Sample records for carbanions

  1. Transmetallation and silylation products of aminal carbanions.

    Kamps, Ina; Langlitz, Irina; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W


    Reactions of the lithiated carbanion [(RLi)(2).(RH)] (R = MeN[CH(2)N(Me)](2)CH, 2,4,6-trimethyl-2,4,6-triazacyclohex-1-yl) with dialkylaluminium and -gallium chlorides lead to the corresponding dialkylaluminium and -gallium compounds (RAlMe(2))(2), (RAlEt(2))(2) and (RGaEt(2))(2). They were characterised by elemental analyses, NMR spectroscopy ((1)H, (13)C, (27)Al) and crystal structure determinations. In the solid state the aluminium and gallium compounds form dimers by intermolecular coordination between the metal acceptor and the nitrogen donor leading to six-membered M(2)C(2)N(2) rings in chair conformation. As a first test for the synthetic utility of [(RLi)(2).(RH)], nucleophilic aminomethylation of chlorotrimethylsilane was performed to give RSiMe(3). Further deprotonation of RSiMe(3) with tBuLi occurs at one of the methyl groups bound to the silicon atom leading to RMe(2)SiCH(2)Li. Reactions with dimethylaluminium and -gallium chlorides gave RMe(2)SiCH(2)AlMe(2) and RMe(2)SiCH(2)GaMe(2). The compounds were characterised by NMR spectroscopy ((1)H, (13)C, (29)Si, (27)Al), elemental analyses and single crystal X-ray diffraction. The compounds are monomeric in the solid state with intramolecular M-N bonds (M = Al, Ga) leading to five-membered rings. PMID:19789789

  2. Unexpected tautomeric equilibria of the carbanion-enamine intermediate in pyruvate oxidase highlight unrecognized chemical versatility of thiamin

    Meyer, Danilo; Neumann, Piotr; Koers, Eline; Sjuts, Hanno; Lüdtke, Stefan; Sheldrick, George M.; Ficner, Ralf; Tittmann, Kai


    Thiamin diphosphate, the vitamin B1 coenzyme, plays critical roles in fundamental metabolic pathways that require acyl carbanion equivalents. Studies on chemical models and enzymes had suggested that these carbanions are resonance-stabilized as enamines. A crystal structure of this intermediate in pyruvate oxidase at 1.1 Å resolution now challenges this paradigm by revealing that the enamine does not accumulate. Instead, the intermediate samples between the ketone and the carbanion both inter...

  3. Rationalizing Ring-Size Selectivity in Intramolecular Pd-Catalyzed Allylations of Resonance-Stabilized Carbanions

    Norrby, Per-Ola; Mader, Mary M.; Vitale, Maxime; Prestat, Guillaume; Poli, Giovanni


    Computational methods were applied to the Pd-catalyzed intramolecular allylations of resonance-stabilized carbanions obtained from amide and ketone substrates, with the aim of rationalizing the endo- vs. exo-selectivity in the cyclizations. In addition, ester substrates were prepared and subjecte...

  4. On the control of secondary carbanion structure utilising ligand effects during directed metallation

    Andrew E. H. Wheatley


    Full Text Available N,N-Diisopropyl-2-propylbenzamide 6-H undergoes lateral deprotonation by t-BuLi in the presence of the Lewis base PMDTA (N,N,N′,N″,N″-pentamethyldiethylenetriamine to give a benzyllithium 6-Lil·PMDTA that incorporates a trigonal planar secondary carbanion. In the solid state, the amide directing group and the PMDTA additive work together to abstract the metal ion from the deprotonated α-C of the propyl group (4.107(4 Å. A short distance of 1.376(3 Å is observed between the deprotonated carbon centre and a planar aromatic system that shows a pattern of bond lengths which contrasts with that reported for related tertiary carbanion systems. Analogous benzylic deprotonation is seen if 6-H is treated with t-BuLi in the presence of diglyme to give 6-Lil·DGME. X-ray crystallography now shows that the metal ion more closely approaches the tertiary carbanion (2.418(6 Å but that the planarity of the deprotonated carbon centre and the bonding pattern in the organic anion seen in the PMDTA complex are retained. DFT analysis corroborates both the short distance between aromatic ring and carbanion centre and the unperturbed nature of aromaticity in 6-Lil·L (L = Lewis base. The observation of two structure-types for the carbanion in solution is explained theoretically and by NMR spectroscopy in terms of cis and trans isomerism imparted by partial double bond character in the arene–(α-C bond.

  5. OMP decarboxylase: phosphodianion binding energy is used to stabilize a vinyl carbanion intermediate.

    Goryanova, Bogdana; Amyes, Tina L; Gerlt, John A; Richard, John P


    Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D(2)O of the C-6 proton of 1-(β-d-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10(4)-fold by 1 M phosphite dianion (HPO(3)(2-)). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state, which is similar to the 7.8 kcal/mol stabilization of the transition state for OMPDC-catalyzed decarboxylation of a truncated substrate analog by bound HPO(3)(2-). These results show that the intrinsic binding energy of phosphite dianion is used in the stabilization of the vinyl carbanion-like transition state common to the decarboxylation and deuterium exchange reactions. PMID:21486036

  6. Oxidation of N-benzylidenebenzylamine by oxygen through the formation of a carbanion

    Grigoryan, G.S.; Tovmasyan, V.S.; Malkhasyan, A.Ts.; Martirosyan, G.T.; Beletskaya, I.P.


    A study was carried out on the oxidation of the methylene group of N-benzylidene-benzylamine through the formation of a carbanion. The conditions were found for a combined oxidation-reduction process using KOH, O/sub 2/, solvent, dibenzo-18-crown-6 and NaBH/sub 4/, in which the oxidation is shifted toward the formation of a hydroxy compound, namely, N-benzylidene-2-hydroxybenzylamine. Oxidation in this system is a convenient preparative method for introducing a hydroxyl group into acidic CH bonds.

  7. Mercury Methylation by HgcA: Theory Supports Carbanion Transfer to Hg(II)

    Zhou, Jing [University of Tennessee (UT); Riccardi, Demian M [ORNL; Beste, Ariana [ORNL; Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL


    Many proteins use corrinoid cofactors to facilitate methyl transfer reactions. Recently, a corrinoid protein, HgcA, has been shown to be required for the production of the neurotoxin methylmercury by anaerobic bacteria. A strictly conserved Cys residue in HgcA was predicted to be a lower-axial ligand to Co(III), which has never been observed in a corrinoid protein. Here, we use density functional theory to study homolytic and heterolytic Co-C bond dissociation and methyl transfer to Hg(II) substrates with model methylcobalamin complexes containing a lower-axial Cys or His ligand to cobalt, the latter of which is commonly found in other corrinoid proteins. We find that Cys thiolate coordination to Co facilitates both methyl radical and methyl carbanion transfer to Hg(II) substrates, but carbanion transfer is more favorable overall in the condensed phase. Thus, our findings are consistent with HgcA representing a new class of corrinoid protein capable of transferring methyl groups to electrophilic substrates.

  8. The gas phase ion/molecule chemistry of four carbanions generated from vinylene carbonate and its methyl and dimethyl derivatives

    Robinson, Marin S.; Breitbeil, Fred W.


    The gas phase ion/molecule chemistry of four carbanions generated by the reaction of vinylene carbonate, and its methyl and dimethyl derivatives with hydroxide ion has been investigated. From the parent the sole product is the ketenyl anion, HC[triple bond; length as m-dash]C---O-, arising from vinylic proton abstraction and loss of CO2. From the dimethyl derivative, abstraction of an allylic proton from one of the methyl groups followed by loss of CO2 leads exclusively to CH2=CC(O)CH3. Both pathways are observed for the monomethyl derivative, leading to a mixture of the ions CH3C[triple bond; length as m-dash]C---O- and CH2=CCHO. The ketenyl and methyl ketenyl ions do not exchange hydrogen for deuterium with D2O or CH3OD, but they do react with CS2 and COS to form the corresponding thioketenyl anions, HC[triple bond; length as m-dash]C---S- and CH3C=C---S-. The ions CH2=CC(O)CH3 and CH2=CCHO exchange one and three hydrogen atoms for deuterium atoms with D2O respectively, and react with CS2 to form thioketenyl anions by addition and loss of thioformaldehyde. Possible mechanisms for these reactions are discussed.

  9. Carbanion reactivity, kinetic and equilibrium studies of sigma-adduct formation and elimination in the reactions of 4-nitrobenzofurazan derivatives with nitroalkane anions.

    Asghar, Basim H M; Crampton, Michael R


    1H NMR studies are reported of the reactions in [2H(6)]-DMSO of 4-nitrobenzofurazan, 2a, and its 7-chloro- and 7-methoxy-derivatives, 2b and 2c respectively, with anions derived from nitromethane, 3, nitroethane, 4, and 2-nitropropane, 5. The initial reactions result in sigma-adduct formation by carbanion attack at the 5-position of 2a-c and in the case of reaction of 2a with 5 the adduct at the 7-position is also observed. These reactions may be followed by base catalysed elimination of nitrous acid to yield anionic alkene derivatives. Kinetic and equilibrium measurements of these reactions were made spectrophotometrically in methanol. The carbon nucleophilicities of the carbanions decrease in the order 3> 4> 5, as also found in their reactions with benzhydrylium cations, and are much lower than the nucleophilicities of some cyano-substituted carbanions. Comparison with corresponding sigma-adduct forming reactions of 1,3,5-trinitrobenzene, TNB, show that here 2 and TNB have similar electrophilicity, although the value of the intrinsic rate coefficient k(o) = 0.05, for reaction of 2 is rather lower than that, k(o) = 0.20, for the TNB reactions. Literature data suggest that for reaction with a variety of nucleophiles 2 and TNB show similar electrophilicities. Measurements of the rates of elimination of nitrous acid from some 5-adducts in methanol catalysed by methoxide ions are reported. Values of rate constants may be influenced both by steric requirements at the reaction centre and by the electronic effects of the 7-substituent. PMID:17571196

  10. Formation and fragmentation of unsaturated fatty acid [M - 2H + Na]- ions: stabilized carbanions for charge-directed fragmentation.

    Thomas, Michael C; Kirk, Benjamin B; Altvater, Jens; Blanksby, Stephen J; Nette, Geoffrey W


    Fatty acids are long-chain carboxylic acids that readily produce [M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely [M - 2H  +  Fe(II)Cl](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., [M - 2H  +  Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an [M - H  +  NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired [M - 2H  +  Na](-) ion via the neutral loss of HF. (2) Direct formation of the [M - 2H  +  Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of [M - 2H  +  Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F(-) and (-)OH), is the lowest energy dissociation pathway. PMID:24338213

  11. Ruthenium-BINAP Catalyzed Alcohol C-H tert-Prenylation via 1,3-Enyne Transfer Hydrogenation: Beyond Stoichiometric Carbanions in Enantioselective Carbonyl Propargylation.

