals and additives, energy consumption, etc. In the literature, the accounting of water footprint during the whole production chain of cellulosic paper is already available, and relevant research findings can provide useful insights into the application of the concept; however, further development of the accounting methodologies is much needed, so that the quantitative and qualitative evaluation of water footprint can be internationally recognized, certified, and standardized. Although there are ongoing or upcoming debates and challenges associated with the concept, its application to papermaking industry may be expected to provide various encouraging possibilities and impacts.

  11. A comparison of footprint indexes calculated from ink and electronic footprints.

    Science.gov (United States)

    Urry, S R; Wearing, S C

    2001-04-01

    Pressure platforms offer the potential to measure and record electronic footprints rapidly; however, the accuracy of geometric indexes derived from these prints has not been investigated. A comparison of conventional ink footprints with simultaneously acquired electronic prints revealed significant differences in several geometric indexes. The contact area was consistently underestimated by the electronic prints and resulted in a significant change in the arch index. The long plantar angle was poorly correlated between techniques. This study demonstrated that electronic footprints, derived from a pressure platform, are not representative of the equivalent ink footprints and, consequently, should not be interpreted with reference to literature on conventional footprints.

  12. Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil

    International Nuclear Information System (INIS)

    Lathuillière, Michael J; Johnson, Mark S; Galford, Gillian L; Couto, Eduardo G

    2014-01-01

    Mato Grosso has become the center of Brazil’s soybean industry, with production located across an agricultural frontier expanding into savanna and rainforest biomes. We present environmental footprints of soybean production in Mato Grosso and resource flows accompanying exports to China and Europe for the 2000s using five indicators: deforestation, land footprint (LF), carbon footprint (CF), water footprint (WF), and nutrient footprints. Soybean production was associated with 65% of the state’s deforestation, and 14–17% of total Brazilian land use change carbon emissions. The decade showed two distinct production systems illustrated by resources used in the first and second half of the decade. Deforestation and carbon footprint declined 70% while land, water, and nutrient footprints increased almost 30% between the two periods. These differences coincided with a shift in Mato Grosso’s export destination. Between 2006 and 2010, China surpassed Europe in soybean imports when production was associated with 97 m 2 deforestation yr −1 ton −1 of soybean, a LF of 0.34 ha yr −1 ton −1 , a carbon footprint of 4.6 ton CO 2 -eq yr −1 ton −1 , a WF of 1908 m 3 yr −1 ton −1 , and virtual phosphorous and potassium of 5.0 kg P yr −1 ton −1 and 0.0042 g K yr −1 ton −1 . Mato Grosso constructs soil fertility via phosphorous and potassium fertilizer sourced from third party countries and imported into the region. Through the soybean produced, Mato Grosso then exports both water derived from its abundant, seasonal precipitation and nutrients obtained from fertilizer. In 2010, virtual water flows were 10.3 km 3 yr −1 to China and 4.1 km 3 yr −1 to Europe. The total embedded nutrient flows to China were 2.12 Mtons yr −1 and 2.85 Mtons yr −1 to Europe. As soybean production grows with global demand, the role of Mato Grosso’s resource use and production vulnerabilities highlight the challenges with meeting future international food security needs

  13. The greenhouse emissions footprint of free-range eggs.

    Science.gov (United States)

    Taylor, R C; Omed, H; Edwards-Jones, G

    2014-01-01

    Eggs are an increasingly significant source of protein for human consumption, and the global poultry industry is the single fastest-growing livestock sector. In the context of international concern for food security and feeding an increasingly affluent human population, the contribution to global greenhouse-gas (GHG) emissions from animal protein production is of critical interest. We calculated the GHG emissions footprint for the fastest-growing sector of the UK egg market: free-range production in small commercial units on mixed farms. Emissions are calculated to current Intergovernmental Panel on Climate Change and UK standards (PAS2050): including direct, indirect, and embodied emissions from cradle to farm gate compatible with a full product life-cycle assessment. We present a methodology for the allocation of emissions between ruminant and poultry enterprises on mixed farms. Greenhouse gas emissions averaged a global warming potential of 2.2 kg of CO2e/dozen eggs, or 1.6 kg of CO2equivalent (e)/kg (assuming average egg weight of 60 g). One kilogram of protein from free-range eggs produces 0.2 kg of CO2e, lower than the emissions from white or red meat (based on both kg of meat and kg of protein). Of these emissions, 63% represent embodied carbon in poultry feed. A detailed GHG emissions footprint represents a baseline for comparison with other egg production systems and sources of protein for human consumption. Eggs represent a relatively low-carbon supply of animal protein, but their production is heavily dependent on cereals and soy, with associated high emissions from industrial nitrogen production, land-use change, and transport. Alternative sources of digestible protein for poultry diets are available, may be produced from waste processing, and would be an effective tool for reducing the industry's GHG emissions and dependence on imported raw materials.

  14. Trends and Consumption Structures of China’s Blue and Grey Water Footprint

    Directory of Open Access Journals (Sweden)

    Huixiao Wang

    2018-04-01

    Full Text Available Water footprint has become a common method to study the water resources utilization in recent years. By using input–output analysis and dilution theory, the internal water footprint, blue water footprint and grey water footprint of China from 2002 to 2012 were estimated, and the consumption structure of water footprint and virtual water trade were analyzed. The results show: (1 From 2002 to 2012, the average annual internal water footprint was 3.83 trillion m3 in China, of which the blue water footprint was 0.25 trillion m3, and the grey water footprint was 3.58 trillion m3 (with Grade III water standard accounting; both the internal water footprint and grey water footprint experienced decreasing trends from 2002 to 2012, except for a dramatic increase in 2010; (2 Average annual virtual blue water footprint was the greatest in agriculture (39.2%, while tertiary industry (27.5% and food and tobacco processing (23.7% were the top two highest for average annual virtual grey water footprint; (3 Virtual blue water footprint in most sectors showed increasing trends due to the increase of final demand, while virtual grey water footprint in most sectors showed decreasing trends due to the decreases of total return water coefficients and conversion coefficients of virtual grey water footprint; (4 For water resources, China was self-reliant: the water used for producing the products and services to meet domestic consumption was taken domestically; meanwhile, China exported virtual water to other countries, which aggravated the water stress in China.

  15. Footprint Representation of Planetary Remote Sensing Data

    Science.gov (United States)

    Walter, S. H. G.; Gasselt, S. V.; Michael, G.; Neukum, G.

    The geometric outline of remote sensing image data, the so called footprint, can be represented as a number of coordinate tuples. These polygons are associated with according attribute information such as orbit name, ground- and image resolution, solar longitude and illumination conditions to generate a powerful base for classification of planetary experiment data. Speed, handling and extended capabilites are the reasons for using geodatabases to store and access these data types. Techniques for such a spatial database of footprint data are demonstrated using the Relational Database Management System (RDBMS) PostgreSQL, spatially enabled by the PostGIS extension. Exemplary, footprints of the HRSC and OMEGA instruments, both onboard ESA's Mars Express Orbiter, are generated and connected to attribute information. The aim is to provide high-resolution footprints of the OMEGA instrument to the science community for the first time and make them available for web-based mapping applications like the "Planetary Interactive GIS-on-the-Web Analyzable Database" (PIG- WAD), produced by the USGS. Map overlays with HRSC or other instruments like MOC and THEMIS (footprint maps are already available for these instruments and can be integrated into the database) allow on-the-fly intersection and comparison as well as extended statistics of the data. Footprint polygons are generated one by one using standard software provided by the instrument teams. Attribute data is calculated and stored together with the geometric information. In the case of HRSC, the coordinates of the footprints are already available in the VICAR label of each image file. Using the VICAR RTL and PostgreSQL's libpq C library they are loaded into the database using the Well-Known Text (WKT) notation by the Open Geospatial Consortium, Inc. (OGC). For the OMEGA instrument, image data is read using IDL routines developed and distributed by the OMEGA team. Image outlines are exported together with relevant attribute

  16. High Speed Rail: Implications for carbon emissions and biodiversity

    DEFF Research Database (Denmark)

    Cornet, Yannick; Dudley, Geoffrey; Banister, David

    2017-01-01

    Rail has traditionally been seen as ‘good’ for the environment, as it is fast and efficient with a low carbon footprint. With respect to HS2 in the UK, new environmental debates have arisen over the competing global objectives of reducing the carbon footprint of HSR and the need to maintain and e...... levels of carbon emissions and biodiversity loss.......Rail has traditionally been seen as ‘good’ for the environment, as it is fast and efficient with a low carbon footprint. With respect to HS2 in the UK, new environmental debates have arisen over the competing global objectives of reducing the carbon footprint of HSR and the need to maintain...

  17. Heel–Ball index: An analysis of footprint dimensions for determination of sex

    Directory of Open Access Journals (Sweden)

    Tanuj Kanchan

    2014-06-01

    Full Text Available Determination of sex from the footprints recovered at crime scenes can help the investigation by narrowing down the pool of possible suspects. The present research studies the dimensions of the heel and the ball in footprints, and derives the Heel–Ball (HB index from these foot dimensions with the aim to find out if the foot dimensions and the HB index exhibit sexual dimorphisms. The study was carried out on 100 individuals (50 males, 50 females of Indian origin. Footprints were obtained from both feet of the study participants using standard techniques. Thus, a total of 200 footprints were obtained. The breadth of the footprint at ball (BBAL and the breadth of the footprint at heel (BHEL were measured on the footprints. The HB index was derived as (BHEL ÷ BBAL × 100. The footprint measurements at the ball and heel were significantly larger in males on both the sides. Likewise, the derived HB index was larger in males in both feet, but the sex differences were not statistically significant. The study concludes that though footprint dimensions can be used in the determination of sex, the HB index may not be utilized in sex determination from footprints.

  18. Farm and product carbon footprints of China's fruit production--life cycle inventory of representative orchards of five major fruits.

    Science.gov (United States)

    Yan, Ming; Cheng, Kun; Yue, Qian; Yan, Yu; Rees, Robert M; Pan, Genxing

    2016-03-01

    Understanding the environmental impacts of fruit production will provide fundamental information for policy making of fruit consumption and marketing. This study aims to characterize the carbon footprints of China's fruit production and to figure out the key greenhouse gas emissions to cut with improved orchard management. Yearly input data of materials and energy in a full life cycle from material production to fruit harvest were obtained via field visits to orchards of five typical fruit types from selected areas of China. Carbon footprint (CF) was assessed with quantifying the greenhouse gas emissions associated with the individual inputs. Farm and product CFs were respectively predicted in terms of land use and of fresh fruit yield. Additionally, product CFs scaled by fruit nutrition value (vitamin C (Vc) content) and by the economic benefit from fruit production were also evaluated. The estimated farm CF ranged from 2.9 to 12.8 t CO2-eq ha(-1) across the surveyed orchards, whereas the product CF ranged from 0.07 to 0.7 kg CO2-eq kg(-1) fruit. While the mean product CFs of orange and pear were significantly lower than those of apple, banana, and peach, the nutrition-scaled CF of orange (0.5 kg CO2-eq g(-1) Vc on average) was significantly lower than others (3.0-5.9 kg CO2-eq g(-1) Vc). The income-scaled CF of orange and pear (1.20 and 1.01 kg CO2-eq USD(-1), respectively) was higher than apple, banana, and peach (0.87~0.39 kg CO2-eq USD(-1)). Among the inputs, synthetic nitrogen fertilizer contributed by over 50 % to the total greenhouse gas (GHG) emissions, varying among the fruit types. There were some tradeoffs in product CFs between fruit nutrition value and fruit growers' income. Low carbon production and consumption policy and marketing mechanism should be developed to cut down carbon emissions from fruit production sector, with balancing the nutrition value, producer's income, and climate change mitigation.

  19. Carbon footprint of biofuels: towards a consideration of indirect land use changes

    International Nuclear Information System (INIS)

    Vergez, Antonin; Blanquet, Pascal; Guibert, Olivier de; Bonnet, Xavier

    2013-03-01

    The purpose of this article is to detail the carbon footprint of biofuels and to show the mechanisms and impacts of indirect land use changes (ILUC), which are linked to the production of first generation biofuels. Two studies, finalized in France in 2012, confirm the importance of ILUC linked to biofuel development in France and the European Union, and converge with the European Commission research. Despite of some methodological difficulties to quantify this phenomenon, it appears necessary to take ILUC into account when deciding on public policies that encourage production of biofuels. To combat ILUC the European Commission has considered four strategies that we analyze and compare within this article. In October 2012 the European Commission proposed to take into account estimated ILUC values when evaluating biofuels, in order to limit the share of first generation biofuels in the European objectives and to encourage the development of second generation biofuels, which do not interfere with world food production. This legislative proposal is subject to debate during the first half of 2013 under the Irish Presidency of the European Council. (authors)

  20. Spotting Cheetahs: Identifying Individuals by Their Footprints.

    Science.gov (United States)

    Jewell, Zoe C; Alibhai, Sky K; Weise, Florian; Munro, Stuart; Van Vuuren, Marlice; Van Vuuren, Rudie

    2016-05-01

    The cheetah (Acinonyx jubatus) is Africa's most endangered large felid and listed as Vulnerable with a declining population trend by the IUCN(1). It ranges widely over sub-Saharan Africa and in parts of the Middle East. Cheetah conservationists face two major challenges, conflict with landowners over the killing of domestic livestock, and concern over range contraction. Understanding of the latter remains particularly poor(2). Namibia is believed to support the largest number of cheetahs of any range country, around 30%, but estimates range from 2,905(3) to 13,520(4). The disparity is likely a result of the different techniques used in monitoring. Current techniques, including invasive tagging with VHF or satellite/GPS collars, can be costly and unreliable. The footprint identification technique(5) is a new tool accessible to both field scientists and also citizens with smartphones, who could potentially augment data collection. The footprint identification technique analyzes digital images of footprints captured according to a standardized protocol. Images are optimized and measured in data visualization software. Measurements of distances, angles, and areas of the footprint images are analyzed using a robust cross-validated pairwise discriminant analysis based on a customized model. The final output is in the form of a Ward's cluster dendrogram. A user-friendly graphic user interface (GUI) allows the user immediate access and clear interpretation of classification results. The footprint identification technique algorithms are species specific because each species has a unique anatomy. The technique runs in a data visualization software, using its own scripting language (jsl) that can be customized for the footprint anatomy of any species. An initial classification algorithm is built from a training database of footprints from that species, collected from individuals of known identity. An algorithm derived from a cheetah of known identity is then able to classify

  1. Spotting Cheetahs: Identifying Individuals by Their Footprints

    Science.gov (United States)

    Jewell, Zoe C.; Alibhai, Sky K.; Weise, Florian; Munro, Stuart; Van Vuuren, Marlice; Van Vuuren, Rudie

    2016-01-01

    The cheetah (Acinonyx jubatus) is Africa's most endangered large felid and listed as Vulnerable with a declining population trend by the IUCN1. It ranges widely over sub-Saharan Africa and in parts of the Middle East. Cheetah conservationists face two major challenges, conflict with landowners over the killing of domestic livestock, and concern over range contraction. Understanding of the latter remains particularly poor2. Namibia is believed to support the largest number of cheetahs of any range country, around 30%, but estimates range from 2,9053 to 13,5204. The disparity is likely a result of the different techniques used in monitoring. Current techniques, including invasive tagging with VHF or satellite/GPS collars, can be costly and unreliable. The footprint identification technique5 is a new tool accessible to both field scientists and also citizens with smartphones, who could potentially augment data collection. The footprint identification technique analyzes digital images of footprints captured according to a standardized protocol. Images are optimized and measured in data visualization software. Measurements of distances, angles, and areas of the footprint images are analyzed using a robust cross-validated pairwise discriminant analysis based on a customized model. The final output is in the form of a Ward's cluster dendrogram. A user-friendly graphic user interface (GUI) allows the user immediate access and clear interpretation of classification results. The footprint identification technique algorithms are species specific because each species has a unique anatomy. The technique runs in a data visualization software, using its own scripting language (jsl) that can be customized for the footprint anatomy of any species. An initial classification algorithm is built from a training database of footprints from that species, collected from individuals of known identity. An algorithm derived from a cheetah of known identity is then able to classify free

  2. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada

    Science.gov (United States)

    Vergé, Xavier P.C.; Dyer, James A.; Worth, Devon E.; Smith, Ward N.; Desjardins, Raymond L.; McConkey, Brian G.

    2012-01-01

    Simple Summary We developed a model to estimate the carbon footprint of Canadian livestock production. To include long term soil carbon storage and loss potential we introduced a payback period concept. The model was tested by reallocating 10% only of the protein production from a ruminant to a non ruminant source to minimize the risk of including rangeland or marginal lands. This displacement generated residual land which was found to play a major role in the potential mitigation of GHG emissions. The model will allow land use policies aimed at reducing the agricultural GHG emissions to be assessed. Abstract To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture. PMID:26487032

  3. Global mining risk footprint of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum in Japan.

    Science.gov (United States)

    Nansai, Keisuke; Nakajima, Kenichi; Kagawa, Shigemi; Kondo, Yasushi; Shigetomi, Yosuke; Suh, Sangwon

    2015-02-17

    Meeting the 2-degree global warming target requires wide adoption of low-carbon energy technologies. Many such technologies rely on the use of precious metals, however, increasing the dependence of national economies on these resources. Among such metals, those with supply security concerns are referred to as critical metals. Using the Policy Potential Index developed by the Fraser Institute, this study developed a new footprint indicator, the mining risk footprint (MRF), to quantify the mining risk directly and indirectly affecting a national economy through its consumption of critical metals. We formulated the MRF as a product of the material footprint (MF) of the consuming country and the mining risks of the countries where the materials are mined. A case study was conducted for the 2005 Japanese economy to determine the MF and MRF for three critical metals essential for emerging energy technologies: neodymium, cobalt and platinum. The results indicate that in 2005 the MFs generated by Japanese domestic final demand, that is, the consumption-based metal output of Japan, were 1.0 × 10(3) t for neodymium, 9.4 × 10(3) t for cobalt, and 2.1 × 10 t for platinum. Export demand contributes most to the MF, accounting for 3.0 × 10(3) t, 1.3 × 10(5) t, and 3.1 × 10 t, respectively. The MRFs of Japanese total final demand (domestic plus export) were calculated to be 1.7 × 10 points for neodymium, 4.5 × 10(-2) points for cobalt, and 5.6 points for platinum, implying that the Japanese economy is incurring a high mining risk through its use of neodymium. This country's MRFs are all dominated by export demand. The paper concludes by discussing the policy implications and future research directions for measuring the MFs and MRFs of critical metals. For countries poorly endowed with mineral resources, adopting low-carbon energy technologies may imply a shifting of risk from carbon resources to other natural resources, in particular critical metals, and a trade

  4. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    International Nuclear Information System (INIS)

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.

    2011-01-01

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II λ6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s –1 ) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22 +10 –6% of SNe Ia exhibit spectroscopic C II signatures as late as –5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II λ6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  5. Exceptional preservation of children's footprints from a Holocene footprint site in Namibia

    Science.gov (United States)

    Bennett, Matthew R.; Morse, Sarita A.; Liutkus-Pierce, Cynthia; McClymont, Juliet; Evans, Mary; Crompton, Robin H.; Francis Thackeray, J.

    2014-09-01

    Here we report on a Holocene inter-dune site close to Walvis Bay (Namibia) which contains exceptionally well-preserved children's footprints. The footprint surface is dated using Optically Stimulated Luminescence (OSL) methods to approximately 1.5 ka. These dates are compared to those obtained at nearby footprint sites and used to verify a model of diachronous footprint surfaces and also add to the archaeological data available for the communities that occupied these near-coastal areas during the Holocene. This model of diachronous footprint surfaces has implications for other soft-sediment footprint sites such as the 1.5 Ma old footprints at Ileret (Kenya). The distribution of both human and animal tracks, is consistent with the passage of small flock of small ungulates (probably sheep/goats) followed by a group of approximately 9 ± 2 individuals (children or young adults). Age estimates from the tracks suggest that some of the individuals may have been as young as five years old. Variation in track topology across this sedimentologically uniform surface is explained in terms of variations in gait and weight/stature of the individual print makers and is used to corroborate a model of footprint morphology developed at a nearby site. The significance of the site within the literature on human footprints lies in the quality of the track preservation, their topological variability despite a potentially uniform substrate, and the small size of the tracks, and therefore the inferred young age of the track-makers. The site provides an emotive insight into the life of the track-makers.

  6. Water Footprint Symposium: where next for water footprint and water assessment methodology?

    NARCIS (Netherlands)

    Tillotson, M.R.; Kiu, J.; Guan, D.; Wu, P.; Zhao, Xu; Zhang, Guoping; Pfister, S.; Pahlow, Markus

    2014-01-01

    Recognizing the need for a comprehensive review of the tools and metrics for the quantification and assessment of water footprints, and allowing for the opportunity for open discussion on the challenges and future of water footprinting methodology, an international symposium on water footprint was

  7. Water Footprint Symposium : where next for water footprint and water assessment methodology?

    NARCIS (Netherlands)

    Tillotson, Martin R.; Liu, Junguo; Guan, Dabo; Wu, Pute; Zhao, Xu; Zhang, Guoping; Pfister, Stephan; Pahlow, Markus

    2014-01-01

    Recognizing the need for a comprehensive review of the tools and metrics for the quantification and assessment of water footprints, and allowing for the opportunity for open discussion on the challenges and future of water footprinting methodology, an international symposium on water footprint was

  8. Improving odour assessment in LCA—the odour footprint

    DEFF Research Database (Denmark)

    Peters, Gregory M.; Murphy, Kathleen R.; Adamsen, Anders Peter S.

    2014-01-01

    in the life cycle assessment (LCA) community. This article aims to redress this. Results and discussion: We produced a list of 33 linear characterisation factors based on hydrogen sulphide equivalents, analogous to the linear carbon dioxide equivalency factors in use in carbon footprinting...... assessment in LCA. Unlike it, the method presented here considers the persistence of odourants. Over time, we hope to increase the number of characterised odourants, enabling analysts to perform simple site-generic LCA on systems with odourant emissions. Methods: Firstly, a framework for the assessment...

  9. Assessing the Blue and Green Water Footprint of Lucerne for Milk Production in South Africa

    OpenAIRE

    Morne E. Scheepers; Henry Jordaan

    2016-01-01

    The Global Water Footprint Standard approach was used to calculate the volumetric blue and green water footprint indicator for lucerne production as important feed for dairy cows in a major lucerne production region in South Africa. The degree of sustainability of water use then was assessed by comparing water use to water availability for the region. The results show a volumetric water footprint indicator of 378 m3/tonne of lucerne. Of the total blue and green water footprint, 55% is green w...

  10. Review of research from carbon emissions to carbon footprint in livestock husbandry%畜牧业“碳排放”到“碳足迹”核算方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    师帅; 李翠霞; 李媚婷

    2017-01-01

    reduction policy.It also provides voice for distinct responsibility of China in climate change.Based on the research paradigm evolution,this article presents the research development of livestock from carbon emissions to carbon footprint.The results show carbon emissions methods for livestock have experienced the OECD method,the IPCC coefficient method,the life cycle assessment (LCA) method and input-output method.Scholars thought the regional heterogeneity,the scale of farming and the management mode all affect the carbon footprint.Carbon emissions of livestock grazing are more than large scale livestock breeding.Shelter feeding has more carbon emissions than outdoor grazing.Carbon footprint assessment more fully reflects the whole life cycle carbon emissions of livestock husbandry.However,due to the differences of research hypothesis,methods and samples,there are uncertainties on carbon emissions assessment results of different regions and animal by-products.Based on LCA and input-output methods,livestock carbon emissions of the European Union are basically identical,but it is different in China by the whole LCA and IPCC coefficient method in cattle,pigs and sheep.Therefore,this study makes the comparison of different methods in the origin,the earliest time used,characteristics,limitations,etc.The study also recommends the extended boundary of livestock based on LCA and standardized carbon footprint of livestock.Only in this way can the scholars avoid repeating accounting carbon emissions of livestock and expand further research in this field.

  11. Invited review: Resource inputs and land, water and carbon footprints from the production of edible protein of animal origin

    Directory of Open Access Journals (Sweden)

    G. Flachowsky

    2018-01-01

    Full Text Available The objective of this review is to analyze crucial factors in the output from the production of proteins in food of animal origin, such as milk, meat and eggs. We then consider inputs such as land, water, fuel, minerals and feed, as well as characterize emissions. Finally, we estimate footprints for land (land footprint, LF, water (water footprint, WF and greenhouse gas emissions (i.e., carbon footprint, CF during the production process. The wide range of different land and water inputs per unit feed between various studies largely influences the results. Further influencing factors are species and categories of animals that produce edible protein, their yields and the feeding of animals. Coproducts with no or low humanly edible fractions and grassland as feed contribute to a lower need for arable land and lower LF, WF and CF. The most efficient land use or the lowest LF per kilogram of edible protein was estimated for higher milk and egg yields; the highest LF values were calculated for beef, followed by pork. The lowest WF and CF were calculated for edible protein of chicken meat and eggs. Edible protein from ruminants is mostly characterized by a higher CF because of the high greenhouse gas potential of methane produced in the rumen. A key prerequisite for further progress in this field is the harmonization of data collection and calculation methods. Alternatives to partial or complete replacement of protein of terrestrial animals, such as marine animals, insects, cell cultures, single-cell proteins or simulated animal products from plants, as well as changing eating patterns and reducing food losses are mentioned as further potential ways for more efficient feed production. For all those dealing with plant or animal breeding and cultivation and all those who are working along the whole food production chain, it is a major challenge to enhance the production of more food for more people with, at the same time, less, limited resources and

  12. Opportunities for co-location of solar PV with agriculture for cost reductions and carbon, water, and energy footprint mitigation in the tropics

    Science.gov (United States)

    Choi, C. S.; Macknick, J.; Ravi, S.

    2017-12-01

    Recently, co-locating the production of agricultural crops or biofuels with solar photovoltaics (PV) installations has been studied as a possible strategy to mitigate the environmental impacts and the high cost of solar PV in arid and semi-arid regions. Co-located PV and agricultural systems can provide multiple benefits in these areas related to water savings, erosion control, energy access, and rural economic development. However, such studies have been rare for water-rich, land-limited tropical countries, where ideal agricultural growing conditions can be substantially different from those in arid regions. We consider a case study in Indonesia to address this research gap. As the fourth most populous nation with an ever-growing energy demand and high vulnerability to the effects of climate change, Indonesia is being prompted to develop means to electrify approximately one-fifth of its population that still lacks access to the grid without incurring increases in its carbon footprint. We address the following questions to explore the feasibility and the benefits of co-location of solar PV with patchouli cultivation and essential oil production: i) How do the lifetime carbon, water, and energy footprints per unit land area of co-located solar PV/patchouli compare to those of standalone diesel microgrid, solar PV or patchouli cultivation? ii) Does energy production from standalone solar PV, diesel/solar PV microgrid, or co-located solar PV/patchouli systems satisfy energy demands of a typical rural Indonesian village? iii) How does the net economic return of the co-located system compare to each standalone land use? iv) How can surplus energy from the co-located system benefit rural socioeconomics? To answer these questions, life cycle assessment and economic analysis are performed for each of the standalone and the co-located land uses utilizing known values and data collected from a field visit to the island of Java in Indonesia. Then, sensitivity analyses and

  13. How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria; Cederberg, Christel; Henriksson, Maria

    2011-01-01

    Purpose This paper investigates different methodologies of handling co-products in life cycle assessment (LCA) or carbon footprint (CF) studies. Co-product handling can have a significant effect on final LCA/CF results, and although there are guidelines on the preferred order for different methods...... (when slaughtered), calves, manure, hides, etc., the environmental burden (here GHG emissions) must be distributed between these outputs (in the present study no emissions are attributed to hides specifically, or to manure which is recycled on-farm). Different methodologically approaches, (1) system...

  14. Variation in modelled healthy diets based on three different food patterns identified from the Danish national diet – and the impact on carbon footprint Nordic Nutrition Conference, Gothenburg 2016 (poster)

    DEFF Research Database (Denmark)

    Trolle, Ellen; Thorsen, Anne Vibeke; Mogensen, Lisbeth

    Background and aims: A healthy diet complies with the national food-based dietary guidelines (FBDG) and Nordic nutrition recommendations (NNR2012). In this study we aim at 1) developing new healthy diet compositions by a simple diet modelling technique that ensures a nutrient content in accordance....... 2014) into isocaloric healthy diets that fulfil and the Danish FBDGs and NNR2012 with respect to both micro- and macronutrients. Furthermore we updated the list of estimated carbon footprint (CF) of food items included in the diets and further optimized the diet composition with regard to CF. Extension...... with the recommended values and depending on food preferences and habits, and 2) further optimizing the diet composition with regard to carbon footprint (CF). Methods: We used a simple modelling of the ‘Traditional’, ‘Health conscious’ and ‘Fast food’ patterns identified from national dietary data (1)Knudsen et al...

