Sample records for carbon dioxide compensation

  1. Understanding carbon compensation

    Today, everyone can compensate its carbon emissions on the Internet in few mouse clicks. But what is the meaning of this compensation? What are the mechanisms of voluntary compensation in the framework of the Kyoto protocol? How to participate to this system and to what organisation a company or an individual can call in to reduce his carbon footprint? Carbon compensation is one of the numerous instruments invented to fight against global warming. When it is not possible to reduce our own emissions, we can compensate them by financing projects allowing to reduce the emissions of another company or collectivity. In this book, the authors answer the questions regarding the mechanisms, implementation and efficiency of carbon compensation. (J.S.)

  2. The carbon dioxide cycle

    James, P.B.; Hansen, G.B.; Titus, T.N.


    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Carbon Dioxide Fountain

    Kang, Seong-Joo; Ryu, Eun-Hee


    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  4. The oxygen and carbon dioxide compensation points of C3 plants: possible role in regulating atmospheric oxygen.

    Tolbert, N E; Benker, C; Beck, E


    The O2 and CO2 compensation points (O2 and CO2) of plants in a closed system depend on the ratio of CO2 and O2 concentrations in air and in the chloroplast and the specificities of ribulose bisphosphate carboxylase/oxygenase (Rubisco). The photosynthetic O2 is defined as the atmospheric O2 level, with a given CO2 level and temperature, at which net O2 exchange is zero. In experiments with C3 plants, the O2 with 220 ppm CO2 is 23% O2; O2 increases to 27% with 350 ppm CO2 and to 35% O2 with 700 ppm CO2. At O2 levels below the O2, CO2 uptake and reduction are accompanied by net O2 evolution. At O2 levels above the O2, net O2 uptake occurs with a reduced rate of CO2 fixation, more carbohydrates are oxidized by photorespiration to products of the C2 oxidative photosynthetic carbon cycle, and plants senesce prematurely. The CO2 increases from 50 ppm CO2 with 21% O2 to 220 ppm with 100% O2. At a low CO2/high O2 ratio that inhibits the carboxylase activity of Rubisco, much malate accumulates, which suggests that the oxygen-insensitive phosphoenolpyruvate carboxylase becomes a significant component of the lower CO2 fixation rate. Because of low global levels of CO2 and a Rubisco specificity that favors the carboxylase activity, relatively rapid changes in the atmospheric CO2 level should control the permissive O2 that could lead to slow changes in the immense O2 pool. PMID:11607591

  5. Carbon dioxide recycling

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  6. Carbon dioxide and climate

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  7. Deposition of carbon dioxide

    In Norway, there is currently a debate about whether or not to build gas power stations. To meet the possibility of reduced emission quotas for carbon dioxide in the future, current interest focuses on the incorporation of large-scale separation and deposition of carbon dioxide when such plants are planned. A group of experts concludes that this technology will become self-financing by means of environmental taxes. From the environmental point of view, taxes upon production are to be preferred over taxes on consumption

  8. Higher capacity, lower carbon dioxide emissions. Idle power compensation in HV lines; Mehr Kapazitaet, weniger Kohlendioxid. Blindleistungskompensation bei Hochspannungsleitungen

    Auer, Jan-Hendrik von [Alstom Grid GmbH, Berlin (Germany). Team Leistungselektronik und Kompensationsanlagen


    Even today, many HP lines have reached their limits. It is therefore highly urgent to find measures for optimum utilization of the available overhead transmssion capacities, e.g. by idle power compensation. Together with a filter for harmonics reduction, this will ensure higher grid stability and enhance transport capacities while reducing transport losses, thus saving money and reducing CO{sub 2} emissions. (orig./AKB)

  9. Carbon dioxide laser guidelines

    Krupa Shankar D


    Full Text Available The carbon dioxide (CO 2 laser is a versatile tool that has applications in ablative lasing and caters to the needs of routine dermatological practice as well as the aesthetic, cosmetic and rejuvenation segments. This article details the basics of the laser physics as applicable to the CO 2 laser and offers guidelines for use in many of the above indications.

  10. Carbon dioxide dangers demonstration model

    Venezky, Dina; Wessells, Stephen


    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.




    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  12. Carbon dioxide sequestration by mineral carbonation

    Huijgen, W.J.J.


    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  13. Carbon dioxide and climate


    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  14. Carbon dioxide sequestration by mineral carbonation

    Huijgen, W.J.J.


    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  15. Carbon Dioxide Embolism during Laparoscopic Surgery

    Park, Eun Young; Kwon, Ja-Young; Kim, Ki Jun


    Clinically significant carbon dioxide embolism is a rare but potentially fatal complication of anesthesia administered during laparoscopic surgery. Its most common cause is inadvertent injection of carbon dioxide into a large vein, artery or solid organ. This error usually occurs during or shortly after insufflation of carbon dioxide into the body cavity, but may result from direct intravascular insufflation of carbon dioxide during surgery. Clinical presentation of carbon dioxide embolism ra...

  16. Carbon Dioxide - Our Common "Enemy"

    James, John T.; Macatangay, Ariel


    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  17. High capacity carbon dioxide sorbent

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan


    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  18. Carbon dioxide transport over complex terrain

    Sun, RC


    The nocturnal transport of carbon dioxide over complex terrain was investigated. The high carbon dioxide under very stable conditions flows to local low-ground. The regional drainage flow dominates the carbon dioxide transport at the 6 m above the ground and carbon dioxide was transported to the regional low ground. The results show that the local drainage flow was sensitive to turbulent mixing associated with local wind shear.

  19. Perspectives in the use of carbon dioxide


    The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the...

  20. Modelling Sublimation of Carbon Dioxide

    Winkel, Brian


    In this article, the author reports results in their efforts to model sublimation of carbon dioxide and the associated kinetics order and parameter estimation issues in their model. They have offered the reader two sets of data and several approaches to determine the rate of sublimation of a piece of solid dry ice. They presented several models…

  1. 21 CFR 582.1240 - Carbon dioxide.


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Carbon dioxide. 582.1240 Section 582.1240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1240 Carbon dioxide. (a) Product. Carbon dioxide. (b) Conditions of use. This substance is...

  2. Nongovernmental valorization of carbon dioxide

    Carbon dioxide (CO2) is considered the largest contributor to the greenhouse gas effect. Most attempts to manage the flow of CO2 or carbon into our environment involve reducing net emissions or sequestering the gas into long-lived sinks. Using CO2 as a chemical feedstock has a long history, but using it on scales that might impact the net emissions of CO2 into the atmosphere has not generally been considered seriously. There is also a growing interest in employing our natural biomes of carbon such as trees, vegetation, and soils as storage media. Some amelioration of the net carbon emissions into the atmosphere could be achieved by concomitant large withdrawals of carbon. This report surveys the potential and limitations in employing carbon as a resource for organic chemicals, fuels, inorganic materials, and in using the biome to manage carbon. The outlook for each of these opportunities is also described




    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  4. Perspectives in the use of carbon dioxide

    Aresta Michele


    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  5. Carbon dioxide retention in divers

    Florio, J.T.; Mackenzie, D.A.R.; McKenzie, R.S. [ARE Physiological Laboratory, Gosport (United Kingdom)


    This report summarises the work carried out at the ARE Physiological Laboratory (ARE(PL)) between July 1978 and December 1983. The work was intended to examine the proposition that some divers have a low ventilatory response to carbon dioxide; that this results in a low ventilatory response to exercise with consequent hypercapnia; and that these characteristics put the diver at a greater-than-normal risk by increasing the individual`s susceptibility to oxygen toxicity and to other hazards associated with diving (e.g. nitrogen narcosis, decompression sickness and hypothermia). The specific aims of the project can be summarised as follows: (a) to demonstrate the existence of divers who exhibit the tendency to `retain carbon dioxide` when working in hyperbaric conditions; (b) to define the circumstances under which such individuals are at risk; (c) to assess the magnitude of the risk; and (d) to recommend ways to eliminate or to reduce the risk. (author)

  6. Summer Ice and Carbon Dioxide

    Kukla, G.; Gavin, J.


    The extent of Antarctic pack ice in the summer, as charted from satellite imagery, decreased by 2.5 million square kilometers between 1973 and 1980. The U.S. Navy and Russian atlases and whaling and research ship reports from the 1930's indicate that summer ice conditions earlier in this century were heavier than the current average. Surface air temperatures along the seasonally shifting belt of melting snow between 55 degrees and 80 degrees N during spring and summer were higher in 1974 to 1978 than in 1934 to 1938. The observed departures in the two hemispheres qualitatively agree with the predicted impact of an increase in atmospheric carbon dioxide. However, since it is not known to what extent the changes in snow and ice cover and in temperature can be explained by the natural variability of the climate system or by other processes unrelated to carbon dioxide, a cause-and-effect relation cannot yet be established.

  7. Method for carbon dioxide sequestration

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.


    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  8. Oxygen and carbon dioxide sensing

    Ren, Fan (Inventor); Pearton, Stephen John (Inventor)


    A high electron mobility transistor (HEMT) capable of performing as a CO.sub.2 or O.sub.2 sensor is disclosed, hi one implementation, a polymer solar cell can be connected to the HEMT for use in an infrared detection system. In a second implementation, a selective recognition layer can be provided on a gate region of the HEMT. For carbon dioxide sensing, the selective recognition layer can be, in one example, PEI/starch. For oxygen sensing, the selective recognition layer can be, in one example, indium zinc oxide (IZO). In one application, the HEMTs can be used for the detection of carbon dioxide and oxygen in exhaled breath or blood.

  9. Carbon Dioxide Removal via Passive Thermal Approaches

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly


    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  10. Absorption of carbon dioxide in waste tanks

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  11. Transformation and utilization of carbon dioxide

    Bhanage, Bhalchandra M. [Institute of Chemical Technology, Mumbai (India). Dept. of Chemistry; Arai, Masahiko (ed.) [Hokkaido Univ., Sapporo (Japan). Division of Chemical Process Engineering


    This book shows the various organic, polymeric and inorganic compounds which result from the transformation of carbon dioxide through chemical, photocatalytic, electrochemical, inorganic and biological processes. The book consists of twelve chapters demonstrating interesting examples of these reactions, depending on the types of reaction and catalyst. It also includes two chapters dealing with the utilization of carbon dioxide as a reaction promoter and presents a wide range of examples of chemistry and chemical engineering with carbon dioxide.

  12. 21 CFR 184.1240 - Carbon dioxide.


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbon dioxide. 184.1240 Section 184.1240 Food and... Substances Affirmed as GRAS § 184.1240 Carbon dioxide. (a) Carbon dioxide (empirical formula CO2, CAS Reg. No.... The solid form, dry ice, sublimes under atmospheric pressure at a temperature of −78.5 °C....

  13. Carbon dioxide-guided angioplasty

    Revascularization procedures are frequently necessary in patients with severe peripheral vascular disease and renal insufficiency (often coexistent with diabetes mellitus). This paper examines the use of carbon dioxide as the contrast agent in percutaneous revascularization procedures (balloon angioplasty). Over the past 10 months, our protocol has used CO2 as the contrast agent for balloon angioplasty in a select group of patients (n = 12) with peripheral vascular disease and renal insufficiency. Some had coexistent diabetes mellitus. With digital subtraction angiography, CO2 was the only contrast agent used during revascularization. Pressure gradients were obtained in appropriate patients

  14. Carbon dioxide reducing processes; Koldioxidreducerande processer

    Svensson, Fredrik


    This thesis discusses different technologies to reduce or eliminate the carbon dioxide emissions, when a fossil fuel is used for energy production. Emission reduction can be accomplished by separating the carbon dioxide for storage or reuse. There are three different ways of doing the separation. The carbon dioxide can be separated before the combustion, the process can be designed so that the carbon dioxide can be separated without any energy consumption and costly systems or the carbon dioxide can be separated from the flue gas stream. Two different concepts of separating the carbon dioxide from a combined cycle are compared, from the performance and the economical point of view, with a standard natural gas fired combined cycle where no attempts are made to reduce the carbon dioxide emissions. One concept is to use absorption technologies to separate the carbon dioxide from the flue gas stream. The other concept is based on a semi-closed gas turbine cycle using carbon dioxide as working fluid and combustion with pure oxygen, generated in an air-separating unit. The calculations show that the efficiency (power) drop is smaller for the first concept than for the second, 8.7 % points compared to 13.7 % points, when power is produced. When both heat and power are produced, the relation concerning the efficiency (power) remains. Regarding the overall efficiency (heat and power) the opposite relation is present. A possible carbon dioxide tax must exceed 0.21 SEK/kg CO{sub 2} for it to be profitable to separate carbon dioxide with any of these technologies.

  15. Carbon dioxide disposal in solid form

    Lackner, K.S.; Butt, D.P.; Sharp, D.H. [Los Alamos National Lab., NM (United States); Wendt, C.H. [Auxon Corp., (United States)


    Coal reserves can provide for the world`s energy needs for centuries. However, coal`s long term use may be severely curtailed if the emission of carbon dioxide into the atmosphere is not eliminated. We present a safe and permanent method of carbon dioxide disposal that is based on combining carbon dioxide chemically with abundant raw materials to form stable carbonate minerals. We discuss the availability of raw materials and potential process designs. We consider our initial rough cost estimate of about 3{cents}/kWh encouraging. The availability of a carbon dioxide fixation technology would serve as insurance in case global warming, or the perception of global warming, causes severe restrictions on carbon dioxide emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would quite likely be unavoidable.

  16. Robust optical carbon dioxide isotope analyzer Project

    National Aeronautics and Space Administration — Isotopic analysis of carbon dioxide is an important tool for characterization of the exchange and transformation of carbon between the biosphere and the atmosphere....

  17. Detecting Climate Change due to Increasing Carbon Dioxide.

    Madden, R A; Ramanathan, V


    The observed interannual variability of temperature at 60 degrees N has been investigated. The results indicate that the surface warming due to increased carbon dioxide which is predicted by three-dimensional climate models should be detectable now. It is not, possibly because the predicted warming is being delayed more than a decade by ocean thermal inertia, or because there is a compensating cooling due to other factors. Further consideration of the uncertainties in model predictions and of the likely delays introduced by ocean thermal inertia extends the range of time for the detection of warming, if it occurs, to the year 2000. The effects of increasing carbon dioxide should be looked for in several variables simultaneously in order to minimize the ambiguities that could result from unrecognized compensating cooling. PMID:17753291

  18. Carbon dioxide production in animal houses

    Pedersen, Søren; Blanes-Vidal, Victoria; Joergensen, H.;


    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from...... animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20o......C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass...

  19. Encapsulated liquid sorbents for carbon dioxide capture

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.


    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  20. Carbon dioxide cleaning pilot project

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  1. Carbon dioxide conversion over carbon-based nanocatalysts.

    Khavarian, Mehrnoush; Chai, Siang-Piao; Mohamed, Abdul Rahman


    The utilization of carbon dioxide for the production of valuable chemicals via catalysts is one of the efficient ways to mitigate the greenhouse gases in the atmosphere. It is known that the carbon dioxide conversion and product yields are still low even if the reaction is operated at high pressure and temperature. The carbon dioxide utilization and conversion provides many challenges in exploring new concepts and opportunities for development of unique catalysts for the purpose of activating the carbon dioxide molecules. In this paper, the role of carbon-based nanocatalysts in the hydrogenation of carbon dioxide and direct synthesis of dimethyl carbonate from carbon dioxide and methanol are reviewed. The current catalytic results obtained with different carbon-based nanocatalysts systems are presented and how these materials contribute to the carbon dioxide conversion is explained. In addition, different strategies and preparation methods of nanometallic catalysts on various carbon supports are described to optimize the dispersion of metal nanoparticles and catalytic activity. PMID:23901504

  2. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    Bjerregård, Asger; Jansen, Erik


    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2...

  3. 46 CFR 97.37-9 - Carbon dioxide alarm.


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 97.37-9 Section 97.37-9 Shipping... Markings for Fire and Emergency Equipment, Etc. § 97.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  4. 46 CFR 78.47-9 - Carbon dioxide alarm.


    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide alarm. 78.47-9 Section 78.47-9 Shipping... and Emergency Equipment, Etc. § 78.47-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.” (b)...

  5. 46 CFR 196.37-9 - Carbon dioxide alarm.


