Sample records for carbohydrate esterase displays

  1. A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus.

    Alalouf, Onit; Balazs, Yael; Volkinshtein, Margarita; Grimpel, Yael; Shoham, Gil; Shoham, Yuval


    Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for k(cat) and k(cat)/K(m) suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family. PMID:21994937

  2. Enzymatic degradation of lignin‐carbohydrate complexes (LCCs): Model studies using a fungal glucuronoyl esterase from Cerrena unicolor

    d'Errico, Clotilde; Jørgensen, Jonas O.; Krogh, Kristian B. R. M.;


    Lignin‐carbohydrate complexes (LCCs) are believed to influence the recalcitrance of lignocellulosic plant material preventing optimal utilization of biomass in e.g. forestry, feed and biofuel applications. The recently emerged carbohydrate esterase (CE) 15 family of glucuronoyl esterases (GEs) ha...... provide a valuable tool for the screening, selection and development of industrially relevant GEs for delignification of biomass. Biotechnol. Bioeng. 2015;112: 914–922. © 2014 Wiley Periodicals, Inc....

  3. Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates.

    Puchart, Vladimír; Agger, Jane W; Berrin, Jean-Guy; Várnai, Anikó; Westereng, Bjørge; Biely, Peter


    The enzymatic conversion of acetylated hardwood glucuronoxylan to functional food oligomers, biochemicals or fermentable monomers requires besides glycoside hydrolases enzymes liberating acetic acid esterifying position 2 and/or 3 in xylopyranosyl (Xylp) residues. The 3-O-acetyl group at internal Xylp residues substituted by MeGlcA is the only acetyl group of hardwood acetylglucuronoxylan and its fragments not attacked by acetylxylan esterases of carbohydrate esterase (CE) families 1, 4, 5 and 6 and by hemicellulolytic acetyl esterases classified in CE family 16. Monoacetylated aldotetraouronic acid 3″-Ac(3)MeGlcA(3)Xyl3, generated from the polysaccharide by GH10 endoxylanases, appears to be one of the most resistant fragments. The presence of the two substituents on the non-reducing-end Xylp residue prevents liberation of MeGlcA by α-glucuronidase of family GH67 and blocks the action of acetylxylan esterases. The Ac(3)MeGlcA(3)Xyl3 was isolated from an enzymatic hydrolysate of birchwood acetylglucuronoxylan and characterized by (1)H NMR spectroscopy as a mixture of two positional isomers, 3″-Ac(3)MeGlcA(3)Xyl3 and 4″-Ac(3)MeGlcA(3)Xyl3, the latter being the result of acetyl group migration. The mixture was used as a substrate for three members of CE16 family of fungal origin. Trichoderma reesei CE16 esterase, inactive on polymeric substrate, deacetylated both isomers. Podospora anserina and Aspergillus niger esterases, active on acetylglucuronoxylan, deesterified effectively only the 4″-isomer. The results indicate catalytic diversity among CE16 enzymes, but also their common and unifying catalytic ability to exo-deacetylate positions 3 and 4 on non-reducing-end Xylp residues, which is an important step in plant hemicellulose saccharification. PMID:27439201

  4. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome

    De Santi, Concetta; Willassen, Nils Peder


    Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes. PMID:27433797

  5. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome.

    Concetta De Santi

    Full Text Available The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15 form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs.MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes.

  6. A New Strategy for Fluorogenic Esterase Probes Displaying Low Levels of Non-specific Hydrolysis.

    Kim, Sungwoo; Kim, Hyunjin; Choi, Yongdoo; Kim, Youngmi


    A new design for fluorescence probes of esterase activity that features a carboxylate-side pro-fluorophore is demonstrated with boron dipyrromethene (BODIPY)-based probes 1 a and 1 b. Because the design relies on the enzyme-catalyzed hydrolysis of an ester group that is not electronically activated, these probes exhibit a stability to background hydrolysis that is far superior to classical alcohol-side profluorophore-based probes, large signal-to-noise ratios, reduced sensitivity to pH variations, and high enzymatic reactivity. The utility of probe 1 a was established with a real-time fluorescence imaging experiment of endogenous esterase activity that does not require washing of the extracellular medium. PMID:26033618

  7. Carbohydrates

    ... girls Eating healthy at restaurants Special food issues Vegetarian eating Eating for strong bones Quiz: Food Facts Links to more information girlshealth glossary home Home Nutrition Nutrition basics Carbohydrates Carbohydrates Carbohydrates (say: kar-boh- ...

  8. Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities.

    Ribeiro, Teresa; Santos-Silva, Teresa; Alves, Victor D; Dias, Fernando M V; Luís, Ana S; Prates, José A M; Ferreira, Luís M A; Romão, Maria J; Fontes, Carlos M G A


    Enzymes that degrade plant cell wall polysaccharides display a modular architecture comprising a catalytic domain bound to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs display considerable variation in primary structure and are grouped into 59 sequence-based families organized in the Carbohydrate-Active enZYme (CAZy) database. Here we report the crystal structure of CtCBM42A together with the biochemical characterization of two other members of family 42 CBMs from Clostridium thermocellum. CtCBM42A, CtCBM42B and CtCBM42C bind specifically to the arabinose side-chains of arabinoxylans and arabinan, suggesting that various cellulosomal components are targeted to these regions of the plant cell wall. The structure of CtCBM42A displays a beta-trefoil fold, which comprises 3 sub-domains designated as alpha, beta and gamma. Each one of the three sub-domains presents a putative carbohydrate-binding pocket where an aspartate residue located in a central position dominates ligand recognition. Intriguingly, the gamma sub-domain of CtCBM42A is pivotal for arabinoxylan binding, while the concerted action of beta and gamma sub-domains of CtCBM42B and CtCBM42C is apparently required for ligand sequestration. Thus, this work reveals that the binding mechanism of CBM42 members is in contrast with that of homologous CBM13s where recognition of complex polysaccharides results from the cooperative action of three protein sub-domains presenting similar affinities. PMID:20637315

  9. Carbohydrates

    Abumrad NA, Nassi F, Marcus A. Digestion and absorption of dietary fat, carbohydrate, and protein. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. 10th ed. ...

  10. Carbohydrates

    ... is fine because they contain important vitamins and minerals. But your body rapidly digests the starch in white potatoes. This can raise your blood glucose level. Healthy carbohydrates include: Natural sugars in fruits, vegetables, milk, and milk products Dietary fiber Starches in whole- ...

  11. A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan.

    Puchart, Vladimír; Berrin, Jean-Guy; Haon, Mireille; Biely, Peter


    The genome of the coprophilous fungus Podospora anserina displays an impressive array of genes encoding hemicellulolytic enzymes. In this study, we focused on a putative carbohydrate esterase (CE) from family 16 (CE16) that bears a carbohydrate-binding module from family CBM1. The protein was heterologously expressed in Pichia pastoris and purified to electrophoretic homogeneity. The P. anserina CE16 enzyme (PaCE16A) exhibited different catalytic properties than so far known CE16 esterases represented by the Trichoderma reesei CE16 acetyl esterase (TrCE16). A common property of both CE16 esterases is their exodeacetylase activity, i.e., deesterification at positions 3 and 4 of monomeric xylosides and the nonreducing end xylopyranosyl (Xylp) residue of oligomeric homologues. However, the PaCE16A showed lower positional specificity than TrCE16 and efficiently deacetylated also position 2. The major difference observed between PaCE16A and TrCE16 was found on polymeric substrate, acetylglucuronoxylan. While TrCE16 does not attack internal acetyl groups, PaCE16A deacetylated singly and doubly acetylated Xylp residues in the polymer to such an extent that it resulted in the polymer precipitation. Similarly as typical acetylxylan esterases belonging to CE1, CE4, CE5, and CE6 families, PaCE16A did not attack 3-O-acetyl group of xylopyranosyl residues carrying 4-O-methyl-D-glucuronic acid at position 2. PaCE16A thus represents a CE16 member displaying unique catalytic properties, which are intermediate between the TrCE16 exodeacetylase and acetylxylan esterases designed to deacetylate polymeric substrate. The catalytic versatility of PaCE16A makes the enzyme an important candidate for biotechnological applications. PMID:26329850

  12. The psychrophilic bacterium Pseudoalteromonas halosplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from gamma-proteobacteria and yeast.

    Aurilia, Vincenzo; Parracino, Antonietta; Saviano, Michele; Rossi, Mose'; D'Auria, Sabato


    The complete genome of the psychrophilic bacteria Pseudoalteromonas haloplanktis TAC 125, recently published, owns a gene coding for a putative esterase activity corresponding to the ORF PSHAa1385, also classified in the Carbohydrate Active Enzymes database (CAZY) belonging to family 1 of carbohydrate esterase proteins. This ORF is 843 bp in length and codes for a protein of 280 amino acid residues. In this study we characterized and cloned the PSHAa1385 gene in Escherichia coli. We also characterized the recombinant protein by biochemical and biophysical methodologies. The PSHAa1385 gene sequence showed a significant homology with several carboxyl-esterase and acetyl-esterase genes from gamma-proteobacteria genera and yeast. The recombinant protein exhibited a significant activity towards pNP-acetate, alpha-and beta-naphthyl acetate as generic substrates, and 4-methylumbelliferyl p-trimethylammonio cinnamate chloride (MUTMAC) as a specific substrate, indicating that the protein exhibits a feruloyl esterase activity that it is displayed by similar enzymes present in other organisms. Finally, a three-dimensional model of the protein was built and the amino acid residues involved in the catalytic function of the protein were identified. PMID:17543477

  13. Display

    Gaskell, Ivan


    The display of religious objects takes many forms. While sculpture on the exterior of religious buildings is visible for the long term, relics, cult images, and masquerades are shown only occasionally. One way of emphasizing the potency of an object is to reveal it infrequently. In many religious systems display is restricted, for some things are dangerous to inappropriate viewers, while others are too powerful to be seen by anyone. When access is possible, viewers value intimate encounter, u...

  14. Mining anaerobic digester consortia metagenomes for secreted carbohydrate active enzymes

    Wilkens, Casper; Busk, Peter Kamp; Pilgaard, Bo;

    . To gain insight into both the degradation of the carbohydrates and the various roles of the microbes in the ADs we have mined metagenomes from both types of ADs for glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, auxiliary activities, and carbohydrate binding modules. The mining...... thermophilic and mesophilic ADs a wide variety of carbohydrate active enzyme functions were discovered in the metagenomic sequencing of the microbial consortia. The most dominating type of glycoside hydrolases were β-glucosidases (up to 27%), α-amylases (up to 10%), α-glucosidases (up to 8%), α......-galactosidases (up to 9%) and β-galactosidases (up to 7%). For carbohydrate esterases the by far most dominating type was acetylxylan esterases (up to 59%) followed by feruloyl esterases (up to 16%). Less than 15 polysaccharide lyases were identified in the different metagenomes and not surprisingly...

  15. Organophosphates and monocyte esterase deficiency.


    AIMS--To examine the possibility that monocyte esterase deficiency (MED) could be caused by exposure to organophosphates. METHODS--Pseudocholinesterase, paraoxonase and arylesterase activities were measured in the serum and acetylcholinesterase activity was measured in the red cells of a group of monocyte esterase deficient subjects and compared with the enzyme activities of a control group of monocyte esterase positive subjects. RESULTS--No significant difference was found between the enzyme...

  16. Mechanism of action of Neisseria gonorrhoeae O-acetylpeptidoglycan esterase, an SGNH serine esterase.

    Pfeffer, John M; Weadge, Joel T; Clarke, Anthony J


    O-Acetylpeptidoglycan esterase from Neisseria gonorrhoeae functions to release O-acetyl groups from the C-6 position of muramoyl residues in O-acetylated peptidoglycan, thereby permitting the continued metabolism of this essential cell wall heteropolymer. It has been demonstrated to be a serine esterase with sequence similarity to the family CE-3 carbohydrate esterases of the CAZy classification system. In the absence of a three-dimensional structure for any Ape, further knowledge of its structure and function relationship is dependent on modeling and kinetic studies. In this study, we predicted Neisseria gonorrhoeae Ape1a to be an SGNH hydrolase with an adopted α/β-hydrolase fold containing a central twisted four-stranded parallel β-sheet flanked by six α-helices with the putative catalytic triad, Asp-366, His-369, and Ser-80 appropriately aligned within a pocket. The role of eight invariant and highly conserved residues localized to the active site was investigated by site-directed replacements coupled with kinetic characterization and binding studies of the resultant engineered enzymes. Based on these data and theoretical considerations, Gly-236 and Asn-268 were identified as participating at the oxyanion hole to stabilize the tetrahedral species in the reaction mechanism, whereas Gly-78, Asp-79, His-81, Asn-235, Thr-267, and Val-368 are proposed to position appropriately the catalytic residues and participate in substrate binding. PMID:23209280

  17. Counting carbohydrates

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... goal is not to limit carbohydrates in the diet completely, but to make ... with diabetes can better control their blood sugar if they ...


    Purified T. reesei RUT C-30 acetyl esterase catalyzes acetyl transfer to a variety of carbohydrates in water in the presence of vinyl acetate as the acetyl group donor. The degree of conversion and the number of formed acetates depended on the acceptor used. With some acceptors, such as methyl or ...

  19. Two integral membrane proteins located in the cis-middle and trans-part of the Golgi system acquire sialylated N-linked carbohydrates and display different turnovers and sensitivity to cAMP-dependent phosphorylation.

    Yuan, L; Barriocanal, J G; Bonifacino, J S; Sandoval, I V


    The localization and chemical characteristics of two Golgi integral membrane proteins (GIMPs) have been studied using monoclonal antibodies. The two proteins are segregated in different parts of the Golgi system and whereas GIMPc(130 kD) is located in the cis and medial cisternae, GIMPt (100 kD) is confined in the trans-most cisterna and trans-tubular network. Both GIMPs are glycoproteins that contain N- and O-linked carbohydrates. The N-linked carbohydrates were exclusively of the complex type. Although excluded from the trans-side of the Golgi system, where sialylation is believed to occur, GIMPc acquires sialic acid in both its N- and O-linked carbohydrates. Sialic acid was also detected in the N-linked carbohydrates of GIMPt. GIMPc is apparently phosphorylated in the luminal domain in vivo. Phosphorylation occurred exclusively on serine and was stimulated by dibutyryl cyclic AMP. GIMPc and GIMPt displayed half-lives of 20 and 9 h, respectively. PMID:3301866

  20. Two Secondary Carbohydrate Binding Sites on the Surface of Barley alpha-Amylase 1 Have Distinct Functions and Display Synergy in Hydrolysis of Starch Granules

    Nielsen, Morten Munch; Bozonnet, Sophie; Seo, Eun-Seong;


    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)8-barrel and the noncatalytic C-terminal domain, respective...

  1. Interactions of carbohydrates and proteins by fluorophore-assisted carbohydrate electrophoresis

    Gang-Liang Huang; Xin-Ya Mei; Peng-George Wang


    A sensitive, specific, and rapid method for the detection of carbohydrate-protein interactions is demonstrated by fluorophore-assisted carbohydrate electrophoresis (FACE). The procedure is simple and the cost is low. The advantage of this method is that carbohydrate-protein interactions can be easily displayed by FACE, and the carbohydrates do not need to be purified.

  2. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium funiculosum

    Knoshaug, Eric P.; Selig, Michael J.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.; Adney, William S.

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  3. Carbohydrate Analysis

    Bemiller, James N.

    Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).

  4. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate.

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard


    Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production. PMID:26712478

  5. Carbohydrate microarrays

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola; Shin, Injae


    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technol......In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray......-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of...

  6. Understanding Carbohydrates

    ... Low-calorie sweeteners are also called artificial sweeteners, sugar substitutes or non-nutritive sweeteners. They can be used to sweeten food and drinks for less calories and carbohydrate when they replace sugar. Sugar and Desserts With diabetes, it's important to ...

  7. Healthy carbohydrates

    Functional foods include dietary fiber consisting of health-promoting carbohydrates. We have produced novel prebiotics from orange peel and observed that they extend the shelf life of probiotic bacteria in synbiotics. Some pectic-oligosaccharides and xyloglucan-oligosaccharides also have anti-adhesi...

  8. Esterase resistant to inactivation by heavy metals

    El, Dorry Hamza


    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  9. Multiple nucleophilic elbows leading to multiple active sites in a single module esterase from Sorangium cellulosum

    Udatha, D.B.R.K. Gupta; Madsen, Karina Marie; Panagiotou, Gianni; Olsson, Lisbeth


    The catalytic residues in carbohydrate esterase enzyme families constitute a highly conserved triad: serine, histidine and aspartic acid. This catalytic triad is generally located in a very sharp turn of the protein backbone structure, called the nucleophilic elbow and identified by the consensus...... sequence GXSXG. An esterase from Sorangium cellulosum Soce56 that contains five nucleophilic elbows was cloned and expressed in Escherichia coli and the function of each nucleophilic elbowed site was characterized. In order to elucidate the function of each nucleophilic elbow, site directed mutagenesis was...... used to generate variants with deactivated nucleophilic elbows and the functional promiscuity was analyzed. In silico analysis together with enzymological characterization interestingly showed that each nucleophilic elbow formed a local active site with varied substrate specificities and affinities. To...

  10. Esterase isozyme polymorphism, specific and nonspecific esterase, syngenic lines development and natural occurrence of a thermostable esterase in the tropical silkworm Bombyx mori L.

    Chattopadhyay, G K; Sengupta, A K; Verma, A K; Sen, S K; Saratchandra, B


    Esterase isozyme polymorphism was documented for digestive juice and haemolymph of the tropical multivoltine silkworm, Bombyx mori L., breed CB5 (GP) and its syngenic lines (CB5Lm(e)-1, CB5Lm-2 and CB5Lm-5) using alpha- and beta-naphthylacetate separately as nonspecific substrates (Ogita, Z., Kasai, T., 1965. Genetico-biochemical analysis of specific esterases in Musca domestica. Jpn. J. Genet. 40, 173-184). Polymorphism existed in the isozyme pattern of alpha-esterase with two or three bands in digestive juice and three to five bands in haemolymph. No polymorphism was observed in beta-esterase isozyme pattern having four bands in digestive juice and two bands in haemolymph. During the course of esterase isozyme studies, the presence of some specific alpha-esterase bands (Est-1, 4 and 5) in haemolymph and beta-esterase bands (Est-1, 2 and 3) in digestive juice were observed. But both alpha- and beta-esterase bands Est-3 and 4 in digestive juice and Est-2 and 3 in haemolymph were found to be nonspecific. Nonspecific beta-esterase band (Est-3) in haemolymph of CB5 (GP) and its syngenic lines withstood a temperature up to 80+/-1 degrees C for 10 min. No thermostable band was observed in the isozyme zymogram of alpha-esterase in digestive juice and haemolymph or beta-esterase in digestive juice. Overall, this study discusses the presence of esterase heterogeneity in the CB5 (GP) genepool, syngenic lines development, occurrence of specific alpha- and beta-esterase bands in digestive juice and haemolymph and thermostable beta-esterase band Est-3 in haemolymph in tropical silkworm Bombyx mori L. PMID:11583932

  11. An Esterase with Superior Activity and Enantioselectivity towards 1,2-O-Isopropylideneglycerol Esters Obtained by Protein Design

    Godinho, Luis F.; Reis, C.R.; van Merkerk, Ronald; Poelarends, Gerrit J.; Quax, Wim J.


    The Escherichia coli esterase YbfF displays high activity towards 1,2-O-isopropylideneglycerol (IPG) butyrate and IPG caprylate, and prefers the R-enantiomer of these substrates, producing the S-enantiomer of the IPG product in excess. To improve the potential of the enzyme for the kinetic resolutio

  12. New Extremophilic Lipases and Esterases from Metagenomics

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I


    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  13. Mechanism-Guided Discovery of an Esterase Scaffold with Promiscuous Amidase Activity

    Charlotte Kürten


    Full Text Available The discovery and generation of biocatalysts with extended catalytic versatilities are of immense relevance in both chemistry and biotechnology. An enhanced atomistic understanding of enzyme promiscuity, a mechanism through which living systems acquire novel catalytic functions and specificities by evolution, would thus be of central interest. Using esterase-catalyzed amide bond hydrolysis as a model system, we pursued a simplistic in silico discovery program aiming for the identification of enzymes with an internal backbone hydrogen bond acceptor that could act as a reaction specificity shifter in hydrolytic enzymes. Focusing on stabilization of the rate limiting transition state of nitrogen inversion, our mechanism-guided approach predicted that the acyl hydrolase patatin of the α/β phospholipase fold would display reaction promiscuity. Experimental analysis confirmed previously unknown high amidase over esterase activity displayed by the first described esterase machinery with a protein backbone hydrogen bond acceptor to the reacting NH-group of amides. The present work highlights the importance of a fundamental understanding of enzymatic reactions and its potential for predicting enzyme scaffolds displaying alternative chemistries amenable to further evolution by enzyme engineering.

  14. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf


    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. PMID:25684099

  15. Directed evolution of a thermostable esterase

    Giver, Lori; Gershenson, Anne; Freskgard, Per-Ola; Arnold, Frances H


    We have used in vitro evolution to probe the relationship between stability and activity in a mesophilic esterase. Previous studies of these properties in homologous enzymes evolved for function at different temperatures have suggested that stability at high temperatures is incompatible with high catalytic activity at low temperatures through mutually exclusive demands on enzyme flexibility. Six generations of random mutagenesis, recombination, and screening stabilized Bacillus subtilis p-nit...