  15. A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems.

    Science.gov (United States)

    Rotz, C A; Isenberg, B J; Stackhouse-Lawson, K R; Pollak, E J

    2013-11-01

    A methodology was developed and used to determine environmental footprints of beef cattle produced at the U.S. Meat Animal Research Center (MARC) in Clay Center, NE, with the goal of quantifying improvements achieved over the past 40 yr. Information for MARC operations was gathered and used to establish parameters representing their production system with the Integrated Farm System Model. The MARC farm, cow-calf, and feedlot operations were each simulated over recent historical weather to evaluate performance, environmental impact, and economics. The current farm operation included 841 ha of alfalfa and 1,160 ha of corn to produce feed predominately for the beef herd of 5,500 cows, 1,180 replacement cattle, and 3,724 cattle finished per year. Spring and fall cow-calf herds were fed on 9,713 ha of pastureland supplemented through the winter with hay and silage produced by the farm operation. Feedlot cattle were backgrounded for 3 mo on hay and silage with some grain and finished over 7 mo on a diet high in corn and wet distillers grain. For weather year 2011, simulated feed production and use, energy use, and production costs were within 1% of actual records. A 25-yr simulation of their current production system gave an average annual carbon footprint of 10.9±0.6 kg of CO2 equivalent units per kg BW sold, and the energy required to produce that beef (energy footprint) was 26.5±4.5 MJ/kg BW. The annual water required (water footprint) was 21,300±5,600 L/kg BW sold, and the water footprint excluding precipitation was 2,790±910 L/kg BW. The simulated annual cost of producing their beef was US$2.11±0.05/kg BW. Simulation of the production practices of 2005 indicated that the inclusion of distillers grain in animal diets has had a relatively small effect on environmental footprints except that reactive nitrogen loss has increased 10%. Compared to 1970, the carbon footprint of the beef produced has decreased 6% with no change in the energy footprint, a 3% reduction

  16. Carbon footprint of the cigarette industry - an analysis from India

    Directory of Open Access Journals (Sweden)

    Pranay Lal

    2018-03-01

    Given that manufacturing cigarette has a deep and significant environmental footprint makes for a strong case on environmental grounds to cease production of tobacco and production of tobacco products. To do this, tobacco control advocates need to reach out to environmental organisations, many of whom receive financial support from tobacco companies, which is an inherent conflict of interest. Environmental organisations are oblivious of this paradox.

  17. Climate metrics and the carbon footprint of livestock products: where’s the beef?

    Science.gov (United States)

    Persson, U. Martin; Johansson, Daniel J. A.; Cederberg, Christel; Hedenus, Fredrik; Bryngelsson, David

    2015-03-01

    The livestock sector is estimated to account for 15% of global greenhouse gas (GHG) emissions, 80% of which originate from ruminant animal systems due to high emissions of methane (CH4) from enteric fermentation and manure management. However, recent analyses have argued that the carbon footprint (CF) of ruminant meat and dairy products are substantially reduced if one adopts alternative metrics for comparing emissions of GHGs—e.g., the 100 year global temperature change potential (GTP100), instead of the commonly used 100 year global warming potential (GWP100)—due to a lower valuation of CH4 emissions. This raises the question of which metric to use. Ideally, the choice of metric should be related to a climate policy goal. Here, we argue that basing current GHG metrics solely on temperature impact 100 years into the future is inconsistent with the current global climate goal of limiting warming to 2 °C, a limit that is likely to be reached well within 100 years. A reasonable GTP value for CH4, accounting for current projections for when 2 °C warming will be reached, is about 18, leading to a current CF of 19 kg CO2-eq. per kilo beef (carcass weight, average European system), 20% lower than if evaluated using GWP100. Further, we show that an application of the GTP metric consistent with a 2 °C climate limit leads to the valuation of CH4 increasing rapidly over time as the temperature ceiling is approached. This means that the CF for beef would rise by around 2.5% per year in the coming decades, surpassing the GWP based footprint in only ten years. Consequently, the impact on the livestock sector of substituting GTPs for GWPs would be modest in the near term, but could potentially be very large in the future due to a much higher (>50%) and rapidly appreciating CF.

  18. Assessment of global grey water footprint of major food crops

    Science.gov (United States)

    Yang, Hong; Liu, Wenfeng; Antonelli, Marta

    2016-04-01

    Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.

  19. Carbon Break Even Analysis: Environmental Impact of Tablets in Higher Education

    OpenAIRE

    Fadi Safieddine; Imad Nakhoul

    2016-01-01

    With the growing pace of tablets use and the large focus it is attracting especially in higher education, this paper looks at an important aspect of tablets; their carbon footprint. Studies have suggested that tablets have positive impact on the environment; especially since tablets use less energy than laptops or desktops. Recent manufacturers’ reports on the carbon footprint of tablets have revealed that a significant portion, as much as 80%, of the carbon footprint of tablets comes from pr...

  20. Effectiveness and legitimacy of forest carbon standards in the OTC voluntary carbon market

    Science.gov (United States)

    2011-01-01

    Background In recent years, the voluntary over-the-counter (OTC) carbon market has reached a significant market volume. It is particularly interesting for forest mitigation projects which are either ineligible in compliance markets or confronted with a plethora of technical and financial hurdles and lacking market demand. As the OTC market is not regulated, voluntary standards have been created to secure the social and environmental integrity of the traded mitigation projects and thus to ensure the quality of the resulting carbon credits. Building on a theoretical efficiency-legitimacy framework, this study aims to identify and analyse the characteristics and indicators that determine the efficiency and organisational legitimacy of standards for afforestation/reforestation carbon projects. Results All interviewed market actors consider third-party certification and standards as a crucial component of market functionality, which provide quality assurance mechanisms that reduce information asymmetries and moral hazard between the actors regarding the quality of carbon credits, and thus reduce transaction costs. Despite this development, the recent evolution of many new and differing standards is seen as a major obstacle that renders it difficult for project developers and buyers to select an appropriate standard. According to the interviewed experts the most important legitimating factors of standards are assurance of a sufficient level of quality of carbon credits, scientifically substantiated methodological accounting and independent third-party verification, independence of standard bodies, transparency, wide market acceptance, back-up of the wider community including experts and NGOs, rigorous procedures, and the resemblance to the Afforestation/Reforestation (A/R) CDM due to its international policy endorsements. In addition, standards must provide evidence that projects contribute to a positive social and environmental development, do no harm as a minimum

  1. Effectiveness and legitimacy of forest carbon standards in the OTC voluntary carbon market

    Directory of Open Access Journals (Sweden)

    Merger Eduard

    2011-08-01

    Full Text Available Abstract Background In recent years, the voluntary over-the-counter (OTC carbon market has reached a significant market volume. It is particularly interesting for forest mitigation projects which are either ineligible in compliance markets or confronted with a plethora of technical and financial hurdles and lacking market demand. As the OTC market is not regulated, voluntary standards have been created to secure the social and environmental integrity of the traded mitigation projects and thus to ensure the quality of the resulting carbon credits. Building on a theoretical efficiency-legitimacy framework, this study aims to identify and analyse the characteristics and indicators that determine the efficiency and organisational legitimacy of standards for afforestation/reforestation carbon projects. Results All interviewed market actors consider third-party certification and standards as a crucial component of market functionality, which provide quality assurance mechanisms that reduce information asymmetries and moral hazard between the actors regarding the quality of carbon credits, and thus reduce transaction costs. Despite this development, the recent evolution of many new and differing standards is seen as a major obstacle that renders it difficult for project developers and buyers to select an appropriate standard. According to the interviewed experts the most important legitimating factors of standards are assurance of a sufficient level of quality of carbon credits, scientifically substantiated methodological accounting and independent third-party verification, independence of standard bodies, transparency, wide market acceptance, back-up of the wider community including experts and NGOs, rigorous procedures, and the resemblance to the Afforestation/Reforestation (A/R CDM due to its international policy endorsements. In addition, standards must provide evidence that projects contribute to a positive social and environmental development, do

  2. Effectiveness and legitimacy of forest carbon standards in the OTC voluntary carbon market.

    Science.gov (United States)

    Merger, Eduard; Pistorius, Till

    2011-08-17

    In recent years, the voluntary over-the-counter (OTC) carbon market has reached a significant market volume. It is particularly interesting for forest mitigation projects which are either ineligible in compliance markets or confronted with a plethora of technical and financial hurdles and lacking market demand. As the OTC market is not regulated, voluntary standards have been created to secure the social and environmental integrity of the traded mitigation projects and thus to ensure the quality of the resulting carbon credits. Building on a theoretical efficiency-legitimacy framework, this study aims to identify and analyse the characteristics and indicators that determine the efficiency and organisational legitimacy of standards for afforestation/reforestation carbon projects. All interviewed market actors consider third-party certification and standards as a crucial component of market functionality, which provide quality assurance mechanisms that reduce information asymmetries and moral hazard between the actors regarding the quality of carbon credits, and thus reduce transaction costs. Despite this development, the recent evolution of many new and differing standards is seen as a major obstacle that renders it difficult for project developers and buyers to select an appropriate standard. According to the interviewed experts the most important legitimating factors of standards are assurance of a sufficient level of quality of carbon credits, scientifically substantiated methodological accounting and independent third-party verification, independence of standard bodies, transparency, wide market acceptance, back-up of the wider community including experts and NGOs, rigorous procedures, and the resemblance to the Afforestation/Reforestation (A/R) CDM due to its international policy endorsements. In addition, standards must provide evidence that projects contribute to a positive social and environmental development, do no harm as a minimum requirement and build a

  3. Carbon Footprint versus Performance of Aluminum, Plastic, and Wood Window Frames from Cradle to Gate

    Directory of Open Access Journals (Sweden)

    Andreja Kutnar

    2012-12-01

    Full Text Available Window frame material has significant impact on the thermal performance of the window. Moreover, with sustainable design becoming a necessity, window frame materials need to have higher levels of environmental performance to be considered sustainable. As a result, a holistic performance metric is needed to assess window frame material. Three similar frames were considered, manufactured from aluminum, polyvinyl chloride (PVC, and wood. First their thermal performance was evaluated and compared using a heat transfer model. Then, carbon footprints of the three materials were considered for 1m2 of window area with a similar thermal performance. It was found that the thermal, as well as the environmental, performance of the wooden window frame was superior to those of aluminum and PVC. On the other hand aluminum frames had high environmental impacts and comparatively lower thermal performance. This study provides a holistic viewpoint on window frames by considering both environmental and thermal performance.

  4. Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities

    Science.gov (United States)

    Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.

    2006-01-01

    NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  5. Carbon Footprint Estimation Tool for Residential Buildings for Non-Specialized Users: OERCO2 Project

    Directory of Open Access Journals (Sweden)

    Jaime Solís-Guzmán

    2018-04-01

    Full Text Available Existing tools for environmental certification of buildings are failing in their ability to reach the general public and to create social awareness, since they require not only specialized knowledge regarding construction and energy sources, but also environmental knowledge. In this paper, an open-source online tool for the estimation of the carbon footprint of residential buildings by non-specialized users is presented as a product from the OERCO2 Erasmus + project. The internal calculations, data management and operation of this tool are extensively explained. The ten most common building typologies built in the last decade in Spain are analysed by using the OERCO2 tool, and the order of magnitude of the results is analysed by comparing them to the ranges determined by other authors. The OERCO2 tool proves itself to be reliable, with its results falling within the defined logical value ranges. Moreover, the major simplification of the interface allows non-specialized users to evaluate the sustainability of buildings. Further research is oriented towards its inclusion in other environmental certification tools and in Building Information Modeling (BIM environments.

  6. Sugarcane ethanol production in Malawi: Measures to optimize the carbon footprint and to avoid indirect emissions

    International Nuclear Information System (INIS)

    Dunkelberg, Elisa; Finkbeiner, Matthias; Hirschl, Bernd

    2014-01-01

    Sugarcane ethanol is considered to be one of the most efficient first-generation biofuels in terms of greenhouse gas (GHG) emissions. The carbon footprint (CF), however, increases significantly when taking into account emissions induced by indirect land-use changes (ILUC). This case study investigates sugarcane ethanol production in the Republic of Malawi, in Sub-Sahara Africa (SSA); the research objectives were to identify and quantify direct and indirect emissions and to identify measures to optimize the CF. The CF has been calculated with a life cycle approach and with data obtained from the involved companies; our estimations with regard to ILUC take into account further expansion plans for sugarcane crop production. Under existing production conditions ethanol produced in Malawi leads to GHG emissions expressed as CO 2eq of 116 g MJ −1 of ethanol. However, high optimization potentials exist when the vinasse is used as an input for biogas production and the harvesting switches from pre-harvest burning to green harvesting. ILUC induced by prospective sugarcane expansions in the Southern Region will, according to current planning, probably not occur since these expansions are linked to the implementation of a large-scale irrigation project. However if ILUC takes place, high levels of additional CO 2 emissions of about 77 g MJ −1 of ethanol are to be expected. Although the case study results are only valid for a specific region, some of the findings, such as the high compensation potential regarding ILUC through investments in irrigation systems, may be transferable to other regions in SSA. - Highlights: • We conducted a case study on sugarcane ethanol production in Malawi and calculated its carbon footprint (CF). • The current CF of sugarcane ethanol produced in the Southern Region in Malawi amounts for 116 g MJ −1 of ethanol. • The usage of vinasse in biogas plants would significantly improve the CF. • Another optimization measure is to

  7. Carbon and water footprint of pork supply chain in Catalonia: From feed to final products.

    Science.gov (United States)

    Noya, Isabel; Aldea, Xavier; Gasol, Carles M; González-García, Sara; Amores, Maria José; Colón, Joan; Ponsá, Sergio; Roman, Isabel; Rubio, Miguel A; Casas, Eudald; Moreira, María Teresa; Boschmonart-Rives, Jesús

    2016-04-15

    A systematic tool to assess the Carbon Footprint (CF) and Water Footprint (WF) of pork production companies was developed and applied to representative Catalan companies. To do so, a cradle-to-gate environmental assessment was carried out by means of the LCA methodology, taking into account all the stages involved in the pork chain, from feed production to the processing of final products, ready for distribution. In this approach, the environmental results are reported based on eight different functional units (FUs) according to the main pork products obtained. With the aim of ensuring the reliability of the results and facilitating the comparison with other available reports, the Product Category Rules (PCR) for Catalan pork sector were also defined as a basis for calculations. The characterization results show fodder production as the main contributor to the global environmental burdens, with contributions higher than 76% regardless the environmental indicator or the life cycle stage considered, which is in agreement with other published data. In contrast, the results in terms of CF and WF lay above the range of values reported elsewhere. However, major discrepancies are mainly due to the differences in the co-products allocation criteria. In this sense, economic/physical allocation and/or system expansion have been mostly considered in literature. In contrast, no allocation was considered appropriate in this study, according to the characteristics of the industries and products under assessment; thus, the major impacts fall on the main product, which derives on comparatively higher environmental burdens. Finally, due to the relevance of fodder production in the overall impact assessment results, strategies to reduce greenhouse gases (GHG) emissions as well as water use associated to this stage were proposed in the pork supply chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Irradiated recycled plastic as a concrete additive for improved chemo-mechanical properties and lower carbon footprint.

    Science.gov (United States)

    Schaefer, Carolyn E; Kupwade-Patil, Kunal; Ortega, Michael; Soriano, Carmen; Büyüköztürk, Oral; White, Anne E; Short, Michael P

    2018-01-01

    Concrete production contributes heavily to greenhouse gas emissions, thus a need exists for the development of durable and sustainable concrete with a lower carbon footprint. This can be achieved when cement is partially replaced with another material, such as waste plastic, though normally with a tradeoff in compressive strength. This study discusses progress toward a high/medium strength concrete with a dense, cementitious matrix that contains an irradiated plastic additive, recovering the compressive strength while displacing concrete with waste materials to reduce greenhouse gas generation. Compressive strength tests showed that the addition of high dose (100kGy) irradiated plastic in multiple concretes resulted in increased compressive strength as compared to samples containing regular, non-irradiated plastic. This suggests that irradiating plastic at a high dose is a viable potential solution for regaining some of the strength that is lost when plastic is added to cement paste. X-ray Diffraction (XRD), Backscattered Electron Microscopy (BSE), and X-ray microtomography explain the mechanisms for strength retention when using irradiated plastic as a filler for cement paste. By partially replacing Portland cement with a recycled waste plastic, this design may have a potential to contribute to reduced carbon emissions when scaled to the level of mass concrete production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Standing footprint diagnostic method

    Science.gov (United States)

    Fan, Y. F.; Fan, Y. B.; Li, Z. Y.; Newman, T.; Lv, C. S.; Fan, Y. Z.

    2013-10-01

    Center of pressure is commonly used to evaluate standing balance. Even though it is incomplete, no better evaluation method has been presented. We designed our experiment with three standing postures: standing with feet together, standing with feet shoulder width apart, and standing with feet slightly wider than shoulder width. Our platform-based pressure system collected the instantaneous plantar pressure (standing footprint). A physical quantity of instantaneous standing footprint principal axis was defined, and it was used to construct an index to evaluate standing balance. Comparison between results from our newly established index and those from the center of pressure index to evaluate the stability of different standing postures revealed that the standing footprint principal axis index could better respond to the standing posture change than the existing one. Analysis indicated that the insensitive response to the relative position between feet and to the standing posture change from the center of pressure could be better detected by the standing footprint principal axis index. This predicts a wide application of standing footprint principal axis index when evaluating standing balance.

  10. Partitioning carbon fluxes from a Midwestern corn and soybean rotation system using footprint analysis

    Science.gov (United States)

    Dold, C.; Hatfield, J.; Prueger, J. H.; Wacha, K.

    2017-12-01

    Midwestern US agriculture is dominated by corn and soybean production. Corn has typically higher Net Ecosystem Exchange (NEE) than soybean due to increased carboxylation efficiency and different crop management. The conjoined NEE may be measured with eddy covariance (EC) stations covering both crops, however, it is often unclear what the contribution of each crop is, as the CO2 source area remains unknown. The aim of this study was to quantify the contribution of CO2 fluxes from each crop for a conventional corn-soybean rotation system from 2007 - 2015. Therefore, the combined CO2 flux of three adjacent fields with annual corn-soybean rotation was measured with a 9.1 m EC tower (Flux 30). In the center of two of these fields, additional EC towers (Flux 10 and Flux 11) were positioned above the corn and soybean canopy to validate Flux 30 NEE. For each EC system the annual 90% NEE footprint area was calculated, footprints were partitioned among fields, and NEE separated accordingly. The average annual 90% footprint area of Flux 30, and Flux 10/11 corn and soybean was estimated to 206, 11 and 7 ha, respectively. The annual average (±SE) NEE of Flux 30 was -693 ± 47 g CO2 m-2 yr-1, of which 83% out of 90% originated from the three adjacent fields. Corn and soybean NEE measured at Flux 10 and 11 was -1124 ± 95 and 173 ± 73 g CO2 m-2 yr-1, respectively, and 89% and 90% originated from these fields. That demonstrates, that Flux 30 represents the combined NEE of a corn-soybean rotation, and Flux 10 and 11 measured NEE from a single crop. However, the share of Flux 30 NEE originating from corn and soybean grown on the Flux 10/11 fields was -192 ± 16 and -205 ± 18 g CO2 m-2 yr-1, indicating a substantial difference to single crop NEE. While it was possible to measure the NEE of a corn-soybean rotation with a tall EC tower, footprint partitioning could not retrieve NEE for each crop, probably due to differences in measurement height and footprint source area.

  11. The Ecological Footprint of Industrialized countries

    Directory of Open Access Journals (Sweden)

    Irene Frassoldati

    2014-12-01

    Full Text Available To compare the carbon footprint of different nations and the per capita for each country allows us to visualize a problem often underestimated by our systems of production and consumption, which is based on inequality. There is a need to work on this problem because in sharing the liability and the global consequences, the effects that cannot continue, reveals a series of possibilities. It would require 3-6 planets equal to Earth in order to sustain a lifestyle like that of an inhabitant of North America in order to supporst all inhabitants on Earth.

  12. The Footprint Database and Web Services of the Herschel Space Observatory

    Science.gov (United States)

    Dobos, László; Varga-Verebélyi, Erika; Verdugo, Eva; Teyssier, David; Exter, Katrina; Valtchanov, Ivan; Budavári, Tamás; Kiss, Csaba

    2016-10-01

    Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data

  13. Real Energy Payback Time and Carbon Footprint of a GCPVS

    Directory of Open Access Journals (Sweden)

    Miguel de Simón-Martín

    2017-01-01

    Full Text Available Grid connected PV systems, or GCPVS, produce clean and renewable energy through the photovoltaic effect in the operation stage of the power plant. However, this is the penultimate stage of the facilities before its dismantlement. Before starting generating electricity with zero CO2 emissions, a negative energy balance exists mainly because of the embodied energy costs of the PV components manufacturing, transport and late dismantlement. First, a review of existing studies about energy life cycle assessment (LCA and Carbon Footprint of PV systems has been carried out in this paper. Then, a new method to evaluate the Real Energy Payback Time (REPBT, which includes power looses due to PV panels degradation is proposed and differences with traditional Energy Payback Time are analysed. Finally, a typical PV grid connected plant (100 kW nominal power located in Northern Spain is studied in these sustainability terms. This facility has been firstly completely modelled, including PV modules, inverters, structures and wiring. It has been also considerated the energy involved in the replacement of those components with shorter lifespan. The PV panels degradation has been analysed through the comparison of normalised flash test reports on a significant sample of the installed modules before and 5 years after installation. Results show that real PV degradation affect significantly to the Energy Payback Time of the installation increasing slightly a 4:2% more the EPBT value for the case study. However, along a lifespan of 30 years, the GCPVS under analysis will return only 5:6 times the inverted energy on components manufacturing, transport and installation, rather than the expected 9:1 times with the classical estimation.

  14. Environmental impact of cheese production: A case study of a small-scale factory in southern Europe and global overview of carbon footprint.

    Science.gov (United States)

    Canellada, Fernando; Laca, Amanda; Laca, Adriana; Díaz, Mario

    2018-09-01

    The environmental performance of a small-scale cheese factory sited in a NW Spanish region has been analysed by Life Cycle Assessment (LCA) as representative of numerous cheese traditional factories that are scattered through the European Union, especially in the southern countries. Inventory data were directly obtained from this facility corresponding to one-year operation, and the main subsystems involved in cheese production were included, i.e. raw materials, water, electricity, energy, cleaning products, packaging materials, transports, solid and liquid wastes and gas emissions. Results indicated that the environmental impacts derived from cheese making were mainly originated from raw milk production and the natural land transformation was the most affected of the considered categories. On the contrary, the manufacturing of packaging material and other non-dairy ingredients barely influenced on the total impact. Additionally, an average carbon footprint of the cheeses produced in the analysed facility has also been calculated, resulting milk production and pellet boiler emissions the most contributing subsystems. Furthermore, it was notable the positive environmental effect that entailed the direct use of whey as animal feed, which was considered in this study as avoided fodder. Finally, a revision of published works regarding the environmental performance of cheese production worldwide was provided and compared to results found in the present work. According to the analysed data, it is clear that the content of fat and dry extract are determinant factors for the carbon footprint of cheeses, whereas the cheesemaking scale and the geographical area have a very low effect. Copyright © 2018. Published by Elsevier B.V.

  15. CARBON FOOTPRINT IN SUSTAINABLE FOOD CHAIN AND ITS IMPORTANCE FOR FOOD CONSUMER

    Directory of Open Access Journals (Sweden)

    Piotr Konieczny

    2013-09-01

    Full Text Available Freshness, sensory attributes and food safety are currently indicated as main criteria in respect to food purchasing decisions. However, growing number of consumers are ready to choose also environmentally friendly food products. Carbon Footprint (CF expressed in CO2 equivalent of greenhouse gas emission seems to be an innovative indicator useful to evaluate environmental impacts associated with production and distribution of food. The review carried out in this study is based mainly on data presented in papers and reports published in recent decade, including some opinions available on various internet websites. In this study are discussed some examples of CF values calculated both, production of primary raw materials, food processing stages, final products transporting and activities taken during food preparation in the household, as well. The CF indicator offers also a new tool to promote disposition of food products distributed e.g. through big international supermarket chains. Mostly due to the suggestion of ecological institutions, direct comparison of CF values for different food products leads even to postulate almost total elimination of less eco-friendly animal origin food (like red meat from the diet of typical consumer. So, improving the state of consumers education in respect to environmental issues of whole food chain might effect not only their eating habits but also their health.

  16. Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification-denitrification.

    Science.gov (United States)

    Schneider, Andrew G; Townsend-Small, Amy; Rosso, Diego

    2015-02-01

    Water reclamation has the potential to reduce water supply demands from aquifers and more energy-intensive water production methods (e.g., seawater desalination). However, water reclamation via biological nitrification-denitrification is also associated with the direct emission of the greenhouse gases (GHGs) CO₂, N₂O, and CH₄. We quantified these direct emissions from the nitrification-denitrification reactors of a water reclamation plant in Southern California, and measured the (14)C content of the CO₂ to distinguish between short- and long-lived carbon. The total emissions were 1.5 (±0.2) g-fossil CO₂ m(-3) of wastewater treated, 0.5 (±0.1) g-CO₂-eq of CH₄ m(-3), and 1.8 (±0.5) g-CO₂-eq of N₂O m(-3), for a total of 3.9 (±0.5) g-CO₂-eqm(-3). This demonstrated that water reclamation can be a source of GHGs from long lived carbon, and thus a candidate for GHG reduction credit. From the (14)C measurements, we found that between 11.4% and 15.1% of the CO₂ directly emitted was derived from fossil sources, which challenges past assumptions that the direct CO₂ emissions from water reclamation contain only modern carbon. A comparison of our direct emission measurements with estimates of indirect emissions from several water production methods, however, showed that the direct emissions from water reclamation constitute only a small fraction of the plant's total GHG footprint. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Reducing the environmental impact of trials: a comparison of the carbon footprint of the CRASH-1 and CRASH-2 clinical trials

    Science.gov (United States)

    2011-01-01

    Background All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. Methods We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials), quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. Results The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions), whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions). Conclusions Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. Trial Registration Numbers CRASH-1: ISRCTN74459797 CRASH-2: ISRCTN86750102 PMID:21291517

  18. Reducing the environmental impact of trials: a comparison of the carbon footprint of the CRASH-1 and CRASH-2 clinical trials

    Directory of Open Access Journals (Sweden)

    Roberts Ian

    2011-02-01

    Full Text Available Abstract Background All sectors of the economy, including the health research sector, must reduce their carbon emissions. The UK National Institute for Health Research has recently prepared guidelines on how to minimize the carbon footprint of research. We compare the carbon emissions from two international clinical trials in order to identify where emissions reductions can be made. Methods We conducted a carbon audit of two clinical trials (the CRASH-1 and CRASH-2 trials, quantifying the carbon dioxide emissions produced over a one-year audit period. Carbon emissions arising from the coordination centre, freight delivery, trial-related travel and commuting were calculated and compared. Results The total emissions in carbon dioxide equivalents during the one-year audit period were 181.3 tonnes for CRASH-1 and 108.2 tonnes for CRASH-2. In total, CRASH-1 emitted 924.6 tonnes of carbon dioxide equivalents compared with 508.5 tonnes for CRASH-2. The CRASH-1 trial recruited 10,008 patients over 5.1 years, corresponding to 92 kg of carbon dioxide per randomized patient. The CRASH-2 trial recruited 20,211 patients over 4.7 years, corresponding to 25 kg of carbon dioxide per randomized patient. The largest contributor to emissions in CRASH-1 was freight delivery of trial materials (86.0 tonnes, 48% of total emissions, whereas the largest contributor in CRASH-2 was energy use by the trial coordination centre (54.6 tonnes, 30% of total emissions. Conclusions Faster patient recruitment in the CRASH-2 trial largely accounted for its greatly increased carbon efficiency in terms of emissions per randomized patient. Lighter trial materials and web-based data entry also contributed to the overall lower carbon emissions in CRASH-2 as compared to CRASH-1. Trial Registration Numbers CRASH-1: ISRCTN74459797 CRASH-2: ISRCTN86750102

  19. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production.