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 196.37-9 Section 196.37-9 Shipping... Markings for Fire and Emergency Equipment, etc. § 196.37-9 Carbon dioxide alarm. (a) All carbon dioxide alarms shall be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE...

  6. 46 CFR 108.627 - Carbon dioxide alarm.


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide alarm. 108.627 Section 108.627 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.627 Carbon dioxide alarm. Each carbon dioxide alarm must be identified by marking: “WHEN ALARM SOUNDS VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED” next...

  7. 46 CFR 95.15-20 - Carbon dioxide storage.


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  8. 46 CFR 76.15-20 - Carbon dioxide storage.


    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  9. 46 CFR 169.732 - Carbon dioxide alarm.


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide alarm. 169.732 Section 169.732 Shipping... Control, Miscellaneous Systems, and Equipment Markings § 169.732 Carbon dioxide alarm. Each carbon dioxide alarm must be conspicuously identified: “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING RELEASED.”...

  10. Reactive Capture of Carbon Dioxide Project

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  11. Carbon Dioxide Collection and Pressurization Technology Project

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  12. Supercritical carbon dioxide hop extraction

    Pfaf-Šovljanski Ivana I.


    Full Text Available The hop of Magnum cultivar was extracted using supercritical carbon dioxide (SFE-as extractant. Extraction was carried out in the two steps: the first one being carried out at 150 bar and 40°C for 2.5 h (Extract A, and the second was the extraction of the same hop sample at 300 bar and 40°C for 2.5 h (Extract B. Extraction kinetics of the system hop-SFE-CO2 was investigated. Two of four most common compounds of hop aroma (α-humulene and β-caryophyllene were detected in Extract A. Isomerised α-acids and β-acids were detected too. a-Acid content in Extract B was high (that means it is a bitter variety of hop. Mathematical modeling using empirical model characteristic time model and simple single sphere model has been performed on Magnum cultivar extraction experimental results. Characteristic time model equations, best fitted experimental results. Empirical model equation, fitted results well, while simple single sphere model equation poorly approximated the results.

  13. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  14. Bench-to-bedside review: Carbon dioxide

    Curley, Gerard; Laffey, John G; Kavanagh, Brian P.


    Carbon dioxide is a waste product of aerobic cellular respiration in all aerobic life forms. PaCO2 represents the balance between the carbon dioxide produced and that eliminated. Hypocapnia remains a common - and generally underappreciated - component of many disease states, including early asthma, high-altitude pulmonary edema, and acute lung injury. Induction of hypocapnia remains a common, if controversial, practice in both adults and children with acute brain injury. In contrast, hypercap...

  15. Arterialisation of transcutaneous oxygen and carbon dioxide.

    Broadhurst, E; Helms, P; Vyas, H; Cheriyan, G


    We compared previously calculated global correction factors for oxygen and carbon dioxide arterial/transcutaneous ratios with individual in vivo calibrations from the first arterial sample. In infants beyond the neonatal period and older children in vivo calibration confers little benefit over the use of a global calibration correction factor for transcutaneous carbon dioxide, and may reduce the precision with which arterial oxygen can be estimated from transcutaneous oxygen.

  16. Graphite suspension in carbon dioxide

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m2/g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m2/g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author)

  17. Turning carbon dioxide into fuel.

    Jiang, Z; Xiao, T; Kuznetsov, V L; Edwards, P P


    Our present dependence on fossil fuels means that, as our demand for energy inevitably increases, so do emissions of greenhouse gases, most notably carbon dioxide (CO2). To avoid the obvious consequences on climate change, the concentration of such greenhouse gases in the atmosphere must be stabilized. But, as populations grow and economies develop, future demands now ensure that energy will be one of the defining issues of this century. This unique set of (coupled) challenges also means that science and engineering have a unique opportunity-and a burgeoning challenge-to apply their understanding to provide sustainable energy solutions. Integrated carbon capture and subsequent sequestration is generally advanced as the most promising option to tackle greenhouse gases in the short to medium term. Here, we provide a brief overview of an alternative mid- to long-term option, namely, the capture and conversion of CO2, to produce sustainable, synthetic hydrocarbon or carbonaceous fuels, most notably for transportation purposes. Basically, the approach centres on the concept of the large-scale re-use of CO2 released by human activity to produce synthetic fuels, and how this challenging approach could assume an important role in tackling the issue of global CO2 emissions. We highlight three possible strategies involving CO2 conversion by physico-chemical approaches: sustainable (or renewable) synthetic methanol, syngas production derived from flue gases from coal-, gas- or oil-fired electric power stations, and photochemical production of synthetic fuels. The use of CO2 to synthesize commodity chemicals is covered elsewhere (Arakawa et al. 2001 Chem. Rev. 101, 953-996); this review is focused on the possibilities for the conversion of CO2 to fuels. Although these three prototypical areas differ in their ultimate applications, the underpinning thermodynamic considerations centre on the conversion-and hence the utilization-of CO2. Here, we hope to illustrate that advances

  18. Sintering furnace with hydrogen carbon dioxide atmosphere

    A heated furnace for sintering structures of uranium oxide containing composition being introduced to the furnace is described. The furnace receives an atmosphere comprising a mixture of hydrogen and carbon dioxide as initially introduced to the furnace, and this mixture reacts in the furnace to give the presence of water vapor and carbon monoxide

  19. Method for Extracting and Sequestering Carbon Dioxide

    Rau, Gregory H.; Caldeira, Kenneth G.


    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.


    K.A.M. Gasem; R.L. Robinson, Jr.; J.E. Fitzgerald; Z. Pan; M. Sudibandriyo


    The authors' long-term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure, and adsorbent types. The originally-stated, major objectives of the current project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen, and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coals being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane, and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. As this project developed, an important additional objective was added to the above original list. Namely, we were encouraged to interact with industry and/or governmental agencies to utilize our expertise to advance the state of the art in coalbed adsorption science and technology. As a result of this additional objective, we participated with the Department of Energy and industry in the measurement and analysis of adsorption behavior as part of two distinct investigations. These include (a) Advanced Resources International (ARI) DOE Project DE-FC26-00NT40924, ''Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on Wet Tiffany Coal'', and (b) the DOE-NETL Project, ''Round Robin: CO{sub 2} Adsorption on Selected Coals''. These activities, contributing

  1. Carbon dioxide and methane emissions from estuaries

    Abril, G.; Borges, Alberto


    Carbon dioxide and methane emissions from estuaries are reviewed in relationwith biogeochemical processes and carbon cycling. In estuaries, carbondioxide and methane emissions show a large spatial and temporalvariability, which results from a complex interaction of river carbon inputs,sedimentation and resuspension processes, microbial processes in watersand sediments, tidal exchanges with marshes and flats and gas exchangewith the atmosphere. The net mineralization of land-derived organic ca...

  2. [Pharmaceutical applications of supercritical carbon dioxide].

    Delattre, L


    The supercritical state of a fluid is intermediate between that of gases and liquids. Supercritical fluids exhibit some solvent power which is tunable in function of pressure and temperature. In the pharmaceutical field, supercritical carbon dioxide is by far the most commonly used fluid; of course, the first applications of supercritical fluids were the replacement of organic solvents in extraction processes; other applications appeared during the last twenty years: supercritical fluids are also used as eluents in chromatography, as solvents in organic synthesis or for the processing of solid dosage forms by drug micronization, by the production of nanospheres, of solid dispersions, of porous polymeric matrices containing different active substances. Supercritical carbon dioxide has been proposed for encapsulating both hydrophilic and hydrophobic drug substances into liposomes as well as for including different active substances into cyclodextrins. There are also future prospects for the use of pressurized carbon dioxide as a sterilizing agent. PMID:17299352

  3. Synthesis of fluoropolymers in supercritical carbon dioxide

    Fluoropolymers are used in many technologically demanding applications because of their balance of high-performance properties. A significant impediment to the synthesis of variants of commercially available amorphous fluoropolymers is their general insolubility in most solvents except chlorofluorocarbons (CFCs). The environmental concerns about CFCs can be circumvented by preparing these technologically important materials in supercritical fluids. The homogeneous solution polymerization of highly fluorinated acrylic monomers can be achieved in supercritical carbon dioxide by using free radical methods. In addition, detailed decomposition rates and efficiency factors were measured for azobisisobutyronitrile in supercritical carbon dioxide and were compared to those obtained with conventional liquid solvents

  4. Global deforestation: contribution to atmospheric carbon dioxide.

    Woodwell, G M; Hobbie, J E; Houghton, R A; Melillo, J M; Moore, B; Peterson, B J; Shaver, G R


    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed. PMID:17747369

  5. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    Perner, A; Bugge, K; Lyng, K M;


    to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically...

  6. Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae.

    Shimamura, T; Watanabe, S; Sasaki, S.


    We found that Vibrio cholerae 569B produced much more cholera enterotoxin in the presence of added carbon dioxide than in its absence. An atmosphere of 10% carbon dioxide was optimal for maximal enterotoxin production.

  7. Magnesian calcite sorbent for carbon dioxide capture

    Mabry, J.C.; Mondal, K. [Southern Illinois University, Carbondale, IL (United States)


    Magnesian calcite with controlled properties was synthesized for the removal of carbon dioxide. The results from characterization, reactivity and CO{sub 2} capture capacity for different synthesis conditions are reported. The magnesian calcite samples (CaCO{sub 3}:MgCO{sub 3}) were synthesized by the coprecipitation of specific amounts of commercially available CaO and MgO by carbon dioxide. Characterization was done with BET, SEM/EDS, particle size analysis and XRD. The capacity was measured using TGA cycles at 800 {sup o}C and compared for different preparation conditions. The effects of CaO, MgO and surfactant loading on the physical properties and carbonation activity were studied to determine the optimal synthesis condition. A long-term carbonation-calcination cycling test was conducted on the optimal sample. It was observed that the sample maintained its capacity to 86% of its original uptake even after 50 cycles.

  8. Plant Responses to Rising Carbon Dioxide and Nitrogen Relations

    Bloom, Arnold J.


    The responses of higher plants to rising carbon dioxide concentration in the atmosphere are strongly dependent on their ability to acquire mineral nitrogen, ammonium and nitrate. Elevated atmospheric carbon dioxide limits both sources and sinks of plant mineral nitrogen. With regard to sources, elevated carbon dioxide stimulates microbial immobilization and inhibits nitrogen fixation. With regard to sinks, elevated carbon dioxide inhibits nitrate assimilation into amino acids within the shoo...

  9. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG


    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  10. Carbon Dioxide in Arable Soil Profiles

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann;


    Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding on the...

  11. Tourism Transport, Technology, and Carbon Dioxide Emissions

    Peeters, P.M.


    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked

  12. Heat transfer coefficient for boiling carbon dioxide

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik


    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  13. Heat transfer coeffcient for boiling carbon dioxide

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik


    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  14. Recovery of carbon dioxide from fuel cell exhaust

    Healy, H.C.; Kolodney, M.; Levy, A.H.; Trocciola, P.


    An acid fuel cell power plant system operable to produce carbon dioxide as a by-product is described comprising: (a) fuel cell stack means having anode means, cathode means, and fuel cell cooling means, the cooling means using a water coolant; (b) means for delivering a hydrogen-rich fuel gas which contains carbon dioxide to the anode means for consumption of hydrogen by the anode means in an electrochemical reaction in the stack; (c) carbon dioxide absorber means including an absorbent for stripping carbon dioxide from gaseous mixtures thereof; (d) means for delivering hydrogen-depleted exhaust gas containing carbon dioxide from the anode means to the carbon dioxide absorber means for absorption of carbon dioxide from the exhaust gas; (e) an absorbent regenerator; (f) means for delivering carbon dioxide-enriched absorbent from the absorber means to the regenerator for separation of carbon dioxide from the absorbent; (g) means for exhausting carbon dioxide from the regenerator, the means for exhausting further including means for cooling and compressing carbon dioxide exhausted from the regenerator; and (h) means for removing the compressed carbon dioxide from the power plant.

  15. 46 CFR 169.565 - Fixed carbon dioxide system.


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fixed carbon dioxide system. 169.565 Section 169.565... Lifesaving and Firefighting Equipment Firefighting Equipment § 169.565 Fixed carbon dioxide system. (a) The number of pounds of carbon dioxide required for each space protected must be equal to the gross volume...

  16. 27 CFR 26.222 - Still wines containing carbon dioxide.


    ... carbon dioxide. 26.222 Section 26.222 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From the Virgin Islands § 26.222 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of...

  17. 27 CFR 26.52 - Still wines containing carbon dioxide.


    ... carbon dioxide. 26.52 Section 26.52 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... ISLANDS Formulas for Products From Puerto Rico § 26.52 Still wines containing carbon dioxide. (a) General. Still wines may contain not more than 0.392 gram of carbon dioxide per 100 milliliters of wine;...

  18. 9 CFR 313.5 - Chemical; carbon dioxide.


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Chemical; carbon dioxide. 313.5... INSPECTION AND CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.5 Chemical; carbon dioxide. The slaughtering of sheep, calves and swine with the use of carbon dioxide gas and the handling in...

  19. 27 CFR 24.319 - Carbon dioxide record.


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carbon dioxide record. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.319 Carbon dioxide record. A proprietor who uses carbon dioxide in still wine shall maintain a record of the laboratory tests conducted...

  20. Ocean uptake of carbon dioxide

    Factors controlling the capacity of the ocean for taking up anthropogenic C02 include carbon chemistry, distribution of alkalinity, pCO2 and total concentration of dissolved C02, sea-air pCO2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C02 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C02 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C02 fertilization is a potential candidate for such missing carbon sinks

  1. 40 CFR 86.316-79 - Carbon monoxide and carbon dioxide analyzer specifications.


    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide and carbon dioxide... Test Procedures § 86.316-79 Carbon monoxide and carbon dioxide analyzer specifications. (a) Carbon monoxide and carbon dioxide measurements are to be made with nondispersive infrared (NDIR) an analyzers....

  2. Carbon dioxide stripping in aquaculture. part 1: terminology and reporting

    Colt, John; Watten, Barnaby; Pfeiffer, Tim


    The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (carbon dioxide removal.

  3. Materials for carbon dioxide separation

    The CO2 adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO2 adsorption ability. Another promising class of materials for CO2 capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO3 and the relationship between physisorption and chemisorption properties of CaO-based materials.

  4. Carbon dioxide research conference: carbon dioxide, science and consensus

    The DOE program focuses on three areas each of which requires more research before the many CO2-related questions can be answered. These areas include the global carbon cycle, climate effects, and vegetation effects. Additional information is needed to understand the sources and sinks of CO2. Research efforts include an attempt to estimate regional and global changes in temperature and precipitation. Increased atmospheric CO2 may be a potential benefit to vegetation and crops because it is an essential element required for plant growth. Eight separate papers are included

  5. Carbon Dioxide Mitigation Benefit of High-Speed Railway in Terms of Carbon Tax

    Fu Yanbing; Zhang Sufen; Xie Meiquan; Li Shuping; Huang Zelin


    This paper calculates the carbon dioxide mitigation benefit of high-speed railway based on the carbon dioxide tax policy. We define the carbon dioxide emission system boundary for high-speed railway in its whole life cycle and estimate the life cycle carbon dioxide inventories during its construction, application, and recovery stages. And then we establish a theoretical model to calculate the life cycle carbon dioxide mitigation quantity for high-speed railway when compared with road transpor...

  6. Carbon dioxide emissions from biochar in soil

    Bruun, S; Clauson-Kaas, S; Bobul'ská, L;


    -sterilized soils. It emerged that carbonate may be concentrated or form during or after biochar production, resulting in significant carbonate contents. If CO2 released from carbonates in short-term experiments is misinterpreted as mineralization of biochar, the impact of this process may be significantly over...... evolution. Finally, we found that both production temperature and clay content affect biochar mineralization. As protective mechanisms hypothesized to prevent degradation of organic matter in soil usually implicate clay, we conclude that biochar is likely to be protected from mineralization during the early......The stability of biochar in soil is of importance if it is to be used for carbon sequestration and long-term improvement of soil properties. It is well known that a significant fraction of biochar is highly stable in soil, but carbon dioxide (CO2) is also released immediately after application...

