WorldWideScience

Sample records for capacitation

  1. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    International Nuclear Information System (INIS)

    Dong Linxi; Chen Jindan; Huo Weihong; Li Yongjie; Sun Lingling; Yan Haixia

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30: 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  2. False capacitance of supercapacitors

    OpenAIRE

    Ragoisha, G. A.; Aniskevich, Y. M.

    2016-01-01

    Capacitance measurements from cyclic voltammetry, galvanostatic chronopotentiometry and calculation of capacitance from imaginary part of impedance are widely used in investigations of supercapacitors. The methods assume the supercapacitor is a capacitor, while real objects correspond to different equivalent electric circuits and show various contributions of non-capacitive currents to the current which is used for calculation of capacitance. Specific capacitances which are presented in F g-1...

  3. A new interface weak-capacitance detection ASIC of capacitive liquid level sensor in the rocket

    Science.gov (United States)

    Yin, Liang; Qin, Yao; Liu, Xiao-Wei

    2017-11-01

    A new capacitive liquid level sensing interface weak-capacitance detection ASIC has been designed. This ASIC realized the detection of the output capacitance of the capacitive liquid level sensor, which converts the output capacitance of the capacitive liquid level sensor to voltage. The chip is fabricated in a standard 0.5μm CMOS process. The test results show that the linearity of capacitance detection of the ASIC is 0.05%, output noise is 3.7aF/Hz (when the capacitance which will be detected is 40 pF), the stability of capacitance detection is 7.4 × 10-5pF (1σ, 1h), the output zero position temperature coefficient is 4.5 uV/∘C. The test results prove that this interface ASIC can meet the requirement of high accuracy capacitance detection. Therefore, this interface ASIC can be applied in capacitive liquid level sensing and capacitive humidity sensing field.

  4. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  5. An approach to evaluate capacitance, capacitive reactance and resistance of pivoted pads of a thrust bearing

    Science.gov (United States)

    Prashad, Har

    1992-07-01

    A theoretical approach is developed for determining the capacitance and active resistance between the interacting surfaces of pivoted pads and thrust collar, under different conditions of operation. It is shown that resistance and capacitive reactance of a thrust bearing decrease with the number of pads times the values of these parameters for an individual pad, and that capacitance increases with the number of pads times the capacitance of an individual pad. The analysis presented has a potential to diagnose the behavior of pivoted pad thrust bearings with the angle of tilt and the ratio of film thickness at the leading to trailing edge, by determining the variation of capacitance, resistance, and capacitive reactance.

  6. Ferroelectric negative capacitance domain dynamics

    Science.gov (United States)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  7. Aspheric surface measurement using capacitive probes

    Science.gov (United States)

    Tao, Xin; Yuan, Daocheng; Li, Shaobo

    2017-02-01

    With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.

  8. Efficiency of Capacitively Loaded Converters

    DEFF Research Database (Denmark)

    Andersen, Thomas; Huang, Lina; Andersen, Michael A. E.

    2012-01-01

    This paper explores the characteristic of capacitance versus voltage for dielectric electro active polymer (DEAP) actuator, 2kV polypropylene film capacitor as well as 3kV X7R multi layer ceramic capacitor (MLCC) at the beginning. An energy efficiency for capacitively loaded converters...... is introduced as a definition of efficiency. The calculated and measured efficiency curves for charging DEAP actuator, polypropylene film capacitor and X7R MLCC are provided and compared. The attention has to be paid for the voltage dependent capacitive load, like X7R MLCC, when evaluating the charging...... polypropylene film capacitor can be the equivalent capacitive load. Because of the voltage dependent characteristic, X7R MLCC cannot be used to replace the DEAP actuator. However, this type of capacitor can be used to substitute the capacitive actuator with voltage dependent property at the development phase....

  9. Capacitance of circular patch resonator

    International Nuclear Information System (INIS)

    Miano, G.; Verolino, L.; Naples Univ.; Panariello, G.; Vaccaro, V.G.; Naples Univ.

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants

  10. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Fragiacomo, Giulio; Hansen, Ole

    2009-01-01

    This paper describes the design and fabrication of a capacitive pressure sensor that has a large capacitance signal and a high sensitivity of 76 pF/bar in touch mode operation. Due to the large signal, problems with parasitic capacitances are avoided and hence it is possible to integrate the sensor...... bonding to create vacuum cavities. The exposed part of the sensor is perfectly flat such that it can be coated with corrosion resistant thin films. Hysteresis is an inherent problem in touch mode capacitive pressure sensors and a technique to significantly reduce it is presented....... with a discrete components electronics circuit for signal conditioning. Using an AC bridge electronics circuit a resolution of 8 mV/mbar is achieved. The large signal is obtained due to a novel membrane structure utilizing closely packed hexagonal elements. The sensor is fabricated in a process based on fusion...