    Science.gov (United States)

    Rebolledo-Leiva, Ricardo; Angulo-Meza, Lidia; Iriarte, Alfredo; González-Araya, Marcela C

    2017-09-01

    Operations management tools are critical in the process of evaluating and implementing action towards a low carbon production. Currently, a sustainable production implies both an efficient resource use and the obligation to meet targets for reducing greenhouse gas (GHG) emissions. The carbon footprint (CF) tool allows estimating the overall amount of GHG emissions associated with a product or activity throughout its life cycle. In this paper, we propose a four-step method for a joint use of CF assessment and Data Envelopment Analysis (DEA). Following the eco-efficiency definition, which is the delivery of goods using fewer resources and with decreasing environmental impact, we use an output oriented DEA model to maximize production and reduce CF, taking into account simultaneously the economic and ecological perspectives. In another step, we stablish targets for the contributing CF factors in order to achieve CF reduction. The proposed method was applied to assess the eco-efficiency of five organic blueberry orchards throughout three growing seasons. The results show that this method is a practical tool for determining eco-efficiency and reducing GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Towards lower carbon footprint patterns of consumption: The case of drinking water in Italy

    International Nuclear Information System (INIS)

    Botto, S.; Niccolucci, V.; Rugani, B.; Nicolardi, V.; Bastianoni, S.; Gaggi, C.

    2011-01-01

    The effects that individual consumption behaviours have on climate change are explored, focusing on products that satisfy the same need but with different carbon footprints. Two types of drinking water, produced, distributed and consumed in Italy, were compared as a case study: tap water and PET-bottled natural mineral water. The first is the one supplied to the municipality of Siena, while the second is a set of 6 different Italian bottled water brands. The results showed that drinking 1.5 L of tap water instead of PET-bottled water saves 0.34 kg CO 2 eq. Thus, a PET-bottled water consumer (2 L per day) who changes to tap water may prevent 163.50 kg CO 2 eq of greenhouse gas emissions per year. In monetary terms, this translates into a tradable annual verified emission reduction (VER) between US$ 0.20 and 7.67 per drinker. Analysing a mature bottled water market, such as the Italian one, may provide insights into the growing global bottled-water market and its effects on climate change. The environmental and economic benefits of changing drinking water habits are also discussed.

  1. Rigorous classification and carbon accounting principles for low and Zero Carbon Cities

    International Nuclear Information System (INIS)

    Kennedy, Scott; Sgouridis, Sgouris

    2011-01-01

    A large number of communities, new developments, and regions aim to lower their carbon footprint and aspire to become 'zero carbon' or 'Carbon Neutral.' Yet there are neither clear definitions for the scope of emissions that such a label would address on an urban scale, nor is there a process for qualifying the carbon reduction claims. This paper addresses the question of how to define a zero carbon, Low Carbon, or Carbon Neutral urban development by proposing hierarchical emissions categories with three levels: Internal Emissions based on the geographical boundary, external emissions directly caused by core municipal activities, and internal or external emissions due to non-core activities. Each level implies a different carbon management strategy (eliminating, balancing, and minimizing, respectively) needed to meet a Net Zero Carbon designation. The trade-offs, implications, and difficulties of implementing carbon debt accounting based upon these definitions are further analyzed. - Highlights: → A gap exists in comprehensive and standardized accounting methods for urban carbon emissions. → We propose a comprehensive and rigorous City Framework for Carbon Accounting (CiFCA). → CiFCA classifies emissions hierarchically with corresponding carbon management strategies. → Adoption of CiFCA allows for meaningful comparisons of claimed performance of eco-cities.

  2. Rethinking environmental stress from the perspective of an integrated environmental footprint: Application in the Beijing industry sector.

    Science.gov (United States)

    Hu, Jingru; Huang, Kai; Ridoutt, Bradley G; Yu, Yajuan; Wei, Jing

    2018-05-13

    Individual footprint indicators are limited in that they usually only address one specific environmental aspect. For this reason, assessments involving multiple footprint indicators are preferred. However, the interpretation of a profile of footprint indicators can be difficult as the relative importance of the different footprint results is not readily discerned by decision-makers. In this study, a time series (1997-2012) of carbon, water and land footprints was calculated for industry sectors in the Beijing region using input-output analysis. An integrated environmental footprint (IEF) was subsequently developed using normalization and entropy weighting. The results show that steep increases in environmental footprint have accompanied Beijing's rapid economic development. In 2012, the Primary Industry had the largest IEF (8.32); however, the Secondary Industry had the greatest increase over the study period, from 0.19 to 6.37. For the Primary Industry, the greatest contribution to the IEF came from the land footprint. For the Secondary and Tertiary Industries, the water footprint was most important. Using the IEF, industry sectors with low resource utilization efficiency and high greenhouse gas emissions intensity can be identified. As such, the IEF can help to inform about industry sectors which should be given priority for modernization as well as the particular footprints that require priority attention in each sector. The IEF can also be helpful in identifying industry sectors that could be encouraged to expand within the Beijing region as they are especially efficient in terms of value adding relative to IEF. Other industries, over time, may be better located in other regions that do not face the same environmental pressures as Beijing. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The Water Footprint of Food Aid

    Directory of Open Access Journals (Sweden)

    Nicole Jackson

    2015-05-01

    Full Text Available Food aid is a critical component of the global food system, particularly when emergency situations arise. For the first time, we evaluate the water footprint of food aid. To do this, we draw on food aid data from theWorld Food Programme and virtual water content estimates from WaterStat. We find that the total water footprint of food aid was 10 km3 in 2005, which represents approximately 0.5% of the water footprint of food trade and 2.0% of the water footprint of land grabbing (i.e., water appropriation associated with large agricultural land deals. The United States is by far the largest food aid donor and contributes 82% of the water footprint of food aid. The countries that receive the most water embodied in aid are Ethiopia, Sudan, North Korea, Bangladesh and Afghanistan. Notably, we find that there is significant overlap between countries that receive food aid and those that have their land grabbed. Multivariate regression results indicate that donor water footprints are driven by political and environmental variables, whereas recipient water footprints are driven by land grabbing and food indicators.

  4. The X-ray footprint of the circumnuclear disc

    Science.gov (United States)

    Mossoux, Enmanuelle; Eckart, Andreas

    2018-03-01

    We studied the central regions of the Galactic Centre to determine if the circumnuclear disc (CND) acts as an absorber or a barrier for the central X-rays diffuse emission. After reprocessing 4.6 Ms of Chandra observations, we were able to detect, for the first time, a depression in the X-ray luminosity of the diffuse emission whose size and location correspond to those of the CND. We extracted the X-ray spectra for various regions inside the CND footprint as well as for the region where the footprint is observed and for a region located outside the footprint. We simultaneously fitted these spectra as an optically thin plasma whose absorption by the interstellar medium (ISM) and by the local plasma were fitted independently using the Markov chain Monte Carlo method. The hydrogen column density of the ISM is 7.5 × 1022 cm-2. The X-ray diffuse emission inside the CND footprint is formed by a 2T plasma of 1 and 4 keV with slightly super-solar abundances except for the iron and carbon that are sub-solar. The plasma from the CND, in turn, is better described by a 1T model with abundances and local hydrogen column density that are very different from those of the innermost regions. The large iron abundance in this region confirms that the CND is dominated by the shock-heated ejecta of the Sgr A East supernova remnant. We deduced that the CND rather acts as a barrier for the Galactic Centre plasma and that the plasma located outside the CND may correspond to the collimated outflow possibly created by Sgr A* or the interaction between the wind of massive stars and the mini-spiral material.

  5. Casting Footprints for Eternity

    Science.gov (United States)

    1999-01-01

    Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.

  6. Simulations of seismic acquisition footprint

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.; Margrave, G.; Lawton, D. [Calgary Univ., AB (Canada)

    2008-07-01

    Numerical simulations were performed to investigate the causes of commonly observed artefacts in seismic field data. These seismic acquisition footprints typically consist of modulations in recorded amplitudes that are spatially correlated to the surface locations of sources and receivers used in a survey. Two broad classes of footprint were considered, notably amplitude variations related to the edges of the survey and the amplitude variations in the interior of the survey. The variations in amplitude obscure the true reflection response of the subsurface. The MATLAB numerical modelling code was used to produce the synthetic seismic data and create a thorough dataset using a survey design incorporating dense grids of sources and receivers. The footprint consisting of periodic amplitude variations in the interior of the surveys, similar to that observed in field data and likely produced by poor sampling, was observed in the decimated dataset. This type of footprint varied in strength between images produced with different processing algorithms. The observed footprint in these simulations was most organized in the unmigrated stack and was somewhat randomized after poststack. 2 refs., 1 tab., 3 figs.

  7. AgSat Imagery Collection Footprints

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The AgSat Imagery Collection Footprints map shows the imagery footprints which have been collected under the USDA satellite blanket purchase agreement. Click on a...

  8. High sensitivity of metal footprint to national GDP in part explained by capital formation

    Science.gov (United States)

    Zheng, Xinzhu; Wang, Ranran; Wood, Richard; Wang, Can; Hertwich, Edgar G.

    2018-04-01

    Global metal ore extraction tripled between 1970 and 2010 as metals are widely used in new infrastructure and advanced technology. Meanwhile, the energy and environmental costs of metal mining increase as lower ore grades are being exploited. The domestic use of metals has been found to reach a plateau when gross domestic product reaches US15,000 per person. Here we present a quantification of the annual metal footprint (that is, the amount of metal ore extracted to satisfy the final demand of a country, including metals used abroad to produce goods that are then imported, and excluding metals used domestically to produce exports) for 43 large economies during 1995-2013. We use a panel analysis to assess short-term drivers of changes in metal footprint, and find that a 1% rise in gross domestic product raises the metal footprint by as much as 1.9% in the same year. Further, every percentage point increase in gross capital formation as a share of gross domestic product increased the metal footprint by 2% when controlling for gross domestic product. Other socioeconomic variables did not significantly influence the metal footprint. Finding ways to break the strong coupling of economic development and investment with metal ore extraction may be required to ensure resource access and a low-carbon future.

  9. A Footprint Family extended MRIO model to support Europe's transition to a One Planet Economy.

    Science.gov (United States)

    Galli, Alessandro; Weinzettel, Jan; Cranston, Gemma; Ercin, Ertug

    2013-09-01

    Currently, the European economy is using nearly three times the ecological assets that are locally available. This situation cannot be sustained indefinitely. Tools are needed that can help reverse the unsustainable trend. In 2010, an EC funded One Planet Economy Network: Europe (OPEN:EU) project was launched to develop the evidence and innovative practical tools that will allow policy-makers and civil society to identify policy interventions to transform Europe into a One Planet Economy, by 2050. Building on the premise that no indicator alone is able to comprehensively monitor (progress towards) sustainability, the project has drawn on the Ecological, Carbon and Water Footprints to define a Footprint Family suite of indicators, to track human pressure on the planet. An environmentally-extended multi-regional input-output (MRIO) model has then been developed to group the Footprint Family under a common framework and combine the indicators in the family with national economic accounts and trade statistics. Although unable to monitor the full spectrum of human pressures, once grouped within the MRIO model, the Footprint Family is able to assess the appropriation of ecological assets, GHG emissions as well as freshwater consumption and pollution associated with consumption of specific products and services within a specified country. Using MRIO models within the context of Footprint analyses also enables the Footprint Family to take into account full production chains with technologies specific to country of origin. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Anatomical masking of pressure footprints based on the Oxford Foot Model: validation and clinical relevance.

    Science.gov (United States)

    Giacomozzi, Claudia; Stebbins, Julie A

    2017-03-01

    Plantar pressure analysis is widely used in the assessment of foot function. In order to assess regional loading, a mask is applied to the footprint to sub-divide it into regions of interest (ROIs). The most common masking method is based on geometric features of the footprint (GM). Footprint masking based on anatomical landmarks of the foot has been implemented more recently, and involves the integration of a 3D motion capture system, plantar pressure measurement device, and a multi-segment foot model. However, thorough validation of anatomical masking (AM) using pathological footprints has not yet been presented. In the present study, an AM method based on the Oxford Foot Model (OFM) was compared to an equivalent GM. Pressure footprints from 20 young healthy subjects (HG) and 20 patients with clubfoot (CF) were anatomically divided into 5 ROIs using a subset of the OFM markers. The same foot regions were also identified by using a standard GM method. Comparisons of intra-subject coefficient of variation (CV) showed that the OFM-based AM was at least as reliable as the GM for all investigated pressure parameters in all foot regions. Clinical relevance of AM was investigated by comparing footprints from HG and CF groups. Contact time, maximum force, force-time integral and contact area proved to be sensitive parameters that were able to distinguish HG and CF groups, using both AM and GM methods However, the AM method revealed statistically significant differences between groups in 75% of measured variables, compared to 62% using a standard GM method, indicating that the AM method is more sensitive for revealing differences between groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. CO2 emission standards and investment in carbon capture

    International Nuclear Information System (INIS)

    Eide, Jan; Sisternes, Fernando J. de; Herzog, Howard J.; Webster, Mort D.

    2014-01-01

    Policy makers in a number of countries have proposed or are considering proposing CO 2 emission standards for new fossil fuel-fired power plants. The proposed standards require coal-fired power plants to have approximately the same carbon emissions as an uncontrolled natural gas-fired power plant, effectively mandating the adoption of carbon capture and sequestration (CCS) technologies for new coal plants. However, given the uncertainty in the capital and operating costs of a commercial scale coal plant with CCS, the impact of such a standard is not apparent a priori. We apply a stochastic generation expansion model to determine the impact of CO 2 emission standards on generation investment decisions, and in particular for coal plants with CCS. Moreover, we demonstrate how the incentive to invest in coal-CCS from emission standards depends on the natural gas price, the CO 2 price, and the enhanced oil recovery price, as well as on the level of the emission standard. This analysis is the first to consider the entire power system and at the same time allow the capture percentage for CCS plants to be chosen from a continuous range to meet the given standard at minimum cost. Previous system level studies have assumed that CCS plants capture 90% of the carbon, while studies of individual units have demonstrated the costs of carbon capture over a continuous range. We show that 1) currently proposed levels of emission standards are more likely to shift fossil fuel generation from coal to natural gas rather than to incentivize investment in CCS; 2) tighter standards that require some carbon reductions from natural gas-fired power plants are more likely than proposed standards to incentivize investments in CCS, especially on natural gas plants, but also on coal plants at high gas prices; and 3) imposing a less strict emission standard (emission rates higher than natural gas but lower than coal; e.g., 1500 lbs/MWh) is more likely than current proposals to incentivize

  12. Quantifying the Water Footprint of Manufactured Products: A Case Study of Pitcher Water Filters

    Directory of Open Access Journals (Sweden)

    Ashley Barker

    2012-01-01

    Full Text Available Fresh water is a finite resource that is critically needed bysociety for a variety of purposes. The demand for freshwater will grow as the world population and global livingstandard increase, and fresh water shortages will becomemore commonplace. This will put significant stress onsociety. It has been argued that fresh water may becomethe next oil, and efforts have to be made to better manageits fresh water consumption by agricultural and domesticusers. Industry also uses large amounts. Surprisingly, onlyrecently is serious attention being directed toward waterrelatedissues. This effort to quantify the water footprint ofa manufactured product represents one of the first initiativesto characterize the role of water in a discrete good.This study employed a life cycle assessment methodologyto determine the water footprint of a pitcher water filter.This particular product was selected because many waterintensivematerials and processes are needed to produceits major components: for example, agricultural processesused to produce activated carbon and petrochemicalprocesses used to produce the polypropylene casing. Inaddition, a large amount of water is consumed during theproduct’s use phase. Water data was obtained from theEcoinvent 2.1 database and categorized as either beingassociated with blue or green water.The blue water footprint (surface water consumption forthe pitcher water filter was 76 gallons per filter: 10 gallonsconsumed for materials extraction, 15 gallons for themanufacturing stage, and 50 gallons during the use phase.The green water footprint (precipitation was associatedwith the cultivation of the coconut tree; activated carbonis obtained from the coconut shells. The green waterfootprint was calculated to be 164 gallons per filter.The overall water footprint was 240 gallons per filter;the filter footprint is heavily dominated by green water(68% rather than blue water (32%. Future studies mayinvestigate how the production and

  13. Human footprint variation while performing load bearing tasks.

    Directory of Open Access Journals (Sweden)

    Cara M Wall-Scheffler

    Full Text Available Human footprint fossils have provided essential evidence about the evolution of human bipedalism as well as the social dynamics of the footprint makers, including estimates of speed, sex and group composition. Generally such estimates are made by comparing footprint evidence with modern controls; however, previous studies have not accounted for the variation in footprint dimensions coming from load bearing activities. It is likely that a portion of the hominins who created these fossil footprints were carrying a significant load, such as offspring or foraging loads, which caused variation in the footprint which could extend to variation in any estimations concerning the footprint's maker. To identify significant variation in footprints due to load-bearing tasks, we had participants (N = 30, 15 males and 15 females walk at a series of speeds carrying a 20kg pack on their back, side and front. Paint was applied to the bare feet of each participant to create footprints that were compared in terms of foot length, foot width and foot area. Female foot length and width increased during multiple loaded conditions. An appreciation of footprint variability associated with carrying loads adds an additional layer to our understanding of the behavior and morphology of extinct hominin populations.

  14. Carbon Footprint of Biofuel Sugarcane Produced in Mineral and Organic Soils in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-06

    Ethanol produced from sugarcane is an existing and accessible form of renewable energy. In this study, we applied the Life Cycle Assessment (LCA) approach to estimate the Carbon Footprint (CFP) of biofuel sugarcane produced on mineral (sandy) and organic (muck) soils in Florida. CFP was estimated from greenhouse gas (GHG) emissions (CO2, CH4, and N2O) during the biofuel sugarcane cultivation. The data for the energy (fossil fuels and electricity), equipment, and chemical fertilizers were taken from enterprise budgets prepared by the University of Florida based on surveys and interviews obtained from local growers during the cropping years 2007/2008 and 2009/2010 for mineral soils and 2008/2009 for organic soils. Emissions from biomass burning and organic land use were calculated based on the IPCC guidelines. The results show that the CFP for biofuel sugarcane production is 0.04 kg CO2e kg-1y-1 when produced in mineral soils and 0.46 kg CO2e kg-1y-1 when produced in organic soils. Most of the GHG emissions from production of biofuel sugarcane in mineral soils come from equipment (33%), fertilizers (28%), and biomass burning (27%); whereas GHG emissions from production in organic soils come predominantly from the soil (93%). This difference should be considered to adopt new practices for a more sustainable farming system if biofuel feedstocks are to be considered.

  15. The relationship between plantar pressure and footprint shape.

    Science.gov (United States)

    Hatala, Kevin G; Dingwall, Heather L; Wunderlich, Roshna E; Richmond, Brian G

    2013-07-01

    Fossil footprints preserve the only direct evidence of the external foot morphologies and gaits of extinct hominin taxa. However, their interpretation requires an understanding of the complex interaction among foot anatomy, foot function, and soft sediment mechanics. We applied an experimental approach aimed at understanding how one measure of foot function, the distribution of plantar pressure, influences footprint topography. Thirty-eight habitually unshod and minimally shod Daasanach individuals (19 male, 19 female) walked across a pressure pad and produced footprints in sediment directly excavated from the geological layer that preserves 1.5 Ma fossil footprints at Ileret, Kenya. Calibrated pressure data were collected and three-dimensional models of all footprints were produced using photogrammetry. We found significant correlations (Spearman's rank, p plantar pressure distribution and relative footprint depths at ten anatomical regions across the foot. Furthermore, plantar pressure distributions followed a pattern similar to footprint topography, with areas of higher pressure tending to leave deeper impressions. This differs from the results of experimental studies performed in different types of sediment, supporting the hypothesis that sediment type influences the relationship between plantar pressure and footprint topography. Our results also lend support to previous interpretations that the shapes of the Ileret footprints preserve evidence of a medial transfer of plantar pressure during late stance phase, as seen in modern humans. However, the weakness of the correlations indicates that much of the variation in relative depths within footprints is not explained by pressure distributions under the foot when walking on firm ground, using the methods applied here. This warrants caution when interpreting the unique foot anatomies and foot functions of extinct hominins evidenced by their footprint structures. Further research is necessary to clarify how

  16. Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment.

    Science.gov (United States)

    Ingrao, Carlo; Tricase, Caterina; Cholewa-Wójcik, Agnieszka; Kawecka, Agnieszka; Rana, Roberto; Siracusa, Valentina

    2015-12-15

    This paper discusses application of Carbon Footprint (CF) for quantification of the 100-year Global Warming Potential (GWP100) associated with the life cycle of polylactic acid (PLA) trays for packaging of fresh foods. A comparison with polystyrene (PS)-based trays was done considering two different transport system scenarios for PLA-granule supply to the tray production firm: a transoceanic freight vessel and an intercontinental freight aircraft. Doing so enabled estimation of the influence of the transportation phase on the GHG-emission rate associated with the PLA-trays' life cycle. From the assessment, the GWP100 resulted to be mainly due to PLA-granulate production and to its transportation to the tray manufacturing facility. Also, the study documented that, depending upon the transport system considered, the CF associated with the life cycle of the PLA trays can worsen so much that the latter are no longer GHG-emission saving as they are expected to be compared to the PS ones. Therefore, based upon the findings of the study, it was possible for the authors to understand the importance and the need of accounting for the transport-related issues in the design of PLA-based products, thus preserving their environmental soundness compared to traditional petroleum-based products. In this context, the study could be used as the base to reconsider the merits of PLA usage for product manufacturing, especially when high distances are implied, as in this analysed case. So, the authors believe that new research and policy frameworks should be designed and implemented for both development and promotion of more globally sustainable options. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Age, Sex and Stature Estimation from Footprint Dimensions

    Directory of Open Access Journals (Sweden)

    Paurbhi Singh

    2017-04-01

    Full Text Available Objectives: The present study was carried out to evaluate the utility and reliability of footprint dimensions in age, sex and stature determination in the North Indian population. Materials and Methods: This study was carried out using a sample of 400 people (146 female and 254 male aged 10-65 years in Uttar Pradesh, North Western state of India. Footprints of both feet were taken bilaterally, and thus a total of 800 prints were obtained. A cluster of 7 measurements were taken carefully with the help of a scientific scale ruler. Five measurements were length dimensions from the most anterior part of the toe (T1–T5 to the mid rear heel point and two were breadth dimensions from both left and right footprints: breadth at ball (BBAL, breadth at heel (BHEL and 2 indexes: heel-ball Index (HBI and footprint index (FPI. All data were analyzed statistically using Student’s t-test, regression coefficient and Pearson’s correlation for the estimation of sex on the basis of footprint dimensions. Results: The T1 in left footprints was greater than right footprints in males, while T1 and BBAL were both found to be greater in left footprints than right footprints in females. All the seven foot dimensions were higher in males than females. Conclusion: There were statistically significant differences observed in all footprint dimensions between the male and female footprints except LFPI, LHBI, and RHBI.

  18. Corporate Carbon Footprinting as Techno-political Practice

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2017-01-01

    ’ matter? I explore how emissions come into being; carbon accounting emerges as techno-political practice, fraught with non-transparency. This chapter argues that ‘successful’ corporate carbon accounting practices efficiently and skilfully ignore significant political implications of the company......'s practical relation to climate change. ‘Successful’ in this case signifies what matters for the company to compete well in capitalist markets. By examining voluntary carbon accounting at a financial services corporation, I invite an engagement with how the technicality and politics of carbon interrelate...... in accounting. I ground my analysis in ethnographic fieldwork across 20 months in the Corporate Social Responsibility (CSR) unit at one of the 50 largest companies globally. Over this period, I supported the CSR unit’s management of their sustainability data, in exchange for overt and explicit research access...

  19. Toward a nitrogen footprint calculator for Tanzania

    Science.gov (United States)

    Hutton, Mary Olivia; Leach, Allison M.; Leip, Adrian; Galloway, James N.; Bekunda, Mateete; Sullivan, Clare; Lesschen, Jan Peter

    2017-03-01

    We present the first nitrogen footprint model for a developing country: Tanzania. Nitrogen (N) is a crucial element for agriculture and human nutrition, but in excess it can cause serious environmental damage. The Sub-Saharan African nation of Tanzania faces a two-sided nitrogen problem: while there is not enough soil nitrogen to produce adequate food, excess nitrogen that escapes into the environment causes a cascade of ecological and human health problems. To identify, quantify, and contribute to solving these problems, this paper presents a nitrogen footprint tool for Tanzania. This nitrogen footprint tool is a concept originally designed for the United States of America (USA) and other developed countries. It uses personal resource consumption data to calculate a per-capita nitrogen footprint. The Tanzania N footprint tool is a version adapted to reflect the low-input, integrated agricultural system of Tanzania. This is reflected by calculating two sets of virtual N factors to describe N losses during food production: one for fertilized farms and one for unfertilized farms. Soil mining factors are also calculated for the first time to address the amount of N removed from the soil to produce food. The average per-capita nitrogen footprint of Tanzania is 10 kg N yr-1. 88% of this footprint is due to food consumption and production, while only 12% of the footprint is due to energy use. Although 91% of farms in Tanzania are unfertilized, the large contribution of fertilized farms to N losses causes unfertilized farms to make up just 83% of the food production N footprint. In a developing country like Tanzania, the main audiences for the N footprint tool are community leaders, planners, and developers who can impact decision-making and use the calculator to plan positive changes for nitrogen sustainability in the developing world.

  20. A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements

    Directory of Open Access Journals (Sweden)

    Giuseppe Todde

    2018-02-01

    Full Text Available Dairy cattle farms are continuously developing more intensive systems of management which require higher utilization of durable and not-durable inputs. These inputs are responsible of significant direct and indirect fossil energy requirements which are related to remarkable emissions of CO2. This study aims to analyze direct energy requirements and the related carbon footprint of a large population of conventional dairy farms located in the south of Italy. A detailed survey of electricity, diesel and Liquefied Petroleum Gas (LPG consumptions has been carried out among on-farm activities. The results of the analyses showed an annual average fuel consumption of 40 kg per tonne of milk, while electricity accounted for 73 kWh per tonne of milk produced. Expressing the direct energy inputs as primary energy, diesel fuel results the main resource used in on-farm activities, accounting for 72% of the total fossil primary energy requirement, while electricity represents only 27%. Moreover, larger farms were able to use more efficiently the direct energy inputs and reduce the related emissions of carbon dioxide per unit of milk produced, since the milk yield increases with the herd size. The global average farm emissions of carbon dioxide equivalent, due to all direct energy usages, accounted for 156 kg CO2-eq per tonne of Fat and Protein Corrected Milk (FPCM, while farms that raise more than 200 heads emitted 36% less than the average value. In this two-part series, the total energy demand (Part 1 + Part 2 per farm is mainly due to agricultural inputs and fuel consumption, which have the largest quota of the annual requirements for each milk yield class. These results also showed that large size farms held lower CO2-eq emissions when referred to the mass of milk produced.

  1. A flux footprint analysis to understand ecosystem fluxes in an intensively managed landscape

    Science.gov (United States)

    Hernandez Rodriguez, L. C.; Goodwell, A. E.; Kumar, P.

    2017-12-01

    Flux tower studies in agricultural sites have mainly been done at plot scale, where the footprint of the instruments is small such that the data reveals the behaviour of the nearby crop on which the study is focused. In the Midwestern United States, the agricultural ecosystem and its associated drainage, evapotranspiration, and nutrient dynamics are dominant influences on interactions between the soil, land, and atmosphere. In this study, we address large-scale ecohydrologic fluxes and states in an intensively managed landscape based on data from a 25m high eddy covariance flux tower. We show the calculated upwind distance and flux footprint for a flux tower located in Central Illinois as part of the Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). In addition, we calculate the daily energy balance during the summer of 2016 from the flux tower measurements and compare with the modelled energy balance from a representative corn crop located in the flux tower footprint using the Multi-Layer Canopy model, MLCan. The changes in flux footprint over the course of hours, days, and the growing season have significant implications for the measured fluxes of carbon and energy at the flux tower. We use MLCan to simulate these fluxes under land covers of corn and soybeans. Our results demonstrate how the instrument heights impact the footprint of the captured eddy covariance fluxes, and we explore the implication for hydrological analysis. The convective turbulent atmosphere during the daytime shows a wide footprint of more than 10 km2, which reaches 3km length for the 90% contribution, where buoyancy is the dominant mechanism driving turbulence. In contrast, the stable atmosphere during the night-time shows a narrower footprint that goes beyond 8km2 and grows in the direction of the prevalent wind, which exceeds 4 km in length. This study improves our understanding of agricultural ecosystem behaviour in terms of the magnitude and variability of fluxes and

  2. The forensic analysis of soils and sediment taken from the cast of a footprint.

    Science.gov (United States)

    Bull, Peter A; Parker, Adrian; Morgan, Ruth M

    2006-10-16

    The routine production of a cast of a shoe-print taken in soil provides information other than shoe size and gait. Material adhering to the surface of the cast represents the preservation of the moment of footprint impression. The analysis of the interface between the cast and soil is therefore a potentially lucrative source of information for forensic reconstruction. These principles are demonstrated with reference to a murder case which took place in the English Midlands. The cast of a footprint provided evidence of a two-way transfer of material between the sole of a boot and the soil of a recently ploughed field. Lumps of soil, which had dried on a boot, were deposited on the field as the footprints were made. Pollen analysis of these lumps of soil indicated that the perpetrator of the imprint had been standing recently in a nearby stream. Fibre analysis together with physical and chemical characteristics of the soil suggested a provenance for contamination of this mud prior to deposition of the footprint. Carbon/nitrogen ratios of the water taken from the cast showed that distilled water had been used thus excluding the possibility of contamination of the boot-soil interface. It was possible to reconstruct three phases of previous activity of the wearer of the boot prior to leaving the footprint in the field after the murder had taken place. This analysis shows the power of integrating different independent techniques in the analysis of hitherto unrecognised forensic materials.