  7. Carbon dioxide in vascular imaging and intervention

    Yang Xiaoming [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Manninen, H. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland); Soimakallio, S. [Dept. of Clinical Radiology, Univ. Hospital, Kuopio (Finland)


    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO{sub 2}) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO{sub 2}-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO{sub 2}-DSA as well as some clinical trials. Applications of CO{sub 2} gas in vascular interventions and other imagings, and the advantages and limitations of using CO{sub 2} gas in DSA are also discussed. (orig.).

  8. Carbon dioxide in vascular imaging and intervention.

    Yang, X; Manninen, H; Soimakallio, S


    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. PMID:7619608

  9. Recycling technology of emitted carbon dioxide

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)


    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  10. Sequestering ADM ethanol plant carbon dioxide

    Finley, R.J.; Riddle, D.


    Archer Daniels Midland Co. (ADM) and the Illinois State Geological Survey (ISGS) are collaborating on a project in confirming that a rock formation can store carbon dioxide from the plant in its pores. The project aimed to sequester the gas underground permanently to minimize release of the greenhouse gas into the atmosphere. It is also designed to store one million tons of carbon dioxide over a three-year period. The project is worth $84.3M, funded by $66.7M from the US Department Energy, supplemented by co-funding from ADM and other corporate and state resources. The project will start drilling of wells to an expected depth over 6500 feet into the Mount Simon Sandstone formation.

  11. Supercritical carbon dioxide decontamination of PAH contaminants

    Before the 1940's, more than 2,000 manufactured gas plant sites existed across North America for the production of a low Btu gas for heating and lighting. These sites, now abandoned, are contaminated with polycyclic aromatic hydrocarbons (PAHs), a coal gasification byproduct that was dumped on-site into unlined pits. The potential for ground water contamination of PAHs has made these sites an environmental concern. The remediation of PAH contaminated sites is difficult to achieve by conventional cleaning methods. In this work, supercritical carbon dioxide extraction has been investigated on a town gas soil containing 3.37 wt% contamination. The soil has been remediated in a 300 cm3 semi-continuous extraction vessel and the effects of solvent temperature, pressure, and density will be discussed. Supercritical carbon dioxide extraction is an emerging technology that can extract compounds that are difficult or impossible by conventional processes

  12. Carbon dioxide in vascular imaging and intervention

    Angiography with iodinated contrast agents is bound up with the risks of contrast-induced nephrotoxicity and hypersensitivity, which led to the idea of using carbon dioxide (CO2) gas as a negative contrast medium to eliminate these drawbacks. During the last decade, refinements and experiences have proved carbon dioxide digital subtraction angiography (CO2-DSA) to be an accurate, safe, and clinically promising vascular imaging modality, with the advantages of no hypersensitivity and no nephrotoxicity as well as minimal patient discomfort. In this article, we have reviewed the history, physical and chemical aspects, techniques, and pathophysiologic changes with the use of CO2-DSA as well as some clinical trials. Applications of CO2 gas in vascular interventions and other imagings, and the advantages and limitations of using CO2 gas in DSA are also discussed. (orig.)

  13. Carbon dioxide methanation for intensified reactors

    Coronado Martín, Irene


    The present work is related to the development of sustainable energy systems based on the Power-to-Gas concept. The main objective is to utilise renewable hydrogen and carbon dioxide to produce methane for storage in the natural gas infrastructure. Multitubular fixed-bed reactors are established at industrial scale for CO2 methanation. Catalytic pellets commonly loaded in this type of reactor involve poor heat transfer and high pressure drop that lead to inefficient processes. Today, reac...

  14. Plasma beam discharge in carbon dioxide

    The paper deals with the dissociation of carbon dioxide in nonequilibrium plasma of a stationary plasma-beam discharge. Experimental results of spectroscopic and probe measurements of plasma parameters are given. Moreover, a mass-spectrometric analysis of gaseous products of the chemical reactions is presented. In addition the measurement of the deposition rate of solid products by means of a quartz oscillator is described. The results show that plasma beam discharge is an effective tool for inducing plasma-chemical reactions. (author)

  15. Pulsed discharge plasmas in supercritical carbon dioxide

    Kiyan, Tsuyoshi; Uemura, A.; Tanaka, K.; Zhang, C. H.; Namihira, Takao; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Roy, B.C; Sasaki, M.; Goto, M; キヤン, ツヨシ; ナミヒラ, タカオ; サクガワ, タカシ; カツキ, スナオ


    In recent years, several studies about electrical discharge plasma in supercritical carbon dioxide (CO2) have been carried out. One of the unique characteristics of supercritical fluid is a large density fluctuation near the critical point that can result in marked dramatic changes of thermal conductivity. Therefore, the electrical discharge plasma produced in supercritical fluid has unique features and reactions unlike those of normal plasma produced in gas phase. In our experiments, two typ...


    Chen, Sainan


    With the social and economic development, the civil aviation industry of China is experiencing rapid growth. This growth will lead to more CO2 emissions. Carbon dioxide emissions and greenhouse effect are already serious problems especially in China, but also all over the world. Civil aviation has brought environmental pollution in the context of improving social activity and economic growth. Because of civil aviation, the rapid increase of the total amount of air pollutants are also in...

  17. Carbon dioxide in Arctic and subarctic regions

    Gosink, T. A.; Kelley, J. J.


    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  18. Carbon dioxide embolism during laparoscopic sleeve gastrectomy

    Amir Abu Zikry


    Full Text Available Bariatric restrictive and malabsorptive operations are being carried out in most countries laparoscopically. Carbon dioxide or gas embolism has never been reported in obese patients undergoing bariatric surgery. We report a case of carbon dioxide embolism during laparoscopic sleeve gastrectomy (LSG in a young super obese female patient. Early diagnosis and successful management of this complication are discussed. An 18-year-old super obese female patient with enlarged fatty liver underwent LSG under general anesthesia. During initial intra-peritoneal insufflation with CO 2 at high flows through upper left quadrant of the abdomen, she had precipitous fall of end-tidal CO 2 and SaO 2 % accompanied with tachycardia. Early suspicion led to stoppage of further insufflation. Clinical parameters were stabilized after almost 30 min, while the blood gas analysis was restored to normal levels after 1 h. The area of gas entrainment on the damaged liver was recognized by the surgeon and sealed and the surgery was successfully carried out uneventfully. Like any other laparoscopic surgery, carbon dioxide embolism can occur during bariatric laparoscopic surgery also. Caution should be exercised when Veress needle is inserted through upper left quadrant of the abdomen in patients with enlarged liver. A high degree of suspicion and prompt collaboration between the surgeon and anesthetist can lead to complete recovery from this potentially fatal complication.

  19. Carbon-14 measurement using carbon dioxide absorption method - Our experience

    Carbon-C14 measurement using absorption technique consists of direct absorption of sample carbon dioxide into an absorber - scintillator mixture. This technique is a simple, fast, less expensive and less hazardous technique compared to benzene synthesis or any other technique. This techniques enable us in preparing six/seven samples in a day while benzene synthesis technique takes two days for the preparation of one sample. It is useful for radiocarbon age up to about 38,000 a BP (∼1 pMC), which is adequate for most of the hydrological investigations. All the total dissolved inorganic carbon (TDIC) is precipitated as barium carbonate from the ∼60 to 70 liters of water at the site. In the laboratory, it is reacted with orthophosphoric acid to give carbon dioxide (CO2). This carbon dioxide is transferred into 0.5 L capacity cylinder. The reaction and collection of gas is done under vacuum using a glass vacuum line. Carbon dioxide is directly absorbed in 11.5 ml of carbasorb + 11 ml of Permaflour V (commercially not available) or its equivalent scintillator in the specially made absorption apparatus. Since, absorption process is exothermic, temperature of the medium is maintained at about 220 deg. C, it results in the absorption of ∼7 m moles of carbon dioxide per mL of cabasorb. As reaction progresses, bubbles can be seen rising slowly. The end point is marked by rapid rise in the solution level. Carbon dioxide obtained from oxalic acid (Standard) and background carbon dioxide are also absorbed in the same quantity of absorber and scintillator mixture. Samples, standard and background are transferred in 22 mL teflon vials and counted in low level liquid scintillation counter (LKB Wallac 1220 Quantulus) for 1000 minutes. The counting efficiency at best factor of merit (AON/ON/√B) is ∼60 % where AON is normalized net count rate of standard and B is the background count rate. The mean count rate of last fifteen background samples is 0.64 ± .0005 cpm with an

  20. Enzymatic conversion of carbon dioxide.

    Shi, Jiafu; Jiang, Yanjun; Jiang, Zhongyi; Wang, Xueyan; Wang, Xiaoli; Zhang, Shaohua; Han, Pingping; Yang, Chen


    With the continuous increase in fossil fuels consumption and the rapid growth of atmospheric CO2 concentration, the harmonious state between human and nature faces severe challenges. Exploring green and sustainable energy resources and devising efficient methods for CO2 capture, sequestration and utilization are urgently required. Converting CO2 into fuels/chemicals/materials as an indispensable element for CO2 capture, sequestration and utilization may offer a win-win strategy to both decrease the CO2 concentration and achieve the efficient exploitation of carbon resources. Among the current major methods (including chemical, photochemical, electrochemical and enzymatic methods), the enzymatic method, which is inspired by the CO2 metabolic process in cells, offers a green and potent alternative for efficient CO2 conversion due to its superior stereo-specificity and region/chemo-selectivity. Thus, in this tutorial review, we firstly provide a brief background about enzymatic conversion for CO2 capture, sequestration and utilization. Next, we depict six major routes of the CO2 metabolic process in cells, which are taken as the inspiration source for the construction of enzymatic systems in vitro. Next, we focus on the state-of-the-art routes for the catalytic conversion of CO2 by a single enzyme system and by a multienzyme system. Some emerging approaches and materials utilized for constructing single-enzyme/multienzyme systems to enhance the catalytic activity/stability will be highlighted. Finally, a summary about the current advances and the future perspectives of the enzymatic conversion of CO2 will be presented. PMID:26055659


    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang


    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  2. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur

  3. The carbon dioxide thermometer and the cause of global warming

    Carbon dioxide in the air may be increasing because the world is warming. This possibility, which contradicts the hypothesis of an enhanced greenhouse warming driven by manmade emissions, is here pursued in two ways. First, increments in carbon dioxide are treated as readings of a natural thermometer that tracks global and hemispheric temperature deviations, as gauged by meteorologists' thermometers. Calibration of the carbon dioxide thermometer to conventional temperatures then leads to a history of carbon dioxide since 1856 that diverges from the ice-core record. Secondly, the increments of carbon dioxide can also be accounted for, without reference to temperature, by the combined effects of cosmic rays, El Nino and volcanoes. The most durable effect is due to cosmic rays. A solar wind history, used as a long-term proxy for the cosmic rays, gives a carbon dioxide history similar to that inferred from the global temperature deviations. (author)

  4. Model of carbon dioxide assimilation in Chlamydomonas reinhardii

    Spalding, M.H.; Portis, A.R. Jr.


    A simple model of photosynthetic CO/sub 2/ assimilation in Chlamydomonas has been developed in order to evaluate whether a CO/sub 2/-concentrating system could explain the photosynthetic characteristics of this alga (high apparent affinity for CO/sub 2/, low photorespiration, little O/sub 2/ inhibition of photosynthesis, and low CO/sub 2/ compensation concentration). Similarly, the model was developed to evaluate whether the proposed defects in the CO/sub 2/-concentrating system of two Chlamydomonas mutants were consistent with their observed photosynthetic characteristics. The model treats a Chlamydomonas cell as a single compartment with two carbon inputs: passive diffusion of CO/sub 2/, and active transport of HCO/sub 3//sup -/. Internal inorganic carbon was considered to have two potential fates: assimilation to fixed carbon via ribulose 1,5-bisphosphate carboxylase-oxygenase or exiting the cell by either passive CO/sub 2/ diffusion or reversal of HCO/sub 3//sup -/ transport. Published values for kinetic parameters were used where possible. The model accurately reproduced the CO/sub 2/-response curves of photosynthesis for wild-type Chlamydomonas, the two mutants defective in the CO/sub 2/-concentrating system, and a double mutant constructed by crossing these two mutants. The model also predicts steady-state internal inorganic-carbon concentrations in reasonable agreement with measured values in all four cases. Carbon dioxide compensation concentrations for wild-type Chlamydomonas were accurately predicted by the model and those predicted for the mutants were in qualitative agreement with measured values. The model also allowed calculation of approximate energy costs of the CO/sub 2/-concentrating system. These calculations indicate that the system may be no more energy-costly than CO/sub 4/ photosynthesis. 38 references, 4 figures, 4 tables.

  5. Nuclear power and carbon dioxide free automobiles

    Nuclear energy has been developed as a major source of electric power in Canada. Electricity from nuclear energy already avoids the emission of about 100 million tonnes of carbon dioxide to the atmosphere in Canada. This is a significant fraction of the 619 million tonnes of Canadian greenhouse gas emissions in 1995. However, the current scope of application of electricity to end use energy needs in Canada limits the contribution nuclear energy can make to carbon dioxide emission reduction. Nuclear energy can also contribute to carbon dioxide emissions reduction through expansion of the use of electricity to less traditional applications. Transportation, in particular contributed 165 million tonnes of carbon dioxide to the Canadian atmosphere in 1995. Canada's fleet of personal vehicles consisted of 16.9 million cars and light trucks. These vehicles were driven on average 21,000 km/year and generated 91 million tonnes of greenhouse gases expressed as a C02 equivalent. Technology to improve the efficiency of cars is under development which is expected to increase the energy efficiency from the 1995 level of about 10 litres/100 km of gasoline to under 3 litres/100km expressed as an equivalent referenced to the energy content of gasoline. The development of this technology, which may ultimately lead to the practical implementation of hydrogen as a portable source of energy for transportation is reviewed. Fuel supply life cycle greenhouse gas releases for several personal vehicle energy supply systems are then estimated. Very substantial reductions of greenhouse gas emissions are possible due to efficiency improvements and changing to less carbon intensive fuels such as natural gas. C02 emissions from on board natural gas fueled versions of hybrid electric cars would be decreased to approximately 25 million t/year from the current 91 million tonnes/year. The ultimate reduction identified is through the use of hydrogen fuel produced via electricity from CANDU power

  6. Interaction of carbon dioxide with Cu overlayers on Pt(111)

    Schumacher, N.; Andersson, Klas Jerker; Grabow, L.C.;


    Experimental and theoretical studies on the interaction of carbon dioxide with pseudomorphic and rough copper layers deposited on a platinum (111) single crystal are reported. Evidence for carbon dioxide dissociation and carbonate formation is presented and the relevance to methanol synthesis is...


    W.Z.Shen; A.H.Lu; J.T.Zheng


    A mesoporous activated carbon (AC) can be successfully prepared by catalytic activa-tion with carbon dioxide. For iron oxide as catalyst, there were two regions of mesoporesize distribution, i.e. 2-5nm and 30-70nm. When copper oxide or magnesium oxidecoexisted with iron oxide as composite catalyst, the content of pores with sizes of 2-5nm was decreased, while the pores with 30 70nm were increased significantly. Forcomparison, AC reactivated by carbon dioxide directly was also investigated. It wasshown that the size of mesopores of the resulting AC concentrated in 2-5nm with lessvolume. The adsorption of Congo red was tested to evaluate the property of the result-ing AC. Furthermore, the factors affecting pore size distribution and the possibility ofmesopore formation were discussed.

  8. Supercritical carbon dioxide: a solvent like no other

    Jocelyn Peach


    Full Text Available Supercritical carbon dioxide (scCO2 could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs. Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and attempts to enhance scCO2 viscosity.

  9. Supercritical carbon dioxide: a solvent like no other

    Jocelyn Peach; Julian Eastoe


    Supercritical carbon dioxide (scCO2) could be one aspect of a significant and necessary movement towards green chemistry, being a potential replacement for volatile organic compounds (VOCs). Unfortunately, carbon dioxide has a notoriously poor solubilising power and is famously difficult to handle. This review examines attempts and breakthroughs in enhancing the physicochemical properties of carbon dioxide, focusing primarily on factors that impact solubility of polar and ionic species and at...