  16. Cholesterol esterase activity of human intestinal mucosa

    It has been suggested that cholesterol absorption in humans is dependent on bile acid pool composition and that expansion of the cholic acid pool size is followed by an increase of the absorption values. Similar observations were reported in rats. In the present study, therefore, the authors investigated some general properties of human intestinal cholesterol esterase, with particular emphasis on the effect of bile acids on this enzymatic activity. Twenty-nine segments of small intestine were taken during operations; the enzymatic activity was studied by using mucosal homogenate as a source of enzyme and oleic acid, cholesterol, and 14C-labeled cholesterol as substrates. The time-activity relationship was linear within the first two hours; optimal pH for esterification ranged between 5 and 6.2. There was little difference between the esterifying activity of the jejunal and ileal mucosa. Esterification of cholesterol was observed with all the investigated fatty acids but was maximal with oleic acid. Bile acids did not affect cholesterol esterase activity when present in the incubation mixture at 0.1 and 1.0 mM; the enzymatic activity, however, was significantly inhibited when bile acids were added at 20 mM. In conclusion, this study has shown that the human intestinal mucosa possesses a cholesterol esterase activity; at variance with the rat, however, the human enzyme does not seem to be stimulated by trihydroxy bile acids

  17. Carbohydrate Metabolism Disorders

    ... in your body tissues. If you have a metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally your enzymes break carbohydrates down into glucose ( ...

  18. Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation.

    Bakkers, Mark J G; Zeng, Qinghong; Feitsma, Louris J; Hulswit, Ruben J G; Li, Zeshi; Westerbeke, Aniek; van Kuppeveld, Frank J M; Boons, Geert-Jan; Langereis, Martijn A; Huizinga, Eric G; de Groot, Raoul J


    Hemagglutinin-esterases (HEs) are bimodular envelope proteins of orthomyxoviruses, toroviruses, and coronaviruses with a carbohydrate-binding "lectin" domain appended to a receptor-destroying sialate-O-acetylesterase ("esterase"). In concert, these domains facilitate dynamic virion attachment to cell-surface sialoglycans. Most HEs (type I) target 9-O-acetylated sialic acids (9-O-Ac-Sias), but one group of coronaviruses switched to using 4-O-Ac-Sias instead (type II). This specificity shift required quasisynchronous adaptations in the Sia-binding sites of both lectin and esterase domains. Previously, a partially disordered crystal structure of a type II HE revealed how the shift in lectin ligand specificity was achieved. How the switch in esterase substrate specificity was realized remained unresolved, however. Here, we present a complete structure of a type II HE with a receptor analog in the catalytic site and identify the mutations underlying the 9-O- to 4-O-Ac-Sia substrate switch. We show that (i) common principles pertaining to the stereochemistry of protein-carbohydrate interactions were at the core of the transition in lectin ligand and esterase substrate specificity; (ii) in consequence, the switch in O-Ac-Sia specificity could be readily accomplished via convergent intramolecular coevolution with only modest architectural changes in lectin and esterase domains; and (iii) a single, inconspicuous Ala-to-Ser substitution in the catalytic site was key to the emergence of the type II HEs. Our findings provide fundamental insights into how proteins "see" sugars and how this affects protein and virus evolution. PMID:27185912

  19. Toxic action of organophosphorus compounds and esterase inhibition in houseflies

    Asperen, K. van


    The paper deals with investigations on the inhibition in vivo of the cholin-esterase and the aliesterase in houseflies poisoned by treatment with organophosphorus insecticides. The kinetics of the inhibition of esterases by DDVP, paraoxon and diazoxon in the presence and in the absence of substrate

  20. Non-specific esterases in partly mineralized bovine enamel

    Moe, D; Kirkeby, S


    esterases were shown to be present in the enamel matrix. The enzymes showed highest activity at pH 6.5-7.5. In sections a strong reaction was observed in the secretory ameloblasts. The esterases may be proteolytic enzymes that participate in the degradation of the matrix proteins....

  1. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst.

    Jose L S Lopes

    Full Text Available Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required.

  2. Structural analysis of thermostabilizing mutations of cocaine esterase

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan; Ko, Mei-Chuan; Macdonald, Joanne; Tamburi, Patricia; Yoon, Dan; Landry, Donald M.; Woods, James H.; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K. (Michigan); (Columbia); (Kentucky)


    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstable at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.

  3. Carbohydrates in Supramolecular Chemistry.

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H


    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed. PMID:26702928

  4. DNA display of glycoconjugates to emulate oligomeric interactions of glycans.

    Novoa, Alexandre; Winssinger, Nicolas


    Glycans (carbohydrate portion of glycoproteins and glycolipids) frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed. PMID:26113879

  5. Pectin methyl esterase activity in apple and orange pulps

    The results of pectin methyl esterase activity from apple, orange pulp and orange peel depending of ph and temperature are discussed. It's shown that the methyl esterase activity form apple and orange pulps higher in range of temperatures from +37...+60digC. The analysis of dependence of its activity from ph has shown that in both case the enzyme activity increase with increase of ph

  6. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    Mohamed, Yasmine M.


    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  7. Production of Single-Chain Variable-Fragments against Carbohydrate Antigens

    Yoko Fujita-Yamaguchi


    The production of human single-chain variable-fragments (scFvs) against carbohydrate antigens by phage display technology is seemingly a logical strategy towards the development of antibody therapeutics, since carbohydrates are self-antigens. Panning and screening of phages displaying human scFvs using a variety of neoglycolipids presenting structurally-defined carbohydrates resulted in a number of candidate phage clones as judged by cautious evaluation of DNA sequences and specific binding t...

  8. Insulin and carbohydrate dysregulation.

    Gelato, Marie C


    Patients with human immunodeficiency virus receiving highly active antiretroviral therapy (HAART) may experience abnormal body composition changes as well as metabolic abnormalities, including dyslipidemia, increases in triglycerides, low high-density lipoprotein cholesterol levels, and abnormal carbohydrate metabolism, ranging from insulin resistance with and without glucose intolerance to frank diabetes. Whether the body composition changes (i.e., increased visceral adiposity and fat wasting in the peripheral tissues) are linked to abnormalities in carbohydrate metabolism is unclear. The use of HAART with and without therapy with protease inhibitors (PIs) is related to carbohydrate abnormalities and changes in body composition. Regimens that include PIs appear to have a higher incidence of insulin resistance (up to 90%) and diabetes mellitus (up to 40%). The etiology of these abnormalities is not well understood; what is known about insulin and carbohydrate dysregulation with HAART is discussed. PMID:12652377

  9. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    Dominik Szwajgier; Anna Jakubczyk


    Background. Ferulic acid esterases (FAE, EC, also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB) strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflo...

  10. Diarrhea caused by carbohydrate malabsorption.

    Hammer, Heinz F; Hammer, Johann


    This article will focus on the role of the colon in the pathogenesis of diarrhea in carbohydrate malabsorption or physiologically incomplete absorption of carbohydrates, and on the most common manifestation of carbohydrate malabsorption, lactose malabsorption. In addition, incomplete fructose absorption, the role of carbohydrate malabsorption in other malabsorptive diseases, and congenital defects that lead to malabsorption will be covered. The article concludes with a section on diagnostic tools to evaluate carbohydrate malabsorption. PMID:22917167

  11. Heterologous expression of a fungal sterol esterase/lipase in different hosts: Effect on solubility, glycosylation and production.

    Vaquero, María Eugenia; Barriuso, Jorge; Medrano, Francisco Javier; Prieto, Alicia; Martínez, María Jesús


    Ophiostoma piceae secretes a versatile sterol-esterase (OPE) that shows high efficiency in both hydrolysis and synthesis of triglycerides and sterol esters. This enzyme produces aggregates in aqueous solutions, but the recombinant protein, expressed in Komagataella (synonym Pichia) pastoris, showed higher catalytic efficiency because of its higher solubility. This fact owes to a modification in the N-terminal sequence of the protein expressed in Pichia pastoris, which incorporated 4-8 additional amino acids, affecting its aggregation behavior. In this study we present a newly engineered P. pastoris strain with improved protein production. We also produced the recombinant protein in the yeast Saccharomyces cerevisiae and in the prokaryotic host Escherichia coli, corroborating that the presence of these N-terminal extra amino acids affected the protein's solubility. The OPE produced in the new P. pastoris strain presented the same physicochemical properties than the old one. An inactive form of the enzyme was produced by the bacterium, but the recombinant esterase from both yeasts was active even after its enzymatic deglycosylation, suggesting that the presence of N-linked carbohydrates in the mature protein is not essential for enzyme activity. Although the yield in S. cerevisiae was lower than that obtained in P. pastoris, this work demonstrates the importance of the choice of the heterologous host for successful production of soluble and active recombinant protein. In addition, S. cerevisiae constitutes a good engineering platform for improving the properties of this biocatalyst. PMID:25939548

  12. Comparison of docking methods for carbohydrate binding in calcium-dependent lectins and prediction of the carbohydrate binding mode to sea cucumber lectin CEL-III

    Nurisso, Alessandra; Kozmon, Stanislav; Imberty, Anne


    Abstract Lectins display a variety of strategies for specific recognition of carbohydrates. In several lectin families from different origin, one or two calcium ions are involved in the carbohydrate binding site with direct coordination of the sugar hydroxyl groups. Our work implied a molecular docking study involving a set of bacterial and animal calcium-dependant lectins in order to compare the ability of three docking programs to reproduce key carbohydrate-metal interactions. Fl...

  13. Biochemical Properties of Two Cinnamoyl Esterases Purified from a Lactobacillus johnsonii Strain Isolated from Stool Samples of Diabetes-Resistant Rats▿

    Lai, Kin Kwan; Lorca, Graciela L.; Gonzalez, Claudio F.


    Cinnamic acids (i.e., ferulic and caffeic acids) that are esterified to the vegetable cell walls should be enzymatically released to be absorbed in a mammal's intestines. A low dosage of ferulic acid in rodent diets stimulates insulin production and alleviates symptoms caused by diabetes (M. Sri Balasubashini, R. Rukkumani, and V. P. Menon, Acta Diabetol. 40:118-122, 2003). Several lactic acid bacteria are able to display ferulic acid esterase (FAE) activity, suggesting that their probiotic a...

  14. Auditory Display

    volume. The conference's topics include auditory exploration of data via sonification and audification; real time monitoring of multivariate date; sound in immersive interfaces and teleoperation; perceptual issues in auditory display; sound in generalized computer interfaces; technologies supporting...

  15. Activity of pectin methyl esterase during blanching of peaches

    Tijskens, L.M.M.; Rodis, P.S.; Hertog, M.L.A.T.M.; Proxenia, N.; Dijk, van C.


    The activity of pectin methyl esterase (PE) in peaches during blanching treatments was modelled and analyzed. It was postulated that the enzyme exists in two configurations, one bound and one soluble. The bound configuration can be converted into the soluble configuration. These two configurations h

  16. Esterase polymorphism marking cultivars of Manihot esculenta, Crantz

    Adriana Gazoli Resende


    Full Text Available Esterase isozymes were used to detected substrate-preference polymorphism in twenty cultivars of Manihot esculenta, and to show cultivar-specific variation of this species. A relatively complex extraction solution of proteins from leaves was needed to show a larger number of esterase isozymes. Similarity between cultivars from six groups ranged from 51 to 96%. The cultivars identified by the same name seemed to be biochemically different regarding esterase isozymes. Esterase isozyme electrophoretic patterns could, therefore, be used to discriminate the cultivars identified by the same name, and to monitor the vegetative propagation of cultivars maintained in the germplasm collection. In breeding strategies, isoesterase analysis could be used to avoid intercrossing between the similar genotypes.Isoenzimas esterases foram usadas no presente estudo, para detectar polimorfismos específicos para diferentes substratos em vinte cultivares de Manihot esculenta, e para mostrar variações específicas de cultivares nesta espécie. Os diferentes cultivares de M. esculenta tem sido mantidos na coleção de germoplasma do Departamento de Agronomia da Universidade Estadual de Maringá (Maringá, PR, e foram provenientes de cultivares tradicionais coletados nas regiões sudoeste e noroeste do Estado. Foi necessário a utilização de uma solução de extração de proteínas relativamente mais complexa, para evidenciar um maior número de isoenzimas esterases. A similaridade entre os cultivares variou de 51 a 96%. Cultivares identificados pelo mesmo nome parecem ser bioquimicamente diferentes para as isoenzimas esterases. Os padrões eletroforéticos das isoesterases podem, portanto, serem usados para discriminar os cultivares que são identificados pelo mesmo nome, e para monitorar a propagação vegetativa dos cultivares mantidos na coleção de germoplasma. A análise das isoesterases pode também ser usada para evitar cruzamentos entre genótipos mais

  17. Carbohydrates and dietary fiber.

    Suter, P M


    The most widely spread eating habit is characterized by a reduced intake of dietary fiber, an increased intake of simple sugars, a high intake of refined grain products, an altered fat composition of the diet, and a dietary pattern characterized by a high glycemic load, an increased body weight and reduced physical activity. In this chapter the effects of this eating pattern on disease risk will be outlined. There are no epidemiological studies showing that the increase of glucose, fructose or sucrose intake is directly and independently associated with an increased risk of atherosclerosis or coronary heart disease (CHD). On the other hand a large number of studies has reported a reduction of fatal and non-fatal CHD events as a function of the intake of complex carbohydrates--respectively 'dietary fiber' or selected fiber-rich food (e.g., whole grain cereals). It seems that eating too much 'fast' carbohydrate [i.e., carbohydrates with a high glycemic index (GI)] may have deleterious long-term consequences. Indeed the last decades have shown that a low fat (and consecutively high carbohydrate) diet alone is not the best strategy to combat modern diseases including atherosclerosis. Quantity and quality issues in carbohydrate nutrient content are as important as they are for fat. Multiple lines of evidence suggest that for cardiovascular disease prevention a high sugar intake should be avoided. There is growing evidence of the high impact of dietary fiber and foods with a low GI on single risk factors (e.g., lipid pattern, diabetes, inflammation, endothelial function etc.) as well as also the development of the endpoints of atherosclerosis especially CHD. PMID:16596802

  18. [Carbohydrates and fiber].

    Lajolo, F M; de Menezes, E W; Filisetti-Cozzi, T M


    Dietary carbohydrates comprise two fractions that may be classified as digestible, and which are useful as energy sources (simple and complex carbohydrates) and fiber, which is presumed to be of no use to the human body. There are insufficient epidemiologic data on the metabolic effects of simple carbohydrates and it is not advisable to make quantitative recommendations of intake. It is questionable to recommend in developing countries that a fixed proportion of dietary energy be derived from simple sugars, due to the high prevalence of deficient energy intake, cultural habits, and regional differences in food intake and physical activity. In relation to recommendations of complex carbohydrates, it should be considered that their absorption is influenced by many factors inherent to the individual and to the foods. Fiber is defined as a series of different substances derived from tissue structures, cellular residues and undigested chemical substances that may be partially utilized after intestinal bacteria have acted on them. There is not a clear definition of the chemical composition of fiber, but it consists mainly of polysaccharides (such as cellulose, hemicellulose and pectins), lignin and end products of the interactions of various food components. The effects of fiber, such as control of food intake, regulation of gastrointestinal transit, post-prandial blood concentrations of cholesterol, glucose and insulin, flatulence and alterations in nutrient bioavailability are due to various physical properties inherent to its chemical components. Impairment of nutrient absorption may be harmful, mainly among populations whose food intake is lower than their energy needs, and with a high fiber content. This may be particularly important in pregnant women, growing children and the elderly, and should be considered when making nutrient recommendations. A precise knowledge of fiber is also important to calculate the real energy value of foods, mainly for two reasons: 1

  19. Leucocyte esterase in the rapid diagnosis of paediatric septic arthritis.

    Kelly, E G


    Septic arthritis may affect any age group but is more common in the paediatric population. Infection is generally bacterial in nature. Prompt diagnosis is crucial, as delayed treatment is associated with lifelong joint dysfunction. A clinical history and application of Kocher\\'s criteria may indicate that there is a septic arthritis. However, definitive diagnosis is made on culture of septic synovial fluid. The culture process can take over 24h for the initial culture to yield bacterial colonies. Leucocyte esterase is released by leucocytes at the site of an infection. We hypothesise that leucocyte esterase can be utilized in the rapid diagnosis of septic arthritis and shorten the time to decisive treatment whilst simultaneously decreasing unnecessary treatment of non-septic joints.

  20. Overexpression of esterase D in kidney from trisomy 13 fetuses

    Loughna, S.; Moore, G. (Institute of Obstetrics and Gynaecology, London (United Kingdom)); Gau, G.; Blunt, S. (Cytogenetics Lab., London (United Kingdom)); Nicolaides, K. (King' s College School of Medicine and Dentistry, London (United Kingdom))


    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  1. Display hardware

    To appreciate the limitations and possibilities of computer graphics it is necessary to have some acquaintance with the available technology. The aim of this chapter is to mention briefly the different display types and their 'ball-park' price ranges. It must be stressed that prices change rapidly, and so those quoted here are only intended to give an idea of the cost at the time of writing.

  2. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals

    Andreasen, Mette Findal; Kroon, P A; Williamson, G;


    Hydroxycinnamic acids are effective antioxidants and are abundant components of plant cell walls, especially in cereal bran. For example, wheat and rye brans are rich sources of the hydroxycinnamates ferulic acid, sinapic acid, and p-coumaric acid. These phenolics are part of human and animal diets......-free extracts obtained from human duodenum, jejunum, and ileum efficiently hydrolyzed various hydroxycinnamoyl esters, providing the first evidence of human cinnamoyl esterase(s). This study first demonstrates the release by human colonic esterase(s) (mostly of microbial origin) of sinapic acid and p......-coumaric acid from rye and wheat brans. Hydrolysis by intestinal esterase(s) is very likely the major route for release of antioxidant hydroxycinnamic acids in vivo. Udgivelsesdato: 2001-Nov...

  3. Inhibition of Pectin Methyl Esterase Activity By Green Tea Catechins

    Sagi, Irit; Lewis, Kristin; Tworowski, Dmitry; Shahar, Chen; Selzer, Tzvia


    Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin ...

  4. Overexpression of esterase D in kidney from trisomy 13 fetuses.

    Loughna, S; P. Bennett; Gau, G; K. Nicolaides; Blunt, S; Moore, G


    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses a...

  5. A new esterase EstD2 isolated from plant rhizosphere soil metagenome.

    Lee, Myung Hwan; Hong, Kyung Sik; Malhotra, Shweta; Park, Ji-Hye; Hwang, Eul Chul; Choi, Hong Kyu; Kim, Young Sup; Tao, Weixin; Lee, Seon-Woo


    Soil metagenome constitutes a reservoir for discovering novel enzymes from the unculturable microbial diversity. From three plant rhizosphere metagenomic libraries comprising a total of 142,900 members of recombinant plasmids, we obtained 14 recombinant fosmids that exhibited lipolytic activity. A selected recombinant plasmid, pFLP-2, which showed maximum lipolytic activity, was further analyzed. DNA sequence analysis of the subclone in pUC119, pELP-2, revealed an open reading frame of 1,191 bp encoding a 397-amino-acid protein. Purified EstD2 exhibited maximum enzymatic activity towards p-nitrophenyl butyrate, indicating that it is an esterase. Purified EstD2 showed optimal activity at 35 °C and at pH 8.0. The K(m) and K(cat) values were determined to be 79.4 μM and 120.5/s, respectively. The esterase exhibited an increase in enzymatic activity in the presence of 15% butanol and 15% methanol. Phylogenetic analysis revealed that the lipolytic protein EstD2 may be a member of a novel family of lipolytic enzymes. Several hypothetical protein homologs of EstD2 were found in the database. A hypothetical protein from Phenylobacterium zucineum HLK1, a close homolog of EstD2, displayed lipolytic activity when the corresponding gene was expressed in Escherichia coli. Our results suggest that the other hypothetical protein homologs of EstD2 might also be members of this novel family. PMID:20683720

  6. 3 Benzyl-6-chloropyrone: a suicide inhibitor of cholesterol esterase

    Cholesterol, absorbed from the intestine, appears in lymph as the ester. Cholesterol esterase is essential for this process, since depletion of the enzyme blocks and repletion restores, absorption. Selective inhibitors of cholesterol esterase may thus prove useful in reducing cholesterol uptake. A series of potential suicide substrates were synthesized which, following cleavage by the enzyme, would attack the putative nucleophile in the active site. One of these, 3-benzyl-6-chloropyrone (3BCP), inhibited both synthesis and hydrolysis of 14C-cholesteryl oleate with an I50 of approximately 150 μM. The inactivation was time-dependent and characteristic of a suicide mechanism. The α pyrone structure (lactone analog) is cleaved by a serine-hydroxyl in the active site. This generates an enoyl chloride which inactivates the imidazole believed to play a part in the catalytic function of the enzyme. Inhibition by 3BCP is selective for cholesterol esterase. The activity of pancreatic lipase as not affected by concentrations up to 1 mM

  7. Insecticidal properties of genetically engineered baculoviruses expressing an insect juvenile hormone esterase gene.

    Eldridge, R; O'Reilly, D R; Hammock, B D; Miller, L K


    Exploring the possibility of enhancing the properties of baculoviruses as biological control agents of insect pests, we tested the effect of expressing an insect gene (jhe) encoding juvenile hormone esterase. Juvenile hormone esterase inactivates juvenile hormone, which regulates the outcome of an insect molt. A cDNA encoding the juvenile hormone esterase of Heliothis virescens was inserted into the genome of Autographa californica nuclear polyhedrosis virus such that the gene was expressed u...