  3. A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: the SwiveLock-FiberChain construct versus standard double-row repair.

    Science.gov (United States)

    Burkhart, Stephen S; Adams, Christopher R; Burkhart, Sarah S; Schoolfield, John D

    2009-03-01

    The purpose of this study was to compare the biomechanical fixation parameters of a standard double-row rotator cuff repair with those of a knotless footprint reconstruction using the double-row SwiveLock-FiberChain technique (Arthrex, Naples, FL). Seven matched pairs of human cadaveric shoulders were used for testing (mean age, 48 +/- 10.3 years). A shoulder from each matched pair was randomly selected to receive a standard 4-anchor double-row repair of the supraspinatus tendon, and the contralateral shoulder received a 4-anchor double-row SwiveLock-FiberChain repair. The tendon was cycled from 10 N to 100 N at 1 Hz for 500 cycles, followed by a single-cycle pull to failure at 33 mm/s. Yield load, ultimate load, cyclic displacement, and mode of failure were recorded. Yield load and ultimate load were higher for the SwiveLock-FiberChain repair compared with the standard double-row repair for 6 of the 7 treatment pairs; however, 1 cadaver had a contrary outcome, so the overall mean differences in yield load and ultimate load were not significantly different from 0 by Student t test (P > .15). Furthermore, smaller differences between yield load and ultimate load for the SwiveLock-FiberChain repair in 5 of the 7 treatment pairs showed a self-reinforcing mechanism. Double-row footprint reconstruction with the knotless SwiveLock-FiberChain system in this study had yield loads, ultimate loads, and cyclic displacements that were statistically equivalent to those of standard double-row rotation cuff reconstructions. The SwiveLock-FiberChain system's combination of strength, self-reinforcement, and decreased operating time may offer advantages to the surgeon, particularly when dealing with older patients in whom poor tissue quality and total operative time are important considerations.

  4. Footprint parameters as a measure of arch height.

    Science.gov (United States)

    Hawes, M R; Nachbauer, W; Sovak, D; Nigg, B M

    1992-01-01

    The human foot has frequently been categorized into arch height groups based upon analysis of footprint parameters. This study investigates the relationship between directly measured arch height and many of the footprint parameters that have been assumed to represent arch height. A total of 115 male subjects were measured and footprint parameters were calculated from digitized outlines. Correlation and regression analyses were used to determine the relationship between footprint measures and arch height. It may be concluded from the results that footprint parameters proposed in the literature (arch angle, footprint index, and arch index) and two further parameters suggested in this study (arch length index and truncated arch index) are invalid as a basis for prediction or categorization of arch height. The categorization of the human foot according to the footprint measures evaluated in this paper represent no more than indices and angles of the plantar surface of the foot itself.

  5. Holocene footprints in Namibia: the influence of substrate on footprint variability.

    Science.gov (United States)

    Morse, Sarita A; Bennett, Matthew R; Liutkus-Pierce, Cynthia; Thackeray, Francis; McClymont, Juliet; Savage, Russell; Crompton, Robin H

    2013-06-01

    We report a Holocene human and animal footprint site from the Namib Sand Sea, south of Walvis Bay, Namibia. Using these data, we explore intratrail footprint variability associated with small variations in substrate properties using a "whole foot" analytical technique developed for the studies in human ichnology. We demonstrate high levels of intratrail variability as a result of variations in grain size, depositional moisture content, and the degree of sediment disturbance, all of which determine the bearing capacity of the substrate. The two principal trails were examined, which had consistent stride and step lengths, and as such variations in print typology were primarily controlled by substrate rather than locomotor mechanics. Footprint typology varies with bearing capacity such that firm substrates show limited impressions associated with areas of peak plantar pressure, whereas softer substrates are associated with deep prints with narrow heels and reduced medial longitudinal arches. Substrates of medium bearing capacity give displacement rims and proximal movement of sediment, which obscures the true form of the medial longitudinal arch. A simple conceptual model is offered which summarizes these conclusions and is presented as a basis for further investigation into the control of substrate on footprint typology. The method, model, and results presented here are essential in the interpretation of any sites of greater paleoanthropological significance, such as recently reported from Ileret (1.5 Ma, Kenya; Bennett et al.: Science 323 (2009) 1197-1201). Copyright © 2013 Wiley Periodicals, Inc.

  6. Does footprint depth correlate with foot motion and pressure?

    Science.gov (United States)

    Bates, K T; Savage, R; Pataky, T C; Morse, S A; Webster, E; Falkingham, P L; Ren, L; Qian, Z; Collins, D; Bennett, M R; McClymont, J; Crompton, R H

    2013-06-06

    Footprints are the most direct source of evidence about locomotor biomechanics in extinct vertebrates. One of the principal suppositions underpinning biomechanical inferences is that footprint geometry correlates with dynamic foot pressure, which, in turn, is linked with overall limb motion of the trackmaker. In this study, we perform the first quantitative test of this long-standing assumption, using topological statistical analysis of plantar pressures and experimental and computer-simulated footprints. In computer-simulated footprints, the relative distribution of depth differed from the distribution of both peak and pressure impulse in all simulations. Analysis of footprint samples with common loading inputs and similar depths reveals that only shallow footprints lack significant topological differences between depth and pressure distributions. Topological comparison of plantar pressures and experimental beach footprints demonstrates that geometry is highly dependent on overall print depth; deeper footprints are characterized by greater relative forefoot, and particularly toe, depth than shallow footprints. The highlighted difference between 'shallow' and 'deep' footprints clearly emphasizes the need to understand variation in foot mechanics across different degrees of substrate compliance. Overall, our results indicate that extreme caution is required when applying the 'depth equals pressure' paradigm to hominin footprints, and by extension, those of other extant and extinct tetrapods.

  7. National water footprint accounts: the green, blue and grey water footprint of production and consumption

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies and maps the water footprints of nations from both a production and consumption perspective and estimates international virtual water flows and national and global water savings as a result of trade. The entire estimate includes a breakdown of water footprints, virtual water

  8. Variability of footprint ridge density and its use in estimation of sex in forensic examinations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Pathania, Annu; Sharma, Ruchika; DiMaggio, John A

    2015-10-01

    The present study deals with a comparatively new biometric parameter of footprints called footprint ridge density. The study attempts to evaluate sex-dependent variations in ridge density in different areas of the footprint and its usefulness in discriminating sex in the young adult population of north India. The sample for the study consisted of 160 young adults (121 females) from north India. The left and right footprints were taken from each subject according to the standard procedures. The footprints were analysed using a 5 mm × 5 mm square and the ridge density was calculated in four different well-defined areas of the footprints. These were: F1 - the great toe on its proximal and medial side; F2 - the medial ball of the footprint, below the triradius (the triradius is a Y-shaped group of ridges on finger balls, palms and soles which forms the basis of ridge counting in identification); F3 - the lateral ball of the footprint, towards the most lateral part; and F4 - the heel in its central part where the maximum breadth at heel is cut by a perpendicular line drawn from the most posterior point on heel. This value represents the number of ridges in a 25 mm(2) area and reflects the ridge density value. Ridge densities analysed on different areas of footprints were compared with each other using the Friedman test for related samples. The total footprint ridge density was calculated as the sum of the ridge density in the four areas of footprints included in the study (F1 + F2 + F3 + F4). The results show that the mean footprint ridge density was higher in females than males in all the designated areas of the footprints. The sex differences in footprint ridge density were observed to be statistically significant in the analysed areas of the footprint, except for the heel region of the left footprint. The total footprint ridge density was also observed to be significantly higher among females than males. A statistically significant correlation

  9. Water footprint of hydro power in Norway

    Science.gov (United States)

    Engeland, Kolbjørn; Tallaksen, Lena; Haakon Bakken, Tor; Killingtveit, Ånund

    2015-04-01

    The IPCC Special Report on Renewable Energy (IPCC, 2012) assesses the potential for renewable energy sources to replace fossil-based fuels and benchmarks the technologies with respect to a set of criteria, including their water footprint measured as m3/MWh. While most of the renewable technologies show a typical range of 1-5 m3/MWh, the very sparse data on hydropower range from a minimum of 0.04 to a maximum of 209 m3/MWh. More recent studies on water footprint from hydropower indicate that the water consumption rates could go even far beyond the numbers published by IPCC (2012). The methodological approach behind these numbers are, however, criticized as it appears over-simplistic and several issues need to be defined and clarified in order to present the 'true picture' of the water footprint of hydropower. Despite this, the rather high numbers for hydropower may imply a reputational risk for the sector and also be a direct investment risk in new projects if hydropower is considered a "large-scale water consumer". Estimation of water footprint has two important components (i) definition of water footprint (including system boundaries), and (ii) estimation of evaporation, which is assumed to constitute the main water loss from hydropower. Here we will mainly address the second topic and have chosen to use a water footprint definition based on net evapotranspiration from reservoirs. Thus, we need estimates of evapotranspiration from the land surface prior to inundation and the evaporation from the reservoir after it has been filled up. The primary objective of the study is to estimate water footprint of hydropower in Norway and in particular to answer the following questions: (i) How does different environmental variables influence water footprint estimation in Norway?, and in particular (ii) What is the total/specific water footprint from Norwegian hydropower production? To answer these questions we tested how environmental variables like climate and vegetation

  10. Evaluation of Production and Carbon Benefit of Different Vegetables

    Directory of Open Access Journals (Sweden)

    HU Liang

    2016-01-01

    Full Text Available This study analyzed environmental and economic benefits of 8 types of vegetables in 4 different farms over 3 years. The specific results were as follows:(1The input-output ratio and carbon footprint of organic production mode was 18.5% and 87.4% of that of pollution-free mode, respectively; (2Fertilizer and power consumption was the main source of carbon emissions, accounting for 58.76% and 16.67% of total carbon emissions, respectively; (3There were positive correlations between N fertilizer and both carbon emissions and carbon footprint. In other words, higher use of N fertilizer resulted in higher carbon emissions and carbon footprint; (4 When organic fertilizers use reached 122 352 kg·hm-2, the crop production could reach the maximum under organic mode. Under the mode of pollution-free production, when agricultural chemicals input reached 20 103 yuan·hm-2, leafy vegetable production could reach the maximum. Therefore, to increase production and reduce carbon emissions in the process of vegetable production, the main approach was to use organic mode, increase the quantity of organic fertilizer, instead of the use of inorganic N fertilizer and other agricultural chemicals and establish water-saving irrigation system for electricity efficiency.

  11. Combining carbon footprinting, monitoring, feedback, and rewards for a broad spectrum reduction of household induced greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Perrels, Adriaan (Government Institute for Economic Research VATT (Finland)); Hongisto, Mikko; Kallio, Arto (VTT Technical Research Centre of Finland (Finland)); Hyvoenen, Kaarina (National Consumer Research Centre KTK (Finland)); Katajajuuri, Juha-Matti (MTT Agrifood Research Finland (Finland)); Nissinen, Ari (Finnish Environment Institute SYKE (Finland))

    2009-07-01

    The study reported in this article (named CLIMATE BONUS) concerns the combined use of verified carbon footprints (possibly visualised through labels), personalised monitoring and feedback services to households regarding the greenhouse gas intensities of their purchases, and a reward system (bonuses) for consumers who manage to reduce the embodied emissions. The study assesses the accuracy and verification requirements and the harmonisation needs for the various information systems and their interfaces. This should culminate in a data strategy, in which a data acquisition, generation and co-ordination strategy and a data quality assurance strategy will be developed. Equally important, the study also assesses, via an own pilot, what the response of households (as consumers) can amount to and how the responsiveness to various incentives can be rated. The paper provides an outline of the intended system, including its rationale. Subsequently, the paper focuses on the consumer pilot and the feedback from the participants. It also provides a brief impression of the expected overall economic effectiveness of the system.

  12. Towards better GHG emissions savings with use of ISO GHG standards

    International Nuclear Information System (INIS)

    Chan Kook Weng

    2010-01-01

    The 15th Conference of Parties (COP 15) at Copenhagen, Denmark in December 2009 highlighted the need to combat climate change by facing the challenge of committing to reducing our emissions at all three levels with locally appropriate mitigation actions (LAMAs) at the local level to be linked to the nationally appropriate mitigation actions (NAMAs) and then contribute onwards to globally appropriate mitigation actions (GAMAs). The aim is to find solutions for both adaptation and mitigation by ensuring sufficient means are made available to support such efforts. This is because the world in entering a new phase that will be characterised by green growth in business. Thus be it agriculture that uses local knowledge of specific crop and livestock varieties to help in secure food supply, bio-energy, transport, industries, there must be policies to understand ecosystem-based to link people, biodiversity, energy, water and carbon so as to be more resilient and adaptable to the need for a low carbon economy in todays society.Climate change therefore affects organisations in many areas and they include legal compliance, carbon market, corporate social responsibility and sustainable development. Promoting sustainability requires making efficient use of energy, water and natural resources, decrease in waste load through recycling and streamlining the processes leading to everything that decreases their CO 2 and water footprints. Currently there are many GHG schemes and programmes and the issues centres around compatibility, costs and most importantly credibility. Achieving real GHG emissions reduction requires controlled and verified emissions reductions and quantification that are sound and verifiable. Thanks to the development of the ISO suite of standards on GHG and related matters, the use of these harmonised standards has given the assurance that a tonne of carbon is a tonne of carbon be it in Malaysia, Mali or Mongolia.The use of these standards like ISO 14064 Part 1

  13. City-based Carbon Budgets for Buildings

    DEFF Research Database (Denmark)

    Lütken, Søren; Wretlind, Per Harry

    The construction of buildings consumes about 50% of all materials produced globally measured by weight. Materials such as cement, ceramic tile and steel are among the most carbon intensive materials to manufacture, and come with a carbon footprint of their own. This is called embodied carbon...

  14. Impact of bioenergy production on carbon storage and soil functions

    Science.gov (United States)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  15. New Carbonate Standard Reference Materials for Boron Isotope Geochemistry

    Science.gov (United States)

    Stewart, J.; Christopher, S. J.; Day, R. D.

    2015-12-01

    The isotopic composition of boron (δ11B) in marine carbonates is well established as a proxy for past ocean pH. Yet, before palaeoceanographic interpretation can be made, rigorous assessment of analytical uncertainty of δ11B data is required; particularly in light of recent interlaboratory comparison studies that reported significant measurement disagreement between laboratories [1]. Well characterised boron standard reference materials (SRMs) in a carbonate matrix are needed to assess the accuracy and precision of carbonate δ11B measurements throughout the entire procedural chemistry; from sample cleaning, to ionic separation of boron from the carbonate matrix, and final δ11B measurement by multi-collector inductively coupled plasma mass spectrometry. To date only two carbonate reference materials exist that have been value-assigned by the boron isotope measurement community [2]; JCp-1 (porites coral) and JCt-1 (Giant Clam) [3]. The National Institute of Standards and Technology (NIST) will supplement these existing standards with new solution based inorganic carbonate boron SRMs that replicate typical foraminiferal and coral B/Ca ratios and δ11B values. These new SRMs will not only ensure quality control of full procedural chemistry between laboratories, but have the added benefits of being both in abundant supply and free from any restrictions associated with shipment of biogenic samples derived from protected species. Here we present in-house δ11B measurements of these new boron carbonate SRM solutions. These preliminary data will feed into an interlaboratory comparison study to establish certified values for these new NIST SRMs. 1. Foster, G.L., et al., Chemical Geology, 2013. 358(0): p. 1-14. 2. Gutjahr, M., et al., Boron Isotope Intercomparison Project (BIIP): Development of a new carbonate standard for stable isotopic analyses. Geophysical Research Abstracts, EGU General Assembly 2014, 2014. 16(EGU2014-5028-1). 3. Inoue, M., et al., Geostandards and

  16. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  17. The carbon footprint of traditional woodfuels

    Science.gov (United States)

    Bailis, Robert; Drigo, Rudi; Ghilardi, Adrian; Masera, Omar

    2015-03-01

    Over half of all wood harvested worldwide is used as fuel, supplying ~9% of global primary energy. By depleting stocks of woody biomass, unsustainable harvesting can contribute to forest degradation, deforestation and climate change. However, past efforts to quantify woodfuel sustainability failed to provide credible results. We present a spatially explicit assessment of pan-tropical woodfuel supply and demand, calculate the degree to which woodfuel demand exceeds regrowth, and estimate woodfuel-related greenhouse-gas emissions for the year 2009. We estimate 27-34% of woodfuel harvested was unsustainable, with large geographic variations. Our estimates are lower than estimates from carbon offset projects, which are probably overstating the climate benefits of improved stoves. Approximately 275 million people live in woodfuel depletion `hotspots’--concentrated in South Asia and East Africa--where most demand is unsustainable. Emissions from woodfuels are 1.0-1.2 Gt CO2e yr-1 (1.9-2.3% of global emissions). Successful deployment and utilization of 100 million improved stoves could reduce this by 11-17%. At US$11 per tCO2e, these reductions would be worth over US$1 billion yr-1 in avoided greenhouse-gas emissions if black carbon were integrated into carbon markets. By identifying potential areas of woodfuel-driven degradation or deforestation, we inform the ongoing discussion about REDD-based approaches to climate change mitigation.

  18. Experimentally generated footprints in sand: Analysis and consequences for the interpretation of fossil and forensic footprints.

    Science.gov (United States)

    D'Août, Kristiaan; Meert, L; Van Gheluwe, B; De Clercq, D; Aerts, P

    2010-04-01

    Fossilized footprints contain information about the dynamics of gait, but their interpretation is difficult, as they are the combined result of foot anatomy, gait dynamics, and substrate properties. We explore how footprints are generated in modern humans. Sixteen healthy subjects walked on a solid surface and in a layer of fine-grained sand. In each condition, 3D kinematics of the leg and foot were analyzed for three trials at preferred speed, using an infrared camera system. Additionally, calibrated plantar pressures were recorded. After each trial in sand, the depth of the imprint was measured under specific sites. When walking in sand, subjects showed greater toe clearance during swing and a 7 degrees higher knee yield during stance. Maximal pressure was the most influential factor for footprint depth under the heel. For other foot zones, a combination of factors correlates with imprint depth, with pressure impulse (the pressure-time integral) gaining importance distally, at the metatarsal heads and the hallux. We conclude that footprint topology cannot be related to a single variable, but that different zones of the footprint reflect different aspects of the kinesiology of walking. Therefore, an integrated approach, combining anatomical, kinesiological, and substrate-mechanical insights, is necessary for a correct interpretation. (c) 2009 Wiley-Liss, Inc.

  19. Development of My Footprint Calculator

    Science.gov (United States)

    Mummidisetti, Karthik

    The Environmental footprint is a very powerful tool that helps an individual to understand how their everyday activities are impacting environmental surroundings. Data shows that global climate change, which is a growing concern for nations all over the world, is already affecting humankind, plants and animals through raising ocean levels, droughts & desertification and changing weather patterns. In addition to a wide range of policy measures implemented by national and state governments, it is necessary for individuals to understand the impact that their lifestyle may have on their personal environmental footprint, and thus over the global climate change. "My Footprint Calculator" (myfootprintcalculator.com) has been designed to be one the simplest, yet comprehensive, web tools to help individuals calculate and understand their personal environmental impact. "My Footprint Calculator" is a website that queries users about their everyday habits and activities and calculates their personal impact on the environment. This website was re-designed to help users determine their environmental impact in various aspects of their lives ranging from transportation and recycling habits to water and energy usage with the addition of new features that will allow users to share their experiences and their best practices with other users interested in reducing their personal Environmental footprint. The collected data is stored in the database and a future goal of this work plans to analyze the collected data from all users (anonymously) for developing relevant trends and statistics.

  20. Modeling residential water and related energy, carbon footprint and costs in California

    International Nuclear Information System (INIS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-01-01

    Graphical abstract: - Highlights: • We model residential water use and related energy and GHG emissions in California. • Heterogeneity in use, spatial variability and water and energy rates are accounted. • Outdoor is more than 50% of water use but 80% of energy is used by faucet + shower. • Variability in water and energy prices affects willingness to adopt conservation. • Targeting high-use hoses and joint conservation policies are effective strategies. - Abstract: Starting from single-family household water end-use data, this study develops an end-use model for water-use and related energy and carbon footprint using probability distributions for parameters affecting water consumption in 10 local water utilities in California. Monte Carlo simulations are used to develop a large representative sample of households to describe variability in use, with water bills for each house for different utility rate structures. The water-related energy consumption for each household realization was obtained using an energy model based on the different water end-uses, assuming probability distributions for hot-water-use for each appliance and water heater characteristics. Spatial variability is incorporated to account for average air and household water inlet temperatures and price structures for each utility. Water-related energy costs are calculated using averaged energy price for each location. CO 2 emissions were derived from energy use using emission factors. Overall simulation runs assess the impact of several common conservation strategies on household water and energy use. Results show that single-family water-related CO 2 emissions are 2% of overall per capita emissions, and that managing water and energy jointly can significantly reduce state greenhouse gas emissions

  1. Interpreting locomotor biomechanics from the morphology of human footprints.

    Science.gov (United States)

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  2. Fuel Mix Impacts from Transportation Fuel Carbon Intensity Standards in Multiple Jurisdictions

    Science.gov (United States)

    Witcover, J.

    2017-12-01

    Fuel carbon intensity standards have emerged as an important policy in jurisdictions looking to target transportation greenhouse gas (GHG) emissions for reduction. A carbon intensity standard rates transportation fuels based on analysis of lifecycle GHG emissions, and uses a system of deficits and tradable, bankable credits to reward increased use of fuels with lower carbon intensity ratings while disincentivizing use of fuels with higher carbon intensity ratings such as conventional fossil fuels. Jurisdictions with carbon intensity standards now in effect include California, Oregon, and British Columbia, all requiring 10% reductions in carbon intensity of the transport fuel pool over a 10-year period. The states and province have committed to grow demand for low carbon fuels in the region as part of collaboration on climate change policies. Canada is developing a carbon intensity standard with broader coverage, for fuels used in transport, industry, and buildings. This study shows a changing fuel mix in affected jurisdictions under the policy in terms of shifting contribution of transportation energy from alternative fuels and trends in shares of particular fuel pathways. It contrasts program designs across the jurisdictions with the policy, highlights the opportunities and challenges these pose for the alternative fuel market, and discusses the impact of having multiple policies alongside federal renewable fuel standards and sometimes local carbon pricing regimes. The results show how the market has responded thus far to a policy that incentivizes carbon saving anywhere along the supply chain at lowest cost, in ways that diverged from a priori policy expectations. Lessons for the policies moving forward are discussed.

  3. Carbon Footprint Management of Road Freight Transport under the Carbon Emission Trading Mechanism

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available Growing concern over environmental issues has considerably increased the number of regulations and legislation that aim to curb carbon emissions. Carbon emission trading mechanism, which is one of the most effective means, has been broadly adopted by several countries. This paper presents a road truck routing problem under the carbon emission trading mechanism. By introducing a calculation method of carbon emissions that considers the load and speed of the vehicle among other factors, a road truck routing optimizing model under the cap and trade mechanism based on the Travelling Salesman Problem (TSP is described. Compared with the classical TSP model that only considers the economic cost, this model suggests that the truck routing decision under the cap and trade mechanism is more effective in reducing carbon emissions. A modified tabu search algorithm is also proposed to obtain solutions within a reasonable amount of computation time. We theoretically and numerically examine the impacts of carbon trading, carbon cap, and carbon price on truck routing decision, carbon emissions, and total cost. From the results of numerical experiments, we derive interesting observations about how to control the total cost and reduce carbon emissions.

  4. Psychological effectiveness of carbon labelling

    Science.gov (United States)

    Beattie, Geoffrey

    2012-04-01

    Despite the decision by supermarket-giant Tesco to delay its plan to add carbon-footprint information onto all of its 70,000 products, carbon labelling, if carefully designed, could yet change consumer behaviour. However, it requires a new type of thinking about consumers and much additional work.

  5. Anatomical Footprint of the Tibialis Anterior Tendon: Surgical Implications for Foot and Ankle Reconstructions

    Directory of Open Access Journals (Sweden)

    Madeleine Willegger

    2017-01-01

    Full Text Available This study aimed to analyze precisely the dimensions, shapes, and variations of the insertional footprints of the tibialis anterior tendon (TAT at the medial cuneiform (MC and first metatarsal (MT1 base. Forty-one formalin-fixed human cadaveric specimens were dissected. After preparation of the TAT footprint, standardized photographs were made and the following parameters were evaluated: the footprint length, width, area of insertion, dorsoplantar location, shape, and additional tendon slips. Twenty feet (48.8% showed an equal insertion at the MC and MT1, another 20 feet (48.8% had a wide insertion at the MC and a narrow insertion at the MT1, and 1 foot (2.4% demonstrated a narrow insertion at the MC and a wide insertion at the MT1. Additional tendon slips inserting at the metatarsal shaft were found in two feet (4.8%. Regarding the dorsoplantar orientation, the footprints were located medial in 29 feet (70.7% and medioplantar in 12 feet (29.3%. The most common shape at the MT1 base was the crescent type (75.6% and the oval type at the MC (58.5%. The present study provided more detailed data on the dimensions and morphologic types of the tibialis anterior tendon footprint. The established anatomical data may allow for a safer surgical preparation and a more anatomical reconstruction.

  6. Geometric morphometric footprint analysis of young women

    OpenAIRE

    Domjanic, Jacqueline; Fieder, Martin; Seidler, Horst; Mitteroecker, Philipp

    2013-01-01

    Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented t...

  7. A full value-chain Water Footprint Assessment to help informed decision in corporate sustainability strategies

    Science.gov (United States)

    Zhang, Guoping; Chico Zamanilo, Daniel; Bai, Xue; Ren, Xiajing; Chen, Rong; Qin, Jun

    2017-04-01

    sustainability strategy. The results of the study were also used in the development of the national water footprint standard for organisations.

  8. Travel and the ecological footprint in 2005. Environmental load of holidays by people in the Netherlands; Reizen op grote voet in 2005. De milieubelasting van vakanties van Nederlanders

    Energy Technology Data Exchange (ETDEWEB)

    De Bruijn, K.; Dirven, R. [NRIT Onderzoek, Breda (Netherlands); Eijgelaar, E.; Peeters, P. [NHTV Centre for Sustainable Tourism and Transport, Breda (Netherlands)

    2009-07-01

    This report presents the results of a study of the environmental load of Dutch people going on holiday. The environmental load is expressed as the 'ecological footprint', a measure for the environmental space and the carbon footprint, i.e. the CO2 emissions that are responsible for climatic change. The research shows that the holidays of Dutch people account for a share of 7.3% of the ecological footprint of the Netherlands and for 7.9% of all CO2 emissions. The differences between various kinds of travel are wide, though [mk]. [Dutch] Het rapport bevat de resultaten van een onderzoek naar de milieubelasting van de Nederlandse vakantieganger. De milieubelasting wordt uitgedrukt in de 'ecologische voetafdruk', een maat voor de milieugebruiksruimte, en de 'carbon footprint', ofwel de emissies van kooldioxide die verantwoordelijk zijn voor klimaatverandering. Uit het onderzoek blijkt dat de Nederlandse vakantieganger verantwoordelijk is voor 7,3% van de ecologische voetafdruk van Nederland en 7,9% van de CO2-emissies. De verschillen tussen verschillende reizen zijn echter groot.

  9. Accounting for the Ecological Footprint of Materials in Consumer Goods at the Urban Scale

    Directory of Open Access Journals (Sweden)

    William E. Rees

    2013-05-01

    Full Text Available Ecological footprint analysis (EFA can be used by cities to account for their on-going demands on global renewable resources. To date, EFA has not been fully implemented as an urban policy and planning tool in part due to limitations of local data availability. In this paper we focus on the material consumption component of the urban ecological footprint and identify the ‘component, solid waste life cycle assessment approach’ as one that overcomes data limitations by using data many cities regularly collect: municipal, solid waste composition data which serves as a proxy for material consumption. The approach requires energy use and/or carbon dioxide emissions data from process LCA studies as well as agricultural and forest land data for calculation of a material’s ecological footprint conversion value. We reviewed the process LCA literature for twelve materials commonly consumed in cities and determined ecological footprint conversion values for each. We found a limited number of original LCA studies but were able to generate a range of values for each material. Our set of values highlights the importance for cities to identify both the quantities consumed and per unit production impacts of a material. Some materials like textiles and aluminum have high ecological footprints but make up relatively smaller proportions of urban waste streams than products like paper and diapers. Local government use of the solid waste LCA approach helps to clearly identify the ecological loads associated with the waste they manage on behalf of their residents. This direct connection can be used to communicate to citizens about stewardship, recycling and ecologically responsible consumption choices that contribute to urban sustainability.