  10. Carbon dioxide kinetics and capnography during critical care

    Anderson, Cynthia T; Breen, Peter H


    Greater understanding of the pathophysiology of carbon dioxide kinetics during steady and nonsteady state should improve, we believe, clinical care during intensive care treatment. Capnography and the measurement of end-tidal partial pressure of carbon dioxide (PETCO2) will gradually be augmented by relatively new measurement methodology, including the volume of carbon dioxide exhaled per breath (VCO2,br) and average alveolar expired PCO2 (PA̅E̅CO2). Future directions include the study of oxy...

  11. Designed amyloid fibers as materials for selective carbon dioxide capture

    Li, Dan; Furukawa, Hiroyasu; Deng, Hexiang; Liu, Cong; Yaghi, Omar M.; Eisenberg, David S.


    New and improved materials capable of binding carbon dioxide are essential to addressing the global threat of accelerating climate change. The presently used industrial methods for carbon dioxide capture have severe drawbacks, including toxicity and energy inefficiency. Newer porous materials are so far less effective in water, invariably a component of combustion gases. Here, we present a material for carbon dioxide capture. This material, amyloid fibers in powdered form, selectively capture...

  12. Six-fold Coordinated Carbon Dioxide VI

    Iota, V; Yoo, C; Klepeis, J; Jenei, Z


    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent while silicon dioxide (SiO{sub 2}) is a covalent solid, and represents one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of a new extended-solid phase of carbon dioxide (CO{sub 2}): a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50GPa at 530-650K. Together with the previously reported CO{sub 2}-V and a-carbonia, this new extended phase indicates a fundamental similarity between CO{sub 2}--a prototypical molecular solid, and SiO{sub 2}--one of Earth's fundamental building blocks. The phase diagram suggests a limited stability domain for molecular CO{sub 2}-I, and proposes that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III, and IV. The crystal structure of phase VI suggests strong disorder along the caxis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  13. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    Perner, A; Bugge, K; Lyng, K M;


    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically...... insignificant. Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  14. [Determination of carbon dioxide released from soil at different humidities].

    Imshenetskiĭ, A A; Murzakov, B G


    The detection of soil microorganisms by their evolution of carbon dioxide does not always correlate with the number of microorganisms and the rate of biochemical processes in soil. New microbial populations appear in the incubation chamber as the concentration of carbon dioxide increases; this results in an increase in the activity of such processes as photosynthesis, chemosynthesis and heterotrophic assimilation of carbon dioxide. Life detection on other planets by determining carbon dioxide evolved from the ground may lead to erroneous conclusions on the presence of microorganism in the ground. PMID:745559

  15. The carbon dioxide capture and geological storage

    This road-map proposes by the Group Total aims to inform the public on the carbon dioxide capture and geological storage. One possible means of climate change mitigation consists of storing the CO2 generated by the greenhouse gases emission in order to stabilize atmospheric concentrations. This sheet presents the CO2 capture from lage fossil-fueled combustion installations, the three capture techniques and the CO2 transport options, the geological storage of the CO2 and Total commitments in the domain. (A.L.B.)

  16. Nuclear energy significantly reduces carbon dioxide emissions

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  17. Carbon Dioxide Mitigation by Microalgal Photosynthesis

    Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 μg CO2/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8

  18. Carbon dioxide capture and geological storage


    Sustainable Carbon dioxide Capture and Storage, or CCS, can be achieved using geological means, an approach that differs in many ways from CO2 capture and storage in vegetation. Firstly, it differs because this latter approach enables CO2 to be stored only temporarily – for less than one year in annual plants or for several centuries in tree phytomass. Secondly, CO2 capture is associated with bioconversion of the sun’s energy which is then stored in biochemical form in the phytomass. As the t...

  19. Carbon dioxide detection in adult Odonata.

    Piersanti, Silvana; Frati, Francesca; Rebora, Manuela; Salerno, Gianandrea


    The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata. PMID:26831359

  20. Killing wild geese with carbon dioxide or a mixture of carbon dioxide and argon

    Gerritzen, M.A.; Reimert, H.G.M.; Lourens, A.; Bracke, M.B.M.; Verhoeven, M.T.W.


    The killing of animals is the subject of societal and political debate. Wild geese are caught and killed on a regular basis for fauna conservation and damage control. Killing geese with carbon dioxide (CO2) is commonly practiced, but not listed in legislation on the protection of flora and fauna, an

  1. Pharmaceutical applications of supercritical carbon dioxide.

    Kaiser, C S; Römpp, H; Schmidt, P C


    The appearance of a supercritical state was already observed at the beginning of the 19th century. Nevertheless, the industrial extraction of plant and other natural materials started about twenty years ago with the decaffeination of coffee. Today carbon dioxide is the most common gas for supercritical fluid extraction in food and pharmaceutical industry. Since pure supercritical carbon dioxide is a lipophilic solvent, mixtures with organic solvents, especially alcohols, are used to increase the polarity of the extraction fluid; more polar compounds can be extracted in this way. The main fields of interest are the extraction of vegetable oils from plant material in analytical and preparative scale, the preparation of essential oils for food and cosmetic industry and the isolation of substances of pharmaceutical relevance. Progress in research was made by the precise measurement of phase equilibria data by means of different methods. Apart from extraction, supercritical fluid chromatography was introduced in the field of analytics, as well as micro- and nanoparticle formation using supercritical fluids as solvent or antisolvent. This review presents pharmaceutical relevant literature of the last twenty years with special emphasis on extraction of natural materials. PMID:11802652

  2. Carbon dioxide direct cycle modular reactor

    Recently, as the micro gas-turbine power generation is clean for environment and has high convenience, it is focused as a small size dispersion electric source for super markets, hospitals, factories, and so on. And, a modular high temperature gas reactor (PBMR) adopting the gas turbine is also focused recently, and is progressed on its construction in South Africa and reported on construction plan of the Exelon Inc. in U.S.A. PBMR has specific safety for a small size and pebble-bed reactor and also has some characters on low construction cost similar to that of LWR due to simplification and small size module adoption of its plant. The PBMR uses helium for its coolants, of which exit temperature is set for at 900degC to get higher thermal efficiency. This is because of its adoption of Brayton cycle to fast reduce the efficiency with falling temperature. However, as helium is a costly and easy-emission vapor, it is desired to alternate to cheaper and more difficult-emission vapor. Here were introduced on carbon dioxide (CO2) direct cycle using carbon dioxide with extremely higher thermal efficiency than helium and its applicability to nuclear reactors. (G.K.)

  3. Adaptation to carbon dioxide tax in shipping

    This note discusses the consequences for the sea transport sector between Norway and continental Europe of levying a carbon dioxide tax on international bunker. The influence of such a tax on the operational costs of various types of ship and various transport routes is calculated. The profit obtainable from the following ways of adapting to an increased tax level is assessed: (1) Reducing the speed, (2) Rebuilding the engine to decrease fuel consumption, (3) Changing the design speed for new ships. It is found that a carbon dioxide tax of NOK 200 per tonne of CO2 will increase the transport costs by 3 - 15 percent. In the long run much of this may be transferred to the freight rates since so much of the sea transport are in segments in which the demand for the service is not sensitive to the prices. Even if the freight rates are not changed, a tax this size will not make it necessary to reduce the speed of the existing fleet. The income lost by taking fewer trips will exceed the costs saved in reducing the speed. However, the optimum design speed for new ships may be somewhat reduced (0.5 knots). Rebuilding engines to reduce the fuel consumption would pay off were it not for the fact that the remaining life of the present fleet is probably too short for this to be interesting

  4. Use of supercritical carbon dioxide extraction

    Taniguchi, Masayuki (Niigata Univ., Faculty of Engineering, Niigata, (Japan))


    Supercritical fluid extraction is a novel diffusion and separation technique which exploits simultaneously the increase of vapor pressure and the difference of chemical affinities of fluids near the critical point. A solvent which is used as the supercritical fluid has the following features: the critical point exists in the position of relatively ease of handling, the solvent is applicable to the extraction of a physiological active substance of thermal instability. Carbon dioxide as the solvent is non-flammable, non-corrosive, non-toxic, cheap, and readily available of high purity. The results of studies on the use of supercritical carbon dioxide (SC-CO{sub 2}) as a solvent for natural products in the fermentation and food industries, were collected. SC-CO{sub 2} extraction are used in many fields, examples for the application are as follows: removal of organic solvents from antibiotics; extraction of vegetable oils contained in wheat germ oil, high quality mustard seeds, rice bran and so on; brewing of sake using rice and rice-koji; use as a non-aqueous medium for the synthesis of precursors of the Aspartame; and use in sterilization. 66 refs., 17 figs., 21 tabs.

  5. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.


    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10-3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10-7, nO2/nN = 5.39 × 10-5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  6. Porous Carbon Based Solid Adsorbents for Carbon Dioxide Capture

    Travis, W.


    The aim of this project is the design, synthesis and characterisation of porous carbon structures capable of the selective capture of carbon dioxide (CO2) from the exhaust gases of coal and gas post-combustion power stations. In such systems, the fossil fuel is burnt in an air environment producing CO2 as just one of a multi-component flue gas. This flue gas is expected to contain nitrogen and water among other constituents. It is at ambient pressures and temperatures of ≥323 K. Successful ca...

  7. Activation of Carbon Dioxide and Synthesis of Propylene Carbonate


    Cycloaddition of carbon dioxide and propylene oxide to propylene carbonate catalyzed by tetra-tert-butyl metal phthalocyanine in the presence of tributylamine (TBA) shows higher yield than catalyzed by unsubstituted metal phthalocyanine. Comparing different catalysts of diverse metals, (t-Bu)4PcMg is more active than (t-Bu)4PcFe. But (t-Bu)4PcCo and (t-Bu)4PcNi only have low catalytic activities towards the reaction. Moreover, the yield will increase as the temperature increases.

  8. Carbon Dioxide, a Solvent and Synthon for Green Chemistry

    Ballivet-Tkatchenko, D.; Camy, Séverine; Condoret, Jean-Stéphane


    Carbon dioxide is a renewable resource of carbon when we consider the reuse of existing CO2 as a carbon source for producing chemicals. The development of new applications is of major interest from the point of view of carbon dioxide sequestration and within the scope of green chemistry. For example, using CO2 instead of CO or COCl2 for chemical synthesis constitutes an attractive alternative avoiding hazardous and toxic reactants. However, it has the lowest chemical reactivity, which i...

  9. Carbon Dioxide and Global Warming: A Failed Experiment

    Ribeiro, Carla


    Global warming is a current environmental issue that has been linked to an increase in anthropogenic carbon dioxide in the atmosphere. To raise awareness of the problem, various simple experiments have been proposed to demonstrate the effect of carbon dioxide on the planet's temperature. This article describes a similar experiment, which…

  10. Carbon dioxide emission during forest fires ignited by lightning

    Pelc, Magdalena; Osuch, Radoslaw


    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  11. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    Marsh, Gerald E.


    The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  12. Investigating Diffusion and Entropy with Carbon Dioxide-Filled Balloons

    Jadrich, James; Bruxvoort, Crystal


    Fill an ordinary latex balloon with helium gas and you know what to expect. Over the next day or two the volume will decrease noticeably as helium escapes from the balloon. So what happens when a latex balloon is filled with carbon dioxide gas? Surprisingly, carbon dioxide balloons deflate at rates as much as an order of magnitude faster than…

  13. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul

    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  14. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C


    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  15. Balance and forecasts of french carbon dioxide emissions

    This paper strikes the balance of carbon dioxide emissions in France between 1986 and 1991 and gives forecasts till 2010. Since 1986, France has reduced its efforts for energy conservation and air pollution by carbon dioxide begins to growth again in connection with consumption growth in transport area, development of computer and simulation needs

  16. Carbon dioxide capture processes: Simulation, design and sensitivity analysis

    Zaman, Muhammad; Lee, Jay Hyung; Gani, Rafiqul


    Carbon dioxide is the main greenhouse gas and its major source is combustion of fossil fuels for power generation. The objective of this study is to carry out the steady-state sensitivity analysis for chemical absorption of carbon dioxide capture from flue gas using monoethanolamine solvent. First...

  17. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...


    ... AGENCY Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft... draft ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon... occur for all inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas...

  18. New technology for carbon dioxide at high pressure

    Carbon dioxide has long been the nemesis of environmentalists because of its role in global warming, but under just the right conditions-namely, high pressure and high temperature its one of nature's best and most environmentally benign solvents. Decaf-coffee lovers, for instance, benefit from its ability to remove caffeine from coffee beans.During the last few years, carbon dioxide has also made inroads in the dry-cleaning industry, providing a safe cleaning alternative to the chemical perchloroethylene. But it's on the high-tech front that carbon dioxide may make its biggest impact. There are huge opportunities. Scientists have known for more than a century that at 75 times atmospheric pressure and 31 degree centigrade, carbon dioxide goes into and odd state that chemists called supercritical. What's interesting to industry is that supercritical carbon dioxide may be an enabling technology for going to smaller dimensions.(Author)

  19. Adverse effects of the automotive industry on carbon dioxide emissions

    Mpho Bosupeng


    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  20. Photobiological hydrogen production and carbon dioxide sequestration

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  1. Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide.

    Wu, Lipeng; Liu, Qiang; Fleischer, Ivana; Jackstell, Ralf; Beller, Matthias


    Alkene carbonylations represent a major technology for the production of value-added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. Here we show the application of abundantly available carbon dioxide as C1 building block for the alkoxycarbonylations of industrially important olefins in the presence of a convenient and inexpensive ruthenium catalyst system. In our system, carbon dioxide works much better than the traditional combination of carbon monoxide and alcohols. The unprecedented in situ formation of carbon monoxide from carbon dioxide and alcohols permits an efficient synthesis of carboxylic acid esters, which can be used as detergents and polymer-building blocks. Notably, this transformation allows the catalytic formation of C-C bonds with carbon dioxide as C1 source and avoids the use of sensitive and/or expensive reducing agents (for example, Grignard reagents, diethylzinc or triethylaluminum). PMID:24518431

  2. Carbon dioxide problems. Countermeasures to the carbon dioxide problem in hydrocarbon-fired plants

    Among the environmental problems discussed in this paper, global warming and the restriction of CFC are primarily thermal engineering issues. In particular, global warming, likely to be caused by an increase in the atmospheric carbon dioxide concentration, is one of the most essential and urgent environmental problems. In recent international conferences, held for example by UNEP, a proposal was made that carbon dioxide concentration be controlled under its 1898 level. However, this proposal may not be so forceful, since it is not clear whether the control is to be imposed on each country separately or on the developed countries as a whole. The vague content of the proposal may be attributed to the existing international situation, whereby the energy resources available to each country differ substantially

  3. Carbon dioxide emission from bamboo culms.

    Zachariah, E J; Sabulal, B; Nair, D N K; Johnson, A J; Kumar, C S P


    Bamboos are one of the fastest growing plants on Earth, and are widely considered to have high ability to capture and sequester atmospheric carbon, and consequently to mitigate climate change. We tested this hypothesis by measuring carbon dioxide (CO2 ) emissions from bamboo culms and comparing them with their biomass sequestration potential. We analysed diurnal effluxes from Bambusa vulgaris culm surface and gas mixtures inside hollow sections of various bamboos using gas chromatography. Corresponding variations in gas pressure inside the bamboo section and culm surface temperature were measured. SEM micrographs of rhizome and bud portions of bamboo culms were also recorded. We found very high CO2 effluxes from culm surface, nodes and buds of bamboos. Positive gas pressure and very high concentrations of CO2 were observed inside hollow sections of bamboos. The CO2 effluxes observed from bamboos were very high compared to their carbon sequestration potential. Our measurements suggest that bamboos are net emitters of CO2 during their lifespan. PMID:26802362

  4. Global carbon dioxide emissions from inland waters

    Raymond, Peter A.; Hartmann, Jens; Lauerwald, Ronny; Sobek, Sebastian; McDonald, Cory P.; Hoover, Mark; Butman, David; Striegl, Rob; Mayorga, Emilio; Humborg, Christoph; Kortelainen, Pirkko; Durr, Hans H.; Meybeck, Michel; Ciais, Philippe; Guth, Peter


    Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity. We obtain global CO2 evasion rates of 1.8   petagrams of carbon (Pg C) per year from streams and rivers and 0.32  Pg C yr−1 from lakes and reservoirs, where the upper and lower limits are respectively the 5th and 95th confidence interval percentiles. The resulting global evasion rate of 2.1 Pg C yr−1 is higher than previous estimates owing to a larger stream and river evasion rate. Our analysis predicts global hotspots in stream and river evasion, with about 70 per cent of the flux occurring over just 20 per cent of the land surface. The source of inland water CO2 is still not known with certainty and new studies are needed to research the mechanisms controlling CO2 evasion globally.