  8. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu


    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine ester...

  9. Novel ferulic acid esterases from Bifidobacterium sp. produced on selected synthetic and natural carbon sources

    Dominik Szwajgier; Anna Dmowska


    Background. Ferulic acid esterases (or feruloyl esterases), a common group of hydrolases are very well distributed in the plant kongdom. The fungal feruloyl esterases were very extensively studied whereas probiotic lactic acid bacteria as the source of this enzyme were generally omitted. Free phenolic acids – strong antioxidants can be released from the dietary fiber by the action of intestinal lactic acid bacteria. The aim of this study was to examine the three probiotic Bifi...

  10. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster

    Heidrich, John E.; Contos, Linda M; Hunsaker, Lucy A; Deck, Lorraine M.; Vander Jagt, David L.


    Background Pancreatic cholesterol esterase has three proposed functions in the intestine: 1) to control the bioavailability of cholesterol from dietary cholesterol esters; 2) to contribute to incorporation of cholesterol into mixed micelles; and 3) to aid in transport of free cholesterol to the enterocyte. Inhibitors of cholesterol esterase are anticipated to limit the absorption of dietary cholesterol. Results The selective and potent cholesterol esterase inhibitor 6-chloro-3-(1-ethyl-2-cycl...

  11. Effects of Carbohydrate Consumption Case Study: carbohydrates in Bread

    Neacsu N.A.


    Full Text Available Carbohydrates perform numerous roles in living organisms; they are an important source of energy. The body uses carbohydrates to make glucose which is the fuel that gives it energy and helps keep everything going. However, excess carbohydrate consumption has negative health effects. Bread is a basic product in our nutrition and it also is a product with a high content of carbohydrates. So, it is important to find out more information on bread and on the recommended bread type best for consumption.

  12. Isozymic variations in specific and nonspecific esterase and its thermostability in silkworm, Bombyx mori L.

    Patnaik, Bharat Bhusan; Biswas, Tapati Datta; Nayak, Sandeepta Kumar; Saha, A K; Majumdar, M K


    Esterase isozymic variations were documented in the haemolymph of developed multivoltine and bivoltine silkworm breeds during unfavorable seed crop seasons of May - September using á- and â- napthylacetate separately to identify specific and nonspecific esterase having thermotolerant potentiality. Variations existed in the isozyme pattern with three bands (Est-2, 3 and 4) in pure Nistari race and other developed multivoltine and bivoltine breeds. Est-2 and Est-3 were non-specific esterases as they were observed when both á- and â-napthylacetate was used as substrates separately. Est-4 band was observed only with á-napthylacetate as substrate and was therefore confirmed to be specific á-esterase band in the haemolymph of silkworm, Bombyx mori L. Zymograms showed that the non-specific esterase band (Est-3) with R1 of 0.43 and specific á-esterase band (Est-4) with R(f) of 0.32 predominately withstood a temperature of 70 +/- 2 degrees C for a duration of 10 min and were confirmed as thermostable esterases in haemolymph of silkworm, Bombyx mori L. This also categorized the presence of thermostable esterases in developed multivoltine and bivoltine breeds of silkworm, even though the qualitative activity was more in the former than the latter. The qualitative presence of thermostable esterases and their activity could be adopted as an indicative biochemical marker in relation to thermotolerance in silkworm. PMID:23734447

  13. Organizing multivalency in carbohydrate recognition.

    Müller, Christian; Despras, Guillaume; Lindhorst, Thisbe K


    The interactions of cell surface carbohydrates as well as of soluble glycoconjugates with their receptor proteins rule fundamental processes in cell biology. One of the supramolecular principles underlying and regulating carbohydrate recognition is multivalency. Many multivalent glycoconjugates have therefore been synthesized to study multivalency effects operative in glycobiology. This review is focused on smaller multivalent structures such as glycoclusters emphasizing carbohydrate-centered and heteromultivalent glycoconjugates. We are discussing primary, secondary and tertiary structural aspects including approaches to organize multivalency. PMID:27146554

  14. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea

    Peng Qing


    Full Text Available Abstract Background Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth Results A metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1, containing a novel esterase (Est_p1, was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4 as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1 and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure. Conclusions Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters.

  15. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Lasker, Denise Ann


    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  16. Dietary carbohydrates and endurance exercise.

    Evans, W J; Hughes, V A


    Antecedent diet can greatly influence both substrate utilization during exercise and exercise performance itself. A number of studies have convincingly demonstrated that short-term (three to seven days) adaptation to a low carbohydrate diet results in greatly reduced liver and muscle glycogen stores. While carbohydrate utilization after such a diet is reduced, the limited glycogen stores can severely limit endurance exercise performance. High carbohydrate diets on the other hand expand carbohydrate stores which can limit performance. However, long-term adaptation to a low carbohydrate diet can greatly alter muscle and whole body energy metabolism to drastically limit the oxidation of limited carbohydrate stores with no adverse effect on performance. Glycogen loading techniques can result in supercompensation of muscle stores. Exercise induced depletion of muscle glycogen is the most important single factor in this phenomenon. Following the exercise a low carbohydrate diet for two to three days after which a high carbohydrate diet is eaten seemingly has the same effect on increasing muscle glycogen stores as simply eating a high carbohydrate diet. The form of the dietary carbohydrate during glycogen loading should be high in complex carbohydrates; however, the type of dietary starch that effects the greatest rate of resynthesis has not been investigated. Rapid resynthesis of glycogen following exercise is at least in part due to increased insulin sensitivity. The enhanced glucose transport caused by the increased sensitivity provides substrate for glycogen synthase. How rapidly this enhanced sensitivity returns to pre-exercise levels in humans is uncertain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3993621

  17. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.

    McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe


    Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients. PMID:25817019

  18. Carbohydrates and Diabetes (For Parents)

    ... of diet foods. These foods may contain extra sugar as a substitute for fat calories. Try to include your child or teen as you evaluate and select healthy carbohydrate-containing foods. With ... blood sugar. By taking a smart approach to balancing carbohydrates, ...

  19. Catalytic Conversion of Carbohydrates

    Osmundsen, Christian Mårup

    a renewable route to aromatics. The conversion of biomass by high temperature processes is a desirable prospect due to the high volumetric production rates which can be achieved, and the ability of these types of processes to convert a wide range of substrates. Current processes however typically...... process could prove to be an efficient initial conversion step in the utilization of biomass for chemicals production. The shift from an oil based chemical industry to one based on renewable resources is bound to happen sooner or later, however the environmental problems associated with the burning of...... production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were...

  20. Extraction systems for isolating esterases having interfacial adsorption

    Alberto del Monte Martínez


    Full Text Available Resumen: En el presente trabajo se optimizaron las condiciones de extracción de esterasas con actividad en interfaces, a partir de la anémona marina Stichodactyla helianthus y del camarón peneido Litopenaeus vannamei. Las esterasas interfaciales, cuya presencia en estas especies había sido informada previamente, presentan características funcionales que las hacen muy atractivas para su empleo industrial. Los homogenados de los animales se trataron con los detergentes Tritón X-100, Tween 20 y Tween 80 en dos concentraciones cada uno: la Concentración Micelar Crítica (CMC y la mitad de ésta. Además se empleó NaCl 0,5 mol/L y n-butanol a las proporciones 5, 10 y 20%. Cada variante fue comparada con el método tradicional de extracción con agua destilada, que fue tomado como control. Los mejores resultados se obtuvieron empleando n-butanol al 20%, para recuperar las actividades esterasa y fosfolipasa, y al 10%, en el aislamiento de la actividad lipasa. La efectividad de este solvente en el aislamiento de estas enzimas con afinidad por las interfaces lípido/agua, pudiera estar dada por su capacidad para romper los agregados entre estas moléculas y causar la desorción de las mismas a los restos de membrana y tejidos presentes en la preparación.Palabras clave: activación interfacial, esterasas interfaciales, lipasas, Stichodactyla helianthus, Litopenaeus vannamei.interfacial activation, interfacial esterase, lipase, Stichodactyla helianthus, Litopenaeus vannamei.Abstract: Interfacial esterases present great functional versatility, making them very attractive molecules for industrial applications. The conditions for extracting interfacial esterases previously detected in the sea anemone Stichodactyla helianthus and the shrimp Litopenaeus vannamei were optimised in this work. Animal homogenates were treated with Triton X-100, Tween 20 and Tween 80 detergents at two different concentrations: critical micellar concentration (CMC and half

  1. A computational approach for exploring carbohydrate recognition by lectins in innate immunity

    Mark eAgostino


    Full Text Available Recognition of pathogen-associated carbohydrates by a broad range of carbohydrate binding proteins is central to both adaptive and innate immunity. A large functionally diverse group of mammalian carbohydrate binding proteins are lectins, which often display calcium-dependent carbohydrate interactions mediated by one or more carbohydrate recognition domains. We report here the application of molecular docking and site mapping to study carbohydrate recognition by several lectins involved in innate immunity or in modulating adaptive immune responses. It was found that molecular docking programs can identify the correct carbohydrate binding mode, but often have difficulty in ranking it as the best pose. This is largely attributed to the broad and shallow nature of lectin binding sites, and the high flexibility of carbohydrates. Site mapping is very effective at identifying lectin residues involved in carbohydrate recognition, especially with cases that were found to be particularly difficult to characterize via molecular docking. This study highlights the need for alternative strategies to examine carbohydrate-lectin interactions, and specifically demonstrates the potential for mapping methods to extract additional and relevant information from the ensembles of binding poses generated by molecular docking.

  2. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.

    Cantarel, Brandi L; Coutinho, Pedro M; Rancurel, Corinne; Bernard, Thomas; Lombard, Vincent; Henrissat, Bernard


    The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL: PMID:18838391

  3. Universal Numeric Segmented Display

    Azad, Md Abul kalam; Kamruzzaman, S M


    Segmentation display plays a vital role to display numerals. But in today's world matrix display is also used in displaying numerals. Because numerals has lots of curve edges which is better supported by matrix display. But as matrix display is costly and complex to implement and also needs more memory, segment display is generally used to display numerals. But as there is yet no proposed compact display architecture to display multiple language numerals at a time, this paper proposes uniform display architecture to display multiple language digits and general mathematical expressions with higher accuracy and simplicity by using a 18-segment display, which is an improvement over the 16 segment display.

  4. Transition metals in carbohydrate chemistry

    Madsen, Robert


    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  5. Carbohydrates, Sugar, and Your Child

    ... are: simple carbohydrates (or simple sugars): these include fructose, glucose, and lactose, which also are found in nutritious ... look at the ingredient list for sugar, corn syrup or sweetener, dextrose, fructose, honey, or molasses, to name just a few. ...

  6. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library.

    Petrovskaya, Lada E; Novototskaya-Vlasova, Ksenia A; Spirina, Elena V; Durdenko, Ekaterina V; Lomakina, Galina Yu; Zavialova, Maria G; Nikolaev, Evgeny N; Rivkina, Elizaveta M


    As a result of construction and screening of a metagenomic library prepared from a permafrost-derived microcosm, we have isolated a novel gene coding for a putative lipolytic enzyme that belongs to the hormone-sensitive lipase family. It encodes a polypeptide of 343 amino acid residues whose amino acid sequence displays maximum likelihood with uncharacterized proteins from Sphingomonas species. A putative catalytic serine residue of PMGL2 resides in a new variant of a recently discovered GTSAG sequence in which a Thr residue is replaced by a Cys residue (GCSAG). The recombinant PMGL2 was produced in Escherichia coli cells and purified by Ni-affinity chromatography. The resulting protein preferably utilizes short-chain p-nitrophenyl esters (C4 and C8) and therefore is an esterase. It possesses maximum activity at 45°C in slightly alkaline conditions and has limited thermostability at higher temperatures. Activity of PMGL2 is stimulated in the presence of 0.25-1.5 M NaCl indicating the good salt tolerance of the new enzyme. Mass spectrometric analysis demonstrated that N-terminal methionine in PMGL2 is processed and cysteine residues do not form a disulfide bond. The results of the study demonstrate the significance of the permafrost environment as a unique genetic reservoir and its potential for metagenomic exploration. PMID:26929439

  7. A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis.

    Wu, Gaobing; Zhang, Xiangnan; Wei, Lu; Wu, Guojie; Kumar, Ashok; Mao, Tao; Liu, Ziduo


    Lipolytic enzymes with unique physico-chemical characteristics are gaining more attention for their immense industrial importance. In this study, a novel lipolytic enzyme (Est11) was cloned from the genomic library of a marine bacterium Psychrobacter pacificensis. The enzyme was expressed in Escherichia coli and purified to homogeneity with molecular mass of 32.9kDa. The recombinant Est11 was able to hydrolyze short chain esters (C2-C8) and displayed an optimum activity against butyrate ester (C4). The optimal temperature and pH were 25°C and 7.5, respectively. Est11 retained more than 70% of its original activity at 10°C, suggesting that it was a cold-active esterase. The enzyme was highly active and stable at high concentration of NaCl (5M). Further, incubation with ethanol, isopropanol, propanediol, DMSO, acetonitrile, and glycerol rendered remarkable positive effects on Est11 activity. Typically, even at the concentration of 30% (v/v), ethanol, DMSO, and propanediol increased Est11 activity by 1.3, 2.0, and 2.4-folds, respectively. This new robust enzyme with remarkable properties like cold-adaptability, exceptional tolerance to salt and organic solvents provides us a promising candidate to meet the needs of some harsh industrial processes. PMID:26231332

  8. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K. (Michigan)


    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  9. Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae

    Carvalho Vanda Marilza de


    Full Text Available Polyacrylamide gel electrophoresis system (PAGE and inhibition tests for biochemical characterization of alpha- and beta-esterases were used to obtain a functional classification of esterases fromAspidosperma polyneuron. The characterization of alpha- and beta-esterases from young leaves of A. polyneuron by the PAGE system showed fourteen esterase isozymes. The differential staining pattern showed that Est-2 isozyme hydrolyzes beta-naphthyl acetate; Est-6, Est-7 and Est-8 isozymes hydrolyze alpha-naphthyl acetate, and Est-1, Est-3, Est-4, Est-5, Est-9, Est-10, Est-11, Est-12, Est-13, and Est-14 isozymes hydrolyze both alpha- and b-naphthyl acetate. Inhibition pattern of a- and beta-esterases showed that Folidol is a more potent inhibitor that Malathion, while Thiamethoxan (an insecticide with organophosphorus-like action acts as an Est-4 and Est-6 inhibitor and induces the appearance of Est-5 and Est-7 isozymes as more intensely stained bands. Inhibition tests showed that OPC insecticides inhibit or activate plant esterases. Thus, plant esterases may be used as bioindicators to detect the presence and toxicity of residues of topically applied insecticides in agriculture and may be valuable for monitoring pollutants in the environment.

  10. Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3(2.

    Guillaume Brault

    Full Text Available The genome sequence of Streptomyces coelicolor A3(2 contains more than 50 genes coding for putative lipolytic enzymes. Many studies have shown the capacity of this actinomycete to store important reserves of intracellular triacylglycerols in nutrient depletion situations. In the present study, we used genome mining of S. coelicolor to identify genes coding for putative, non-secreted esterases/lipases. Two genes were cloned and successfully overexpressed in E. coli as His-tagged fusion proteins. One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters. The purified enzyme displayed optimal activity at 35°C and was cold-active with retention of 25% relative activity at 10°C. Its optimal pH was 8.5-9 but the enzyme kept more than 75% of its maximal activity between pH 7.5 and 10. EstC also showed remarkable tolerance over a wide range of pH values, retaining almost full residual activity between pH 6-11. The enzyme was active toward short-chain p-nitrophenyl esters (C2-C12, displaying optimal activity with the valerate (C5 ester (k(cat/K(m = 737±77 s(-1 mM(-1. The enzyme was also very active toward short chain triglycerides such as triacetin (C2:0 and tributyrin (C4:0, in addition to showing good primary alcohol and organic solvent tolerance, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors.

  11. Understanding display blindness in future display deployments

    Memarovic, Nemanja; Clinch, Sarah; Alt, Florian


    Digital displays are heralded as a transformative medium for communication. However, a known challenge in the domain is that of display blindness in which passersby pay little or no attention to public displays. This phenomenon has been a major motivation for much of the research on public displays. However, since the early observations, little has been done to develop our understanding of display blindness – for example, to identify determining factors or propose appropriate metrics. Hence, ...

  12. Effects of Rosiglitazone and High Fat Diet on Lipase/Esterase Expression in Adipose Tissue

    Shen, Wen‐Jun; Patel, Shailja; Yu, Zaixin; Jue, Dyron; Kraemer, Fredric B.


    A number of intracellular lipase/esterase have been reported in adipose tissue either by functional assays of activity or through proteomic analysis. In the current work, we have studied the relative expression level of 12 members of the lipase/esterase family that are found in white adipose tissue. We found that the relative mRNA levels of ATGL and HSL are the most abundant, being 2–3 fold greater than TGH or ADPN; whereas other intracellular neutral lipase/esterases were expressed at substa...

  13. Carbohydrates Through Animation: Preliminary Step

    J.K. Sugai


    Full Text Available Methods of education are changing, so the educational tools must change too. The developmentof the systems of information and communication gave the opportunity to bring new technology tothe learning process. Modern education needs interactive programs that may be available to theacademic community, in order to ease the learning process and sharing of the knowledge. Then,an educational software on Carbohydrates is being developed using concept maps and FLASH-MXanimations program, and approached through six modules. The introduction of Carbohydrates wasmade by the module Carbohydrates on Nature, which shows the animations gures of a teacher andstudents, visiting a farm, identifying the carbohydrates found in vegetables, animals, and microor-ganisms, integrated by links containing short texts to help understanding the structure and functionof carbohydrates. This module was presented, as pilot experiment, to teachers and students, whichdemonstrated satisfaction, and high receptivity, by using animation and interactivitys program asstrategy to biochemistrys education. The present work is part of the project Biochemistry throughanimation, which is having continuity.

  14. Influenza C virus esterase: analysis of catalytic site, inhibition, and possible function

    The active site serine of the acetylesterase of influenza C virus was localized to amino acid 71 of the hemagglutinin-esterase protein by affinity labeling with 3H-labeled diisopropylfluorophosphate. This serine and the adjacent amino acids (Phe-Gly-Asp-Ser) are part of a consensus sequence motif found in serine hydrolases. Since comparative analysis failed to reveal esterase sequence similarities with other serine hydrolases, the authors suggest that this viral enzyme is a serine hydrolase constituting a new family of serine esterases. Furthermore, they found that the influenza C virus esterase was inhibited by isocoumarin derivatives, with 3,4-dichloroisocoumarin being the most potent inhibitor. Addition of this compound prevented elution of influenza C virus from erythrocytes and inhibited virus infectivity, possibly through inhibition of virus entry into cells


    Adult WhiteLeghorn hens were acutely exposed to 3 dosages of the following organophosphorus esters: mipafox, tri-ortho-tolyl phosphate (TOTP), penyl saligenin phosphate, diisppropylophosphoro-fluoridate (DFP), malathion and dichlorvos. europathy target esterase (NTE) activity was...

  16. Common and Distant Structural Characteristics of Feruloyl Esterase Families from Aspergillus oryzae

    Udatha, D. B. R. K. Gupta; Mapelli, Valeria; Panagiotou, Gianni;


    Background: Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzy...

  17. The search of the target of promotion: Phenylbenzoate esterase activities in hen peripheral nerve

    Certain esterase inhibitors, such as carbamates, phosphinates and sulfonyl halides, do not cause neuropathy as some organophosphates, but they may exacerbate chemical or traumatic insults to axons. This phenomenon is called promotion of axonopathies. Given the biochemical and toxicological characteristics of these compounds, the hypothesis was made that the target of promotion is a phenyl valerate (PV) esterase similar to neuropathy target esterase (NTE), the target of organophosphate induced delayed polyneuropathy. However, attempts to identify a PV esterase in hen peripheral nerve have been, so far, unsuccessful. We tested several esters, other than PV, as substrates of esterases from crude homogenate of the hen peripheral nerve. The ideal substrate should be poorly hydrolysed by NTE but extensively by enzyme(s) that are insensitive to non-promoters, such as mipafox, and sensitive to promoters, such as phenyl methane sulfonyl fluoride (PMSF). When phenyl benzoate (PB) was used as substrate, about 65% of total activity was resistant to the non-promoter mipafox (up to 0.5 mM, 20 min, pH 8.0), that inhibits NTE and other esterases. More than 90% of this resistant activity was sensitive to the classical promoter PMSF (1 mM, 20 min, pH 8.0) with an IC50 of about 0.08 mM (20 min, pH 8.0). On the contrary, the non-promoter p-toluene sulfonyl fluoride caused only about 10% inhibition at 0.5 mM. Several esterase inhibitors including, paraoxon, phenyl benzyl carbamate, di-n-butyl dichlorovinyl phosphate and di-isopropyl fluorophosphate, were tested both in vitro and in vivo for inhibition of this PB activity. Mipafox-resistant PMSF-sensitive PB esterase activity(ies) was inhibited by promoters but not by non promoters and neuropathic compounds

  18. Purification and Characterization of a Feruloyl Esterase from the Intestinal Bacterium Lactobacillus acidophilus

    Wang, Xiaokun; Geng, Xin; Egashira, Yukari; Sanada, Hiroo


    Dietary ferulic acid (FA), a significant antioxidant substance, is currently the subject of extensive research. FA in cereals exists mainly as feruloylated sugar ester. To release FA from food matrices, it is necessary to cleave ester cross-linking by feruloyl esterase (FAE) (hydroxycinnamoyl esterase; EC In the present study, the FAE from a human typical intestinal bacterium, Lactobacillus acidophilus, was isolated, purified, and characterized for the first time. The enzyme was pu...