  10. Directed graph based carbon flow tracing for demand side carbon obligation allocation

    DEFF Research Database (Denmark)

    Sun, Tao; Feng, Donghan; Ding, Teng

    2016-01-01

    In order to achieve carbon emission abatement, some researchers and policy makers have cast their focus on demand side carbon abatement potentials. This paper addresses the problem of carbon flow calculation in power systems and carbon obligation allocation at demand side. A directed graph based...... method for tracing carbon flow is proposed. In a lossy network, matrices such as carbon losses, net carbon intensity (NCI) and footprint carbon intensity (FCI) are obtained with the proposed method and used to allocate carbon obligation at demand side. Case studies based on realistic distribution...... and transmission systems are provided to demonstrate the effectiveness of the proposed method....

  11. Study of the Effects on Student Knowledge and Perceptions of Activities Related to Submetering the 6th Grade Wing of a Middle School, to Displaying the Carbon Footprint, and to Efforts to Reduce Energy Consumption and Greenhouse Gases

    Science.gov (United States)

    Peck, Rick

    2009-01-01

    The purpose of the study was to determine the effects upon student knowledge and perceptions regarding greenhouse gas emissions as a result of an intervention relying upon the submetering the 6th grade wing of a Middle School, displaying the information regarding electrical consumption and carbon footprint, and reducing the electrical consumption…

  12. Nitrogen footprints: past, present and future

    Science.gov (United States)

    Galloway, James N.; Winiwarter, Wilfried; Leip, Adrian; Leach, Allison M.; Bleeker, Albert; Willem Erisman, Jan

    2014-11-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems.

  13. Nitrogen footprints: past, present and future

    International Nuclear Information System (INIS)

    Galloway, James N; Leach, Allison M; Winiwarter, Wilfried; Leip, Adrian; Bleeker, Albert; Erisman, Jan Willem

    2014-01-01

    The human alteration of the nitrogen cycle has evolved from minimal in the mid-19th century to extensive in the present time. The consequences to human and environmental health are significant. While much attention has been given to the extent and impacts of the alteration, little attention has been given to those entities (i.e., consumers, institutions) that use the resources that result in extensive reactive nitrogen (Nr) creation. One strategy for assessment is the use of nitrogen footprint tools. A nitrogen footprint is generally defined as the total amount of Nr released to the environment as a result of an entity’s consumption patterns. This paper reviews a number of nitrogen footprint tools (N-Calculator, N-Institution, N-Label, N-Neutrality, N-Indicator) that are designed to provide that attention. It reviews N-footprint tools for consumers as a function of the country that they live in (N-Calculator, N-Indicator) and the products they buy (N-Label), for the institutions that people work in and are educated in (N-Institution), and for events and decision-making regarding offsets (N-Neutrality). N footprint tools provide a framework for people to make decisions about their resource use and show them how offsets can be coupled with behavior change to decrease consumer/institution contributions to N-related problems. (paper)

  14. Pyrite footprinting of RNA

    International Nuclear Information System (INIS)

    Schlatterer, Jörg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-01-01

    Highlights: ► RNA structure is mapped by pyrite mediated · OH footprinting. ► Repetitive experiments can be done in a powdered pyrite filled cartridge. ► High · OH reactivity of nucleotides imply dynamic role in Diels–Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ( · OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS 2 ) can produce sufficient · OH to footprint DNA. The 49-nt Diels–Alder RNA enzyme catalyzes the C–C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme’s active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels–Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to · OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop’s flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated · OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  15. The conundrum of calculating carbon footprints

    DEFF Research Database (Denmark)

    Strobel, Bjarne W.; Erichsen, Anders Christian; Gausset, Quentin

    2016-01-01

    A pre-condition for reducing global warming is to minimise the emission of greenhouse gasses (GHGs). A common approach to informing people about the link between behaviour and climate change rests on developing GHG calculators that quantify the ‘carbon footprint’ of a product, a sector or an actor...... to adopt greener behaviour....

  16. The blue water footprint of electricity from hydropower

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2012-01-01

    Full Text Available Hydropower accounts for about 16% of the world's electricity supply. It has been debated whether hydroelectric generation is merely an in-stream water user or whether it also consumes water. In this paper we provide scientific support for the argument that hydroelectric generation is in most cases a significant water consumer. The study assesses the blue water footprint of hydroelectricity – the water evaporated from manmade reservoirs to produce electric energy – for 35 selected sites. The aggregated blue water footprint of the selected hydropower plants is 90 Gm3 yr−1, which is equivalent to 10% of the blue water footprint of global crop production in the year 2000. The total blue water footprint of hydroelectric generation in the world must be considerably larger if one considers the fact that this study covers only 8% of the global installed hydroelectric capacity. Hydroelectric generation is thus a significant water consumer. The average water footprint of the selected hydropower plants is 68 m3 GJ−1. Great differences in water footprint among hydropower plants exist, due to differences in climate in the places where the plants are situated, but more importantly as a result of large differences in the area flooded per unit of installed hydroelectric capacity. We recommend that water footprint assessment is added as a component in evaluations of newly proposed hydropower plants as well as in the evaluation of existing hydroelectric dams, so that the consequences of the water footprint of hydroelectric generation on downstream environmental flows and other water users can be evaluated.

  17. The use of the Podotrack in forensic podiatry for collection and analysis of bare footprints using the Reel method of measurement.

    Science.gov (United States)

    Burrow, J Gordon

    2016-05-01

    This small-scale study examined the role that bare footprint collection and measurement processes have on the Reel method of measurement in forensic podiatry and its use in the Criminal Justice System. Previous research indicated that the Reel method was a valid and reliable measurement system for bare footprint analysis but various collection systems have been used to collect footprint data and both manual and digital measurement processes were utilized in forensic podiatry and other disciplines. This study contributes to the debate about collecting bare footprints; the techniques employed to quantify various Reel measurements and considered whether there was asymmetry between feet and footprints of the same person. An inductive, quantitative paradigm used the Podotrack gathering procedure for footprint collection and the subsequent dynamic footprints subjected to Adobe Photoshop techniques of calculating the Reel linear variables. Statistical analyses using paired-sample t tests were conducted to test hypotheses and compare data sets. Standard error of mean (SEM) showed variation between feet and the findings provide support for the Reel study and measurement method. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Uk’e koley (no footprint) Project

    Energy Technology Data Exchange (ETDEWEB)

    Winnestaffer, Jessica E.D. [Chickaloon Native Village

    2014-03-30

    Chickaloon Native Village is a federally-recognized Alaska Native Tribe that has long been devoted to being a good steward to the environment, understanding that it is our responsibility to take care of the land that has been loaned to us for the short time we are here. The goal of this project was to conduct a feasibility study to assess the energy uses, loads, and efficiencies for all of our current Tribally owned and operated buildings and rental housing units, to determine if it makes economic and environmental sense to install renewable energy systems on each building to lower our carbon footprints and to decrease our dependence on fossil fuels. The goal was met and we have developed a plan for installing renewable energy systems on several Tribal buildings where the benefits will be most notable.

  19. On Touristic Ecological Footprint of Macau

    Institute of Scientific and Technical Information of China (English)

    Zhang Meng; Yang Yu

    2012-01-01

    Despite its tiny territory, Macau boasts a large volume of tourist activities, which serves as the pillar of its economy. En- vironment and natural resources are the cornerstone of tourism, but are also subject to the negative impact of tourism. Based on the theory and methodology of ecological footprint analysis, this paper calculated the touristic ecological footprint and deficit of Macau in 2009, in an effort to bring to light the current status of excessive consumption of resources by tourism. As the findings show, the non-h'ansferable touristic ecological footprint and touristic ecologi- cal deficit of Macau in 2009 are respectively 18 300.891 gha and 12 737.584 gha, and the former is 3.29 times as large as the tour- istic ecological carrying capacity. Touristic ecological footprint of Macau is highly efficient in economic sense but currently tourism is developing in an unsustainable manner, so appropriate initiatives are in need to strike a balance between tourism development and resource conservation and to promote the sustainability of tourism industry of Macau.

  20. Unrealistic phylogenetic trees may improve phylogenetic footprinting.

    Science.gov (United States)

    Nettling, Martin; Treutler, Hendrik; Cerquides, Jesus; Grosse, Ivo

    2017-06-01

    The computational investigation of DNA binding motifs from binding sites is one of the classic tasks in bioinformatics and a prerequisite for understanding gene regulation as a whole. Due to the development of sequencing technologies and the increasing number of available genomes, approaches based on phylogenetic footprinting become increasingly attractive. Phylogenetic footprinting requires phylogenetic trees with attached substitution probabilities for quantifying the evolution of binding sites, but these trees and substitution probabilities are typically not known and cannot be estimated easily. Here, we investigate the influence of phylogenetic trees with different substitution probabilities on the classification performance of phylogenetic footprinting using synthetic and real data. For synthetic data we find that the classification performance is highest when the substitution probability used for phylogenetic footprinting is similar to that used for data generation. For real data, however, we typically find that the classification performance of phylogenetic footprinting surprisingly increases with increasing substitution probabilities and is often highest for unrealistically high substitution probabilities close to one. This finding suggests that choosing realistic model assumptions might not always yield optimal predictions in general and that choosing unrealistically high substitution probabilities close to one might actually improve the classification performance of phylogenetic footprinting. The proposed PF is implemented in JAVA and can be downloaded from https://github.com/mgledi/PhyFoo. : martin.nettling@informatik.uni-halle.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  1. Relating the carbon footprint of milk from Irish dairy farms to economic performance.

    Science.gov (United States)

    O'Brien, D; Hennessy, T; Moran, B; Shalloo, L

    2015-10-01

    Mitigating greenhouse gas (GHG) emissions per unit of milk or the carbon footprint (CF) of milk is a key issue for the European dairy sector given rising concerns over the potential adverse effects of climate change. Several strategies are available to mitigate GHG emissions, but producing milk with a low CF does not necessarily imply that a dairy farm is economically viable. Therefore, to understand the relationship between the CF of milk and dairy farm economic performance, the farm accountancy network database of a European Union nation (Ireland) was applied to a GHG emission model. The method used to quantify GHG emissions was life cycle assessment (LCA), which was independently certified to comply with the British standard for LCA. The model calculated annual on- and off-farm GHG emissions from imported inputs (e.g., electricity) up to the point milk was sold from the farm in CO2-equivalent (CO2-eq). Annual GHG emissions computed using LCA were allocated to milk based on the economic value of dairy farm products and expressed per kilogram of fat- and protein-corrected milk (FPCM). The results showed for a nationally representative sample of 221 grass-based Irish dairy farms in 2012 that gross profit averaged € 0.18/L of milk and € 1,758/ha and gross income was € 40,899/labor unit. Net profit averaged € 0.08/L of milk and € 750/ha and net income averaged € 18,125/labor unit. However, significant variability was noted in farm performance across each financial output measure. For instance, net margin per hectare of the top one-third of farms was 6.5 times higher than the bottom third. Financial performance measures were inversely correlated with the CF of milk, which averaged 1.20 kg of CO2-eq/kg of FPCM but ranged from 0.60 to 2.13 kg of CO2-eq/kg of FPCM. Partial least squares regression analysis of correlations between financial and environmental performance indicated that extending the length of the grazing season and increasing milk production

  2. Ecological footprint and food consumption in Minna, Nigeria

    International Nuclear Information System (INIS)

    Razack, N T A A; Ludin, A N M

    2014-01-01

    Cities all over the world are growing and will continue to grow as development is tilted toward development at the expense of the rural area. As a result of this there is need for development of housing that constructed at the urban fringes. There are many tools to measure sustainability of a city and one of them is Ecological Footprint. This paper looked at the Ecological Footprint and food consumption Minna, Nigeria. The paper evaluates the effectiveness of Ecological Footprint in the context of urban development. The survey revealed that food contributed 38.77% of the Ecological Footprint of Minna. This is as a result of the lifestyle of the people. It was concluded that the Ecological Footprint of Minna (1.096gha) is lower than the national bio-capacity (1.24gha), which therefore make city sustainable. Therefore, the people of Minna have to develop a lifestyle that will be sustainable better than the present practice

  3. Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification–denitrification

    International Nuclear Information System (INIS)

    Schneider, Andrew G.; Townsend-Small, Amy; Rosso, Diego

    2015-01-01

    Water reclamation has the potential to reduce water supply demands from aquifers and more energy-intensive water production methods (e.g., seawater desalination). However, water reclamation via biological nitrification–denitrification is also associated with the direct emission of the greenhouse gases (GHGs) CO 2 , N 2 O, and CH 4 . We quantified these direct emissions from the nitrification–denitrification reactors of a water reclamation plant in Southern California, and measured the 14 C content of the CO 2 to distinguish between short- and long-lived carbon. The total emissions were 1.5 (± 0.2) g-fossil CO 2 m −3 of wastewater treated, 0.5 (± 0.1) g-CO 2 -eq of CH 4 m −3 , and 1.8 (± 0.5) g-CO 2 -eq of N 2 O m −3 , for a total of 3.9 (± 0.5) g-CO 2 -eq m −3 . This demonstrated that water reclamation can be a source of GHGs from long lived carbon, and thus a candidate for GHG reduction credit. From the 14 C measurements, we found that between 11.4% and 15.1% of the CO 2 directly emitted was derived from fossil sources, which challenges past assumptions that the direct CO 2 emissions from water reclamation contain only modern carbon. A comparison of our direct emission measurements with estimates of indirect emissions from several water production methods, however, showed that the direct emissions from water reclamation constitute only a small fraction of the plant's total GHG footprint. - Highlights: • Direct greenhouse gas emissions were measured at a wastewater reclamation plant. • These greenhouse gas emissions amounted to 3.9 (± 0.5) g-CO 2 -eq m −3 of wastewater. • 14 C analysis of the CO 2 emissions was conducted to determine the fossil component. • 11.4% to 15.1% of the emitted CO 2 was derived from fossil sources

  4. Spatially Explicit Analysis of Water Footprints in the UK

    Directory of Open Access Journals (Sweden)

    John Barrett

    2010-12-01

    Full Text Available The Water Footprint, as an indicator of water consumption has become increasingly popular for analyzing environmental issues associated with the use of water resources in the global supply chain of consumer goods. This is particularly relevant for countries like the UK, which increasingly rely on products produced elsewhere in the world and thus impose pressures on foreign water resources. Existing studies calculating water footprints are mostly based on process analysis, and results are mainly available at the national level. The current paper assesses the domestic and foreign water requirements for UK final consumption by applying an environmentally extended multi-regional input-output model in combination with geo-demographic consumer segmentation data. This approach allows us to calculate water footprints (both direct and indirect for different products as well as different geographies within the UK. We distinguished between production and consumption footprints where the former is the total water consumed from the UK domestic water resources by the production activities in the UK and the latter is the total water consumed from both domestic and global water resources to satisfy the UK domestic final consumption. The results show that the production water footprint is 439 m3/cap/year, 85% of which is for the final consumption in the UK itself. The average consumption water footprint of the UK is more than three times bigger than the UK production water footprint in 2006. About half of the UK consumption water footprints were associated with imports from Non-OECD countries (many of which are water-scarce, while around 19% were from EU-OECD countries, and only 3% from Non-EU-OECD countries. We find that the water footprint differs considerably across sub-national geographies in the UK, and the differences are as big as 273 m3/cap/year for the internal water footprint and 802 m3/cap/year for the external water footprint. Our results suggest

  5. Place oriented ecological footprint analysis. The case of Israel's grain supply

    International Nuclear Information System (INIS)

    Kissinger, Meidad; Gottlieb, Dan

    2010-01-01

    In today's world, any nation's ecological footprint is spread all over the globe. Still, most footprint studies are not yet sensitive to the specific locations on which the footprint falls and to the unique production characteristics of each supporting region. In recent years some studies have acknowledged the need to quantify the 'real land' footprints and particularly the share of the footprint embodied in trade. Our goal is to analyse the ecological footprint of grain-based consumption in the state of Israel during the last two decades. We present a detailed, place oriented calculation procedure of Israel's grain footprint on specific locations around the world. We document modes of production, major energy inputs in specific sources of supply, the energy required for shipping from each source, and the CO 2 emissions from those operations. Our research reveals that most of Israel's grain footprint falls on North America followed by the Black Sea region. It also shows that while the overall consumption of grain products has increased throughout the research period, the size of the footprint has been dropping in recent years as a consequence of changing sources of supply and grain composition. Finally, we discuss some of the implications of the method presented here for future footprint calculations and environmental resource management. (author)

  6. Human footprint affects US carbon balance more than climate change

    Science.gov (United States)

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  7. Application of Carbon Footprint to an agro-biogas supply chain in Southern Italy

    International Nuclear Information System (INIS)

    Ingrao, Carlo; Rana, Roberto; Tricase, Caterina; Lombardi, Mariarosaria

    2015-01-01

    Highlights: • We used the methodological approach established by UNI EN ISO 14067 (2013). • We studied in detail an LCI of an agro-biogas supply chain located in Southern Italy. • Carbon sequestration was enabled by no-tillage practice in the investigated farm. • Low impacts were observed for transportation due to the short supply chain. • Environmental improvement was shown by reduction of the ammonium nitrate use. - Abstract: Over the last few years, agro-biogas has been receiving great attention since it enables replacement of natural gas, thereby representing a tool which reduces greenhouse gas emissions and other environmental impacts. In this context, this paper is aimed at the application of the Carbon Footprint (CF) to an agro-biogas supply chain (SC) in Southern Italy, according to ISO/TS 14067:2013, so as to calculate the related 100-year Global Warming Potential (GWP 100 ). The topic was addressed because agro-biogas SCs, though being acknowledged worldwide as sustainable ways to produce both electricity and heat, can be source of GHG emissions and therefore environmental assessments and improvements are needed. Additionally, the performed literature review highlighted deficiencies in PCF assessments, so this study could contribute to enriching the international knowledge on the environmental burdens associated with agro-biogas SCs. The analysis was conducted using a life-cycle approach, thus including in the assessment: functional unit choice, system border definition and inventory analysis development. The primary data needed was provided by a farm located in the province of Foggia (Apulia region in Southern Italy), already equipped with anaerobic digestion and cogeneration plant for biogas production and utilisation. Results from this study are in agreement with those found by some of the most relevant studies in the sector. Indeed, it was possible to observe that GWP 100 was almost entirely due to cropland farming and, in particular, to the

  8. Water footprinting of dairy farming in Ireland

    NARCIS (Netherlands)

    Murphy, E.; Boer, de I.J.M.; Middelaar, van C.E.; Holden, N.M.; Shalloo, L.; Curran, T.P.; Upton, J.

    2017-01-01

    In the context of global water scarcity, water footprints have become an important sustainability indicator for food production systems. To improve the water footprint of the dairy sector, insight into freshwater consumption of individual farms is required. The objective of this study was to

  9. Development and validation of a testing protocol for carbon sequestration using a controlled environment.

    Science.gov (United States)

    2012-05-01

    Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...

  10. Natural resources - food nexus: food-related environmental footprints in the mediterranean countries.

    Science.gov (United States)

    Lacirignola, Cosimo; Capone, Roberto; Debs, Philipp; El Bilali, Hamid; Bottalico, Francesco

    2014-01-01

    Immediate action is required in the Mediterranean to address environmental degradation that is mainly driven by consumption patterns. Increasing stress on biological and social systems is put by unsustainable consumption patterns. Food consumption patterns are important drivers of environment degradation. The objective of this review paper is to explore natural resources-food nexus in the Mediterranean region by highlighting the environmental footprints of the current consumption and production patterns. Secondary data from different sources such as FAOSTAT, the World Bank, Water Footprint Network (WFN), and Global Footprint Network were used to analyze the situation in 21 Mediterranean countries. The region faces many environmental challenges, e.g., land degradation, water scarcity, environment pollution, biodiversity loss, and climate change. The current consumption patterns imply high ecological, carbon, and water footprints of consumption and unfavorable national virtual-water balances. Food Balance Sheets data show that the contribution of vegetal and animal-based food product groups to food supply is variable among the Mediterranean countries. This has implications also in terms of the WF of food supply, which was calculated for Bosnia, Egypt, Italy, Morocco, and Turkey. The WF of the current diet resulted lower than that of the proposed Mediterranean one in the case of Italy. There is a strong scientific evidence supporting assumption that it is so also for other Mediterranean countries. The Mediterranean is characterized by a high resource use intensity that is further exacerbated by food losses and waste (FLW). In fact, FLW implies the loss of precious resources (water, land, energy) and inputs (fertilizers). Therefore, it is crucial to increase adherence to the traditional Mediterranean diet and to reduce FLW in order to foster transition to more sustainable food consumption patterns thus reducing pressure on the scarce resources of the Mediterranean

  11. Footprint Database and web services for the Herschel space observatory

    Science.gov (United States)

    Verebélyi, Erika; Dobos, László; Kiss, Csaba

    2015-08-01

    Using all telemetry and observational meta-data, we created a searchable database of Herschel observation footprints. Data from the Herschel space observatory is freely available for everyone but no uniformly processed catalog of all observations has been published yet. As a first step, we unified the data model for all three Herschel instruments in all observation modes and compiled a database of sky coverage information. As opposed to methods using a pixellation of the sphere, in our database, sky coverage is stored in exact geometric form allowing for precise area calculations. Indexing of the footprints allows for very fast search among observations based on pointing, time, sky coverage overlap and meta-data. This enables us, for example, to find moving objects easily in Herschel fields. The database is accessible via a web site and also as a set of REST web service functions which makes it usable from program clients like Python or IDL scripts. Data is available in various formats including Virtual Observatory standards.

  12. Multi-Regional Input-Output (MRIO Study of the Provincial Ecological Footprints and Domestic Embodied Footprints Traded among China’s 30 Provinces

    Directory of Open Access Journals (Sweden)

    Decun Wu

    2016-12-01

    Full Text Available Rapid development in China has led to imbalances and inequities of ecological resources among the provinces and regions. In this study, an environmentally extended multi-regional input-output (MRIO model was used to analyze the imbalances, inequities and pressures of the ecological footprints (EF of China’s 30 provinces in 2007. In addition, by decomposing the total product consumption coefficients, we calculated the net embodied EF of the flows among the provinces by the total amount, land type and sector. The results showed that most provinces presented EF deficits. Significant differences were observed between the ecological pressure in consumption (EPC and ecological pressure in production (EPP for each province because of the net embodied EF trade; the EPCs of Shanghai (15.16, Beijing (7.81 and Tianjin (7.81 were the largest and presented descending EPPs, whereas the EPCs of Heilongjiang (0.98, Hebei (0.98, Xinjiang (0.98 and Guangxi (0.98 were under the threshold value (1 and presented ascending EPPs. The carbon footprint in the secondary sector was the main embodied EF of the flows among the provinces responsible for inequities. Finally, based on the various conditions of the provinces in different geographical regions, we have provided suggestions for regionally balanced development that can maintain the EPP and EPC values under the threshold for each province.

  13. Progress on Footprint Reduction at the Hanford Site - 12406

    Energy Technology Data Exchange (ETDEWEB)

    McKenney, Dale E. [CH2M HILL, Plateau Remediation Company, Richland, Washington 99352 (United States); Seeley, Paul [Cenibark International, Inc., Richland, Washington 99352 (United States); Farabee, Al [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2012-07-01

    The Department of Energy (DOE) Office of Environmental Management (EM) continues to reduce the footprint of legacy sites throughout the EM complex. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess contaminated facilities, soil and groundwater remediation, and solid waste disposition. All of these initiatives are being accomplished with established technologies in proven regulatory frameworks. Ultimately, completion of these environmental cleanup activities will reduce the monitoring and maintenance costs associated with managing large federal facilities, allowing EM to place more focus on other high priority cleanup efforts and facilitate a successful transition to land-term stewardship of these sites. Through the American Recovery and Reinvestment Act (ARRA) investment, the Department's cleanup footprint has been reduced by 45 percent to date, from 2411 km{sup 2} (931 mi{sup 2}) to 1336 km{sup 2} (516 mi{sup 2}s). With this significant progress on footprint reduction, the Department is on track towards their goal to reduce its overall footprint by approximately 90 percent by 2015. In addition, some areas cleaned up may become available for alternate uses (i.e. recreation, conservation, preservation, industrialization or development). Much of the work to reduce the complex's footprint occurred at the Savannah River Site in South Carolina and the Hanford Site in Washington, but cleanup continues across the complex. Footprint reduction is progressing well at the Hanford Site, supported predominantly through ARRA investment. To date, 994 km{sup 2} (384 mi{sup 2}) (65%) of footprint reduction have been achieved at Hanford, with a goal to achieve a 90% reduction by Fiscal Year 2015. The DOE EM and DOE Richland Operations Office, continue to make great progress to reduce the legacy footprint of the Hanford Site. Footprint reduction is being accomplished by focusing cleanup activities on

  14. Water footprint assessment of oil palm in Malaysia: A preliminary study

    Science.gov (United States)

    Muhammad-Muaz, A.; Marlia, M. H.

    2014-09-01

    This study evaluates the water footprint of growing oil palm in Malaysia based on the water footprint method. The crop water use was determined using the CROPWAT 8.0 model developed by the Land and Water Development Division of FAO. The total water footprint for growing oil palm is 243 m3/ton. The result of this study showed that the green water footprint is 1.5 orders of magnitude larger compared to the blue water footprint. Besides providing updated status of total water used from the oil palm plantation, our result also shows that this baseline information helps in identifying which areas need to be conserved and what type of recommendation that should be drawn. As the results of the water footprint can differ between locations, the inclusion of local water stress index should be considered in the calculation of water footprint.

  15. The nitrogen footprint tool network: a multi-institution program ...

    Science.gov (United States)

    Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This paper uses the nitrogen footprint tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and the upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions to institution N footprints, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this paper, the first seven institution N footprint results are presented. The institution NFT network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive N released to the environment. Energy use and food purchases are the two largest contributors to institution N footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the N footprint, but the impact of food production on N pollution has not been directly addressed by the higher-ed sustainability community. The NFT Network found that institutions could reduce their N footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as reducing dependence o

  16. Global carbon inequality

    Energy Technology Data Exchange (ETDEWEB)

    Hubacek, Klaus [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Masaryk University, Department of Environmental Studies, Brno (Czech Republic); Baiocchi, Giovanni [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); University of Maryland, Department of Economics, College Park, MD (United States); Feng, Kuishuang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Munoz Castillo, Raul [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); Interamerican Development Bank, Washington, DC (United States); Sun, Laixiang [University of Maryland, Department of Geographical Sciences, College Park, MD (United States); SOAS, University of London, London (United Kingdom); International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Xue, Jinjun [Nagoya University, Graduate School of Economics, Nagoya (Japan); Hubei University of Economics, Wuhan (China)

    2017-12-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  17. Global carbon inequality

    International Nuclear Information System (INIS)

    Hubacek, Klaus; Baiocchi, Giovanni; Feng, Kuishuang; Munoz Castillo, Raul; Sun, Laixiang; Xue, Jinjun

    2017-01-01

    Global climate change and inequality are inescapably linked both in terms of who contributes climate change and who suffers the consequences. This fact is also partly reflected in two United Nations (UN) processes: on the one hand, the Paris Agreement of the UN Framework Convention on Climate Change under which countries agreed to hold the increase in the global average temperature to below 2 C above pre-industrial levels and, on the other hand, the UN's Sustainable Development Goals aiming to end poverty. These agreements are seen as important foundation to put the world nations on a sustainable pathway. However, how these agreements can be achieved or whether they are even mutually compatible is less clear. We explore the global carbon inequality between and within countries and the carbon implications of poverty alleviation by combining detailed consumer expenditure surveys for different income categories for a wide range of countries with an environmentally extended multi-regional input-output approach to estimate carbon footprints of different household groups, globally, and assess the carbon implications of moving the poorest people out of poverty. Given the current context, increasing income leads to increasing carbon footprints and makes global targets for mitigating greenhouse gases more difficult to achieve given the pace of technological progress and current levels of fossil fuel dependence. We conclude that the huge level of carbon inequality requires a critical discussion of undifferentiated income growth. Current carbon-intensive lifestyles and consumption patterns need to enter the climate discourse to a larger extent. (orig.)