  5. Miniaturized remission sensor for carbon dioxide detection

    Recently, optical sensors for detection of carbon dioxide (CO2) have been explored for variety of applications in chemistry, industry, and medicine. This paper deals with the development of a planar optical remission sensor employing a dye immobilized in a polymer layer designed for gaseous CO2 detection. The principle of CO2 detection was based on colour changes of Tetraethylammonium Cresol red immobilized in a special composed polymer layer that was irradiated by LED diodes. Absorption properties of the dye were changed due to its chemical reaction with CO2 and corresponding colour changes were detected by PIN diodes. These changes were analyzed by using a PC-controlled board connected by USB. The sensitivity, response time, and the detection limit of the remission sensor were characterized.

  6. Carbon dioxide neutral, integrated biofuel facility

    Powell, E.E.; Hill, G.A. [Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9 (Canada)


    Algae are efficient biocatalysts for both capture and conversion of carbon dioxide in the environment. In earlier work, we have optimized the ability of Chlorella vulgaris to rapidly capture CO{sub 2} from man-made emission sources by varying environmental growth conditions and bioreactor design. Here we demonstrate that a coupled biodiesel-bioethanol facility, using yeast to produce ethanol and photosynthetic algae to produce biodiesel, can result in an integrated, economical, large-scale process for biofuel production. Each bioreactor acts as an electrode for a coupled complete microbial fuel cell system; the integrated cultures produce electricity that is consumed as an energy source within the process. Finally, both the produced yeast and spent algae biomass can be used as added value byproducts in the feed or food industries. Using cost and revenue estimations, an IRR of up to 25% is calculated using a 5 year project lifespan. (author)

  7. Carbon dioxide (CO2) angiography in children

    Background. When iodinated contrast material is contraindicated, carbon dioxide (CO2) gas can be injected intravascularly to produce high-quality digital subtraction angiograms. Objective. CO2 angiography, although previously described in adults, has never before been reported in children. Materials and methods. We present three children with renal transplants who required renal angiography. Because of elevated creatinine levels, iodinated contrast was not used to search for possible renal artery stenosis. Instead, CO2 angiography was used to evaluate the renal artery anastomosis. Results. In all three cases, the renal artery anastomosis was clearly visualized using CO2 angiography and showed no evidence of renal artery stenosis. Conclusion. Digital CO2 angiography is an effective method for pediatric renal angiography. The technique can easily be adapted for virtually any angiographic laboratory capable of digital subtraction imaging. Digital CO2 angiography also lacks the risks of a conventional iodinated contrast medium, namely nephrotoxicity, allergic reaction and volume overload. (orig.). With 1 fig

  8. Carbon dioxide removal with inorganic membranes

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)


    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  9. The Fluid Mechanics of Carbon Dioxide Sequestration

    Huppert, Herbert E.; Neufeld, Jerome A.


    Humans are faced with a potentially disastrous global problem owing to the current emission of 32 gigatonnes of carbon dioxide (CO2) annually into the atmosphere. A possible way to mitigate the effects is to store CO2 in large porous reservoirs within the Earth. Fluid mechanics plays a key role in determining both the feasibility and risks involved in this geological sequestration. We review current research efforts looking at the propagation of CO2 within the subsurface, the possible rates of leakage, the mechanisms that act to stably trap CO2, and the geomechanical response of the crust to large-scale CO2 injection. We conclude with an outline for future research.

  10. Biochemical Capture and Removal of Carbon Dioxide

    Trachtenberg, Michael C.


    We devised an enzyme-based facilitated transport membrane bioreactor system to selectively remove carbon dioxide (CO2) from the space station environment. We developed and expressed site-directed enzyme mutants for CO2 capture. Enzyme kinetics showed the mutants to be almost identical to the wild type save at higher pH. Both native enzyme and mutant enzymes were immobilized to different supports including nylons, glasses, sepharose, methacrylate, titanium and nickel. Mutant enzyme could be attached and removed from metal ligand supports and the supports reused at least five times. Membrane systems were constructed to test CO2 selectivity. These included proteic membranes, thin liquid films and enzyme-immobilized teflon membranes. Selectivity ratios of more than 200:1 were obtained for CO2 versus oxygen with CO2 at 0.1%. The data indicate that a membrane based bioreactor can be constructed which could bring CO2 levels close to Earth.

  11. Thermodynamical effects during carbon dioxide release

    Singh, A. K.; Böttcher, N.; Görke, U.-J.; Kolditz, O.


    Pruess [1] investigated the risk of carbon dioxide leakage from shallow storage sites by modeling scenarios. Such a fluid release is associated with mechanical work performed by formation fluid against expansion without taking heat from ambient environment. Understanding of heat related to mechanical work is essential to predict the temperature at the leak. According to the first law of thermodynamics, internal energy of working fluid decreases with an amount which is equivalent to this work hence, working fluid lost its own heat. Such kind of heat loss depends strongly on whether the expansion process is adiabatic or isothermal. Isothermal expansion allows the working fluid to interact thermally with the solid matrix. Adiabatic expansion is an isenthalpic process that takes heat from the working fluid and the ambient environment remains unchanged. This work is part of the CLEAN research project [6]. In this study, thermodynamic effects of mechanical work during eventual carbon dioxide leakage are investigated numerically. In particular, we are interested to detect the temperature at leakage scenarios and its deviation with different thermodynamic processes. Finite element simulation is conducted with a two-dimensional rectangular geometry representing a shallow storage site which bottom was located at -300m below the land surface. A fully saturated porous medium is assumed where the pore space is filled completely with carbon dioxide. Carbon dioxide accumulated in the secondary trap at 30 Bar and 24 °C is allowed to leak from top right point of rectangle with atmospheric pressure. With (i) adiabatic and (ii) isothermal compressibility factors, temperature around leakage area has been calculated which show a significant difference. With some simplification, this study detects leak temperature which is very close with [1]. Temporal evaluation at the leaky area shows that the working fluid temperature can be reduced to -20 °C when the leakage scenario is performed

  12. Carbon dioxide and the radiation budget

    This chapter addresses the radiative forcing of the Earth-atmosphere system caused by an increase in carbon dioxide (CO2) levels that can lead to climate change. The importance of the Earth's radiation budget is described, and the radiative properties of CO2 and other radiatively important gases are presented. Methods of computing gaseous absorption and their accuracy are discussed. Components of the radiation budget (solar and longwave) are described along with the effect of variations in CO2 concentration. Because aerosols and clouds also have important radiative properties, the effects of changes in aerosol and cloud amounts are also discussed. The purpose of this chapter is to provide an overview of the radiative effects of CO2 and other atmospheric constituents that are important in determining the potential climatic effects of changes in atmospheric composition

  13. Stationary plume induced by carbon dioxide dissolution

    In this paper, laminar convection flows induced by carbon dioxide absorption are addressed from experimental, numerical and theoretical points of view. A vertical glass tube (of centimetre scale) filled with distilled water is subjected to a sudden increase in the partial pressure of carbon dioxide. As a result of the diffusion of the gas into the unsaturated solution, a thin layer of fluid located underneath the surface becomes heavier. This initial density gradient first destabilizes to form a plume, which goes downwards through the entire cell. After a first transient pulsating regime (periodic succession of such Rayleigh-Benard plumes), a stationary flow settles in the tube, which is maintained by the constant supply of gas at the surface. At late stages, this stationary regime is followed by an aperiodic regime, which lasts until the complete saturation of the solution (thermodynamic equilibrium). The present study only focuses on the stationary regime, whose characteristics appear to be almost independent of the Bond number and the aspect ratio but strongly dependent on the chemical Rayleigh number. Three decades of Rayleigh numbers are explored using particle image velocimetry measurements, which allows for a precise determination of the scaling exponents for the vertical velocity amplitude and the plume width. The assumption that gravity and a constant pressure gradient balance the viscous effects enables us to derive an analytic expression for the stationary vertical velocity on the axis, which scales as Ra2/3 (ln Ra)1/3. As a consequence, the width of the plume scales as Ra-1/6 (ln Ra)-1/3 and the mass Nusselt number as (Ra= ln Ra)1/3. These scalings are in excellent agreement with the experimental and numerical results. The multiplicative constants of these scalings can also be calculated and show a fairly good agreement if a rigid boundary condition (no-slip) is assumed at the free surface. (authors)

  14. Six-fold coordinated carbon dioxide VI

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae (LLNL)


    Under standard conditions, carbon dioxide (CO{sub 2}) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO{sub 2}) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO{sub 2} transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO{sub 2} tridymite. Here, we present the discovery of an extended-solid phase of CO{sub 2}: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO{sub 2}-II above 50 GPa at 530-650 K. Together with the previously reported CO{sub 2}-V and a-carbonia, this extended phase indicates a fundamental similarity between CO{sub 2} (a prototypical molecular solid) and SiO{sub 2} (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO{sub 2}-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II, III and IV. The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P4{sub 2}/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp{sup 3} hybridization.

  15. Six-fold coordinated carbon dioxide VI.

    Iota, Valentin; Yoo, Choong-Shik; Klepeis, Jae-Hyun; Jenei, Zsolt; Evans, William; Cynn, Hyunchae


    Under standard conditions, carbon dioxide (CO2) is a simple molecular gas and an important atmospheric constituent, whereas silicon dioxide (SiO2) is a covalent solid, and one of the fundamental minerals of the planet. The remarkable dissimilarity between these two group IV oxides is diminished at higher pressures and temperatures as CO2 transforms to a series of solid phases, from simple molecular to a fully covalent extended-solid V, structurally analogous to SiO2 tridymite. Here, we present the discovery of an extended-solid phase of CO2: a six-fold coordinated stishovite-like phase VI, obtained by isothermal compression of associated CO2-II (refs 1,2) above 50 GPa at 530-650 K. Together with the previously reported CO2-V (refs 3-5) and a-carbonia, this extended phase indicates a fundamental similarity between CO2 (a prototypical molecular solid) and SiO2 (one of Earth's fundamental building blocks). We present a phase diagram with a limited stability domain for molecular CO2-I, and suggest that the conversion to extended-network solids above 40-50 GPa occurs via intermediate phases II (refs 1,2), III (refs 7,8) and IV (refs 9,10). The crystal structure of phase VI suggests strong disorder along the c axis in stishovite-like P42/mnm, with carbon atoms manifesting an average six-fold coordination within the framework of sp3 hybridization. PMID:17160005

  16. Does carbon dioxide pool or stream in the subsurface?

    Cardoso, Silvana S S


    Pools of carbon dioxide are found in natural geological accumulations and in engineered storage in saline aquifers. It has been thought that once this CO2 dissolves in the formation water, making it denser, convection streams would transport it efficiently to depth, but this may not be so. Here, we assess the impact of natural chemical reactions between the dissolved CO2 and the rock formation on the convection streams in the subsurface. We show that, while in carbonate rocks the streaming of dissolved carbon dioxide persists, the chemical interactions in silicate-rich rocks may curb this transport drastically and even inhibit it altogether. New laboratory experiments confirm the curtailing of convection by reaction. Wide and narrow streams of dense carbon-rich water are shut-off gradually as reaction strength increases until all transport of the pooled carbon dioxide occurs by slow molecular diffusion. These results show that the complex fluid dynamic and kinetic interactions between pooled carbon dioxide an...

  17. Estimated Carbon Dioxide Emissions in 2008: United States

    Smith, C A; Simon, A J; Belles, R D


    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart ( LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS

  18. Measurement of carbon dioxide diffusion coefficient of concrete

    Villain, G.; PAVOINE, A; Thiery, M.


    The carbonation of concrete is a chemical reaction, which can be at the origin of the premature degradation of reinforced concrete structures. In order to predict service life of reinforced concrete structures, many models based on gas diffusion were developed. The carbon dioxide diffusion coefficient of concrete is thus a significant input datum for these models. The objective of this article is to present a simple reliable testing method to quantify the carbon dioxide diffusion coefficient ...

  19. Comparative study of solvent properties for carbon dioxide absorption

    Aschenbrenner, O.; Styring, P. [University of Sheffield, Sheffield (United Kingdom)


    Several inexpensive and non-toxic solvents with low vapour pressures were investigated for their suitability as alternative solvents for the absorption of carbon dioxide from flue gas. The solvents include poly(ethylene glycol)s, poly(ethylene glycol) ethers, poly(ethylenimine) and glycerol-based substances. Solvent properties such as thermal stability, solubility of carbon dioxide and selectivity over nitrogen were investigated in a systematic study using a thermogravimetric analyser. Absorption results are reported for pure carbon dioxide and nitrogen as well as a mixture of both gases. Desorption and long-term sorption behaviour are also discussed. Glycerol and poly(ethylene glycol)s show a high solubility of carbon dioxide. Due to the high viscosity of the solvent, carbon dioxide absorption in poly(ethylenimine) is very slow in spite of the presence of favourable amine groups. PEG 300 was found to be the best solvent in this study and shows a high carbon dioxide solubility as well as good selectivity over nitrogen. The advantages of high stability, low solvent loss and low desorption energy of PEG 300 may outweigh its lower absorption capacity compared to the state-of-the-art solvent monoethanolamine, making it a potentially advantageous solvent for industrial carbon dioxide absorption processes.

  20. Modeling and calculation of open carbon dioxide refrigeration system

    Highlights: • A model of open refrigeration system is developed. • The state of CO2 has great effect on Refrigeration capacity loss by heat transfer. • Refrigeration capacity loss by remaining CO2 has little relation to the state of CO2. • Calculation results are in agreement with the test results. - Abstract: Based on the analysis of the properties of carbon dioxide, an open carbon dioxide refrigeration system is proposed, which is responsible for the situation without external electricity unit. A model of open refrigeration system is developed, and the relationship between the storage environment of carbon dioxide and refrigeration capacity is conducted. Meanwhile, a test platform is developed to simulation the performance of the open carbon dioxide refrigeration system. By comparing the theoretical calculations and the experimental results, several conclusions are obtained as follows: refrigeration capacity loss by heat transfer in supercritical state is much more than that in two-phase region and the refrigeration capacity loss by remaining carbon dioxide has little relation to the state of carbon dioxide. The results will be helpful to the use of open carbon dioxide refrigeration

  1. The Formation of Ethane from Carbon Dioxide under Cold Plasma


    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane,carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  2. Forest management techniques for carbon dioxide storage

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)


    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  3. Carbon dioxide warming of the early Earth

    Arrhenius, G.


    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.


    David A. Green; Thomas Nelson; Brian S. Turk; Paul Box; Weijiong Li; Raghubir P. Gupta


    This report describes research conducted between April 1, 2005 and June 30, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas from coal combustion and synthesis gas from coal gasification. Supported sodium carbonate sorbents removed up to 76% of the carbon dioxide from simulated flue gas in a downflow cocurrent flow reactor system, with an approximate 15 second gas-solid contact time. This reaction proceeds at temperatures as low as 25 C. Lithium silicate sorbents remove carbon dioxide from high temperature simulated flue gas and simulated synthesis gas. Both sorbent types can be thermally regenerated and reused. The lithium silicate sorbent was tested in a thermogravimetric analyzer and in a 1-in quartz reactor at atmospheric pressure; tests were also conducted at elevated pressure in a 2-in diameter high temperature high pressure reactor system. The lithium sorbent reacts rapidly with carbon dioxide in flue gas at 350-500 C to absorb about 10% of the sorbent weight, then continues to react at a lower rate. The sorbent can be essentially completely regenerated at temperatures above 600 C and reused. In atmospheric pressure tests with synthesis gas of 10% initial carbon dioxide content, the sorbent removed over 90% of the carbon dioxide. An economic analysis of a downflow absorption process for removal of carbon dioxide from flue gas with a supported sodium carbonate sorbent suggests that a 90% efficient carbon dioxide capture system installed at a 500 MW{sub e} generating plant would have an incremental capital cost of $35 million ($91/kWe, assuming 20 percent for contingencies) and an operating cost of $0.0046/kWh. Assuming capital costs of $1,000/kW for a 500 MWe plant the capital cost of the down flow absorption process represents a less than 10% increase, thus meeting DOE goals as set forth in its Carbon Sequestration Technology Roadmap and Program Plan.