  19. Hydrolases as Catalysts for Green Chemistry and Industrial Applications - Esterase, Lipase and Phytase

    Gaber, Yasser


    The use of enzymes in industrial applications has been recognised for providing clean processes with minimal impact on the environment. This thesis presents studies on engineering of enzymes and enzyme-based processes in the light of green chemistry and environmental sustainability, and focuses on three hydrolases: esterase, lipase and phytase. The use of esterase has been investigated to provide an alternative clean route for the synthesis of a chiral pharmaceutical compound, ...

  20. Understanding Display Blindness in Future Display Deployments

    Memarovic, Nemanja; Clinch, Sarah; Alt, Florian


    Digital displays are heralded as a transformative medium for communication. However, a known challenge in the domain is that of display blindness in which passersby pay little or no attention to public displays. This phenomenon has been a major motivation for much of the research on public dis- plays. However, since the early observations, little has been done to develop our understanding of display blindness – for example, to identify determining factors or propose appro- priate metrics. Hen...

  1. Using a simple HPLC approach to identify the enzymatic products of UTL-5g, a small molecule TNF-α inhibitor, from porcine esterase and from rabbit esterase

    Swartz, Kenneth; ZHANG, YIGUAN; Valeriote, Frederick; Chen, Ben; SHAW, JIAJIU


    UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. As a prelude to investigating the metabolites of UTL-5g, we set out to identify the enzymatic products of UTL-5g under the treatment of both porcine liver esterase (PLE) and rabbit liver esterase (RLE). First, a number of mixtures made by UTL-5g and PLE were incubated at 25 °C. At predetermined time points, individual ...

  2. Vina-Carb: Improving Glycosidic Angles during Carbohydrate Docking.

    Nivedha, Anita K; Thieker, David F; Makeneni, Spandana; Hu, Huimin; Woods, Robert J


    Molecular docking programs are primarily designed to align rigid, drug-like fragments into the binding sites of macromolecules and frequently display poor performance when applied to flexible carbohydrate molecules. A critical source of flexibility within an oligosaccharide is the glycosidic linkages. Recently, Carbohydrate Intrinsic (CHI) energy functions were reported that attempt to quantify the glycosidic torsion angle preferences. In the present work, the CHI-energy functions have been incorporated into the AutoDock Vina (ADV) scoring function, subsequently termed Vina-Carb (VC). Two user-adjustable parameters have been introduced, namely, a CHI- energy weight term (chi_coeff) that affects the magnitude of the CHI-energy penalty and a CHI-cutoff term (chi_cutoff) that negates CHI-energy penalties below a specified value. A data set consisting of 101 protein-carbohydrate complexes and 29 apoprotein structures was used in the development and testing of VC, including antibodies, lectins, and carbohydrate binding modules. Accounting for the intramolecular energies of the glycosidic linkages in the oligosaccharides during docking led VC to produce acceptable structures within the top five ranked poses in 74% of the systems tested, compared to a success rate of 55% for ADV. An enzyme system was employed in order to illustrate the potential application of VC to proteins that may distort glycosidic linkages of carbohydrate ligands upon binding. VC represents a significant step toward accurately predicting the structures of protein-carbohydrate complexes. Furthermore, the described approach is conceptually applicable to any class of ligands that populate well-defined conformational states. PMID:26744922

  3. A Thermally Stable Form of Bacterial Cocaine Esterase: A Potential Therapeutic Agent for Treatment of Cocaine Abuse

    Brim, Remy L.; Nance, Mark R.; Youngstrom, Daniel W.; Narasimhan, Diwahar; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.; Woods, James H. (Michigan); (Michigan-Med); (Kentucky)


    Rhodococcal cocaine esterase (CocE) is an attractive potential treatment for both cocaine overdose and cocaine addiction. CocE directly degrades cocaine into inactive products, whereas traditional small-molecule approaches require blockade of the inhibitory action of cocaine on a diverse array of monoamine transporters and ion channels. The usefulness of wild-type (wt) cocaine esterase is hampered by its inactivation at 37 C. Herein, we characterize the most thermostable form of this enzyme to date, CocE-L169K/G173Q. In vitro kinetic analyses reveal that CocE-L169K/G173Q displays a half-life of 2.9 days at 37 C, which represents a 340-fold improvement over wt and is 15-fold greater than previously reported mutants. Crystallographic analyses of CocE-L169K/G173Q, determined at 1.6-{angstrom} resolution, suggest that stabilization involves enhanced domain-domain interactions involving van der Waals interactions and hydrogen bonding. In vivo rodent studies reveal that intravenous pretreatment with CocE-L169K/G173Q in mice provides protection from cocaine-induced lethality for longer time periods before cocaine administration than wt CocE. Furthermore, intravenous administration (pretreatment) of CocE-L169K/G173Q prevents self-administration of cocaine in a time-dependent manner. Termination of the in vivo effects of CoCE seems to be dependent on, but not proportional to, its clearance from plasma as its half-life is approximately 2.3 h and similar to that of wt CocE (2.2 h). Taken together these data suggest that CocE-L169K/G173Q possesses many of the properties of a biological therapeutic for treating cocaine abuse but requires additional development to improve its serum half-life.

  4. Characterisation of esterase genes in the genomes of Streptomyces coelicolor A3(2) and Streptomyces avermitilis

    Soror, Sameh


    Esterases and lipases are widely used as industrial enzymes and for the synthesis of chiral drugs. Because of their rich secondary metabolism, Streptomyces species offer a relatively untapped source of interesting esterases and lipases. S. coelicolor and S. avermitilis contain 51 genes annotated as esterases and/or lipases. In this study I have cloned 14 different genes encoding for lipolytic enzymes from S. coelicolor (11 genes) and S. avermitilis (four genes). Some of these genes were over-...

  5. Carbohydrates of human immunodeficiency virus

    Hansen, J E


    Elucidation of the mechanism by which viral infection induces the appearance of carbohydrate neoantigens is highly important. Results from such studies could be expected to be significant for a general understanding of the regulation of glycosylation, and perhaps especially important for the unde...

  6. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R


    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the

  7. Carbohydrates - Multiple Languages: MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Carbohydrates URL of this page: Other topics A-Z A B ...

  8. Displaying gray shades in liquid crystal displays

    T N Ruckmongathan


    Quality of image in a display depends on the contrast, colour, resolution and the number of gray shades. A large number of gray shades is necessary to display images without any contour lines. These contours are due to limited number of gray shades in the display causing abrupt changes in grayness of the image, while the original image has a gradual change in brightness. Amplitude modulation has the capability to display a large number of gray shades with minimum number of time intervals [1,2]. This paper will cover the underlying principle of amplitude modulation, some variants and its extension to multi-line addressing. Other techniques for displaying gray shades in passive matrix displays are reviewed for the sake of comparison.

  9. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation.

    Hunt, Cameron J; Tanksale, Akshat; Haritos, Victoria S


    Ferulic acid esterases (FAE, EC. hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family. PMID:26497017

  10. Gender differences in the activities of aspirin-esterases in rat tissues

    Benedito M.A.C.


    Full Text Available The activities of aspirin (acetylsalicylic acid-esterases were measured in several tissues (liver, kidney, adrenal glands, brain and serum from adult male and female Wistar rats. In males, both aspirin-esterase I (assayed at pH 5.5 and II (assayed at pH 7.4 activities were higher in liver homogenates when compared to females (aspirin-esterase I: males 48.9 ± 4.8 (N = 8 and females 29.3 ± 4.2 (N = 8 nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 41.4 ± 4.1 (N = 8 and females 26.1 ± 4.5 (N = 8 nmol of salicylic acid formed min-1 mg protein-1, P<0.001. In serum, enzyme activity was higher in females than in males (aspirin-esterase I: males 0.85 ± 0.06 (N = 6 and females 1.18 ± 0.11 (N = 6 nmol of salicylic acid formed min-1 mg protein-1; aspirin-esterase II: males 1.03 ± 0.13 (N = 6 and females 1.34 ± 0.11 (N = 6 nmol of salicylic acid formed min-1 mg protein-1, P<0.001. In the other tissues assayed, no statistically significant difference between males and females was found. There were no statistically significant differences when the enzymes were assayed in different phases of the estrous cycle in liver and serum. These results show that the differences in aspirin-esterase activity observed between males and females are not due to the estrous cycle. The gender difference obtained in our study may indicate an involvement of gonadal hormones in the control of the hydrolysis of aspirin. This possibility is currently under investigation.

  11. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release

    Khanna Sunil


    Full Text Available Abstract Background Biosurfactants have been reported to utilize a number of immiscible substrates and thereby facilitate the biodegradation of panoply of polyaromatic hydrocarbons. Olive oil is one such carbon source which has been explored by many researchers. However, studying the concomitant production of biosurfactant and esterase enzyme in the presence of olive oil in the Bacillus species and its recombinants is a relatively novel approach. Results Bacillus species isolated from endosulfan sprayed cashew plantation soil was cultivated on a number of hydrophobic substrates. Olive oil was found to be the best inducer of biosurfactant activity. The protein associated with the release of the biosurfactant was found to be an esterase. There was a twofold increase in the biosurfactant and esterase activities after the successful cloning of the biosurfactant genes from Bacillus subtilis SK320 into E.coli. Multiple sequence alignment showed regions of similarity and conserved sequences between biosurfactant and esterase genes, further confirming the symbiotic correlation between the two. Biosurfactants produced by Bacillus subtilis SK320 and recombinant strains BioS a, BioS b, BioS c were found to be effective emulsifiers, reducing the surface tension of water from 72 dynes/cm to as low as 30.7 dynes/cm. Conclusion The attributes of enhanced biosurfactant and esterase production by hyper-producing recombinant strains have many utilities from industrial viewpoint. This study for the first time has shown a possible association between biosurfactant production and esterase activity in any Bacillus species. Biosurfactant-esterase complex has been found to have powerful emulsification properties, which shows promising bioremediation, hydrocarbon biodegradation and pharmaceutical applications.

  12. Identification of petrogenic produced water components as acetylcholine esterase inhibitors.

    Froment, Jean; Langford, Katherine; Tollefsen, Knut Erik; Bråte, Inger Lise N; Brooks, Steven J; Thomas, Kevin V


    Effect-directed analysis (EDA) was applied to identify acetylcholine esterase (AChE) inhibitors in produced water. Common produced water components from oil production activities, such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and naphthenic acids were tested for AChE inhibition using a simple mixture of PAHs and naphthenic acids. Produced water samples collected from two offshore platforms in the Norwegian sector of the North Sea were extracted by solid phase extraction and fractionated by open-column liquid solid chromatography and high-performance liquid chromatography (HPLC) before being tested using a high-throughput and automated AChE assay. The HPLC fractions causing the strongest AChE inhibition were analysed by gas chromatography coupled to a high-resolution time-of-flight mass spectrometry (GC-HR-ToF-MS). Butylated hydroxytoluene and 4-phenyl-1,2-dihydronaphthalene were identified as two produced water components capable of inhibiting AChE at low concentrations. In order to assess the potential presence of such compounds discharged into aquatic ecosystems, AChE activity in fish tissues was measured. Saithe (Pollachius virens) caught near two offshore platforms showed lower enzymatic activity than those collected from a reference location. Target analysis of saithe did not detected the presence of these two putative AChE inhibitors and suggest that additional compounds such as PAHs, naphthenic acids and yet un-identified compounds may also contribute to the purported AChE inhibition observed in saithe. PMID:27176761

  13. Assessment of erythrocyte acetylcholine esterase activities in painters

    Khan Mohd


    Full Text Available Thirty-five male painters in the age group of 20-50 years occupationally engaged in domestic and commercial painting for 5-12 years having blood lead levels (BLL ≤40 µg/dl were subjected to the determination of acetyl choline esterase (AChE levels both in plasma and red blood cell (RBC lysate. BLL were determined using a graphite furnace atomic absorption spectrometer. The results showed that BLL were 7.7 times higher in the painters as compared with that of the control group. Significant decreases in RBC and plasma AChE were observed in the exposed group in comparison with controls. RBC and plasma AChE showed a decrease of 18.4% and 18%, respectively, in the exposed group. The findings also indicated a significant negative correlation of both RBC and plasma AChE activities with BLL. The marked reduction observed in both RBC and plasma AChE activity may account for disruption of cholinergic function and result in neurotoxicity among the painters.

  14. Inhibition of monocyte esterase activity by organophosphate insecticides.

    Lee, M J; Waters, H C


    Organophosphate insecticides, such as Vapona, Naled, and Rabon, are highly potent inhibitors of an enzyme found in human monocytes. The enzyme, a specific monocyte esterase, could be inhibited by Vapona in blood samples via airborne contamination at levels easily achieved from commercial slow-release insecticide strips. Fifty percent inhibition (I50)--as measured on the Hemalog D (Technicon Corp.)--occurred at solution concentrations of 0.22, 1.5, and 2.6 X 10(-6) g/liter for Vapona, Rabon, and Naled, respectively. Parathion (a thiophosphate) and Baygon (a carbamate) were less potent, with I50 values of 3.7 X 10(-5) and 1.5 X 10(-4) g/liter, respectively. Dursban (another thiophosphate) and Carbaryl (a carbamate) showed only marginal inhibition. Eserine, malathion, nicotine and pyrethrum had no inhibitory effect up to 0.5 g/liter. The occurrence of this effect in vivo has not yet been shown, nor is it clear what the implications of such an effect would be. The inhibition of this enzyme by airborne contaminants, however, may interfere with the proper functioning of the Hemalog D. PMID:907842

  15. Acetylcholine esterase activity in mild cognitive impairment and Alzheimer's disease

    Impairment of cholinergic neurotransmission is a well-established fact in Alzheimer's disease (AD), but there is controversy about its relevance at the early stages of the disease and in mild cognitive impairment (MCI). In vivo positron emission tomography imaging of cortical acetylcholine esterase (AChE) activity as a marker of cholinergic innervation that is expressed by cholinergic axons and cholinoceptive neurons has demonstrated a reduction of this enzyme activity in manifest AD. The technique is also useful to measure the inhibition of cerebral AChE induced by cholinesterase inhibitors for treatment of dementia symptoms. A reduction of cortical AchE activity was found consistently in all studies of AD and in few cases of MCI who later concerted to AD. The in vivo findings in MCI and very mild AD are still preliminary, and studies seem to suggest that cholinergic innervation and AChE as the main degrading enzyme are both reduced, which might result in partial compensation of their effect. (orig.)

  16. Hydrolysis of synthetic polyesters by Clostridium botulinum esterases.

    Perz, Veronika; Baumschlager, Armin; Bleymaier, Klaus; Zitzenbacher, Sabine; Hromic, Altijana; Steinkellner, Georg; Pairitsch, Andris; Łyskowski, Andrzej; Gruber, Karl; Sinkel, Carsten; Küper, Ulf; Ribitsch, Doris; Guebitz, Georg M


    Two novel esterases from the anaerobe Clostridium botulinum ATCC 3502 (Cbotu_EstA and Cbotu_EstB) were expressed in Escherichia coli BL21-Gold(DE3) and were found to hydrolyze the polyester poly(butylene adipate-co-butylene terephthalate) (PBAT). The active site residues (triad Ser, Asp, His) are present in both enzymes at the same location only with some amino acid variations near the active site at the surrounding of aspartate. Yet, Cbotu_EstA showed higher kcat values on para-nitrophenyl butyrate and para-nitrophenyl acetate and was considerably more active (sixfold) on PBAT. The entrance to the active site of the modeled Cbotu_EstB appears more narrowed compared to the crystal structure of Cbotu_EstA and the N-terminus is shorter which could explain its lower activity on PBAT. The Cbotu_EstA crystal structure consists of two regions that may act as movable cap domains and a zinc metal binding site. Biotechnol. Bioeng. 2016;113: 1024-1034. © 2015 Wiley Periodicals, Inc. PMID:26524601

  17. Carboxylesterase1/Esterase-x regulates chylomicron production in mice.

    Ariel D Quiroga

    Full Text Available Elevated postprandial plasma triacylglycerol (TG concentrations are commonly associated with obesity and the risk of cardiovascular disease. Dietary fat contributes to this condition through the production of chylomicrons. Carboxylesterases have been mainly studied for their role in drug metabolism, but recently they have been shown to participate in lipid metabolism; however, their role in intestinal lipid metabolism is unknown. Carboxylesterase1/esterase-x (Ces1/Es-x deficient mice become obese, hyperlipidemic and develop hepatic steatosis even on standard chow diet. Here, we aimed to explore the role of Ces1/Es-x in intestinal lipid metabolism. Six-month old wild-type and Ces1/Es-x deficient mice were maintained on chow diet and intestinal lipid metabolism and plasma chylomicron clearance were analyzed. Along the intestine Ces1/Es-x protein is expressed only in proximal jejunum. Ablation of Ces1/Es-x expression results in postprandial hyperlipidemia due to increased secretion of chylomicrons. The secreted chylomicrons have aberrant protein composition, which results in their reduced clearance. In conclusion, Ces1/Es-x participates in the regulation of chylomicron assembly and secretion. Ces1/Es-x might act as a lipid sensor in enterocytes regulating chylomicron secretion rate. Ces1/Es-x might represent an attractive pharmacological target for the treatment of lipid abnormalities associated with obesity, insulin resistance and fatty liver disease.

  18. Fluorous-based carbohydrate quartz crystal microbalance.

    Chen, Lei; Sun, Pengfei; Chen, Guosong


    Fluorous chemistry has brought many applications from catalysis to separation science, from supramolecular materials to analytical chemistry. However, fluorous-based quartz crystal microbalance (QCM) has not been reported so far. In the current paper, fluorous interaction has been firstly utilized in QCM, and carbohydrate-protein interaction and carbohydrate-carbohydrate interaction have been detected afterward. PMID:25541017

  19. Invisible Display in Aluminum

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen


    integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  20. Biochemical characterization of a first fungal esterase from Rhizomucor miehei showing high efficiency of ester synthesis.

    Yu Liu

    Full Text Available BACKGROUND: Esterases with excellent merits suitable for commercial use in ester production field are still insufficient. The aim of this research is to advance our understanding by seeking for more unusual esterases and revealing their characterizations for ester synthesis. METHODOLOGY/PRINCIPAL FINDINGS: A novel esterase-encoding gene from Rhizomucor miehei (RmEstA was cloned and expressed in Escherichia coli. Sequence analysis revealed a 975-bp ORF encoding a 324-amino-acid polypeptide belonging to the hormone-sensitive lipase (HSL family IV and showing highest similarity (44% to the Paenibacillus mucilaginosus esterase/lipase. Recombinant RmEstA was purified to homogeneity: it was 34 kDa by SDS-PAGE and showed optimal pH and temperature of 6.5 and 45°C, respectively. The enzyme was stable to 50°C, under a broad pH range (5.0-10.6. RmEstA exhibited broad substrate specificity toward p-nitrophenol esters and short-acyl-chain triglycerols, with highest activities (1,480 U mg(-1 and 228 U mg(-1 for p-nitrophenyl hexanoate and tributyrin, respectively. RmEstA efficiently synthesized butyl butyrate (92% conversion yield when immobilized on AOT-based organogel. CONCLUSION: RmEstA has great potential for industrial applications. RmEstA is the first reported esterase from Rhizomucor miehei.

  1. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A


    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production. PMID:26369647

  2. The classification of esterases: an important gene family involved in insecticide resistance - A review

    Isabela Reis Montella


    Full Text Available The use of chemical insecticides continues to play a major role in the control of disease vector populations, which is leading to the global dissemination of insecticide resistance. A greater capacity to detoxify insecticides, due to an increase in the expression or activity of three major enzyme families, also known as metabolic resistance, is one major resistance mechanisms. The esterase family of enzymes hydrolyse ester bonds, which are present in a wide range of insecticides; therefore, these enzymes may be involved in resistance to the main chemicals employed in control programs. Historically, insecticide resistance has driven research on insect esterases and schemes for their classification. Currently, several different nomenclatures are used to describe the esterases of distinct species and a universal standard classification does not exist. The esterase gene family appears to be rapidly evolving and each insect species has a unique complement of detoxification genes with only a few orthologues across species. The examples listed in this review cover different aspects of their biochemical nature. However, they do not appear to contribute to reliably distinguish among the different resistance mechanisms. Presently, the phylogenetic criterion appears to be the best one for esterase classification. Joint genomic, biochemical and microarray studies will help unravel the classification of this complex gene family.

  3. Carbohydrate Microarrays in Plant Science

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.;


    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...... plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  4. Developments in organic displays

    John K. Borchardt


    Full Text Available Rapid advances in materials and manufacturing technology are making organic light-emitting diodes (OLEDs the leading technology for a new generation of thinner, lighter, higher-resolution displays for computers, televisions, and small hand-held devices. In addition, OLEDs could enable the development of new display applications including flexible plastic display devices, displays embedded into clothes or wall hangings, and even head-mounted displays.

