Sample records for capraia volcano italy

  1. Insights into magmatic evolution and recharge history in Capraia Volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts

    Gagnevin, D.; Waight, Tod Earle; Daly, J.S.;


    Plagioclase phenocrysts in dacites from the high-K calc-alkaline CapraiaVolcano were investigated for major, trace element and Sr isotope variations in order to gain better insight into the proposed open-system behaviour of the volcano. Repeated dissolution zone in plagioclases from the early-eru...

  2. The "Mud-volcanoes route" (Emilia Apennines, northern Italy)

    Coratza, Paola; Castaldini, Doriano


    In the present paper the "Mud-volcanoes route" (MVR), an itinerary unfolds across the districts of Viano, Sassuolo, Fiorano Modenese and Maranello, in which part of the Emilia mud volcanoes fields are located, is presented. The Mud-volanoes route represents an emotional journey that connects places and excellences through the geological phenomenon of mud volcanoes, known with the local name "Salse". The Mud Volcanoes are created by the surfacing of salt water and mud mixed with gaseous and liquid hydrocarbons along faults and fractures of the ground. The name "Salsa"- from Latin salsus - results from the"salt" content of these muddy waters, ancient heritage of the sea that about a million years ago was occupying the current Po Plain. The "Salse" may take the shape of a cone or a level-pool according to the density of the mud. The Salse of Nirano, in the district of Fiorano Modenese, is one of the most important in Italy and among the most complex in Europe. Less extensive but equally charming and spectacular, are the "Salse" located in the districts of Maranello (locality Puianello), Sassuolo (locality Montegibbio) and Viano (locality Casola Querciola and Regnano). These fascinating lunar landscapes have always attracted the interest of researchers and tourist.The presence on the MVR territory of ancient settlements, Roman furnaces and mansions, fortification systems and castles, besides historic and rural buildings, proves the lasting bond between this land and its men. In these places, where the culture of good food has become a resource, we can find wine cellars, dairy farms and Balsamic vinegar factories that enable us to appreciate unique worldwide products. This land gave also birth to some personalities who created unique worldwide famous values, such as the myth of the Ferrrari, the ceramic industry and the mechatronics. The MVR is represented in a leaflet containing, short explanation, photos and a map in which are located areas with mud volcanoes, castles

  3. Features of some paleosols on the flanks of Etna volcano (Italy) and their origin

    Agnelli, A. E.; Istituto Sperimentale per lo Studio e la Difesa del Suolo, Firenze, Italy; Corti, G.; Dipartimento di Scienze Ambientali e delle Produzioni Vegetali, Università, Politecnica delle Marche, Ancona, Italy; Agnelli, A.; Dipartimento di Scienze Ambientali e delle Produzioni Vegetali, Università, Politecnica delle Marche, Ancona, Italy; Del Carlo, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Coltelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Ugolini, F. C.; Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università degli Studi di, Firenze, Italy


    Volcano flanks are usually covered by deposits of fine materials (tephra) with variable thickness originated by the explosive activity. The deposits form bedded sequences of tephra layers often alternated with paleosols. Pyroclastic successions on Etna volcano (Italy) are composed of scoria or pumice lapilli and ash deposits, representing separate eruptions, and volcanogenic sediments developed between eruptions. The origin of paleosols cropping out in three pyroclastic successions on Mt Etna...

  4. Isotopic ratio and concentration of sulfur in the undersaturated alkaline magmas of Vulture Volcano (Italy)

    Marini, L.; Paiotti, A.; Principe, C.; Ferrara, G.; Cioni, R.


    Both the δ34S value and the total S content of products from Vulture Volcano, Italy are mainly controlled by the separation of S gases, predominantly SO2, from high f O2 magmas containing S predominantly as SO2 4. The addition of evaporites to such magmas appears to be a relatively uncommon and limited phenomenon. The total S content of the most primitive product of Vulture Volcano (5600 mg/kg) is very high. The high δ34S value of 4ö indicates an origin through the partial melting of a mantle containing high S, enriched in 34S of unknown origin.

  5. Mud volcanoes in central Italy: Subsoil characterization through a multidisciplinary approach

    Rainone, M. L.; Rusi, S.; Torrese, P.


    Mud volcanoes are common geological phenomenons observed worldwide as in Italy. They are well described in the scientific literature for their morphological, tectonic and hydrogeological features. They represent not only a relevant geological and geomorphological interest but also not negligible elements of hazard and risk associated with the presence of soft and pliable sediments and with the possible unexpected emission of gas and mud. Therefore, the understanding of their structure and hydrogeological circuits in the subsurface is an important key to define hazard and risk conditions in the adjacent areas. This paper deals with a multidisciplinary study including geophysical and hydrochemical surveys undertaken at the Pineto (central Italy) mud volcano site to achieve an interpretative conceptual model explaining the shallow upward migration of deep mud fluids. Shallow electrical and seismic imaging of the mud volcano was obtained using two dimensional and three dimensional (2D-3D) electrical resistivity tomography and 2D reflection seismic surveys. The hydrochemical properties of the rising fluids were assessed by means of seasonal measurements of the chemical-physical parameters, the concentrations of major ions, and some natural isotopes. This mud volcano or mud lump appears as a dome of about 15 × 10 m in size. The height of the crater is 2 m approximately, while the diameter of the crater is 2.5 m. Emission of fluids and solids (cold brine, mud, gas) occurs from this crater. Upper Pliocene-lower Pleistocene foredeep pelitic deposits (over-compacted clays with silty-sandy levels) overlain by clayey-silty deposits crop out in the area. The survey results seem to reveal that the uprising of deep fluids does not occur exactly below the mud volcano at present. Instead, a high conductivity body is present within a fractured zone in the pelitic deposits at 60 m approximately to the ENE. The probable occurrence of a high permeability layer approximately between 20

  6. Vents Pattern Analysis at Etna volcano (Sicily, Italy).

    Brancato, Alfonso; Tusa, Giuseppina; Coltelli, Mauro; Proietti, Cristina; Branca, Stefano


    Mount Etna is a composite stratovolcano located along the Ionian coast of eastern Sicily. It is characterized by basaltic eruptions, both effusive and explosive, occurred during a complex eruptive history over the last 500 ka. Flank eruptions occur at an interval of decades, mostly concentrated along the NE, S and W rift zones. A vent clustering at various scales is a common feature in many volcanic settings. In order to identify the clusters within the studied area, a spatial point pattern analysis is undertaken using vent positions, both known and reconstructed. It reveals both clustering and spatial regularity in the Etna region at different distances. The visual inspection of the vent spatial distribution suggests a clustering on the rift zones of Etna volcano. To confirm this evidence, a coarse analysis is performed by the application of Ξ2- and t-test simple statistics. Then, a refined analysis is performed by using the Ripley K-function (Ripley, 1976), whose estimator K(d), knowing the area of the study region and the number of vents, allow us to calculate the distance among two different location of events. The above estimator can be easier transformed by using the Besag L-function (Besag, 1977); the peaks of positive L(d)=[K(d)/π]1/2 -d values indicate clustering while troughs of negative values stand for regularity for their corresponding distances d (L(d)=0 indicates complete spatial randomness). Spatial pattern of flank vents is investigated in order to model the spatial distribution of likely eruptive vents for the next event, basically in terms of relative probabilities. For this, a Gaussian kernel technique is used, and the L(d) function is adopted to generate an optimal smoothing bandwidth based on the clustering behaviour of the Etna volcano. A total of 154 vents (among which 36 are reconstructed), related to Etna flank activity of the last 4.0 ka, is used to model future vent opening. The investigated region covers an area of 850 km2, divided

  7. Gas hazard assessment at the Monticchio Mt. Vulture, a volcano in Southern Italy

    Caracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nuccio, P. M.; Dipartimento Chimica e Fisica della Terra e Applicazioni, Universita` di Palermo, Via Archirafi 36, 90100, Palermo, Italy; Favara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nicolosi, M.; Dipartimento Chimica e Fisica della Terra e Applicazioni, Universita` di Palermo, Via Archirafi 36, 90100, Palermo, Italy; Paternoster, M.; Dipartimento Scienze Geologiche, Università della Basilicata.


    Geochemical investigations have shown that there is a considerable inflow of gas into both crater lakes of Monticchio, Southern Italy. These lakes are located in two maars that formed 140 000 years ago during Mt. Vulture volcano s last eruptive activity. Isotopic analyses suggest that CO2 and helium are of magmatic origin; the latter displays 3He ⁄ 4He isotope ratios similar to those measured in olivines of the maar ejecta. In spite of the fact that the amount of dissolved gases in the wat...

  8. Integrated Surveys Of Active Volcanoes From Airborne, Bathymetric and Ground Based Data: The Examples Of Panarea and Albano (Italy)

    Anzidei, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Baldi, P.; Università di Bologna, Dipartimento di Fisica, Bologna, Italy; Esposito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Fabris, M.; Università di Bologna; Pesci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Giordano, G.; Università Roma Tre; Carapezza, M. L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Riguzzi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia


    The Panarea and Albano active volcanoes (Italy) have been recently surveyed under multidisciplinary programs funded by the Italian Department of the Civil Protection and INGV. These complex volcanoes belongs to the perithyrrenian margin and the Aeolian arc system. Their activity, which produced in the past dramatic impacts on the environment as well as on human settlements, is known since historical times. At Panarea, on November 3th, 2002, a submarine gas eruption started in the shallow area...

  9. Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy

    Paternoster, M.; Liotta, M.; Favara, R.


    SummaryA rain gauge network consisting of five sites located at different altitudes, ranging from 320 to 1285 m.a.s.l., was installed at Mt. Vulture volcano (southern Italy). Rain water samples were collected monthly over a two-year period and their isotopic composition (δ 18O and δD) was analyzed. During the same period, circulating groundwater was sampled from 24 springs and wells distributed throughout the study area. Monthly isotopic composition values were used to determine the local meteoric water line (LMWL). Its slope is slightly lower than the relationship defined by Longinelli and Selmo (Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy: a first overall map. J. Hydrol. 270, 75-88) for southern Italy. The groundwater samples analyzed were distributed essentially along the LMWL. The weighted local meteoric water line (WLMWL), defined through the mean values weighted by the rainfall amount, however, may define in a short range the meteoric end-member in the local hydrological cycle more precisely. Since most of the groundwater sampling locations do not show seasonal variations in their stable isotope values, the flow system appears to be relatively homogeneous. The mean altitude of the recharge by rainfall infiltration was estimated on the basis of the local vertical isotopic gradient δ 18O. A few springs, which show anomalous isotopic values, reveal more regional circulation systems, associated with tectonic structures responsible for the ascent of deeper water.

  10. Tephrochronology of a late quatternary lacustrine record from the monticchio maar (vulture volcano, southern Italy)

    Narcisi, Biancamaria

    With the aim of defining the chronological framework of the 51 m deep sedimentary sequence (core D) from Lago Grande di Monticchio (Mt Vulture volcano), macroscopic, microscopic and geochemical investigations have been carried out on the 14 thickest (at least 3 cm) tephra layers recorded in the core. The results indicate that the tephras are related to the main late Quaternary explosive events from Ischia, Vesuvius and the Phlegrean Fields districts of the Campanian area. Following these results, a usable time scale has been obtained, according to which the sequence spans the last 70 ka. Beyond the chronological information, this investigation has made it possible: (a) to identify widespread time-parallel markers for reliable correlations in the Central Mediterranean; (b) to collect useful data about past powerful eruptions, particularly from Vesuvius, for a better assessment of volcanic hazards in Central and Southern Italy.

  11. Passive degassing at Nyiragongo (D.R. Congo and Etna (Italy volcanoes

    Sergio Calabrese


    Full Text Available Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Etna (Italy and Nyiragongo (D.R. Congo are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater and their uptake by the surrounding vegetation, with the aim to compare and identify differences and similarities between these two volcanoes. Volcanic emissions were sampled by using active filter-packs for acid gases (sulfur and halogens and specific teflon filters for particulates (major and trace elements. The environmental impact of the volcanogenic deposition in the area surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors’ gauges were used to collect atmospheric bulk deposition, and biomonitoring was carried out to collect gases and particulates by using endemic plant species. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals into the atmosphere, especially considering their persistent state of passive degassing. The large amount of emitted trace elements is clearly reflected on the chemical composition of rainwater collected at the summit areas both for Etna and Nyiragongo. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and de- creases with the distance from the active craters.  

  12. Aeromagnetic constraints on the subsurface structure of Stromboli Volcano, Aeolian Islands, Italy

    Okuma, Shigeo; Stotter, Christian; Supper, Robert; Nakatsuka, Tadashi; Furukawa, Ryuta; Motschka, Klaus


    Two helicopter-borne magnetic surveys were conducted over Stromboli Volcano and its surrounding areas on the Aeolian Islands, southern Italy in 2002 and 2004 to better understand the subsurface structure of the area. Observed data from those surveys were merged and aeromagnetic anomalies for Stromboli Island and its vicinity were reduced onto a smoothed surface, assuming equivalent anomalies below the observed surface. The magnetic terrain effects were calculated for the magnetic anomalies of the study area, assuming the magnetic structure comprised of an ensemble of prisms extending from the ground surface to a depth of 3000 m below sea level: the average magnetization intensity was calculated to be 2.2 A/m for the edifice of Stromboli shallower than 1200 m below sea level by comparing the observed and synthetic data. Next, apparent magnetization intensity mapping was applied to the observed anomalies using a uniform magnetization of 2.2 A/m as the initial value. The apparent magnetization intensity map indicates magnetic heterogeneities among volcanic rocks which constitute the edifice of the volcano. The most remarkable feature of the magnetization intensity map is a magnetization low which occupies the center of the island where the summit craters reside, suggesting demagnetization caused by the heat of conduits and/or hydrothermal activity in addition to the thick accumulation of less magnetic pyroclastic rocks. By comparing topographic and geologic maps, it can be seen that magnetization highs are distributed on the exposures of basaltic-andesite to andesite lavas (Paleostromboli I), shoshonitic lavas with an eccentric vent and a shield volcano (Neostromboli), on the south, north and west coasts of the volcano, respectively. These magnetization highs further extend offshore, implying the seaward continuation of these volcanic rocks. 3-D magnetic imaging was preliminarily applied to the same magnetic anomalies as well as for the magnetization intensity mapping

  13. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy

    De Astis, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Kempton, P. D.; Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, SN2 1EU, UK; Peccerillo, A.; Dipartimento di Scienze della Terra, Università di Perugia; Wu, T. W.; Department of Geology, University of Western Ontario, London, ON, Canada N6A 5B7


    New Sr–Nd–Pb isotopic ratios and trace element data for volcanic mafic rocks outcropping along a E–W transect in southern Italy, from Mt. Vulture to Neapolitan volcanoes, are reported. The variation of LILE/HFSE, HFSE/HFSE and radiogenic isotopes along this transect indicates that all of these volcanoes contain both intra-plate and subduction-related signatures, with the former decreasing from Mt. Vulture to Campanian volcanoes. New data are also reported for the Pa...

  14. Paleomagnetism of spatter lavas from Stromboli volcano (Aeolian Islands, Italy): Implications for the age of paroxysmal eruptions

    Speranza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Pompilio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia


    We report on 270 paleomagnetic directions retrieved from 17 different spatter deposits spread over the northern and western flanks of the Stromboli volcano (Aeolian Islands, Italy). The spatter were emplaced during previously undated high-energy Strombolian eruptions occurring after the third-seventh century AD. Our paleomagnetic directions were superimposed over the paleosecular variation curve of the geomagnetic field for the last two millennia, obtained by reducing to the coordinates of...

  15. The 15 March 2007 explosive crisis at Stromboli Volcano, Italy: assessing physical parameters through a multidisciplinary approach

    Pistolesi, M.; Delle Donne, D.; Pioli, Laura; Rosi, M.; Ripepe, M.


    Basaltic volcanoes are dominated by lava emission and mild explosive activity. Nevertheless, many basaltic systems exhibit, from time to time, poorly documented and little-understood violent explosions. A short-lived, multiblast explosive crisis (paroxysmal explosion) occurred on 15 March 2007 during an effusive eruptive crisis at Stromboli (Italy). The explosive crisis, which started at 20:38:14 UT, had a total duration of ∼5 min. The combined use of multiparametric data collected by the per...

  16. Petrogenesis of Monte Vulture volcano (Italy): inferences from mineral chemistry, major and trace element data

    de Fino, M.; La Volpe, L.; Peccerillo, A.; Piccarreta, G.; Poli, G.


    The paper presents major and trace element data and mineral compositions for a series of foiditic-tephritic to phonolitic rocks coming from Monte Vulture, Southern Italy, and investigates their origin, evolution and relationship with the other centres of the Roman province. Major and trace element variation in the foiditic to tephritic suite agrees with a hypothesis of evolution by simple crystal/liquid fractionation, whereas the early erupted phonolitic trachytes and phonolites have geochemical characteristics which do not support their derivation from tephritic magma by crystal fractionation. Foiditic and phonolitic rocks have mineral compositions which are interpreted as indicating magma mixing. However geochemical evidence shows that this process did not play an important role during the magma evolution. The Vulture rocks have compositional peculiarities such as high abundance of Na2O, CaO, Cl and S, when compared with other Roman volcanics. Instead, the distribution of incompatible elements is similar to those of Roman rocks, except for a lower content of Rb and K, higher P and lower Th/Ta and Th/Nb ratios which are still close to the values of arc volcanics. The high contents of Na, Ca and of volatile components are tentatively attributed to the interaction of magma with aqueous solutions, rich in calcium sulphate and sodium chloride, related to the Miocene or Triassic evaporites occurring within the sedimentary sequence underlying the volcano. The distribution pattern of the incompatible elements is interpreted as indicative of magma-forming in a subduction modified upper mantle and of the peculiar location of M. Vulture.

  17. Volcanoes


    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  18. Mantle CO2 degassing at Mt. Vulture volcano (Italy): Relationship between CO2 outgassing of volcanoes and the time of their last eruption

    Caracausi, Antonio; Paternoster, Michele; Nuccio, Pasquale Mario


    Mantle volatiles are mainly lost from the Earth to the atmosphere through subaerial and submarine volcanism. Recent studies have shown that degassing of mantle volatiles also occurs from inactive volcanic areas and in tectonically active areas. A new challenge in Earth science is to quantify the mantle-derived flux of volatiles (e.g., CO2) which is important for understanding such diverse issues as the evolution of the atmosphere, the relationships between magma degassing and volcanic activity, gas pressure and seismogenic processes, and the hazards posed by volcanic lakes. Here we present a detailed study of mantle-derived CO2 budget from Mt. Vulture volcano in the Apennines, Italy, whose latest eruption occurred 141 ± 11 kyr ago. The relationship between δ13CCO2 and total dissolved carbon at Mt. Vulture volcano indicates that the emitted CO2 is a mixture of a biogenic end-member with an average δ13CCO2 of about - 17 ‰ and a mantle-derived CO2 end-member with δ13CCO2 values from - 3 ‰ to + 2 ‰. These values of mantle-derived δ13CCO2 are in the range of those for gas emitted from active volcanoes in the Mediterranean. We calculated the contribution of individual components (CO2 in groundwater, in lakes and from main pools) to the total CO2 budget in the area. We used new measurements of water flow, combined with literature data, to calculate the CO2 flux associated with groundwater, and measured the gas flux from the main pools on the volcanic edifice. Finally, we calculated the CO2 flow in the lakes based on the gradient concentration and eddy diffusivity. The total mantle-derived CO2 budget in the area is 4.85 ×108 molyr-1, which is more than double previous estimates. This is higher than those observed in younger volcanic systems elsewhere, thereby supporting the existence of actively degassing mantle melts below Mt. Vulture volcano. A structural map highlights the tectonic control on CO2 flow across the Mt. Vulture volcanic edifice. Indeed, the

  19. Large teleseismic P-wave residuals observed at the Alban Hills volcano, Central Italy

    H. Mahadeva Iyer


    Full Text Available We collected teleseismic waveforms from a digital microseismic network deployed by the Istituto Nazionale di Geofisica (ING in collaboration with the U.S. Geological Survey (USGS, on the Alban Hills Quaternary volcano during the 1989-1990 seismic swann. About 50 events were recorded by the network, 30 of them by at least 4 stations. We analysed the data in order to image crustal heterogeneities beneath the volcano. The results show large delay time residuals up to - 1 second for stations located on the volcano with respect to station CP9 of the National Seismic Network located about 20 km to the east, on the Apennines. This suggests that the whole area overlies a broad low-velocity region. Although the ray coverage is not very dense, we model the gross seismic structure beneath the volcano by inverting the teleseismic relative residuals with the ACH technique. The main features detected by tbc inversion are a low-velocity zone beneath the southwestern fiank of tbc volcano, and a high-velocity region beneath the center. The depth extension of these anomalous zones ranges between 5 and 16 km. The correspondence between the low-velocity region and the most recent activity of the volcano (- 0.027 Ma leads us to infer the presence of a still hot magmatic body in the crust beneath the southwestern side of the volcano, whereas the central part overlies the older and colder high-velocity volcanic roots related to the previous central activity (0.7 to 0.3 Ma.

  20. Annex 1 to: Passive Degassing at Nyiragongo (D.R. Congo and Etna (Italy Volcanoes.

    Sergio Calabrese


    Full Text Available Volcanic EmissionsThe technique for the assessment of the metal output from volcanoes was based on direct (in- plume collection of the plume on filter substrates. Gas and aerosols in the volcanic plume have been sampled from the rims of the active craters. [...