  5. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    Hagedorn, Norman H. (Inventor)


    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  6. Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide


    The coupling reaction of carbon dioxide with epoxides was investigated using naturally occurring α-amino acids as the catalyst in supercritical carbon dioxide and it was found that L-histidine is the most active catalyst.In the presence of 0.8 mol% of L-histidine at 130°C under 8 MPa of CO2,the reaction of carbon dioxide with epoxides proceeded smoothly,affording corresponding cyclic carbonates in good to excellent yields.


    David A. Green; Thomas Nelson; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta


    This report describes research conducted between January 1, 2005 and March 31, 2005 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Engineered sorbents composed of sodium carbonate on a ceramic support were tested in a laboratory fluidized bed reactor system and found to be capable of essentially complete removal of carbon dioxide at 60 C in a short residence time. Upon breakthrough the sorbents can be thermally regenerated to recover essentially all of the absorbed carbon dioxide. An optimized supported sorbent tested in a pilot-scale entrained bed absorber retained its reactivity in multicycle tests and experienced no attrition. Removal of >90% of carbon dioxide in simulated flue gas was achieved in an entrained bed reactor.

  8. Energy and carbon dioxide implications of building construction

    Buchanan, A.H. (Canterbury Univ., Christchurch (New Zealand)); Honey, B.G. (Canterbury Univ., Christchurch (New Zealand))


    This paper investigates the amount of energy required to construct buildings, and the resulting carbon dioxide emissions to the atmosphere from the fossil fuel components of that energy. Energy requirements and carbon dioxide emissions are compared for typical commercial, industrial and residential buildings, using New Zealand as an example. A modest change from concrete and steel to more wood construction could lead to a substantial reduction in energy requirements and carbon dioxide emissions, but the sustainability of such a change has significant forestry implications. (orig.)

  9. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    Kwak, Hyoung S.; Uhm, Han S.; Yong C. Hong; Eun H. Choi


    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study o...

  10. Production and emission of methane and carbon dioxide by ruminants

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  11. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.;


    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... delayed for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic...

  12. Carbon dioxide fluid-flow modeling and injectivity calculations

    Burke, Lauri


    At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.

  13. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    Ryan, David; Golomb, Dan; Shi, Guang; Shih, Cherry; Lewczuk, Rob; Miksch, Joshua; Manmode, Rahul; Mulagapati, Srihariraju; Malepati, Chetankurmar


    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  14. Understanding how individuals perceive carbon dioxide. Implications for acceptance of carbon dioxide capture and storage

    Itaoka, K.; Saito, A. [Mizuho Information and Research Institute, Tokyo (Japan); Paukovic, M.; De Best-Waldhober, M. [ECN Policy Studies, Petten (Netherlands); Dowd, A.M.; Jeanneret, T.; Ashworth, P.; James, M. [The Global CCS Institute, Canberra (Australia)


    Carbon dioxide capture and storage (CCS) presents one potential technological solution for mitigating the atmospheric emission of carbon dioxide sources. However, CCS is a relatively new technology with associated uncertainties and perceived risks. For this reason, a growing body of research now focuses on public perceptions and potential for societal acceptance of CCS technology. Almost all explanations of CCS technology make reference to carbon dioxide, with an assumption that the general public understands CO2. It has become apparent that the general public’s knowledge and understanding of CO2’s properties influences how they engage with CO2 emitting industries and CCS technologies. However, surprisingly little research has investigated public perceptions, knowledge, and understanding of CO2. This investigation attempts to fill that gap. This report describes an investigation of how citizens of three countries (Japan, Australia, and the Netherlands) perceive CO2. Furthermore, it attempts to relate individual perceptions of CO2 to perceptions of CCS, and to determine how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards low carbon energy options, particularly CCS. In brief, the research had four ultimate aims. It aimed to: Explore the public’s knowledge and understanding of the properties of CO2; Examine the influence of that knowledge on their perceptions of CO2 and CCS; Investigate how information provision about the underlying properties and characteristics of CO2 influences individual attitudes towards CCS; and Identify if any differences between countries exist in relation to values and beliefs, knowledge of CO2’s properties, and CCS perceptions.

  15. Synthesis of dimethyl carbonate in supercritical carbon dioxide

    D. Ballivet-Tkatchenko


    Full Text Available The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH32 , and [n-Bu2(CH3OSn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.

  16. Membranes for separation of carbon dioxide

    Ku, Anthony Yu-Chung (Rexford, NY); Ruud, James Anthony (Delmar, NY); Ramaswamy, Vidya (Niskayuna, NY); Willson, Patrick Daniel (Latham, NY); Gao, Yan (Niskayuna, NY)


    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  17. Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops

    Schindler, D.W.; Brunskill, G.J.; Emerson, S.; Broecker, W.S.; Peng, T.H.


    The rate of invasion of carbon dioxide into an artificially eutrophic Canadian Shield Lake with insuffient internal sources of carbon was determined by two methods: Measuring the carbon:nitrogen:phosphorus ratios of seston after weekly additions of nitrogen and phosphorus, and measuring the loss of radon-/sup 222/ tracer from the epilimnion. Both methods gave an invasion rate of about 0.2 gram of carbon per square meter per day. The results demonstrate that invasion of atmospheric carbon dioxide may be sufficient to permit eutrophication of any body of water receiving an adequate supply of phosphorus and nitrogen.

  18. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water

    Heng, Kevin


    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres. We construct analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios (from 0.1 to 100), we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if th...

  19. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Aines, Roger D.; Bourcier, William L.


    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  20. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Aines, Roger D.; Bourcier, William L.


    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  1. Past explosive outbursts of entrapped carbon dioxide in salt mines provide a new perspective on the hazards of carbon dioxide

    Hedlund, Frank Huess


    This paper reports on a source of past carbon dioxide accidents which so far has only been sporadically mentioned in the literature. Violent and highly destructive outbursts of hundreds of tons of CO2 occurred regularly, if not routinely, in the now closed salt mines of the former DDR. The...... Menzengraben mine experienced an extreme outburst in 1953, possibly involving a several thousand tons of carbon dioxide. This source of accidents fills an important gap in the available carbon dioxide accident history and may provide a unique empirical perspective on the hazards of handling very large amounts...

  2. 49 CFR 195.4 - Compatibility necessary for transportation of hazardous liquids or carbon dioxide.


    ... hazardous liquids or carbon dioxide. 195.4 Section 195.4 Transportation Other Regulations Relating to... necessary for transportation of hazardous liquids or carbon dioxide. No person may transport any hazardous liquid or carbon dioxide unless the hazardous liquid or carbon dioxide is chemically compatible with...

  3. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide


    ... Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register / Vol. 75 , No. 230 / Wednesday, December 1... sequestration of carbon dioxide and all other facilities that conduct injection of carbon dioxide. This rule... may determine''). These regulations will affect owners or operators of carbon dioxide (CO...

  4. Amazon river carbon dioxide outgassing fuelled by wetlands

    Abril, G.; Martinez, J M; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M. F.; Vidal, L.; Meziane, T.; Kim, J. -H.; Bernardes, M. C.; Savoye, N.; Deborde, J; Souza, E.L.; Alberic, P; de Souza, M.F.L.; Roland, F.


    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems(2). It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream ...

  5. The oxygen and carbon dioxide balance in the earth's atmosphere

    Johnson, F. S.


    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  6. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide Project

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  7. Precision remote sensor for oxygen and carbon dioxide Project

    National Aeronautics and Space Administration — Mesa Photonics proposes development of a passive optical sensor for simultaneous high-precision measurement of oxygen and carbon dioxide profiles within the full...

  8. Monthly Carbon Dioxide in Troposphere (AIRS on AQUA)

    National Aeronautics and Space Administration — Carbon dioxide (CO2) is an important greenhouse gas released through natural processes such as respiration and volcano eruptions and through huma activities such as...

  9. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    National Aeronautics and Space Administration — There is a growing need to develop improved technologies for precise airborne measurements of carbon dioxide, CO2. CO2 measurements are of great importance to many...

  10. Carbon dioxide and nitrous oxide in the North Indian Ocean

    DileepKumar, M.; Naqvi, S.W.A.; Jayakumar, D.A.; George, M.D.; Narvekar, P.V.; DeSousa, S.N.

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  11. Use of the electrosurgical unit in a carbon dioxide atmosphere.

    Culp, William C; Kimbrough, Bradly A; Luna, Sarah; Maguddayao, Aris J; Eidson, Jack L; Paolino, David V


    The electrosurgical unit (ESU) utilizes an electrical discharge to cut and coagulate tissue and is often held above the surgical site, causing a spark to form. The voltage at which the spark is created, termed the breakdown voltage, is governed by the surrounding gaseous environment. Surgeons are now utilizing the ESU laparoscopically with carbon dioxide insufflation, potentially altering ESU operating characteristics. This study examines the clinical implications of altering gas composition by measuring the spark gap distance as a marker of breakdown voltage and use of the ESU on a biologic model, both in room air and carbon dioxide. Paschen's Law predicted a 35% decrease in gap distance in carbon dioxide, while testing revealed an average drop of 37-47% as compared to air. However, surgical model testing revealed no perceivable clinical difference. Electrosurgery can be performed in carbon dioxide environments, although surgeons should be aware of potentially altered ESU performance. PMID:26745650

  12. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms

    Raven, John A.; Beardall, J.; Giordano, Mario


    Roč. 121, 2-3 (2014), s. 111-124. ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : carbon dioxide * environmental change * radiation Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  13. Miniature Carbon Dioxide Sensor for Small Unmanned Aircraft Systems Project

    National Aeronautics and Space Administration — Phase 1 has seen the development of a revolutionary new type of sensor for making carbon dioxide (CO2) measurements from small Unmanned Aircraft Systems (UAS) and...

  14. Separation of carbon dioxide from flue emissions using Endex principles

    Ball, R


    In an Endex reactor endothermic and exothermic reactions are directly thermally coupled and kinetically matched to achieve intrinsic thermal stability, efficient conversion, autothermal operation, and minimal heat losses. Applied to the problem of in-line carbon dioxide separation from flue gas, Endex principles hold out the promise of effecting a carbon dioxide capture technology of unprecedented economic viability. In this work we describe an Endex Calcium Looping reactor, in which heat released by chemisorption of carbon dioxide onto calcium oxide is used directly to drive the reverse reaction, yielding a pure stream of carbon dioxide for compression and geosequestration. In this initial study we model the proposed reactor as a continuous-flow dynamical system in the well-stirred limit, compute the steady states and analyse their stability properties over the operating parameter space, flag potential design and operational challenges, and suggest an optimum regime for effective operation.

  15. Effects of carbon dioxide on laryngeal receptors

    Anderson, J.W.; Sant' Ambrogio, F.B.; Orani, G.P.; Sant' Ambrogio, G.; Mathew, O.P. (Univ. of Texas, Galveston (United States))


    Carbon dioxide (CO{sub 2}) either stimulates or inhibits laryngeal receptors in the cat. The aim of this study was to correlate the CO{sub 2} response of laryngeal receptors with their response to other known stimuli (i.e. pressure, movement, cold, water and smoke). Single unit action potentials were recorded from fibers in the superior laryngeal nerve of 5 anesthetized, spontaneously breathing dogs together with CO{sub 2} concentration, esophageal and subglottic pressure. Constant streams of warm, humidified air or 10% CO{sub 2} in O{sub 2} were passed through the functionally isolated upper airway for 60 s. Eight of 13 randomly firing or silent receptors were stimulated by CO{sub 2} (from 0.4{plus minus}0.1 to 1.8{plus minus}0.4 imp.s). These non-respiratory-modulated receptors were more strongly stimulated by solutions lacking Cl{sup {minus}} and/or cigarette smoke. Six of 21 respiratory modulated receptors (responding to pressure and/or laryngeal motion) were either inhibited or stimulated by CO{sub 2}. Our results show that no laryngeal receptor responds only to CO{sub 2}. Silent or randomly active receptors were stimulated most often by CO{sub 2} consistent with the reflex effect of CO{sub 2} in the larynx.

  16. Carbon dioxide removal in gas treating processes

    Lidal, H.


    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO{sub 2} in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140{sup o}C, for CO{sub 2} loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO{sub 2} into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO{sub 2} in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO{sub 2}/TEG/MEA system for estimation of CO{sub 2} partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs.

  17. Carbon dioxide removal in gas treating processes

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO2 in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140oC, for CO2 loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO2 into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO2 in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO2/TEG/MEA system for estimation of CO2 partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs

  18. Low-temperature data for carbon dioxide

    Azreg-Aïnou, Mustapha


    We investigate the empirical data for the vapor pressure (154$ \\leq$$T$$\\leq$196 K) and heat capacity (15.52$ \\leq$$T$$\\leq$189.78 K) of the solid carbon dioxide. The approach is both theoretical and numerical, using a computer algebra system (CAS). From the latter point of view, we have adopted a cubic piecewise polynomial representation for the heat capacity and reached an excellent agreement between the available empirical data and the evaluated one. Furthermore, we have obtained values for the vapor pressure and heat of sublimation at temperatures below 195 right down to 0 K. The key prerequisites are the: 1) Determination of the heat of sublimation of 26250 J$\\cdot$mol\\textsuperscript{-1} at vanishing temperature and 2) Elaboration of a `linearized' vapor pressure equation that includes all the relevant properties of the gaseous and solid phases. It is shown that: 1) The empirical vapor pressure equation derived by Giauque & Egan remains valid below the assumed lower limit of 154 K (similar argument ...

  19. Euthanasia of neonatal mice with carbon dioxide

    Pritchett, K.; Corrow, D.; Stockwell, J.; Smith, A.


    Exposure to carbon dioxide (CO2) is the most prevalent method used to euthanize rodents in biomedical research. The purpose of this study was to determine the time of CO2 exposure required to euthanize neonatal mice (0 to 10 days old). Multiple groups of mice were exposed to 100% CO 2 for time periods between 5 and 60 min. Mice were placed in room air for 10 or 20 min after CO2 exposure, to allow for the chance of recovery. If mice recovered at one time point, a longer exposure was examined. Inbred and outbred mice were compared. Results of the study indicated that time to death varied with the age of the animals and could be as long as 50 min on the day of birth and differed between inbred and outbred mice. Institutions euthanizing neonatal mice with CO2 may wish to adjust their CO 2 exposure time periods according the age of the mice and their genetic background. Copyright 2005 by the American Association for Laboratory Animal Science.

  20. Carbon Dioxide Angiography: Scientific Principles and Practice.

    Cho, Kyung Jae


    Carbon dioxide (CO2) is a colorless, odorless gas which occurs naturally in the atmosphere and human body. With the advent of digital subtraction angiography, the gas has been used as a safe and useful alternative contrast agent in both arteriography and venography. Because of its lack of renal toxicity and allergic potential, CO2 is a preferred contrast agent in patients with renal failure or contrast allergy, and particularly in patients who require large volumes of contrast medium for complex endovascular procedures. Understanding of the unique physical properties of CO2 (high solubility, low viscosity, buoyancy, and compressibility) is essential in obtaining a successful CO2 angiogram and in guiding endovascular intervention. Unlike iodinated contrast material, CO2 displaces the blood and produces a negative contrast for digital subtraction imaging. Indications for use of CO2 as a contrast agent include: aortography and runoff, detection of bleeding, renal transplant arteriography, portal vein visualization with wedged hepatic venous injection, venography, arterial and venous interventions, and endovascular aneurysm repair. CO2 should not be used in the thoracic aorta, the coronary artery, and cerebral circulation. Exploitation of CO2 properties, avoidance of air contamination and facile catheterization technique are important to the safe and effective performance of CO2 angiography and CO2-guided endovascular intervention. PMID:26509137

  1. Carbon dioxide balneotherapy and cardiovascular disease

    Pagourelias, Efstathios D.; Zorou, Paraskevi G.; Tsaligopoulos, Miltiadis; Athyros, Vasilis G.; Karagiannis, Asterios; Efthimiadis, Georgios K.