  5. Carbohydrates Through Animation: Preliminary Step

    J.K. Sugai; M.S.R. Figueiredo; R.V. Antônio; P.M Oliveira; V.A Cardoso; Ricardo, J.; Merino, E; Figueiredo, L. F.; D.N. Heidrich


    Methods of education are changing, so the educational tools must change too. The developmentof the systems of information and communication gave the opportunity to bring new technology tothe learning process. Modern education needs interactive programs that may be available to theacademic community, in order to ease the learning process and sharing of the knowledge. Then,an educational software on Carbohydrates is being developed using concept maps and FLASH-MXanimations program, and approach...

  6. The effect of EDTA and metal cations on the 5-bromoindoxyl acetate esterase activity in the thyroid of the guinea pig

    Kirkeby, S


    Miscellaneous metal cations and EDTA have been used as activators and inhibitors of esterase activity in the thyroid of the guinea-pig. The results indicate that the 5-bromoiondoxyl acetate esterase in the epithelial cells probably consists of two different A-esterase isoenzymes, one present in...... group I cells. EDTA and Mn2+, on the other hand, activated the esterase activity in group II cells....

  7. Recognition properties of receptors consisting of imidazole and indole recognition units towards carbohydrates

    Monika Mazik


    Full Text Available Compounds 4 and 5, including both 4(5-substituted imidazole or 3-substituted indole units as the entities used in nature, and 2-aminopyridine group as a heterocyclic analogue of the asparagine/glutamine primary amide side chain, were prepared and their binding properties towards carbohydrates were studied. The design of these receptors was inspired by the binding motifs observed in the crystal structures of protein–carbohydrate complexes. 1H NMR spectroscopic titrations in competitive and non-competitive media as well as binding studies in two-phase systems, such as dissolution of solid carbohydrates in apolar media, revealed both highly effective recognition of neutral carbohydrates and interesting binding preferences of these acyclic compounds. Compared to the previously described acyclic receptors, compounds 4 and 5 showed significantly increased binding affinity towards β-galactoside. Both receptors display high β- vs. α-anomer binding preferences in the recognition of glycosides. It has been shown that both hydrogen bonding and interactions of the carbohydrate CH units with the aromatic rings of the receptors contribute to the stabilization of the receptor–carbohydrate complexes. The molecular modeling calculations, synthesis and binding properties of 4 and 5 towards selected carbohydrates are described and compared with those of the previously described receptors.

  8. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action

  9. Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation.

    Zhang, Shuai-Bing; Wang, Le; Liu, Yan; Zhai, Huan-Chen; Cai, Jing-Ping; Hu, Yuan-Sen


    Feruloyl esterases (FAEs) are key enzymes involved in the complete biodegradation of lignocelluloses, which could hydrolyze the ester bonds between hemicellulose and lignin. The coding sequence of a feruloyl esterase A (AtFaeA) was cloned from Aspergillus terreus and the recombinant AtFaeA was constitutively expressed in Pichia pastoris. The SDS-PAGE analysis of purified AtFaeA showed two protein bands owing to the different extent of glycosylation, and the recombinant AtFaeA had an optimum temperature of 50°C and an optimum pH of 5.0. The substrate utilization and primary sequence identity of AtFaeA demonstrated that it is a type-A feruloyl esterase. The hydrolysis of corn stalk and corncob by xylanase from Aspergillus niger could be significantly improved in concert with recombinant AfFaeA. PMID:26282562

  10. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping


    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  11. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase.

    Tao, Weixin; Lee, Myung Hwan; Yoon, Mi-Young; Kim, Jin-Cheol; Malhotra, Shweta; Wu, Jing; Hwang, Eul Chul; Lee, Seon-Woo


    Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria. PMID:22210605

  12. Handbook of display technology

    Castellano, Joseph A


    This book presents a comprehensive review of technical and commercial aspects of display technology. It provides design engineers with the information needed to select proper technology for new products. The book focuses on flat, thin displays such as light-emitting diodes, plasma display panels, and liquid crystal displays, but it also includes material on cathode ray tubes. Displays include a large number of products from televisions, auto dashboards, radios, and household appliances, to gasoline pumps, heart monitors, microwave ovens, and more.For more information on display tech

  13. Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda.

    Rahman, Mohammad Asadur; Culsum, Umma; Tang, Wenhao; Zhang, Shao Wei; Wu, Gaobing; Liu, Ziduo


    A novel cold active esterase, EstLiu was cloned from the marine bacterium Zunongwangia profunda, overexpressed in E. coli BL21 (DE3) and purified by glutathione-S transferase (GST) affinity chromatography. The mature esterase EstLiu sequence encodes a protein of 273 amino acids residues, with a predicted molecular weight of 30KDa and containing the classical pentapeptidase motif from position 156 to 160 with the catalytic triad Ser158-Asp211-His243. Although, EstLiu showed 64% similarity with the hypothetical esterase from Chryseobacterium sp. StRB126 (WP_045498424), phylogenetic analysis showed it had no similarity with any of the established family of lipases/esterases, suggesting that it could be considered as a new family. The purified enzyme showed broad substrate specificity with the highest hydrolytic activity against p-nitrophenyl butyrate (C4). EstLiu showed remarkable activity (75%) at 0°Cand the optimal activity at pH 8.0 and 30°C with good thermostability and quickened inactivation above 60°C. EstLiu retained 81, 103, 67 and 78% of its original activity at 50% (v/v) in ethanol, isopropanol, DMSO and ethylene glycol, respectively. In the presence of Tween 20, Tween 80 and Triton X-100, EstLiu showed 88, 100 and 117% of relative activity. It is also co-factor independent. The high activity at low temperature and desirable stability in organic solvents and salts of this novel family esterase represents a good evidence of novel biocatalyst. Overall, this novel enzyme showed better activity than previously reported esterases in extreme reaction conditions and could promote the reaction in both aqueous and non-aqueous conditions, indicating its great potential for industrial applications. PMID:26920474

  14. Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions.

    Alex, Deepthy; Mathew, Abraham; Sukumaran, Rajeev K


    Magnetite nanoparticles were prepared by reacting ferrous and ferric salts in presence of aqueous ammonia. The magnetic nanoparticles (MNPs) were amino functionalized by treating with 3-aminopropyl triethoxy silane (APTES) and was coupled with glutaraldehyde. A novel solvent tolerant esterase from Pseudozyma sp. NII 08165 was immobilized on the MNPs through covalent bonding to the glutaraldehyde. The magnetite nanoparticles had a size range of 10-100 nm, confirmed by DLS. Lipases immobilized on MNPs were evaluated for biotransformation reactions including synthesis of ethyl acetate and transesterification of vegetable oil for producing biodiesel. The MNP immobilized esterase had prolonged shelf life and there was no loss in enzyme activity. PMID:24968816

  15. Identification of a cocaine esterase in a strain of Pseudomonas maltophilia.

    Britt, A J; Bruce, N C; Lowe, C R


    A strain of Pseudomonas maltophilia (termed MB11L) which was capable of using cocaine as its sole carbon and energy source was isolated by selective enrichment. An inducible esterase catalyzing the hydrolysis of cocaine to ecgonine methyl ester and benzoic acid was identified and purified 22-fold. In the presence of the solubilizing agent cholate, cocaine esterase had a native Mr of 110,000 and was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be a monomer. In the abse...

  16. Hydrolysis of Wheat Arabinoxylan by Two Acetyl Xylan Esterases from Chaetomium thermophilum

    Tong, Xiaoxue; Lange, Lene; Grell, Morten Nedergaard;


    The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has...... xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass...

  17. A Compressive Superresolution Display

    Heide, Felix


    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  18. Management of Pervasive Displays

    Tatiraju, Venkata


    Traditional signage is being replaced by digital displays that are directly connected to the Internet and show content from the cloud. These displays increasingly rely on a standard web-browser and HTML5 technologies for rendering rich media content. As the number of these displays increase, it is critical to provide user-friendly and efficient solutions for managing them remotely from the cloud. The remote management of such displays traditionally relies on proprietary native software soluti...

  19. Liquid crystal display

    An improved liquid crystal display device is described which can display letters, numerals and other necessary patterns in the night time using a minimized amount of radioactive material. To achieve this a self-luminous light source is placed in a limited region corresponding to a specific display area. (U.K.)

  20. Cytoplasmic bacteriophage display system

    Studier, F.W.; Rosenberg, A.H.


    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  1. Carbohydrate Microarrays in Plant Science

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.; Ahl, Louise Isager; Salmean, A.A.; Egelund, Jack; Rydahl, Maja Gro; Clausen, M.H.; Willats, William George Tycho


    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also importa...... plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.......Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...

  2. Carbohydrate metabolism in Spirochaeta stenostrepta.

    Hespell, R B; Canale-Parola, E


    The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO(2), and H(2). Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from (14)C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO(2), and H(2), without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B(12) were either stimulatory or required for growth. PMID:5423371

  3. Glycosyltransferase engineering for carbohydrate synthesis.

    McArthur, John B; Chen, Xi


    Glycosyltransferases (GTs) are powerful tools for the synthesis of complex and biologically-important carbohydrates. Wild-type GTs may not have all the properties and functions that are desired for large-scale production of carbohydrates that exist in nature and those with non-natural modifications. With the increasing availability of crystal structures of GTs, especially those in the presence of donor and acceptor analogues, crystal structure-guided rational design has been quite successful in obtaining mutants with desired functionalities. With current limited understanding of the structure-activity relationship of GTs, directed evolution continues to be a useful approach for generating additional mutants with functionality that can be screened for in a high-throughput format. Mutating the amino acid residues constituting or close to the substrate-binding sites of GTs by structure-guided directed evolution (SGDE) further explores the biotechnological potential of GTs that can only be realized through enzyme engineering. This mini-review discusses the progress made towards GT engineering and the lessons learned for future engineering efforts and assay development. PMID:26862198

  4. Production and partial characterisation of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation

    Topakas, E.; Kalogeris, E.; Kekos, D.; Macris, B.J.; Christakopoulos, Paul


    source were consecutively optimised. SSF in a laboratory horizontal bioreactor using the optimised medium allowed the production of 156 mU g(-1) of carbon source, which compared favourably with those reported for the other micro-organisms. Optimal esterase activity was observed at pH 8 and 60 degrees...

  5. Gene cloning and characterization of a novel esterase from activated sludge metagenome

    Liu Zhi-Pei


    Full Text Available Abstract A metagenomic library was prepared using pCC2FOS vector containing about 3.0 Gbp of community DNA from the microbial assemblage of activated sludge. Screening of a part of the un-amplified library resulted in the finding of 1 unique lipolytic clone capable of hydrolyzing tributyrin, in which an esterase gene was identified. This esterase/lipase gene consists of 834 bp and encodes a polypeptide (designated EstAS of 277 amino acid residuals with a molecular mass of 31 kDa. Sequence analysis indicated that it showed 33% and 31% amino acid identity to esterase/lipase from Gemmata obscuriglobus UQM 2246 (ZP_02733109 and Yarrowia lipolytica CLIB122 (XP_504639, respectively; and several conserved regions were identified, including the putative active site, HSMGG, a catalytic triad (Ser92, His125 and Asp216 and a LHYFRG conserved motif. The EstAS was overexpressed, purified and shown to hydrolyse p-nitrophenyl (NP esters of fatty acids with short chain lengths (≤ C8. This EstAS had optimal temperature and pH at 35°C and 9.0, respectively, by hydrolysis of p-NP hexanoate. It also exhibited the same level of stability over wide temperature and pH ranges and in the presence of metal ions or detergents. The high level of stability of esterase EstAS with its unique substrate specificities make itself highly useful for biotechnological applications.

  6. Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host

    Mei, Yuxia; Peng, Nan; Zhao, Shumiao; Hu, Yongmei; Wang, Huacai; Liang, Yunxiang; She, Qunxin


    A protein expression system recently developed for the thermophilic crenarchaeon Sulfolobus islandicus was employed to produce recombinant protein for EstA, a thermophilic esterase encoded in the same organism. Large amounts of protein were readily obtained by an affinity protein purification, gi...

  7. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Esterase-lipase derived from Mucor miehei. 173.140 Section 173.140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... classified as follows: Class, Phycomycetes; subclass, Zygomycetes; order, Mucorales; family,...

  8. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    G M Gururaja


    Full Text Available Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml.Conclusion: This study demonstrates that M.indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica.

  9. Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

    The Aspergillus niger ferulic acid esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interactio...

  10. Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application

    Record, E.; Asther, M.; Sigoillot, C.; Pagès, S.; Punt, P.J.; Delattre, M.; Haon, M.; Hondel, C.A.M.J.J. van den; Sigoillot, J.C.; Lesage-Meessen, L.; Asther, M.


    A well-known industrial fungus for enzyme production, Aspergillus niger, was selected to produce the feruloyl esterase FAEA by homologous overexpression for pulp bleaching application. The gpd gene promoter was used to drive FAEA expression. Changing the nature and concentration of the carbon source

  11. Non-specific esterases and esterproteases in masticatory muscles from the muscular dystrophic mouse

    Kirkeby, S; Moe, D; Vilmann, H


    With the aid of histochemical and electrophoretic techniques activities for esterase and esterprotease were investigated in the digastric and masseter muscles from normal and dystrophic mice. The substrates used were alpha-naphthyl acetate and N-acetyl-L-alanine alpha-naphthyl ester. According to...

  12. Total esterase activity in human saliva: Validation of an automated assay, characterization and behaviour after physical stress.

    Tecles, Fernando; Tvarijonaviciute, Asta; De Torre, Carlos; Carrillo, José M; Rubio, Mónica; García, Montserrat; Cugat, Ramón; Cerón, José J


    Although saliva has esterase activity, this activity has not been characterized or studied in individuals subjected to physical stress. The aim of this report was to develop and validate an automated spectrophotometric assay for total esterase activity measurement in human saliva, as well as to study the contribution of different enzymes on this activity and its behaviour under physical stress in healthy subjects. The assay used 4-nitrophenyl acetate as substrate and was precise, accurate and provided low limits of detection and quantification. Inhibition with diisopropylfluorophosphate showed that cholinesterase, carboxylesterase and cholesterol esterase contributions not represented more than 20% of total esterase. Addition of standards of lipase and albumin to saliva samples showed that both proteins significantly contributed to esterase activity only when equal or higher than 11.6 IU/L and 250 μg/mL, respectively. Western blot analyses showed absence of paraoxonase-1 and high amount of carbonic anhydrase-VI. The high affinity of purified carbonic anhydrase-VI for the substrate supported a major contribution of this enzyme. Total esterase activity and alpha-amylase was measured in saliva samples from 12 healthy male students before and after participation in an indoor football match. The activity significantly increased after match and positively correlated with salivary alpha-amylase. This method could be used as a biomarker of physical stress in humans, with carbonic anhydrase-VI being the esterase that contributed more to the activity of the assay. PMID:27045801

  13. Organophosphorous biocides reduce tenacity and cellular viability but not esterase activities in a non-target prosobranch (limpet)

    Detecting impacts of organophosphorus biocides (OP) is facilitated by analysing “biomarkers” – biological responses to environmental insults. Understanding is hampered by studying biomarkers in isolation at different levels of biological response and limited work on ecologically-important species. We tested the relevance of esterases as biomarkers of OP-exposure in limpets (Patella vulgata), abundant prosobranchs that structure the assemblages on rocky shores through their grazing. We characterized esterases in haemolymph and tissue, and quantified their dose-dependent inhibition by chlorfenvinphos (0.1–3.0 mM) in vitro. To determine whether esterases are useful biomarkers we exposed limpets to chlorfenvinphos (0–10 μg L−1). Despite reduced tenacity (ability to stick to a surface) and haemocyte-viability, esterases remained unaffected. Tenacity was reduced by >50% at 5 μg L−1 and by 95% at 10 μg L−1, whilst haemocyte-viability was more sensitive with >40% reductions at concentrations of 0.5 μg L−1 and above. We discuss results in relation to linking sub-lethal and ecological impacts at contaminated sites. - Highlights: • We investigated if esterases are useful biomarkers of chlorfenvinphos-exposure. • Esterases in tissues of limpets (Patella vulgata) were characterized. • The dose-dependent inhibition of esterases by chlorfenvinphos was shown in vitro. • In vivo, tenacity and haemocyte-viability were reduced, but not esterase activities. - Organophosphorous biocides reduce tenacity and cellular viability but not esterase activities in the limpet, Patella vulgata

  14. Biochemical software: Carbohydrates on Laboratory

    D.N. Heidrich


    Full Text Available Educators around  the  world  are  being  challenged  to  develop  and  design  better and  more  effective strategies for student learning  using a variety  of modern  resources.  In this  present  work, an educa- tional  hypermedia  software  was constructed as a support tool to biochemistry teaching.  Occurrence, structure, main  characteristics and  biological  function  of the  biomolecule  Carbohydrates were pre- sented  through  modules.  The  software was developed  using concept  maps,  ISIS-Draw,  and  FLASH- MX animation program.  The chapter  Carbohydrates on Laboratory illustrates experimental methods of carbohydrates characterization, through  animation of a laboratory scenery.   The  subject was de- veloped showing reactions  as Bial, Benedict, Selliwanoff, Barfoed, Phenol  Sulphuric,  and Iodines, and also enzymatic  reactions  as glucose oxidase and amylase.  There are also links with short texts  in order to help the understanding of the contents  and principles of laboratory practice  as well as background reactions. Application of the software to undergraduate students and high school teachers  showed an excellent  acceptance.   All of them  considered  the  software  a very good learning  tool.  Both  teachers and students welcomed this program  as it is more flexible, and allows the learning in a more individual rhythm. In addition, application of the software would be suitable  to a more effective learning  and it is less expensive than conventional experimental teaching.

  15. Association of esterases with insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae).

    Gordon, Jennifer R; Ottea, James


    The southern house mosquito, Culex quinquefasciatus Say, is a competent vector of human disease and an important target of mosquito abatement programs. However, these management programs have been compromised by development of insecticide resistance. In the current study, susceptibilities to naled and resmethrin, two adulticides used in mosquito abatement, were monitored using a topical and contact bioassay, respectively, in five field- collected populations of C. quinquefasciatus (MARC, HOOD1, HOOD2, MINLOVE, and THIB). Frequencies of resistance, measured as survival after treatment with discriminating concentrations (i.e., sufficient to kill > 90% of a reference susceptible strain) were high (88.0-96.8%) in all field collections treated with naled, but were variable (3.3-94.2%) with resmethrin. In addition, esterase activities in mosquitoes from these collections were quantified using alpha-naphthyl acetate and ranged from 1.08 to 3.39 micromol alpha-naphthol produced min(-1) mg prot(-1). Heightened activities were associated with decreased insecticide susceptibility in HOOD1, THIB, and MINLOVE but not HOOD2. Esterases were visualized using native polyacrylamide gel electrophoresis, and intra- and interstrain differences in banding patterns were detected. In addition, esterases from MINLOVE mosquitoes were more numerous and intensely staining when compared with those from a laboratory-susceptible strain. Finally, naled synergized the toxicity of resmethrin in populations with decreased insecticide susceptibility and increased esterase activity by 2.5-(MINLOVE) to three-fold (THIB). Results from this study will allow management strategies for populations of C. quinquefasciatus to be optimized, and provide a foundation for further studies exploring use of esterase inhibitors as synergists of pyrethroid toxicity. PMID:22812138

  16. Serum cholesterol concentration associated with aspirin esterase activity in older people: preliminary data

    Kazuhiko Kotani, Russell Caccavello, Ricardo Hermo, Toshiyuki Yamada, Nobuyuki Taniguchi, Alejandro Gugliucci


    Full Text Available OBJECTIVE: Metabolism of aspirin (acetylsalicylic acid, commonly used in older people for the prevention of cardiovascular disease, is important to the effectiveness of this drug. Whereas part of aspirin hydrolysis occurs in blood, there is a paucity of information in regards to circulating aspirin esterase activity in various physiological and pathological conditions. High aspirin esterase activity, corresponding to faster aspirin hydrolysis (thus aspirin non-responsiveness, may occur in cardiovascular disease-prone states. The objective of this study was to investigate the effects of cardio-metabolic variables such as cholesterol on serum aspirin esterase activity in older people who participated in an intervention study on physical activity. METHODS: A total of 18 non-medicated subjects (7 men/11 women, mean age 67.8 years, body mass index = 23.4 ± 3.3 kg/m2, who completed a 3-month interventional program for a mild-to-moderate increase in physical activity, were analyzed. The body mass index, plasma glucose, serum total cholesterol and aspirin esterase activity were measured in the pre- and post-interventional phases of the study. RESULTS: During the interventional period, the changes in aspirin esterase activity correlated significantly and positively with those of total cholesterol concentrations (r = 0.542, P = 0.020; β = 0.609, P = 0.035 in a multiple linear regression analysis after adjusting for all the measured variables. CONCLUSION: The results suggest that cholesterol metabolism alterations may be associated with aspirin metabolism in older people.