    Nguyen, Khoa D; Herkommer, Daniel; Krische, Michael J


    The chiral ruthenium complex formed in situ from (TFA)2Ru(CO)(PPh3)2 and (R)-BINAP is found to catalyze the enantioselective C-C coupling of diverse primary alcohols with the 1,3-enyne, TMSC≡CC(Me)═CH2, to form secondary homopropargyl alcohols bearing gem-dimethyl groups. All reagents for this byproduct-free coupling are inexpensive and commercially available, making this protocol a practical alternative to stoichiometric carbanions in enantioselective carbonyl reverse prenylation. PMID:27079149

  12. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S


    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. PMID:27132865

  13. From carbanions to organometallic compounds: quantification of metal ion effects on nucleophilic reactivities.

    Corral-Bautista, Francisco; Klier, Lydia; Knochel, Paul; Mayr, Herbert


    The influence of the metal on the nucleophilic reactivities of indenyl metal compounds was quantitatively determined by kinetic investigations of their reactions with benzhydrylium ions (Ar2 CH(+) ) and structurally related quinone methides. With the correlation equation log k2 =sN (N+E), it can be derived that the ionic indenyl alkali compounds are 10(18) to 10(24) times more reactive (depending on the reference electrophile) than the corresponding indenyltrimethylsilane. PMID:25951612

  14. Application of a carbanion transmetalation of aryl alkyl sulfones in the total synthesis of cyclopentanoid monoterpenes

    Řehová, Lucie; Jahn, Ullrich

    Lisboa : -, 2015 - (Rauter, A.; Martins, A.; Matos, A.; Dias, C.; Xavier, N.; Nunes, R.; Lucas, S.; Cachatra, V.; Paiva, A.; Batista, D.). s. 505 ISBN 978-989-8124-11-1. [ESOC 2015. European Symposium on Organic Chemistry /19./. 12.07.2015-16.07.2015, Lisboa] Institutional support: RVO:61388963 Keywords : cyclopentanoid monoterpenes * sulfones * transmetalation Subject RIV: CC - Organic Chemistry

  15. Preparation of SF5 Aromatics by Vicarious Nucleophilic Substitution Reactions of Nitro(pentafluorosulfanyl)benzenes with Carbanions

    Beier, Petr; Pastýříková, Tereza; Iakobson, George


    Roč. 76, č. 11 (2011), s. 4781-4786. ISSN 0022-3263 Institutional research plan: CEZ:AV0Z40550506 Keywords : sulfur pentafluorides * vicarious nucleophilic aromatic substitution * nitrobenzenes Subject RIV: CC - Organic Chemistry Impact factor: 4.450, year: 2011

  16. Relative reactivities of halogen-substituted substrates (R-Br, R-Cl) toward the halophilic attack by a carbanion

    FU; Weimin


    Chitosans with various degrees of deacetylation (D.D.), which were used as standard sample for FTIR determination, were prepared from completely deacetylated chitosan by homogeneous N-acetylation reaction. By combining four probable probe bands, i.e. 1655, 1560, 1380 and 1320 cm-1, eight probable reference bands, i.e. 3430, 2920, 2880, 1425, 1155, 1070, 1030 and 895 cm-1 and two baseline methods, the most suitable ratios Aprobe band/Areference band from IR spectra to determine the degree of acetylation of chitosan were evaluated from 48 combinations to be A1560/A2880, A1560/A2920 and A1655/A3430(A1560/A2880 is mostly recommended). The second baseline method, i.e. linking between adjacent two valleys, was better for measuring the absorbances of 1560 and 1655 cm-1 bands. The determination range of the D.D. (1%-100%) covered almost the whole range. The standard curves with A1560/A2880 and A1655/A3430 were also suitable for the determination of degree of substitution of other N-acylated chitosan, such as N-propionyl chitosan, N-butyryl chitosan and N-hexanoyl chitosan.

  17. Divergent Reactivity of Alkyl Aryl Sulfones with Bases: Selective Functionalization of ortho-Aryl and alpha-Alkyl Units Enabled by a Unique Carbanion Transmetalation

    Řehová, Lucie; Císařová, I.; Jahn, Ullrich


    Roč. 2014, č. 7 (2014), s. 1461-1476. ISSN 1434-193X R&D Projects: GA ČR GAP207/11/1598 Institutional support: RVO:61388963 Keywords : sulfones * transmetalation * lithiation * deprotonation * alkylation * acidity Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  18. Epoxysilane rearrangement induced by a carbanion generated by conjugate addition of enolates of chloroacetate and alpha-chloroacetamides: formation of functionalized cyclopropane derivatives.

    Okamoto, Noriko; Sasaki, Michiko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Takeda, Kei


    [reaction: see text] Reaction of an enoate bearing an epoxysilane moiety at the alpha-position with lithium enolate of 2-chloroacetamide afforded highly functionalized cyclopropane derivatives via a tandem process that involves Michael addition, ring opening of the epoxide, Brook rearrangement, and intramolecular alkylation. PMID:16623577

  19. Polystyrene-supported Benzyl Selenide: An Efficient Reagent for Highly Stereocontrolled Synthesis of Substituted Olefins


    Polystyrene-supported benzyl selenide has been prepared. This novel reagent was treated with LDA to produce a selenium stabilized carbanion, which reacted with alkyl halide, followed by selenoxide syn-elimination, to give substituted olefins stereospecificly.

  20. Tetrabutylammonium fluoride promoted regiospecific reactions of trimethylsilyl-o-carborane with aldehydes

    Trimethylsilyl-o-carborane serves as o-carborane carbanion upon fluoride ion promoted reaction with carbonyl compounds. Thus, in the presence of tetrabutylammonium fluoride, trimethylsilyl-o-carborane undergoes facile, unprecedented, carbodesilylation with aromatic and aliphatic aldehydes. (author)

  1. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  2. Polystyrene-supported Selenides and Selenoxide:Versatile Routes to Synthesize Allylic Alcohols

    Wei Ming XU; You Chu ZHANG; Xian HUANG


    Several polystyrene-supported selenides and selenoxide have been prepared firstly. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with aldehydes and alkyl halides, followed by selenoxide syn-elimination and [2,3] sigmatropic rearrangement respectively to give Z-allylic alcohols stereoselectively.

  3. Polystyrene-supported Selenomethyl-sulfonates:Efficient Reagents for Stereocontrolled Synthesis of Substituted Vinyl Sulfones

    Wei Ming XU; Lu Ling WU; Xian HUANG


    Polystyrene-supported selenomethyl-sulfonates have been prepared. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with alkyl halide and epoxides, followed by selenoxide syn-elimination, to give E-vinyl sulfones and γ-hydroxy-substituted-E-vinyl sulfones respectively.

  4. Substituent Effects on the Photodeprotection Reactions of Selected Ketoprofen Derivatives in Phosphate Buffered Aqueous Solutions

    Liu, Mingyue; Li, Ming-De; Huang, Jinqing; Li, Tianlu; Liu, Han; Li, Xuechen; Phillips, David Lee


    Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms.

  5. New Processes for Annulation

    Liu Hsing-Jang


    Making use of the high propensity of 2-cyano-2-cycloalkenones to undergo conjugate addition with various carbanions and the high reactivity of the ensuing α -cyano ketone system, a number of new annulation processes have been developed recently in our laboratories. As shown in Eq. 1 (n=1) with a specific example, one such process involves the addition of 3-butenylmagnesium bromide, followed by a palladium (Ⅱ) acetate mediated oxidative cyclization, to facilitate methylenecyclopentane ring formation. This annulation process could be readily extended to effect methylenecyclohexane ring formation (Eq. 1, n=2), using 4-pentenylmagnesinm bromide as the initial reagent, and to install the carbomethoxy-substituted methylenecyclopentane and methylenecyclohexane rings, using the carbanions derived from methyl 4-pentenoate and methyl 5-hexenoate, respectively (Eq. 2). In another annulation process, the addition of the enolate of methyl 5-chloropentanoate is involved initially, and the ring formation is readily effected by an intramolecular alkylation process. A specific example is given in Eq. 3.

  6. Theoretical study on the distribution of atomic charges in the Schiff bases of 3-hydroxypyridine-4-aldehyde and alanine. The effect of the protonation state of the pyridine and imine nitrogen atoms

    The protonation state of the pyridine and imine nitrogen atoms on the 'electron-sink' effect was studied by DFT(B3LYP/6-31+G*) calculations in the Schiff bases formed between 3-hydroxypyridine-4-aldehyde and alanine and their Cα-carbanionic counterparts. Results indicate that the protonation of pyridine nitrogen promotes the enolimine-ketoenamine tautomerism. The importance of pyridine nitrogen on the 'electron-sink' effect in the carbanionic molecules clearly depends on the protonation state of the imine nitrogen: in the enolimine tautomers, where the imine nitrogen is deprotonated, a 70% of the electron charge is delocalized on the pyridine ring, whereas in the ketoenamine type structures, where the imine nitrogen is fully protonated, just a 20% of this charge is delocalized in this molecular moiety. The results are discussed in relation to the chemistry of some PLP-dependent enzymes and the structure of their active sites

  7. Theoretical study on the distribution of atomic charges in the Schiff bases of 3-hydroxypyridine-4-aldehyde and alanine. The effect of the protonation state of the pyridine and imine nitrogen atoms

    Casasnovas, Rodrigo; Salva, Antoni; Frau, Juan; Donoso, Josefa [Institut Universitari d' Investigacio en Ciencies de la Salut (IUNICS), Departament de Quimica, Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca (Spain); Munoz, Francisco [Institut Universitari d' Investigacio en Ciencies de la Salut (IUNICS), Departament de Quimica, Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca (Spain)], E-mail:


    The protonation state of the pyridine and imine nitrogen atoms on the 'electron-sink' effect was studied by DFT(B3LYP/6-31+G*) calculations in the Schiff bases formed between 3-hydroxypyridine-4-aldehyde and alanine and their C{alpha}-carbanionic counterparts. Results indicate that the protonation of pyridine nitrogen promotes the enolimine-ketoenamine tautomerism. The importance of pyridine nitrogen on the 'electron-sink' effect in the carbanionic molecules clearly depends on the protonation state of the imine nitrogen: in the enolimine tautomers, where the imine nitrogen is deprotonated, a 70% of the electron charge is delocalized on the pyridine ring, whereas in the ketoenamine type structures, where the imine nitrogen is fully protonated, just a 20% of this charge is delocalized in this molecular moiety. The results are discussed in relation to the chemistry of some PLP-dependent enzymes and the structure of their active sites.

  8. The gas-phase acidity of nitrocyclopropane

    Bartmess, John E.; Wilson, Burton; Sorensen, Daniel N.; Bloor, John E.