  1. Methane flux from miniseepage in mud volcanoes of SW Taiwan: Comparison with the data from Italy, Romania, and Azerbaijan

    Hong, Wei-Li; Etiope, Giuseppe; Yang, Tsanyao Frank; Chang, Ping-Yu


    Mud volcanoes (MVs) are considered important methane (CH4) sources for the atmosphere; gas is not only released from macro-seepage, i.e., from craters and visible gas bubbling manifestations, but also from invisible and pervasive exhalation from the ground, named miniseepage. CH4 flux related to miniseepage was measured only in a few MVs, in Azerbaijan, Italy, Japan, Romania and Taiwan. This study examines in detail the flux data acquired in 5 MVs and 1 "dry" seep in SW Taiwan, and further compares with other 23 MVs in Italy, Romania and Azerbaijan. Miniseepage from the six manifestations in SW Taiwan MVs and seeps annually contribute at least 110 tons of methane directly to the atmosphere, and represents about ˜80% of total degassing during a quiescent period. Combining miniseepage flux and geo-electrical data from the Wu-shan-ding MV revealed a possible link between gas flux and electrical resistivity of the vadose zone. This suggests that unsaturated subsoil is a preferential zone for shallow gas accumulation and seepage to the atmosphere. Besides, miniseepage flux in Chu-huo everlasting fire decreases by increasing the distance from the main gas channeling zone and molecular fractionation (methane/ethane ratio) is higher for lower flux seepage, consistently with what observed in other MVs worldwide. Measurements from Azerbaijan, Italy, Romania, and Taiwan converge to indicate that miniseepage is directly proportional to the vent output and it is a significant component of the total methane budget of a MV. A miniseepage vs. macro-seepage flux equation has been statistically assessed and it can be used to estimate theoretically at least the order of magnitude of the flux of miniseepage for MVs of which only the flux from vents was evaluated, or will be evaluated in future. This will allow a more complete and objective quantification of gas emission in MVs, thus also refining the estimate of the global methane emission from geological sources.

  2. Geodetic monitoring of Mt. Vesuvius Volcano, Italy, based on EDM and GPS surveys

    Pingue, Folco; Troise, Claudia; De Luca, Gaetano; Grassi, Vittorio; Scarpa, Roberto


    The geophysical monitoring system of Mt. Vesuvius volcano includes a geodetic EDM network having average basis lengths amounting to 6 km. This trilateration network is localised around the central crater and consists of 21 stations with a geometry allowing measurement of 60 slope distances. In order to relate this network to more stable areas and to other networks in the Apennines, the EDM net has been extended using GPS methods. In summer 1993 four GPS receivers (Leica System 200) were used on the same points measured with EDM method. During this survey two long bases from the volcano to the more stable limestone platform located in the S direction were measured. The same baselines were previously measured by using an AGA 600 laser geodimeter. In January 1995 a new survey was performed by using two infrared distantiometers (1 DISTOMAT DI3000 and an AGA 142). The comparison with the data since 1975 does not show any significant ground deformation to be ascribed to the volcanic activity. Moreover the consistency between GPS and EDM data allows to exclude systematic differences between these two methodologies for volcano monitoring.

  3. Dynamics of the eastern flank of Mt. Etna volcano (Italy) investigated by a dense GPS network

    Bonforte, Alessandro; Puglisi, Giuseppe


    Mount Etna has developed at the intersection of two regional tectonic lineaments, the NNW-SSE trending Hybleo-Maltese escarpment, which separates the thick inland continental crust of the African platform from the Ionian Mesozoic oceanic crust, and the NE-SW Messina-Fiumefreddo fault that marks a rift zone between south Calabria and north-eastern Sicily, extending as far as the Mt. Etna area. All tectonic features affect, with outstanding surface features, the eastern side of the volcano. The eastern flank of the volcano is affected by a long-term motion toward ESE. In 1997, in order to increase the detail of the ground deformation pattern on the lower eastern flank of Mt. Etna, a new GPS network, the "Ionica" network, was installed on this sector of the volcano. This GPS network consists of 24 stations and covers the lower eastern flank of the volcano from the town of Catania to Taormina and from the coastline up to an altitude of about 1300 m. All the new stations consist in self-centring benchmarks; this kind of benchmark allows all station set-up errors to be avoided. Before the merging of the Ionica network to the frame of the global GPS network of Mt. Etna (in June 2001), three surveys were carried out on this network: in September 1997, August 1998 and January 2001. From the ground deformation pattern, it is possible to distinguish two different sectors, showing different characteristics of deformation. The southern part of the network shows a more uniform distribution of the vertical motion with a mean SE-ward horizontal component while the northern one shows an heterogeneous vertical motion with a ESE-ward horizontal component. Furthermore, a higher velocity is detected between 1997 and 1998, due to the additional stress induced by a shallow intrusion on the NW flank of the volcano. The model resulting from data inversions defines a wide sliding plane beneath the entire eastern flank of the volcano with a low dip angle. The expected velocity vectors fit

  4. Matching high-resolution seismic and electrical resistivity profiling to infer the shallow structure of Solfatara Volcano (Italy)

    Bruno, Pier Paolo; Gresse, Marceau; Maraio, Stefano; Vandemeulebrouck, Jean; Di Fiore, Vincenzo


    -surface geological interpretation of Solfatara area and to better understand and relate temporal changes of geophysical and geochemical measurements to the shallow geological structure of the most active volcano of Campi Flegrei Caldera, Italy, which it is presently characterized by an activity renewal, resulting in an enhanced hydrothermal activity and fumarolic emission increase.

  5. Gas hazard assessment at the Monticchio crater lakes of Mt. Vulture, a volcano in Southern Italy

    Caracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nuccio, P. M.; Dipartimento CFTA, Universita` di Palermo, Palermo, Italy.; R. Favara; Nicolosi, M.; Dipartimento CFTA, Universita` di Palermo, Palermo, Italy.; Paternoster, M.; Dipartimento Scienze Geologiche, Università della Basilicata.


    Geochemical investigations have shown that there is a considerable inflow of gas into both crater lakes of Monticchio, Southern Italy. These lakes are located in two maars that formed 140,000 years ago during Mt. Vulture volcano’s last eruptive activity. Isotopic analyses suggest that CO2 and helium are of magmatic origin; the latter displays 3He/4He isotope ratios similar to those measured in olivines of the maar ejecta. In spite of the fact that the amount of dissolved gases in the water is...

  6. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy

    de Astis, G.; Kempton, P. D.; Peccerillo, A.; Wu, T. W.


    New Sr-Nd-Pb isotopic ratios and trace element data for volcanic mafic rocks outcropping along a E-W transect in southern Italy, from Mt. Vulture to Neapolitan volcanoes, are reported. The variation of LILE/HFSE, HFSE/HFSE and radiogenic isotopes along this transect indicates that all of these volcanoes contain both intra-plate and subduction-related signatures, with the former decreasing from Mt. Vulture to Campanian volcanoes. New data are also reported for the Paleocene alkaline rocks from Pietre Nere (Apulia foreland), which show isotopic ratios mostly overlapping the values for Mediterranean intra-plate volcanoes as well as the Eocene-Oligocene alkaline mafic lavas from the northern Adria plate. Pietre Nere provides evidence for an OIB mantle composition of FOZO-type, free of subduction influences, that is present beneath the Adria plate (Africa) before its collision with Europe. After this collision, and formation of the southern Apennines, westward inflow of mantle from the Adria plate to the Campanian area occurred, as a consequence of slab break off. Interaction of subduction components with inflowing Adria mantle generated hybrid sources beneath the Vulture-Campania area, which can explain the compositional features of both Mt. Vulture and the Campanian mafic rocks. Therefore, mafic magmas from these volcanoes represent variable degrees of mixing between different mantle components.

  7. Asbestiform tremolite within the Holocene late pyroclastic deposits of Colli Albani volcano (Latium, Italy): Occurrence and crystal-chemistry

    Della Ventura, Giancarlo; Bellatreccia, Fabio; De Benedetti, Arnaldo A; Mottana, Annibale


    This work relates the occurrence and the characterization of fibrous tremolite within the latest pyroclastic deposits of the Colli Albani (Alban Hills) volcano, to the south-east of Rome (Italy). These mineralizations were observed during a systematic rock-sampling undertaken to complete the geological survey for the new 1:50 000 map of this volcanic area. The examined specimens were collected inside distal deposits correlated to the last Albano Maar activity, which are geographically located within the boundaries of the Nemi community. Tremolite occurs within both carbonate ejecta and the host pyroclastic rocks. It shows up as whitish to light gray coloured aggregates of crystals with fibrous aspect and sericeous brightness. Due to the extremely small crystal dimensions, never exceeding 0.5 micron in diameter, the micro-chemical composition of the fibres could be obtained only by combining P-XRD, SEM-EDX and FTIR methods. Infrared spectroscopy, in particular, proved to be a valuable technique to characterize...

  8. Probability hazard map for future vent opening at Etna volcano (Sicily, Italy).

    Scandura, D.; Montalto, P.; Brancato, A.; Cannavo, F.; Coltelli, M.; Mattia, M.; Patanè, D.; Proietti, C.


    The frequent flank eruptions occurrence at Mt. Etna lead to a high volcanic hazard that, linked to a population of nearly one million people dwell on its flanks, poses a high volcanic risk. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management), we developed a near real-time computer-assisted analysis and probabilistic evaluations that provide the identification of the areas prone to the highest vent opening hazard. The use of a code such BET_EF (Bayesian Event Tree_Eruption Forecasting) provide us a long-term hazard map mainly based on the past behaviour of the Etna volcano. The near real-time additional seismic and ground deformation data allow the long-term hazard map switches into a short-term future vent opening one. The short-term hazard map was computed starting from the evaluation of deformation field over Etna surface. Analytical inversion of deformation and seismic data is performed to find the parameters of a magmatic source in an elastic, isotropic and homogeneous half-space and forward model is performed to computed the displacement field over Etna surface. We modelled the final intrusion of the Mount Etna May 2008 eruption that was accompanied by a violent seismic swarm and marked by ground deformation recorded at GPS stations. Results suggest a good accordance between the higher probability area and the real vent occurrence.

  9. Volcano Monitoring and Early Warning on MT Etna, Italy, Using Volcanic Tremor - Methods and Technical Aspects

    D'Agostino, Marcello; Di Grazia, Giuseppe; Ferrari, Ferruccio; Langer, Horst; Messina, Alfio; Reitano, Danilo; Spampinato, Salvatore


    Recent activity on Mt Etna was characterized by 25 lava fountains occurred on Mt Etna in 2011 and the first semester of 2012. In summer 2012 volcanic activity in a milder form was noticed within the Bocca Nuova crater, before it came to an essential halt in August 2012. Together with previous unrests (e. g., in 2007-08) these events offer rich material for testing automatic data processing and alert issue in the context of volcano monitoring. Our presentation focuses on the seismic background radiation - volcanic tremor - which has a key role in the surveillance of Mt Etna. From 2006 on a multi-station alert system exploiting STA/LTA ratios, has been established in the INGV operative centre of Catania. Besides, also the frequency content has been found to change correspondingly to the type of volcanic activity, and can thus be exploited for warning purposes. We apply Self Organizing Maps and Fuzzy Clustering which offer an efficient way to visualize signal characteristics and its development with time. These techniques allow to identify early stages of eruptive events and automatically flag a critical status before this becomes evident in conventional monitoring techniques. Changes of tremor characteristics are related to the position of the source of the signal. Given the dense seismic network we can base the location of the sources on distribution of the amplitudes across the network. The locations proved to be extremely useful for warning throughout both a flank eruption in 2008 as well as the 2011 lava fountains. During all these episodes a clear migration of tremor sources towards the eruptive centres was revealed in advance. The location of the sources completes the picture of an imminent volcanic unrest and corroborates early warnings flagged by the changes of signal characteristics. Automatic real time data processing poses high demands on computational efficiency, robustness of the methods and stability of data acquisition. The amplitude based multi

  10. Relevance of the Chiancone volcaniclastic deposit in the recent history of Etna Volcano (Italy)

    Calvari, Sonia; Groppelli, Gianluca


    occurrence of an important eruptive event at least 7590 yr B.P. which may be associated with the deposition of the huge basal mud flow. This event was followed by fluvial reworking and deposition at a rate of at least 4 mm/yr. Extending this deposition rate to the whole thickness of the CH deposit (300 m) would imply a maximum age of 80,000-70,000 yr B.P. However, the deposition rate of the hidden part of the CH deposit was almost certainly much greater than 4 mm/yr implying an age for the onset of the CH sequence significantly less than 80,000-70,000 yr B.P. This very strongly suggests that the Trifoglietto volcano (which is older than 80,000 yr) was not involved in the opening of the VDB and the formation of the CH deposit. It also suggests that the first event of the opening of the VDB was much older than the 5000 yr proposed by some authors. It is possible that the CH was deposited during, or slightly later than, the life-span of the Ellittico volcano (40,000-15,000 yr B.P.).

  11. Chronostratigraphy of Monte Vulture volcano (southern Italy): secondary mineral microtextures and 39Ar-40Ar systematics

    Villa, Igor M.; Buettner, Annett


    The eruptive history of Monte Vulture has been the subject of several geochronological investigations during the past decades, which reliably dated only a small number of eruptions. Understanding the causes of sub-optimum data yield in the past requires an interdisciplinary approach. We re-analyzed samples from previous works and present new data on samples from the main volcano-stratigraphic units of Monte Vulture, so as to provide an improved, consistent chronostratigraphic database. Imaging of minerals by cathodoluminescence and backscattered electrons reveals that heterochemical, high-temperature deuteric reaction textures are ubiquitous. Such observations are common in metamorphic rocks but had not frequently been reported from volcanic rocks. In view of the mineralogical complexity, we base our chronological interpretation on isochemical steps, defined as steps for which the Cl/K and/or the Ca/K ratios are constant. Isochemical steps carry the isotopic signature of chemically homogeneous mineral phases and therefore allow a well-constrained age interpretation. Comparison of old and new 39Ar-40Ar data proves the reproducibility of age spectra and their shapes. This quantifies the analytical reliability of the irradiation and mass-spectrometric analyses. Anomalous age spectra are a reproducible property of some specific samples and correlate with mineralogical anomalies. The present data allow us to fine-tune the age of the volcanostratigraphic units of Monte Vulture during the known interval of main volcanic activity from ca. 740 to 610 ka. After a very long stasis, the volcanic activity in the Monte Vulture area resumed with diatremic eruptions, one of which (Lago Piccolo di Monticchio, the site of a palynological-paleoclimatological drilling) was dated at ca. 140 ka.

  12. The 2014 Broadband Acquisition and Imaging Operation (BAcIO) at Stromboli Volcano (Italy)

    Scarlato, P.; Taddeucci, J.; Del Bello, E.; Gaudin, D.; Ricci, T.; Andronico, D.; Lodato, L.; Cannata, A.; Ferrari, F.; Orr, T. R.; Sesterhenn, J.; Plescher, R.; Baumgärtel, Y.; Harris, A. J. L.; Bombrun, M.; Barnie, T. D.; Houghton, B. F.; Kueppers, U.; Capponi, A.


    In May 2014, Stromboli volcano, one of the best natural laboratories for the study of weak explosive volcanism, hosted a large combination of state-of-the-art and prototype eruption monitoring technologies. Aiming to expand our parameterization capabilities for explosive eruption dynamics, we temporarily deployed in direct view of the active vents a range of imaging, acoustic, and seismic data acquisition systems. Imaging systems included: two high-speed visible cameras acquiring synchronized images at 500 and 1000 frames per second (fps); two thermal infrared forward looking (FLIR) cameras zooming into the active vents and acquiring at 50-200 fps; two FLIR cameras acquiring at lower (3-50 fps) frame rates with a broader field of view; one visible time-lapse camera; one UV camera system for the measurement of sulphur dioxide emission; and one drone equipped with a camcorder. Acoustic systems included: four broadband microphones (range of tens of kHz to 0.1 Hz), two of them co-located with one of the high-speed cameras and one co-located with one of the seismometers (see below); and an acoustic microphone array. This array included sixteen microphones with a circular arrangement located on a steep slope above the active vents. Seismic systems included two broadband seismometers, one of them co-located with one of the high-speed cameras, and one co-located with one of the microphones. The above systems were synchronized with a variety of methods, and temporarily added to the permanent monitoring networks already operating on the island. Observation focus was on pyroclast ejection processes extending from the shallow conduit, through their acceleration and interaction with the atmosphere, and to their dispersal and deposition. The 3-D distribution of bombs, the sources of jet noise in the explosions, the comparison between methods for estimating explosion properties, and the relations between erupted gas and magma volumes, are some examples of the processes targeted

  13. Innovative Methodologies for thermal Energy Release Measurement: case of La Solfatara volcano (Italy)

    Marfe`, Barbara; Avino, Rosario; Belviso, Pasquale; Caliro, Stefano; Carandente, Antonio; Marotta, Enrica; Peluso, Rosario


    This work is devoted to improve the knowledge on the parameters that control the heat flux anomalies associated with the diffuse degassing processes of volcanic and hydrothermal areas. The methodologies currently used to measure heat flux (i.e. CO2 flux or temperature gradient) are either poorly efficient or effective, and are unable to detect short to medium time (days to months) variation trends in the heat flux. A new method, based on the use of thermal imaging cameras, has been applied to estimate the heat flux and its time variations. This approach will allow faster heat flux measurement than already accredited methods, improving in this way the definition of the activity state of a volcano and allowing a better assessment of the related hazard and risk mitigation. The idea is to extrapolate the heat flux from the ground surface temperature that, in a purely conductive regime, is directly correlated to the shallow temperature gradient. We use thermal imaging cameras, at short distances (meters to hundreds of meters), to quickly obtain a mapping of areas with thermal anomalies and a measure of their temperature. Preliminary studies have been carried out throughout the whole of the La Solfatara crater in order to investigate a possible correlation between the surface temperature and the shallow thermal gradient. We have used a FLIR SC640 thermal camera and K type thermocouples to assess the two measurements at the same time. Results suggest a good correlation between the shallow temperature gradient ΔTs and the surface temperature Ts depurated from background, and despite the campaigns took place during a period of time of a few years, this correlation seems to be stable over the time. This is an extremely motivating result for a further development of a measurement method based only on the use of small range thermal imaging camera. Surveys with thermal cameras may be manually done using a tripod to take thermal images of small contiguous areas and then joining

  14. Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy

    Bindi, Luca; Cellai, Daniela; Melluso, Leone; Conticelli, Sandro; Morra, Vincenzo; Menchetti, Silvio


    compositional and structural similarities between clinopyroxene of Monte Vulture and Leucite-bearing rocks of the Roman Province (plagioclase-bearing High Potassium Series=HKS) indicate a common petrogenetic affinity. On the other hand, differences between clinopyroxene in feldspar-free rocks from Monte Vulture and that in kamafugites (i.e, olivine melilitites, kalsilitites) from Central Italy, suggest significant magma dissimilarities between these two groups.

  15. Distribution of trace elements in altered pyroclastites from Monte Vulture volcano (southern Italy

    Piccarreta, G.


    Full Text Available Three pyroclastic deposits from Monte Yulture volcanic area (Potenza, southern Italy looking like paleosols in the field were investigated in a previous study for mineralogy and major elements to estimate the stage of the weathering. Here is dealt with the behaviour of sorne trace elements (Ce, La, Ba, Ni, Cr, Y, Rb, Sr, Y, Zr and Nb in the same deposits to give a comprehensive geochemical picture. The distribution of the chemical elements within the whole rock and after its attack with Na-pyrosulfate (residue + solute has been considered. Ba and Sr, as well as their distribution, appear to be controlled by the residual crystals in each of the deposits; La, Ce, Y and Nb are more concentrated in the solute that once was represented by vitric component, allophane, and Fe-Si-Al gels, biotite, carbonates and analcite; Y, Cr, and Ni show similar trends in whole rock and in solute. In particular La, Ce, Y, Y, Cr and Ni in the lowermost unit increase with the depth, as well as the contents of gels and allophane. Probably this behaviour was superimposed by the fluctuation of the water tables, as documented by the occurrence of a carbonate level upon the unit lies. It is concluded that the earliest stage of weathering did not affect the trace element distribution and that interpretations about chemical changes in deeply altered pyroclastic rocks should be always the outcome of careful accurate analyses.En un trabajo previo se estudiaron tres depósitos piroclásticos, considerados como paleosuelos, del área volcánica del Monte Yulture (Potenza, Italia para deducir su grado de meteorización. En el presente trabajo se estudia el comportamiento de algunos elementos traza (Ce, La, Ba, Ni, Cr, Y, Rb, Sr, Y, Zr, Nb en esos depósitos para intentar obtener una imagen geoquímica más completa. Se ha estudiado la distribución de elementos traza en la roca total y después de un ataque con pirosulfato-Na (residuo + solución. Ba y Sr parecen estar controlados

  16. Origin and transport of CH4 in two maar lakes fed by mantle-derived volatiles (Mt. Vulture volcano, Italy)

    Caracausi, Antonio; Cosenza, Paolo; Favara, Rocco; Foresta Martin, Luigi; Galli, Nunzio; Grassa, Fausto; Nuccio, Pasquale Mario; Paternoster, Michele; Riccobono, Giuseppe


    from previous limnological-geochemical investigations has been joined with isotope signature of gas (CH4 and CO2) collected from sediments at the bottom of LPM, by means of a specially designed robot called "Muddy". Muddy is also able to perform vertical profiles both of pH and of temperature in the water column and in the sediments as well. The obtained results lead us: 1) to assess the production ratio of CH4 through acetoclastic methanogenesis and CO2 reduction in the sediments; 2) to determinate CH4 oxidation; 3) to detect the origin of CO2 involved in methanogenic processes, evaluating the contribution organic-CO2 and the sink of mantle-derived CO2.;4) to discuss the differences in CH4 sources in the water and sediments; 5) to properly define gas hazards assessment. A. Caracausi, M. Nicolosi, P.M. Nuccio, R. Favara, M. Paternoster, A. Rosciglione (2013) Geochemical insight into differences in the physical structures and dynamics of two adjacent maar lakes at Mt. Vulture volcano (southern Italy), G. Cubed, doi: 10.1002/ggge.2011

  17. Adventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: Implications for general fluid flow models on volcanoes

    Finizola, A.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint Denis, La Réunion, France; Ricci, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Deiana, R.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy; Barde Cabusson, S.; Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy; Rossi, M.; Dipartimento di Geoscienze, Università di Padova, Italy; Università Milano-Bicocca, Milan, Italy; Praticelli, N.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy; Giocoli, A.; Laboratorio di Geofisica, IMAA-CNR, Tito Scalo, Potenza, Italy; Romano, G.; Tito Scalo, Potenza, Italy; Delcher, E.; Suski, B.; Institut de Géophysique, Université de Lausanne, Lausanne, Switzerland; Revil, A.; Colorado School of Mines; Menny, P.; Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France; Di Gangi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Letort, J.; Ecole et Observatoire des Sciences de la Terre, Universite de Strasbourg, France; Peltier, A.; Institut de Physique du Globe de Paris, France


    On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products,mostly lithic blocks, someofwhich impacted the ground as far as down to 200 m a.s.l., about 1.5 kmfaraway fromthe active vents. Two days after the explosion, a newvapouremissionwas discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called “Nel Cannestrà”. This new vapour emission was due to a block impact. In ...