  17. Molecular population genetics of the -esterase gene cluster of Drosophila melanogaster

    Evgeniy S. Balakirev; Francisco J. Ayala


    We have investigated nucleotide polymorphism at the -esterase gene cluster including the Est-6 gene and Est-6 putative pseudogene in four samples of Drosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplo-type structure is revealed in both Est-6 and Est-6. Total nucleotide diversity is twice in Est-6 as in Est-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within the -esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected within Est-6 and, to a much greater extent, within Est-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for the -esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in the -esterase gene cluster. However there are some ‘footprints’ of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection between Est-6 and Est-6 may play an important role in the evolution of the -esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene. Est-6 and Est-6 may represent an indivisible intergenic complex (‘intergene’) in which each single component (Est-6 or Est-6) cannot separately carry out the full functional role.

  18. Screening, Nucleotide Sequence, and Biochemical Characterization of an Esterase from Pseudomonas fluorescens with High Activity towards Lactones

    Khalameyzer, V.; Fischer, I; Bornscheuer, U. T.; Altenbuchner, J


    A genomic library of Pseudomonas fluorescens DSM 50106 in a λRESIII phage vector was screened in Escherichia coli K-12 for esterase activity by using α-naphthyl acetate and Fast Blue RR. A 3.2-kb DNA fragment was subcloned from an esterase-positive clone and completely sequenced. Esterase EstF1 was encoded by a 999-bp open reading frame (ORF) and exhibited significant amino acid sequence identity with members of the serine hydrolase family. The deduced amino acid sequences of two other C-term...

  19. Display innovations through glass

    Hamilton, Lori L.


    Prevailing trends in thin, lightweight, high-resolution, and added functionality, such as touch sensing, continue to drive innovation in the display market. While display volumes grow, so do consumers’ need for portability, enhanced optical performance, and mechanical reliability. Technical advancements in glass design and process have enabled display innovations in these areas while supporting industry growth. Opportunities for further innovation remain open for glass manufacturers to drive new applications, enhanced functionality, and increased demand.

  20. Scalable Resolution Display Walls

    Leigh, Jason


    This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.

  1. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    Nehls, Uwe


    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized. PMID:18272925

  2. Carbohydrate clearance receptors in transfusion medicine

    Sørensen, Anne Louise Tølbøll; Clausen, Henrik; Wandall, Hans H


    Complex carbohydrates play important functions for circulation of proteins and cells. They provide protective shields and refraction from non-specific interactions with negative charges from sialic acids to enhance circulatory half-life. For recombinant protein therapeutics carbohydrates are espe...

  3. Displaying Data As Movies

    Moore, Judith G.


    NMSB Movie computer program displays large sets of data (more than million individual values). Presentation dynamic, rapidly displaying sequential image "frames" in main "movie" window. Any sequence of two-dimensional sets of data scaled between 0 and 255 (1-byte resolution) displayed as movie. Time- or slice-wise progression of data illustrated. Originally written to present data from three-dimensional ultrasonic scans of damaged aerospace composite materials, illustrates data acquired by thermal-analysis systems measuring rates of heating and cooling of various materials. Developed on Macintosh IIx computer with 8-bit color display adapter and 8 megabytes of memory using Symantec Corporation's Think C, version 4.0.

  4. JAVA Stereo Display Toolkit

    Edmonds, Karina


    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  5. Biochemical software: Carbohydrates on Laboratory

    D.N. Heidrich; M.S.R.B. Figueiredo; R.V. Antonio,; da Costa, J. G.; P.B. Arantes; Figueiredo, L. F.; J.K. Sugai


    Educators around  the  world  are  being  challenged  to  develop  and  design  better and  more  effective strategies for student learning  using a variety  of modern  resources.  In this  present  work, an educa- tional  hypermedia  software  was constructed as a support tool to biochemistry teaching.  Occurrence, structure, main  characteristics and  biological  function  of the  biomolecule  Carbohydrates were pre- sented  through  modules.  The  software was developed  using concept  map...

  6. Facultative thermogenesis induced by carbohydrate

    Astrup, A; Bülow, J; Christensen, N J;


    In addition to the obligatory thermogenesis due to processing and storage, carbohydrate ingestion is accompanied by a facultative thermogenesis mediated by catecholamines via beta-adrenoceptors. The anatomical origin of facultative thermogenesis has hitherto not been determined. The possible...... involvement of skeletal muscle was examined in lean, healthy subjects by measuring the response in forearm oxygen consumption to an oral glucose load. The study demonstrates an early component of skeletal muscle thermogenesis coinciding with the local glucose uptake, followed by a late facultative...... thermogenesis. The arterial epinephrine concentration increased to a maximum of 200% above base-line values 4 h after glucose. This value greatly exceeds the physiological threshold for the thermogenic action of epinephrine. In forearm venous blood the corresponding increase in epinephrine was only...

  7. Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative bacteria

    Clarke Anthony J


    that harbor the pat genes produce alginate, we propose that the Pat proteins serve to O-acetylate peptidoglycan which is known to be a maturation event occurring in the periplasm. The Ape sequences have amino acid sequence similarity to the CAZy CE 3 carbohydrate esterases, a family previously known to be composed of only O-acetylxylan esterases. They are predicted to contain the α/β hydrolase fold associated with the GDSL and TesA hydrolases and they possess the signature motifs associated with the catalytic residues of the CE3 esterases. Specific signature sequence motifs were identified for the Ape proteins which led to their organization into distinct families. We propose that by expressing both Pat and Ape enzymes, bacteria would be able to obtain a high level of localized control over the degradation of peptidoglycan through the attachment and removal of O-linked acetate. This would facilitate the efficient insertion of pores and flagella, localize spore formation, and control the level of general peptidoglycan turnover.

  8. Multivalent display of the antimicrobial peptides BP100 and BP143

    Imma Güell; Rafael Ferre; Kasper K. Sørensen; Esther Badosa; Iteng Ng-Choi; Emilio Montesinos; Eduard Bardají; Lidia Feliu; Jensen, Knud J; Marta Planas


    Carbohydrates are considered as promising templates for the display of multiple copies of antimicrobial peptides. Herein, we describe the design and synthesis of chimeric structures containing two or four copies of the antimicrobial peptides KKLFKKILKYL-NH2 (BP100) and KKLfKKILKYL-NH2 (BP143) attached to the carbohydrate template cyclodithioerythritol (cDTE) or α-D-galactopyranoside (Galp). The synthesis involved the preparation of the corresponding peptide aldehyde followed by coupling ...

  9. Helmet-Mounted Displays (HMD)

    Federal Laboratory Consortium — The Helmet-Mounted Display labis responsible for monocular HMD day display evaluations; monocular HMD night vision performance processes; binocular HMD day display...

  10. Visual merchandising window display

    Opris (Cas. Stanila M.


    Full Text Available Window display plays a major part in the selling strategies; it does not only include the simple display of goods, nowadays it is a form of art, also having the purpose of sustaining the brand image. This article wants to reveal the tools that are essential in creating a fabulous window display. Being a window designer is not an easy job, you have to always think ahead trends, to have a sense of colour, to know how to use light to attract customers in the store after only one glance at the window. The big store window displays are theatre scenes: with expensive backgrounds, special effects and high fashion mannequins. The final role of the displays is to convince customers to enter the store and trigger the purchasing act which is the final goal of the retail activity.

  11. Structural and Enzymatic Characterization of NanS (YjhS) a 9-O-Acetyl N-acetylneuraminic Acid Esterase from Escherichia coli O157:H7

    E Rangarajan; K Ruane; A Proteau; J Schrag; R Valladares; C Gonzalez; M Gilbert; A Yakunin; M Cygler


    There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.

  12. Defense display market assessment

    Desjardins, Daniel D.; Hopper, Darrel G.


    This paper addresses the number, function and size of principal military displays and establishes a basis to determine the opportunities for technology insertion in the immediate future and into the next millennium. Principal military displays are defined as those occupying appreciable crewstation real-estate and/or those without which the platform could not carry out its intended mission. DoD 'office' applications are excluded from this study. The military displays market is specified by such parameters as active area and footprint size, and other characteristics such as luminance, gray scale, resolution, angle, color, video capability, and night vision imaging system (NVIS) compatibility. Funded, future acquisitions, planned and predicted crewstation modification kits, and form-fit upgrades are taken into account. This paper provides an overview of the DoD niche market, allowing both government and industry a necessary reference by which to meet DoD requirements for military displays in a timely and cost-effective manner. The aggregate DoD market for direct-view and large-area military displays is presently estimated to be in excess of 242,000. Miniature displays are those which must be magnified to be viewed, involve a significantly different manufacturing paradigm and are used in helmet mounted displays and thermal weapon sight applications. Some 114,000 miniature displays are presently included within Service weapon system acquisition plans. For vendor production planning purposes it is noted that foreign military sales could substantially increase these quantities. The vanishing vendor syndrome (VVS) for older display technologies continues to be a growing, pervasive problem throughout DoD, which consequently must leverage the more modern display technologies being developed for civil- commercial markets.

  13. Comparative study of human intestinal and hepatic esterases as related to enzymatic properties and hydrolizing activity for ester-type drugs.

    Inoue, M; Morikawa, M; Tsuboi, M; Ito, Y; Sugiura, M


    In attempts to determine the exact role of intestinal esterase in the body, we purified esterases from human intestinal mucosa and liver, and compared the enzymatic properties and substrate specificities with those of purified esterases. Esterase from human liver was purified 58-fold, by treatment with butanol, DE-52 and DEAE Sephadex A-50 column chromatographies, Sephadex G-200 gel filtration, and isoelectric focusing. The purified preparation showed a single band by polyacylamide gel electrophoresis. The molecular weights of intestinal and hepatic esterases were determined to be 53,000-55,000 and 180,000, respectively, by gel filtration on Sephadex G-200. The activity of the purified intestinal and hepatic esterases was strongly inhibited by diethyl-p-nitrophenyl phosphate and diisopropyl fluorophosphate, and was not inhibited by eserine sulfate and p-chloromercuribenzoate. Moreover, the purified esterases hydrolyzed ester-type drugs such as aspirin, clofibrate, indanyl carbenicillin and procaine. Hepatic esterase had properties similar to those of intestinal esterase with respect to the sensitivity to organophosphate and the substrate specificity. However, the two purified esterases differed in properties such as molecular weight, isoelectric point, thermostability and optimal pH. PMID:7206363

  14. Large holographic displays as an alternative to stereoscopic displays

    Häussler, R.; Schwerdtner, A.; Leister, N.


    3D displays comprise stereoscopic displays and holographic displays. Eye convergence and accommodation are important depth cues for human vision. Stereoscopic displays provide only convergence information whereas holographic displays also provide accommodation information. Due to the inherently better 3D quality we consider holographic displays as the preferred alternative to stereoscopic displays. Our new approach to holographic displays omits unnecessary wavefront information and significantly reduces the requirements on the resolution of the spatial light modulator and the computation effort compared to conventional holographic displays. We verified our concept with holographic display prototypes and measurements. SeeReal's approach makes holographic displays feasible as a consumer product for mass-market applications.

  15. Polyacrylamide Gel Electrophoretic Band Pattern of Esterase in the Pupae of Bactrocera papavae and Bactrocera carambolae (Diptera: Tephritidae

    M. Hasanuzzaman


    Full Text Available The study was undertaken to compare the electrophoretic banding patterns of esterase isozyme between the pupae of Bactrocera papayae and Bactrocera carambolae (Diptera: Tephritidae by using polyacrylamide gel. These two Bactrocera species are the major agricultural pests, especially fruits and vegetables. One esterase band, EST-1 was detected and the relative mobility value was 0.15 which was close to the cathode. The EST-1 band was present in the pupae of both Bactrocera species. There was no difference in the esterase patterns of both species. The thickness and activation of the band varied slightly. So, the results prove that the pupae of the two Bactrocera species have almost similar esterase band pattern in the same polyacrylamide gel.

  16. Novel ferulic acid esterases from Bifidobacterium sp. produced on selected synthetic and natural carbon sources

    Dominik Szwajgier


    Full Text Available Background. Ferulic acid esterases (or feruloyl esterases, a common group of hydrolases are very well distributed in the plant kongdom. The fungal feruloyl esterases were very extensively studied whereas probiotic lactic acid bacteria as the source of this enzyme were generally omitted. Free phenolic acids – strong antioxidants can be released from the dietary fiber by the action of intestinal lactic acid bacteria. The aim of this study was to examine the three probiotic Bifidobacterium strains to produce extracellular FAE on different synthetic and natural carbon sources. Material and methods. Studies were carried out using Bifidibacteriumstrains (B. animalis Bi30, B. catenulatum KD 14 and B. longum KN 29. The strains were cultivated using minimal growth media containing selected natural and synthetic carbon sources: German wheat bran, rye bran, barley spent grain, isolated larchwood arabinogalactan, apple pectin, corn pectin, methyl esters of phenolic acids. The production of extracellular feruloyl esterase was estimated using the post cultivation supernatants and methyl ferulate. The concentration of ferulic acid released from the ester was determined using HPLC with DAD detection. Results. The most efficient bacterial strain for FAE production was B. animalis cultivated in the presence of methyl p-coumarate and methyl ferulate as the main carbon sources (14.95 nmol·ml-1·min-1 and 4.38 nmol·ml-1·min-1, respectively. In the case of each FAE, the highest activity was obtained at 37oC (pH 6.3 in Theorell/Steinhagen buffer (B. animalis Bi30 or in Tris/HCl buffer (B. catenulatum KD14 and B. longum KN29. Taking under consideration all results, it should be noticed that the highest feruloyl esterase activities were obtained using synthetic methyl esters of phenolic acids. Conclusions. The presented resultsbroaden the knowledgeabout the production of the feruloyl esterase by probiotic bacteria. Although the enzyme is only accessory during

  17. New Thermophilic and Thermostable Esterase with Sequence Similarity to the Hormone-Sensitive Lipase Family, Cloned from a Metagenomic Library

    Rhee, Jin-Kyu; Ahn, Dae-Gyun; Kim, Yeon-Gu; Oh, Jong-Won


    A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hypertherm...

  18. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species

    Tuffery Pierre


    Full Text Available Abstract Background Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. Results We identified the gene encoding esterase B as the acetyl-esterase gene (aes using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Conclusion Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  19. A Tentative Mechanism of Solubilization of Neuropathy Target Esterase from Chicken Embryo Brain by Phospholipase A2

    Josef Seifert


    Full Text Available The neuropathy target esterase is a membrane-bound enzyme linked to organophosphate-induced distal neuropathy. Here we report a tentative mechanism of its solubilization from chicken embryo brains by using phospholipase A2. The enzyme was released from brain membranes after degradation of their structural phospholipids initiated by phospholipase A2. L-α-lysophosphatidylcholine, tested as a representative product of phospholipid hydrolysis, was identified as a new efficient detergent for solubilization of the neuropathy target esterase.

  20. Extração de esterase de fígado suíno (PLE) Pig liver esterase (PLE) extraction

    Henrique Celso Trevisan; João Batista de Medeiros; Helen Cristina Fávero Lisboa


    A simple, fast and low-cost methodology was optimized, seeking preparation of a crude pig liver esterase (PLE) concentrate. Basically, the method consisted of the following steps: liver homogenization, acetone washing, enzyme extraction and purification/concentration. Starting from 1 kg of fresh liver more than 200 kU of PLE suspension were obtained after 8 hours, at an estimated cost of US$0.21/kU. The PLE concentrate thus obtained was stable, showing 96-100% of the initial activity after 7 ...

  1. Microlaser-based displays

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.


    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  2. Carbohydrates - Guidelines on Parenteral Nutrition, Chapter 5

    Bolder, U; Ebener, C.; Hauner, H.; Jauch, KW; Kreymann, G.; Ockenga, J.; Traeger, K.; Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine


    The main role of carbohydrates in the human body is to provide energy. Carbohydrates should always be infused with PN (parenteral nutrition) in combination with amino acids and lipid emulsions to improve nitrogen balance. Glucose should be provided as a standard carbohydrate for PN, whereas the use of xylite is not generally recommended. Fructose solutions should not be used for PN. Approximately 60% of non-protein energy should be supplied as glucose with an intake of 3.0-3.5 g/kg body weigh...

  3. Molecular simulations of carbohydrate-protein complexes

    Eid, Sameh Mansour Abbas


    I. Generation and validation of a free-energy model for carbohydrate binding. Carbohy-drates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the stru-cture-based design of carbohydrate-based ligands. To this end, we assembled a diverse data set of 316 carbohydrate–protein crystal structu...

  4. Utilization of carbohydrates by radiation processing

    Kume, T.; Nagasawa, N.; Yoshii, F.


    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use.

  5. Small - Display Cartography

    Nissen, Flemming; Hvas, Anders; Münster-Swendsen, Jørgen;

    This report comprises the work carried out in the work-package of small display cartography. The work-package has aimed at creating a general framework for the small-display cartography. A solid framework facilitates an increased use of spatial data in mobile devices - thus enabling, together with...... the rapidly evolving positioning techniques, a new category of position-dependent, map-based services to be introduced. The report consists of the following parts: Part I: Categorization of handheld devices, Part II: Cartographic design for small-display devices, Part III: Study on the GiMoDig Client...... ? Portal Service Communication and finally, Part IV: Concluding remarks and topics for further research on small-display cartography. Part II includes a separate Appendix D consisting of a cartographic design specification. Part III includes a separate Appendix C consisting of a schema specification, a...

  6. Stainless steel display evaluation

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.


    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  7. ENERGY STAR Certified Displays

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 6.0 ENERGY STAR Program Requirements for Displays that are effective as of June 1, 2013....

  8. Theoretical studies of interaction models of human acetylcholine esterase with different inhibitors


    Alzheimer’s disease(AD) is a progressive neurodegenerative disorder and one of the most common causes of dementia in the elderly.Acetylcholine esterase inhibitors(AChEI) are the main drugs used in the treatment of AD.In this work,docking studies have been performed in order to understand the interaction between a number of inhibitors(tacrine,rivastigmine,huperzine A,TV-3326(ladostigil),donepezil and anseculin) and acetylcholine esterase(AChE).The calculated binding affinities between inhibitors and AChE increase in the order tacrine

  9. Esterase mediated resistance in deltamethrin resistant reference tick colony of Rhipicephalus (Boophilus) microplus.

    Gupta, Snehil; Ajith Kumar, K G; Sharma, Anil Kumar; Nagar, Gaurav; Kumar, Sachin; Saravanan, B C; Ravikumar, Gandham; Ghosh, Srikant


    Monitoring of acaricide resistance is considered as one of the important facets of integrated tick management. In an attempt of development of resistance monitoring indicators, in the present study two reference tick lines of Rhipicephalus (Boophilus) microplus maintained in the Entomology laboratory, Indian Veterinary Research Institute (IVRI), Izatnagar, India, were studied to determine the possible contributing factors involved in development of resistance to deltamethrin. Electrophoretic profiling of esterase enzymes detected high activities of EST-1 in reference resistant tick colony designated as IVRI-IV whereas it was not detectable in reference susceptible IVRI-I line of R. (B.) microplus. Esterases were further characterized as carboxylesterase or acetylcholinesterase based on inhibitor study using PMSF, eserine sulphate, malathion, TPP and copper sulphate. It was concluded that an acetylcholinesterase, EST-1, possibly plays an important role for development of deltamethrin resistance in IVRI-IV colony of R. (B.) microplus. PMID:26979585

  10. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel


    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25–30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other ...

  11. Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass.

    Gopalan, Nishant; Rodríguez-Duran, L V; Saucedo-Castaneda, G; Nampoothiri, K Madhavan


    With increasing focus on sustainable energy, bio-refining from lignocellulosic biomass has become a thrust area of research. With most of the works being focused on biofuels, significant efforts are also being directed towards other value added products. Feruloyl esterases (EC. can be used as a tool for bio-refining of lignocellulosic material for the recovery and purification of ferulic acid and related hydroxycinnamic acids ubiquitously found in the plant cell wall. More and more genes coding for feruloyl esterases have been mined out from various sources to allow efficient enzymatic release of ferulic acid and allied hydroxycinnamic acids (HCAs) from plant-based biomass. A sum up on enzymatic extraction of HCAs and its recovery from less explored agro residual by-products is still a missing link and this review brushes up the achieved landmarks so far in this direction and also covers a detailed patent search on this biomass refining enzyme. PMID:26159377

  12. Biocatalytic synthesis of poly(δ-valerolactone) using a thermophilic esterase from archaeoglobus fulgidus as catalyst.

    Cao, Hong; Han, Haobo; Li, Guangquan; Yang, Jiebing; Zhang, Lingfei; Yang, Yan; Fang, Xuedong; Li, Quanshun


    The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone) was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 °C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(δ-valerolactone), and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization. PMID:23202895

  13. The Chemical Neurobiology of Carbohydrates

    Murrey, Heather E.; Hsieh-Wilson, Linda C.


    The cell surface displays a complex array of oligosaccharides, glycoproteins, and glycolipids. This diverse mixture of glycans contains a wealth of information, modulating a wide range of processes such as cell migration, proliferation, transcriptional regulation, and differentiation. Glycosylation is one of the most ubiquitous forms of post-translational modification, with more than 50% of the human proteome estimated to be glycosylated. Glycosylation adds another dimension to the complexity...

  14. Military display performance parameters

    Desjardins, Daniel D.; Meyer, Frederick


    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  15. Flexible displays, rigid designs?

    Hornbæk, Kasper


    Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs.......Rapid technological progress has enabled a wide range of flexible displays for computing devices, but the user experience--which we're only beginning to understand--will be the key driver for successful designs....