    Nitrocyclopropane is 10.5 kcal mol-1 weaker as an acid in the gas phase than its open-chain analog, 2-nitropropane. This is attributed to the conflicting hybridization requirements for carbanion stabilization by the cyclopropyl ring and by the nitro group. Based on reactivities, the deprotonated form does not ring-open to either the 2-nitroallyl anion or the 1-nitroallyl anion.

  9. Rozdílná reaktivita alkyl aryl sulfonů s bázemi a transmetalace generovaných karbaniontů

    Řehová, Lucie; Jahn, Ullrich


    Roč. 107, č. 5 (2013), s. 435-435. ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků /13./. 14.5.2013-17.5.2013, Žďár nad Sázavou] R&D Projects: GA ČR GAP207/11/1598 Institutional support: RVO:61388963 Keywords : deprotonation * lithium salts * carbanion * transmetalation * sulfones Subject RIV: CC - Organic Chemistry

  10. Synthesis and quantitative structure–activity relationship study of substituted imidazophosphor ester based tetrazolo[1,5-b]pyridazines as antinociceptive/anti-inflammatory agents

    Abdou, Wafaa M; Ganoub, Neven A; Sabry, Eman


    A high-yielding general synthesis of imidazophosphor ester based tetrazolo[1,5-b]pyridazines is described. A conjugated reaction between 3,6-diazidopyridazine and different types of phosphonyl carbanion reagents followed by intramolecular cyclization afforded the target products, by using sodium ethanolate solution as a reaction medium. Among the products, five compounds, at a dose of 50 mg per kilogram body weight, showed a notable antinociceptive and anti-inflammatory activity without toxic...

  11. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions

    Richard, John P.


    Deprotonation of carbon and decarboxylation at enzyme active sites proceed through the same carbanion intermediates as for the uncatalyzed reactions in water. The mechanism for the enzymatic reactions can be studied at the same level of detail as for nonenzymatic reactions, using the mechanistic tools developed by physical organic chemists. Triosephosphate isomerase (TIM) catalyzed interconversion of D-glyceraldehyde 3-phosphate and dihydroxyacetone phosphate is being studied as a prototype f...

  12. The Co-III-C bond in (1-thia-4,7-diazacyclodecyl-kappa N-3(4),N-7,C-10)(1,4,7-triazacyclononane-kappa N-3(1),N-4,N-7)-cobalt(III) dithionate hydrate

    Harris, Pernille; Kofod, P.; Song, Y.S.;


    In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6.H2O, the Co-C bond distance is 1.9930 (13) Angstrom, which is shorter than for related compounds with the linear 1,6-diamino-3-thiahexan-4-ide anion in place of the macrocyclic 1-thia-4,7-diazacyclodecan-8-ide anion. The coordinated carbanion...

  13. Synthesis of Fine Chemicals by the Conjugate Addition of Nitroalkanes to Electrophilic Alkenes

    R. Ballini; G. Bosica; D. Fiorini; A. Palmieri


    @@ 1Introduction It is well known the ability of primary and secondary nitroalkanes to generate carbanions (under basic conditions) strongly stabilized by the electron-withdrawing effect of the nitro group[1-4]. Thus, the main use of nitroalkanes is devoted to the generation of new carbon-carbon bonds through two principal approaches (Scheme 1): (i) reaction with carbonyl derivatives (nitroaldol-Henry-reaction), and (ii) Michael addition to electron poor alkenes.

  14. Intermolecular interactions in ternary solutions of some 1,2,4-triazolium ylids studied by spectral means

    Closca, Valentina; Melniciuc-Puica, Nicoleta; Dorohoi, Dana Ortansa; Benchea, A. C.


    Triazolium ylids are dipolar molecules with separated charges in their ground electronic state; the positive charge is located on one Nitrogen atom belonging to the heterocycle and the negative charge is located near the ylid carbanion. The intramolecular charge transfer from the carbanion to heterocycle gives a visible electronic absorption band, very sensitive to the solvent nature. Its position in the wavenumber scale offers information about the intermolecular interactions in which the ylid molecules are engaged. The spectral study revealed the presence of both universal and specific interactions in solutions of 1,2,4-triazolium ylids with protic solvents. By choosing adequate binary solvents, the contribution of the specific interaction of the weak hydrogen bond between the -OH atomic group of the protic solvents and the ylid carbanion can be estimated. Ternary solutions of the studied ylids achieved with Methanol +Benzene, Water + Ethanol and 1,3 Propanediol + Dimethyl formamide binary solvents are analyzed from spectral point of view and the difference between the potential energies in molecular pairs of the types: 1,2,4-triazolium ylid-protic solvent and 1,2,4-triazolium ylid-non protic were estimated on the basis of the statistic cell model of ternary solutions.

  15. Acrylate metathesis via the second-generation Grubbs catalyst: unexpected pathways enabled by a PCy3-generated enolate.

    Bailey, Gwendolyn A; Fogg, Deryn E


    The diverse applications of acrylate metathesis range from synthesis of high-value α,β-unsaturated esters to depolymerization of unsaturated polymers. Examined here are unexpected side reactions promoted by the important Grubbs catalyst GII. Evidence is presented for attack of PCy3 on the acrylate olefin to generate a reactive carbanion, which participates in multiple pathways, including further Michael addition, proton abstraction, and catalyst deactivation. Related chemistry may be anticipated whenever labile metal-phosphine complexes are used to catalyze reactions of substrates bearing an electron-deficient olefin. PMID:26030596

  16. The Reactivity of 2,4,6-Tirphenylpyridinium Ylids


    Triphenylpyridinium ylid 2, generated by the decarboxylation of betaine 1, were noted to react with acetyl chloride, chloroform or acetone to form addition-elimination product and proton extraction - carbanion addition products, respectively. The reaction with chloroform was determined as pseudo first order from kinetic experiments. The values of kobsd and t1/2 for decarboxylation at 20, 40 and 50°C were calculated to be 4.6 x 10-4, 8.8 x 10-3, 2.8 x 10-2 min-1 and 1.5 x 103, 78, 24 minutes, respectively.

  17. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates.

    Garrabou, Xavier; Beck, Tobias; Hilvert, Donald


    Recent advances in computational design have enabled the development of primitive enzymes for a range of mechanistically distinct reactions. Here we show that the rudimentary active sites of these catalysts can give rise to useful chemical promiscuity. Specifically, RA95.5-8, designed and evolved as a retro-aldolase, also promotes asymmetric Michael additions of carbanions to unsaturated ketones with high rates and selectivities. The reactions proceed by amine catalysis, as indicated by mutagenesis and X-ray data. The inherent flexibility and tunability of this catalyst should make it a versatile platform for further optimization and/or mechanistic diversification by directed evolution. PMID:25777153

  18. Radiochemical study of gas-phase reactions of free methyl cations with tetraalkylsilanes

    Interaction of free methyl-cations with tetraalkylsilanes was studied. Free methyl-cations were prepared by the nuclear-chemical method, based on processes of tritium β-decomposition in the content of many times tritiated methane. Reactions of methyl-cations with tetraalkylsilanes (C1-C4) are accompanied by formation of saturated hydrocarbons. This testifies to elimination of alkyl anions on Si-C and C-C bonds. Intensity of carbamin elimination on Si-C bonds decreases with increase of radical chain length. Processes of methyl-cation substitution for alkyl radical in tetraalkylsilanes with charge transfer to this radical take place along with processes of carbanion elimination


    Ghisla, Sandro; Pollegioni, Loredano; Molla, Gianluca


    d-Amino acid oxidase (DAAO) from pig has been reported to catalyze the β-elimination of Cl− from βCl-d-alanine via abstraction of the substrate α-H as H+ (“carbanion mechanism”) (Walsh, C. T., Schonbrunn, A., and Abeles, R. H. (1971) J. Biol. Chem. 246, 6855–6866). In view of the fundamental mechanistic importance of this reaction and of the recent reinterpretation of the DAAO dehydrogenation step as occurring via a hydride mechanism, we reinvestigated the elimination reaction using yeast DAA...

  20. Correlation between the structure and infra-red absorption characteristics of mono-deuterated compounds: contribution to the study of organo-magnesium compounds

    The high sensitivity of the ν (C-D) vibration to the variations brought about by the substitution of the carbon attached to the deuterium is shown in the case of organic or organo-metallic mono-deuterated molecules. In particular, syntheses of various mono-deuterated organo-magnesium compounds have been carried out; results are given concerning an infra-red spectrometric examination of these compounds in the range 2100 - 2250 cm-1. The results show the existence of only one type of deuterated carbon, which suggests that the same carbanion is involved in various ionic associations for the different magnesium-containing compounds. (authors)

  1. Modern Arylation Methods

    Ackermann, Lutz


    Today, arylation methods are belonging to the most important reaction types in organic synthesis. Lutz Ackermann, a young and ambitious professor has gathered a number of top international authors to present the first comprehensive book on the topic. Starting from a historical review, the book covers hot topics like Palladium-catalyzed arylation of N-H and alpha-C-H-acidic Bonds, Copper-catalyzed arylation of N-H and O-H Bonds, direct arylation reactions, carbanion aromatic synthesis, arylation reactions of alkenes, alkynes and much more. This compact source of high quality information is indi

  2. Substitution of Tyr254 with Phe at the active site of flavocytochrome b2: consequences on catalysis of lactate dehydrogenation

    Dubois, J.; Chapman, S.K.; Mathews, F.S.; Reid, G.A.; Lederer, F. (INSERM U 25, CNRS UA 122, Hopital Necker, Paris (France))


    A role for Tyr254 in L-lactate dehydrogenation catalyzed by flavocytochrome b2 has recently been proposed on the basis of the known active-site structure and of studies that had suggested a mechanism involving the initial formation of a lactate carbanion. This role is now examined after replacement of Tyr254 with phenylalanine. The kcat is decreased about 40-fold, Km for lactate appears unchanged, and the mainly rate-limiting step is still alpha-hydrogen abstraction, as judged from the steady-state deuterium isotope effect. Modeling studies with lactate introduced into the active site indicate two possible substrate conformations with different hydrogen-bonding partners for the substrate hydroxyl. If the hydrogen bond is formed with Tyr254, as was initially postulated, the mechanism must involve removal by His373 of the C2 hydrogen, with carbanion formation. If, in the absence of the Tyr254 phenol group, the hydrogen bond is formed with His373 N3, the substrate is positioned in such a way that the reaction must proceed by hydride transfer. Therefore the mechanism of the Y254F enzyme was investigated so as to distinguish between the two mechanistic possibilities. 2-Hydroxy-3-butynoate behaves with the mutant as a suicide reagent, as with the wild-type enzyme. Similarly, the mutant protein also catalyzes the reduction and the dehydrohalogenation of bromopyruvate under transhydrogenation conditions.