  18. Focused and diffuse effluxes of CO2 from mud volcanoes and mofettes south of Mt. Etna (Italy)

    Giammanco, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Parello, F.; DFCTA, University of Palermo; Gambardella, B.; Dip.Ter.Ris., University of Genova; Schifano, R.; DFCTA, University of Palermo; Pizzullo, S.; DFCTA, University of Palermo; Galante, G.; DFCTA, University of Palermo


    Several sites with anomalous emissions of carbon dioxide were investigated in the region south of Mt. Etna volcano in order to assess the types of emission (focused and/or diffuse), their surface extension and the total output of CO2. Most of the studied emissions are located on the southwest boundary of Mt. Etna, near the town of Paternò. They consist of three mud volcanoes (known as Salinelle), one spring with bubbling gas (Acqua Grassa) and one area of diffuse degassing (Peschería...

  19. The evolution of the Monte Vulture volcano (Southern Italy): Inferences from volcanological, geological and deep dipole electrical soundings data

    La Volpe, L.; Patella, D.; Rapisardi, L.; Tramacere, A.


    The activity of Monte Vulture started in the Middle Pleistocene; stratigraphic evidence suggests that the volcanic events may have occurred in the following succession: (1) formation of widespread pyroclastic pumice deposits; (2) sporadic and localized explosive and minor extrusive eruptions; (3) highly explosive eruptions with the formation of some tuff cones and of the oldest part of the Monte Vulture central volcano; and (4) activity at the central volcano, initially mainly explosive and successively increasingly effusive. The western part of the composite volcano, and probably also its summit part were affected by caldera collapses. The volcanic activity ended with hydromagmatic explosion, which formed two explosion craters. Monte Vulture was built up on the external units of the Southern Apennines at the western border of the foretrough. The upper part of the sedimentary substratum consists mainly of clayey formations of the Lagonegro and Sannitic units. Beneath these terrains radiolarites and cherty-limestones of the Lagonegro units outcrop west of Monte Vulture. Rocks of the Apulia carbonate platform were drilled east of the volcano. Deep dipole electrical soundings showed a resistant basement at a depth ranging from 0.2 km down to 4.3 km beneath Monte Vulture. Volcanological, geological and geoelectrical data allow us to hypothesize that: (a) the magma chamber could be located at the boundary between the rigid resistant basement and the overlying conductive plastic terrains; (b) the Apulia carbonate platform forms a structural high beneath the Monte Vulture; and (c) the overthrusting of the Lagonegro units on the Apulia platform may be located beneath the floors of the calderas of Monte Vulture.

  20. Probabilistic seismic hazard assessment in the Mt. Etna region (Italy): application to local volcano-tectonic earthquakes

    Azzaro, Raffaele; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; D'Amico, Salvatore; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Tuvè, Tiziana; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia


    Earthquakes are, by far, the most relevant source of hazard for the densely urbanised areas of Mt. Etna region. Local communities living in the eastern and southern flanks of the volcano continuously suffer social and economic losses due to the very high occurrence of damaging earthquakes, which produce intensities up to degree X EMS despite of low energy (M < 5.0). Seismic hazard in the Mt. Etna region is controlled by two distinct types of earthquakes, namely regional and local ...

  1. Geochemistry and Sr-Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite-melilitite volcano, central southern Italy

    Downes, H.; Kostoula, T.; Jones, A. P.; Beard, A. D.; Thirlwall, M. F.; Bodinier, J.-L.


    Spinel peridotite xenoliths found in the Monte Vulture carbonatite-melilitite volcano have been derived from the subcontinental lithospheric mantle beneath central southern Italy. Clinopyroxene-poor lherzolites and harzburgites are the most common rock types, with subordinate wehrlites and dunites. Small quantities of phlogopite and carbonate are present in a few samples. The peridotites record a large degree of partial melting and have experienced subsequent enrichment which has increased their LILE and LREE contents, but in most cases their HFSE contents are low. Despite being carried to the surface by a carbonatite-melilitite host, the whole-rock and clinopyroxene compositions of the xenoliths have a trace-element signature more closely resembling that of silicate-melt metasomatised mantle rather than carbonatite-metasomatised peridotites. 87Sr/86Sr and 143Nd/144Nd isotopic ratios for clinopyroxene from the Vulture peridotites are 0.7042-0.7058 and 0.51260-0.5131 respectively. They form a trend away from the depleted mantle to the composition of the host magmas, and show a significant enrichment in 87Sr/86Sr compared with most European mantle samples. The mantle beneath Monte Vulture has had a complex evolution - we propose that the lithosphere had already undergone extensive partial melting before being affected by metasomatism from a silicate melt which may have been subduction-related.

  2. Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy and its possible relationship with seismic activity

    P. Madonia


    Full Text Available On 11 August 2008 a paroxysmal eruption occurred at Santa Barbara mud volcano (MV, located close to Caltanissetta, one of the most densely populated cities of Sicily (Italy. An associated minor event took place on August 2009. Both the events caused severe damage to civil infrastructures located within a range of about 2 km from the eruptive vent. Geomorphological, geochemical, and seismological investigations were carried out for framing the events in the appropriate geodynamic context. Geomorphological surveys recognized, in the immediate surrounding of the main emission point, two different families of processes and landforms: (i ground deformations and (ii changes in morphology and number of the fluid emitting vents. These processes were associated to a wider network of fractures, seemingly generated by the shock wave produced by the gas blast that occurred at the main paroxysm. Geochemical characterization allowed an estimation of the source of the fluids, or at least their last standing, at about 3 km depth. Finally, the close time relationships observed between anomalous increments of seismic activity and the two main paroxysmal events accounted for a possible common trigger for both the phenomena, even with different timing due to the very different initial conditions and characteristics of the two processes, i.e. seismogenesis and gas overloading.

  3. Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements

    Revil, A.; Finizola, A.; Ricci, T.; Delcher, E.; Peltier, A.; Barde-Cabusson, S.; Avard, G.; Bailly, T.; Bennati, L.; Byrdina, S.; Colonge, J.; di Gangi, F.; Douillet, G.; Lupi, M.; Letort, J.; Tsang Hin Sun, E.


    To gain a better insight of the hydrogeology and the location of the main tectonic faults of Stromboli volcano in Italy, we collected electrical resistivity measurements, soil CO2 concentrations, temperature and self-potential measurements along two profiles. These two profiles started at the village of Ginostra in the southwest part of the island. The first profile (4.8 km in length) ended up at the village of Scari in the north east part of the volcano and the second one (3.5 km in length) at Forgia Vecchia beach, in the eastern part of the island. These data were used to provide insights regarding the position of shallow aquifers and the extension of the hydrothermal system. This large-scale study is complemented by two high-resolution studies, one at the Pizzo area (near the active vents) and one at Rina Grande where flank collapse areas can be observed. The Pizzo corresponds to one of the main degassing structure of the hydrothermal system. The main degassing area is localized along a higher permeability area corresponding to the head of the gliding plane of the Rina Grande sector collapse. We found that the self-potential data reveal the position of an aquifer above the villages of Scari and San Vincenzo. We provide an estimate of the depth of this aquifer from these data. The lateral extension of the hydrothermal system (resistivity ˜15-60 ohm m) is broader than anticipated extending in the direction of the villages of Scari and San Vincenzo (in agreement with temperature data recorded in shallow wells). The lateral extension of the hydrothermal system reaches the lower third of the Rina Grande sector collapse area in the eastern part of the island. The hydrothermal body in this area is blocked by an old collapse boundary. This position of the hydrothermal body is consistent with low values of the magnetization (<2.5 A m-1) from previously published work. The presence of the hydrothermal body below Rina Grande raises questions about the mechanical stability

  4. Interaction between ultrapotassic magmas and carbonate rocks: Evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy

    Peccerillo, Angelo; Federico, Marcella; Barbieri, Mario; Brilli, Mauro; Wu, Tsai-Wan


    Magma-carbonate rock interaction is investigated through a geochemical and Sr-Nd-O isotope study of granular lithic clasts ( ejecta) from the Alban Hills ultrapotassic volcano, Central Italy. Some samples (Group-1) basically represent intrusive equivalents of Alban Hills magmas. A few samples (Group-2) are ultramafic, have high MgO (˜30 to 40 wt%) and δ 18O‰, and originated by accumulation of mafic phases that crystallised from ultrapotassic melts during assimilation of dolomitic rocks. Group-3 ejecta consist of dominant K-feldspar, and show major element compositions similar to phonolites, which, however, are absent among the Alban Hills volcanics. Finally, another group (Group-4) contains corroded K-feldspars, surrounded by a microgranular to porphyritic matrix, made of igneous minerals (K-feldspar, foids, clinopyroxene, phlogopite) plus wollastonite, garnet, and some cuspidine. Group-4 ejecta are depleted in SiO 2 and enriched in CaO with respect to Group-3. The analysed ejecta have similar 143Nd/ 144Nd (0.51204-0.51217) as the Alban Hills lavas, whereas 87Sr/ 86Sr (0.70900-0.71067) is similar to lower. Whole rocks δ 18O‰ ranges from +7.0 to +13.2, reaching maximum values in ultramafic samples. A positive correlation with CaO is observed in single rock groups. Large Ion Lithophile Element (LILE) abundances and REE fractionation are generally high, and extreme values of Th, U and LREE are found in some Group-3 and Group-4 rocks. Mineralogical, petrological and geochemical data reveal extensive interaction between magma and carbonate wall rocks, involving both dolostones and limestones. These processes had dramatic effects on magma compositions, especially on phonolites, which were transformed to foidites. Evidence of such a process is found in Group-4 samples, in which K-feldspar is observed to react with a matrix that represents strongly undersaturated melts formed by interaction between silicate magma and carbonates. Trace element data also testify to a

  5. Geochemical insight into differences in the physical structures and dynamics of two adjacent maar lakes at Mt. Vulture volcano (southern Italy)

    Caracausi, A.; Nicolosi, M.; Nuccio, P. M.; Favara, R.; Paternoster, M.; Rosciglione, A.


    report on the first geochemical investigation of the Monticchio maar lakes (Mt. Vulture volcano, southern Italy) covering an annual cycle that aimed at understanding the characteristic features of the physical structures and dynamics of the two lakes. We provide the first detailed description of the lakes based on high-resolution conductivity-temperature-depth (CTD) profiles, chemical and isotopic (H and O) compositions of the water, and the amounts of dissolved gases (e.g., He, Ar, CH4, and CO2). The combined data set reveals that the two lakes, which are separated by less than 200 m, exhibit different dynamics: one is a meromictic lake, where the waters are rich in biogenic and mantle-derived gases, while the other is a monomictic lake, which exhibits complete turnover of the water in winter and the release of dissolved gases. Our data strongly suggest that the differences in the dynamics of the two lakes are due to different density profiles affected by dissolved solutes, mainly Fe, which is strongly enriched in the deep water of the meromictic lake. A conceptual model of water balance was constructed based on the correlation between the chemical composition of the water and the hydrogen isotopic signature. Gas-rich groundwaters that feed both of the lakes and evaporation processes subsequently modify the water chemistry of the lakes. Our data highlight that no further potential hazardous accumulation of lethal gases is expected at the Monticchio lakes. Nevertheless, geochemical monitoring is needed to prevent the possibility of vigorous gas releases that have previously occurred in historical time.

  6. Volcano Preparedness

    ... Home › Get Help › Types of Emergencies › Volcano Preparedness Volcano Preparedness About About Volcano Explosive volcanoes blast hot solid and molten rock ... into action. Prepare How to Prepare for a Volcano Emergency Learn about your community warning systems and ...

  7. Silicate-carbonate-salt liquid immiscibility and origin of the sodalite-haüyne rocks: study of melt inclusions in olivine foidite from Vulture volcano, S. Italy

    Panina, Liya; Stoppa, Francesco


    Melt inclusions in clinopyroxenes of olivine foidite bombs from Serra di Constantinopoli pyroclastic flows of the Vulture volcano (Southern Italy) were studied in detail. The rocks contain abundant zoned phenocrysts and xenocrysts of clinopyroxene, scarce grains of olivine, leucite, haüyne, glass with microlites of plagioclase and K-feldspar. The composition of clinopyroxene in xenocrysts (Cpx I), cores (Cpx II), and in rims (Cpx III) of phenocrysts differs in the content of Mg, Fe, Ti, and Al. All clinopyroxenes contain two types of primary inclusion-pure silicate and of silicate-carbonate-salt composition. This fact suggests that the phenomena of silicate-carbonate immiscibility took place prior to crystallization of clinopyroxene. Homogenization of pure silicate inclusions proceeded at 1 225 - 1 190°C. The composition of conserved melts corresponded to that of olivine foidite in Cpx I, to tephrite-phonolite in Cpx II, and phonolite-nepheline trachyte in Cpx III. The amount of water in them was no more than 0.9 wt.%. Silicate-carbonate inclusions decrepitated on heating. Salt globules contained salts of alkali-sulphate, alkali-carbonate, and Ca-carbonate composition somewhat enriched in Ba and Sr. This composition is typical of carbonatite melts when decomposed into immiscible fractions. The formation of sodalite-haüyne rocks from Vulture is related to the presence of carbonate-salt melts in magma chamber. The melts conserved in clinopyroxenes were enriched in incompatible elements, especially in Cpx III. High ratios of La, Nb, and Ta in melts on crystallization of Cpx I and Cpx II suggest the influence of a carbonatite melt as carbonatites have extremely high La/Nb and Nb/Ta and this is confirmed by the appearance of carbonatite melts in magma chamber. Some anomalies in the concentrations and relatives values of Eu and especially Ga seems typical of Italian carbonatite related melts. The mantle source for initial melts was, most likely, rather uniform

  8. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy

    Conticelli, Sandro; Marchionni, Sara; Rosa, Davide; Giordano, Guido; Boari, Elena; Avanzinelli, Riccardo


    The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr-Nd-Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788-18.851 for 206Pb/204Pb, 15.685-15.701 for 207Pb/204Pb, and 39.048-39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc

  9. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: Geochemical and Sr isotope evidence

    Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.


    New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma

  10. Motivations for muon radiography of active volcanoes

    Muon radiography represents an innovative tool for investigating the interior of active volcanoes. This method integrates the conventional geophysical techniques and provides an Independent way to estimate the density of the volcano structure and reveal the presence of magma conduits. The experience from the pioneer experiments performed at Mt. Asama, Mt. West Iwate, and Showa-Shinzan (Japan) are very encouraging. Muon radiography could be applied, in principle, at any stratovolcano. Here we focus our attention on Vesuvius and Stromboli (Italy). (author)

  11. A functional-oriented assessment of environmental criticality due to anthropic actions along the hillslopes of the Somma-Vesuvio volcano (Naples, Italy).

    Romano, Nunzio; De Falco, Melania; Speranza, Giuseppe; Tarolli, Paolo


    Mediterranean environments are characterized by a climatic regime with a strong seasonal variability. More uniform precipitations usually occur during the winter season, whereas short and very intense rainfalls occur during the fall and early spring that, in turn, trigger surface runoff and severe soil erosion phenomena. When this typical seasonality interacts with a territory substantially altered by anthropic actions, conditions can easily arise for environmental imbalances with serious risks for flash floods and landslides. Many of the degradation dynamics recorded during the last decades in western countries are also the result of the socio-economic changes after the II world war which yielded land-use changes with the urban sprawl process and the increase in human settlements of the natural environments. We are also witnessing a change in the perception of the natural environment and the relevant values. This study benefits from the availability of historical maps and rainfall time series to analyze the profound landscape changes occurred during the last century along the hillsides of the Somma-Vesuvio volcano, in the renowned piedmont area located at east of Napoli city. We are specifically interested in the changes and disturbances made to the hydrographic network to evaluate the increasing potential risks for flood and landslides along these hillslopes characterized by the presence of highly vulnerable volcanic soils, the construction of roads, and other negative alterations of the natural overland flow patterns.

  12. Dante's volcano


    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  13. Dante's Volcano


    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  14. What Are Volcano Hazards?

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  15. 4D volcano gravimetry

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.


    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  16. Revealing magma degassing below closed-conduit active volcanoes: Geochemical features of volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy)

    Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.


    The elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions have been measured for rocks at various degrees of evolution and belonging to high-K calcalkaline-shoshonitic and shoshonitic-potassic series in order to cover the entire volcanological history of Vulcano Island (Italy). The major- and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the theoretical value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic history of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-erupted Vulcanello latites (Punta del Roveto), which have anomalously high He isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs, since an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He-isotope ratios between fluid inclusions and fumarolic gases shows that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that the most probable magma which actually feeds the fumarolic emissions is a latitic body that ponded at about 3-3.5 km of depth and is flushed by fluids coming from a deeper and basic magma.

  17. Spreading volcanoes

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.


    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  18. Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry

    Piochi, Monica; Mormone, Angela; Balassone, Giuseppina; Strauss, Harald; Troise, Claudia; De Natale, Giuseppe


    We investigated sulfur-bearing minerals from the Campi Flegrei caldera, southern Italy, in relation to the increase of hydrothermal activity phenomena since 2006, aimed at providing insights into the volcanic system dynamics. Mineral encrustations and muds were sampled between 2013 and 2015 at the long-standing degassing crater of the Solfatara tuff cone and its recently restless north-eastern Pisciarelli slope. Deep-seated sulfides were further separated from two drill cores (AGIP's Mofete boreholes: 1500 m and 2695 m depth). The mineral assemblage and texture of sampled encrustations were determined by X-ray diffraction, optical and scanning electron microscopy and X-ray microanalysis by energy dispersive spectrometry. Native sulfur and alunite dominate among the newly formed mineral phases. Other minerals are mostly alunogen, and locally pickeringite, potassium alum, hematite and pyrite. Mereiterite and amarillite sporadically occur. The mud pools are rich in gypsum, potassium alum and pyrite. Quartz and argillic phases, locally with analcime, are dispersed in the outcropping rocks. δ34S values were determined for shallow subsurface native sulfur (- 5.5 to 0.0‰) and alunite (- 1.7 to - 0.2‰), as well as for the deep-seated pyrite (3.3 to 7.4‰ in the depth range:1500-2695 m). δ18O values were measured for shallow native alunite (4.2 to 7.0‰). Pisciarelli alunite was finally analyzed for its 87Sr/86Sr ratio and 143Nd/144Nd ratios (0.707517 ± 6 and 0.512459 ± 6, respectively). Textural and isotopic data constrain the genesis of alunite at the expense of K-feldspars through rock alteration by hydrothermal fluids. We suggest that the caldera is a low-sulfidation system hosting acid-sulfate deposits in its active degassing area. The acid-sulfate environment developed on an argillitic facies that thins outwards and is characteristic for steam-heated and magmatic-steam environments. These environments developed in relation to the fractured settings that

  19. A scale for ranking volcanoes by risk

    Scandone, Roberto; Bartolini, Stefania; Martí, Joan


    We propose a simple volcanic risk coefficient (VRC) useful for comparing the degree of risk arising from different volcanoes, which may be used by civil protection agencies and volcano observatories to rapidly allocate limited resources even without a detailed knowledge of each volcano. Volcanic risk coefficient is given by the sum of the volcanic explosivity index (VEI) of the maximum expected eruption from the volcano, the logarithm of the eruption rate, and the logarithm of the population that may be affected by the maximum expected eruption. We show how to apply the method to rank the risk using as examples the volcanoes of Italy and in the Canary Islands. Moreover, we demonstrate that the maximum theoretical volcanic risk coefficient is 17 and pertains to the large caldera-forming volcanoes like Toba or Yellowstone that may affect the life of the entire planet. We develop also a simple plugin for a dedicated Quantum Geographic Information System (QGIS) software to graphically display the VRC of different volcanoes in a region.

  20. Venice, Italy


    Four hundred bridges cross the labyrinth of canals that form the 120 islands of Venice, situated in a saltwater lagoon between the mouths of the Po and Piave rivers in northeast Italy. All traffic in the city moves by boat. Venice is connected to the mainland, 4 kilometers (2.5 miles) away, by ferries as well as a causeway for road and rail traffic. The Grand Canal winds through the city for about 3 kilometers (about 2 miles), dividing it into two nearly equal sections. According to tradition, Venice was founded in 452, when the inhabitants of Aquileia, Padua, and several other northern Italian cities took refuge on the islands of the lagoon from the Teutonic tribes invading Italy at that time.This image was acquired on December 9, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA

  1. Mud Volcanoes Formation And Occurrence

    Guliyev, I. S.