  16. Jet printing flexible displays

    R.A. Street


    Full Text Available Jet printing is an interesting patterning technique for electronic devices because it requires no physical mask, has digital control of ejection, and provides good layer-to-layer registration. It also has the potential to reduce display manufacturing costs and enable roll-to-roll processing. The technique is illustrated with examples of prototype printed displays using amorphous silicon and polymer semiconductors.

  17. Endotoxin-induced pulmonary dysfunction is prevented by C1-esterase inhibitor.

    R. Guerrero; Velasco, F; M. Rodriguez; Lopez, A; Rojas, R; Alvarez, M A; Villalba, R.; V. Rubio; Torres, A.; del Castillo, D


    In septic shock, hypotension, disseminated intravascular coagulation, and neutrophil activation are related to the activation of the blood coagulation contact system. This study evaluates in dogs the effect of the C1-esterase inhibitor (C1-INH), a main inhibitor of the blood coagulation contact system, on the cardiovascular and respiratory dysfunction associated with endotoxic shock. Two groups were included: controls, which received Escherichia coli endotoxin, and a C1-INH group in which C1-...

  18. Toxicity of dimlore and its effect on acetylcholine esterase (ache) activity in chilo partellus (swinhoe)

    Dimlore (662 EC), a mixture of chlorpyriphos and dimethoate insecticide, was tested against the larvae of Chilo partellus (Swinhoe). Administration of 10 ml of 0.1%, Dimlore per insect resulted in the inhibition of Acetyl choline esterase (AchE) by 57.22% as compared to the control. The topical application of same dose of different concentrations of Dimlore resulted in significant dose dependant mortality after 24h and 48th of treatment. (author)

  19. Promiscuous enantioselective (−)-γ-lactamase activity in the Pseudomonas fluorescens esterase I

    Torres, Leticia L.; Schließmann, Anna; Schmidt, Marlen; Silva-Martín, Noella; Hermoso, Juan A.; Berenguer, José; Bornscheuer, Uwe T.; Hidalgo, Aurelio


    A promiscuous but very enantioselective (−)-γ-lactamase activity in the kinetic resolution of the Vince lactam (2-azabicyclo[2.2.1]hept-5-en-3-one) was detected in the Pseudomonas fluorescens esterase I (PFEI). The lactamase activity was increased 200-fold by the introduction of a point mutation and resulted as enantioselective as the Microbacterium sp. enzyme used industrially in this resolution. The structural and mechanistic determinants for the catalytic promiscuity and enantioselectivity...

  20. Identification and characterization of juvenile hormone esterase gene from the yellow fever mosquito, Aedes aegypti

    Bai, Hua; Ramaseshadri, Parthasarathy; Palli, Subba Reddy


    Juvenile hormone esterase (JHE) plays an important role in regulating juvenile hormone titers. Recent sequencing and annotation of the Aedes aegypti genome identified ten putative jhe gene sequences. Analysis of these ten putative jhe gene sequences showed that only three of them, EAT43357, EAT43353 and EAT43354 contained GQSAG motif and showed high sequence similarity with the sequences of jhe genes identified from other insect species. To determine which putative jhe gene(s) code for functi...

  1. Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus.

    Shabtai, Y; Gutnick, D. L.


    An esterase activity has been found, both in the cell-free growth medium and on the cell surface of the hydrocarbon-degrading Acinetobacter calcoaceticus RAG-1. The enzyme catalyzed the hydrolysis of acetyl and other acyl groups from triglycerides and aryl and alkyl esters. Emulsan, the extracellular heteropolysaccharide bioemulsifier produced by strain RAG-1, was also a substrate for the enzyme. Gel filtration showed that the cell-free enzyme was released from the cell surface either emulsan...

  2. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance

    Li Shi; Peng Wei; Xiangzun Wang; Guangmao Shen; Jiao Zhang; Wei Xiao; Zhifeng Xu; Qiang Xu; Lin He


    The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene’s function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, res...

  3. Identification and Modulation of Esterases Involved in the Metabolism of Heroin

    Hauan, Karine Margrethe


    Heroin is the main abused opioid, and is causing most drug use related deaths in the European Union and in the USA. New treatment strategies for heroin addiction are needed, and an alternative could be modulation of the enzymes involved in the heroin metabolism with the objective of reducing the rewarding effects of the drug. Different esterases have been shown to be involved in the metabolism of heroin. However, little is known about the importance of these enzymes in the heroin metabolism i...

  4. Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction

    Narasimhan, Diwahar; Woods, James H.; Sunahara, Roger K


    Cocaine is highly addictive and there are no pharmacotherapeutic drugs available to treat acute cocaine toxicity or chronic abuse. Antagonizing an inhibitor such as cocaine using a small molecule has proven difficult. The alternative approach is to modify cocaine’s pharmacokinetic properties by sequestering or hydrolyzing it in serum and limiting access to its sites of action. We took advantage of a bacterial esterase (CocE) that has evolved to hydrolyze cocaine and have developed it as a the...

  5. Genetic diversity analysis of Capsicum spp germplasm bank accessions based on α/β-esterase polymorphism.

    Monteiro, E R; Bronzato, A R; Orasmo, G R; Lopes, A C A; Gomes, R L F; Mangolin, C A; Machado, M F P S


    Genetic diversity and structure were analyzed in 10 accessions belonging to Banco Ativo de Germoplasma de Capsicum located at Federal University of Piauí in northwestern Brazil that receives pepper samples grown in community gardens in various regions and Brazilian states. Selections were made from seeds of C. chinense (4 accessions), C. annuum (5 accessions), and C. baccatum (1 accession). Samples consisting of leaves were collected from 4-10 plants of each accession (a total of 85 plants). Native polyacrylamide gel electrophoresis was used to identify α- and β-esterase polymorphisms. Polymorphism was clearly detected in 5 loci. Sixteen alleles were found at 5 α/β-esterase loci of the three Capsicum species. In the C. chinense samples, the highest HO and HE values were 0.3625 and 0.4395, respectively, whereas in C. annuum samples, HO and HE values were 0.2980 and 0.3310, respectively; the estimated HO and HE values in C. chinense samples were higher than those detected in C. annuum samples. A deficit of homozygous individuals was found in C. chinense (FIS = -0.6978) and C. annuum (FIS = 0.7750). Genetic differentiation between C. chinense and C. annuum at these loci was high (FST = 0.1867) indicating that C. chinense and C. annuum are genetically structured species for α/β- esterase isozymes. The esterase analysis showed high genetic diversity among the C. chinense and C. annuum samples and very high genetic differentiation (FST = 0.6321) among the C. chinense and C. annuum samples and the C. baccatum accession. PMID:23661440

  6. Purification and characterization of the tween-hydrolyzing esterase of Mycobacterium smegmatis.

    Tomioka, H.


    An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column....

  7. Synthesis of [11C]N-methyl tetrahydroaminoacridine, a potent acetylcholine esterase inhibitor

    Tetrahydroaminoacridine (THA) is a potent central acting acetylcholine esterase (AChE) inhibitor which might be used as therapeutic agent in the treatment of Alzheimer's disease (AZD). In order to study the AChE activity in the brain by PET, the authors selected N-methyl THA, a potent AChE inhibitor, as a potential radioligand. In this paper, they report the synthesis and labelling of N-methyl THA with [11C]methyl iodide

  8. Characterization of esterase activity in the Bianchetta trevigiana grape variety under reducing conditions

    Lomolino G; Lante A


    Giovanna Lomolino, Anna LanteDepartment of Agronomy Food Natural Resources Animals and Environment, Agripolis, Università di Padova Viale dell'Università, Padova, ItalyBackground and methods: While extensive research has been carried out on the enzymes responsible for ester synthesis and hydrolysis by wine strains of Saccharomyces cerevisiae, grape esterase activity is limited. In this study, the autochthonous grape variety, Bianchetta trevigiana, widespread in t...

  9. Separation and characterization of the acid lipase and neutral esterases from human liver.

    Warner, T G; Dambach, L M; Shin, J H; O'Brien, J S


    Electrophoresis of human liver homogenates followed by reaction with 4-methylumbelliferyl palmitate reveals the presence of two major electrophoretic forms with esterase (lipase) activity toward this substrate. The two enzymes were isolated and partially purified based on their solubility differences and their relative affinities for the lectin column concanavalin A-Sepharose 4B. Lipase A was particulate with an acidic pH optimum (5.2) and could be solubilized with the non-ionic surfactant Tr...

  10. Workshop to establish databases of carbohydrate spectra



    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  11. Hormone-sensitive lipase is a cholesterol esterase of the intestinal mucosa.

    Grober, Jacques; Lucas, Stéphanie; Sörhede-Winzell, Maria; Zaghini, Isabelle; Mairal, Aline; Contreras, Juan-Antonio; Besnard, Philippe; Holm, Cecilia; Langin, Dominique


    The identity of the enzymes responsible for lipase and cholesterol esterase activities in the small intestinal mucosa is not known. Because hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters, we sought to determine whether HSL could be involved. HSL mRNA and protein were detected in all segments of the small intestine by Northern and Western blot analyses, respectively. Immunocytochemistry experiments revealed that HSL was expressed in the differentiated enterocytes of the villi and was absent in the undifferentiated cells of the crypt. Diacylglycerol lipase and cholesterol esterase activities were found in the different segments. Analysis of gut from HSL-null mice showed that diacylglycerol lipase activity was unchanged in the duodenum and reduced in jejunum. Neutral cholesterol esterase activity was totally abolished in duodenum, jejunum, and ileum of HSL-null mice. Analysis of HSL mRNA structure showed two types of transcripts expressed in equal amounts with alternative 5'-ends transcribed from two exons. This work demonstrates that HSL is expressed in the mucosa of the small intestine. The results also reveal that the enzyme participates in acylglycerol hydrolysis in jejunal enterocytes and cholesteryl ester hydrolysis throughout the small intestine. PMID:12482847

  12. Newly Identified Thermostable Esterase from Sulfobacillus acidophilus: Properties and Performance in Phthalate Ester Degradation

    Zhang, Xiao-Yan; Fan, Xiang; Qiu, Yong-Jun; Li, Cheng-Yuan; Xing, Shuai; Zheng, Yi-Tao


    EstS1, a newly identified thermostable esterase from Sulfobacillus acidophilus DSM10332, was heterologously expressed in Escherichia coli and shown to enzymatically degrade phthalate esters (PAEs) to their corresponding monoalkyl PAEs. The optimal pH and temperature of the esterase were found to be 8.0 and 70°C, respectively. The half-life of EstS1 at 60°C was 15 h, indicating that the enzyme had good thermostability. The specificity constant (kcat/Km) of the enzyme for p-nitrophenyl butyrate was as high as 6,770 mM−1 s−1. The potential value of EstS1 was demonstrated by its ability to effectively hydrolyze 35 to 82% of PAEs (10 mM) within 2 min at 37°C, with all substrates being completely degraded within 24 h. At 60°C, the time required for complete hydrolysis of most PAEs was reduced by half. To our knowledge, this enzyme is a new esterase identified from thermophiles that is able to degrade various PAEs at high temperatures. PMID:25149523

  13. Novel Cold-Adapted Esterase MHlip from an Antarctic Soil Metagenome

    Moreno Galleni


    Full Text Available An Antarctic soil metagenomic library was screened for lipolytic enzymes and allowed for the isolation of a new cytosolic esterase from the a/b hydrolase family 6, named MHlip. This enzyme is related to hypothetical genes coding esterases, aryl-esterases and peroxydases, among others. MHlip was produced, purified and its activity was determined. The substrate profile of MHlip reveals a high specificity for short p-nitrophenyl-esters. The apparent optimal activity of MHlip was measured for p-nitrophenyl-acetate, at 33 °C, in the pH range of 6–9. The MHlip thermal unfolding was investigated by spectrophotometric methods, highlighting a transition (Tm at 50 °C. The biochemical characterization of this enzyme showed its adaptation to cold temperatures, even when it did not present evident signatures associated with cold-adapted proteins. Thus, MHlip adaptation to cold probably results from many discrete structural modifications, allowing the protein to remain active at low temperatures. Functional metagenomics is a powerful approach to isolate new enzymes with tailored biophysical properties (e.g., cold adaptation. In addition, beside the ever growing amount of sequenced DNA, the functional characterization of new catalysts derived from environment is still required, especially for poorly characterized protein families like α/b hydrolases.

  14. Esterase-3 polymorphism in the sugarcane borer Diatraea saccharalis (Lepidoptera, Pyralidae

    Maria Claudia C. Ruvolo-Takasusuki


    Full Text Available The migration rate of esterases and their substrate specificity for 4-methylumbelliferyl esters (acetate, propionate, and butyrate and alpha- and beta-naphthyl esters were analyzed in Diatraea saccharalis by starch gel electrophoresis. Substrate preference of esterases was observed with Est-2 and Est-8 isozymes showing substrate specificity for 4-methylumbelliferyl esters and Est-4 isozyme showing specificity for 4-methylumbelliferyl butyrate and alpha-naphthyl butyrate. Allele variation was detected at the Est-3 locus. Two alleles, Est-3F and Est-3S, were identified in pupae with fluorogenic and ester-naphthyl substrates. Chi-square analysis showed no differences between the observed genotypic frequencies and those expected on the basis of Hardy-Weinberg frequencies for the Est-3 locus (chi² = 2.4; p < 0.01. The negative value for the Wright's fixation index (F = -0.2096 calculated for the D. saccharalis population maintained under laboratory conditions indicates an excess of heterozygotes, however, the observed Hardy-Weinberg equilibrium indicates that in the laboratory the population of D. saccharalis behaved as if the moth were randomly mating in nature. The high level of heterozygosity at the Est-3 locus indicates also that this esterase may be a good genetic marker for studies of natural D. saccharalis populations.

  15. Genetics of a tissue esterase polymorphism (Est-6) in the rabbit (Oryctolagus cuniculus).

    van Zutphen, L F; den Bieman, M G; von Deimling, O; Fox, R R


    Genetic analysis of a polymorphic tissue esterase revealed a new locus (Est-6) with two alleles (Est-6a and Est-6b) on linkage group VI of the rabbit. Est-6 is closely linked to the Est-1,2,4 cluster. Esterase of Est-6 is found in many organs, particularly in liver and small intestine, but not in erythrocytes and serum. Est-6 esterase hydrolyzes alpha-naphthyl acetate and butyrate, naphthol AS-D acetate, indoxyl acetate, and butyrate as well as 5-bromoindoxyl acetate, N-acetyl-L-alanine-alpha-naphthyl ester but not 4-methylumbelliferyl acetate and fluorescein diacetate. The enzyme is inhibited by bis-p-nitrophenyl phosphate and eserine but not by p-chloromercuribenzoate. It was classified as a carboxylesterase (EC Based on chromosomal localization, tissue distribution, substrate specificity, inhibitor sensitivity, and range of pI's, rabbit Est-6 is assumed to be homologous with mouse Es-7. PMID:3619880

  16. Eco-friendly surface modification on polyester fabrics by esterase treatment

    Graphical abstract: - Highlights: • We used a simple and easy way to measure the enzyme activity. • We studied the mechanism by characterizing the chemical changes in the surface of fabric. • We studied the advantages in surface wettability, fiber integrity and mechanical performance of cutinase treated fabrics. • Cutinase pretreated fibers exhibited much improved fabric wicking and better fiber integrity comparing to alkali treated ones. • Cutinase pretreatment technology promotes energy conservation and emission reduction. - Abstract: Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach

  17. A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET and Polylactic Acid (PLA

    Georg Steinkellner


    Full Text Available A new esterase from Thermobifida halotolerans (Thh_Est was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA and polyethylene terephthalate (PET. Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 85–87% homology to an esterase from T. alba, to an acetylxylan esterase from T. fusca and to various Thermobifida cutinases. Thh_Est hydrolyzed the PET model substrate bis(benzoyloxyethylterephthalate and PET releasing terephthalic acid and mono-(2-hydroxyethyl terephthalate in comparable amounts (19.8 and 21.5 mmol/mol of enzyme while no higher oligomers like bis-(2-hydroxyethyl terephthalate were detected. Similarly, PLA was hydrolyzed as indicated by the release of lactic acid. Enzymatic surface hydrolysis of PET and PLA led to a strong hydrophilicity increase, as quantified with a WCA decrease from 90.8° and 75.5° to 50.4° and to a complete spread of the water drop on the surface, respectively.

  18. Cloning, expression and characterization of a novel esterase from a South China Sea sediment metagenome

    Zhang, Hao; Li, Fuchao; Chen, Huaxin; Zhao, Jin; Yan, Jinfei; Jiang, Peng; Li, Ronggui; Zhu, Baoli


    Lipolytic enzymes, including esterases and lipases, represent a group of hydrolases that catalyze the cleavage and formation of ester bonds. A novel esterase gene, scsEst01, was cloned from a South China Sea sediment metagenome. The scsEst01 gene consisted of 921 bp encoding 307 amino acid residues. The predicted amino acid sequence shared less than 90% identity with other lipolytic enzymes in the NCBI nonredundant protein database. ScsEst01 was successfully co-expressed in Escherichia coli BL21 (DE3) with chaperones (dnaK-dnaJ-grpE) to prevent the formation of inclusion bodies. The recombinant protein was purified on an immobilized metal ion affinity column containing chelating Sepharose charged with Ni2+. The enzyme was characterized using p -nitrophenol butyrate as a substrate. ScsEst01 had the highest lipolytic activity at 35°C and pH 8.0, indicative of a meso-thermophilic alkaline esterase. ScsEst01 was thermostable at 20°C. The lipolytic activity of scsEst01 was strongly increased by Fe2+, Mn2+ and 1% Tween 80 or Tween 20.

  19. Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. I. Non-specific esterase activity and regional histology of the epididymis

    Blecher, S R; Kirkeby, S


    As a base line for future cell genetical studies the authors record the distribution of non-specific esterase reaction in the various histologically distinguishable cell types of the mouse epididymis. The findings are correlated with previous descriptions of the lobar structure of the organ. Assu...... described. Methodological studies using different fixatives indicate that apparent similarity of esterase reaction at different sites may camouflage an underlying difference in the nature of the esterases at these sites....

  20. Carbohydrate Nutrition and Team Sport Performance.

    Williams, Clyde; Rollo, Ian


    The common pattern of play in 'team sports' is 'stop and go', i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2-4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores. PMID:26553494

  1. Dietary Carbohydrates and Childhood Functional Abdominal Pain.

    Chumpitazi, Bruno P; Shulman, Robert J


    Childhood functional gastrointestinal disorders (FGIDs) affect a large number of children throughout the world. Carbohydrates (which provide the majority of calories consumed in the Western diet) have been implicated both as culprits for the etiology of symptoms and as potential therapeutic agents (e.g., fiber) in childhood FGIDs. In this review, we detail how carbohydrate malabsorption may cause gastrointestinal symptoms (e.g., bloating) via the physiologic effects of both increased osmotic activity and increased gas production from bacterial fermentation. Several factors may play a role, including: (1) the amount of carbohydrate ingested; (2) whether ingestion is accompanied by a meal or other food; (3) the rate of gastric emptying (how quickly the meal enters the small intestine); (4) small intestinal transit time (the time it takes for a meal to enter the large intestine after first entering the small intestine); (5) whether the meal contains bacteria with enzymes capable of breaking down the carbohydrate; (6) colonic bacterial adaptation to one's diet, and (7) host factors such as the presence or absence of visceral hypersensitivity. By detailing controlled and uncontrolled trials, we describe how there is a general lack of strong evidence supporting restriction of individual carbohydrates (e.g., lactose, fructose) for childhood FGIDs. We review emerging evidence suggesting that a more comprehensive restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) may be effective. Finally, we review how soluble fiber (a complex carbohydrate) supplementation via randomized controlled intervention trials in childhood functional gastrointestinal disorders has demonstrated efficacy. PMID:27355647

  2. The carbohydrate-active enzymes database (CAZy) in 2013.

    Lombard, Vincent; Golaconda Ramulu, Hemalatha; Drula, Elodie; Coutinho, Pedro M; Henrissat, Bernard


    The Carbohydrate-Active Enzymes database (CAZy; provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes. PMID:24270786

  3. Novel Redox-Dependent Esterase Activity (EC for DJ-1: Implications for Parkinson's Disease.

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G; Dagda, Ruben K; Domínguez-Solís, Carlos A; Dagda, Raul Y; Coronado-Ramírez, Cynthia K; Martínez-Martínez, Alejandro


    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson's disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  4. The Ultimate Display

    Fluke, C J


    Astronomical images and datasets are increasingly high-resolution and multi-dimensional. The vast majority of astronomers perform all of their visualisation and analysis tasks on low-resolution, two-dimensional desktop monitors. If there were no technological barriers to designing the ultimate stereoscopic display for astronomy, what would it look like? What capabilities would we require of our compute hardware to drive it? And are existing technologies even close to providing a true 3D experience that is compatible with the depth resolution of human stereoscopic vision? We consider the CAVE2 (an 80 Megapixel, hybrid 2D and 3D virtual reality environment directly integrated with a 100 Tflop/s GPU-powered supercomputer) and the Oculus Rift (a low- cost, head-mounted display) as examples at opposite financial ends of the immersive display spectrum.

  5. Metabolic aspects of low carbohydrate diets and exercise

    Peters Sandra


    Full Text Available Abstract Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise.