  18. Inventory analysis and carbon footprint of coastland-hotel services: A Spanish case study.

    Science.gov (United States)

    Puig, Rita; Kiliç, Eylem; Navarro, Alejandra; Albertí, Jaume; Chacón, Lorenzo; Fullana-I-Palmer, Pere

    2017-10-01

    Tourism is a key industry in the Spanish economy. Spain was in the World top three ranking by international tourist arrivals and by income in 2015. The development of the tourism industry is essential to maintain the established economic system. However, if the environmental requirements were not taken into account, the country would face a negative effect on depletion of local environmental resources from which tourism depends. This case study evaluates, through a life cycle perspective, the average carbon footprint of an overnight stay in a Spanish coastland hotel by analyzing 14 two-to-five-stars hotels. Inventory and impact data are analyzed and presented both for resource use and greenhouse gases emissions, with the intention of helping in the environmental decision-making process. The main identified potential hotspots are electricity and fuels consumption (6 to 30kWh/overnight stay and 24 to 127MJ/overnight stay respectively), which are proportional to the number of stars and unoccupancy rate and they produce more than 75% of the impact. It is also revealed that voluntary implementation of environmental monitoring systems (like EMAS regulation) promotes collection of more detailed and accurate data, which helps in a more efficient use of resources. A literature review on LCA and tourism is also discussed. Spanish hotels inventory data presented here for the first time will be useful for tourism related managers (destination managers, policy makers and hotel managers among others) to calculate sustainability key indicators, which can lead to achieve real sustainable-tourism goals. Further data collection will be needed in future projects to gather representative data from more hotels, other accommodation facilities and also other products/services offered by tourist sector in Spain (like transport of tourists, food and beverage, culture-sports & recreation and others). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Ecological Footprint in relation to Climate Change Strategy in Cities

    Science.gov (United States)

    Belčáková, Ingrid; Diviaková, Andrea; Belaňová, Eliška

    2017-10-01

    Ecological footprint determines how much natural resources are consumed by an individual, city, region, state or all inhabitants of our planet in order to ensure their requirements and needs. It includes all activities, from food consumption, housing, transport to waste produced and allows us to compare particular activities and their impacts on the environment and natural resources. Ecological footprint is important issue for making sustainable development concept more popular using simplifications, which provide the public with basic information on situation on our planet. Today we know calculations of global (worldwide), national and local ecological footprints. During our research in cities, we were concentrated on calculation of city’s ecological footprint. The article tries to outline theoretical and assumptions and practical results of climate change consequences in cities of Bratislava and Nitra (Slovakia), to describe potential of mitigating adverse impacts of climate change and to provide information for general and professional public on theoretical assumptions in calculating ecological footprint. The intention is to present innovation of ecological footprint calculation, taking into consideration ecological stability of a city (with a specific focus on micro-climate functions of green areas). Present possibilities to reduce ecological footprint are presented.

  20. promoting sustainability by curtailing ecological footprints of

    African Journals Online (AJOL)

    The need to regulate land use and the exploitation of natural resources has led to the concept of sustainability, and by extension, ecological footprint (the total amount of land required by an individual to grow his/her needs). This paper examines ecological footprint savings in urban growth and housing development in ...

  1. Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software.

    Science.gov (United States)

    Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam

    2015-05-01

    Several sophisticated methods of footprint analysis currently exist. However, it is sometimes useful to apply standard measurement methods of recognized evidence with an easy and quick application. We sought to assess the reliability and validity of a new method of footprint assessment in a healthy population using Photoshop CS5 software (Adobe Systems Inc, San Jose, California). Forty-two footprints, corresponding to 21 healthy individuals (11 men with a mean ± SD age of 20.45 ± 2.16 years and 10 women with a mean ± SD age of 20.00 ± 1.70 years) were analyzed. Footprints were recorded in static bipedal standing position using optical podography and digital photography. Three trials for each participant were performed. The Hernández-Corvo, Chippaux-Smirak, and Staheli indices and the Clarke angle were calculated by manual method and by computerized method using Photoshop CS5 software. Test-retest was used to determine reliability. Validity was obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed high values (ICC, 0.98-0.99). Moreover, the validity test clearly showed no difference between techniques (ICC, 0.99-1). The reliability and validity of a method to measure, assess, and record the podometric indices using Photoshop CS5 software has been demonstrated. This provides a quick and accurate tool useful for the digital recording of morphostatic foot study parameters and their control.

  2. Making carbon dioxide sequestration feasible: Toward federal regulation of CO2 sequestration pipelines

    International Nuclear Information System (INIS)

    Mack, Joel; Endemann, Buck

    2010-01-01

    As the United States moves closer to a national climate change policy, it will have to focus on a variety of factors affecting the manner in which the country moves toward a future with a substantially lower carbon footprint. In addition to encouraging renewable energy, smart grid, clean fuels and other technologies, the United States will need to make substantial infrastructure investments in a variety of industries. Among the significant contributors to the current carbon footprint in the United States is the use of coal as a major fuel for the generation of electricity. One of the most important technologies that the United States can employ to reduce its carbon footprint is to sequester the carbon dioxide ('CO 2 ') from coal-fired power plants. This article focuses on the legal and policy issues surrounding a critical piece of the necessary sequestration infrastructure: CO 2 pipelines that will carry CO 2 from where it is removed from fuel or waste gas streams to where it will be sequestered. Ultimately, this article recommends developing a federally regulated CO 2 pipeline program to foster the implementation of carbon sequestration technology.

  3. Bivariate Genomic Footprinting Detects Changes in Transcription Factor Activity

    Directory of Open Access Journals (Sweden)

    Songjoon Baek

    2017-05-01

    Full Text Available In response to activating signals, transcription factors (TFs bind DNA and regulate gene expression. TF binding can be measured by protection of the bound sequence from DNase digestion (i.e., footprint. Here, we report that 80% of TF binding motifs do not show a measurable footprint, partly because of a variable cleavage pattern within the motif sequence. To more faithfully portray the effect of TFs on chromatin, we developed an algorithm that captures two TF-dependent effects on chromatin accessibility: footprinting and motif-flanking accessibility. The algorithm, termed bivariate genomic footprinting (BaGFoot, efficiently detects TF activity. BaGFoot is robust to different accessibility assays (DNase-seq, ATAC-seq, all examined peak-calling programs, and a variety of cut bias correction approaches. BaGFoot reliably predicts TF binding and provides valuable information regarding the TFs affecting chromatin accessibility in various biological systems and following various biological events, including in cases where an absolute footprint cannot be determined.

  4. Resource Footprints are Good Proxies of Environmental Damage

    NARCIS (Netherlands)

    Steinmann, Z.J.N.; Schipper, A.M.; Hauck, M.; Giljum, S.; Wernet, G.; Huijbregts, M.A.J.

    2017-01-01

    Environmental footprints are increasingly used to quantify and compare environmental impacts of for example products, technologies, households, or nations. This has resulted in a multitude of footprint indicators, ranging from relatively simple measures of resource use (water, energy, materials) to

  5. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...... replicates. In order to analyze the dynamic mass spectrometry data, we developed the novel analysis methods that allow us to perform correlation analysis to identify metabolites that significantly correlate over time during growth on the different carbon sources. Both positive and negative electrospray...... reconstructed an interaction map that provides information of how different metabolic pathways have correlated patterns during growth on the different carbon sources....

  6. [Ecological Footprint Evolution Characteristics and Its Influencing Factors in China from 2000 to 2010].

    Science.gov (United States)

    Huang, Bao-rong; Cui, Shu-hong; Li, Ying-ming

    2016-02-15

    According to global average land productivities in 2000, this study calculated ecological footprint (EF) in China from 2000 to 2010, and analyzed its dynamic characteristics and socio-economic driving forces. The results showed that the total EF in China increased from 1.769 to 3.259 billion global hectares (gha) from 2000 to 2010, and its annual growth rate was 6.30%. Carbon Footprint was the fastest growth type of EF. It increased from 0.742 to 1.805 billion gha, and its annual growth rate was 9.29%. The net increase of cropland Footprint was also large in comparison to other types of Footprint. It increased from 0.678 to 0.891 billion gha. Per capita EF in China increased from 1.40 to 2.43 gha in this period. Although it was still below the world average level, it was far beyond per capita ecological carrying capacity in China, which led to serious ecological deficit and severe ecological crisis in China. The fast growth of per capita EF was the main driving force for the growth of total EF in China during the study period. Further, the growth of per capita EF was positively influenced by the growth of per capita consumption of products and severs, which was driven by economic growth and urbanization. Meanwhile, a large amount of exports of resource-intensive products in international trade was also an important driving force for EF growth. According to the evolution route of per capita EF in developed countries, along with China moving from middle-income to high-income country, per capita EF will maintain rapid growth, and ecological deficit in China will further exacerbate.

  7. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  8. Carbon footprint of canned mussels from a business-to-consumer approach. A starting point for mussel processors and policy makers

    International Nuclear Information System (INIS)

    Iribarren, Diego; Hospido, Almudena; Moreira, Maria Teresa; Feijoo, Gumersindo

    2010-01-01

    The increasing demand for environmental information on the global warming impact of products requires a solid methodological framework which guarantees comparability and communicability. The publicly available specification PAS 2050 combines approaches to a variety of greenhouse gas specific assessment issues to deliver a globally applicable product Carbon Footprinting (CF) method, which is expected to be widely accepted. Specifically, this paper aims to demonstrate the implementation of a CF scheme for a common canned mussel product according to PAS 2050 guidelines. A final value of 4.35 kg CO 2 e per triple pack of round cans of mussels was calculated. Furthermore, this CF study led to identify primary packaging (can production) and mussel shell management as the main activities where efforts should focus for climate change mitigation. Throughout this case study, CF opportunities and drawbacks are discussed. The whole text tries to provide a starting point for both mussel processors and policy makers to benefit from the potential advantages of a responsible use of this increasingly popular tool.

  9. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    Science.gov (United States)

    Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer

    2017-11-01

    Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  10. Water footprint, extended water footprint and virtual water trade of the Cantabria region, Spain. A critical appraisal of results, uncertainties and methods.

    Science.gov (United States)

    Diaz-Alcaide, Silvia; Martinez-Santos, Pedro; Willaarts, Barbara; Hernández-Moreno, Enrique; Llamas, M. Ramon

    2015-04-01

    Water footprint assessments have gradually gained recognition as valuable tools for water management, to the point that they have been officially incorporated to water planning in countries such as Spain. Adequate combinations of the virtual water and water footprint concepts present the potential to link a broad range of sectors and issues, thus providing appropriate frameworks to support optimal water allocation and to inform production and trade decisions from the water perspective. We present the results of a regional study carried out in Cantabria, a 5300 km2 autonomous region located in northern Spain. Our approach deals with the municipal, shire and regional scales, combining different methods to assess each of the main components of Cantabria's water footprint (agriculture, livestock, forestry, industry, mining, tourism, domestic use and reservoirs), as well as exploring the significance of different approaches, assumptions and databases in the overall outcomes. The classic water footprint method is coupled with extended water footprint analyses in order to provide an estimate of the social and economic value of each sector. Finally, virtual water imports and exports are computed between Cantabria and the rest of Spain and between Cantabria and the world. The outcome of our work (a) highlights the paramount importance of green water (mostly embedded in pastures) in the region's water footprint and virtual water exports; (b) establishes the role of the region as a net virtual water exporter; (c) shows the productivity of water (euro/m3 and jobs/m3) to be highest in tourism and lowest in agriculture and livestock; and (d) demonstrates that statistical databases are seldom compiled with water footprint studies in mind, which is likely to introduce uncertainties in the results. Although our work shows that there is still plenty of room for improvement in regional-scale water footprint assessments, we contend that the available information is sufficient to

  11. Impact of direct greenhouse gas emissions on the carbon footprint of water reclamation processes employing nitrification–denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Andrew G., E-mail: andrew.schneider@yale.edu [University of Cincinnati, Department of Geology, Cincinnati, OH 45221 (United States); Townsend-Small, Amy [University of Cincinnati, Department of Geology, Cincinnati, OH 45221 (United States); University of Cincinnati, Department of Geography, Cincinnati, OH 45221 (United States); Rosso, Diego [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175 (United States)

    2015-02-01

    Water reclamation has the potential to reduce water supply demands from aquifers and more energy-intensive water production methods (e.g., seawater desalination). However, water reclamation via biological nitrification–denitrification is also associated with the direct emission of the greenhouse gases (GHGs) CO{sub 2}, N{sub 2}O, and CH{sub 4}. We quantified these direct emissions from the nitrification–denitrification reactors of a water reclamation plant in Southern California, and measured the {sup 14}C content of the CO{sub 2} to distinguish between short- and long-lived carbon. The total emissions were 1.5 (± 0.2) g-fossil CO{sub 2} m{sup −3} of wastewater treated, 0.5 (± 0.1) g-CO{sub 2}-eq of CH{sub 4} m{sup −3}, and 1.8 (± 0.5) g-CO{sub 2}-eq of N{sub 2}O m{sup −3}, for a total of 3.9 (± 0.5) g-CO{sub 2}-eq m{sup −3}. This demonstrated that water reclamation can be a source of GHGs from long lived carbon, and thus a candidate for GHG reduction credit. From the {sup 14}C measurements, we found that between 11.4% and 15.1% of the CO{sub 2} directly emitted was derived from fossil sources, which challenges past assumptions that the direct CO{sub 2} emissions from water reclamation contain only modern carbon. A comparison of our direct emission measurements with estimates of indirect emissions from several water production methods, however, showed that the direct emissions from water reclamation constitute only a small fraction of the plant's total GHG footprint. - Highlights: • Direct greenhouse gas emissions were measured at a wastewater reclamation plant. • These greenhouse gas emissions amounted to 3.9 (± 0.5) g-CO{sub 2}-eq m{sup −3} of wastewater. • {sup 14}C analysis of the CO{sub 2} emissions was conducted to determine the fossil component. • 11.4% to 15.1% of the emitted CO{sub 2} was derived from fossil sources.

  12. Sustainable Colombia : A Comprehensive Colombian Footprint Review

    OpenAIRE

    Brad Ewing

    2010-01-01

    During the past several months, the Ministry of Environment, Housing and Territorial Development of Colombia has been researching potential indicators that would be useful to assess and possibly adopt among which included the ecological footprint. This work was commissioned in order to provide the Ministry with a deeper understanding of the ecological footprint and to train a number of its...

  13. Three-dimensional analysis of elbow soft tissue footprints and anatomy.

    Science.gov (United States)

    Capo, John T; Collins, Christopher; Beutel, Bryan G; Danna, Natalie R; Manigrasso, Michaele; Uko, Linda A; Chen, Linda Y

    2014-11-01

    Tendinous and ligamentous injuries commonly occur in the elbow. This study characterized the location, surface areas, and origin and insertional footprints of major elbow capsuloligamentous and tendinous structures in relation to bony landmarks with the use of a precision 3-dimensional modeling system. Nine unpaired cadaveric elbow specimens were dissected and mounted on a custom jig. Mapping of the medial collateral ligament (MCL), lateral ulnar collateral ligament (LUCL), triceps, biceps, brachialis, and capsular reflections was then performed with 3-dimensional digitizing technology. The location, surface areas, and footprints of the soft tissues were calculated. The MCL had a mean origin (humeral) footprint of 216 mm(2), insertional footprint of 154 mm(2), and surface area of 421 mm(2). The LUCL had a mean origin footprint of 136 mm(2), an insertional footprint of 142 mm(2), and a surface area of 532 mm(2). Of the tendons, the triceps maintained the largest insertional footprint, followed by the brachialis and the biceps (P anatomy of key elbow capsuloligamentous and tendinous structures is crucial for effective reconstruction after bony or soft tissue trauma. This study provides the upper extremity surgeon with information that may aid in restoring elbow biomechanics and preserving range of motion in these patients. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. A spatially detailed blue water footprint of the United States economy

    Science.gov (United States)

    Rushforth, Richard R.; Ruddell, Benjamin L.

    2018-05-01

    This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (F'CUMed) of the US is 589 m3 per capita (F'Withdrawal: 1298 m3 per capita; F'CUMax: 720 m3 per capita; F'CUMin: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are

  15. Low Carbon Footprint mortar from Pozzolanic Waste Material

    Science.gov (United States)

    Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra

    2017-04-01

    Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  16. Ichnotaxonomy of the Laetoli trackways: The earliest hominin footprints

    Science.gov (United States)

    Meldrum, D. J.; Lockley, Martin G.; Lucas, Spencer G.; Musiba, Charles

    2011-04-01

    At 3.6 Ma, the Laetoli Pliocene hominin trackways are the earliest direct evidence of hominin bipedalism. Three decades since their discovery, not only is the question of their attribution still discussed, but marked differences in interpretation concerning the footprints' qualitative features and the inferred nature of the early hominin foot morphology remain. Here, we establish a novel ichnotaxon, Praehominipes laetoliensis, for these tracks and clarify the distinctions of these footprints from those of later hominins, especially modern humans. We also contrast hominin, human, and ape footprints to establish morphological features of these footprints correlated with a midtarsal break versus a stiff longitudinal arch. Original photos, including stereo photographs, and casts of footprints from the 1978 Laetoli excavation, confirm midtarsal flexibility, and repeatedly indicate an associated midfoot pressure ridge. In contrast, the modern human footprint reflects the derived arched-foot architecture, combined with a stiff-legged striding gait. Fossilized footprints of unshod modern human pedestrians in Hawaii and Nicaragua unambiguously illustrate these contrasts. Some points of comparisons with ape footprints are complicated by a variable hallucal position and the distinct manner of ape facultative bipedalism. In contrast to the comparatively rigid platform of the modern human foot, midtarsal flexibility is present in the chimpanzee foot. In ape locomotion, flexion at the transverse tarsal joint, referred to as the "midtarsal break," uncouples the respective functions of the prehensile forefoot and the propulsive hindfoot during grasp-climbing. At some point after the transition to habitual bipedalism, these grasp-climb adaptations, presumed to be present in the last common ancestor of apes and humans, were initially compromised by the loss of divergence of the hallux. An analogous trajectory is evident along an array of increasingly terrestrial extant ape species

  17. Human Decisions: Nitrogen Footprints and Environmental Effects

    Science.gov (United States)

    Leach, A. M.; Bleeker, A.; Galloway, J. N.; Erisman, J.

    2012-12-01

    Human consumption choices are responsible for growing losses of reactive nitrogen (Nr) to the environment. Once in the environment, Nr can cause a cascade of negative impacts such as smog, acid rain, coastal eutrophication, climate change, and biodiversity loss. Although all humans must consume nitrogen as protein, the food production process releases substantial Nr to the environment. This dilemma presents a challenge: how do we feed a growing population while reducing Nr? Although top-down strategies to reduce Nr losses (e.g., emissions controls) are necessary, the bottom-up strategies focusing on personal consumption patterns will be imperative to solve the nitrogen challenge. Understanding the effects of different personal choices on Nr losses and the environment is an important first step for this strategy. This paper will utilize information and results from the N-Calculator, a per capita nitrogen footprint model (www.N-Print.org), to analyze the impact of different food consumption patterns on a personal food nitrogen footprint and the environment. Scenarios will analyze the impact of the following dietary patterns on the average United States (28 kg Nr/cap/yr) food nitrogen footprint: 1) Consuming only the recommended protein as defined by the WHO and the USDA; 2) Reducing food waste by 50%; 3) Consuming a vegetarian diet; 4) Consuming a vegan diet; 5) Consuming a demitarian diet (replacing half of animal protein consumption with vegetable protein); 6) Substituting chicken (a more efficient animal protein) with beef (a less efficient animal protein); 7) Consuming sustainably-produced food; and 8) Using advanced wastewater treatment. Preliminary results suggest that widespread advanced wastewater treatment with nutrient removal technology and halving food waste would each reduce the US personal food nitrogen footprint by 13%. In addition, reducing protein consumption to the recommended levels would reduce the footprint by about 42%. Combining these measures

  18. Carbon mitigation technologies for emerging economies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    A review of the various options being pursued to reduce carbon intensities in five developing countries, namely Brazil, China, India, Indonesia and South Africa. These are major emerging economies, all of which are vulnerable to adverse effects from climate change, with their governments having to balance economic, environmental and social priorities. All have large carbon footprints; however, in each case, they have made commitments to reduce carbon intensities over the period to 2030 and, in some cases, beyond.

  19. 78 FR 39533 - Power Sector Carbon Pollution Standards

    Science.gov (United States)

    2013-07-01

    ... Sector Carbon Pollution Standards Executive Order 13647--Establishing the White House Council on Native... speeding the transition to more sustainable sources of energy. The Environmental Protection Agency (EPA.... (Presidential Sig.) THE WHITE HOUSE, Washington, June 25, 2013. [FR Doc. 2013-15941 Filed 6-28-13; 11:15 am...

  20. Potentials and limitations of footprints for gauging environmental sustainability

    DEFF Research Database (Denmark)

    Laurent, Alexis; Owsianiak, Mikolaj

    2017-01-01

    To address the sustainability challenge, a large variety of footprints, aiming at capturing specific impacts of human activities on natural environment, have emerged. But, how do they fit into our addressing of environmental sustainability? Here, we build on a critical literature review to (1......) provide an overview of existing footprints; (2) define their roles; (3) position them within the broad spectrum of known environmental problems and control variables of the planetary boundaries; and (4) argue for the need of consistent thresholds to benchmark footprint scores against absolute...

  1. Estimation of foot pressure from human footprint depths using 3D scanner

    Science.gov (United States)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  2. Redesigning Manufacturing Footprint from Dynamic Perspective

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2009-01-01

    footprint to address the constantly emerging new challenges by giving a holistic approach from dynamic perspective. Three Danish companies are presented. The way they developed their international manufacturing networks is analysed historically, and their redesigning of manufacturing footprint is expressed...... as how to re-assign portfolios of products and processes between specific plants within the same manufacturing network at one point in time. The strategic factors that have impact on such decisions are discussed and classified into two groups. Last, a holistic framework and a process model is presented...

  3. 76 FR 73008 - Technical Report on Fatality Risk, Mass, and Footprint of Model Year 2000-2007 Passenger Cars and...

    Science.gov (United States)

    2011-11-28

    ... (size) constant is a potential strategy for meeting footprint-based CAFE and GHG standards. An important.../staticfiles/rulemaking/pdf/cafe/CAFE_2012-2016_FRIA_04012010.pdf , pp. 464-542); 2003 (68 FR 66153, Docket No...

  4. The social consequences of conspiracism: Exposure to conspiracy theories decreases intentions to engage in politics and to reduce one's carbon footprint.

    Science.gov (United States)

    Jolley, Daniel; Douglas, Karen M

    2014-02-01

    The current studies explored the social consequences of exposure to conspiracy theories. In Study 1, participants were exposed to a range of conspiracy theories concerning government involvement in significant events such as the death of Diana, Princess of Wales. Results revealed that exposure to information supporting conspiracy theories reduced participants' intentions to engage in politics, relative to participants who were given information refuting conspiracy theories. This effect was mediated by feelings of political powerlessness. In Study 2, participants were exposed to conspiracy theories concerning the issue of climate change. Results revealed that exposure to information supporting the conspiracy theories reduced participants' intentions to reduce their carbon footprint, relative to participants who were given refuting information, or those in a control condition. This effect was mediated by powerlessness with respect to climate change, uncertainty, and disillusionment. Exposure to climate change conspiracy theories also influenced political intentions, an effect mediated by political powerlessness. The current findings suggest that conspiracy theories may have potentially significant social consequences, and highlight the need for further research on the social psychology of conspiracism. © 2012 The British Psychological Society.

  5. ECOLOGICAL FOOTPRINT ANALYSIS OF CANNED SWEET CORN

    Directory of Open Access Journals (Sweden)

    Phairat Usubharatana

    2016-07-01

    Full Text Available There has been a notable increase in both consumer knowledge and awareness regarding the ecological benefits of green products and services. Manufacturers now pay more attention to green, environmentally friendly production processes. Two significant tools that can facilitate such a goal are life cycle assessment (LCA and ecological footprint (EF. This study aimed to analyse and determine the damage to the environment, focusing on the canned fruit and vegetable processing. Canned sweet corn (340 g was selected for the case study. All inputs and outputs associated with the product system boundary were collected through field surveys. The acquired inventory was then analysed and evaluated using both LCA and EF methodology. The results were converted into an area of biologically productive land and presented as global hectares (gha. The ecological footprint of one can of sweet corn was calculated as 6.51E-04 gha. The three factors with the highest impact on ecological footprint value were the corn kernels used in the process, the packaging and steam, equivalent to 2.93E-04 gha, 1.19E-04 gha and 1.17E-04 gha respectively. To promote the sustainable development, the company should develop new technology or utilize better management techniques to reduce the ecological footprint of canned food production.

  6. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  7. Quantification of variables that determine the carbon footprint and energy embodied of structural clay products (cradle to gate with options); Cuantificacion de las variables que determinan la huella de carbono y energia embebida de los distintos productos de ceramica estructural (cuna a puerta con opciones)

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rubio, R.; Rio Merino, M. del

    2014-07-01

    The production and transport of structural ceramic products involves an important energy consumption, which leads to the emission of greenhouse gases into the atmosphere. The aim of the research is to demonstrate the existence of significant differences in the value of the environmental impact of structural ceramic products manufactured in Spain. To achieve this objective, is developed a method of identifying and quantifying of variables that determine the Carbon Footprint and Embodied Energy of ceramic products, depending on the type of product. The necessary information is obtained mainly with a data collection in factories. It is established six variables with a global influence in the environmental impact, 44 primary and 39 secondary variables, establishing calculation formula from these variables. The results determined that, for same manufacturing conditions, the differences between ceramic products reach 27 % for carbon footprint and 35 % for Embodied Energy. The relevance that reaches the impact of transport can reach 40 % of the total. It is considered that the research and its results can contribute to reduce the environmental impact of the buildings. (Author)

  8. Advanced entry guidance algorithm with landing footprint computation

    Science.gov (United States)

    Leavitt, James Aaron

    The design and performance evaluation of an entry guidance algorithm for future space transportation vehicles is presented. The algorithm performs two functions: on-board trajectory planning and trajectory tracking. The planned longitudinal path is followed by tracking drag acceleration, as is done by the Space Shuttle entry guidance. Unlike the Shuttle entry guidance, lateral path curvature is also planned and followed. A new trajectory planning function for the guidance algorithm is developed that is suitable for suborbital entry and that significantly enhances the overall performance of the algorithm for both orbital and suborbital entry. In comparison with the previous trajectory planner, the new planner produces trajectories that are easier to track, especially near the upper and lower drag boundaries and for suborbital entry. The new planner accomplishes this by matching the vehicle's initial flight path angle and bank angle, and by enforcing the full three-degree-of-freedom equations of motion with control derivative limits. Insights gained from trajectory optimization results contribute to the design of the new planner, giving it near-optimal downrange and crossrange capabilities. Planned trajectories and guidance simulation results are presented that demonstrate the improved performance. Based on the new planner, a method is developed for approximating the landing footprint for entry vehicles in near real-time, as would be needed for an on-board flight management system. The boundary of the footprint is constructed from the endpoints of extreme downrange and crossrange trajectories generated by the new trajectory planner. The footprint algorithm inherently possesses many of the qualities of the new planner, including quick execution, the ability to accurately approximate the vehicle's glide capabilities, and applicability to a wide range of entry conditions. Footprints can be generated for orbital and suborbital entry conditions using a pre

  9. Manufacturing footprint optimisation: a necessity for manufacturing network in changing business environment

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2010-01-01

    Facing the unpredictable financial crisis, optimising the footprint can be the biggest and most important transformation a manufacturer can undertake. In order to realise the optimisation, fundamental understanding on manufacturing footprint is required. Different elements of manufacturing...... footprint have been investigated independently in the existing literature. In this paper, for the purpose of relationship exploration between different elements, manufacturing footprints of three industrial companies are traced historically. Based on them, four reasons for the transformation...