  3. Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP) dependent enzyme which converts benzoylformate to benzaldehyde and carbon dioxide. The kinetics and mechanism of the benzoylformate decarboxylase reaction were studied by solvent deuterium and 13C kinetic isotope effects with benzoylformate and a series of substituted benzoylformates (pCH3O, pCH3, pCl, and mF). The reaction was found to have two partially rate-determining steps: initial tetrahedral adduct formation (D2O sensitive) and decarboxylation (13C sensitive). Solvent deuterium and 13C isotope effects indicate that electron-withdrawing substituents (pCl and mF) reduce the rate dependence upon decarboxylation such that decreased 13(V/K) effects are observed. Conversely, electron-donating substituents increase the rate dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on V and V/K are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate (or carbanion-like transition state) formed during decarboxylation. Additional information regarding the mechanism of the enzymic reaction was obtained from pH studies on the reaction of benzoylformate and the binding of competitive inhibitors. These studies suggest that two enzymic bases are required to be in the correct protonation state (one protonated and one unprotonated) for optimal binding of substrate (or inhibitors)

  4. TDDFT Study on Different Sensing Mechanisms of Similar Cyanide Sensors Based on Michael Addition Reaction

    Guang-yue Li; Ping Song; Guo-zhong He


    The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino-3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena.The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysical properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore,the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescencefor the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.

  5. A mechanistic analysis of the Birch Reduction.

    Zimmerman, Howard E


    The Birch Reduction is one of the main reactions of organic chemistry. The reaction involves the reaction of dissolving metals in ammonia with aromatic compounds to produce 1,4-cyclohexadienes. Discovered by Arthur Birch in 1944, the reaction occupies 300 pages in Organic Reactions to describe its synthetic versatility. Thus, it is remarkable that the reaction mechanism has been so very controversial and only relatively recently has been firmly established. Perhaps this is not that surprising, since the reaction also has many unusual and esoteric mechanistic facets. Here, I provide a description of how I have applied ever-evolving levels of quantum mechanics and a novel experimental test to understand details of the mechanism and the origins of the selectivities observed in the Birch reduction. The reaction involves an initial radical anion resulting from introduction of an electron from the blue liquid ammonia solution of free electrons formed by the dissolution of Li or related metals. This radical anion is protonated by an alcohol and then further reduced to a carbanion. Finally, the carbanion is protonated using a second proton to afford a nonconjugated cyclohexadiene. The regiochemistry depends on substituents present. With 18 resonance structures in the case of anisole radical anion, prediction of the initial protonation site would seem difficult. Nevertheless, computational methods from Hückel theory through modern density functional calculations do correctly predict the site of protonation. An esoteric test established this mechanism experimentally. The nature of the carbanion also is of mechanistic interest, and the preponderance of the resonance structure shown was revealed from Hückel calculations involving variable bond orders. For the trianion from benzoic acid, parallel questions about structure are apparent, and have been answered. Some mechanistic questions are answered experimentally and some by modern computations. Recently, our mechanistic

  6. Lithium Halomethylcarbenoids: Preparation and Use in the Homologation of Carbon Electrophiles.

    Pace, Vittorio; Holzer, Wolfgang; De Kimpe, Norbert


    α-Halomethyllithium carbenoids are useful homologating reagents which - reacting under proper reaction conditions as carbanions - enable the installation via nucleophilic addition of a reactive halomethyl fragment onto a preformed carbon-heteroatom bond. The pronounced thermolability represented - since seminal studies by Köbrich - the Achilles' heel of these reagents: the use of Barbier-type methodologies (i.e., the electrophile should be present in the reaction mixture prior to the formation of the carbenoid) was pivotal in order to suppress decomposition through α-elimination processes. Nowadays, the use of low temperatures (-78 °C) guarantees reliable procedures and, significantly, the employment of microreactor technologies allows external trapping to be performed even at higher temperatures as reported by Luisi. We will discuss the α-halomethyllithium-mediated homologations of a series of carbon electrophiles such as carbonyl compounds, imines, esters, Weinreb amides, and isocyanates. PMID:27381551

  7. Development of Diversified Methods for Chemical Modification of the 5,6-Double Bond of Uracil Derivatives Depending on Active Methylene Compounds

    Kosaku Hirota


    Full Text Available The reaction of 5-halogenouracil and uridine derivatives 1 and 7 with active methylene compounds under basic conditions produced diverse and selective C-C bond formation products by virtue of the nature of the carbanions. Three different types of reactions such as the regioselective C-C bond formation at the 5- and 6-positions of uracil and uridine derivatives (products 2, 5, 8, 17, 20 and 21, and the formation of fused heterocycle derivatives 2,4-diazabicyclo[4.1.0]heptane (15 and 2,4-diazabicyclo-[4.1.0]nonane (16 via dual C-C bond formations at both the 5- and 6-positions were due to the different active methylene compounds used as reagents.

  8. Chemical Aspects of Astrophysically Observed Extraterrestrial Methanol, Hydrocarbon Derivatives, and Ions.

    Olah, George A; Mathew, Thomas; Prakash, G K Surya; Rasul, Golam


    Astrophysically observed extraterrestrial molecular matter contains, besides hydrogen and water, methane and methanol as the most abundant species. Feasible pathways and chemical aspects of their formation as well as of derived hydrocarbon homologues and their ions (carbocations and carbanions) are discussed on the basis of observed similarities with our studied terrestrial chemistry. The preferred pathway for converting extraterrestrial methane according to Ali et al. is based on CH5(+) and Olah's related nonclassical carbonium ion chemistry. On the basis of the observed higher reactivity of methanol compared with methane in various chemical reactions, a feasible new pathway is proposed for the conversion of extraterrestrial methanol to hydrocarbons, their derivatives, and carbocations together with a possible connection with methonium ion-based chemistry. PMID:26760052

  9. Pulse radiolysis of fast reactions in molecular systems. Progress report, November 1979-September 1980

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of reactive intermediates using the pulse radiolysis technique. Optical absorption spectra of these transient species, which determine the course of the chemistry, are being obtained. The types of reactive species currently of interest are organic molecule ions (both cations and anions) and radical ions, and transition metal carbonyl radicals in solution. Since reaction is initiated by a pulse of high energy electrons, our investigations inherently relate to radiation chemical systems. The information obtained is, however, also of interest in various areas of organic reaction kinetics in which ionic species are known to play a central role. The rectivity of the transition metal carbonyl radicals is of interest in the area of homogeneous catalysis. Current activities involve: spectra and reactivities of transition metal carbonyl radicals of the type M(CO)5; reactivity of organic ionic species (including carbocations and carbanions) in irradiated solutions

  10. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1979-September 1980

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of reactive intermediates using the pulse radiolysis technique. Optical absorption spectra of these transient species, which determine the course of the chemistry, are being obtained. The types of reactive species currently of interest are organic molecule ions (both cations and anions) and radical ions, and transition metal carbonyl radicals in solution. Since reaction is initiated by a pulse of high energy electrons, our investigations inherently relate to radiation chemical systems. The information obtained is, however, also of interest in various areas of organic reaction kinetics in which ionic species are known to play a central role. The reactivity of the transition metal carbonyl radicals is of interest in the area of homogeneous catalysis. Current activities involve: spectra and reactivities of transition metal carbonyl radicals of the type M(CO)5; reactivity of organic ionic species (including carbocations and carbanions) in irradiated solutions

  11. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, February 1, 1981-September 30, 1982

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of the formation and decay of reactive intermediates using the pulse radiolysis technique. These short-lived species are monitored by fast optical absorption measurement; optical absorption spectra of the transients are also obtained. Reactive species currently of interest include organic molecule ions (both cations and anions) and radical anions. Transition metal carbonyl radicals in solution, another category of intermediates, are also under investigation. Since the reactions are initiated by a pulse of high energy electrons, this work inherently relates to radiation chemical systems. The information obtained is also of interest in various areas of organic reaction kinetics in which ions play a central role. In the area of homogeneous catalysis, the reactivity of transition metal carbonyl radicals is of interest. Current activities are directed at reactivity of organic ionic species (carbocations and carbanions) in irradiated solutions; and optical spectra and reactivities of transition metal carbonyl radicals

  12. Porphyrin Analogues of a Trityl Cation and Anion.

    Kato, Kenichi; Kim, Woojae; Kim, Dongho; Yorimitsu, Hideki; Osuka, Atsuhiro


    Porphyrin-stabilized meso- or β-carbocations were generated upon treatment of the corresponding bis(4-tert-butylphenyl)porphyrinylcarbinols with trifluoroacetic acid (TFA). Bis(4-tert-butylphenyl)porphyrinylcarbinols were treated with TFA to generate the corresponding carbocations stabilized by a meso- or β-porphyrinyl group. The meso-porphyrinylmethyl carbocation displayed more effective charge delocalization with decreasing aromaticity compared with the β-porphyrinylmethyl carbocation. A propeller-like porphyrin trimer, tris(β-porphyrinyl)carbinol, was also synthesized and converted to the corresponding cation that displayed a more intensified absorption reaching over the NIR region. meso-Porphyrinylmethyl carbanion was generated as a stable species upon deprotonation of bis(4-tert-butylphenyl)(meso-porphyrinyl)methane with potassium bis(trimethylsilyl)amide (KHMDS) and [18]crown-6, whereas β-porphyrinylmethyl anions were highly unstable. PMID:26991021

  13. Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry.

    Olah, George A; Mathew, Thomas; Prakash, G K Surya


    Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed. PMID:27045758

  14. IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion

    Crestoni, Maria Elisa; Chiavarino, Barbara [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy); Lemaire, Joel; Maitre, Philippe [Universite Paris Sud, Laboratoire de Chimie Physique - UMR8000 CNRS, Faculte des Sciences - Batiment 350, 91405 Orsay Cedex (France); Fornarini, Simonetta, E-mail: [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy)


    Highlights: Black-Right-Pointing-Pointer C{sub 2}F{sub 5}{sup -} ions are formed by dissociative electron capture in perfluoropropane. Black-Right-Pointing-Pointer Both their reactivity towards neutrals and IRMPD spectroscopy are investigated. Black-Right-Pointing-Pointer The sampled C{sub 2}F{sub 5}{sup -} ions are best described as covalently bound pentafluoroethyl anions. - Abstract: The first IR spectrum of a perfluorinated carbanion has been obtained in the gas phase by IRMPD spectroscopy. Quantum chemical calculations at the MP2/cc-pVTZ level were performed yielding the optimized geometries and IR spectra for a covalently bound C{sub 2}F{sub 5}{sup -} species and for conceivable loosely bound F{sup -}(C{sub 2}F{sub 4}) complexes. Both the computational results and the IR characterization point to a covalent structure for the assayed species in agreement with the reactivity pattern displayed with selected neutrals.