    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  2. Mount Vesuvius, Italy


    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  3. Continuous in-situ Measurements of Gases (H2, H2S, CH4, N2, O2, Ar, He, and CO2) at the Fumarole "Soffionissimo" (Solfatara volcano, Southern Italy)

    Wiersberg, T.; Somma, R.; Rocco, A.; de Rosa, M.; Zimmer, M.; Quattrocchi, F.; de Natale, G.; de Natale, P.


    From November 29th to December 1st 2006, a gas monitoring experiment was carried out at the Solfatara volcano (Pozzuoli, Italy). The primary objectives were to prove that monitoring is possible with the experimental set-up described below, and to compare the new data obtained with those from earlier continuos gas monitoring carried out in November 2001. Temperature measurements and gas extraction were done at the fumarole "Soffionissimo" very close to the "Bocca Grande". The temperature measurements were performed with a temperature probe (K-type thermocouple), which was let about 30 cm into the fumarole. For better comparison of temperature and gas data, the gas tube was directly connected with the temperature probe. After having adjusted a continuous gas flow with a diaphragm pump and a needle valve, the gas was piped through a 10 m Teflon© tube for more than 40 hours. The gas phase primary consists of water gas, which was condensed in a trap, installed in a refrigerator. The amount of water in the trap was determined regulary every 3-4 hours. At the beginning of the monitoring experiment, the Teflon© tube was heated in order to avoid condensation of the water in the tube before getting trapped. Although the tube was not heated for the whole time of the experiment, it turns out that the amount of water, condensed in the water trap per hour, and does not significantly change when the tube was not heated. Hence, the amount of water, condensing in the tube before getting trapped, seems negligible. The remaining, almost water-free gas phase was finally dried over Fe wool in a filter, and then continuously analysed with a quadrupole mass spectrometer (Balzers Omnistar ©) for the following components: H2, H2S, CH4, N2, O2, Ar, He, and CO2. To make sure that the final drying process does not influence the gas composition in particular for H2 and H2S, a comparison measurement was done without the filter, which only revealed somewhat higher water content. During the

  4. Global Volcano Locations Database

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication....

  5. Spreading and collapse of big basaltic volcanoes

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael


    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  6. Muons reveal the interior of volcanoes

    Francesco Poppi


    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  7. A seismic survey at Colima volcano (Mexico)

    Del Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; La Rocca, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Galluzzo, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Petrosino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Cusano, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Bianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Breton, M.; Observatorio Vulcanologico de Colima – Università di Colima (Mexico); Orozco-Rojas, J.; Observatorio Vulcanologico de Colima – Università di Colima, (Mexico); Ibanez, J.; Instituto Andaluz de Geofisica - Universidad de Granada (Spain); Veneruso, M.; Centro Regionale di Competenza “Analisi e Monitoraggio del Rischio Ambientale” (AMRA)


    In the period 2-6 April 2007 a seismic survey was carried out at Solfatara Volcano, (Campi Flegrei, Southern Italy) with the aim of inferring the shallow structure and evaluating local site effects. Five circular seismic arrays equipped with 1-Hz 3-component Mark LE3Dlite sensors, were installed in the Solfatara crater. Each array consisted of 4 sensors, 3 of them evenly spaced (120°) around the circumference and the fourth placed at its center. The arrays were designed with radii of 5, 10...

  8. Fast and furious: crustal CO2 release at Merapi volcano, Indonesia

    Deegan, F. M.; Uppsala University; Troll, V. R.; Uppsala University; Freda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Misiti, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Chadwick, J.; Vrije Universiteit


    Volcanoes located over carbonate-rich sedimentary rocks often emit large volumes of CO2 and have strong records of explosive activity. Examples include Vesuvius and the Colli Albani volcanic field in Italy; Popocatepetl in Mexico; and Merapi in Indonesia, all of which display petrological and/or gas-chemical evidence for magma-carbonate interaction. Merapi is one of the most active volcanoes in Java (Fig. 1), and represents a serious hazard by being located less than ...

  9. 150 Years of Seismological Monitoring of Mount Vesuvius (Italy).

    Giudicepietro, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; D’Auria, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Scarpato, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Peluso, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Orazi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Ricciolino, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; De Cesare, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Lo Bascio, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Esposito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Borriello, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Capello, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Caputo, A.; Buonocunto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Vilardo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Martini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia


    Mt. Vesuvius (southern Italy) is one of the volcanoes with the greatest risk in the World because of its highly explosive eruptive style and its proximity to densely populated areas. The urbanization around Mt. Vesuvius began in ancient times and the impact of eruptions on human activities has been very hard...

  10. Reunion Island Volcano Erupts


    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  11. Eruption patterns of parasitic volcanoes

    Izumi Yokoyama


    Eruption patterns of parasitic volcanoes are discussed in order to study their correlation to the activities of their parental polygenetic volcanoes. The distribution density of parasitic vents on polygenetic volcanoes is diversified, probably corresponding to the age and structure of parental volcanoes. Describing existing parasitic cones contextually in relation to parental volcanoes is as indispensable as collecting observational data of their actual formations. In the present paper, spati...

  12. Italian active volcanoes

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi


    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  13. Shaking up volcanoes

    Prejean, Stephanie G.; Haney, Matthew M.


    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  14. Volcanoes - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  15. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  16. Volcanoes and the Environment

    Marti, Edited By Joan; Ernst, Gerald G. J.


    Volcanoes and the Environment is a comprehensive and accessible text incorporating contributions from some of the world's authorities in volcanology. This book is an indispensable guide for those interested in how volcanism affects our planet's environment. It spans a wide variety of topics from geology to climatology and ecology; it also considers the economic and social impacts of volcanic activity on humans. Topics covered include how volcanoes shape the environment, their effect on the geological cycle, atmosphere and climate, impacts on health of living on active volcanoes, volcanism and early life, effects of eruptions on plant and animal life, large eruptions and mass extinctions, and the impact of volcanic disasters on the economy. This book is intended for students and researchers interested in environmental change from the fields of earth and environmental science, geography, ecology and social science. It will also interest policy makers and professionals working on natural hazards. An all-inclusive text that goes beyond the geological working of volcanoes to consider their environmental and sociological impacts Each chapter is written by one of the world's leading authorities on the subject Accessible to students and researchers from a wide variety of backgrounds

  17. Anatomy of a volcano

    Wassink, J.


    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  18. Catalogue of Icelandic Volcanoes

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun


    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  19. The diversity of mud volcanoes in the landscape of Azerbaijan

    Rashidov, Tofig


    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  20. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Tsiapas, Elias


    going to be, when we know the record of specific earthquakes and the routes they have followed towards the East. For example, to foresee an earthquake in the Mediterranean region, we take starting point earthquakes to Latin America (0°-40°).The aforementioned elements will reach Italy in an average time period of 49 days and Greece in 53 days. The most reliable preceding phenomenon to determine the epicenter of an earthquake is the rise of the crust's temperature at the area where a large quantity of elements is concentrated, among other phenomena that can be detected either by instruments or by our senses. When there is an active volcano along the route between the area where the "starting-point" earthquake occurred and the area where we expect the same elements to cause a new earthquake, it is possible these elements will escape through the volcano's crater, carrying lava with them. We could contribute to that end, nullifying earthquakes that might be triggered by these elements further to the east, by using manmade resources, like adequate quantities of explosives at the right moment.

  1. Earthquakes - Volcanoes (Causes - Forecast - Counteraction)

    Tsiapas, Elias


    going to be, when we know the record of specific earthquakes and the routes they have followed towards the East. For example, to foresee an earthquake in the Mediterranean region, we take starting point earthquakes to Latin America (0°-40°).The aforementioned elements will reach Italy in an average time period of 49 days and Greece in 53 days. The most reliable preceding phenomenon to determine the epicenter of an earthquake is the rise of the crust's temperature at the area where a large quantity of elements is concentrated, among other phenomena that can be detected either by instruments or by our senses. When there is an active volcano along the route between the area where the "starting-point" earthquake occurred and the area where we expect the same elements to cause a new earthquake, it is possible these elements will escape through the volcano's crater, carrying lava with them. We could contribute to that end, nullifying earthquakes that might be triggered by these elements further to the east, by using manmade resources, like adequate quantities of explosives at the right moment.

  2. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.


    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  3. Italy: An Open Air Museum

    Pizzorusso, Ann


    Imagine if you could see the River Styx, bathe in the Fountain of Youth, collect water which enhances fertility, wear a gem that heals bodily ailments, understand how our health is affected by geomagnetic fields, venture close to the flames of Hell on Earth and much, much, more. Know something? These things exist - on Earth - today - in Italy and you can visit them because Italy is an open air museum. Ann C. Pizzorusso, in her recent book, reveals how Italy's geology has affected its art, literature, architecture, religion, medicine and just about everything else. She explores the geologic birth of the land, describing the formation of the Alps and Apennines, romantic bays of Tuscany and Lazio, volcanoes of the south and Caribbean-like beaches of Puglia. But that's not all, from the first pages of this visually stunning book, the reader has the impression of being in an art museum, where one can wander from page to page to satisfy one's curiosity-- guided from time to time by the Etruscan priests, Virgil, Dante, Goethe or Leonardo da Vinci himself. Pizzorusso stitches together widely diverse topics - such as gemology, folk remedies, grottoes, painting, literature, physics and religion - using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. Wonderfully illustrated with many photos licensed from Italian museums, HRH Elizabeth II and the Ministero Beni Culturali the book highlights the best works in Italian museums and those outside in the "open air museums." This approach can be used in any other country in the world and can be used for cultural tourism (a tour following the book has been organized for cultural and university groups), an ideal way of linking museums to the surrounding landscape.

  4. Expert Systems for Real-Time Volcano Monitoring

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.


    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the

  5. GlobVolcano pre-operational services for global monitoring active volcanoes

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.


    ), Stromboli and Volcano (Italy), Hilo (Hawai), Mt. St. Helens (United States), CTM (Coherent Target Monitoring): Cumbre Vieja (La Palma) To generate products either Envisat ASAR, Radarsat 1or ALOS PALSAR data have been used. Surface Thermal Anomalies Volcanic hot-spots detection, radiant flux and effusion rate (where applicable) calculation of high temperature surface thermal anomalies such as active lava flow, strombolian activity, lava dome, pyroclastic flow and lava lake can be performed through MODIS (Terra / Aqua) MIR and TIR channels, or ASTER (Terra), HRVIR/HRGT (SPOT4/5) and Landsat family SWIR channels analysis. ASTER and Landsat TIR channels allow relative radiant flux calculation of low temperature anomalies such as lava and pyroclastic flow cooling, crater lake and low temperature fumarolic fields. MODIS, ASTER and SPOT data are processed to detect and measure the following volcanic surface phenomena: Effusive activity Piton de la Fournaise (Reunion Island); Mt Etna (Italy). Lava dome growths, collapses and related pyroclastic flows Soufrière Hills (Montserrat); Arenal - (Costa Rica). Permanent crater lake and ephemeral lava lake Karthala (Comores Islands). Strombolian activity Stromboli (Italy). Low temperature fumarolic fields Nisyros (Greece), Vulcano (Italy), Mauna Loa (Hawaii). Volcanic Emission The Volcanic Emission Service is provided to the users by a link to GSE-PROMOTE - Support to Aviation Control Service (SACS). The aim of the service is to deliver in near-real-time data derived from satellite measurements regarding SO2 emissions (SO2 vertical column density - Dobson Unit [DU]) possibly related to volcanic eruptions and to track the ash injected into the atmosphere during a volcanic eruption. SO2 measurements are derived from different satellite instruments, such as SCIAMACHY, OMI and GOME-2. The tracking of volcanic ash is accomplished by using SEVIRI-MSG data and, in particular, the following channels VIS 0.6 and IR 3.9, and along with IR8.7, IR 10

  6. Volcanoes and climate

    Toon, O. B.


    The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between volcanoes and climate, a good theoretical understanding exists. The magnitude of the climatic changes anticipated following volcanic explosions agrees well with the observations. Volcanoes affect climate because volcanic particles in the atmosphere upset the balance between solar energy absorbed by the Earth and infrared energy emitted by the Earth. These interactions can be observed. The most important ejecta from volcanoes is not volcanic ash but sulfur dioxide which converts into sulfuric acid droplets in the stratosphere. For an eruption with its explosive magnitude, Mount St. Helens injected surprisingly little sulfur into the stratosphere. The amount of sulfuric acid formed is much smaller than that observed following significant eruptions and is too small to create major climatic shifts. However, the Mount St. Helens eruption has provided an opportunity to measure many properties of volcanic debris not previously measured and has therefore been of significant value in improving our knowledge of the relations between volcanic activity and climate.

  7. Pairing the Volcano

    Ionica, Sorina


    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  8. Vocational Training in Italy.

    European Centre for the Development of Vocational Training, Berlin (West Germany).

    This document on vocational training in Italy contains eight chapters. Chapter 1 describes the population of Italy. Chapter 2 describes the Italian economy through the agricultural, industrial, and service sectors. Chapter 3 describes education and vocational training in Italy, including regional agricultural and nonagricultural vocational…

  9. Volcanoes, Central Java, Indonesia


    The island of Java (8.0S, 112.0E), perhaps better than any other, illustrates the volcanic origin of Pacific Island groups. Seen in this single view are at least a dozen once active volcano craters. Alignment of the craters even defines the linear fault line of Java as well as the other some 1500 islands of the Indonesian Archipelago. Deep blue water of the Indian Ocean to the south contrasts to the sediment laden waters of the Java Sea to the north.

  10. The Agro Pontino region, refuge after the Early Bronze Age Avellino eruption of Mount Vesuvius, Italy?

    C. Bakels; J. Sevink; W. Kuijper; H. Kamermans


    In recent years it was discovered that the Middle to Late Holocene infi ll of the Agro Pontino graben (Central Italy) held a tephra layer originating from the Avellino eruption of the Vesuvius volcano. The eruption is dated to 1995 ± 10 calBC and took therefore place during the Early Bronze Age. Thi

  11. On the origin of Mount Etna eruptive cycles and Stromboli volcano paroxysms: implications for an alternative mechanism of volcanic eruption

    Nechayev, Andrei


    New mechanism of imbalance between magma column and fluid volume, accumulated in the magmatic system, is considered as a driving force of the volcanic eruption. Conditions of eruption based on this mechanism are used to explain main features of the volcanic activity (eruptive cycles and paroxysms) of the volcanoes Etna and Stromboli (Italy).

  12. Elementary analysis of data from Tianchi Volcano

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan


    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  13. Terrestrial Real-Time Volcano Monitoring

    Franke, M.


    well as, system hardening backup centers. Moreover, Antelope, as typical middleware, allows the scientist and software developer to focus on the specific purpose of their application by providing well defined input/output interfaces. This will spur the development of original and inventive real-time processing schemes in the realm of volcano monitoring. Whatever the underlying data and information engine is, it is only as good as the frontend. Such a frontend has to accommodate the dual purpose of putting data and information in a form that is conducive for scientist and the emergency responder. Current projects in Italy and Abu Dhabi with multiple display centers gave us insights into how difficult it is to develop a multipurpose situation room. Currently, we are experimenting with sophisticated emergency management software that ties strong-motion measurement, structural behavior, and loss estimation to a situation-driven response plan. Although different in content and timeline, this can be adapted for developing volcano eruptions. A final word on remote sensing data, e.g. infrared imaging from an airplane: If the data can be streamed, there is a way to time tag them and include them in the broader real-time process. At least, batch processing should be considered in order to improve the overall information status pre- or post-event.

  14. Continuous gravity observations at active volcanoes through superconducting gravimeters

    Carbone, Daniele; Greco, Filippo


    Continuous gravity measurements at active volcanoes are usually taken through spring gravimeters that are easily portable and do not require much power to work. However, intrinsic limitations dictate that, when used in continuous, these instruments do not provide high-quality data over periods longer than some days. Superconducting gravimeters (SG), that feature a superconducting sphere in a magnetic field as the proof mass, provide better-quality data than spring gravimeters, but are bigger and need mains electricity to work, implying that they cannot be installed close to the active structures of high volcanoes. An iGrav SG was installed on Mt. Etna (Italy) in September 2014 and has worked almost continuously since then. It was installed about 6km from the active craters in the summit zone of the volcano. Such distance is normally too much to observe gravity changes due to relatively fast (minutes to days) volcanic processes. Indeed, mass redistributions in the shallowest part of the plumbing system induce short-wavelength gravity anomalies, centered below the summit craters. Nevertheless, thanks to the high precision and long-term stability of SGs, it was possible to observe low-amplitude changes over a wide range of timescales (minutes to months), likely driven by volcanic activity. Plans are in place for the implementation of a mini-array of SGs at Etna.

  15. Volcanoes in Eruption - Set 1

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or...

  16. USGS Volcano Notification Service (VNS)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  17. Volcanoes in Eruption - Set 2

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or...


    T. M. Manevich


    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  19. Active volcanoes observed through Art: the contribution offered by the social networks

    Neri, Marco; Neri, Emilia


    Volcanoes have always fascinated people for the wild beauty of their landscapes and also for the fear that they arouse with their eruptive actions, sometimes simply spectacular, but other times terrifying and catastrophic for human activities. In the past, volcanoes were sometimes imagined as a metaphysical gateway to the otherworld; they have inspired the creation of myths and legends ever since three thousand years ago, also represented by paintings of great artistic impact. Modern technology today offers very sophisticated and readily accessed digital tools, and volcanoes continue to be frequently photographed and highly appreciated natural phenomena. Moreover, in recent years, the spread of social networks (Facebook, Twitter, YouTube, Instagram, etc.) have made the widespread dissemination of graphic contributions even easier. The result is that very active and densely inhabited volcanoes such as Etna, Vesuvius and Aeolian Islands, in Italy, have become among the most photographed subjects in the world, providing a popular science tool with formidable influence and usefulness. The beauty of these landscapes have inspired both professional artists and photographers, as well as amateurs, who compete in the social networks for the publication of the most spectacular, artistic or simply most informative images. The end result of this often frantic popular scientific activity is at least two-fold: on one hand, it provides geoscientists and science communicators a quantity of documentation that is almost impossible to acquire through the normal systems of volcano monitoring, while on the other it raises awareness and respect for the land among the civil community.

  20. Holocene lahar history of Villarrica Volcano

    Llurba Ruiz, Mateu


    Villarrica Volcano is one of the most active volcanoes in south-central Chile. There are many hazards related to the volcano, but its main hazard for humans through Villarrica’s history have been the lahars. Since the arrival of the Spanish colonists (1550) to the towns beside the volcano, it have been reported hundreds to thousands of casualties and the towns were repeatedly destroyed by lahars. From the necessity to understand its behaviour for future events and reconstr...

  1. Volcanoes and global catastrophes

    Simkin, Tom


    The search for a single explanation for global mass extinctions has let to polarization and the controversies that are often fueled by widespread media attention. The historic record shows a roughly linear log-log relation between the frequency of explosive volcanic eruptions and the volume of their products. Eruptions such as Mt. St. Helens 1980 produce on the order of 1 cu km of tephra, destroying life over areas in the 10 to 100 sq km range, and take place, on the average, once or twice a decade. Eruptions producing 10 cu km take place several times a century and, like Krakatau 1883, destroy life over 100 to 1000 sq km areas while producing clear global atmospheric effects. Eruptions producting 10,000 cu km are known from the Quaternary record, and extrapolation from the historic record suggests that they occur perhaps once in 20,000 years, but none has occurred in historic time and little is known of their biologic effects. Even larger eruptions must also exist in the geologic record, but documentation of their volume becomes increasingly difficult as their age increases. The conclusion is inescapable that prehistoric eruptions have produced catastrophes on a global scale: only the magnitude of the associated mortality is in question. Differentiation of large magma chambers is on a time scale of thousands to millions of years, and explosive volcanoes are clearly concentrated in narrow belts near converging plate margins. Volcanism cannot be dismissed as a producer of global catastrophes. Its role in major extinctions is likely to be at least contributory and may well be large. More attention should be paid to global effects of the many huge eruptions in the geologic record that dwarf those known in historic time.

  2. Field Geothermal Volcano Azufral (CO)

    The field geothermal Volcano Azufral is located to 60 km of Pasto City. It discharges waters chlorine-bicarbonates, diluted and of neuter pH. The riolitics of low k20, andesites, dacites as well as lava flows, hydro volcanic deposits due to events volcanic past and the influence of calcium like main component in the layer stamp are the main ones characteristic geologic of the volcanic area of Azufral. The layer stamp heats waters of the underground and it reacts until producing bicarbonates waters, more common type in the region. Glasses of sulfur toward the crater of the volcano are presented close to a sour lagoon. Thermal activity has been detected toward the southwest of the volcano with an area of covering of 1.47 there are, approximately. Changes in the last 14 years were determined by comparison of last chemical analysis with those obtained by INEA in 1996

  3. Systematic radon survey over active volcanoes

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate

  4. Systematic radon survey over active volcanoes

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)


    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  5. Multiphase modelling of mud volcanoes

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.


    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  6. Italy; Selected Issues

    International Monetary Fund


    This Selected Issues paper presents Italy’s economic growth through innovation and reforms. It highlights that Italy’s future competitiveness depends on the institutional and macroeconomic conditions that allow productive firms to innovate, expand, and attract inward foreign direct investment (FDI) that in turn will require the successful implementation of the authorities’ full structural- and institutional-reform agenda. The IMF report focuses on the enforcement of civil and commercial...

  7. Modernizing Italy's Bankruptcy Law

    Vietti, Michele


    Reforming bankruptcy laws is difficult for many reasons. First of all, attitudes in Italy toward bankruptcy make it a difficult subject to generate support for. Secondly, bankruptcy reforms are complex and lengthy. They require changes not only to the bankruptcy law but also to other important parts of the legal framework, such as the codes of civil procedures and, in the case of Italy, the ...

  8. Volcanoes: effusions and explosions. Interactive exhibits to understand how volcanoes work.

    Nostro, C.; Freda, L.; Castellano, C.; Arcoraci, L.; Baroux, E.