  10. Measuring sustainability. Why the ecological footprint is bad economics and bad environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, Nathan [Department of Economics, University of California, Irvine, 3151 Social Science Plaza, Irvine, CA 92697-5100 (United States)

    2008-11-01

    The ecological footprint is a measure of the resources necessary to produce the goods that an individual or population consumes. It is also used as a measure of sustainability, though evidence suggests that it falls short. The assumptions behind footprint calculations have been extensively criticized; I present here further evidence that it fails to satisfy simple economic principles because the basic assumptions are contradicted by both theory and historical data. Specifically, I argue that the footprint arbitrarily assumes both zero greenhouse gas emissions, which may not be ex ante optimal, and national boundaries, which makes extrapolating from the average ecological footprint problematic. The footprint also cannot take into account intensive production, and so comparisons to biocapacity are erroneous. Using only the assumptions of the footprint then, one could argue that the Earth can sustain greatly increased production, though there are important limitations that the footprint cannot address, such as land degradation. Finally, the lack of correlation between land degradation and the ecological footprint obscures the effects of a larger sustainability problem. Better measures of sustainability would address these issues directly. (author)

  11. Achieving carbon emission reduction through industrial and urban symbiosis: A case of Kawasaki

    International Nuclear Information System (INIS)

    Dong, Huijuan; Ohnishi, Satoshi; Fujita, Tsuyoshi; Geng, Yong; Fujii, Minoru; Dong, Liang

    2014-01-01

    Industry and fossil fuel combustion are the main sources for urban carbon emissions. Most studies focus on energy consumption emission reduction and energy efficiency improvement. Material saving is also important for carbon emission reduction from a lifecycle perspective. IS (Industrial symbiosis) and U r S (urban symbiosis) have been effective since both of them encourage byproduct exchange. However, quantitative carbon emission reduction evaluation on applying them is still lacking. Consequently, the purpose of this paper is to fill such a gap through a case study in Kawasaki Eco-town, Japan. A hybrid LCA model was employed to evaluate to the lifecycle carbon footprint. The results show that lifecycle carbon footprints with and without IS and U r S were 26.66 Mt CO 2 e and 30.92 Mt CO 2 e, respectively. The carbon emission efficiency was improved by 13.77% with the implementation of IS and U r S. The carbon emission reduction was mainly from “iron and steel” industry, cement industry and “paper making” industry, with figures of 2.76 Mt CO 2 e, 1.16 Mt CO 2 e and 0.34 Mt CO 2 e, respectively. Reuse of scrape steel, blast furnace slag and waste paper are all effective measures for promoting carbon emission reductions. Finally, policy implications on how to further promote IS and U r S are presented. - Highlights: • We evaluate carbon emission reduction of industrial and urban symbiosis (IS/U r S). • Hybrid LCA model was used to evaluate lifecycle carbon footprint. • Carbon emission efficiency was improved by 13.77% after applying IS/U r S. • The importance of U r S in responding carbon reduction was addressed in the paper

  12. Spatially and temporally explicit water footprint accounting

    OpenAIRE

    Mekonnen, Mesfin

    2011-01-01

    The earth’s freshwater resources are subject to increasing pressure in the form of consumptive water use and pollution (Postel, 2000; WWAP, 2003, 2006, 2009). Quantitative assessment of the green, blue and grey water footprint of global production and consumption can be regarded as a key in understanding the pressure put on the global freshwater resources. The overall objective of this thesis is, therefore, to analyse the spatial and temporal pattern of the water footprint of humans from both...

  13. The roles of human values and generalized trust on stated preferences when food is labeled with environmental footprints

    DEFF Research Database (Denmark)

    Grebitus, Carola; Steiner, Bodo; Veeman, Michele

    2015-01-01

    (Rokeach 1973), and generalized trust attitudes using a version of the World Values Survey (WVS) / General Social Survey (GSS) standard question on trust. Consumer preferences for footprint-labeled potatoes were elicited by means of an attribute-based stated choice experiment. The results suggest...

  14. Aircraft de-icer: Recycling can cut carbon emissions in half

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2012-01-01

    Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an ‘antifreeze’ solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40–50% — and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15–30% lower footprint than using ‘bio’ de-icer without recycling. - Highlights: ► Carbon footprint of aircraft de-icing can be measured. ► Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40–50%. ► Recycling ‘fossil’ de-icer is lower carbon than not recycling ‘bio’ de-icer.

  15. Role of primary sedimentation on plant-wide energy recovery and carbon footprint.

    Science.gov (United States)

    Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2013-01-01

    The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.

  16. A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment

    Science.gov (United States)

    Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi

    2018-02-01

    Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.

  17. Assessing the Ecological Footprint of Ecotourism Packages: A Methodological Proposition

    Directory of Open Access Journals (Sweden)

    Maria Serena Mancini

    2018-06-01

    Full Text Available Tourism represents a key economic sector worldwide, constituting great leverage for local economic development but also putting noticeable environmental pressures on local natural resources. Ecotourism may be a viable alternative to mass tourism to minimize impacts on ecosystems, but it needs shared sustainability standards and monitoring tools to evaluate impacts. This paper presents a first methodological proposition to calculate the environmental impact of ecotourism packages through the use of an ad-hoc, customized version of the Ecological Footprint methodology. It follows a participatory, bottom-up approach to collecting input data for the four main services (Accommodation, Food & Drinks, Activity & Service, and Mobility & Transfer provided to tourists through the use of surveys and stakeholders engagement. The outcome of our approach materializes in an excel-based ecotourism workbook capable of processing input data collected through surveys and returning Ecological Footprint values for specific ecotourism packages. Although applied to ecotourism in Mediterranean Protected Areas within the context of the DestiMED project, we believe that the methodology and approach presented here can constitute a blueprint and a benchmark for future studies dealing with the impact of ecotourism packages.

  18. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips

    Science.gov (United States)

    Huang, Peihua; Heon, Min; Pech, David; Brunet, Magali; Taberna, Pierre-Louis; Gogotsi, Yury; Lofland, Samuel; Hettinger, Jeffrey D.; Simon, Patrice

    2013-03-01

    Interdigitated on-chip micro-supercapacitors based on Carbide Derived Carbon (CDC) films were fabricated and tested. A titanium carbide (TiC) film was patterned and treated with chlorine to obtain a TiC derived carbon (TiC-CDC) film, followed by the deposition of two types of current collectors (Ti/Au and Al) using standard micro-fabrication processes. CDC based micro-supercapacitors were electrochemically characterized by cyclic voltammetry and impedance spectroscopy using a 1 M tetraethylammonium tetrafluoroborate, NEt4BF4, in propylene carbonate (PC) electrolyte. A capacitance of 0.78 mF for the device and 1.5 mF cm-2 as the specific capacitance for the footprint of the device was measured for a 2 V potential range at 100 mV s-1. A specific energy of 3.0 mJ cm-2 and a specific power of 84 mW cm-2 were calculated for the devices. These devices provide a pathway for fabricating pure carbon-based micro-supercapacitors by micro-fabrication, and can be used for powering micro-electromechanical systems (MEMS) and electronic devices.

  19. The green, blue and grey water footprint of crops and derived crop products

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2011-05-01

    Full Text Available This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network.

    Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1, vegetables (300 m3 ton−1, roots and tubers (400 m3 ton−1, fruits (1000 m3 ton−1, cereals (1600 m3 ton−1, oil crops (2400 m3 ton−1 to pulses (4000 m3 ton−1. The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m

  20. California's Low-Carbon Fuel Standard - Compliance Trends

    Science.gov (United States)

    Witcover, J.; Yeh, S.

    2013-12-01

    Policies to incentivize lower carbon transport fuels have become more prevalent even as they spark heated debate over their cost and feasibility. California's approach - performance-based regulation called the Low Carbon Fuel Standard (LCFS) - has proved no exception. The LCFS aims to achieve 10% reductions in state transport fuel carbon intensity (CI) by 2020, by setting declining annual CI targets, and rewarding fuels for incremental improvements in CI beyond the targets while penalizing those that fail to meet requirements. Even as debate continues over when new, lower carbon fuels will become widely available at commercial scale, California's transport energy mix is shifting in gradual but noticeable ways under the LCFS. We analyze the changes using available data on LCFS fuels from the California Air Resources Board and other secondary sources, beginning in 2011 (the first compliance year). We examine trends in program compliance (evaluated through carbon credits and deficits generated), and relative importance of various transport energy pathways (fuel types and feedstocks, and their CI ratings, including new pathways added since the program's start). We document a roughly 2% decline in CI for gasoline and diesel substitutes under the program, with compliance achieved through small shifts toward greater reliance on fuels with lower CI ratings within a relatively stable amount of transport energy derived from alternatives to fossil fuel gasoline and diesel. We also discuss price trends in the nascent LCFS credit market. The results are important to the broader policy debate about transportation sector response to market-based policies aimed at reducing the sector's greenhouse gas emissions.

  1. The Effect of Learning Cycle Model on Students’ Reducing Ecological Footprints

    Directory of Open Access Journals (Sweden)

    Özgül Keleş

    2011-12-01

    Full Text Available The objective of this study is to investigate effect of ecological footprint education, in which 5E learning cycle model is used, in reducing primary school students’ ecological footprints. The working group of the study is composed of 124 primary school students studying in 4th, 5th, 6th, 7th, 8th classes. In this study, 5E learning model is used in teaching a course in order to increase the participating students’ knowledge about ecological footprints and to calculate ecological footprints. Experimental method is used in this study. In data analysis, the paired samples t-test is used in for relevant samplings. The findings gathered indicate that ecological footprints of the participating students to the study decreased at the end of the study. It is determined that the mean of primary students’ ecological footprints differ from meaningfully according to level of the class and sex. Prospective solution offers are developed by handling the prospective effects of conclusions of the study on sustainable life and environmental education and conclusions’ importance in terms of learning and developing learning programmes with a critical point of view

  2. Carbon footprint as an instrument for enhancing food quality: overview of the wine, olive oil and cereals sectors.

    Science.gov (United States)

    Pattara, Claudio; Russo, Carlo; Antrodicchia, Vittoria; Cichelli, Angelo

    2017-01-01

    The quantification of greenhouse gases (GHG) emissions represents a critical issue for the future development of agro-food produces. Consumers' behaviour could play an important role in requiring environmental performance as an essential element for food quality. Nowadays, the carbon footprint (CFP) is a tool used worldwide by agro-food industries to communicate environmental information. This paper aims to investigate the role that CFP could have in consumers' choices in three significant agro-food sectors in the Mediterranean area: wine, olive oil and cereals. A critical review about the use of CFP was carried out along the supply chain of these three sectors, in order to identify opportunities for enhancing food quality and environmental sustainability and highlighting how environmental information could influence consumers' preferences. The analysis of the state of the art shows a great variability of the results about GHG emissions referred to agricultural and industrial processes. In many cases, the main environmental criticisms are linked to the agricultural phase, but the other phases of the supply chain could also contribute to the increased CFP. However, despite the wide use of CFP by companies as a communication tool to help consumers' choices in agro-food products, some improvements are needed in order to provide clearer and more understandable information. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Thomas P

    2009-10-27

    I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

  4. Reducing our Carbon Footprint - an initial action plan for Northern Ireland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-14

    In the Energy White Paper, Our Energy Future - Creating a low carbon economy, the UK Government accepted the Royal Commission on Environmental Pollution's (RCEP) recommendations on how the UK should address the threat of climate change. These recommendations included the early development of a concerted, coordinated and integrated strategy across all Government Departments that would put the UK economy on an early path to reducing carbon dioxide (CO{sub 2}) emissions by at least 60% by 2050. Responding to this challenge, the Carbon Trust and Invest NI sponsored a project to develop an action plan that will set Northern Ireland on the path to realising the deep reductions in carbon emissions needed to reach this target. During the project, the prospects for reducing CO{sub 2} emissions (or carbon emissions) in five key sectors of the economy were examined. The main conclusion of this work was that it was possible to realise a 60% reduction in carbon emissions by 2050, provided early action is taken to set Northern Ireland on the path to a low carbon economy. The project also prepared an initial action plan to help initiate change. This consists of: Immediate actions, including encouraging the uptake of energy efficiency measures, revising building regulations and changing public procurement procedures. Developing options for the future, by supporting the exploitation of renewable resources, modifying the regulatory scheme to support combined heat and power (CHP) and encouraging additional investment in low carbon technologies. Cross-cutting actions, including developing planning procedures that take account of sustainability, marketing campaigns to capture hearts and minds, developing a skills base in low carbon technologies and exploring more radical ways of cutting carbon emissions. (UK)

  5. Fuel carbon intensity standards may not mitigate climate change

    International Nuclear Information System (INIS)

    Plevin, Richard J.; Delucchi, Mark A.; O’Hare, Michael

    2017-01-01

    To mitigate the climate change effects of transportation, the US states of California and Oregon, the Canadian province of British Columbia, and the European Union have implemented regulations to reduce the life cycle greenhouse gas (GHG) emissions intensity of transport fuel, commonly referred to as 'carbon intensity', or CI. In this article, we unpack the theory and practice of fuel CI standards, examining claims regarding climate-change mitigation. We show that these standards do not reliably mitigate climate change because estimates of GHG reductions rely primarily on models that are not designed to estimate changes in emissions and climate impacts. Some regulations incorporate models that estimate a subset of changes in emissions, but the models must project changes in global markets over decades, and there is little agreement about the best model structure or parameter values. Since multiple models and projections may be equally plausible, fuel CI is inevitably subjective and unverifiable. We conclude that regulating or taxing observable emissions would more reliably achieve emission reduction. - Highlights: • Use of fuel carbon intensity (CI) standards has been expanding recently. • Fuel CI ratings are subjective, scenario- and model-dependent. • Uncertainty in fuel CI ratings creates uncertainty in policy outcomes. • There is no reliable test of whether fuel CI standards mitigate climate change. • Regulating or taxing observable emissions would be a more reliable approach.

  6. Carbon footprint of SURFnet 2011

    Energy Technology Data Exchange (ETDEWEB)

    Kruithof, G.H.; Meulenhoff, P.J.

    2012-04-15

    SURFnet wants to account for its energy consumption, in a way that it can compare itself to other National Research and Education Networks (NRENs) in Europe. To that end, an assessment was held to account for the Greenhouse Gas (GHG) emission in 2010, according to the ISO 14064:2006 part 1 standard. The quantitative assessment is limited to Scope 1 (direct emissions) and Scope 2 (indirect emissions related to bought energy). Accounting for Scope 3 emissions (e.g. emissions related to the production of bought products, travel, waste) is not included in this assessment. Only a qualitative assessment of the GHG emissions in Scope 3 emissions was done.

  7. Association of footprint measurements with plantar kinetics: a linear regression model.

    Science.gov (United States)

    Fascione, Jeanna M; Crews, Ryan T; Wrobel, James S

    2014-03-01

    The use of foot measurements to classify morphology and interpret foot function remains one of the focal concepts of lower-extremity biomechanics. However, only 27% to 55% of midfoot variance in foot pressures has been determined in the most comprehensive models. We investigated whether dynamic walking footprint measurements are associated with inter-individual foot loading variability. Thirty individuals (15 men and 15 women; mean ± SD age, 27.17 ± 2.21 years) walked at a self-selected speed over an electronic pedography platform using the midgait technique. Kinetic variables (contact time, peak pressure, pressure-time integral, and force-time integral) were collected for six masked regions. Footprints were digitized for area and linear boundaries using digital photo planimetry software. Six footprint measurements were determined: contact area, footprint index, arch index, truncated arch index, Chippaux-Smirak index, and Staheli index. Linear regression analysis with a Bonferroni adjustment was performed to determine the association between the footprint measurements and each of the kinetic variables. The findings demonstrate that a relationship exists between increased midfoot contact and increased kinetic values in respective locations. Many of these variables produced large effect sizes while describing 38% to 71% of the common variance of select plantar kinetic variables in the medial midfoot region. In addition, larger footprints were associated with larger kinetic values at the medial heel region and both masked forefoot regions. Dynamic footprint measurements are associated with dynamic plantar loading kinetics, with emphasis on the midfoot region.

  8. Iceland as a demonstrator for a transition to low carbon economy?

    Science.gov (United States)

    Asbjornsson, Einar Jon; Stefansson, Hlynur; Finger, David Christian

    2017-04-01

    The energy supply in Iceland is quite unique, about 85% of the total primary energy is coming from renewable resources. Nevertheless, the ecological footprint of an average Icelander is with 6.5 worlds, one of the highest worldwide and the energy consumption per capita is about 7 times higher than the European average. Recent developments have shown that there is a great potential to reduce the footprint and develop towards low carbon economy. With its small population, well educated and governed society and clear system boundaries to the outside world, Iceland is a good research laboratory and an ideal demonstrator for a transition towards a low carbon economy. This presentation will outline how several innovative research projects at Reykjavik University could lead Iceland towards a sustainable and low carbon economy. The presentations will conclude with a visionary outlook how Iceland can become a demonstration nation towards a prosperous, low carbon and sustainable economy, helping stabilize global warming at an acceptable level.

  9. Footprint analysis during the growth period.

    Science.gov (United States)

    Volpon, J B

    1994-01-01

    Static footprints were obtained from 672 healthy white subjects ranging in age from newborn to 15 years. The length of the footprint was measured and the medial longitudinal arch was evaluated. The findings showed that the feet grew most rapidly up to 3 years of age. From age 3 onward, the feet maintained an almost constant growth rate, which was the same for both sexes until age 12 years, when girls' feet stopped growing, but boys' feet exhibited further growth. From birth up to 2 years of age, there was a higher incidence of flat feet. Rapid progression of plantar arch development was observed between 2 and 6 years of age.

  10. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) “A critique on the water-scarcity weighted water footprint in LCA”

    Science.gov (United States)

    Water footprinting has emerged as an important approach to assess water use related effects from consumption of goods and services. Assessment methods are proposed by two different communities, the Water Footprint Network (WFN) and the Life Cycle Assessment (LCA) community. The p...

  11. Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Liu, Jianmin; Ni, Weidou

    2014-01-01

    Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.

  12. Understanding the LCA and ISO water footprint: A response to ...

    Science.gov (United States)

    Water footprinting has emerged as an important approach to assess water use related effects from consumption of goods and services. Assessment methods are proposed by two different communities, the Water Footprint Network (WFN) and the Life Cycle Assessment (LCA) community. The proposed methods are broadly similar and encompass both the computation of water use and its impacts, but differ in communication of a water footprint result. In this paper, we explain the role and goal of LCA and ISO-compatible water footprinting and resolve the six issues raised by Hoekstra (2016) in “A critique on the water-scarcity weighted water footprint in LCA”. By clarifying the concerns, we identify both the overlapping goals in the WFN and LCA water footprint assessments and discrepancies between them. The main differing perspective between the WFN and LCA-based approach seems to relate to the fact that LCA aims to account for environmental impacts, while the WFN aims to account for water productivity of global fresh water as a limited resource. We conclude that there is potential to use synergies in research for the two approaches and highlight the need for proper declaration of the methods applied. This paper advances efforts to understand ways to accurately capture use of water in life cycle analysis in other contexts. As the paper indicates, there is a discussion about whether quantities of water should be weighted by some local stress factor. This paper attempts to brid

  13. Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software in Young People with Down Syndrome.

    Science.gov (United States)

    Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Rey-Abella, Ferran; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam

    2016-05-01

    People with Down syndrome present skeletal abnormalities in their feet that can be analyzed by commonly used gold standard indices (the Hernández-Corvo index, the Chippaux-Smirak index, the Staheli arch index, and the Clarke angle) based on footprint measurements. The use of Photoshop CS5 software (Adobe Systems Software Ireland Ltd, Dublin, Ireland) to measure footprints has been validated in the general population. The present study aimed to assess the reliability and validity of this footprint assessment technique in the population with Down syndrome. Using optical podography and photography, 44 footprints from 22 patients with Down syndrome (11 men [mean ± SD age, 23.82 ± 3.12 years] and 11 women [mean ± SD age, 24.82 ± 6.81 years]) were recorded in a static bipedal standing position. A blinded observer performed the measurements using a validated manual method three times during the 4-month study, with 2 months between measurements. Test-retest was used to check the reliability of the Photoshop CS5 software measurements. Validity and reliability were obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed very good values for the Photoshop CS5 method (ICC, 0.982-0.995). Validity testing also found no differences between the techniques (ICC, 0.988-0.999). The Photoshop CS5 software method is reliable and valid for the study of footprints in young people with Down syndrome.

  14. Adding a nitrogen footprint to Colorado State University’s sustainability plan

    Science.gov (United States)

    Kimiecik, Jacob; Baron, Jill S.; Weinmann, Timothy; Taylor, Emily

    2017-01-01

    As a large land grant university with more than 32,000 students, Colorado State University has both on-campus non-agricultural and agricultural sources of nitrogen (N) released to the environment. We used the Nitrogen Footprint Tool to estimate the amount of N released from different sectors of the university for the CSU 2014 academic year. The largest on campus sources were food production, utilities (heating, cooling, electricity), and research animals. The total on-campus N footprint in 2014 was 287 metric tons. This value was equivalent to the nitrogen footprint of agricultural experiment stations and other agricultural facilities, whose nitrogen footprint was 273 metric tons. CSU has opportunities to reduce its on-campus footprint through educational programs promoting low-meat diets and commuting by bicycle or bus. There is also an opportunity to advance ideas of agricultural best management practices, including precision farming and better livestock management. This article describes the planned and ongoing efforts to educate CSU about how societal activities release nitrogen to the environment, contributing to global change. It offers personal and institutional options for taking action, which would ultimately reduce CSU’s excess reactive nitrogen loss to the environment. The N-footprint for CSU, including scenarios of possible future nitrogen reductions, is also discussed.

  15. Five propositions to harmonize environmental footprints of food and beverages

    NARCIS (Netherlands)

    Ponsioen, Tommie; Werf, Van Der H.M.G.

    2017-01-01

    Several attempts have been made to harmonize guidelines for environmental footprints of food and beverages. For example, the food Sustainable Consumption and Production Roundtable, the Leap partnership, and the Environmental Footprint project, in particular within the Cattle Model Working Group.

  16. Reliability of footprint geometric and plantar loading measurements in children using the Emed(®) M system.

    Science.gov (United States)

    Tong, Jasper W K; Kong, Pui W

    2013-06-01

    This study investigated the between-day reliability of footprint geometric and plantar loading measurements on children utilising the Emed(®) M pressure measurement device. Bilateral footprints (static and dynamic) and foot loading measurements using the two-step gait method were collected on 21 children two days apart (age = 9.9 ± 1.8 years; mass = 34.6 ± 8.9 kg; height = 1.38 ± 0.12 m). Static and dynamic footprint geometric (lengths, widths and angles) and dynamic loading (pressures, forces, contact areas and contact time) parameters were compared. Intraclass correlation coefficients of static geometric parameters were varied (0.19-0.96), while superior results were achieved with dynamic geometric (0.66-0.98) and loading variables (0.52-0.94), with the exception of left contact time (0.37). Standard error of measurement recorded small absolute disparity for all geometric (length = 0.1-0.3 cm; arch index = 0.00-0.01; subarch angle = 0.6-6.2°; left/right foot progression angle = 0.5°/0.7°) and loading (peak pressure = 2.3-16.2 kPa; maximum force = 0.3-3.0%; total contact area = 0.28-0.49 cm(2); % contact area = 0.1-0.6%; contact time = 32-79 ms) variables. Coefficient of variation displayed widest spread for static geometry (1.1-27.6%) followed by dynamic geometry (0.8-22.5%) and smallest spread for loading (1.3-16.8%) parameters. Limits of agreement (95%) were narrower in dynamic than static geometric parameters. Overall, the reliability of most dynamic geometric and loading parameters was good and excellent. Static electronic footprint measurements on children are not recommended due to their light body mass which results in incomplete footprints. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Carbon footprint of SURFnet 2011

    Energy Technology Data Exchange (ETDEWEB)

    Meulenhoff, P.J.; Jansen, B.I.

    2012-05-15

    SURFnet wants to account for its energy consumption in a way that it can compare itself to other National Research and Education Networks (NRENs) in Europe. To that end, an assessment was held to account for the Greenhouse Gas (GHG) emission in 2011, according to the ISO 14064:2006 part 1 standard. SURFnet starting reporting on GHG emissions in 2010. The quantitative assessment is limited to Scope 1 (direct emissions) and Scope 2 (indirect emissions related to bought energy) and certain parts of Scope 3 emissions (e.g. emissions related to the production of bought products, travel, waste). The total GHG emission under Scope 1, Scope 2, and Scope 3 accounted for by SURFnet in 2011 is equal 1278 ton CO2-eq.

  18. Urban Optimum Population Size and Development Pattern Based on Ecological Footprint Model: Case of Zhoushan, China

    Directory of Open Access Journals (Sweden)

    Yuan LU

    2016-09-01

    Full Text Available The agglomeration of population in the city can reflect the prosperity in the economy, society and culture. However, it has also brought a series of problems like environmental pollution, traffic congestion, housing shortage and jobs crisis. The results can be shown as the failure of urban comprehensive function, the decline of city benefits, and the contradiction between socioeconomic circumstance and ecosystem. Therefore, a reasonable population capacity, which is influenced by ecological resources, urban environment, geographical elements, social and economic factors, etc., is objectively needed. How to deal with the relationship between the utilization of natural capital and development of the city is extremely essential. This paper takes Zhoushan Island as an example, which is the fourth largest island off the coast of China. Firstly, the interactively influencing factors of urban optimal population are illustrated. And method is chosen to study the optimal population size. Secondly, based on the model of ecological footprint (EP, the paper calculates and analyzes the ecological footprint and ecological capacity of the Zhoushan Island, in order to explore the optimal population size of the city. Thirdly, analysis and evaluation of the resources and urban environment carrying capacity is made. Finally, the solution of the existing population problems and the suggestion for the future development pattern of the city are proposed in the urban eco-planning of Zhoushan Island. The main strategies can be summarized in two aspects: one is to reduce the ecological footprint, the other is to increase the ecological supply. The conclusion is that the current population of Zhoushan Island is far beyond the optimum population size calculated by the ecological footprint model. Therefore, sustainable development should be the guidance for urban planning in Zhoushan Island, and a low-carbon development pattern for the city is advocated.

  19. Measurements of Soil Carbon by Neutron-Gamma Analysis in Static and Scanning Modes.

    Science.gov (United States)

    Yakubova, Galina; Kavetskiy, Aleksandr; Prior, Stephen A; Torbert, H Allen

    2017-08-24

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detectors, split electronics to separate gamma spectra due to INS and thermo-neutron capture (TNC) processes, and software for gamma spectra acquisition and data processing. This method has several advantages over other methods in that it is a non-destructive in situ method that measures the average carbon content in large soil volumes, is negligibly impacted by local sharp changes in soil carbon, and can be used in stationary or scanning modes. The result of the INS method is the carbon content from a site with a footprint of ~2.5 - 3 m 2 in the stationary regime, or the average carbon content of the traversed area in the scanning regime. The measurement range of the current INS system is >1.5 carbon weight % (standard deviation ± 0.3 w%) in the upper 10 cm soil layer for a 1 hmeasurement.

  20. Water Footprint and Virtual Water Trade of Brazil

    OpenAIRE

    da Silva, Vicente de Paulo R.; de Oliveira, Sonaly D.; Hoekstra, Arjen Ysbert; Neto, Jose Dantas; Campos, João Hugo B.C.; Braga, Celia C.; Araújo, Lincoln Eloi; Oliveira Aleixo, Danilo; de Brito, Jose Ivaldo B.; de Souza, Marcio Dionisio; de Holanda, Romildo M.

    2016-01-01

    Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international trade in the main agricultural commodities, as well as water scarcity, water self-sufficiency and water dependency per Brazilian region. While previous country studies on water footprints and virtual w...

  1. Evaluation of footprint contact area and pressure using a triple-row modification of the suture-bridge technique for rotator cuff repair.

    Science.gov (United States)

    Ostrander, Roger V; McKinney, Bart I

    2012-10-01

    Studies suggest that arthroscopic repair techniques may have high recurrence rates for larger rotator cuff tears. A more anatomic repair may improve the success rate when performing arthroscopic rotator cuff repair. We hypothesized that a triple-row modification of the suture-bridge technique for rotator cuff repair would result in significantly more footprint contact area and pressure between the rotator cuff and the humeral tuberosity. Eighteen ovine infraspinatus tendons were repaired using 1 of 3 simulated arthroscopic techniques: a double-row repair, the suture-bridge technique, and a triple-row repair. The triple-row repair technique is a modification of the suture-bridge technique that uses an additional reducing anchor between the medial and lateral rows. Six samples were tested per group. Pressure-indicating film was used to measure the footprint contact area and pressure after each repair. The triple-row repair resulted in significantly more rotator cuff footprint contact area and contact pressure compared with the double-row technique and the standard suture-bridge technique. No statistical difference in contact area or contact pressure was found between the double-row technique and the suture-bridge technique. The triple-row technique for rotator cuff repair results in significantly more footprint contact area and contact pressure compared with the double-row and standard suture-bridge techniques. This more anatomic repair may improve the healing rate when performing arthroscopic rotator cuff repair. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  2. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  3. Carbon Footprint Calculations: An Application of Chemical Principles

    Science.gov (United States)

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…

  4. 77 FR 67336 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Science.gov (United States)

    2012-11-09

    ... Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania: Final Results of Antidumping... alloy seamless standard, line and pressure pipe from Romania. The period of review is August 1, 2010..., line and pressure pipe from Romania. See Certain Small Diameter Carbon and Alloy Seamless Standard...

  5. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment.

    Science.gov (United States)

    Shibata, Hideaki; Galloway, James N; Leach, Allison M; Cattaneo, Lia R; Cattell Noll, Laura; Erisman, Jan Willem; Gu, Baojing; Liang, Xia; Hayashi, Kentaro; Ma, Lin; Dalgaard, Tommy; Graversgaard, Morten; Chen, Deli; Nansai, Keisuke; Shindo, Junko; Matsubae, Kazuyo; Oita, Azusa; Su, Ming-Chien; Mishima, Shin-Ichiro; Bleeker, Albert

    2017-03-01

    Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactive N causes environmental pollution. The N footprint is an indicator that quantifies reactive N losses to the environment from consumption and production of food and the use of energy. The average per capita N footprint (calculated using the N-Calculator methodology) of ten countries varies from 15 to 47 kg N capita -1 year -1 . The major cause of the difference is the protein consumption rates and food production N losses. The food sector dominates all countries' N footprints. Global connections via trade significantly affect the N footprint in countries that rely on imported foods and feeds. The authors present N footprint reduction strategies (e.g., improve N use efficiency, increase N recycling, reduce food waste, shift dietary choices) and identify knowledge gaps (e.g., the N footprint from nonfood goods and soil N process).