  6. Effect of carbohydrate ingestion subsequent to carbohydrate supercompensation on endurance performance.

    Kang, J; Robertson, R J; Denys, B G; DaSilva, S G; Visich, P; Suminski, R R; Utter, A C; Goss, F L; Metz, K F


    This investigation determined whether carbohydrate ingestion during prolonged moderate-intensity exercise enhanced endurance performance when the exercise was preceded by carbohydrate supercompensation. Seven male trained cyclists performed two trials at an initial power output corresponding to 71 +/- 1% of their peak oxygen consumption. During the trials, subjects ingested either a 6% glucose/sucrose (C) solution or an equal volume of artificially flavored and sweetened placebo (P) every 20 min throughout exercise. Both C and P were preceded by a 6-day carbohydrate supercompensation procedure in which subjects undertook a depletion-taper exercise sequence in conjunction with a moderate- and high-carbohydrate diet regimen. Statistical analysis of time to exhaustion, plasma glucose concentration, carbohydrate oxidation rate, fat oxidation rate, and plasma glycerol concentration indicated that in spite of a carbohydrate supercompensation procedure administered prior to exercise, carbohydrate ingestion during exercise can exert an additional ergogenic effect by preventing a decline in blood glucose levels and maintaining carbohydrate oxidation during the later stages of moderate-intensity exercise. PMID:8605519

  7. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted.

    Kasper, Andreas M; Cocking, Scott; Cockayne, Molly; Barnard, Marcus; Tench, Jake; Parker, Liam; McAndrew, John; Langan-Evans, Carl; Close, Graeme L; Morton, James P


    We tested the hypothesis that carbohydrate mouth rinsing, alone or in combination with caffeine, augments high-intensity interval (HIT) running capacity undertaken in a carbohydrate-restricted state. Carbohydrate restriction was achieved by performing high-intensity running to volitional exhaustion in the evening prior to the main experimental trials and further refraining from carbohydrate intake in the post-exercise and overnight period. On the subsequent morning, eight males performed 45-min steady-state (SS) exercise (65% [Formula: see text]) followed by HIT running to exhaustion (1-min at 80% [Formula: see text]interspersed with 1-min walking at 6 km/h). Subjects completed 3 trials consisting of placebo capsules (administered immediately prior to SS and immediately before HIT) and placebo mouth rinse at 4-min intervals during HIT (PLACEBO), placebo capsules but 10% carbohydrate mouth rinse (CMR) at corresponding time-points or finally, caffeine capsules (200 mg per dose) plus 10% carbohydrate mouth rinse (CAFF + CMR) at corresponding time-points. Heart rate, capillary glucose, lactate, glycerol and NEFA were not different at exhaustion during HIT (P > 0.05). However, HIT capacity was different (P mouth rinsing and caffeine ingestion improves exercise capacity undertaken in carbohydrate-restricted states. Such nutritional strategies may be advantageous for those athletes who deliberately incorporate elements of training in carbohydrate-restricted states (i.e. the train-low paradigm) into their overall training programme in an attempt to strategically enhance mitochondrial adaptations of skeletal muscle. PMID:26035740

  8. Biochemical characterization and structural analysis of a new cold-active and salt-tolerant esterase from the marine bacterium Thalassospira sp.

    De Santi, Concetta; Leiros, Hanna-Kirsti S; Di Scala, Alessia; de Pascale, Donatella; Altermark, Bjørn; Willassen, Nils-Peder


    A gene encoding an esterase, ThaEst2349, was identified in the marine psychrophilic bacterium Thalassospira sp. GB04J01. The gene was cloned and overexpressed in E. coli as a His-tagged fusion protein. The recombinant enzyme showed optimal activity at 45 °C and the thermal stability displayed a retention of 75 % relative activity at 40 °C after 2 h. The optimal pH was 8.5 but the enzyme kept more than 75 % of its maximal activity between pH 8.0 and 9.5. ThaEst2349 also showed remarkable tolerance towards high concentrations of salt and it was active against short-chain p-nitrophenyl esters, displaying optimal activity with the acetate. The enzyme was tested for tolerance of organic solvents and the results are suggesting that it could function as an interesting candidate for biotechnological applications. The crystal structure of ThaEst2349 was determined to 1.69 Å revealing an asymmetric unit containing two chains, which also is the biological unit. The structure has a characteristic cap domain and a catalytic triad comprising Ser158, His285 and Asp255. To explain the cold-active nature of the enzyme, we compared it against thermophilic counterparts. Our hypothesis is that a high methionine content, less hydrogen bonds and less ion pairs render the enzyme more flexible at low temperatures. PMID:27016194

  9. Digital holographic display

    Lee, Cheok Peng; Chia, Yong Poo; Singh, Vijay Raj; Asundi, A.; Khoo, Xuan Jie; Tay, Kiat Long; Zhou, Junxiang


    This paper describes how a Digital Holographic Projector is designed and implemented to project two-dimension virtual images onto the volumetric display media. In this research, we focus on the method to create 3D models, diffractive algorithm and the display media. A 3D model is generated based on the 360° view with views at every 10° interval from a 3D perspective view software. The hologram interference fringes are re-producing from the Fraunhofer algorithm. In order to make more flexible and portable, a Compact Vision System is introduced to storage multiply interference fringes. At the same time, the fringes are sent out at 30 Hz frame by frame continually to the digital micro-mirror1. With the presence of Nd: YVO4 green laser and various optical components, the 3D 360° hologram images are dynamically reconstructed and projected onto the high speed rotating diffuser forming a 3D model at any viewing angle on the volumetric display media. Both volumetric display media, wet and dry methods are demonstrated to show their feasibility and convenience. Finally, the dry volumetric technique with vertical projection mounting is adopted and as the result shown that the speckle noise is significance reduced.

  10. Document Management on Display.

    Grimshaw, Anne


    Describes some of the products displayed at the United Kingdom's largest document management, imaging and workflow exhibition (Document 97, Birmingham, England, October 7-9, 1997). Includes recognition technologies; document delivery; scanning; document warehousing; document management and retrieval software; workflow systems; Internet software;…

  11. Potential effect of ultrasound on carbohydrates.

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man


    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. PMID:25954862

  12. Tactile Displays with Parallel Mechanism

    Kyung, Ki-Uk; Kwon, Dong-Soo


    This chapter deals with tactile displays and their mechanisms. We briefly reviewed research history of mechanical type tactile displays and their parallel arrangement. And this chapter mainly describes two systems including tactile displays. The 5x6 pin arrayed tactile display with parallel arrangement of piezoelectric bimorphs has been described in the section 3. The tactile display has been embedded into a mouse device and the performance of the device has been verified from pattern display...

  13. Izoenzimas esterases para discriminar cultivares "sem nome" de mandioca (Manihot esculenta Esterase isozymes for the characterization of "unnamed" cassava cultivars (Manihot esculenta Crantz

    Fábio Pablos de Souza


    Full Text Available Isoenzimas esterases foram usadas como marcadores moleculares para discriminar e agrupar sete cultivares "sem nomes" (acessos A-G de Manihot esculenta. Os cultivares "sem nomes" de mandioca foram comparados com 25 diferentes cultivares (BG que vêm sendo mantidos na coleção de germoplasma do Departamento de Agronomia, da Universidade Estadual de Maringá. Acetato e propionato de 4-metilumbeliferona e acetato de α–naftil, foram os substratos utilizados para a detecção e análise comparativa das isoesterases. A similaridade entre as plantas, usando o coeficiente de Jaccard, variou de 47,6% até 100%. O dendrograma produzido pela análise de agrupamento mostrou identidade entre as plantas do cultivar BG23 e as plantas do acesso D. As plantas dos acessos B e G também foram agrupadas com o cultivar BG 23, mostrando similaridade de 95% e 89%, respectivamente. As plantas dos acessos A e E foram similares às plantas BG 1, mostrando 95% e 90% de similaridade, respectivamente. As plantas do acesso F foram agrupadas com as plantas do cultivar BG 9, mostrando 94% de similaridade. O dendrograma mostrou também que a maioria dos cultivares foram agrupados com 85-90% de similaridade. Assim, concluímos que as isozimas esterases podem ser utilizadas como marcadores moleculares de genótipos de mandioca, para a caracterização dos cultivares sem nomes de M. esculentaEsterase isozymes were used as molecular markers to discriminate and cluster seven "unnamed" cultivars (accesses A-G of M. esculenta. The "unnamed" cassava cultivars were compared to 25 different M. esculenta cultivars (cultivars BG, which have been maintained in the germplasm collection of the Agronomy Department, State University of Maringá. 4-Methylumbelliferyl acetate, 4-methylumbelliferyl propionate and α–naphthyl acetate were utilized as substrates for isoesterase detection and comparative analysis. Similarity between plants, using Jaccard’s coefficient, ranged from 47.6% to 100

  14. Unsolicited displays of insights

    Brouwer, Catherine E.


    This study is based on videorecorded interactional data from a specific type of institutional setting which consists of a variety of 'language stimulation activities' for bilingual children in Danish preschools. Bilingual children, with a variety of linguistic backgrounds, take part in these......) learning and contrasts it to the widely studied IRF/IRE pattern in educational contexts. The activities were videotaped, transcribed and analysed according to principles and procedures of Conversation Analysis.......: Unsolicited displays may lead to side sequences, they may lead to a shift in the main business of the talk, or they may be explicitly or implicitly ignored. The paper discusses whether and how these unsolicited displays of understanding then can be thought of as leading to opportunities for (language...

  15. Position display device

    Object: To provide a device capable of easily and quickly reading mutual mounting relations of control bodies such as control rods mounted on a nuclear reactor and positions to which the control bodies are driven. Structure: A scanning circuit is provided to scan positions of controllably mounted control bodies such as control rods. Values detected by scanning the positions are converted into character signals according to the values and converted into preranked color signals. The character signals and color signals are stored in a memory circuit by synchronous signals in synchronism with the scanning in the scanning circuit. Outputs of the memory circuit are displayed by a display unit such as a color Braun tube in accordance with the synchronous signals to provide color representations according to positions to which control bodies are driven in the same positional relation as the mounting of the control bodies. (Kamimura, M.)

  16. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome

    Liu Yu


    Full Text Available Abstract Background Pyrethroids and pyrethrins are widely used insecticides. Extensive applications not only result in pest resistance to these insecticides, but also may lead to environmental issues and human exposure. Numerous studies have shown that very high exposure to pyrethroids might cause potential problems to man and aquatic organisms. Therefore, it is important to develop a rapid and efficient disposal process to eliminate or minimize contamination of surface water, groundwater and agricultural products by pyrethroid insecticides. Bioremediation is considered to be a reliable and cost-effective technique for pesticides abatement and a major factor determining the fate of pyrethroid pesticides in the environment, and suitable esterase is expected to be useful for potential application for detoxification of pyrethroid residues. Soil is a complex environment considered as one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches provide a powerful tool for accessing novel valuable genetic resources (novel enzymes and developing various biotechnological applications. Results The pyrethroid pesticides residues on foods and the environmental contamination are a public safety concern. Pretreatment with pyrethroid-hydrolyzing esterase has the potential to alleviate the conditions. To this end, a pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, sequence analysis of the DNA responsible for the pye3 gene revealed an open reading frame of 819 bp encoding for a protein of 272 amino acid residues. Extensive multiple sequence alignments of the deduced amino acid of Pye3 with the most homologous carboxylesterases revealed moderate identity (45–49%. The recombinant Pye3 was heterologously expressed in E. coli BL21(DE3

  17. Refrigerated display cabinets; Butikskyla

    Fahlen, Per


    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  18. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  19. Attention-Seeking Displays.

    Szabolcs Számadó

    Full Text Available Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest.

  20. Attention-Seeking Displays.

    Számadó, Szabolcs


    Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest. PMID:26287489

  1. Cloning and characterization of a novel thermostable esterase from Bacillus gelatini KACC 12197.

    Kim, Jinyeong; Deng, Lili; Hong, Eunsoo; Ryu, Yeonwoo


    A novel gene encoding a thermostable esterase (designated as Est-gela) was isolated from the moderate thermophile Bacillus gelatini KACC 12197. The open reading frame of this gene (1170 bp) encodes 389 amino acid residues, and the molecular weight of Est-gela is approximately 42 kDa. The protein sequence of Est-gela shows similarity with β-lactamases and esterases (⩽ 43%). Est-gela contains the Ser-X-X-Lys conserved sequence (Ser58-Met59-Thr60-Lys61) and belongs to family VIII of esterases. We overexpressed Est-gela in Escherichia coli XL1-blue and purified this protein using a His tag. Est-gela showed a strong enzymatic activity toward p-nitrophenyl esters with short acyl chains (⩽ C4) and the strongest activity toward p-nitrophenyl butyrate. Est-gela showed an enhanced enzymatic activity at 65-75 °C and retained more than 90% of the activity after incubation at 65 °C for 180 min. These results indicated that Est-gela was thermostable. In addition, Est-gela showed the maximal activity at pH 10. We also evaluated the effects of surfactants and organic solvents. Surfactants were more effective at improving the enzymatic activity than were organic solvents. Finally, Est-gela hydrolyzed (R,S)-ketoprofen ethyl ester (Kcat/Km = 5.0 ± 0.2 s(-1) mM(-1), mean ± standard error) with enantioselectivity toward (S)-ketoprofen ethyl ester rather than (R)-ketoprofen ethyl ester. PMID:26276473

  2. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications.

    Maester, Thaís Carvalho; Pereira, Mariana Rangel; Machado Sierra, E G; Balan, Andrea; de Macedo Lemos, Eliana Gertrudes


    Metagenomic libraries from diverse environments have been extensive sources of many lipases and esterases; nevertheless, most of these enzymes remain biochemically uncharacterized. We previously built a metagenomic fosmid library from a microbial consortium specialized for diesel oil degradation and tested it for lipolytic activity. In the present study, we identified the PL14.H10 clone that was subcloned and sequenced, which enabled the identification of the EST3 protein. This enzyme exhibited 74 % amino acid identity with the uncharacterized alpha/beta hydrolase from Parvibaculum lavamentivorans [GenBank: WP012110575.1] and was classified into lipolytic enzyme family IV. Biochemical characterization revealed that EST3 presents high activity in a wide range of temperature with highest activity from 41 to 45 °C. Also, this thermostable esterase acts from mild acidic to alkaline conditions with an optimum pH of 6.0. The enzyme exhibited activity against p-nitrophenyl esters of different chain lengths and highest catalytic efficiency against p-nitrophenyl caprylate. The activity of the protein was increased in the presence of 0.5 mM of Mn(+2), Li(+), EDTA, and 1 % of CTAB and exhibited half of the activity in the presence of 10 % methanol and ethanol. Moreover, the homology model of EST3 was built and compared to other esterases, revealing a substrate channel that should fit a wide range of substrates. Taken together, the data presented in this work reveal the unique and interesting characteristics of EST3 that might be explored for further use in biotechnological applications. PMID:26915995

  3. Hepatic Steatosis, Carbohydrate Intake, and Food Quotient in Patients with NAFLD

    Gonzalez, Concepcion; de Ledinghen, Victor; Vergniol, Julien; Foucher, Juliette; Le Bail, Brigitte; Carlier, Sabrina; Maury, Elisa; Gin, Henri; Rigalleau, Vincent


    Is steatosis related to the spontaneous carbohydrate intake in patients with NAFLD? We performed dietary records for 24 patients with NAFLD, 3 months after their liver biopsy was performed and before the deliverance of a dietary advice. The food quotient, indicator of the proportion of calories from carbohydrates, was calculated as (1.00×%  calories from carbohydrates/100) + (0.70×%  calories from lipids/100) + (0.81×%  calories from proteins/100). The associations between diet variables and steatosis% on the hepatic biopsies were tested by regression analysis, and diet variables were compared according to the presence of fibrosis. The subjects displayed a large range of steatosis, 50.5% ± 25.5 [10–90], correlated with their energy intake (1993 ± 597 kcal/d, r = 0.41, P < 0.05) and food quotient (0.85 ± 0.02, r = 0.42, P < 0.05), which remained significant with both variables by a multivariate regression analysis (r = 0.51, P < 0.05). For the 17/24 patients with a hepatic fibrosis, the energy intake was lower (fibrosis: 1863 ± 503 versus others: 2382 ± 733 kcal/d, P < 0.05), and their food quotients did not differ from patients without fibrosis. Hepatic steatosis was related to the energy and carbohydrate intakes in our patients; the role of dietary carbohydrates was detectable in the range of usual carbohydrate intake: 32% to 58% calories. PMID:23737773

  4. The Enterococcus hirae Mur-2 enzyme displays N-acetylglucosaminidase activity

    Eckert, Catherine; Magnet, Sophie; Mesnage, Stéphane


    Enterococcus hirae produces two autolytic enzymes named Mur-1 and Mur-2, both previously described as N-acetylmuramidases. We used tandem mass spectrometry to show that Mur-2 in fact displays N-acetylglucosaminidase activity. This result reveals that Mur-2 and its counterparts studied to date, which are members of glycosyl hydrolase family 73 from the CAZy (Carbohydrate-Active enZyme) database, display the same catalytic activity.

  5. The Enterococcus hirae Mur-2 enzyme displays N-acetylglucosaminidase activity.

    Eckert, Catherine; Magnet, Sophie; Mesnage, Stéphane


    Enterococcus hirae produces two autolytic enzymes named Mur-1 and Mur-2, both previously described as N-acetylmuramidases. We used tandem mass spectrometry to show that Mur-2 in fact displays N-acetylglucosaminidase activity. This result reveals that Mur-2 and its counterparts studied to date, which are members of glycosyl hydrolase family 73 from the CAZy (Carbohydrate-Active enZyme) database, display the same catalytic activity. PMID:17258207

  6. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Pearson, R.K.; Hirschfeld, T.B.


    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  7. Contribution of Disulfide Bridges to the Thermostability of a Type A Feruloyl Esterase from Aspergillus usamii

    Xin Yin; Die Hu; Jian-Fang Li; Yao He; Tian-Di Zhu; Min-Chen Wu


    The contribution of disulfide bridges to the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii E001 was studied by introducing an extra disulfide bridge or eliminating a native one from the enzyme. MODIP and DbD, two computational tools that can predict the possible disulfide bridges in proteins for thermostability improvement, and molecular dynamics (MD) simulations were used to design the extra disulfide bridge. One residue pair A126-N152 was chosen, and the res...

  8. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Øbro, J.;


    This study examines the effects of different irradiance types on aerobic methane (CH4) efflux rates from terrestrial plant material. Furthermore, the role of the enzyme pectin methyl esterase (PME) on CH4 efflux potential was also examined. Different types of plant tissue and purified pectin were...... exponentially on temperature and linearly on UV-B irradiance. UV-B had a greater stimulating effect than UV-A, while visible light had no effect on emission rates. PME was found to substantially reduce the potential for aerobic CH4 emissions upon demethylation of pectin....

  9. Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources

    Dominik Szwajgier


    Full Text Available Background. Ferulic acid esterases (FAE, EC, also known as feruloyl esterases, cinnamic acid esterases or cinnamoyl esterases, belong to a common group of hydrolases distributed in the plant kingdom. Especially the fungal enzymes were very well characterised in the past whereas the enzyme was rarely found in the lactic acid bacteria (LAB strains. It is well known that strong antioxidants free phenolic acids can be released from the dietary fiber by the action of intestinal microflora composed among others also of Lactobacillus strains. The aim of this study was to examine four Lactobacillus strains (L. acidophilus K1, L. rhamnosus E/N, PEN, OXYfor the ability to produce extracellular FAE on different synthetic and natural carbon sources. Material and methods. The LAB strains were grown in the minimal growth media using German wheat bran, rye bran, brewers’ spent grain, isolated larchwood arabinogalactan, apple pectin, corn pectin, methyl ferulate, methyl p-coumarate, methyl syringate or methyl vanillate as the sole carbon source. FAE activity was determined using the post-cultivation supernatants, methyl ferulate and HPLC with UV detection. Results. The highest FAE activity was obtained with L. acidophilus K1 and methyl ferulate (max. 23.34 ±0.05 activity units and methyl p-coumarate (max. 14.96 ±0.47 activity units as carbon sources. L. rhamnosus E/N, OXY and PEN exhibited the limited ability to produce FAE with cinnamic acids methyl esters. Methyl syringate and methyl vanillate (MS and MV were insufficient carbon sources for FAE production. Brewers’ spent grain was the most suitable substrate for FAE production by L. acidophilus K1 (max. 2.64 ±0.06 activity units and L. rhamnosus E/N, OXY and PEN. FAE was also successfully induced by natural substrates rye bran, corn pectin (L. acidophilus K1, German wheat bran and larchwood arabinogalactan (E/N, PEN or German wheat bran and corn pectin (OXY. Conclusions. This study proved the

  10. p-Nitrophenylacetate hydrolysis by honey bee esterases: kinetics and inhibition.

    Spoonamore, J E; Frohlich, D R; Wells, M A


    1. The kinetics and inhibition of p-nitrophenylacetate hydrolysis by cytosolic esterases of 1-day old female honey bees, Apis mellifera L., were studied. 2. The calculated values obtained were Km = 2.27 x 10(-5)M and Vmax = 2.48 x 10(-8) mol/s per mg protein. 3. The inhibition mechanisms examined for four organophosphorus insecticides were highly competitive in nature and based on competitive inhibition coefficients the order of toxicity was naled > dichlorvos > cis-mevinphos = trans-mevinphos. 4. Comparisons are made with the alfalfa leafcutting bee, Megachile rotundata (Fab). PMID:8498090