    The Educational & Outreach Group (EOG) of the Istituto Nazionale di Geofisica & Vulcanologia created a portable museum to provide educational opportunities in volcanology, volcanic risk and Earth science for students and visitors. The EOG developed this project for the "Festival della Scienza", organized in Genoa, Italy, in October - November, 2007, which was a parade of over 200 events, including scientific and technological exhibitions, workshops, meetings, lectures, books and video presentations. In this museum visitors can successively see many posters and movies and play with interactive exhibits. A little 3D-movie shows the Big Bang, the formation of Solar System and, in particular the formation of the Earth. Many interactive exhibits illustrate why, where and when earthquakes and volcanic eruptions occur around the world and allow to introduce the visitor to the plate tectonics theory. A 3D magnetic plate tectonic puzzle can be put down and reconstructed by visitors to understand the Earth's surface configuration. Then two other 3D Earth models show what drives the plates and the inner Earth structure. An interactive program illustrates where and when earthquakes and volcanic eruptions occur in accelerated time on maps of various areas around the world. Playing with a block diagram it is possible to produce an earthquake along a 1 meter long strike slip fault in a destroying all the man-made constructions close to it. A little movie introduces to volcanoes' world. Two small interactive exhibits allow visitors to understand the mechanism for the explosive and the effusive eruptions. Two other exciting interactive exhibits allow visitors to "create" two different eruptions: the explosive and the effusive ones. It is possible to get inside a volcano (a 2 meter high interactive exhibit) to attend an eruption from the magmatic chamber to the Earth surface. A big hall is completed dedicated to Italian volcanoes (Vesuvio, Campi Flegrei, Etna, Stromboli, Vulcano

  9. Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution

    Melis, M. T.; F. Mundula; DessÌ, F.; Cioni, R; Funedda, A.


    Unequivocal delimitation of landforms is an important issue for different purposes, from science-driven morphometric analysis to legal issues related to land conservation. This study is aimed at giving a new contribution to the morphometric approach for the delineation of the boundaries of volcanic edifices, applied to 13 monogenetic volcanoes (scoria cones) related to the Pliocene–Pleistocene volcanic cycle in Sardinia (Italy). External boundary delimitation of the edifices...

  10. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  11. Seismic and gravity signature of the Ischia Island Caldera (Italy)

    Capuano, P.; de Matteis, R.; Russo, G.


    The Campania (Italy) coasts are characterized by the presence of several volcanoes. The island of Ischia, located at the northwestern end of the Gulf of Naples, belongs to the Neapolitan Volcanic District together with Phlegrean Fields and Vesuvius, having all these Pleistocene volcanoes erupted in historical times, and it is characterized by diffuse hydrothermal phenomena The island represents the emergent part of a more extensive volcanic area developed mainly westward of the island, with underwater volcanoes aligned along regional fault patterns. The activity of Ischia volcano is testified by the occurrence of eruptions in historical times, the presence of intense hydrothermal phenomena, and by seismic activity (e.g. the 1883 Casamicciola earthquake). Ischia is populated by about 50,000 inhabitants increasing, mainly in the summer, due to thriving tourism business, partially due to its active volcanic state. Hazard assessment at active, densely populated volcanoes is critically based on knowledge of the volcanoes past behavior and the definition of its present state. As a contribution to the definition of the present state of the Ischia island volcano, we obtain a model of the shallow crust using geophysical observables through seismic tomography and 3D gravity inversion. In particular we use travel times collected during the Serapis experiment on the island and its surroundings and free air anomaly. A new 3D gravity inversion procedure has been developed to take better into account the shape and the effects of topography approximating it by a triangular mesh. Below each triangle, a sequence of triangular prisms is built, the uppermost prism having the upper face coincident with the triangle following the topography. The inversion is performed searching for a regularized solution using the minimum norm stabilizer. The main results inferable from the 3D seismic and gravity images are the definition of the caldera rims hypothesize by many authors along the

  12. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  13. Geophysical monitoring from seafloor observatories in Italian volcanic sites: Marsili Seamount, Etna Volcano and Stromboli Island.

    Giovanetti, Gabriele; Monna, Stephen; Lo Bue, Nadia; Embriaco, Davide; Frugoni, Francesco; Marinaro, Giuditta; De Caro, Mariagrazia; Sgroi, Tiziana; Montuori, Caterina; De Santis, Angelo; Cianchini, Gianfranco; Favali, Paolo; Beranzoli, Laura


    Many volcanoes on Earth are located within or near the oceans and observations from the seafloor can be very important for a more complete understanding of the structure and nature of these volcanoes. We present some results obtained from data acquired in volcanic sites in the Central Mediterranean Sea. Data were taken by means of stand-alone free-fall systems, and fixed-point ocean observatories, both cabled and autonomous, some of which are part of the European research infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, EMSO observatories strongly rely on a multidisciplinary approach, in spite of the many technical challenges that the operation of very different sensors by means of a single acquisition system presents. We focus on three volcanic sites near the coasts of Italy (Marsili seamount, Stromboli Island and Etna Volcano) involved in subduction processes and to the opening of the Central Mediterranean basin. Through multidisciplinary analysis we were able to associate geophysical and oceanographic signals to a common volcanic source in a more reliable way with respect to single sensor analysis, showing the potential of long-term seafloor monitoring in unravelling otherwise still obscure aspects of such volcanoes. The very strong expansion of seafloor monitoring, which is taking place both in the quantity of the infrastructures and in the technological capabilities, suggests that there will be important developments in the near future.

  14. Earthquakes - Volcanoes (Causes and Forecast)

    Tsiapas, E.


    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  15. Monitoring volcanoes using seismic noise correlations

    Brenguier, Florent; Clarke, Daniel; Aoki, Yosuke; Shapiro, Nikolai M.; Campillo, Michel; Ferrazzini, Valérie


    In this article, we summarize some recent results of measurements of temporal changes of active volcanoes using seismic noise cross-correlations. We first present a novel approach to estimate volcano interior temporal seismic velocity changes. The proposed method allows to measure very small velocity changes (≈ 0.1%) with a time resolution as small as one day. The application of that method to Piton de la Fournaise Volcano (La Réunion Island) shows velocity decreases preceding eruptions. More...

  16. Modeling of Gravity Changes on Merapi Volcano

    Setiawan, Ari


    Merapi volcano, located in Central Java, is one of the most active volcanoes in Indonesia. 2 million people are living in its immediate neighborhood. Therefore Merapi was selected within the International Decade of Natural Disaster Reduction (IDNDR) of UNESCO as one of 15 so called high risk volcanoes in the world. National and International research groups from Indonesia, France, Netherlands, Japan, USA and Germany are working on Merapi. Different methods are applied on Merapi to study the v...

  17. Italy. [CME Country Reports].

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    Ever since 1946, increased emigration in Italy has been paralleled by a slow but steady increase in educational activity. In 1971, Law No. 153 was adopted which provides for special educational arrangements to be made for migrant workers and their spouses adopted by the Italian Government are based on the need for Italian children to: (1) be…

  18. Personal Identity in Italy

    Crocetti, Elisabetta; Rabaglietti, Emanuela; Sica, Luigia Simona


    This chapter discusses specifics of identity formation in Italian adolescents and emerging adults. We review consistent evidence illustrating that, in Italy, a progressive deferral of transition to adulthood strongly impacts youth identity development by stimulating identity exploration and postponement of identity commitments. We also consider…

  19. Canine Leishmaniasis, Italy

    Ferroglio, Ezio; Maroli, Michele; Gastaldo, Silvia; Mignone, Walter; Rossi, Luca


    We report the results of a survey to determine the prevalence of canine leishmaniasis and the presence of sand flies in northwestern Italy, where autochthonous foci of canine leishmaniasis have not been reported. Active foci of canine leishmaniasis were identified, which suggests that the disease is now also endemic in continental climate areas.

  20. Wine tourism in Italy

    Cinelli Colombini D


    Full Text Available Donatella Cinelli Colombini Orcia Doc Wine Consortium, Rocca d’Orcia , Italy Abstract: This text includes the history of wine tourism in Italy since 1993, when the first edition of the event “Cantine Aperte” (Open Cellars, Wine Day, took place. The movement grew from the initial 25 wineries to the 21,000 that participate today in opening their doors to the public, while visitors grew in numbers from a couple of hundred, 20 years ago, to the current 4 to 6 million. Wine tourists can be divided into four main groups: wine tourists by chance, classic wine tourists, talent scouts, and lovers of luxury. Each group is examined according to its consumption, its conduct, and its expectations. Wine tourism in Italy boasts around 170 territorial networks: “Strade del Vino” (wine routes regulated by law. After an initial pioneer phase during which preexisting wineries adapted to the growing number of tourists, modern-day wineries were created with bespoke areas for the welcoming of visitors. Wineries in Italy can be classified into the following main types: “functional wineries” that concentrate on productive efficiency; “cathedrals” – renovated historic buildings or modern “starchitecture” designs in which esthetics play an important role; wineries with a “strong identity” linked to the owner or wine producer with the special imprint of his or her personal wine making passion. Other features of Italian wine territories such as food and wellness centers not to speak of the ever present cultural heritage also play a part in attracting wine tourists. Lastly, an evaluation is made of business and communication aspects with a specific reference to the use of the web. Keywords: wine tourism, Italian wineries, winery tours, wine roads of Italy

  1. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.


    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model ( We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  2. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    ZHANG Xuexia; BO Liqun; LU Xingchang


    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  3. Smithsonian Volcano Data on Google Earth

    Venzke, E.; Siebert, L.; Luhr, J. F.


    Interactive global satellite imagery datasets such as hosted by Google Earth provide a dynamic platform for educational outreach in the Earth Sciences. Users with widely varied backgrounds can easily view geologic features on a global-to-local scale, giving access to educational background on individual geologic features or events such as volcanoes and earthquakes. The Smithsonian Institution's Global Volcanism Program (GVP) volcano data became available as a Google Earth layer on 11 June 2006. Locations for about 1550 volcanoes with known or possible Holocene activity are shown as red triangles with associated volcano names that appear when zooming in to a regional-scale view. Clicking on a triangle opens an informational balloon that displays a photo, geographic data, and a brief paragraph summarizing the volcano's geologic history. The balloon contains links to a larger version of the photo with credits and a caption and to more detailed information on the volcano, including eruption chronologies, from the GVP website. Links to USGS and international volcano observatories or other websites focusing on regional volcanoes are also provided, giving the user ready access to a broad spectrum of volcano data. Updates to the GVP volcano layer will be provided to Google Earth. A downloadable file with the volcanoes organized regionally is also available directly from the GVP website ( and provides the most current volcano data set. Limitations of the implied accuracy of spacially plotted data at high zoom levels are also apparent using platforms such as Google Earth. Real and apparent mismatches between plotted locations and the summits of some volcanoes seen in Google Earth satellite imagery occur for reasons including data precision (deg/min vs. deg/min/sec) and the GVP convention of plotting the center-point of large volcanic fields, which often do not correspond to specific volcanic vents. A more fundamental problem originates from the fact that

  4. K-Ar ages of the Hiruzen volcano group and the Daisen volcano

    Seventeen volcanic rocks of the Hiruzen volcano group and the Daisen volcano, in southwest Japan, were dated by the K-Ar method to clarify the age of volcanic activity in this region and the evolution of these composite volcanoes. The eruption ages of the Hiruzen volcano group were revealed to be about 0.9 Ma to 0.5 Ma, those of the Daisen volcano to be about 1 Ma to very recent. These results are consistent with geological and paleomagnetic data of previous workers. Effusion of lavas in the area was especially vigorous at 0.5+-0.1 Ma. It was generally considered that the Hiruzen volcano group had erupted during latest Pliocene to early Quaternary and it is older than the Daisen volcano, mainly from their topographic features. However, their overlapping eruption ages and petrographical similarities of the lavas of the Hiruzen volcano group and the Daisen volcano suggest that they may be included in the Daisen volcano in a broad sense. The aphyric andesite, whose eruption age had been correlated to Wakurayama andesite (6.34+-0.19 Ma) in Matsue city and thought to be the basement of the Daisen volcano, was dated to be 0.46+-0.04 Ma. It indicates that petrographically similar aphyric andesite erupted sporadically at different time and space in the San'in district. (author)

  5. Cost containment: Europe. Italy.

    Apolone, G; Melotti, R; Repetto, F; Iapichino, G


    Through prepaid compulsory insurance managed by the central government, Italy's National Health Service (NHS) provides full coverage, free accessibility, and no or limited copayment by individuals when receiving health services. Although Italy spends less than other countries on health care (product), the present NHS faces considerable difficulties, and its performance regarding quality, outcome, and spending has come under question. ICUs account for mix, and outcomes when compared with data from other countries. Important changes in the financial and institutional framework of the NHS are underway, yielding an unpredictable scenario for the future. Innovations focus mostly on cost containment and quality initiatives. These innovations will likely produce a new health service in which regions will have a more important role than in the past. Actions planned in a large Italian region by the local government are used as an example to explain the potential impact of this new trend on critical care medicine. PMID:8087596

  6. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    Grasso, J R


    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  7. Restructuring in SMEs: Italy

    Salvatore, Lidia


    Based on information derived from 85 case studies across all EU Member States and other sources, the project outlines the features peculiar to SMEs in their anticipation and management of restructuring, explores the main drivers of change and analyses the factors influencing successful restructuring. It offers some insight into how restructuring impacts on workers and the company itself and sets out several policy pointers for future action. This is the country report for Italy.

  8. Age Discrimination in Italy

    Olga Rymkevitch; Claudia Villosio


    The Framework Directive on Equal Treatment in Employment and Occupation (2000/78/EC) included age as one of its prohibited grounds of discrimination. Member States were required to transpose this Directive by December 2003. In Italy age discrimination was explicitly regulated by means of Legislative Decree no. 216, 9 July 2003. The Decree introduced the new specific prohibition of discrimination, defining its application, exceptions and remedies. The purpose of this paper is to explore, in a ...

  9. Group Psychotherapy in Italy.

    Giannone, Francesca; Giordano, Cecilia; Di Blasi, Maria


    This article describes the history and the prevailing orientations of group psychotherapy in Italy (psychoanalytically oriented, psychodrama, CBT groups) and particularly group analysis. Provided free of charge by the Italian health system, group psychotherapy is growing, but its expansion is patchy. The main pathways of Italian training in the different group psychotherapy orientations are also presented. Clinical-theoretical elaboration on self development, psychopathology related to group experiences, and the methodological attention paid to objectives and methods in different clinical groups are issues related to group therapy in Italy. Difficulties in the relationship between research and clinical practice are discussed, as well as the empirical research network that tries to bridge the gap between research and clinical work in group psychotherapy. The economic crisis in Italy has led to massive cuts in health care and to an increasing demand for some forms of psychological treatment. For these reasons, and because of its positive cost-benefit ratio, group psychotherapy is now considered an important tool in the national health care system to expand the clinical response to different forms of psychological distress. PMID:26401793

  10. Costa Rica's Chain of laterally collapsed volcanoes.

    Duarte, E.; Fernandez, E.


    From the NW extreme to the SW end of Costa Rica's volcanic backbone, a number of laterally collapsed volcanoes can be observed. Due to several factors, attention has been given to active volcanoes disregarding the importance of collapsed features in terms of assessing volcanic hazards for future generations around inhabited volcanoes. In several cases the typical horseshoe shape amphitheater-like depression can be easily observed. In other cases due to erosion, vegetation, topography, seismic activity or drastic weather such characteristics are not easily recognized. In the order mentioned above appear: Orosi-Cacao, Miravalles, Platanar, Congo, Von Frantzius, Cacho Negro and Turrialba volcanoes. Due to limited studies on these structures it is unknown if sector collapse occurred in one or several phases. Furthermore, in the few studied cases no evidence has been found to relate collapses to actual eruptive episodes. Detailed studies on the deposits and materials composing dome-like shapes will shed light on unsolved questions about petrological and chemical composition. Volume, form and distance traveled by deposits are part of the questions surrounding most of these collapsed volcanoes. Although most of these mentioned structures are extinct, at least Irazú volcano (active volcano) has faced partial lateral collapses recently. It did presented strombolian activity in the early 60s. Collapse scars show on the NW flank show important mass removal in historic and prehistoric times. Moreover, in 1994 a minor hydrothermal explosion provoked the weakening of a deeply altered wall that holds a crater lake (150m diameter, 2.6x106 ). A poster will depict images of the collapsed volcanoes named above with mayor descriptive characteristics. It will also focus on the importance of deeper studies to assess the collapse potential of Irazú volcano with related consequences. Finally, this initiative will invite researchers interested in such topic to join future studies in

  11. Nuclear decommissioning in Italy

    Italy is in a unique position. Italy has been in the past among the leading countries in the pacific use of nuclear energy, but, as a consequence of the 1987 referendum decided to shutdown all operating power plants, to leave uncompleted the plants under construction and to stop all related research and industrial activities declaring a 5 years moratorium on any future initiative. The moratorium ended unnoticed in 1992, since there was no political move to restart nuclear power in Italy and, in practice, it is still acting. Therefore, now the major efforts in the nuclear field are focused on the closure of past liabilities assuring safety and security highest levels. This is a duty to be carried out by the generation that used this form of energy, but, at least for somebody, also a precondition for the acceptance of any future renaissance of nuclear energy in Italy. SOGIN is a Company carrying out a service for the country and fully committed to solve the liabilities left by the interrupted nuclear industry in Italy. To this aim SOGIN is managed as a private company to assure the highest possible efficiency, but, at the same time, is driven by moral and ethical objectives and the vision of protecting the environment and health and safety of the public. SOGIN blends in a synergic way the various ENEL experiences (design and operation of NPP's) and ENEA experiences (engineering and operation of R and D and industrial facilities supporting NPP's). Such a comprehensive combination of technical competences should not be dispersed in the medium and long term and the management is committed to facilitate the technical growth of the impressing number of motivated young people joining the Company, whose enthusiasm is contaminating every day also the 'veterans', to assure for the country an asset and a presidium of very specialized multi-disciplinary nuclear competences. Speaking of possible scenarios for the future, we should mention that the current international situation

  12. [Social cooperatives in Italy].

    Villotti, P; Zaniboni, S; Fraccaroli, F


    This paper describes the role of social cooperatives in Italy as a type of economic, non-profit organization and their role in contributing to the economic and social growth of the country. The purpose of this paper is to learn more about the experience of the Italian social cooperatives in promoting the work integration process of disadvantaged workers, especially those suffering from mental disorders, from a theoretical and an empirical point of view. Social enterprise is the most popular and consolidated legal and organizational model for social enterprises in Italy, introduced by Law 381/91. Developed during the early 1980s, and formally recognized by law in the early 1990s, social cooperatives aim at pursuing the general interest of the community to promote the human needs and social inclusion of citizens. They are orientated towards aims that go beyond the interest of the business owners, the primary beneficiary of their activities is the community, or groups of disadvantaged people. In Italy, Law 381/91 distinguishes between two categories of social cooperatives, those producing goods of social utility, such as culture, welfare and educational services (A-type), and those providing economic activities for the integration of disadvantaged people into employment (B-type). The main purpose of B-type social cooperatives is to integrate disadvantaged people into the open labour market. This goal is reached after a period of training and working experience inside the firm, during which the staff works to improve both the social and professional abilities of disadvantaged people. During the years, B-type social co-ops acquired a particular relevance in the care of people with mental disorders by offering them with job opportunities. Having a job is central in the recovery process of people suffering from mental diseases, meaning that B-type social co-ops in Italy play an important rehabilitative and integrative role for this vulnerable population of workers. The

  13. Volcanoes

    ... severe respiratory illnesses. Volcanic ash also can damage machinery, including engines and electrical equipment. Ash accumulations mixed with water become heavy and can collapse roofs. Volcanic ash can affect ...

  14. Volcanoes

    ... High-Pressure Water Injection Injury Trench Foot or Immersion Foot Emergency Wound Care Wound Management for Healthcare ... Pets Resources for Emergency Health Professionals Training and Education Social Media What CDC is Doing Blog: Public ...

  15. Fiscal Forecasting in Italy

    Carabotta, Laura


    [eng] The thesis “Fiscal forecasting in Italy” is comprised of three main chapters in which is analyzed, from an empirical point of view, several issues related to public finance forecasts, with an application to Italy. Chapter II, “Accuracy of fiscal forecasts in Italy” is focused on one of the most important aspects of the new Treaty: it requires that the decisions and recommendations taken by the European Commission are no longer be based on outcomes but on forecasts. In this chapter, I e...

  16. Smithsonian traveling exhibition highlights two active volcanoes

    Hill, L.; Harney, T.


    Over time, active volcanoes have captured human fascination, not only because of their strange and dramatic beauty, but also because of their power to destroy. Two active U.S volcanoes-one on the Big Island of Hawaii, the other part of the Cascade Range in the Pacific Northwest-will be the focus of "Inside Active Volcanoes: Kilauea and Mount St. Helens." This major exhibit opened July 6 in the Evans Gallery of the Smithsonian's National Museum of Natural history in Washington, D.C, and continued through September 24.

  17. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.