  6. Carbon dioxide emission standards for U.S. power plants. An efficiency analysis perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hampf, Benjamin [Technische Univ. Darmstadt (Germany). Fachbereich Rechts- und Wirtschaftswissenschaften; Roedseth, Kenneth Loevold [Institute of Transport Economics, Oslo (Norway). Dept. of Economics and Logistics

    2013-07-01

    On June 25, 2013, President Obama announced his plan to introduce carbon dioxide emission standards for electricity generation. This paper proposes an efficiency analysis approach that addresses which mission rates (and standards) would be feasible if the existing generating units adopt best practices. A new efficiency measure is introduced and further decomposed to identify different sources' contributions to emission rate improvements. Estimating two Data Envelopment Analysis (DEA) models - the well-known joint production model and the new materials balance model - on a dataset consisting of 160 bituminous-fired generating units, we find that the average generating unit's electricity-to-carbon dioxide ratio is 15.3 percent below the corresponding best-practice ratio. Further examinations reveal that this discrepancy can largely be attributed to non-discretionary factors and not to managerial inefficiency. Moreover, even if the best practice ratios could be implemented, the generating units would not be able to comply with the EPA's recently proposed carbon dioxide standard.

  7. Carbon finance and pro-poor co-benefits: The Gold Standard and Climate, Community and Biodiversity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Rachel

    2011-04-15

    This paper assesses the practical contribution of the Gold Standard (GS) and Climate Community and Biodiversity (CCB) Standards to local development through the identification of high quality carbon offset projects and ensuring high standards of consultation with local communities during project development and implementation. It is based on desk research, involving analysis of the GS and CCB Standards' project databases, project design documents, and secondary literature. In addition, over 20 representatives of the two standards systems, project developers, NGO representatives, and researchers were interviewed. The paper concludes that both standard systems successfully reward high quality projects which have a demonstrated commitment to local consultations and sustainable development benefits. Moreover, they serve to give well-meaning project developers frameworks with which to ensure that a wide range of criteria are considered in planning and implementing projects. As voluntary standards, it is unrealistic to expect either the GS or CCB Standards to improve poor-quality or unsustainable projects.

  8. Carbon finance and pro-poor co-benefits: The Gold Standard and Climate, Community and Biodiversity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Rachel

    2011-04-15

    This paper assesses the practical contribution of the Gold Standard (GS) and Climate Community and Biodiversity (CCB) Standards to local development through the identification of high quality carbon offset projects and ensuring high standards of consultation with local communities during project development and implementation. It is based on desk research, involving analysis of the GS and CCB Standards' project databases, project design documents, and secondary literature. In addition, over 20 representatives of the two standards systems, project developers, NGO representatives, and researchers were interviewed. The paper concludes that both standard systems successfully reward high quality projects which have a demonstrated commitment to local consultations and sustainable development benefits. Moreover, they serve to give well-meaning project developers frameworks with which to ensure that a wide range of criteria are considered in planning and implementing projects. As voluntary standards, it is unrealistic to expect either the GS or CCB Standards to improve poor-quality or unsustainable projects.

  9. Personal Water Footprint in Taiwan: A Case Study of Yunlin County

    Directory of Open Access Journals (Sweden)

    Yung-Jaan Lee

    2016-10-01

    Full Text Available Extreme weather events have affected the environment and water resources in Taiwan for the last two decades. Heavy rainfall, typhoons, and rising sea levels have caused severe flooding along the Southwest Coast in Taiwan. Yunlin County, an important agricultural region, will be significantly affected by climate changes, especially in coastal areas with severe land subsidence. Therefore, using the concept of the water footprint and questionnaire surveys, this study examines personal water footprints in townships in Yunlin County to explore the effectiveness and sustainability of water management. The purpose of the water footprint concept is to quantify environmental burdens imposed by individuals’ demand for water. An individual water footprint involves direct and indirect water usage that is associated with personal habits. Analytical results show that the most individual water consumption is highest along coastal areas, such as Kouhu and Taixi, and mountainous areas, such as Gukeng, Douliu, and Linnei. Furthermore, one-way ANOVA of individuals’ daily water footprint reveals that individual water footprints vary significantly among Douliu, Gukeng, and Mailiao. The mean daily water footprint per capita in Douliu and Gukeng significantly exceeds that in Mailiao. This study considers the location quotients of industries in these three townships, which indicate that the location quotients of the accommodation and food and beverage industries in Douliu and Gukeng significantly exceed those of Mailiao. The individual virtual water use that is associated with the aforementioned industries is large. Clearly, individual water use habits in townships are related to the industry type. Douliu and Gukeng are major centers of the tertiary industry, which has a higher location quotient than in Mailiao. Mailiao is a major center of manufacturing as a secondary industry. Therefore, flourishing regions with tertiary industries have high virtual water

  10. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-06

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  11. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-01

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639

  12. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Directory of Open Access Journals (Sweden)

    Songyi Wang

    2018-01-01

    Full Text Available In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  13. How China’s nitrogen footprint of food has changed from 1961 to 2010

    Science.gov (United States)

    Guo, Mengchu; Chen, Xiaohui; Bai, Zhaohai; Jiang, Rongfeng; Galloway, James N.; Leach, Allison M.; Cattaneo, Lia R.; Oenema, Oene; Ma, Lin; Zhang, Fusuo

    2017-10-01

    People have increased the amount of reactive nitrogen (Nr) in the environment as a result of food production methods and consumption choices. However, the connection between dietary choices and environmental impacts over time has not yet been studied in China. Here we combine a nitrogen footprint tool, the N-Calculator, with a food chain model, NUFER (NUtrient flows in Food chains, Environment and Resources use), to analyze the N footprint of food in China. We use the NUFER model to provide a detailed estimation of the amounts and forms of Nr released to the environment during food production, which is then used to calculate virtual nitrogen factors (VNFs, unit: kg N released/kg N in product) of major food items. The food N footprint consists of the food consumption N footprint and food production N footprint. The average per capita food N footprint increased from 4.7 kg N capita-1 yr-1 in the 1960s to 21 kg N capita-1 yr-1 in the 2000s, and the national food N footprint in China increased from 3.4 metric tons (MT) N yr-1 in the 1960s to 28 MT N yr-1 in the 2000s. The proportion of the food N footprint that is animal-derived increased from 37% to 54% during this period. The food production N footprint accounted for 84% of the national food N footprint in the 2000s, compared to 62% in the 1960s. More Nr has been added to the food production systems to produce enough food for a growing population that is increasing its per-capita food consumption. The increasing VNFs in China indicate that an increasing amount of Nr is being lost per unit of N embedded in food products consumed by humans in the past five decades. National N losses from food production increased from 6 MT N yr-1 in the 1960s to 23 MT N yr-1 in the 2000s. N was lost to the environment in four ways: ammonia (NH3) emissions and dinitrogen (N2) emissions through denitrification (each account for nearly 40%), N losses to water systems (20%), and nitrous oxide (N2O) emissions (1%). The average per

  14. The water footprint of land grabbing

    Science.gov (United States)

    Rulli, Maria Cristina; D'Odorico, Paolo

    2013-12-01

    increasing global demand for food, fibers, and biofuels has made investments in agriculture a priority for some governments and corporations eager to expand their agricultural production while securing good profits. Here we calculate the water appropriation associated with land deals at different negotiation and implementation stages. Using estimates of actual and potential evapotranspiration for the crops planted in the acquired land, we calculate the green and blue water appropriated by land investors under a variety of irrigation scenarios. We also determine the grey water footprint as the amount of water required to dilute to allowable standards the pollution resulting from fertilizer applications. We found that about 380 × 109 m3 yr-1 of rainwater is appropriated with the 43 million ha of reported contract area acquired by agri-investors (>240 × 109 m3 yr-1 in the 29 million ha of foreign acquisitions only). This water would be sufficient to feed ≈ 300-390 million people.

  15. Carbon footprint of telemedicine solutions--unexplored opportunity for reducing carbon emissions in the health sector.

    Science.gov (United States)

    Holmner, Asa; Ebi, Kristie L; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Replacing physical visits with telemedicine appointments resulted in a significant 40-70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints.

  16. Water footprints and 'pozas'

    NARCIS (Netherlands)

    Domínguez Guzmán, Carolina; Verzijl, Andres; Zwarteveen, Margreet

    2017-01-01

    In this article we present two logics of water efficiency: that of the Water Footprint and that of mango smallholder farmers on the desert coast of Peru (in Motupe). We do so in order to explore how both can learn from each other and to discuss what happens when the two logics meet. Rather than

  17. Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand.

    Science.gov (United States)

    Chang, Ni-Bin; Qi, Cheng; Yang, Y Jeffrey

    2012-11-15

    Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Energy, water vapor and carbon fluxes in Andean agroecosystems: conceptualization and methodological standardization

    Directory of Open Access Journals (Sweden)

    Angela María Castaño Marín

    2017-01-01

    Full Text Available This paper presents the conceptualization, methodological adjustment and experimental application of the micrometeorological technique eddy covariance - EC, to measure energy, water vapor and CO2 fluxes in two coffee agroecosystems: the first under full sunlight, and the second under shade, both with equatorial Andean hillslope conditions. With a footprint and fetch calculation, the required distance from the edge of the field in the prevailing wind direction to the EC tower is three times higher under shade than full sun. The shaded agroecosystem reached maximum average carbon fixation rates of 21.26 ± 2.469 μmolCO2.m-2s-1 ( = 0.05 (61% higher than under 100% sunlight which gives a high carbon sink capacity to the association of coffee plants with shading Pigeon peas (Cajanus cajan L. The average evapotranspiration rate was 2.33 ± 0.0102 mm.d-1 ( = 0.05 and 2.08 ± 0.00732 mm.d-1 under shade and 100% sunlight, respectively. The proportion of net radiation that reached the soil was 2% under shade and 4% under 100% sunlight. Likewise, the soil energy loss during the night was lower under shade, indicating less day-night temperature range in the latter agroecosystem. The methodological adjustment and the results of this first work using EC in Colombian coffee plantations, contribute to the development of reliable research regarding gas and energy exchanges between the atmosphere and ecosystems in conditions of the equatorial Andean hillslope.

  19. Characterization of effects of thermal property of aggregate on the carbon footprint of asphalt industries in China

    Directory of Open Access Journals (Sweden)

    Ali Jamshidi

    2017-04-01

    Full Text Available In this study, the effects of the thermal properties of asphalt binders and aggregate materials were characterized in terms of the specific heat capacity (C for energy consumption and environmental footprints of hot mix asphalt (HMA and warm mix asphalt (WMA. Asphalt mixes produced using low-C aggregate are found to be more energy-efficient and environmental friendly, irrespective of the binder type and construction technology. Therefore, different fractions of aggregate blends were replaced with the aggregate provided from a low-C source or sustainable source. Analysis of energy consumption clearly indicated that the specific energy and environmental footprints decrease linearly as the low-C aggregate content increases. The amount of energy saving realized in the asphalt industries by the use of low-C aggregate is significant on a national scale in China. In this regard, China was chosen as a case study. Analysis of fuel requirement clearly indicated that the production of WMA using high thermal sensitivity aggregate can yield significant energy saving sufficient to fuel 44,007 to 664,880 Chinese households per year. Therefore, use of low C aggregate in asphalt mix production can be adopted as a strategy to produce WMA and HMA.

  20. Does race matters in consumers' stated preferences for water and carbon footprints labelled food products? Insights from black and white South Africans

    Science.gov (United States)

    Owusu-Sekyere, Enoch; Jordaan, Henry

    2017-04-01

    In recent years, governments, policy-makers, and managers of private food companies and agribusinesses are interested in understanding how consumers will react to environmentally sustainable attributes and information on food product labels. This study examines consumers' stated preferences for water and carbon footprints labelled food products from the viewpoint of black and white South Africans. Discrete choice experimental data was collected from black and white consumers to possibly assess cross-ethnic variations in preferences for environmentally sustainable products. Two widely purchased livestock products were chosen for the choice experiment. We found that consumers' preferences for environmentally sustainable attributes vary significantly between black and white South Africans. Our findings revealed that there are profound heterogeneous consumer segments within black and white respondents. The heterogeneity within both sub-samples is better explained at the segment level, rather than at individual level. For both product categories, the findings revealed that there are more distinct consumer segments among black respondents, relative to white respondents. The black respondents consist of water sustainability advocates, carbon reduction advocates, keen environmentalist and environmental neutrals. The white respondents entail keen environmentalist, environmental cynics, and environmental neutrals. The inherent significant variations in preferences for environmentally sustainable attributes across segments and racial groups would help in formulating feasible, and segment-specific environmental sustainability policies and marketing strategies aimed at changing consumers' attitude towards environmentally sustainable products. Demographic targeting of consumer segments, sustainability awareness and segment-specific educational campaigns meant to enhance subjective and objective knowledge on environmental sustainability are important tools for food companies and

  1. FOOTPRINTS FOR SUSTAINABILITY: THE NEXT STEPS

    Science.gov (United States)

    This paper discusses the strengths and weaknesses of the ecological footprint as an ecological accounting method, points out research needs for improvement of the analysis, and suggests potential new applications.

  2. Final technical report: Certification of low carbon farming practices

    OpenAIRE

    TUOMISTO HANNA LEENA; ANGILERI Vincenzo; DE CAMILLIS CAMILLO; LOUDJANI Philippe; PELLETIER NATHANIEL; HAASTRUP Palle; NISINI SCACCHIAFICHI Luigi

    2013-01-01

    In 2010, the European Parliament asked the European Commission to carry out a pilot project on the “certification of low-carbon farming practices in the European Union” to promote reductions of GHG emissions from farming. The overall aim of the project was to assess how efforts of European farmers to produce agricultural products with carbon-neutral or low-carbon-footprint farming practices might be incorporated into policy approaches (possibly via certification), so as to promote the reducti...

  3. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn Basin

    Science.gov (United States)

    Kvale, Erik P.; Mickelson, Debra L.; Hasiotis, Stephen T; Johnson, Gary D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers.

  4. Tracking the global footprint of fisheries

    Science.gov (United States)

    Kroodsma, David A.; Mayorga, Juan; Hochberg, Timothy; Miller, Nathan A.; Boerder, Kristina; Ferretti, Francesco; Wilson, Alex; Bergman, Bjorn; White, Timothy D.; Block, Barbara A.; Woods, Paul; Sullivan, Brian; Costello, Christopher; Worm, Boris

    2018-02-01

    Although fishing is one of the most widespread activities by which humans harvest natural resources, its global footprint is poorly understood and has never been directly quantified. We processed 22 billion automatic identification system messages and tracked >70,000 industrial fishing vessels from 2012 to 2016, creating a global dynamic footprint of fishing effort with spatial and temporal resolution two to three orders of magnitude higher than for previous data sets. Our data show that industrial fishing occurs in >55% of ocean area and has a spatial extent more than four times that of agriculture. We find that global patterns of fishing have surprisingly low sensitivity to short-term economic and environmental variation and a strong response to cultural and political events such as holidays and closures.

  5. Quantitative modeling of the Water Footprint and Energy Content of Crop and Animal Products Consumption in Tanzania

    Directory of Open Access Journals (Sweden)

    felichesmi Selestine lyakurwa

    2014-05-01

    Full Text Available A comprehensive understanding of the link between water footprint and energy content of crop and animal products is vitally important for the sound management of water resources. In this study, we developed a mathematical relationship between water content, and energy content of many crops and animal products by using an improved LCA approach (water footprint. The standard values of the water and energy contents of crops and animal products were obtained from the databases of Agricultural Research Service, UNESCO Institute for water education and Food, and Agriculture Organization of the United Nations. The water footprint approach was applied to analyze the relationship between water requirement and energy of content of crop and animal products, in which the uncertainty and sensitivity was evaluated by Monte Carlo simulation technique that is contained in the Oracle Crystal Ball Fusion Edition v11.1.1.3.00. The results revealed significant water saving due to changes in food consumption pattern i.e. from consumption of more meat to vegetables. The production of 1kcal of crop and animal products requires about 98% of green, 4.8% blue water and 0.4% of gray water. In which changes in consumption pattern gave annual blue water saving of about 1605 Mm3 that is equivalent to 41.30m3/capita, extremely greater than the standard drinking water requirement for the whole population. Moreover, the projected results indicated, triple increase of dietary water requirement from 30.9 Mm3 in 2005 to 108 Mm3 by 2050. It was also inferred that, Tanzania has a positive virtual water balance of crop and animal products consumption with net virtual water import of 9.1 Mm3 that is the contribution margin to the water scarcity alleviation strategy. Therefore, developed relationship of water footprint and energy content of crops and animal products can be used by water resource experts for sustainable freshwater and food supply.

  6. Post No Photos, Leave No Trace: Children's Digital Footprint Management Strategies

    Science.gov (United States)

    Buchanan, Rachel; Southgate, Erica; Smith, Shamus P.; Murray, Tiana; Noble, Brittany

    2017-01-01

    Given that today's children are prolific users of the internet, concern has been raised about the future impact of the digital footprints they are currently generating. Here, we report on the "Best Footprint Forward" project which utilised focus groups to investigate the digital footprint awareness of 33 children (ranging in age from 10…

  7. Distal Insertional Footprint of the Brachialis Muscle: 3D Morphometric Study

    Directory of Open Access Journals (Sweden)

    Srinath Kamineni

    2015-01-01

    Full Text Available Objective. The purpose of this study is to describe the three-dimensional morphometry of the brachialis muscle at its distal attachment to the ulna. Methods. Fifty cadaveric elbows were dissected and the brachialis distal insertion was isolated on the ulna bone and probed with a three-dimensional digitizer, to create a three-dimensional model of the footprint. Measurements and analysis of each footprint shape were recorded and compared based on gender and size. Results. There was significant gender difference in the surface length (P= 0.002 and projected length (P= 0.001 of the brachialis footprint. The shapes of the footprint also differed among the specimens. Conclusion. The shape of the brachialis muscle insertion differed among all the specimens without significant variation in gender or sides. There was also a significant difference in muscle length between males and females with little difference in the width and surface area. Significance. The information obtained from this study is important for kinematic understanding and surgical procedures around the elbow joint as well as the understanding of the natural age related anatomy of the brachialis footprint morphology.

  8. Income-based projections of water footprint of food consumption in Uzbekistan

    Science.gov (United States)

    Djanibekov, Nodir; Frohberg, Klaus; Djanibekov, Utkur

    2013-11-01

    Assessing future water requirements for feeding the growing population of Central Asia can improve understanding of the projected water supply scenarios in the region. Future water requirements will be partially determined by the dietary habits of the populations, and are thus responsive to significant variation of income levels. Using Uzbekistan as an example, this study projects the water footprints of income driven changes on the population's diet in Central Asia. To reveal the influence of large income changes on dietary habits a Normalized Quadratic-Quadratic Expenditure System was calibrated and applied to data from 2009. The national water footprints of food consumption in Uzbekistan were projected until 2034 by applying the parameterized demand system to estimate the respective water footprint values. The results showed that for Uzbekistan the projected increase in the food consumption water footprint would be primarily linked to income growth rather than population growth. Due to the high water footprint of common food products, the composition of the population's diet, and responsiveness to income, economic growth is expected to put greater pressure on water resources in Uzbekistan unless proper measures are undertaken.

  9. [Dynamic changes of ecological footprint and ecological capacity in Fujian Province].

    Science.gov (United States)

    Weng, Boqi; Wang, Yixiang; Huang, Yibin; Ying, Zhaoyang; Huang, Qinlou

    2006-11-01

    The analysis on the dynamic changes of ecological footprint and ecological capacity in Fujian Province showed that in 1999-2003, the ecological footprint per capita in the Province increased from 1.428 hm2 to 1.658 hm2, while the ecological capacity per capita decreased from 0.683 hm2 to 0.607 hm2, with an increased ecological deficit year after year. The contradiction between the ecological footprint and ecological capacity pricked up gradually, and the ecological environment was at risk. There existed a severe imbalance in the supply and demand of ecological footprint per capita. The main body of the demands was grassland and fossil fuel, accouting for 55.74% - 63.43% of the total, while their supply only occupied 0.77% - 0.82% and next to nothing of the ecological capacity per capita, respectively. As a whole, the ecological footprint per ten thousand yuan GDP declined in the five years, indicating that the resources use efficiency in the Province was improved gradually. Based on the analysis of the present situation of the economic development and resources distribution in the Province, the strategies on reducing ecological deficit were put forward.

  10. Human footprints on greenhouse gas fluxes in cryogenic ecosystems

    Science.gov (United States)

    Karelin, D. V.; Goryachkin, S. V.; Zamolodchikov, D. G.; Dolgikh, A. V.; Zazovskaya, E. P.; Shishkov, V. A.; Kraev, G. N.

    2017-12-01

    Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.

  11. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  12. Water Footprints and Sustainable Water Allocation

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2015-12-01

    Full Text Available Water Footprint Assessment (WFA is a quickly growing research field. This Special Issue contains a selection of papers advancing the field or showing innovative applications. The first seven papers are geographic WFA studies, from an urban to a continental scale; the next five papers have a global scope; the final five papers focus on water sustainability from the business point of view. The collection of papers shows that the historical picture of a town relying on its hinterland for its supply of water and food is no longer true: the water footprint of urban consumers is global. It has become clear that wise water governance is no longer the exclusive domain of government, even though water is and will remain a public resource with government in a primary role. With most water being used for producing our food and other consumer goods, and with product supply chains becoming increasingly complex and global, there is a growing awareness that consumers, companies and investors also have a key role. The interest in sustainable water use grows quickly, in both civil society and business communities, but the poor state of transparency of companies regarding their direct and indirect water use implies that there is still a long way to go before we can expect that companies effectively contribute to making water footprints more sustainable at a relevant scale.

  13. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.

    Science.gov (United States)

    Li, Hongying; Qin, Lijie; He, Hongshi

    2018-06-01

    Rice is a special crop, and its production differs from that of other crops because it requires a thin layer of water coverage for a long period. The calculation of the water footprint of rice production should differ from that of other crops owing to the rice growing process. This study improved the calculation of blue and grey water footprints of rice production and analyzed the variations in the water footprints for rice production under different rainfall years in Jilin Province. In the drought year, the green water footprint was the lowest and the blue water footprint was the highest among the three years, while in the humid year, the green water footprint was the highest and the blue water footprint was not the lowest. The areas with higher water footprints were found in the east and west regions of Jilin Province, while the areas with lower water footprints were found in the middle east and middle regions of Jilin Province. Blue water was the primary water resource for rice production, although more precipitation provided the highest green water in the humid year; also, the spatial distributions of water footprints were not the same under different rainfall years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Interactions between California's Low Carbon Fuel Standard and the National Renewable Fuel Standard

    International Nuclear Information System (INIS)

    Whistance, Jarrett; Thompson, Wyatt; Meyer, Seth

    2017-01-01

    This study investigates the economic interactions between a national renewable fuel policy, namely the Renewable Fuel Standard (RFS) in the United States, and a sub-national renewable fuel policy, the Low Carbon Fuel Standard (LCFS) in California. The two policies have a similar objective of reducing greenhouse gas emissions, but the policies differ in the manner in which those objectives are met. The RFS imposes a hierarchical mandate of renewable fuel use for each year whereas the LCFS imposes a specific annual carbon-intensity reduction with less of a fuel specific mandate. We model the interactions using a partial-equilibrium structural model of agricultural and energy markets in the US and Rest-of-World regions. Our results suggest the policies are mutually reinforcing in that the compliance costs of meeting one of the requirements is lower in the presence of the other policy. In addition, the two policies combine to create a spatial shift in renewable fuel use toward California even though overall renewable fuel use remains relatively unchanged. - Highlights: • Results suggest the RFS and LCFS are mutually reinforcing. • Overall level of renewable fuel use is similar across scenarios. • Renewable fuel use shifts toward California in the presence of the LCFS. • Higher ethanol blend (e.g. E85) use also shifts toward California.

  15. 75 FR 69125 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China

    Science.gov (United States)

    2010-11-10

    ... with material injury by reason of imports from China of certain seamless carbon and alloy steel standard, line, and pressure pipe (``seamless SLP pipe''), provided for in subheadings 7304.19.10, 7304.19... Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China Determination On the basis of...

  16. Does footprint depth correlate with foot motion and pressure?

    OpenAIRE

    Bates, K. T.; Savage, R.; Pataky, T. C.; Morse, S. A.; Webster, E.; Falkingham, P. L.; Ren, L.; Qian, Z.; Collins, D.; Bennett, M. R.; McClymont, J.; Crompton, R. H.

    2013-01-01

    Footprints are the most direct source of evidence about locomotor biomechanics in extinct vertebrates. One of the principal suppositions underpinning biomechanical inferences is that footprint geometry correlates with dynamic foot pressure, which, in turn, is linked with overall limb motion of the trackmaker. In this study, we perform the first quantitative test of this long-standing assumption, using topological statistical analysis of plantar pressures and experimental and computer-simulate...

  17. Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1982-01-01

    1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

  18. Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home – The REEP House

    International Nuclear Information System (INIS)

    Bin, Guoshu; Parker, Paul

    2012-01-01

    Highlights: ► Life cycle energy, carbon and ecological footprints of a century home are studied. ► The operational impact accounts for most of the total lifecycle impact. ► Sourcing energy-intensive materials locally only reduces embodied impacts a little. ► Deep energy retrofits (80% savings) achieved substantial environmental benefits. ► The environmental payback period of major energy retrofits is less than 2 years. - Abstract: The residential sector is recognized as a major energy consumer and thus a significant contributor to climate change. Rather than focus only on current energy consumption and the associated emissions, there is a need to broaden sustainability research to include full life cycle contributions and impacts. This paper looks at houses from the perspective of the ecological footprint (EF), a well-known sustainability indicator. Exemplifying single-detached houses of the early 20th century, the century-old REEP House (downtown Kitchener, Canada), together with its high performance energy retrofits, is examined in detail. This research combines material, energy and carbon emission studies. Its scope covers the life cycle of the house, including the direct and indirect consumption of material and energy, and concomitant carbon emissions during its stages of material extraction, transportation, construction, operation, and demolition. It is revealed that the REEP House had a typical impact on the environment when it was built, and, even though the renovations to improve energy efficiency by 80% introduce additional embodied environmental impacts, they are environmentally sound activities because the environmental payback period is less than 2 years.

  19. Metal footprint linked to economy

    Science.gov (United States)

    Burke, Paul J.

    2018-04-01

    The annual quantity of metal being used by humans has been on the rise. A new analysis of 43 major economies reveals the extent to which year-to-year fluctuations in metal footprints have been in lockstep with countries' economic growth and changes in investment spending.

  20. Changes to the Carbon and Energy fluxes in a Northern Peatland with Thawing Permafrost

    Science.gov (United States)

    Harder, S. R.; Roulet, N. T.; Crill, P. M.; Strachan, I. B.

    2017-12-01

    The maintenance of thaw of high carbon density landscapes in the permafrost region ultimately depends of how the energy balance is partitioned as temperatures and precipitation change, yet there are comparatively few energy balance studies, especially in peatlands that contain permafrost. While permafrost peatlands are currently net sinks of carbon, as Arctic temperatures rise and permafrost thaws, the future of these ecosystems and their capacity for carbon uptake is in question. Since 2012 we have been measuring the spatially integrated CO2, energy and water vapour fluxes from the Stordalen peatland (68°22'N, 19°03'E) using eddy covariance (EC). The Stordalen peatland is a heterogeneous peatland in the discontinuous permafrost zone where permafrost thaw is actively occurring, resulting in large changes to the landscape from year to year. Areas where permafrost is present are elevated by up to 1.5 m compared to the areas where permafrost has thawed causing differences in water table depth, peat temperatures, snow distribution, vegetation community and therefore in the carbon and energy fluxes. Our EC tower is located on the edge of a permafrost peat plateau (or palsa) where one fetch measures fluxes from an area underlain by permafrost and the other fetch sees the portion of the peatland where the permafrost has thawed. Within each sector, we have an array of soil temperature and water content sensors to determine the physical characteristics of each fetch. Extensive vegetation surveys (based on plant functional types or PFTs) have also been conducted to run a footprint analysis on the flux data to complete a comparative analysis of the magnitude and variability of the carbon and energy exchanges from PFT. The footprint analysis allows us to explain the difference in energy and carbon fluxes by examining the ecological, biogeochemical and physical characteristics within each footprint. We see distinctly different energy partitioning between the fetches