    Carbon dioxide (CO2) balneotherapy is a kind of remedy with a wide spectrum of applications which have been used since the Middle Ages. However, its potential use as an adjuvant therapeutic option in patients with cardiovascular disease is not yet fully clarified. We performed a thorough review of MEDLINE Database, EMBASE, ISI WEB of Knowledge, COCHRANE database and sites funded by balneotherapy centers across Europe in order to recognize relevant studies and aggregate evidence supporting the use of CO2 baths in various cardiovascular diseases. The three main effects of CO2 hydrotherapy during whole body or partial immersion, including decline in core temperature, an increase in cutaneous blood flow, and an elevation of the score on thermal sensation, are analyzed on a pathophysiology basis. Additionally, the indications and contra-indications of the method are presented in an evidence-based way, while the need for new methodologically sufficient studies examining the use of CO2 baths in other cardiovascular substrates is discussed.

  2. Carbon dioxide sequestration by mineral carbonation. Literature Review

    In order to prevent CO2 concentrations in the atmosphere rising to unacceptable levels, carbon dioxide can be separated from the flue gas of, for example, a power plant and subsequently sequestrated. Various technologies for carbon dioxide sequestration have been proposed, such as storage in depleted gas fields, oceans and aquifers. An alternative sequestration route is the so-called 'mineral CO2 sequestration' route in which CO2 is chemically stored in solid carbonates by the carbonation of minerals. As mineral feedstock, rocks that are rich in alkaline earth silicates can be used. Examples are olivine (MgSiO4) and wollastonite (CaSiO3). Mineral CO2 sequestration has some fundamental advantages compared to other sequestration routes. The formed products are thermodynamically stable and therefore the sequestration of CO2 is permanent and safe. Furthermore, the sequestration capacity is large because large suitable feedstock deposits are available worldwide. Finally, the carbonation reactions are exothermic and occur spontaneously in nature. The reaction rates of the process at atmospheric conditions, however, are much too slow for an industrial process. Therefore, research focuses on increasing the reaction rate in order to obtain an industrial viable process. Optimisation of the process conditions is constrained by the thermodynamics of the process. Increasing the temperature and CO2 pressure accelerates the reaction rate, but gaseous CO2 is favoured over mineral carbonates at high temperatures. Using water or another solvent to extract the reactive component from the matrix accelerates the process. Pre-treatment of the mineral by size reduction and thermal or mechanical activation and optimisation of the solution chemistry result in major improvements of the reaction rate. During recent years, laboratory-scale experiments have shown major improvements of the conversion rates by developing various process routes and optimising process conditions. The most

  3. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Aines, Roger D.; Bourcier, William L.; Viani, Brian


    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  4. Economic Growth, Carbon Dioxide Emissions, Renewable Energy and Globalization

    Nuno Carlos LEITÃO


    This article investigates the correlation between economic growth, carbon dioxide emissions, renewable energy and globalization for the period 1970-2010, using time series (OLS,GMM, unit root test, VEC model, and Granger causality) to Portuguese economy. OLS estimator and GMM model demonstrate that carbon dioxide emissions and renewable energy are positively correlated with economic growth. The econometric models also show that the overall index of globalization has a positive effect...

  5. A simple, disposable end-tidal carbon dioxide detector.

    Rosenberg, M; Block, C. S.


    Detection of expired carbon dioxide is one of the most reliable methods of avoiding accidental esophageal intubation. Although capnography has become a standard monitoring technique in the hospital operating room, it is rarely available in the office setting or other arenas where emergency endotracheal intubation may be required. A new and inexpensive device, however, has been developed for assessing end-tidal carbon dioxide. This semi-quantitative detector fits between the endotracheal tube ...

  6. Seawater pH and Anthropogenic Carbon Dioxide

    Marsh, Gerald E


    In 2005, the Royal Society published a report titled "Ocean acidification due to increasing atmospheric carbon dioxide". The report's principal conclusion-that average ocean pH could decrease by 0.5 units by 2100-is demonstrated here to be consistent with a linear extrapolation of very limited data. It is also shown that current understanding of ocean mixing, and of the relationship between pH and atmospheric carbon dioxide concentration, cannot justify such an extrapolation.

  7. Carbon dioxide capture by means of cyclic organic nitrogen compounds

    García Abuín, Alicia


    The research work included in present PhD Thesis involves the research studies to capture carbon dioxide using different cyclic nitrogen organic compounds (glucosamine (GA), chitosan (C), alkyl-pyrrolidones, pyrrolidine (PYR) and piperidine (PIP). This investigation is based on the study of three experimental systems. Each of them has characteristics potentially suitable to achieve the aim of this work, that is to say, to improve the carbon dioxide capture process, which is pre...

  8. Carbon dioxide heat pump for dual-temperature drinking fountain

    杨大章; 吕静; 何哲彬; 黄秀芝


    Carbon dioxide trans-critical heat pump system for heating and cooling water was designed,and its thermodynamic steady-state concentration model was established. Based on the steady-state model,parameters of the carbon dioxide trans-critical heat pump were calculated by computer programming. According to these parameters,the effects and application prospect of the heat pump system were analyzed for dual-temperature drinking fountains.

  9. Mycorrhizal mediation of soil organic carbon decomposition under elevated atmospheric carbon dioxide

    Significant effort in global change research has recently been directed towards assessing the potential of soil as a carbon sink under future atmospheric carbon dioxide scenarios. Attention has focused on the impact of elevated carbon dioxide on plant interactions with mycorrhizae, a symbiotic soil...

  10. Beneficial Use of Carbon Dioxide in Precast Concrete Production

    Shao, Yixin [McGill Univ., Montreal, QC (Canada)


    The feasibility of using carbon dioxide as feedstock in precast concrete production is studied. Carbon dioxide reacts with calcium compounds in concrete, producing solid calcium carbonates in binding matrix. Two typical precast products are examined for their capacity to store carbon dioxide during the production. They are concrete blocks and fiber-cement panels. The two products are currently mass produced and cured by steam. Carbon dioxide can be used to replace steam in curing process to accelerate early strength, improve the long-term durability and reduce energy and emission. For a reaction within a 24-hour process window, the theoretical maximum possible carbon uptake in concrete is found to be 29% based on cement mass in the product. To reach the maximum uptake, a special process is developed to promote the reaction efficiency to 60-80% in 4-hour carbon dioxide curing and improve the resistance to freeze-thaw cycling and sulfate ion attack. The process is also optimized to meet the project target of $10/tCO2 in carbon utilization. By the use of self-concentrating absorption technology, high purity CO2 can be produced at a price below $40/t. With low cost CO2 capture and utilization technologies, it is feasible to establish a network for carbon capture and utilization at the vicinity of carbon sources. If all block produces and panel producers in United States could adopt carbon dioxide process in their production in place of steam, carbon utilization in these two markets alone could consume more than 2 Mt CO2/year. This capture and utilization process can be extended to more precast products and will continue for years to come.

  11. Phase equilibrium condition of marine carbon dioxide hydrate

    Highlights: ► CO2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl− ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  12. Carbon Dioxide/Methane Separation by Adsorption on Sepiolite

    José A.Delgado; María A.Uguina; José L.Sotelo; Beatriz Ruíz; Marcio Rosário


    In this work,the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed.and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics.using the Langmuir equation to describe the adsotption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.

  13. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma

    孙艳朋; 聂勇; 吴昂山; 姬登祥; 于凤文; 计建炳


    Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

  14. Carbon Dioxide Reduction Technology Trade Study

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.


    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  15. The role of renewable bioenergy in carbon dioxide sequestration

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)


    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  16. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction

    Kumar, Bijandra; Asadi, Mohammad; Pisasale, Davide; Sinha-Ray, Suman; Rosen, Brian A.; Haasch, Richard; Abiade, Jeremiah; Yarin, Alexander L.; Salehi-Khojin, Amin


    The development of an efficient catalyst system for the electrochemical reduction of carbon dioxide into energy-rich products is a major research topic. Here we report the catalytic ability of polyacrylonitrile-based heteroatomic carbon nanofibres for carbon dioxide reduction into carbon monoxide, via a metal-free, renewable and cost-effective route. The carbon nanofibre catalyst exhibits negligible overpotential (0.17 V) for carbon dioxide reduction and more than an order of magnitude higher current density compared with the silver catalyst under similar experimental conditions. The carbon dioxide reduction ability of carbon nanofibres is attributed to the reduced carbons rather than to electronegative nitrogen atoms. The superior performance is credited to the nanofibrillar structure and high binding energy of key intermediates to the carbon nanofibre surfaces. The finding may lead to a new generation of metal-free and non-precious catalysts with much greater efficiency than the existing noble metal catalysts.

  17. A preliminary assessment of carbon dioxide mitigation options

    The purpose of this paper is to place the potential needs to control global carbon dioxide emissions in perspective. In order to limit carbon dioxide levels in the earth's atmosphere to no more than twice pre- anthropogenic levels, it will be necessary to limit carbon emissions to approximately 10 gigatons per year by 2050. The implications of such a constraint to the developed countries, developing countries, and international community are assessed. It is clear that international priorities must be established and specific approaches developed in the first quarter of the 21st century to define the necessary, minimum- cost mitigation strategies. Because of the complexity of establishing a meaningful policy approach, imposition of an arbitrary carbon tax is unlikely to provide the constraints necessary to achieve a satisfactory earth atmosphere - carbon dioxide equilibrium state

  18. It is time to put carbon dioxide to work

    Lipinsky, E.S. [Battelle, Columbus, OH (United States)


    The need to control emissions of carbon dioxide into the atmosphere is the subject of vigorous debate at this time. There is growing evidence that rising levels of carbon dioxide increase global warming, with perhaps highly adverse impacts for the human economy. There are calls for carbon taxes and other harsh measures. Japan has established a national goal of holding carbon dioxide emissions in the year 2000 to 1990 levels. I hope that this conference will be a turning point in the United States position on this issue. The current major end uses for CO{sub 2} include refrigeration, beverage carbonation, soda ash production, fire fighting, and urea fertilizer production. They are all based on chemistry that would not surprise a good chemist of the 19th century. Consumption of carbon dioxide in synthesis of industrial chemicals is limited. Usually one explains low production of chemicals from a candidate feedstock in terms of poor availability, price, purity, or reactivity. We can eliminate the first three as the causes of the underutilization of carbon dioxide.

  19. Urban carbon dioxide in Portland, Oregon

    Bostrom, G. A.; Brooks, M.; Rice, A. L.


    Ambient concentrations of atmospheric carbon dioxide (CO2) are reported for the Portland, Oregon (USA) metropolitan region since late July, 2009. Three stationary locations were established: a downtown location on the campus of Portland State University; a residential site in southeast Portland; and a rural station on Sauvie Island, located ~30km northwest of Portland in the Columbia River Gorge. Continuous measurements of CO2 at the sites average 400-410ppm and show considerable variability due to CO2 sources, sinks and meteorological drivers of ventilation. Within this variability, a marked 20-30ppm diurnal cycle is observed due to photosynthetic activity and variations in the planetary boundary layer. In-city CO2 concentrations are on average enhanced by 5-6ppm over the Sauvie Island site during upgorge wind conditions, a difference which is greatest in the afternoon. Measurements of the 13C/12C ratio of CO2 in downtown Portland are significantly depleted in 13C relative to 12C compared with background air and suggest that regional CO2 is dominated by petroleum sources (70-80%). High degrees of relationship between CO2 variability and primary air pollutants CO and NO (r2=0.70 to 0.80), measured by the Oregon Department of Environmental Quality at the Southeast Portland location, corroborate this finding and illustrate the importance of traffic emissions on elevated ambient CO2 concentrations. In addition to CO2 at the fixed sites, measurements of street-level CO2 concentrations were obtained using a mobile instrument mounted in a bike trailer. Results from these field data show relatively homogenous CO2 concentrations throughout residential Portland neighborhoods with significant enhancements in CO2 on busy roadways or near areas of traffic congestion.

  20. Carbon dioxide catastrophes: Past and future menace

    Baur, Mario E.


    Carbon dioxide is important in its role as coupler of the terrestrial biosphere to inorganic chemical processes and as the principal greenhouse gas controlling Earth's surface temperature. The hypothesis that atmospheric CO2 levels have diminished with time, with the resulting cooling effect offsetting an increase in the solar constant, seems firmly established, and it is shown that feedback mechanisms exist which can maintain the terrestrial surface in a relatively narrow temperature range over geological time. Of the factors involved in such CO2 variation, the oceanic reservoir appears the most important. Surface waters are probably in approximate equilibrium with regard to CO2 exchange with the ambient atmosphere in most regions, but data from deep-ocean water sampling indicates that such waters are somewhat undersaturated in the sense that they would tend to absorb CO2 from the atmosphere if brought to the surface without change in composition or temperature. If major impacts into the ocean can result in loss of a substantial portion of the atmospheric CO2 reservoir, then any such future event could imperil the continuation of most higher forms of life on Earth. The most likely candidate for an inverse Nyos global event in previous Earth history is the Cretaceous-Tertiary terminal extinction event. The Cretaceous was characterized by warm, equable temperatures presumably indicative of relatively high CO2 levels and an intense greenhouse heating. Cooling of the oceans in absence of massive transfer of CO2 to the oceanic reservoir in itself would promote a condition of CO2 undersaturation in abyssal waters, and this is made even more extreme by the pattern of ocean water circulation. It is possible to envision a situation in which deep ocean waters were at least occasionally profoundly undersaturated with regard to CO2. Turnover of a major fraction of such an ocean would then remove, on a very short time scale, as much as 90 percent of the atmospheric CO2

  1. Nuclear power and the carbon dioxide problem

    This study deals with the question, which contribution can be delivered by nuclear power to the redution of the emission of carbon dioxide (CO2) from the power supply. The emphasis lays upon the following aspects: the emissions of CO2 which occur in the nuclear-power cycle (the so-called indirect emission of CO2 power plants); the amount of uranium stocks; the change of CO2 emission caused by replacement of fossil fuels, in particular coal, by nuclear power. First an energy-analysis of the nuclear power cycle is presented. On the base of this analysis the CO2 uranium can be calculated. The role of nuclear power in the reduction of CO2 emission depends on the development of the final power demand. Therefore in this study two scenarios derived from the 'IIASA-low' scenario; 'low-energy'-scenario in which the world-energy consumption remains at about the same level. In the calculations the indirect emissions of CO2, also dependent on the ore richness and the technology used, have always been taken into account. In the calculations two uranium-reserve variants of resp. 5.7 and 30 mln. tons have been assumed. From the results of the calculations it can be concluded that whether or not taking account of the indirect emissions of CO2 in the nuclear power cycle, has only limited effect on the calculated contribution of nuclear power to the solution of the greenhouse effect. The uranium reserves turn out to be determining for the potential contribution of nuclear power. By putting on the surely available reserve of 5.7 mln. tons, or the speculative reserve of 30 mln. tons, with the actual technology, an emission of resp. 130-140 billion and 880 billion tons CO2 can be avoided in replacing coal. With maximal employment of improved conversion techniques these contributions may be doubled. (H.W.). 40 refs.; 13 figs.; 10 tabs

  2. Recent Progress in the Synthesis of Polymers Based on Carbon Dioxide

    H. Sugimoto; S. Inoue


    @@ 1Introduction Carbon dioxide is the most fundamental carbon resource indispensable for all living systems including human being via photosynthesis by green plants. On the other hand, chemical utilization of carbon dioxide has been rather limited.

  3. Carbon Dioxide Effects Research and Assessment Program. Carbon Dioxide Research Progress Report, fiscal year 1979

    Dahlman, R. C.; Gross, T.; Machta, L.; Elliott, W.; MacCracken, M.