  11. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  12. Nanoscale capacitance: A quantum tight-binding model

    Science.gov (United States)

    Zhai, Feng; Wu, Jian; Li, Yang; Lu, Jun-Qiang

    2017-01-01

    Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C‧ and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C‧ moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C‧. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.

  13. Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.

    Science.gov (United States)

    Zhang, Yao; Ma, Rui; Zhen, Xue V; Kudva, Yogish C; Bühlmann, Philippe; Koester, Steven J

    2017-11-08

    A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.

  14. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation

    NARCIS (Netherlands)

    Porada, S.; Hamelers, H.V.M.; Bryjak, M.; Presser, V.; Biesheuvel, P.M.; Weingarth, D.

    2014-01-01

    Capacitive technologies, such as capacitive deionization and energy harvesting based on mixing energy (“capmix” and “CO2 energy”), are characterized by intermittent operation: phases of ion electrosorption from the water are followed by system regeneration. From a system application point of view,

  15. Improved capacitance sensor with variable operating frequency for scanning capacitance microscopy

    International Nuclear Information System (INIS)

    Kwon, Joonhyung; Kim, Joonhui; Jeong, Jong-Hwa; Lee, Euy-Kyu; Seok Kim, Yong; Kang, Chi Jung; Park, Sang-il

    2005-01-01

    Scanning capacitance microscopy (SCM) has been gaining attention for its capability to measure local electrical properties in doping profile, oxide thickness, trapped charges and charge dynamics. In many cases, stray capacitance produced by different samples and measurement conditions affects the resonance frequency of a capacitance sensor. The applications of conventional SCM are critically limited by the fixed operating frequency and lack of tunability in its SCM sensor. In order to widen SCM application to various samples, we have developed a novel SCM sensor with variable operating frequency. By performing variable frequency sweep over the band of 160 MHz, the SCM sensor is tuned to select the best and optimized resonance frequency and quality factor for each sample measurement. The fundamental advantage of the new variable frequency SCM sensor was demonstrated in the SCM imaging of silicon oxide nano-crystals. Typical sensitivity of the variable frequency SCM sensor was found to be 10 -19 F/V

  16. The Capacitive Magnetic Field Sensor

    Science.gov (United States)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  17. Virtual electrical capacitance tomography sensor

    International Nuclear Information System (INIS)

    Li, Y; Yang, W Q

    2005-01-01

    Electrical capacitance tomography (ECT) is an effective technique for elucidating the distribution of dielectric materials inside closed pipes or vessels. This paper describes a virtual electrical capacitance tomography (VECT) system, which can simulate a range of sensor and hardware configurations and material distributions. A selection of popular image reconstruction algorithms has been made available and image error and capacitance error tools enable their performance to be evaluated and compared. Series of frame-by-frame results can be stored for simulating real-time dynamic flows. The system is programmed in Matlab with DOS functions. It is convenient to use and low-cost to operate, providing an effective tool for engineering experiment

  18. Flexible PVDF ferroelectric capacitive temperature sensor

    KAUST Repository

    Khan, Naveed

    2015-08-02

    In this paper, a capacitive temperature sensor based on polyvinylidene fluoride (PVDF) capacitor is explored. The PVDF capacitor is characterized below its Curie temperature. The capacitance of the PVDF capacitor changes vs temperature with a sensitivity of 16pF/°C. The linearity measurement of the capacitance-temperature relation shows less than 0.7°C error from a best fit straight line. An LC oscillator based temperature sensor is demonstrated based on this capacitor.

  19. Calculation of secondary capacitance of compact Tesla pulse transformer

    International Nuclear Information System (INIS)

    Yu Binxiong; Liu Jinliang

    2013-01-01

    An analytic expression of the secondary capacitance of a compact Tesla pulse transformer is derived. Calculated result by the expression shows that two parts contribute to the secondary capacitance, namely the capacitance between inner and outer magnetic cores and the attached capacitance caused by the secondary winding. The attached capacitance equals to the capacitance of a coaxial line which is as long as the secondary coil, and whose outer and inner diameters are as large as the inner diameter of the outer magnetic and the outer diameter of the inner magnetic core respectively. A circuital model for analyzing compact Tesla transformer is built, and numeric calculation shows that the expression of the secondary capacitance is correct. Besides, a small compact Tesla transformer is developed, and related test is carried out. Test result confirms the calculated results by the expression derived. (authors)

  20. Quantum capacitance of the armchair-edge graphene nanoribbon

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Quantum capacitance of the ... Abstract. The quantum capacitance, an important parameter in the design of nanoscale devices, is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The quantum capacitance ...