  15. Efficient Preparation of TMSCCl2 Br and Its Use in Dichlorocyclopropanation of Electron-Deficient Alkenes.

    Lee, Darren S; Durán-Peña, María Jesús; Burroughs, Laurence; Woodward, Simon


    The reaction of excess TMSCl and LiCCl2 Br at low temperature is a technically simple high yield route to TMSCCl2 Br. The latter is a stable source of the dichlorobromomethide carbanion, which undergoes 1,4-addition with cyclic nitroalkenes and (E)-fumarates leading to dichlorocyclopropanes after bromide expulsion. For nitrostyrenes the reaction arrests at the 1,4-addition product. Low temperature NMR spectroscopy studies and DFT calculations suggest the formation of an "ate" species [(nitronate)SiFMe3 ](-) which, upon boil-off of TMSF at 10-20 °C, yields the cyclopropane. DFT calculations also support the experimental differences between fluoride and acetate as promotors. PMID:27112785

  16. The phosphorus and the transition metals chemistry

    The 1988 progress report, concerning the Polytechnic School unit (France), which studies the phosphorus and the transition metals chemistry, is presented. The laboratory activities are related to the following topics: the phosporus heterocyclic chemistry, the phosphorus-carbon double bonds chemistry, the new transition metals phosphorus compounds, the phosphonates and their uses. Some practical applications of homogeneous catalysis and new materials synthesis are investigated. The main results obtained are: the discovery of the tetra-phosphafulvalenes, the utilization of a new synthesis method of the phosphorus-carbon double bonds and the stabilization of the α-phosphonyled carbanions by the lithium diisopropylamidourea. The papers, the congress communications and the thesis are also shown

  17. A New Approach to the Asymmetric Reaction of the Chiron 5-L-Menthyloxy-2(5H)-furanones with Horner-Emmons Reagent

    李学强; 王凤荣; 何兰; 陈庆华


    The asymmetric reaction of the chiron 2(5H )-furanones (4a-4c) with the Horner-Emmons reagents (5a-5b) has been investigated. The newly chirai organophosphorus derivatives 6 and 7 were obtained using the phosphoryl-stabilized carbanion as a building block in DMSO under mild conditions. Through the asymmetric introduction, the Horner-Emmons reagent could be transformed to a chiral building block to afford the novel functionalized phosphorus derivatives. The structures of the synthesized compounds 6 and 7 were identified on the basis of their elementary and spectroscopic data, such as IR,1H NMR, 13C NMR, MS and X-ray crystallography. These resuits provided a valuable approach to the synthesis of potentially interesting chirai organophosphorus derivatives and probing their biological activities.

  18. ICR studies of some anionic gas phase reactions and FTICR software design

    This thesis consists of two parts. Part one (Chs. 1-5) reports experimental results from mostly drift-cell ICR studies of negative ion-molecule reactions; part two (Chs. 6-11) concerns the design of software for an FTICR instrument. The author discusses successively: 1. ion cyclotron resonance spectrometry; 2. the gas phase allyl anion; 3. the (M-H) and (M-H2) anions from acetone; 4. negative ion-molecule reactions of aliphatic nitrites studied by cyclotron resonance; 5. homoconjugation versus charge-dipole interaction effects in the stabilization of carbanions in the gas phase; 6. the Fourier Transform ICR method; 7. the FTICR-software; 8. an efficient adaptive matcher filter for fast transient signals; 9. reduction of spectral peak height errors by time-domain weighing; 10. Chirp excitation; 11. Compact data storage. The book concludes with a Dutch and English summary (G.J.P.)

  19. Quantum-chemical considerations on the acidity of thiamin pyrophosphate and related systems

    The H-D exchange reactions of 1,3-azolium cations have been studied by the semiempirical CNDO/2 method with optimization of all geometrical parameters, in order to explain the rate enhancement for the 1,3-thiazolium cations. The following results are obtained: (a) stabilization of a carbanion by the adjacent sulfur atom is not due to (d-p) conjugation; (b) the 1,3-thiazolium conjugate base is stabilized with respect to the other conjugate bases by the greater polarizability of sulfur; (c) the smaller amount of energy necessary for the 1,3-thiazolium cation, with respect to the other cations, to use the penultimate sigma MO gives an explanation for the unique rate enhancement

  20. Chloro({2-[mesityl(quinolin-8-yl-κNboryl]-3,5-dimethyl-phenyl}methyl-κCpalladium(II as a Catalyst for Heck Reactions

    Sem Raj Tamang


    Full Text Available We recently reported an air and moisture stable 16-electron borapalladacycle formed upon combination of 8-quinolyldimesitylborane with bis(benzonitriledichloropalladium(II. The complex features a tucked mesityl group formed upon metalation of an ortho-methyl group on a mesityl; however it is unusually stable due to contribution of the boron pz orbital in delocalizing the carbanion that gives rise to an η4-boratabutadiene fragment coordinated to Pd(II, as evidenced from crystallographic data. This complex was observed to be a highly active catalyst for the Heck reaction. Data of the catalyst activity are presented alongside data found in the literature, and initial comparison reveals that the borapalladacycle is quite active. The observed catalysis suggests the borapalladacycle readily undergoes reductive elimination; however the Pd(0 complex has not yet been isolated. Nevertheless, the ambiphilic ligand 8-quinolyldimesitylborane may be able to support palladium in different redox states.

  1. Chloro({2-[mesityl(quinolin-8-yl-κN)boryl]-3,5-dimethyl-phenyl}methyl-κC)palladium(II) as a catalyst for Heck reactions.

    Tamang, Sem Raj; Hoefelmeyer, James D


    We recently reported an air and moisture stable 16-electron borapalladacycle formed upon combination of 8-quinolyldimesitylborane with bis(benzonitrile)dichloropalladium(II). The complex features a tucked mesityl group formed upon metalation of an ortho-methyl group on a mesityl; however it is unusually stable due to contribution of the boron pz orbital in delocalizing the carbanion that gives rise to an η4-boratabutadiene fragment coordinated to Pd(II), as evidenced from crystallographic data. This complex was observed to be a highly active catalyst for the Heck reaction. Data of the catalyst activity are presented alongside data found in the literature, and initial comparison reveals that the borapalladacycle is quite active. The observed catalysis suggests the borapalladacycle readily undergoes reductive elimination; however the Pd(0) complex has not yet been isolated. Nevertheless, the ambiphilic ligand 8-quinolyldimesitylborane may be able to support palladium in different redox states. PMID:26193250

  2. Azetidines. 5. Reaction of 1,1,3,3-tetramethyl- and 1-benzyl-1,3,3-trimethylazetidinium ions with butyllithium and phenyllithium. Deuterium labeling as a mechanistic probe

    The reactions of 1,1,3,3-tetramethylazetidinium iodide (1) and 1-benzyl-1,3,3-trimethylazetidinium bromide (7) with butyllithium and with phenyllithium were studied in ether. The products from the reaction of 1 with butyllithium were 1,3,3-trimethylpyrrolidine (2), 3,3-dimethyl-4-(methylamino)-1-butene (3), 1-(dimethylamino)-2,2-dimethylheptane (4), neopentylpyrrolidine (5), and 1-(dimethylamino)-2,2-dimethylcyclopropane (6). With phenyllithium, 1 gave 2 and 1-(dimethylamino)-2,2-dimethyl-3-phenylpropane (11). With butyllithium, 7 gave 2-phenyl-1,4,4-trimethylpyrrolidine (8), 1-benzyl-3,3-dimethylpyrrilidine (9), and 1-neopentyl-2-phenylpyrrolidine (10). The reaction of phenyllithium with 7 gave only 8 and 9. Mechanistic information was obtained by labeling 1 with deuterium in three different ways: N-methyl-d3,2,2-d2, and N-methyl-d3-2,2-d2. A primary kinetic isotope effect of 9.4 was found for the formation of 2 from 1-N-methyl-d3. When 2 was formed from 1-2,2-d2, a secondary kinetic isotope effect of 1.17 was measured. The formation of 4 from 1-2,2-d2 was accompanied by a primary kinetic isotope effect of 4.7, suggesting a carbene intermediate. Ylide carbanions involving decomposition to a carbene carbanion in the formation of 3 and an azomethine ylide in the formation of 5 and 9 are probable intermediates. It is postulated that the azomethine ylides react with ethylene formed from the reaction of butyllithium with the solvent ether by means of a concerted (4 + 2) cycloaddition reaction. A primary kinetic isotope effect of 20 was found for the formation of pentylbenzene from dibenzyldimethylammonium bromide and butyllithium

  3. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni


    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms. PMID:25243743

  4. Structure of a Class I Tagatose-1,6-bisphosphate Aldolase - Investigation into an Apparent Loss of Stereospecificity

    LowKam, C.; Liotard, B; Sygusch, J


    Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a ({alpha}/{beta}){sub 8} fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys{sup 205}, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2-C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.

  5. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme.

    Lederer, Florence; Vignaud, Caroline; North, Paul; Bodevin, Sabrina


    A controversy exists with respect to the mechanism of l-2-hydroxy acid oxidation by members of a family of FMN-dependent enzymes. A so-called carbanion mechanism was initially proposed, in which the active site histidine abstracts the substrate α-hydrogen as a proton, followed by electron transfer from the carbanion to the flavin. But an alternative mechanism was not incompatible with some results, a mechanism in which the active site histidine instead picks up the substrate hydroxyl proton and a hydride transfer occurs. Even though more recent experiments ruling out such a mechanism were published (Rao & Lederer (1999) Protein Science 7, 1531-1537), a few authors have subsequently interpreted their results with variant enzymes in terms of a hydride transfer. In the present work, we analyse the reactivity of trifluorolactate, a substrate analogue, with the flavocytochrome b2 (Fcb2) flavodehydrogenase domain, compared to its reactivity with an NAD-dependent lactate dehydrogenase (LDH), for which this compound is known to be an inhibitor (Pogolotti & Rupley (1973) Biochem. Biophys. Res. Commun, 55, 1214-1219). Indeed, electron attraction by the three fluorine atoms should make difficult the removal of the α-H as a hydride. We also analyse the reactivity of trifluoropyruvate with the FMN- and NAD-dependent enzymes. The results substantiate a different effect of the fluorine substituents on the two enzymes compared to their normal substrates. In the discussion we analyse the conclusions of recent papers advocating a hydride transfer mechanism for the family of l-2-hydroxy acid oxidizing FMN-dependent enzymes. PMID:27155230

  6. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.