    Research on the global carbon cycle and the effects of increased carbon dioxide on the global climate system is reported. Environmental and societal effects related to CO/sub 2/ and environmental control technology for CO/sub 2/ are also discussed. Lists of research projects and reports and publications of the Carbon Dioxide and Climate Research Program are included. An expanded CO/sub 2/ monitoring network is providing increased coverage for interpretation of patterns of sources and sinks seasonal variability, and documentation of the global growth of CO/sub 2/. Modeling studies emphasized that knowledge of the transport and mixing of surface ocean waters is important in understanding deep oceanic circulation. Initial studies in the equatorial Pacific are helping quantify estimates of the amount of outgassing CO/sub 2/ from tropical waters. During fiscal year 1979, there was a substantial increase in appreciation of the role of the ocean in controlling not only atmospheric CO/sub 2/ concentrations but also the climatic response to changes in concentration. Model simulations of the effect of doubled CO/sub 2/ concentration carried out with fixed ocean temperatures a situation that is possible during perhaps the next 20 years, showed relatively small summer heating over land areas. On the other hand, simulations in which the oceanic temperatures could come into instantaneous equilibrium with atmospheric conditions continued to show global temperature increases of 3 +- 1.5/sup 0/C, accentuated at high latitudes. To improve understanding of possible regional climate changes, there were increased efforts to reconstruct regional climatic patterns prevailing during past warm periods that might serve as analogs of future climatic conditions. Particular attention was directed to the climates of the United States and other countries bordering the North Atlantic Ocean during the warm period 5000 to 7000 years ago.

  4. Surface chemistry of polymers. The adsorption of carbon dioxide and sulfur dioxide on polyvinylidene chloride

    Stoeckli, Fritz


    Isotherms for the adsorption of nitrogen (77 K), carbon dioxide (195-247 K) and sulfur dioxide (254-293 K) on polyvinylidene chloride have been measured volumetrically. The B.E.T. cross-sectional areas of 18 Å2 (CO2) and 24 Å2 (SO2) are comparable to liquid density values. The isosteric heat of adsorption of CO2 is constant for 0.2

  5. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III


    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  6. Carbon dioxide accounting:2014 Commonwealth Games Atheletes’ Village

    Sampson, Jennifer; Biesta, Mark; Crapper, Martin; Hall, Iain; Shepherd, Alan


    A spreadsheet-based tool for whole-life carbon dioxide accounting of soil remediation projects has been created. The tool carries out whole-life analysis of projects, including supply chain emissions. It was applied to the Glasgow 2014 Commonwealth Games Athletes' Village remediation project, for which a calculated total ‘carbon footprint’ of 2328 t of carbon dioxide equivalent emission (tCO2e) was obtained. This is 71 tCO2e/ha of the site or 13·3 kgCO2e/t whole life of soil treated. These fi...

  7. Regeneration of oxygen from carbon dioxide and water.

    Weissbart, J.; Smart, W. H.; Wydeven, T.


    In a closed ecological system it is necessary to reclaim most of the oxygen required for breathing from respired carbon dioxide and the remainder from waste water. One of the advanced physicochemical systems being developed for generating oxygen in manned spacecraft is the solid electrolyte-electrolysis system. The solid electrolyte system consists of two basic units, an electrolyzer and a carbon monoxide disproportionator. The electrolyzer can reclaim oxygen from both carbon dioxide and water. Electrolyzer preparation and assembly are discussed together with questions of reactor design and electrolyzer performance data.


    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison


    The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

  9. Molecular Simulation of Carbon Dioxide Adsorbed in a Slit Carbon Pore


    Both the grand canonical Monte Carlo and molecular dynamics simulation methods are used to investigate the adsorption and diffusion of carbon dioxide confined in a 1.86 nm slit carbon pore at 4 temperatures from subcritical (120 K) to supercritical (313 K) conditions. Layering transition, capillary condensation and adsorption hysteresis are found at 120 K. The microstructure of carbon dioxide fluid in the slit carbon pore is analyzed. The diffusion coefficients of carbon dioxide parallel to the slit wall are significantly larger than those normal to the slit wall.

  10. Direct carbon dioxide emissions from civil aircraft

    Grote, Matt; Williams, Ian; Preston, John


    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories - policy and legal-related measures, and technological and operational measures. Results of the review are used to develop several insights into the challenges faced. The analysis shows that forecasts for strong growth in air-traffic will result in civil aviation becoming an increasingly significant contributor to anthropogenic CO2 emissions. Some mitigation-measures can be left to market-forces as the key-driver for implementation because they directly reduce airlines' fuel consumption, and their impact on reducing fuel-costs will be welcomed by the industry. Other mitigation-measures cannot be left to market-forces. Speed of implementation and stringency of these measures will not be satisfactorily resolved unattended, and the current global regulatory-framework does not provide the necessary strength of stewardship. A global regulator with ‘teeth' needs to be established, but investing such a body with the appropriate level of authority requires securing an international agreement which history would suggest is going to be very difficult. If all mitigation-measures are successfully implemented, it is still likely that traffic growth-rates will continue to out-pace emissions reduction-rates. Therefore, to achieve an overall reduction in CO2 emissions, behaviour change will be necessary to reduce demand for air-travel. However, reducing demand will be strongly resisted by all stakeholders in the industry; and the ticket price-increases necessary to induce the required reduction in traffic growth-rates place a monetary-value on CO2 emissions of approximately 7-100 times greater than other common

  11. Biomass combustion for greenhouse carbon dioxide enrichment

    Greenhouses in northern climates have a significant heat requirement that is mainly supplied by non-renewable fuels such as heating oil and natural gas. This project's goal was the development of an improved biomass furnace able to recover the heat and the CO2 available in the flue gas and use them in the greenhouse. A flue gas purification system was designed, constructed and installed on the chimney of a wood pellet furnace (SBI Caddy Alterna). The purification system consists of a rigid box air filter (MERV rating 14, 0.3 μm pores) followed by two sets of heating elements and a catalytic converter. The air filter removes the particulates present in the flue gas while the heating elements and catalysers transform the noxious gases into less harmful gases. Gas analysis was sampled at different locations in the system using a TESTO 335 flue gas analyzer. The purification system reduces CO concentrations from 1100 cm3 m−3 to less than 1 cm3 m−3 NOx from 70 to 5.5 cm3 m−3 SO2 from 19 cm3 m−3 to less than 1 cm3 m−3 and trapped particulates down to 0.3 μm with an efficiency greater than 95%. These results are satisfactory since they ensure human and plant safety after dilution into the ambient air of the greenhouse. The recuperation of the flue gas has several obvious benefits since it increases the heat usability per unit biomass and it greatly improves the CO2 recovery of biomass heating systems for the benefit of greenhouse grown plants. - Highlights: • Biomass furnace shows high potential for greenhouse carbon dioxide enrichment. • Flue gas recuperation significantly increases the thermal efficiency of a furnace. • Catalytic converter can reduce CO and NOx below humans and plants exposure limit. • Particulates control is essential to maintain the efficiency of the catalytic conversion. • CO2 recovery from biomass heating systems reduces farmer's reliance on fossil fuel

  12. Carbon dioxide, the feedstock for using renewable energy

    Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

  13. Measures for carbon dioxide problem and utilization of energy

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  14. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    Selsted, Merete Bang; Ambus, Per; Michelsen, Anders;


    Carbon dioxide (CO2) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO2 concentration from c. 380 μmol...

  15. Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique

    Selsted, M.B.; Ambus, P.; Michelsen, A.;


    Carbon dioxide (CO(2)) fluxes, composing net ecosystem exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) were measured in a temperate heathland exposed to elevated CO2 by the FACE (free-air carbon enrichment) technique, raising the atmospheric CO(2) concentration from c. 380 mu...

  16. Carbon Dioxide As a Raw Material for Biodegradable Plastics

    WANG Xianhong; QIN Yusheng; WANG Fosong


    @@ Carbon dioxide is the main greenhouse gas, but it is also a renewable and abundant source of carbon.It has not onlv shown various phvsicai utilization in the manufacturing of food, beverage and other industry areas, but been chemically fixed into urea, salicylic acid, organic and inorganic carbonates (Mikkelsen, Jorgensen & Krebs, 2010).However, developing a high value-added fixation route to CO is badly needed.

  17. Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts.

    Tsuji, Yasushi; Fujihara, Tetsuaki


    Recent carbon-carbon bond forming reactions of carbon dioxide with alkenes, alkynes, dienes, aryl zinc compounds, aryl boronic esters, aryl halides, and arenes having acidic C-H bonds are reviewed in which transition-metal catalysts play an important role.


    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang


    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

  19. The carbon dioxide problem - a challenge to environmental protection

    Over the last century, man's activities on earth have sent off trace gases into the planet's atmosphere that have been concentrating to a level posing a threat to the global climate. Since scientists particularly spotted carbon dioxide as the main contributor to what we now call the greenhouse effect, there is urgent need for measures reducing carbon dioxide emission worldwide, may be on the basis of a global convention to be signed by both the industrialised and the developing countries. The industrialised countries, which certainly are the main pollutors, also will have the technological and financial resources to respond to the challenge of global warning more directly and faster than the developing countries. The power industry's management in the FRG is taking the problem seriously and has already come out with strategies for curbing carbon dioxide emissions from fossil-fuel power plant. (orig.)

  20. Cleaning of ITO glass with carbon dioxide snow jet spray

    Li, Jun-jian; Qi, Tong; Li, Shu-lin; Zhao, Guang


    ITO glass cleaning is LCD, OLED and other flat panel display industry's key technologies. At present, the usual wet cleaning technology consumes large amount of water and chemicals, and produces a large amount of contaminant venting. CO II snow jet spray cleaning has been successfully applied to cleaning the surface of semiconductor chip, vacuum devices and space telescopes. Surface cleaning of indium tin oxide (ITO) film was carried out with carbon dioxide snow jet treatment .Based on the measurements of the contact angles, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) ,the influence of carbon dioxide snow jet treatment on surface cleaning of indium tin Oxide film was investigated and compared with the samples of low frequency immersion ultrasonic cleaning. Experimental data show that the carbon dioxide snow jet treatment effectively removes particulate and hydrocarbon on ITO surface.

  1. Polyureas from diamines and carbon dioxide: synthesis, structures and properties.

    Wu, Chaoyong; Wang, Jinyao; Chang, Pingjing; Cheng, Haiyang; Yu, Yancun; Wu, Zhijian; Dong, Dewen; Zhao, Fengyu


    Polyureas were synthesized from diamines and carbon dioxide in the absence of any catalyst or solvent, analogous to the synthesis of urea from condensation of ammonia with carbon dioxide. The method used carbon dioxide as a carbonyl source to substitute highly toxic isocyanates for the synthesis of polyureas. FTIR and DFT calculations confirmed that strong bidentate hydrogen bonds were formed between urea motifs, and XRD patterns showed that the PUas were highly crystalline and formed a network structure through hydrogen bonds, which served as physical cross-links. The long chain PUas presented a microphase separated morphology as characterized by SAXS and showed a high melting temperature above 200 °C. The PUas showed high resistance to solvents and excellent thermal stability, which benefitted from their special network structures. The PUas synthesized by this method are a new kind of functional material and could serve some areas where their analogues with similar functional groups could not be applied. PMID:22120724

  2. Is there cross-country convergence in carbon dioxide emissions?

    This paper examines the spatial distribution of per capita carbon dioxide emissions in 87 countries during the period 1960-1999. In order to overcome the methodological limitations of conventional convergence analysis, I have used a non-parametric approach which allows us to study the dynamics of the entire cross-section distribution. The results show that cross-country disparities in per capita carbon dioxide emissions decreased throughout the study period. In fact, the probability mass concentrated around the average increased over time, which helps to explain the observed reduction in the polarisation of the distribution under consideration. In any event, the intradistribution mobility level is relatively low. I have also investigated how far spatial differences in per capita carbon dioxide emission levels can be explained by factors such as per capita income, the degree of trade openness or climatic conditions

  3. Properties of equilibrium carbon dioxide hydrate in porous medium

    Voronov, V. P.; Gorodetskii, E. E.; Podnek, V. E.; Grigoriev, B. A.


    Specific heat capacity, dissociation heat and hydration number of carbon dioxide hydrate in porous medium are determined by adiabatic calorimetry method. The measurements were carried out in the temperature range 250-290 K and in pressure range 1-5 MPa. The measured specific heat of the hydrate is approximately 2.7 J/(g K), which is significantly larger than the specific heat of methane hydrate. In particular, at heating, larger value of the specific heat of carbon dioxide hydrate is a result of gas emission from the hydrate. The hydration number at the hydrate-gas coexistence changes from 6.2 to 6.9. The dissociation heat of carbon dioxide hydrate varies from the 55 kJ/mol near the upper quadruple point to the 57 kJ/mol near the lower quadruple point.

  4. Carbonic acid as a reserve of carbon dioxide on icy moons: The formation of carbon dioxide (CO2) in a polar environment

    Carbon dioxide (CO2) has been detected on the surface of several icy moons of Jupiter and Saturn via observation of the ν3 band with the Near-Infrared Mapping Spectrometer on board the Galileo spacecraft and the Visible-Infrared Mapping Spectrometer on board the Cassini spacecraft. Interestingly, the CO2 band for several of these moons exhibits a blueshift along with a broader profile than that seen in laboratory studies and other astrophysical environments. As such, numerous attempts have been made in order to clarify this abnormal behavior; however, it currently lacks an acceptable physical or chemical explanation. We present a rather surprising result pertaining to the synthesis of carbon dioxide in a polar environment. Here, carbonic acid was synthesized in a water (H2O)-carbon dioxide (CO2) (1:5) ice mixture exposed to ionizing radiation in the form of 5 keV electrons. The irradiated ice mixture was then annealed, producing pure carbonic acid which was then subsequently irradiated, recycling water and carbon dioxide. However, the observed carbon dioxide ν3 band matches almost exactly with that observed on Callisto; subsequent temperature program desorption studies reveal that carbon dioxide synthesized under these conditions remains in solid form until 160 K, i.e., the sublimation temperature of water. Consequently, our results suggest that carbon dioxide on Callisto as well as other icy moons is indeed complexed with water rationalizing the shift in peak frequency, broad profile, and the solid state existence on these relatively warm moons.

  5. Using LMDI approach to analyze changes in carbon dioxide emissions of China’s logistics industry

    Ying Dai; Jing Zhu; Han Song


    Purpose: China is confronting with tremendous pressure in carbon emission reduction. While logistics industry seriously relies on fossil fuel, and emits greenhouse gas, especially carbon dioxide. The aim of this article is to estimate the carbon dioxide emission in China’s logistics sector, and analyze the causes for the change of carbon dioxide emission, and identify the critical factors which mainly drive the change in carbon dioxide emissions of China’s logistics industry. Design/methodolo...

  6. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar


    Roč. 41, č. 6 (2012), s. 1931-1938. ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevate carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  7. Modelling interactions of carbon dioxide, forests, and climate

    Luxmoore, R.J. [Oak Ridge National Lab., TN (United States); Baldocchi, D.D. [National Oceanic and Atmospheric Administration, Oak Ridge, TN (United States)


    Atmospheric carbon dioxide is rising and forests and climate is changing! This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken.


    Лавренченко, Г. К.


    The Ukrainian Association of Manufacturers of Industrial Gases «UA-SIGMA» on May, 18-22, 2009 in Odessa had been carried out the third international seminar «СО2-2009». The questions considered at seminar have been incorporated by an actual problem of increase of efficiency and ecologically-technological safety of manufacture and use of carbon dioxide. In this problem was interested not only the manufacturers of СО2 and urea but also those who releases the various carbon dioxide equipment. Th...


    Лавренченко, Г. К.; Копытин, А. В.; Афанасьев, С. В.; Рощенко, О. С.


    Aggregates of urea synthesis are reconstructed with the purpose decrease in specific expenses and increase their productivity. Supply of additional quantities of carbon dioxide and ammonia is necessary to increase production volumes of urea. In most cases there is a problem with the supply of СО2, as the equipment for its compression is not any necessary reserves. Installation for supply of carbon dioxide using a pump is considered. For liquefaction of CO2 at low pressure the cold of the liqu...

  10. Transcutaneous oxygen and carbon dioxide monitoring in intensive care.

    Marsden, D.; Chiu, M. C.; Paky, F; Helms, P


    Transcutaneous oxygen (TcPo2) and carbon dioxide (TcPco2) tensions were compared with arterial values in 23 children aged 4 months to 14 years, all requiring some form of respiratory support, but not in shock. Electrodes were placed on the upper chest and were heated to 45 degrees C. For TcPo2 and arterial oxygen (Pao2) a tight linear correlation over the range 6 to 14 kPa was found. Arterial carbon dioxide (Paco2) ranged between 2.63 and 6.8 kPa, and over this range a linear regression adequ...