    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  18. Simulation of the Laki volcanoe based upon analogs of winds

    Balkanski, Yves; Menut, Laurent; Jourdain, Sylvie; Garnier, Emmanuel; Eschstruth, Celia; Vrac, Matthieu; Vautard, Robert; Yiou, Pascal


    Simulation of the Laki volcanoe based upon analogs of winds We used daily surface pressure measurements from 1783 over Europe to reconstruct a year of 3D wind fields based upon the closest analog found in the 6-hourly fields from the ECMWF ERAI re-analysis from 1979 to 2013. These fields are then used to nudge the LMDZORINCA global model with a full chemical scheme and a horizontal resolution of 1.29°x0.94° with 39 vertical layers to simulate the emissions of SO2 from the volcano emitting over several months from June to August 1783. Fields of SO2 and H2SO4 were analyzed over the whole year of 1783. We inject 81 Tg (S) over the period. In France, the Royal society of medicine (Société royale de médecine) had developed for the first time a network of persons that observed both climatic variables and morbidity. The network is composed of 150 contributors over France, and has a more scattered coverage for Italy, Austria, Germany the United States and Madagascar. The measurements reported three times a day include: temperature, air pressure, air humidity wind direction and a description of the sky. Within the CHEDAR (Climate and Health Data Rescue and Modelling) project an archive of daily observations of fogs over French meteorological stations was created and registers of deaths in main cities were compiled. These data indicate that increased mortality occurred from June to September 1783 immediately following the Laki eruption when compared to the average mortality over the period from 1774 to 1789. We quantified this increase over 23 cities in France. We provide a comparison of SO2 surface concentrations and draw the following conclusions: - The days when the first manifestations of the volcano are reported over Western and Northern Europe are extremely well captured by the construction of analogs of winds for 1783. - The sharp increase and the days of heavy fogs are correlated with decreases in visibility due to the advection of sulfur from the volcanic cloud

  19. Earthquake sources near Uturuncu Volcano

    Keyson, L.; West, M. E.


    Uturuncu, located in southern Bolivia near the Chile and Argentina border, is a dacitic volcano that was last active 270 ka. It is a part of the Altiplano-Puna Volcanic Complex, which spans 50,000 km2 and is comprised of a series of ignimbrite flare-ups since ~23 ma. Two sets of evidence suggest that the region is underlain by a significant magma body. First, seismic velocities show a low velocity layer consistent with a magmatic sill below depths of 15-20 km. This inference is corroborated by high electrical conductivity between 10km and 30km. This magma body, the so called Altiplano-Puna Magma Body (APMB) is the likely source of volcanic activity in the region. InSAR studies show that during the 1990s, the volcano experienced an average uplift of about 1 to 2 cm per year. The deformation is consistent with an expanding source at depth. Though the Uturuncu region exhibits high rates of crustal seismicity, any connection between the inflation and the seismicity is unclear. We investigate the root causes of these earthquakes using a temporary network of 33 seismic stations - part of the PLUTONS project. Our primary approach is based on hypocenter locations and magnitudes paired with correlation-based relative relocation techniques. We find a strong tendency toward earthquake swarms that cluster in space and time. These swarms often last a few days and consist of numerous earthquakes with similar source mechanisms. Most seismicity occurs in the top 10 kilometers of the crust and is characterized by well-defined phase arrivals and significant high frequency content. The frequency-magnitude relationship of this seismicity demonstrates b-values consistent with tectonic sources. There is a strong clustering of earthquakes around the Uturuncu edifice. Earthquakes elsewhere in the region align in bands striking northwest-southeast consistent with regional stresses.

  20. Library system of Italy

    Nataša Gerbec


    Full Text Available In the European extent, Italy is the cradle of libraries and library sciences. In the past, Italian national public libraries played an important role through their vast book treasury. But only during the last thirty years have public libraries been developed following the Anglo-American public library model. Italy does not have any uniform or general legislation concerning libraries. On the state level, this area is regulated by some separate acts, while on the regional level there is a collection of various acts and regulations. Libraries are not strictly divided into general categories. It is required that the professionals engaged in Italian libraries should have secondary or university education. The level of their professional tasks depends on the type of library and its capacity. The competency for the development in the field of librarianship is assigned to The Ministry of Cultural and Environment Heritage as well as to its subordinate institutions (Central Institute for the Union catalogue of Italian Libraries and for Bibliographic Information, Central Institute for Book Pathology, Observatory for International Libraries Programmes.

  1. [Occupational epidemiology in Italy].

    Assennato, G; Bisceglia, L


    The development of Occupational Epidemiology in Italy is closely correlated with the political and social awareness of the needs of preventive strategies in the workplace. In the late '60s the Trade Unions supported a model of intervention based on the involvement of the so-called "Homogeneous group of workers" in the validation of the preventive measures taken on the workplace. In spite of the shortcomings of the model, it was extremely effective resulting in enhanced perception of the priority of preventive strategies and in the formation within the National Health Service of the Occupational Health Services. In Italy over the period 1973-2002 there has been an impressive trend of research in field of occupational epidemiology (a search on Medline shows an increasing trend over the years and, in terms of international comparison, higher figures than in Germany, France and Spain). Occupational Epidemiology is now present in the activities of the local Occupational Health Services and in the teaching activities of the Medical Schools throughout the country. PMID:14582235

  2. Volcanoes muon imaging using Cherenkov telescopes

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni


    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  3. Geomagnetic anomalies observed at volcano Popocatepetl, Mexico

    A. Kotsarenko


    Full Text Available Results of the ULF geomagnetic monitoring of the volcano Popocatepetl (Mexico and their analysis are summarized and presented for the period 2003–2006. Our analysis reveals some anomalies which are considered to be of local volcanic origin: the EM background in the vicinity of the volcano was found to be significantly noisier than at other reference stations; sporadic strong noise-like geomagnetic activity was observed in the H-component; some geomagnetic pulsations were observed only at the Tlamacas station (located at 4 km near the volcano. The results are discussed in terms of a physical mechanism involving the presence of a second magmatic chamber within the volcano and, finally, further perspective directions to study volcanic geodynamical processes besides the traditional ones are given.

  4. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.)

  5. Lahar hazards at Agua volcano, Guatemala

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.


    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  6. A field guide to Newberry Volcano, Oregon

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele


    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  7. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    Dvorak, J.J.; Dzurisin, D.


    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  8. Continuous SO2 flux measurements for Vulcano Island, Italy

    Fabio Vita


    Full Text Available The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d–1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d–1.

  9. Geomagnetic anomalies observed at volcano Popocatepetl, Mexico

    Kotsarenko, A.; V. Grimalsky; R. Pérez Enríquez; Yutsis, V.; Koshevaya, S.; J. A. López Cruz-Abeyro; Valdez-Gonzalez, C.; Villegas Cerón, R. A.


    Results of the ULF geomagnetic monitoring of the volcano Popocatepetl (Mexico) and their analysis are summarized and presented for the period 2003–2006. Our analysis reveals some anomalies which are considered to be of local volcanic origin: the EM background in the vicinity of the volcano was found to be significantly noisier than at other reference stations; sporadic strong noise-like geomagnetic activity was observed in the H-component; some geomagnetic pulsations were observed o...

  10. Major Martian Volcanoes from MOLA - Olympus Mons


    Two views of Olympus Mons, shown as topography draped over a Viking image mosaic. MOLA's regional topography has shown that this volcano sits off to the west of the main Tharsis rise rather than on its western flank. The topography also clearly shows the relationship between the volcano's scarp and massive aureole deposit that was produced by flank collapse. The vertical exaggeration is 10:1.

  11. Mt. Etna, Italy


    On Sunday, November 3, 2002, Mt. Etna's ash-laden plume was imaged by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. The plume is seen blowing toward the south-southeast, over the city and airport of Catania, Sicily. The previous day, the plume was blowing toward the northwest, and posed no hazard to Catania. The current eruption of Mt. Etna, Europe's most active volcano, began on October 27. These sorts of observations from space may help civil defense authorities mitigate hazards from active eruptions. Space data may also help scientists evaluate the behavior and effects volcanic eruptions have on our global climate system.With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a

  12. Gestalt psychology in Italy.

    Verstegen, I


    Graz gestalt psychology was introduced into Italy after World War I with Vittorio Benussi's emigration to Padua. His earliest adherent, Cesare Musatti, defended Graz theory, but after Benussi's premature death became an adherent of the Berlin gestalt psychology of Wertheimer-Köhler-Koffka. He trained his two most important students, Fabio Metelli and Gaetano Kanizsa, in orthodox Berlin theory. They established rigid "schools" in Padua and Trieste. The structure of Italian academics allowed for such strict orthodoxy, quite unlike the situation in America, where scientific objectivity mitigated against schools. In the 1960s, some of the students of Metelli and Kanizsa (above all Bozzi) initiated a realist movement-felt in Kanizsa's late work-that was quite independent of that of J. J. Gibson. Finally, more recently, Benussi and Graz theorizing have been embraced again, sentimentally, as a predecedent to Kanizsa-Bozzi. PMID:10653614


    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows : - the list of exhibitors. A detailed programme will be available in due course at : - your Divisional secretariat, - the exhibition, - on the SPL homepage LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Andalo' Gianni Srl15 Finsys...



    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.30 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows: - the list of exhibitors. A detailed programme will be available in due course: - from your Divisional secretariat, - at the exhibition, - on the SPL homepage LISTE DES EXPOSANTS / LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Anda...

  15. Italy at CERN

    Caroline Laignel


    15 - 17 November 2005 Main Building Bldg 60 - ground and 1st floor 09:00 - 17:30 Twenty-six companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: electrical engineering, electronics, logistics, mechanical engineering, vacuum and low-temperature technology.   The exhibition is being organised by the INFN in Padua. The exhibitors are listed below.   A detailed programme will be available in due course : from your Departmental secretariat, at the exhibition, on the FI homepage LIST OF EXHIBITORS  Ansaldo Superconduttori Spa CAEN Spa CECOM Snc Consorzio Canavese Export CPE Italia Spa Criotec Impianti Srl CTE Sistemi Srl Carpenteria S. Antonio Spa E.E.I. Equipaggiamenti Elettronici Industriali Elettronica Conduttori Srl Goma Elettronica Spa ICAR Spa Intercond Spa Keno...

  16. Chinese Investment in Italy


    At the 12th China International Fair for Investment and Trade (CIFIT) held on September 8-11 in Xiamen, Fujian Province, government officials and entrepreneurs from all over the world canvassed Chinese entrepreneurs and investors to invest in their countries. Foreign countries and regions rented 16,000 square meters of exhibition space, an increase of more than 50 percent from last year. Among the 74 participating countries and regions, more than 50 held seminars about their invest- ment environments. Besides the Caribbean countries and underdeveloped African nations that are actively attracting investment, developed countries such as the Untied States, Germany, France, Italy and Sweden also showed extraordinary enthusiasm in trying to win over Chinese investors. Beijing Review interviewed Marinella Loddo, Director of the Industrial Cooperation Division of the Italian Institute for Foreign Trade which is also known as the Italian Trade Commission (ICE).

  17. Italy at CERN


    Nineteen companies will present their latest technology at the industrial exhibition “Italy at CERN”. Italian industries will exhibit products and technologies related to the field of particle physics. The full event programme is available here.   Individual interviews will take place at either the companies’ exhibition stands or in the Main Building’s conference rooms. The firms will be in contact with relevant users and technicians, but anyone wishing to speak with a particular firm is welcome to visit the exhibition or to get in touch with organiser Karin Robert. Italian Industries will also be sponsoring a free concert in the Main Auditorium on Tuesday 11 October at 8:00 pm. The "Trio Poem" concert will feature music by Beethoven and A. Dvořák, with Alberto Torin on the piano, Enrico Carraro on the violin, and Davide Bernardi on the cello.

  18. A preliminary evaluation of ERTS-1 images on the volcanic areas of Southern Italy

    Cassinis, R.; Lechi, G. M.


    The test site selected for the investigation covers nearly all the regions of active and quiescent volcanism in southern Italy, i.e. the eastern part of the island of Sicily, the Aeolian Islands and the area of Naples. The three active European volcanoes (Etna, Stromboli and Vesuvius) are included. The investigation is in the frame of a program for the surveillance of active volcanoes by geophysical (including remote sensing thermal methods) and geochemical methods. By the multispectral analysis of ERTS-1 data it is intended to study the spectral behavior of the volcanic materials as well as the major geological lineaments with special reference to those associated with the volcanic region. Secondary objectives are also the determination of the hydrographic network seasonal behavior and the relationship between the vegetation cover and the different type of soils and rocks.

  19. Italy: health system review.

    Ferre, Francesca; de Belvis, Antonio Giulio; Valerio, Luca; Longhi, Silvia; Lazzari, Agnese; Fattore, Giovanni; Ricciardi, Walter; Maresso, Anna


    Italy is the sixth largest country in Europe and has the second highest average life expectancy, reaching 79.4 years for men and 84.5 years for women in 2011. There are marked regional differences for both men and women in most health indicators, reflecting the economic and social imbalance between the north and south of the country. The main diseases affecting the population are circulatory diseases, malignant tumours and respiratory diseases. Italy's health care system is a regionally based national health service that provides universal coverage largely free of charge at the point of delivery. The main source of financing is national and regional taxes, supplemented by copayments for pharmaceuticals and outpatient care. In 2012, total health expenditure accounted for 9.2 percent of GDP (slightly below the EU average of 9.6 percent). Public sources made up 78.2 percent of total health care spending. While the central government provides a stewardship role, setting the fundamental principles and goals of the health system and determining the core benefit package of health services available to all citizens, the regions are responsible for organizing and delivering primary, secondary and tertiary health care services as well as preventive and health promotion services. Faced with the current economic constraints of having to contain or even reduce health expenditure, the largest challenge facing the health system is to achieve budgetary goals without reducing the provision of health services to patients. This is related to the other key challenge of ensuring equity across regions, where gaps in service provision and health system performance persist. Other issues include ensuring the quality of professionals managing facilities, promoting group practice and other integrated care organizational models in primary care, and ensuring that the concentration of organizational control by regions of health-care providers does not stifle innovation. PMID:25471543

  20. Italy; 2013 Article IV Consultation

    International Monetary Fund


    This 2013 Article IV Consultation highlights Italy’s assesses measures undertaken to revive economic growth. Italy is vulnerable to a renewal of euro area tension and risks from domestic policy slippages, stalling of structural reforms, and banking distress that could undermine confidence. The government has taken steps to liberalize services, open the energy sector, and improve the labor market, but more is needed to boost productivity and raise Italy’s low employment rate. The IMF repor...

  1. Nyiragongo Volcano before the Eruption


    Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied

  2. Italy INAF Data Center Report

    Negusini, M.; Sarti, P.


    This report summarizes the activities of the Italian INAF VLBI Data Center. Our Data Center is located in Bologna, Italy and belongs to the Institute of Radioastronomy, which is part of the National Institute of Astrophysics.

  3. Seismic unrest at Katla Volcano- southern Iceland

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group


    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  4. USGS U.S. Volcanoes with Elevated Status

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  5. Interferometric Synthetic Aperture radar studies of Alaska volcanoes

    Lu, Zhong; Wicks, Charles W., Jr.; Dzurisin, Daniel; Power, John A.; Thatcher, Wayne R.; Masterlark, Timothy


    In this article, we summarize our recent InSAR studies of 13 Alaska volcanoes, including New Trident, Okmok, Akutan, Kiska, Augustine, Westdahl, Peulik, Makushin, Seguam, Shishaldin, Pavlof, Cleveland, and Korovin volcanoes.

  6. Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    Gabriele Giovanetti; Stephen Monna; Nadia Lo Bue; Davide Embriaco; Francesco Frugoni; Giuditta Marinaro; Mariagrazia De Caro; Tiziana Sgroi; Caterina Montuori; Angelo De Santis; Gianfranco Cianchini; Laura Beranzoli; Paolo Favali


    The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with ...

  7. Italy at CERN

    Caroline Laignel


    15 - 17 November 2005 Main Building Bldg 60 - ground and 1st floor 09:00 - 17:30 Twenty-six companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies which are related to the field of particle physics.The main subjects are: electrical engineering, electronics, logistics, mechanical engineering, vacuum and low-temperature technology. The exhibition is being organised by the INFN in Padua.The exhibitors are listed below.A detailed programme will be available in due course : from your Departmental secretariat, at the exhibition, on the FI homepage LIST OF EXHIBITORS  Ansaldo Superconduttori Spa CAEN Spa CECOM Snc Consorzio Canavese Export CPE Italia Spa Criotec Impianti Srl CTE Sistemi Srl Carpenteria S. Antonio Spa E.E.I. Equipaggiamenti Elettronici Industriali Elettronica Conduttori Srl Goma Elettronica Spa ICAR Spa Intercond Spa Kenotec Srl O...

  8. Italy au CERN

    FI Department


    4 – 6 March 2008 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Nineteen companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies related to the field of particle physics. The main subjects are civil engineering and buildings, data processing, electrical engineering, electronics, industrial support, mechanical engineering, particle detectors and vacuum and low-temperature technology. The exhibition is being organised by the INFN of Padova. The exhibitors are listed below. More details on the firms can be found at the following link: LIST OF EXHIBITORS Boffetti Impianti S.r.l. Bozzi & Figli S.r.l. C.A.E.N. S.p.A. Cavicel S.p.A. Comecer S.p.A. E.E.I. Elettronica Conduttori S.r.l. Euromec S.r.l. Eurotech S.p.A. IRST Fondazione Bruno Kessler IVG Colbacchini S.p.A. Krohne Italia S.r.l. Luvata For...


    FI Department


    4 – 6 March 2008 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Nineteen companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies related to the field of particle physics. The main subjects are civil engineering and buildings, data processing, electrical engineering, electronics, industrial support, mechanical engineering, particle detectors and vacuum and low-temperature technology. The exhibition is being organised by the INFN of Padova. The exhibitors are listed below. More details on the firms can be found at the following link: LIST OF EXHIBITORS Boffetti Impianti S.r.l. Bozzi & Figli S.r.l. C.A.E.N. S.p.A. Cavicel S.p.A. Comecer S.p.A. E.E.I. Elettronica Conduttori S.r.l. Euromec S.r.l. Eurotech S.p.A. IRST Fondazione Bruno Kessler IVG Colbacchini S.p.A. Krohne Italia S.r.l. Luvata For...

  10. Soil radon response around an active volcano

    Segovia, N. E-mail:; Valdes, C.; Pena, P.; Mena, M.; Tamez, E


    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages.

  11. The Cenozoic Volcanoes in Northeast China

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu


    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  12. Soil radon response around an active volcano

    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages

  13. Predicting the Timing and Location of the next Hawaiian Volcano

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole


    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  14. Volcanoes muon imaging using Cherenkov telescopes

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.


    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  15. Venus small volcano classification and description

    Aubele, J. C.


    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  16. The origin of the Hawaiian Volcano Observatory

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  17. Nuclear power in Italy

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals

  18. Fatto in Italia: Refashioning Italy

    Tiziana Ferrero-Regis


    Full Text Available This article discusses how the Made in Italy brand helped Italy to recover from economic recession in the 1980s, but also how it redefined the country's identity after the traumatic years of terrorism and especially after the murder of the Christian Democratic Party Secretary, Aldo Moro, at the hands of the Red Brigades. In this period cinema as a form of artistic achievement declined, while fashion and industrial design moved at the centre stage of economic and creative success. The rampant consumerism of the 1980s, fuelled by tax reforms that favoured a wider urban middle class, the retreat of unionism, the abandonment of collective bargaining in many industrial sectors, industrial restructuring with the consequent growth of black market economy in the provincial areas of the so-called Third Italy first and the South later, were all factors that contributed to a social and economic shift within Italy itself. Commercial consumption, propagated by the proliferation of local commercial television networks, hedonism and a re-articulation of identity through appearance replaced the 1970s' political activism and ideological opposition to fashion. Ultimately, 'Made in Italy' was a multidimensional phenomenon that presented itself as a new cultural model for the country’s political tribes of the 1970s.

  19. About the mud volcano's roots on isotope - mineralogical data. Example of the Bahar mud volcano, Azerbaijan

    Full text : In this paper on the isotopic carbon composition data, stage and formation temperature of bassanite mineral determined in the products of the Baharmud volcano activity is made estimation of depth and stratigraphic location of its hearth. Mud volcanoes of Azerbaijan have been investigated for many decades, but the problem on depth location, products of their activity up to now is still debatable. The most objective estimation of the stratigraphic depth of solid products of mud volcanoes activity is made on the basis of paleontological researches. Accrding to the studiesof isotopic hydrocarbon composition of oil and organic matter of rocks and oil-rock correlation was determined that part of studied mud volcanoes bring out to the surface Pliocene-Miocene oil, others mainly Paleogene oil. Many scientists have different opinions about the stratigraphic location of hydrocarbon gases that plays a great role in mud volcanism processes.

  20. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Clague, David A.; Sherrod, David R.


    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  1. How predictable are the volcano eruptions? from global scale to Piton de la Fournaise volcano.

    Schmid, Agathe,


    This PhD work focused on several aspects of the eruptions prediction. It allowed us to consider different space scales from global scale to a single volcano, Piton de la Fournaise, through statistical approaches. We then focused more specifically on the volcano-seismicity associated to its eruptive processes, using deterministic methods. First, we analyzed the statistical properties of the eruptive dynamics at the global scale. The emergence of recurrent power laws allowed us to relate the er...

  2. Bathymetry of southern Mauna Loa Volcano, Hawaii

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.


    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  3. Carbonate assimilation at Merapi volcano, Java Indonesia

    Chadwick, J.P; Troll, V.R; Ginibre,, C.;


    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40^95...

  4. Geophysical monitoring of the Purace volcano, Colombia

    M. Arcila


    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  5. Hazard maps of Colima volcano, Mexico

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.