    Sautner, Viktor; Friedrich, Mascha Miriam; Lehwess-Litzmann, Anja; Tittmann, Kai


    Transaldolase (TAL) and fructose-6-phosphate aldolase (FSA) both belong to the class I aldolase family and share a high degree of structural similarity and sequence identity. The molecular basis of the different reaction specificities (transferase vs aldolase) has remained enigmatic. A notable difference between the active sites is the presence of either a TAL-specific Glu (Gln in FSA) or a FSA-specific Tyr (Phe in TAL). Both residues seem to have analoguous multifunctional catalytic roles but are positioned at different faces of the substrate locale. We have engineered a TAL double variant (Glu to Gln and Phe to Tyr) with an active site resembling that of FSA. This variant indeed exhibits aldolase activity as its main activity with a catalytic efficiency even larger than that of authentic FSA, while TAL activity is greatly impaired. Structural analysis of this variant in complex with the dihydroxyacetone Schiff base formed upon substrate cleavage identifies the introduced Tyr (genuine in FSA) to catalyze protonation of the central carbanion-enamine intermediate as a key determinant of the aldolase reaction. Our studies pinpoint that the Glu in TAL and the Tyr in FSA, although located at different positions at the active site, similarly act as bona fide acid-base catalysts in numerous catalytic steps, including substrate binding, dehydration of the carbinolamine, and substrate cleavage. We propose that the different spatial positions of the multifunctional Glu in TAL and of the corresponding multifunctional Tyr in FSA relative to the substrate locale are critically controlling reaction specificity through either unfavorable (TAL) or favorable (FSA) geometry of proton transfer onto the common carbanion-enamine intermediate. The presence of both potential acid-base residues, Glu and Tyr, in the active site of TAL has deleterious effects on substrate binding and cleavage, most likely resulting from a differently organized H-bonding network. Large-scale motions of the

  7. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage.

    Eccleshare, Lee; Lozada-Rodríguez, Leticia; Cooper, Phillippa; Burroughs, Laurence; Ritchie, John; Lewis, William; Woodward, Simon


    Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %). PMID:27452351

  8. Microwave-Assisted Decarboxylation of Sodium Oleate and Renewable Hydrocarbon Fuel Production

    Wang Yunpu; Liu Yuhuan; Ruan Rongsheng; Wen Pingwei; Wan Yiqin; Zhang Jinsheng


    The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave ifeld. Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology. The pyrolysis gas, liquid, and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate. Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate. During decarboxylation, the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate. The resulting p-πconjugated system was more stable and beneifcial to the pyrolysis reaction (decarboxylation, terminal allylation, isomeriza-tion, and aromatization). The physical properties of pyrolysis liquid were generally similar to those of diesel fuel, thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels.

  9. C{sub 2}{sup +} selectivity enhancement in oxidative coupling of methane over microwave-irradiated catalysts

    Roussy, G.; Marchal, E.; Thiebaut, J.M.; Kiennemann, A.; Maire, G. [L.S.T.M. Universite Henri Poincare Nancy, Vandoeuvre-les-Nancy (France)


    The oxidative coupling of methane over Li/MgO and BaBiO{sub 3-x} catalysts irradiated by microwaves and classically heated is reported. Enhanced selectivities in C{sub 2}{sup +} products are observed at lower temperatures under microwave conditions, especially with the Li/MgO catalyst. The complex permittivity measurements of BaBiO{sub 3-x} show that the regeneration of the active oxygen species on the surface is lower under microwave irradiation than classical heating. X-ray diffraction analyses of the catalyst before and after catalytic reaction, when it is classically heated and when it is heated by microwave irradiation, corroborate these results. Therefore, the CH{sub 3}{sup -} carbanions are less oxidated at the catalyst surface under microwave irradiation. On the other hand, the quenching of the output gas probably decreases the oxidation of CH{sub 3}{sup 0} radicals in the gas phase when the Li/MgO catalyst is irradiated by microwaves. The quenching of the output gas is a unique consequence of microwave irradiation which heats the catalyst without heating the wall of the reactor. 26 refs., 9 figs.

  10. Benzoylformate analogues exhibit differential rate-determining steps in the benzoylformate decarboxylase reaction

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP)-dependent enzyme which converts benzoylformate to benzaldehyde and CO2. The rate-determining step(s) in the benzoylformate decarboxylase reaction for a series of substituted benzoylformates (p-CH3O, p-CH3, p-Cl, and m-F) were studied using solvent deuterium and 13C kinetic isotope effects. The normal substrate was found to have two partially rate-determining steps; initial tetrahedral adduct formation (D2O-sensitive) and decarboxylation (13C-sensitive). D2O and 13C isotope effects indicate that electron-withdrawing substituents (p-Cl and m-F) remove the rate dependence upon decarboxylation such that only a D2O effect on (V/K) is observed. Conversely, electron-donating substituents increase the rate-dependence upon decarboxylation such that a larger 13(V/K) is seen while the D2O effects on (V) and (V/K) are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate formed upon decarboxylation

  11. Chemical mechanism and specificity of the C5-mannuronan epimerase reaction.

    Jerga, Agoston; Stanley, Matthew D; Tipton, Peter A


    C5-mannuronan epimerase catalyzes the formation of alpha-L-guluronate residues from beta-D-mannuronate residues in the synthesis of the linear polysaccharide alginate. The reaction requires the abstraction of a proton from C5 of the residue undergoing epimerization followed by re-protonation on the opposite face. Rapid-mixing chemical quench experiments were conducted to determine the nature of the intermediate formed upon proton abstraction in the reaction catalyzed by the enzyme from Pseudomonas aeruginosa. Colorimetric and HPLC analysis of quenched samples indicated that shortened oligosaccharides containing an unsaturated sugar residue form as transient intermediates in the epimerization reaction. This suggests that the carbanion is stabilized by glycal formation, concomitant with cleavage of the glycosidic bond between the residue undergoing epimerization and the adjacent residue. The time dependence of glycal formation suggested that slow steps flank the chemical steps in the catalytic cycle. Solvent isotope effects on V and V/K were unity, consistent with a catalytic cycle in which chemistry is not rate-limiting. The specificity of the epimerase with regard to neighboring residues was examined, and it was determined that the enzyme showed no bias for mannuronate residues adjacent to guluronates versus those adjacent to mannuronates. Proton abstraction and sugar epimerization were irreversible. Existing guluronate residues already present in the polysaccharide were not converted to mannuronates, nor was incorporation of solvent deuterium into existing mannuronates observed. PMID:16866359

  12. Crotonase-catalyzed β-elimination is concerted: A double isotope effect study

    Determining the sequence of bond cleavages, and consequently the nature of intermediates, in enzyme-catalyzed reactions is major goal of mechanistic enzymology. When significant primary isotope effects of V/K are observed for two different bond cleavages, both bonds may be broken in the same transition state or they can reflect two different transition states that are of nearly identical energy and consequently both are partially rate limiting. The observation of a solvent discrimination isotope effect determined from the relative incorporation of 2H from 50% D2O of 1.60±0.03, identical with the primary D(V/K), and the determination that the rate of exchange of the abstracted proton with solvent proceeds at less than 3% of the overall reaction rate also fail to provide evidence for a carbanion intermediate and are consistent with a concerted reaction. Identical primary D(V/K)s determined in H2O and D2O indicate that there is not a significant solvent isotope effect on C-O bond cleavage. The isotope ratios determined in these studies were performed by negative ion chemical ionization whole mass spectrometry of the pentafluorobenzyl esters, a new method whose validity is established by comparison with previously determined kinetic and equilibrium isotope effects

  13. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence


    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately. PMID:26998737

  14. Atomic resolution structures of discrete stages on the reaction coordinate of the [Fe4S4] enzyme IspG (GcpE)

    Quitterer, Felix


    IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent as well as an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate (MEcPP) to (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate (HMBPP). In addition, the enzyme’s structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism which describes all stages from initial ring opening to formation of HMBPP via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many pro- and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.

  15. Sticky dissociative electron transfer to polychloroacetamides. In-cage ion-dipole interaction control through the dipole moment and intramolecular hydrogen bond.

    Costentin, Cyrille; Louault, Cyril; Robert, Marc; Teillout, Anne-Lucie


    The reductive cleavage of chloro- and polychloroacetamides in N,N-dimethylformamide gives new insights into the nature of the in-cage ion radical cluster formed upon dissociative electron transfer. Within the family of compounds investigated, the electrochemical reduction leads to the successive expulsion of chloride ions. At each stage the electron transfer is concerted with the breaking of the C-Cl bond and acts as the rate-determining step. The reduction further leads to the formation of the corresponding carbanion with the injection of a second electron, which is in turn protonated by a weak acid added to the solution. From the joint use of cyclic voltammetric data, the sticky dissociative electron-transfer model and quantum ab initio calculations, the interaction energies within the cluster fragments (*R, Cl-) resulting from the first electron transfer to the parent RCl molecule are obtained. It is shown that the stability of these adducts, which should be viewed as an essentially electrostatic radical-ion pair, is mainly controlled by the intensity of the dipole moment of the remaining radical part and may eventually be strengthened by the formation of an intramolecular hydrogen bond, as is the case with 2-chloroacetamide. PMID:16833619

  16. [Development and synthetic application of epoxysilane rearrangement].

    Sasaki, Michiko


    O-Silyl cyanohydrins of beta-silyl-alpha,beta-epoxyaldehyde can function as a highly functionalized homoenolate equivalent via a tandem sequence involving base-promoted ring opening, Brook rearrangement, and alkylation at the allylic position. We named this rearrangement epoxysilane rearrangement. Based on results of mechanistic studies involving competitive experiments using diastereomeric cyanohydrins, we propose a reaction pathway involving a silicate intermediate formed by a concerted process via an anti-opening of the epoxide followed by the formation of an O-Si bond. Moreover, results of mechanistic studies on the rearrangement led to a conceptually novel approach to the chirality transfer in which epoxide chirality can be transferred into carbanion. We demonstrate the usefulness of the rearrangement through application to the following reactions: (1) reaction of gamma-p-toluenesulfonyl-alpha,beta-epoxysilane with alkyl halides and aldehydes followed by treatment with n-Bu4NF, which affords alpha,beta-unsaturated aldehydes (2) reaction of gamma-phosphonio-alpha,beta-epoxysilane with aldehydes, which affords dienol silyl ether derivatives (3) reaction of an enoate bearing an eposysilane moiety at the alpha-position with lithium enolate of 2-chloroacetamide, which affords highly functionalized cyclopropane derivatives. PMID:18670182

  17. Voltammetric investigation of the dissociative electron transfer to polychloromethanes at catalytic and non-catalytic electrodes

    Isse, Abdirisak Ahmed; Sandona, Giancarlo; Durante, Christian [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy); Gennaro, Armando [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy)], E-mail:


    The electrochemical behavior of CCl{sub 4}, CHCl{sub 3} and CH{sub 2}Cl{sub 2} has been investigated by cyclic voltammetry at glassy carbon and silver electrodes in DMF + 0.1 M Et{sub 4}NClO{sub 4} in the absence and presence of a good proton donor. At both electrodes, each compound exhibits a series of reduction peaks which represent sequential hydrodechlorination steps up to methane. The nature of the electrode material and the proton availability of the medium affect drastically the voltammetric pattern of the compounds. Silver exhibits extraordinary electrocatalytic properties toward the reduction process, with positive shifts of the peak potentials of about 0.57-0.95 V as compared to glassy carbon. Reduction of any polychloromethane, CH{sub n}Cl{sub (4-n)} (n = 0-2), yields the carbanion CH{sub n}Cl{sub (3-n)}{sup -} which partitions into two reaction channels: (i) protonation and (ii) Cl{sup -} elimination to give a carbene :CH{sub n}Cl{sub (2-n)}. If a strong proton donor is added into the solution, sequential hydrodechlorination becomes the principal reaction route at both electrodes. When, instead, purposely added acid is not present in solution, both reaction pathways ought to be considered. In these conditions, when possible, self-protonation reactions play an important role in the overall reduction process.