  1. Resistive and Capacitive Based Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Winncy Y. Du

    2008-04-01

    Full Text Available Resistive and capacitive (RC sensors are the most commonly used sensors. Their applications span homeland security, industry, environment, space, traffic control, home automation, aviation, and medicine. More than 30% of modern sensors are direct or indirect applications of the RC sensing principles. This paper reviews resistive and capacitive sensing technologies. The physical principles of resistive sensors are governed by several important laws and phenomena such as Ohm’s Law, Wiedemann-Franz Law; Photoconductive-, Piezoresistive-, and Thermoresistive Effects. The applications of these principles are presented through a variety of examples including accelerometers, flame detectors, pressure/flow rate sensors, RTDs, hygristors, chemiresistors, and bio-impedance sensors. The capacitive sensors are described through their three configurations: parallel (flat, cylindrical (coaxial, and spherical (concentric. Each configuration is discussed with respect to its geometric structure, function, and application in various sensor designs. Capacitance sensor arrays are also presented in the paper.

  2. Capacitance of carbon-based electrical double-layer capacitors.

    Science.gov (United States)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  3. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up

  4. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...

  5. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  6. Scanning Capacitance Microscopy | Materials Science | NREL

    Science.gov (United States)

    obtained using scanning capacitance microscopy. Top Right: Image of p-type and n-type material, obtained 'fingers' of light-colored n-type material on a yellow and blue background representing p-type material material, obtained using scanning capacitance microscopy, in a sample semiconductor device; the image shows

  7. Capacitance densitometer for flow regime identification

    International Nuclear Information System (INIS)

    Shipp, R.L. Jr.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid

  8. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  9. Ferroelectric Negative Capacitance Domain Dynamics

    OpenAIRE

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2017-01-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transien...

  10. Capacitive divider for output voltage measurement of intense electron beam accelerator

    International Nuclear Information System (INIS)

    Ding Desheng; Yi Lingzhi; Yu Binxiong; Hong Zhiqiang; Liu Jinliang

    2012-01-01

    A kind of simple-mechanism, easy-disassembly self-integrating capacitive divider used for measuring diode output voltage of intense electron beam accelerator (IEBA) is developed. The structure of the capacitive divider is described, and the capacitance value of the capacitive divider is calculated by theoretical analysis and electromagnetic simulation. The dependence of measurement voltage on electrical parameters such as stray capacitance, earth capacitance of front resistance is obtained by PSpice simulation. Measured waveforms appear overshoot phenomenon when stray capacitance of front resistance is larger, and the wavefront will be affected when earth capacitance of front resistance is larger. The diode output voltage waveforms of intense electron beam accelerator, are measured by capacitive divider and calibrated by water resistance divider, which is accordance with that measured by a resistive divider, the division ratio is about 563007. The designed capacitive divider can be used to measure high-voltage pulse with 100 ns full width at half maximum. (authors)

  11. Distribution of coronary arterial capacitance in a canine model.

    Science.gov (United States)

    Lader, A S; Smith, R S; Phillips, G C; McNamee, J E; Abel, F L

    1998-03-01

    The capacitative properties of the major left coronary arteries, left main (LM), left anterior descending (LAD), and left circumflex (LCX), were studied in 19 open-chest isolated dog hearts. Capacitance was determined by using ramp perfusion and a left ventricular-to-coronary shunt diastolic decay method; both methods gave similar results, indicating a minimal systolic capacitative component. Increased pericardial pressure (PCP), 25 mmHg, was used to experimentally alter transmural wall pressure. The response to increased PCP was different in the LAD vs. LCX; increasing PCP decreased capacitance in the LCX but increased capacitance in the LAD. This may have been due to the different intramural vs. epicardial volume distribution of these vessels and a decrease in intramural tension during increased PCP. Increased PCP decreased LCX capacitance by approximately 13%, but no changes in conductance or zero flow pressure intercept occurred in any of the three vessels, i. e., evidence against the waterfall theory of vascular collapse at these levels of PCP. Coronary arterial capacitance was also linearly related to perfusion pressure.