    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  6. Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano, Italy

    This paper describes the results of a study that was conducted to determine the relationship between hydrogeochemical composition and 87Sr/86Sr isotope ratios of the Mt. Vulture spring waters. Forty samples of spring waters were collected from local outcrops of Quaternary volcanites. Physico-chemical parameters were measured in the field and analyses completed for major and minor elements and 87Sr/86Sr isotopic ratios. A range of water types was distinguished varying from alkaline-earth bicarbonate waters, reflecting less intense water-rock interaction processes to alkali bicarbonate waters, probably representing interaction with volcanic rocks of Mt. Vulture and marine evaporites. The average 87Sr/86Sr isotope ratios suggest at least 3 different sources. However, some samples have average Sr isotope ratios (0.70704-0.70778) well above those of the volcanites. These ratios imply interaction with other rocks having higher 87Sr/86Sr ratios, probably Triassic evaporites, which is substantiated by their higher content of Na, SO4 and Cl. The Sr isotope ratios for some samples (e.g. Toka and Traficante) are intermediate between the value for the Vulture volcanites and that for the local Mesozoic rocks. The salt content of these samples also lies between the value for waters interacting solely with the volcanites and the value measured in the more saline samples. These waters are thus assumed to result from the mixing of waters circulating in volcanic rocks with waters presumably interacting with the sedimentary bedrock (marine evaporites)

  7. Permeability estimates from artificial drawdown and natural refill experiments at Solfatara volcano, Italy

    Woith, Heiko; Chiodini, Giovanni; Mangiacapra, Annarita; Wang, Rongjiang


    The hydrothermal system beneath Campi Flegrei is strongly affected by sub-surface processes as manifested by a geothermal "plume" below Solfatara, associated with the formation of mud-pools (Fangaia), fumaroles (Bocca Grande, Pisciarelli), and thermal springs (Agnano). Within the frame of MED-SUV (The MED-SUV project has received funding from the European Union Seventh Framework Programme FP7 under Grant agreement no 308665), pressure transients in the hydrothermal system of Campi Flegrei are being continuously monitored at fumaroles, mudpools, hot springs, and geothermal wells. In total, waterlevel and temperature is recorded at 8 sites across the hydrothermal plume along a profile aligned between Agnano Termal in the East and Fangaia in the West. Autonomous devices are used to record the water level and water temperature at 10 minute intervals. At Fangaia mudpool water level and water temperature are dominantly controlled by rain water. Thus, the pool is refilled episodically. Contrary, the water level at a well producing hot water (82°C) for the Pisciarelli tennis club drops and recovers at nearly regular intervals. The induced water level changes are of the order of 1-2m and 3-4m in case of the mudpool and the hot-water-well, respectively. At first glance, both monitoring sites might seem to be fully useless to access natural changes in the Campi Flegrei fluid system. At a second thought, both timeseries provide a unique opportunity to monitor potential permeability changes in the aquifer system. A similar approach had been proposed to deduce earthquake-related permeability changes from Earth tide variations. Contrary to the indirect Earth tide approach, we have the chance to estimate the hydraulic aquifer properties from our monitoring data directly, since each time series contains a sequence of discrete hydraulic tests - namely drawdown tests and refill experiments. Although our Cooper-Jacob approach is really crude, we obtained reasonable permeability estimates for both sites. Preliminary permeability timeseries are presented.

  8. Magma-hydrothermal contact zone of the Stromboli volcano (Italy): evidence from buchite xenoliths

    Renzulli, A.; Serri, G.; Tribaudino, M.; Santi, P.; Salvioli-Mariani, E.


    Large-sized xenoliths (up to 1.5 m) were sampled nearby the summit active craters of Stromboli (Aeolian Islands). The ejecta, erupted during recent eruptions, are spread within an area of ca. 50m2 and consist of fine-grained whitish to light-grey mottled rocks with heterogeneous vesicularity (3--50 vol.%). SEM-EDS and EMP analyses, XRD, TEM investigations and ICP-OES-MS bulk-rock geochemistry were carried out on representative samples. According to petrological and textural data the xenoliths are buchites, i.e. glassy hornfelses produced by high-grade contact metamorphism, up to partial melting. A highly porphyritic shoshonitic basalt generally covers the buchites, both as cm-sized coatings or as thicker spatters. The xenoliths are peraluminous (Al_2O_3 21.4--24.3 wt.%), with SiO_2 62.1--63.6 wt.% and are characterised by fine-grained cordierite (± indialite), plagioclase (An80-95), mullite, orthopyroxene (En74-83), pseudobrookite and rutile. These minerals locally replace, pseudomorphically, mm-sized crystals whose habitus is reminiscent of feldspar and pyroxene phenocrysts. In the xenoliths the glass has a wide range of silica compositions, from 61--66 wt.% (metaluminous) to 69--76 wt.% (peraluminous), going inward from the contact with the basalt coatings. At the xenolith-basalt contact a two mineral xenolith facies often occurs, consisting of a tridymite+clinopyroxene fine-grained glassy hornfels zone up to 5 cm. Cordierites have Mg values 82--91 and contain K_2O up to 1%. TEM and synchrotron powder diffraction examination on cordierites showed the presence of both crystals with fully achieved transformation to the orthorhombic state and euhedra having an hexagonal symmetry (indialites). The presence of different Al-Si ordering state in cordierite, from fully disordered indialite to partially ordered orthorhombic cordierite was observed. This may be due to high K_2O and/or fast cooling of the crystals that inhibited the transformation from hexagonal to orthorhombic symmetry. On the basis of mineralogical, geochemical and textural data we conclude that the buchites are the result of high-T, low-P contact metamorphism of hydrothermally altered ("intermediate argillic") volcanic rocks, induced by basaltic magmas analogous to those of the present-day activity of Stromboli. The argillaceous protoliths could have suffered intense thermal metamorphism/partial melting, either as in situ wall-rocks or as blocks stoped in the subvolcanic magma feeding system.

  9. Atmospheric sources and sinks of volcanogenic elements in a basaltic volcano (Etna, Italy)

    Calabrese, S.; Università di Palermo, Dipartimento DiSTeM, Italy; Aiuppa, A.; Università di Palermo, Dipartimento CFTA; Allard, P.; Institut de Physique du Globe, Sorbonne-Paris Cité, UMR CNRS 7154, Univ. Paris Diderot, Paris, France; Bagnato, E.; Università di Palermo, Dipartimento CFTA; Bellomo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Brusca, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; D'Alessandro, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Parello, F.; Università di Palermo, Dipartimento CFTA


    This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was c...

  10. Active faults on the eastern flank of Etna volcano (Italy) monitored through soil radon measurements

    Neri, M.; Giammanco, S.; Ferrera, E.; Patanè, G.; Zanon, V.


    This study concerns measurements of radon and thoron emissions from soil carried out in 2004 on the unstable eastern flank of Mt. Etna, in a zone characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds for both parameters and producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. In particular, the highest anomalies were found at the intersection between WNW-ESE and NW-SE -running faults. The seismic activity occurring in and around the study area during 2004 was analyzed, producing maps of hypocentral depth and released seismic energy. These maps revealed a progressive deepening of hypocenters from NW to SE, with the exception of a narrow zone in the central part of the area, with a roughly WNW-ESE direction. Also, the highest values of seismic energy were released during events in the southern and northwestern sectors of the area. Both radon and thoron anomalies were located in areas affected by relatively deep (5-10 km depth) seismic activity, while less evident correlation was found between soil gas anomalies and the released seismic energy. This study confirms that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover or faults that are not clearly visible at the surface. The correlation between soil gas data and earthquake depth and intensity can give some hints on the source of gas and/or on fault dynamics. Lastly, an important spin-off of this study is the recognition of some areas where radon activity was so high (>50000 Bq/m3) that it may represent a potential hazard to the local population. In fact, radon is the leading cause of lung cancer after cigarette smoke for long exposures and, due to its molecular weight, it accumulates in underground rooms or in low ground, particularly where air circulation is low or absent. In the investigated area this risk is real, as it is inhabited by thousands of people who reside there all year long. Therefore, this study serves as a starting point for the assessment of radon hazard in the Mt. Etna area, considering both spatial and temporal changes in soil radon emissions depending on the presence of faults and/or the occurrence of seismic activity.

  11. Vocational Education and Training in Italy.

    Fressura, Nicola; And Others

    A study examined vocational education and training in Italy. First, vocational education was placed within the context of Italy's political and administrative structures and economy. Italy's systems of general and vocational education were described, and the legislative aspects were examined. Special attention was paid to funding from various…

  12. Geochemical studies on island arc volcanoes

    This paper summarizes advances in three topics of geochemical studies on island arc volcanoes, which I and my colleagues have been investigating. First one is strontium isotope studies of arc volcanic rocks mainly from Japanese island arcs. We have shown that the precise spatial distribution of the 87Sr/86Sr ratio reflects natures of the subduction structure and slab-mantle interaction. Based on the 87Sr/86Sr ratio of volcanic rocks in the northern Kanto district, where two plates subduct concurrently with different directions, the existence of an aseismic portion of the Philippine Sea plate ahead of the seismic one was suggested. Second one is geochemical monitoring of active arc volcanoes. 3He/4He ratio of volcanic volatiles was shown to be a good indicator to monitor the behavior of magma: ascent and drain-back of magma result in increase and decrease in the ratio, respectively. In the case of 1986 eruptions of Izu-Oshima volcano, the ratio began to increase two months after big eruptions, reaching the maximum and decreased. Such delayed response is explained in terms of travelling time of magmatic helium from the vent area to the observation site along the underground steam flow. Third one is remote observation of volcanic gas chemistry of arc volcanoes, using an infrared absorption spectroscopy. During Unzen eruptions starting in 1990, absorption features of SO2 and HCl of volcanic gas were detected from the observation station at 1.3 km distance. This was the first ground-based remote detection of HCl in volcanic gas. In the recent work at Aso volcano, we could identify 5 species (CO, COS, CO2, SO2 and HCl) simultaneously in the volcanic plume spectra. (author)

  13. Interconnection France-Italy; Interconnexion France-Italie



    These documents presents the rules, defined by RTE, of the attribution of electric power transportation capacity between France and Italy. The contract form and the general principles are given in annexes. A guide to the application form is provided. (A.L.B.)

  14. Fiber Bragg grating strain sensors to monitor and study active volcanoes

    Sorrentino, Fiodor; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvo; Giacomelli, Umberto; Grassi, Renzo; Maccioni, Enrico; Morganti, Mauro


    Stress and strain changes are among the best indicators of impending volcanic activity. In volcano geodesy, borehole volumetric strain-meters are mostly utilized. However, they are not easy to install and involve high implementation costs. Advancements in opto-electronics have allowed the development of low-cost sensors, reliable, rugged and compact, thus particularly suitable for field application. In the framework of the EC FP7 MED-SUV project, we have developed strain sensors based on the fiber Bragg grating (FBG) technology. In comparison with previous implementation of the FBG technology to study rock deformations, we have designed a system that is expected to offer a significantly higher resolution and accuracy in static measurements and a smooth dynamic response up to 100 Hz, implying the possibility to observe seismic waves. The system performances are tailored to suit the requirements of volcano monitoring, with special attention to power consumption and to the trade-off between performance and cost. Preliminary field campaigns were carried out on Mt. Etna (Italy) using a prototypal single-axis FBG strain sensor, to check the system performances in out-of-the-lab conditions and in the harsh volcanic environment (lack of mains electricity for power, strong diurnal temperature changes, strong wind, erosive ash, snow and ice during the winter time). We also designed and built a FBG strain sensor featuring a multi-axial configuration which was tested and calibrated in the laboratory. This instrument is suitable for borehole installation and will be tested on Etna soon.

  15. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    Franco Tassi


    Full Text Available The composition of non-methane organic volatile compounds (VOCs determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  16. Volcanic conduit migration over a basement landslide at Mount Etna (Italy)

    Nicolosi, I.; Caracciolo, F. D'ajello; Branca, S.; Ventura, G.; Chiappini, M.


    The flanks of volcanoes may slide in response to the loading of the edifice on a weak basement, magma push, and/or to tectonic stress. However, examples of stratovolcanoes emplaced on active landslides are lacking and the possible effects on the volcano dynamics unknown. Here, we use aeromagnetic data to construct a three-dimensional model of the clay-rich basement of Etna volcano (Italy). We provide evidence for a large stratovolcano growing on a pre-existing basement landslide and show that the eastern Etna flank, which slides toward the sea irrespective of volcanic activity, moves coherently with the underlying landslide. The filling of the landslide depression by lava flows through time allows the formation of a stiffness barrier, which is responsible for the long-term migration of the magma pathways from the coast to the present-day Etna summit. These unexpected results provide a new interpretation clue on the causes of the volcanic instability processes and of the mechanisms of deflection and migration of volcanic conduits.

  17. Crystal recycling in the steady-state system of the active Stromboli volcano : a 2.5-ka story inferred from in situ Sr-isotope and trace element data.

    Francalanci, Lorella; Avanzinelli, Riccardo; Nardini, Isabella; Tiepolo, Massimo; Davidson, Jon P.; Vannucci, Riccardo


    In situ Sr-isotope data by microdrilling, cou- pled with major and trace element analyses, have been performed on plagioclase and clinopyroxene from seven samples collected during the 2002–2003 eruptive crisis at Stromboli volcano (Aeolian Islands, Italy). On 28 December 2002, the persistent moderate explosive activity was broken by an effusive event lasting about 7 months. A more violent explosion (paroxysm) occurred on 5 April 2003. Two magma types were erupted, namely a volatile- poor and ...

  18. Common processes at unique volcanoes – a volcanological conundrum

    Katharine eCashman


    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  19. Cladistic analysis applied to the classification of volcanoes

    Hone, D. W. E.; Mahony, S. H.; Sparks, R. S. J.; Martin, K. T.


    Cladistics is a systematic method of classification that groups entities on the basis of sharing similar characteristics in the most parsimonious manner. Here cladistics is applied to the classification of volcanoes using a dataset of 59 Quaternary volcanoes and 129 volcanic edifices of the Tohoku region, Northeast Japan. Volcano and edifice characteristics recorded in the database include attributes of volcano size, chemical composition, dominant eruptive products, volcano morphology, dominant landforms, volcano age and eruptive history. Without characteristics related to time the volcanic edifices divide into two groups, with characters related to volcano size, dominant composition and edifice morphology being the most diagnostic. Analysis including time based characteristics yields four groups with a good correlation between these groups and the two groups from the analysis without time for 108 out of 129 volcanic edifices. Thus when characters are slightly changed the volcanoes still form similar groupings. Analysis of the volcanoes both with and without time yields three groups based on compositional, eruptive products and morphological characters. Spatial clusters of volcanic centres have been recognised in the Tohoku region by Tamura et al. ( Earth Planet Sci Lett 197:105 106, 2002). The groups identified by cladistic analysis are distributed unevenly between the clusters, indicating a tendency for individual clusters to form similar kinds of volcanoes with distinctive but coherent styles of volcanism. Uneven distribution of volcano types between clusters can be explained by variations in dominant magma compositions through time, which are reflected in eruption products and volcanic landforms. Cladistic analysis can be a useful tool for elucidating dynamic igneous processes that could be applied to other regions and globally. Our exploratory study indicates that cladistics has promise as a method for classifying volcanoes and potentially elucidating dynamic

  20. Seafloor doming driven by active mantle degassing offshore Naples (Italy)

    Ventura, Guido; Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Caliro, Stefano; Chiodini, Giovanni; Sacchi, Marco; Rizzo, Andrea


    Structures and processes associated with shallow water hydrothermal fluid discharges on continental shelves are poorly known. We report geomorphological, geophysical, and geochemical evidences of a 5.5 x 5.3 km seabed doming located 5 km offshore the Naples harbor (Italy). The dome lies between 100 and 170 m of water depth and it is 15-20 m higher than the surrounding seafloor. It is characterized by a hummocky morphology due to 280 sub-circular to elliptical mounds, about 660 cones, and 30 pockmarks. The mounds and pockmarks alignments follow those of the main structural discontinuity affecting the Gulf of Naples. The seafloor swelling and breaching require relatively low pressures (about 2-3 MPa), and the sub-seafloor structures, which consists of 'pagodas' affecting the present-day seabed, record the active upraise, pressurization, and release of magmatic fluids. The gas composition of the sampled submarine emissions is consistent with that of the emissions from the hydrothermal systems of Ischia, CampiFlegrei and Somma-Vesuvius active volcanoes, and CO2 has a magmatic/thermometamorphic origin. The 3He/4He ratios (1.66-1.96 Ra) are slightly lower than in the Somma-Vesuvius and Campi Flegrei volcanoes (~2.6-3.0 Ra) indicating the contamination of fluids originated from the same magmatic source by crustal-derived radiogenic 4He. All these evidences concur to hypothesize an extended magmatic reservoir beneath Naples and its offshore. Seabed doming, faulting, and hydrothermal discharges are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. We conclude that seabed deformations and hydrothermal discharge must be included in the coastal hazard studies.

  1. Educational Geophysics at INGV, Rome (Italy)

    Dida Working Group Ingv,.


    Italy is a country prone to Earth phenomena such as earthquakes, volcanic eruptions, floods and landslides that left a trace in the memory of people. About 60% of the Italian territory is classified in the current seismic hazard maps, and large cities as Neaples and Catania are located close to the two largest active volcanoes of Europe (Mt. Vesuvius and Mt. Etna, respectively). Nevertheless, school programs are often inadequate about the natural hazards of the country. For this reason there are many requests from schoolteachers to visit with their classes the academic Institutions and to attend geophysical talks. The working group for educational activities of the Istituto Nazionale di Geofisica and Vulcanologia promotes and realizes Earth science outreach programs devoted to increase the knowledge of geophysical topics. The educational activity is one of the most important tasks of our Institution together with the research activities and the 24-hours survey of the Italian Seismic Network. The INGV hosts in its headquarter of Rome many visits of primary, secondary and high schools with an increasing demand year by year. Every year about 3,000 students visit our Institute over more than 60 open-days, and we participate to exhibitions and outreach projects organized by several Institutions. We show here what has been done at INGV for the geophysical education, underlining the problems and the successes of these activities. We describe also an educational project developed together with a teacher's team of secondary-school. Aim of this experience was to stimulate the interest of 12-year-old kids to unfamiliar arguments like seismology. The class was introduced to physical topics as waves and wave propagation by means of simple experiments. Then they visited the INGV were the research activities were shown, with emphasis on seismological studies; they were also thought how the Italian Seismic Network monitors earthquakes and how to use the P and S waves for their

  2. Volcano Analog Exploration Opportunities in Reunion Island

    Pignolet, Guy; Bertil, Alain; Huet, Patrice

    While general information has already been given in previous papers about the SALM (Moon Mars Analogue Site) in Reunion Island, this status papers gives more useful details with : - a survey of Lava Tubes and other volcanic structures at Piton de la Fournaise volcano that are suitable for Moon and Mars analogue studies, - an overview of sampling and other exploration and evaluation techniques that may be tested on the analogue site for future use on Solar System bodies

  3. Imaging Magma Plumbing Beneath Askja Volcano, Iceland

    Greenfield, T. S.; White, R. S.


    Using a dense seismic network we have imaged the plumbing system beneath Askja, a large central volcano in the Northern Volcanic Zone, Iceland. Local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. We find a pronounced low-velocity anomaly beneath the caldera at a depth of ~7 km around the depth of the brittle-ductile transition. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. We use relationships between mineralogy and seismic velocities to estimate that this region contains ~10% partial melt, similar to observations made at other volcanoes such as Kilauea. This low-velocity body is deeper than the depth range suggested by geodetic studies of a deflating source beneath Askja. Beneath the large low-velocity zone a region of reduced velocities extends into the lower crust and is coincident with seismicity in the lower crust. This is suggestive of a high temperature channel into the lower crust which could be the pathway for melt rising from the mantle. This melt either intrudes into the lower crust or stalls at the brittle-ductile boundary in the imaged body. Above this, melt can travel into the fissure swarm through large dikes or erupt within the Askja caldera itself.We generate travel time tables using a finite difference technique and the residuals used to simultaneously solve for both the earthquake locations and velocity structure. The 2014-15 Bárðarbunga dike intrusion has provided a 45 km long, distributed source of large earthquakes which are well located and provide accurate arrival time picks. Together with long-term background seismicity these provide excellent illumination of the Askja volcano from all directions.hhhh

  4. Geothermal Exploration of Newberry Volcano, Oregon

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)


    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  5. Monitoring active volcanoes: The geochemical approach

    Takeshi Ohba


    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  6. Detecting Blackholes and Volcanoes in Directed Networks

    Li, Zhongmou; Liu, Yanchi


    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to fur...

  7. A new permanent geomagnetic station at Colima volcano observatory, Mexico

    Esteban Hernández Quintero; Gerardo Cifuentes Nava; Enrique Cabral Cano; Jaime Urrutia Fucugauchi; René Chávez; Francisco Correa Mora; Ricardo Becerril; Juan José Ramírez


    The first geomagnetic station (COV) has been installed near Colima volcano by the Geophysics Institute of the National Autonomous University of Mexico, and Colima Volcano Observatory at the University of Colima. This station measure the scalar magnetic field and belongs to the geomagnetic monitoring network of active volcanoes in Mexico. Comparison between COV, IGRF (International Geomagnetic Reference Field) and TEO (Teoloyucan Geomagnetic Observatory) data shows a high correlation with a co...

  8. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcano logy were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented

  9. Citizen empowerment in volcano monitoring, communication and decision-making at Tungurahua volcano, Ecuador

    Bartel, B. A.; Mothes, P. A.


    Trained citizen volunteers called vigías have worked to help monitor and communicate warnings about Tungurahua volcano, in Ecuador, since the volcano reawoke in 1999. The network, organized by the scientists of Ecuador's Instituto Geofísico de la Escuela Politécnica Nacional (Geophysical Institute) and the personnel from the Secretaría Nacional de Gestión de Riesgos (Risk Management, initially the Civil Defense), has grown to more than 20 observers living around the volcano who communicate regularly via handheld two-way radios. Interviews with participants conducted in 2010 indicate that the network enables direct communication between communities and authorities; engenders trust in scientists and emergency response personnel; builds community; and empowers communities to make decisions in times of crisis.