  18. Studies on biotin dependent carboxylases and the properties of carboxybiotin

    Biotin dependent carboxyl-transfer reactions have been studied using biotin and pyruvate carboxylases. The pH profile for the Mg2+ and MgATP dependent carboxylation of biotin by bicarbonate shows that an enzymic base with a pK of 6.5 must be unprotonated for catalysis to occur. The pH profiles for the carboxyl-transfer reaction of pyruvate carboxylase have been obtained by studying the decarboxylation of oxalacetate stimulated by the presence of oxamate. Similarly, 13C and 2H isotope effects have been measured for the decarboxylation of oxalacetate by both enzymic and nonenzymic means. From these studies the authors can conclude that carboxyl-transfer between biotin and oxalacetate is at least partially rate-limiting and is not concerted with proton-transfer. The lack of any apparent enzymic acid-base catalyst (the V/K profile for oxalacetate is pH independent) suggests that proton transfer may occur directly between biotin and the carbanion formed when oxalacetate is decarboxylated. The pH profile for the nonenzymatic decarboxylation of carboxybiotin shows a plateau below pH 4 (k = 0.012 min-1 at 20C), and a lower plateau above pH 8 (k = 0.005 min-1 at 250C). A proton inventory at low pH is linear, while at high pH it is curved. These data suggest that two different mechanisms operate at high and low pH

  19. Electrochemical reduction of 2-chloro-N-phenylacetamides at carbon and silver cathodes in dimethylformamide

    Cyclic voltammetry and controlled-potential (bulk) electrolysis have been employed to investigate the direct electrochemical reduction of 2-chloro-N-methyl-N-phenylacetamide (1a), 2-chloro-N-ethyl-N-phenylacetamide (1b), and 2-chloro-N-phenylacetamide (1c) at carbon and silver cathodes, as well as the catalytic reduction of these compounds by electrogenerated nickel(I) salen, in dimethylformamide (DMF) containing 0.050 M tetramethylammonium tetrafluoroborate (TMABF4). Cyclic voltammograms for reduction of 1a and 1b show a single irreversible cathodic peak for cleavage of the carbon–chlorine bond, but two irreversible cathodic peaks are observed in cyclic voltammograms for reduction of 1c. Controlled-potential reduction of 1a and 1b gives mixtures of dechlorinated amide and N-alkyl-N-phenylaniline, whereas bulk electrolyses of 1c afford N-phenylacetamide in almost quantitative yield. In addition, bulk electrolyses of 1a and 1b result in the formation of very small amounts of dimeric species that arise from coupling of the radical intermediate formed by one-electron cleavage of the carbon–chlorine bond. On the basis of the coulometric n values and product distributions, together with computations based on density functional theory, we propose mechanistic pictures for the reduction of 1a and 1b that involve radical intermediates, whereas reduction of 1c involves carbanion intermediates

  20. Synthesis of tetra- and octa-aurated heteroaryl complexes towards probing aromatic indoliums.

    Yuan, Jun; Sun, Tingting; He, Xin; An, Ke; Zhu, Jun; Zhao, Liang


    Polymetalated aromatic compounds are particularly challenging synthetic goals because of the limited thermodynamic stability of polyanionic species arising from strong electrostatic repulsion between adjacent carbanionic sites. Here we describe a facile synthesis of two polyaurated complexes including a tetra-aurated indole and an octa-aurated benzodipyrrole. The imido trinuclear gold(I) moiety exhibits nucleophilicity and undergoes an intramolecular attack on a gold(I)-activated ethynyl to generate polyanionic heteroaryl species. Their computed magnetic properties reveal the aromatic character in the five-membered ring. The incorporation of the aurated substituents at the nitrogen atom can convert non-aromaticity in the parent indolium into aromaticity in the aurated one because of hyperconjugation. Thus, the concept of hyperconjugative aromaticity is extended to heterocycles with transition metal substituents. More importantly, further analysis indicates that the aurated substituents can perform better than traditional main-group substituents. This work highlights the difference in aromaticity between polymetalated aryls and their organic prototypes. PMID:27186982

  1. Gas-phase ion-molecule reactions of small nitroalkanes and their deprotonated anions.

    Kato, Shuji; Carrigan, Kathleen E; DePuy, Charles H; Bierbaum, Veronica M


    Gas-phase reactions of nitromethane (1), nitroethane (2), 2-nitropropane (3), 2-methyl-2-nitropropane (4) and nitrocyclopropane (5) were studied at 300 K using the flowing afterglow technique. These nitroalkanes react with gas-phase bases HO(-), CH(3)O(-) and HOO(-) very rapidly with rate coefficients of (2.5-4.3) x 10(-9) cm(3) s(-1) and reaction efficiencies of 60-100%, for example, k = 3.2 x 10(-9) cm(3) s(-1) (86%) for 5 reacting with hydroperoxide anion. Proton transfer (PT) is the only reaction observed for 1 while elimination (E2) is the exclusive pathway for 4 yielding isobutene and NO(2)(-). Both PT and E2 reactions are observed for 2, 3 and 5, the former being the major pathway. Deprotonated anions of 1, 2, 3 and 5 were subjected to reactivity studies with CH(3)I, CO(2), CS(2) and SO(2). Nucleophilic substitution (S(N)2) reaction occurs with CH(3)I while characteristic products CS(2)O(-) and SO(3)(-) are formed from CS(2) and SO(2), respectively, along with competing adduct formation. The SN(2) rate is greater, whereas the reactivities with the triatomic reagents are smaller for deprotonated nitrocyclopropane than for the other acyclic anions. These observations strongly suggest that the reactions of nitroalkane [M - H](-) anions occur through initial attack from the terminal oxygen; the nitrocyclopropane carbanion is more strained and, thus, less stabilized by resonance [R(2)C(-) - NO2 R(2)=NO(2)(-)] resulting in the greater basicity/nucleophilicy and the less negative charge on the oxygen site. PMID:15103100

  2. Nitroaldol reaction over solid base catalysts

    Akutu, Kazumasa; Kabashima, Hajime; Seki, Tsunetake; Hattori, Hideshi [Center for Advanced Research of Energy Technology, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)


    Nitroaldol reaction of a nitro compound with a carbonyl compound was carried out over a variety of solid base catalysts to elucidate the activity-determining factors in the nature of the catalysts and in the nature of nitro and carbonyl compounds. Among the catalysts examined, MgO, CaO, Ba(OH){sub 2}, KOH/alumina, KF/alumina, Sr(OH){sub 2}, hydrotalcite, and MgCO{sub 3} exhibited high activity for nitroaldol reaction of nitromethane with propionaldehyde, the activities being in this order. Over these catalysts, the yields exceeded 20% at a reaction temperature of 313K and a reaction time of 1h. Mg(OH){sub 2}, {gamma}-alumina, SrO, Ca(OH){sub 2}, BaCO{sub 3}, SrCO{sub 3}, BaO, and La{sub 2}O{sub 3} exhibited moderate activites; the yield were in the range 20-2%. CaCO{sub 3}, ZrO{sub 2}, and ZnO scarcely showed the activity. It is suggested that strongly basic sites are not required for the reaction because the abstraction of a proton from a nitro compound is easy. The reactivities of the nitro compounds were nitroethane > nitromethane > 2-nitropropane, and those of carbonyl compounds were propionaldehyde>isobutyraldehyde>pivalaldehyde>acetone>benzaldehyde>methylpro pionate. On the basis of IR study of adsorbed reactants and the reactivities of the reactants, the reaction mechanisms are proposed. The reaction proceeds by the nucleophilic addition of the carbanion formed by the abstraction of a proton from nitro compounds to the cationic species formed by the adsorption of carbonyl compounds on the acidic sites (metal cations). The nitroaldol reaction of nitromethane with propionaldehyde over MgO was scarcely poisoned by carbon dioxide and water; nitromethane is so acidic that it is able to be adsorbed on the catalyst on which carbon dioxide or water was preadsorbed.

  3. Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study

    Shinichi Yamabe


    Full Text Available Wolff–Kishner reduction reactions were investigated by DFT calculations for the first time. B3LYP/6-311+G(d,p SCRF=(PCM, solvent = 1,2-ethanediol optimizations were carried out. To investigate the role of the base catalyst, the base-free reaction was examined by the use of acetone, hydrazine (H2N–NH2 and (H2O8. A ready reaction channel of acetone → acetone hydrazine (Me2C=N–NH2 was obtained. The channel involves two likely proton-transfer routes. However, it was found that the base-free reaction was unlikely at the N2 extrusion step from the isopropyl diimine intermediate (Me2C(H–N=N–H. Two base-catalyzed reactions were investigated by models of the ketone, H2N–NH2 and OH−(H2O7. Here, ketones are acetone and acetophenone. While routes of the ketone → hydrazone → diimine are similar, those from the diimines are different. From the isopropyl diimine, the N2 extrusion and the C–H bond formation takes place concomitantly. The concomitance leads to the propane product concertedly. From the (1-phenylethyl substituted diimine, a carbanion intermediate is formed. The para carbon of the phenyl ring of the anion is subject to the protonation, which leads to a 3-ethylidene-1,4-cyclohexadiene intermediate. Its [1,5]-hydrogen migration gives the ethylbenzene product. For both ketone substrates, the diimines undergoing E2 reactions were found to be key intermediates.

  4. Elimination Reactions of (E)-2,4,6-Trinitrobenzaldehyde O-benzoyloximes Promoted by R2NH in MeCN. Change of Reaction Mechanism

    We have studied the nitrile-forming elimination reactions from 1 promoted by R2NH in MeCN. The reaction proceeded by (E1cb)irr mechanism. Change of the β-aryl group from 2,4-dinitrophenyl to a more strongly electron-withdrawing 2,4,6-trinitrophenyl increased the reaction rate by 470-fold, shifted the transition state toward more reactant-like, and changed the reaction mechanism from E2 to (E1cb)irr. To the best of our knowledge, this is the first example of nitrile-forming elimination reaction that proceeds by the (E1cb)irr mechanism in MeCN. Noteworthy is the carbanion stabilizing ability of the 2,4,6-trinitrophenyl group in aprotic solvent. Nitrile-forming elimination reactions of (E)-benzaldoxime derivatives have been extensively investigated under various conditions. The reactions proceeded by the E2 mechanism in MeCN despite the fact that the reactants have syn stereochemistry, poor leaving, and sp2 hybridized β-carbon atom, all of which favor E1cb- or E1cb-like transition state. Moreover, the transition state structures were relatively insensitive to the variation of the reactant structures. The results have been attributed to the poor anion solvating ability of MeCN, which favors E2 transition state with maximum charge dispersal. For eliminations from strongly activated (E)-2,4-(NO2)2C6H3CH=NOC(O)C6H4X, a change in the reaction mechanism from E2 to (E1cb)irr was observed as the base-solvent was changed from R2NH in MeCN to R2NH/R2NH2+ in 70 mol % MeCN(aq). A combination of a strong electron-withdrawing β-aryl group and anion-solvating protic solvent was required for the mechanistic change

  5. Stereoselective synthesis of 2,2-bis(C-branched-chain) glucopyranosid-3-ulose via autoxidation reaction

    LIU Hong-Min; ZHANG Fuyi; TAO Jing-Chao


    can be rationalized by autoxidationof 1 followed by 1,4-Michael addition of various carbanions as the main steps.

  6. Collision-induced dissociation of fatty acid [M - 2H + Na]- ions: charge-directed fragmentation and assignment of double bond position.

    Thomas, Michael C; Altvater, Jens; Gallagher, Thomas J; Nette, Geoffrey W


    The collision-induced dissociation (CID) of cationic fatty acid-metal ion complexes has been extensively studied and, in general, provides rich structural information. In particular, charge-remote fragmentation processes are commonly observed allowing the assignment of double bond position. In a previous manuscript, we presented two methods to doubly deprotonate polyunsaturated fatty acids to form anionic fatty acid-sodium ion complexes, referred to as [M - 2H + Na] (-) ions. In the current manuscript, the CID behavior of these [M - 2H + Na] (-) ions is investigated for the first time. Significantly, we also present a deuterium-labeling experiment, which excludes the possibility that deprotonation occurs predominately at the α-carbon in the formation of fatty acid [M - H + NaF](-) ions. This supports our original proposal where deprotonation occurs at the bis-allylic positions of polyunsaturated fatty acids. CID spectra of polyunsaturated fatty acid [M - 2H + Na](-) ions display abundant product ions arising from acyl chain cleavages. Through the examination of fatty acid isomers, it is demonstrated that double bond position may be unequivocally determined for methylene-interrupted polyunsaturated fatty acids with three or more carbon-carbon double bonds. In addition, CID of [M - 2H + Na](-) ions was applied to 18:3 isomers of Nannochloropsis oculata and three isomers were tentatively identified: ∆(9,12,15)18:3, ∆(6,9,12)18:3, and ∆(5,8,11)18:3. We propose that structurally-informative product ions are formed via charge-driven fragmentation processes at the site of the resonance-stabilized carbanion as opposed to charge-remote fragmentation processes, which could be inferred if deprotonation occurred predominately at the α-carbon. PMID:25142324

  7. Crystal and Molecular Structure Studies of Ethyl 4-(4-Hydroxyphenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate and Ethyl 4-(3-Bromophenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate

    Badiadka Narayana


    Full Text Available The crystal and molecular structures of the title compounds, ethyl 4-(4-hydroxyphenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate (I and ethyl 4-(3-bromophenyl-6-(6-methoxy-2-naphthyl-2-oxocyclohex-3-ene-1-carboxylate (II, are reported and confirmed by single crystal X-ray diffraction data. Compound (I, C26H24O5, crystallizes from a methanol solution in the monoclinic C2/c space group with eight molecules in the unit cell. The unit cell parameters are: a = 25.4114(5 Å, b = 8.47440(10 Å, c = 20.6921(4 Å, β = 108.328(2° and V = 4229.92(13 Å3. Disorder is observed throughout the entire molecule with an occupancy ratio 0.690(2:0.310(2. Compound (II, C26H23O4Br, crystallizes from an ethyl acetate solution in the monoclinic P21/c spacegroup with four molecules in the unit cell. The unit cell parameters are a = 17.8991(9 Å, b = 11.4369(6 Å, c = 10.8507(5 Å, β = 92.428(4° and V = 2219.25(19 Å3. Disorder is observed in the cyclohexenone ring and the carboxylate group with an occupancy ratio 0.830(6:0.170(6. Weak O–H...O (I or C–H...O (II intermolecular interactions are observed which influence crystal packing stability. These chalcone derivative types of molecules are important in their ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts which exhibit a multitude of biological activities.

  8. Interesting copper(ii)-assisted transformations of 2-acetylpyridine and 2-benzoylpyridine.

    Kitos, Alexandros A; Efthymiou, Constantinos G; Manos, Manolis J; Tasiopoulos, Anastasios J; Nastopoulos, Vassilios; Escuer, Albert; Perlepes, Spyros P


    parallelogram are each supported by deprotonated oxygen atoms belonging to a 2.21 LC(-) ligand and a 2.2 MeO(-) group. The metal ions that define each of the other two sides are singly bridged by an oxygen atom of a 2.210 nitrato group. No bridging exists between the Cu(II) ions that define the two diagonals of the parallelogram. Replacement of MeOH with EtOH in the reaction system that gave 4 resulted in the dinuclear complex [Cu2(NO3)2(LD)2)(EtOH)] (5), LD(-) being the anion of (ethoxy)(phenyl)(pyridin-2-yl)methanol. The Cu(II) ions are doubly bridged by the alkoxide oxygen atoms of the two 2.21 LD(-) ligands. The 1 : 1 : 1 Cu(NO3)2·3H2O/(py)(ph)CO/NMe4OH reaction system in CH3NO2 gave the dinuclear complex [Cu2(NO3)2(LE)2] (6), where LE(-) is the anion of 2-nitro-1-phenyl-1-(pyridin-2-yl)ethanol. The OH(-) ion abstracts one of the methyl hydrogens of CH3NO2, and once the carbanion (-):CH2NO2 is formed it attacks the positive (δ+) carbonyl carbon of (py)(ph)CO; as the carbanion forms the new C-C bond, the π electrons of the carbonyl group of the original ligand are transferred completely to oxygen forming the alkoxide-type ligand LE(-). The Cu(II) ions are doubly bridged by the alkoxide oxygen atoms of the two 2.21 LE(-) ligands. Simplified mechanistic views of the Cu(II)-assisted formation of the transformed ligands are proposed. Dc magnetic susceptibility studies in the 2-300 K range for the representative complexes 3-6 reveal the presence of very strong antiferromagnetic Cu(II)Cu(II) exchange interactions in the dinuclear complexes 3, 5, and 6 and within the dimeric {Cu2(OMe)(NO3){(py)(ph)CO}(LC)}(+) subunits of 4. The strong antiferromagnetic coupling is discussed in terms of the large Cu-O-Cu angles (101.0-102.9°) in the dinuclear, planar {Cu2O2} units/subunits of 3-6. PMID:26659333

  9. 不同碱金属乌桕油皂微波极化脱羧成烃类燃料的工艺%Microwave polarizing decarboxylation of different saponificated Chinese tallow seed oil for the preparation of renewable hydrocarbon fuel

    王允圃; 刘玉环; 阮榕生; 温平威; 马雯; 万益琴


    不饱和脂肪酸盐微波极化条件下更容易脱羧成烃,本研究分别以氢氧化锂、氢氧化钠、氢氧化钾皂化乌桕油,以不同碱金属乌桕油皂化物和乌桕油为研究对象,在恒定的微波功率下裂解脱羧成烃,通过GC-MS等分析裂解产物,微波能选择性地加热乌桕油皂羧基端,不饱和键在微波极化过程中与碳负离子中间体形成P-π共轭体系,使裂解反应(脱羧、端烯化、异构化和芳构化等)顺利进行。皂化物极性越大,升温速率越快,液体烃类产率越高,脱羧效果越明显,裂解液体的密度为0.825~0.865 g/cm3,黏度为2.10~2.55 mm2/s,与柴油的性质非常相似,从而证明微波极化乌桕油皂脱羧制烃类燃料的可行性。%It is easier for the decarboxylation reaction of unsaturated fatty acid salt. The Chinese tallow seed oil was saponified by lithium hydroxide,sodium hydroxide,potassium hydroxide. Different saponificated Chinese tallow seed oils were used as model compounds to study the decarboxylation leading to hydrocarbon formation via microwave-assisted pyrolysis technology,the pyrolysis products were analyzed by GC-MS and FT-IR. Microwave energy was able to selectively heat the carboxyl terminal of saponificated Chinese tallow seed oil. During decarboxylation,the double bond in the long hydrocarbon chain formed a P-πconjugated system with the carbanion intermediate. The resulting P-πconjugated system was more stable and beneficial to the pyrolysis reaction (decarboxylation,terminal allylation,isomerization,and aromatization). The saponificated oil has a stronger polarity,the heating rate is higher,liquid hydrocarbon yield is bigger. The viscosity(2.10-2.55 mm2/s) and density(0.825-0.865 g/cm3) of the pyrolysis liquid obtained from this experiment were similar to those of diesel. It was proved feasible to derive renewable hydrocarbon fuel from saponificated Chinese tallow seed oil by microwave

  10. Simulations of chemical catalysis

    Smith, Gregory K.

    This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 - Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 - Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a

  11. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    Yan, Ka King [Iowa State Univ., Ames, IA (United States)


    A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe2)3 and KC(SiHMe2})3TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe2)3 with potassium benzyl. KC(SiHMe2)3TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing β-SiH groups M{C(SiHMe2)3}3 (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe2)3. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) are prepared from MI2 and 2 equiv of KC(SiHMe2)3. The compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) and La{C(SiHMe2)3}3 react with 1 equiv of B(C6F5)3 to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe2)3}2HB(C6F5)3, respectively. The corresponding reactions of Ln{C(SiHMe2)3}3 (Ln = Y, Lu) give the β-SiH abstraction product [{(Me2HSi)3C}2LnC(SiHMe2)2SiMe2][HB(C6F5)3] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2or TMEDA) and Ln{C(SiHMe2)3}3 (Ln = Y, Lu, La) and 2 equiv of B(C6