  10. Active degassing of mantle-derived fluid: A geochemical study along the Vulture line, southern Apennines (Italy

    Caracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Martelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nuccio, P. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Paternoster, M.; Università della Basilicata; Fin, S.; Isotope Geosciences Unit, Scottish Universities Environmental Research Centre,


    We report the results of a geochemical study of gas emissions along a NE–SW transect in southern Italy in order to test the hypothesis that the region around Monte Vulture is affected by degassing of mantle-derived fluids through a lithospheric discontinuity. We also investigated lavas from the Monte Vulture volcano displaying 3He/4He (up to ~6.0 Ra) and Sr isotopes that are consistent with an origin inmantle that has hadminimal pollution from subducted Adriatic slab. Similar 3He/...

  11. Mud volcanoes of the Orinoco Delta, Eastern Venezuela

    Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.


    Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.

  12. The critical role of volcano monitoring in risk reduction

    R. I. Tilling


    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  13. Geologic map of Medicine Lake volcano, northern California

    Donnelly-Nolan, Julie M.


    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  14. Renaissance Neurosurgery: Italy's Iconic Contributions.

    Nanda, Anil; Khan, Imad Saeed; Apuzzo, Michael L


    Various changes in the sociopolitical milieu of Italy led to the increasing tolerance of the study of cadavers in the late Middle Ages. The efforts of Mondino de Liuzzi (1276-1326) and Guido da Vigevano (1280-1349) led to an explosion of cadaver-centric studies in centers such as Bologna, Florence, and Padua during the Renaissance period. Legendary scientists from this era, including Leonardo Da Vinci, Andreas Vesalius, Bartolomeo Eustachio, and Costanzo Varolio, furthered the study of neuroanatomy. The various texts produced during this period not only helped increase the understanding of neuroanatomy and neurophysiology but also led to the formalization of medical education. With increased understanding came new techniques to address various neurosurgical problems from skull fractures to severed peripheral nerves. The present study aims to review the major developments in Italy during the vibrant Renaissance period that led to major progress in the field of neurosurgery. PMID:26585723

  15. Italy's Prime Minister visits CERN

    Stefania Pandolfi


    On Tuesday, 7 July 2015, the Prime Minister of the Italian Republic, Matteo Renzi, visited CERN. He was accompanied by a delegation that included Italy's Minister for Education, University and Research, Stefania Giannini.   From left to right: Fernando Ferroni, President of the Istituto Nazionale di Fisica Nucleare (INFN); Sergio Bertolucci, CERN Director for Research and Scientific Computing; Stefania Giannini, Italy's Minister of Education, University and Research; Matteo Renzi, Prime Minister of the Italian Republic; Fabiola Gianotti, CERN Director-General Designate; Rolf Heuer, CERN Director-General.   The Prime Minister was welcomed by members of the CERN Management together with former CERN Director-General and Senator for Life of the Italian Republic, Carlo Rubbia. After a brief general introduction to CERN’s activities by Rolf Heuer, the Italian delegation visited LHC Point 1. After a tour of the ATLAS control room, they donned helmets to visit th...

  16. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    Guth, A. L.; Bluth, G. J.; Carn, S. A.


    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  17. Italy INAF Analysis Center Report

    Negusini, M.; Sarti, P.


    This report summarizes the activity of the Italian INAF VLBI Analysis Center. Our Analysis Center is located in Bologna, Italy and belongs to the Institute of Radioastronomy, which is part of the National Institute of Astrophysics. IRA runs the observatories of Medicina and Noto, where two 32-m VLBI AZ-EL telescopes are situated. This report contains the AC's VLBI data analysis activities and shortly outlines the investigations into the co-locations of space geodetic instruments.

  18. The Phillips Curve in Italy

    Rosa, Agostinho S.


    The estimation of the Phillips curve in Italy, using the wage inflation rate as a dependent variable, based on annual data from the period 1961-2012, using the Johansen Method, allows us to conclude two things. Firstly, in the long term, there are two long-term relationships: the wage inflation rate relates positively to the inflation rate, negatively to the unemployment rate and positively to the average labour productivity growth index, as was expected; the inflation rate relates positively...

  19. Pharmacovigilance in Italy: An overview

    Carmela Mazzitello; Stefania Esposito; Adele E De Francesco; Annalisa Capuano; Emilio Russo; Giovambattista De Sarro


    Introduction: Spontaneous reporting of adverse drug reactions (ADRs) is the basis of pharmacovigilance. In fact, ADRs are associated with a high degree of morbidity and mortality. However, underreporting by all healthcare professionals remains the major problem in Italy and in the rest of the world. The dissemination of pharmacovigilance knowledge among Italian healthcare professionals, and the new pharmacovigilance regulations may promote the early detection and reporting of ADRs. This revie...

  20. Retirement in Italy and Norway.

    Colombino, Ugo; Hernæs, Erik; Jia, Zhyiang; Strøm, Steinar


    A structural model for retirement and employment based on a flexible, parametric utility function is developed. The model requires only cross section data and is estimated on survey data for Italy and register data for Norway. The estimates indicate that the preference structure among middle-aged Italian males and Norwegian males and females who are approaching retirement has strong similarities. The utility function estimates from a model with no consumption smoothing, seem more reasonable t...

  1. Pharmacovigilance in Italy: An overview

    Carmela Mazzitello


    Full Text Available Introduction: Spontaneous reporting of adverse drug reactions (ADRs is the basis of pharmacovigilance. In fact, ADRs are associated with a high degree of morbidity and mortality. However, underreporting by all healthcare professionals remains the major problem in Italy and in the rest of the world. The dissemination of pharmacovigilance knowledge among Italian healthcare professionals, and the new pharmacovigilance regulations may promote the early detection and reporting of ADRs. This review examines the legislative framework concerning the pharmacovigilance in Italy. Materials and Methods: The information was collected from scientific articles and the websites of the Italian Ministry of Health and the Italian Medicines Agency (Agenzia Italiana del Farmaco, AIFA. Results: The pharmacovigilance system, both in Italy and Europe, has undergone profound changes. European legislation on pharmacovigilance has been changed in 2010 according to the EU Regulation 1235/2010 and Directive 2010/84/EU. Basically, the changes tend to increase the efficiency, speed and transparency of pharmacovigilance activities. The new Regulation (1235/2010 and the Directive (2010/84/EU aim to strengthen the system of pharmacovigilance, establish more precisely who is obliged to do what, and allow faster and easier circulation and retrieval of information about ADRs. Conclusion: A greater knowledge on what is the Italian pharmacovigilance legislation will be useful to improve the status of ADRs reporting and spread the culture of spontaneous reporting.


    C. BLASI


    Full Text Available

    The author recalls goals and deadlines of the Europena Community Habitats Directive 94/43/EEC and of the Natura 2000 Network. After saying that Italy has up to now only marginally took part in the definition of habitats and species to be included in the Annexes I, II, II e IV of the Habitat Directive, he underlines that only the collaboration between the Italian Botanical Society and the Italian Ministry of Environment – Nature Conservation Services, has allowed Italy to fill the gap with other countries. Furthermore, he relates the ongoing progress of Natura 2000 in Italy (Bioitaly: about 2700 sites collected, a useful collaboration between botanists, zoologists and ecologists, the constitution of a list of new habitats and species to be included into the Annexes of the Directive. Finally, he wishes a closer working relationship among phytosociologists, botanists and ecologists, in order to avoid the risk of replacing in the CORINE project the phytosociological approach with a less satisfactory physiognomic classification.

  3. Seismic risk perception in Italy

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro; Peruzza, Laura


    Risk perception is a fundamental element in the definition and the adoption of preventive counter-measures. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. This paper presents results of a survey on seismic risk perception in Italy conducted from January 2013 to present . The research design combines a psychometric and a cultural theoretic approach. More than 7,000 on-line tests have been compiled. The data collected show that in Italy seismic risk perception is strongly underestimated; 86 on 100 Italian citizens, living in the most dangerous zone (namely Zone 1), do not have a correct perception of seismic hazard. From these observations we deem that extremely urgent measures are required in Italy to reach an effective way to communicate seismic risk. Finally, the research presents a comparison between groups on seismic risk perception: a group involved in campaigns of information and education on seismic risk and a control group.

  4. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.


    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  5. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.


    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052° C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  6. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina


    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  7. Lahar Hazard Modeling at Tungurahua Volcano, Ecuador

    Sorensen, O. E.; Rose, W. I.; Jaya, D.


    Tungurahua Volcano (Lat. 01^o28'S; Long. 78^o27'W), located in the central Ecuadorian Andes, is an active edifice that rises more than 3 km above surrounding topography. Since European settlement in 1532, Tungurahua has experienced four major eruptive episodes: 1641-1646, 1773-1781, 1886-1888 and 1916-1918 (Hall et al, JVGR V91; p1-21, 1999). In September 1999, Tungurahua began a new period of activity that continues to the present. During this time, the volcano has erupted daily, depositing ash and blocks on its steep flanks. A pattern of continuing eruptions, coupled with rainfall up to 28 mm in a 6 hour period (rain data collected in Baños at 6-hr intervals, 3000 meters below Tungurahua’s summit), has produced an environment conducive to lahar mobilization. Tungurahua volcano presents an immediate hazard to the town of Baños, an important tourist destination and cultural center with a population of about 25,000 residents located 8 km from the crater. During the current eruptive episode, lahars have occurred as often as 3 times per week on the northern and western slopes of the volcano. Consequently, the only north-south trending highway on the west side of Tungurahua has been completely severed at the intersection of at least ten drainages, where erosion has exceeded 10 m since 1999. The La Pampa quebrada, located 1 km west of Baños, is the most active of Tungurahua's drainages. At this location, where the slope is moderate, lahars continue to inundate the only highway linking Baños to the Pan American Highway. Because of steep topography, the conventional approach of measuring planimetric inundation areas to determine the scale of lahars could not be employed. Instead, cross sections were measured in the channels using volume/cross-sectional inundation relationships determined by (Iverson et al, GSABull V110; no. 8, p972-984, 1998). After field observations of the lahars, LAHARZ, a program used in a geographic information system (GIS) to objectively map

  8. Space Radar Image of Kiluchevskoi, Volcano, Russia


    This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the

  9. 36 CFR 7.25 - Hawaii Volcanoes National Park.


    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park....

  10. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  11. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Schipper, Stacia; Mattox, Stephen


    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  12. Geology of El Chichon volcano, Chiapas, Mexico

    Duffield, W.A.; Tilling, R.I.; Canul, R.


    The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent

  13. Geology of El Chichon volcano, Chiapas, Mexico

    Duffield, Wendell A.; Tilling, Robert I.; Canul, Rene


    The (pre-1982) 850-m-high andesitic stratovolcano El Chichón, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, México. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chichón is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chichón is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chichón consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chichón in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic

  14. Lava Flows On Ascraeus Mons Volcano


    Ascraeus Mons Volcano: Like Earth, Mars has many volcanoes and volcanic features. This high-resolution view shows some of the lava flows near the summit of Ascraeus Mons, one of the three giant shield volcanoes known as the 'Tharsis Montes'. Volcanoes form when magma (molten rock) erupts out onto the surface of a planet. Based on Viking-era observations, Ascraeus Mons is considered to be one of the tallest volcanoes on Mars... its summit is more than 11 km (6.8 miles) above the surrounding plain. The summit is more than 23 km (14 miles) higher in elevation than the place where Mars Pathfinder landed in July 1997.Description of MOC Image: This picture shows an area that is about 20 km (12 miles) higher in elevation than the Mars Pathfinder landing site. The picture shows three main features: (1) a crater at the center-right, (2) a sinuous, discontinuous channel across the upper half, and (3) a rough and pitted, elevated surface across the lower half of the image.(1) Crater at center right. Distinguishing meteor craters from volcanic craters can sometimes be a challenge on Mars. This particular crater was most likely formed by meteor impact because it has a raised rim and a faint radial ejecta pattern around the outside of it. This crater is 600 m (2000 feet) across, about 3/4 the size of the famous 'Meteor Crater' near Winslow, Arizona.(2) Sinuous channel. The type of discontinuous channel running across the upper half of the image is sometimes referred to as a 'sinuous rille'. These are common on the volcanic plains of the Moon and among volcanoes and volcanic plains on Earth. Such a channel was once a lava tube. It is running down the middle of an old lava flow. The 'tube' looks like a 'channel' because its roof has collapsed. The discontinuous nature of this channel is the result of the collapse, or 'cave-in' of what was once the roof of the lava tube. It is common for certain types of relatively fluid lavas to form lava tubes. As it is being emplaced, the outer

  15. Galactic Super-volcano in Action


    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  16. On Relations between Current Global Volcano Databases

    Newhall, C. G.; Siebert, L.; Sparks, S.


    The Smithsonian’s Volcano Reference File (VRF), the database that underlies Volcanoes of the World and This Dynamic Planet, is the premier source for the “what, when, where, and how big?” of Holocene and historical eruptions. VOGRIPA (Volcanic Global Risk Identification and Analysis) will catalogue details of large eruptions, including specific phenomena and their impacts. CCDB (Collapse Caldera Database) also considers large eruptions with an emphasis on the resulting calderas. WOVOdat is bringing monitoring data from the world’s observatories into a centralized database in common formats, so that they can be searched and compared during volcanic crises and for research on preeruption processes. Oceanographic and space institutions worldwide have growing archives of volcano imagery and derivative products. Petrologic databases such as PETRODB and GEOROC offer compositions of many erupted and non-erupted magmas. Each of these informs and complements the others. Examples of interrelations include: ● Information in the VRF about individual volcanoes is the starting point and major source of background “volcano” data in WOVOdat, VOGRIPA, and petrologic databases. ● Images and digital topography from remote sensing archives offer high-resolution, consistent geospatial "base maps" for all of the other databases. ● VRF data about eruptions shows whether unrest of WOVOdat culminated in an eruption and, if yes, its type and magnitude. ● Data from WOVOdat fills in the “blanks” between eruptions in the VRF. ● VOGRIPA adds more detail to the VRF’s descriptions of eruptions, including quantification of runout distances, expanded estimated column heights and eruption impact data, and other parameters not included in the Smithsonian VRF. ● Petrologic databases can add detail to existing petrologic data of the VRF, WOVOdat, and VOGRIPA, e.g, detail needed to estimate viscosity of melt and its influence on magma and eruption dynamics ● Hazard

  17. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Riad Hosein


    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  18. Measurements of radon and chemical elements: Popocatepetl volcano

    The Popocatepetl volcano is a higher risk volcano located at 60 Km from Mexico City. Radon measurements on soil in two fixed seasons located in the north slope of volcano were carried out. Moreover the radon content, major chemical elements and tracks in water samples of three springs was studied. The radon of soil was determined with solid detectors of nuclear tracks (DSTN). The radon in subterranean water was evaluated through the liquid scintillation method and it was corroborated with an Alpha Guard equipment. The major chemical elements were determined with conventional chemical methods and the track elements were measured using an Icp-Ms equipment. The radon on soil levels were lower, indicating a moderate diffusion of the gas across the slope of the volcano. The radon in subterranean water shown few changes in relation with the active scene of the volcano. The major chemical elements and tracks showed a stable behavior during the sampling period. (Author)

  19. Energy and environment in Italy

    Based upon the more meaningful changing recorded within the Italian energy sector in the year 2000, the Studies Department of ENEA (the Italian National board for new technologies, energy and environment) prepared the 'Rapporto Energia e Ambiente 2000', which provides a picture of the country energy and energy-related activities concerning the environment. In this paper, it is only provided a summary of the whole work. The complete report can be downloaded from the ENEA main page ( Italy gross domestic product (Gdp) grew by almost 3% in the year 2000, mostly sustained by an increase in the industrial production and services, as well. At the same time the total energy consumption rose to almost 185 Mtoe (+1% over 1999). Because Gdp grew more than the energy consumption, the energy intensity decreases in the year 2000. Almost 82% of the Italian energy needs (mainly oil and gas, even if electricity imports are increasing) depend upon imports. This heavy burden makes Italy particularly sensitive to both the oil price fluctuations and the euro/dollar exchange rate. Transportation absorbs a large and growing share of the energy consumption while showing quite an impact on the environment. From the supply side, renewable energy sources appear very promising because they allow the use of local resources, promote local development and may create new jobs, in area of the country with less favourable economic conditions. First among the European countries, a market mechanism to increase the use of renewable by establishing that a share of the whole electricity production (currently set at 2%) has to come from renewable has been introduced. However among the OECD countries, Italy records the lowest rate of R/D investments to GDP. This rate should more than double if the new opportunities coming from the development of innovative energy technologies have to be fully exploited

  20. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Ewert, J. W.; Driedger, C. L.


    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  1. The gypsum karst of Italy

    Forti P.; Sauro U.


    Gypsum karst has been studied in Italy since the last decades of the l9th Century. In 1917 the geographer Olinto Marinelli published �Fenomeni carsici delle regioni gessose d�Italia�, a fundamental synthesis of the early research. He distinguished 56 different morpho-karstic gypsum units and/or areas, which are all different in size and character, and described them, paying special attention to their surface morphology and hydrology. Marinelli listed all the main gypsum units and only a few s...

  2. Overboundary nuclear risk in Italy

    Following the Chernobyl accident, a National Plan of protective measures for radiological emergencies has been set up in Italy to cope with those nuclear risks which may require actions at national level. As the Italian nuclear installations are, at present, not operational, the nuclear risk sources considered in the National Plan include accidents at nuclear power plants near the Italian borders or aboard nuclear-propelled ships, the fall of nuclear-powered satellites and the transportation of radioactive materials. Some of these events would potentially concern the whole national territory, while the typology of others is such that only small areas of the national territory are likely to be affected

  3. Coal use in Italy and environmental compatibility

    Fossil fuels have in Italy great importance. In Italy, in terms of environmental protection and for social acceptance, coal has had a real opposition not verified in other countries. Environmental compatibility of coal cycle and related technologies are discussed also consequently at the Kyoto protocol

  4. Research on the Otter in Italy

    Prigioni C.


    Full Text Available In Italy, otters mainly occur only in some rivers in Central and Southern Italy, plus a recently found population in the Northern Apennines. A detailed research programme has been undertaken on five rivers. A captive population of otters has been established at the Faunistic Park "La Torbiera" to obtain useful information to aid field research.

  5. Research on the Otter in Italy

    Prigioni C.


    In Italy, otters mainly occur only in some rivers in Central and Southern Italy, plus a recently found population in the Northern Apennines. A detailed research programme has been undertaken on five rivers. A captive population of otters has been established at the Faunistic Park "La Torbiera" to obtain useful information to aid field research.

  6. Volcano-ice interactions on Mars

    Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar compostion. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick

  7. Space Radar Image of Karisoke & Virunga Volcanoes


    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  8. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.


    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  9. The Upper Miocene magmatism of the Island of Elba (Central Italy): compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province

    Poli, Giampiero; Peccerillo, Angelo


    Late Miocene intrusive magmatism of the Island of Elba, Tuscany (central Italy), consists of stocks, laccoliths, sills, and dikes showing dominant monzogranite and granodiorite compositions, with minor leucogranitic dike-sill complexes, aplites and pegmatites. A few mafic rocks occur as dikes, and as microgranular enclaves hosted inside the main intrusions. The Elba magmatism belongs to the Tuscan Magmatic Province, an 8.5 to 0.3 Ma old association of mafic to felsic rocks, of mantle and crustal origin, cropping out in Tuscany and northern Latium. Major and trace element abundances of Elba rocks are extremely variable, testifying to complex origin and evolutionary history for magmas. 87Sr/86Sr (~ 0.708-0.723) and 143Nd/144Nd (~0.5121-0.5124) are close or within the field of upper continental crust, with mafic dikes showing the lowest Sr- and the highest Nd-isotope ratios. Petrological, geochemical and textural data of Elba igneous rocks are better explained by invoking a leading role for multiple mixing processes between crust-derived felsic magmas and mafic-intermediate melts of ultimate mantle origin, accompanied by fractional crystallisation. Proxies of crustal anatectic melts are represented by some highly radiogenic-Sr rocks from northern Monte Capanne pluton. Crustal magmas were formed by melting of sedimentary rocks, likely metagreywakes, at pressures exceeding 0.3 GPa. Mafic-intermediate magmas have calcalkaline to shoshonitic compositions and originated in an anomalous mantle, moderately contaminated by siliceous sediments. Selective enrichments in Sr, Ba and LREE are shown by some intermediate rocks (Orano dikes), revealing the occurrence of a distinct magma type at Elba. Similar compositions are also observed at Capraia island, San Vincenzo and Campiglia (southern Tuscany), suggesting a regional relevance for this magma type. Sr-Ba-LREE-rich rocks do not show obvious genetic relationships with other Tuscany magmas and may represent a distinct end

  10. Helium isotopes in gases of the mud volcanos of Azerbaydzhan

    Aliyev, Ad.A.; Kabulova, A.Ya.


    A study of the isotopic composition of helium facilitates the knowledge of genetic questions about mud volcanic activity. The isotopic ratio of He/sup 3/ to He/sup 4/ was studied for gases of active mud volcanos of Azerbaydzhan and they were compared to analogous data from eastern Georgia and southwestern Turkmenia. Information is presented about the chemical composition and isotopic ratios of the gases of the mud volcanos of the cited regions. Proceeding from the data from the isotopic ratio of helium, as well as from the chemical composition of the gases (hydrocarbon and nonhydrocarbon components) of the mud volcanos, it is possible to postulate a genetic link between the latter and the gases of the sedimentary series of the earth's crust. The volume of submerged helium in the gases of the mud volcanos of Azerbaydzhan is not great (0.15-2.7 percent). The isotopic composition of the methane carbon in the gases of several mud volcanos was also studied. From the value of sigmaC/sup 13/ it is possible to assume that the gases of the mud volcanos are mainly generated in a thermocatalytic zone where the formation of the basic mass of the oil and hydrocarbon gas occurs. The obtained results confirm the conclusion relative to the primary generation of gases of mud volcanos in oil and gas deposits in the sedimentary series of the earth's crust.