  12. Switchless charge-discharge circuit for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Kryszyn, J; Smolik, W T; Radzik, B; Olszewski, T; Szabatin, R

    2014-01-01

    The main factor limiting the performance of electrical capacitance tomography (ECT) is an extremely low value of inter-electrode capacitances. The charge-discharge circuit is a well suited circuit for a small capacitance measurement due to its immunity to noise and stray capacitance, although it has a problem associated with a charge injected by the analogue switches, which results in a dc offset. This paper presents a new diode-based circuit for capacitance measurement in which a charge transfer method is realized without switches. The circuit was built and tested in one channel configuration with 16 multiplexed electrodes. The performance of the elaborated circuit and a comparison with a classic charge-discharge circuit are presented. The elaborated circuit can be used for sensors with inter-electrode capacitances not lower than 10 fF. The presented approach allows us to obtain a similar performance to the classic charge-discharge circuit, but has a simplified design. A lack of the need to synchronize the analogue switches in the transmitter and the receiver part of this circuit could be a desirable feature in the design of measurement systems integrated with electrodes. (paper)

  13. Solar Cell Capacitance Determination Based on an RLC Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Petru Adrian Cotfas

    2018-03-01

    Full Text Available The capacitance is one of the key dynamic parameters of solar cells, which can provide essential information regarding the quality and health state of the cell. However, the measurement of this parameter is not a trivial task, as it typically requires high accuracy instruments using, e.g., electrical impedance spectroscopy (IS. This paper introduces a simple and effective method to determine the electric capacitance of the solar cells. An RLC (Resistor Inductance Capacitor circuit is formed by using an inductor as a load for the solar cell. The capacitance of the solar cell is found by measuring the frequency of the damped oscillation that occurs at the moment of connecting the inductor to the solar cell. The study is performed through simulation based on National Instruments (NI Multisim application as SPICE simulation software and through experimental capacitance measurements of a monocrystalline silicon commercial solar cell and a photovoltaic panel using the proposed method. The results were validated using impedance spectroscopy. The differences between the capacitance values obtained by the two methods are of 1% for the solar cells and of 9.6% for the PV panel. The irradiance level effect upon the solar cell capacitance was studied obtaining an increase in the capacitance in function of the irradiance. By connecting different inductors to the solar cell, the frequency effect upon the solar cell capacitance was studied noticing a very small decrease in the capacitance with the frequency. Additionally, the temperature effect over the solar cell capacitance was studied achieving an increase in capacitance with temperature.

  14. Electrosorption capacitance of nanostructured carbon-based materials.

    Science.gov (United States)

    Hou, Chia-Hung; Liang, Chengdu; Yiacoumi, Sotira; Dai, Sheng; Tsouris, Costas

    2006-10-01

    The fundamental mechanism of electrosorption of ions developing a double layer inside nanopores was studied via a combination of experimental and theoretical studies. A novel graphitized-carbon monolithic material has proven to be a good electrical double-layer capacitor that can be applied in the separation of ions from aqueous solutions. An extended electrical double-layer model indicated that the pore size distribution plays a key role in determining the double-layer capacitance in an electrosorption process. Because of the occurrence of double-layer overlapping in narrow pores, mesopores and micropores make significantly different contributions to the double-layer capacitance. Mesopores show good electrochemical accessibility. Micropores present a slow mass transfer of ions and a considerable loss of double-layer capacitance, associated with a shallow potential distribution inside pores. The formation of the diffuse layer inside the micropores determines the magnitude of the double-layer capacitance at low electrolyte concentrations and at conditions close to the point of zero charge of the material. The effect of the double-layer overlapping on the electrosorption capacitance can be reduced by increasing the pore size, electrolyte concentration, and applied potential. The results are relevant to water deionization.

  15. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz

    2016-05-03

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  16. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz; Omran, Hesham; Salama, Khaled N.

    2016-01-01

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  17. Design of double capacitances infrasonic receiver

    International Nuclear Information System (INIS)

    Wang Changhai; Han Kuixia; Wang Fei

    2003-01-01

    The article introduces the theory of infrasonic generation and reception of nuclear explosion. An idea of the design of double capacitances infrasonic receiver using CPLD technology is given in it. Compare with the single capacitance infrasonic receiver, sensitivity of the improved receiver can be improved scores of times, dynamic range can be improved largely, and the whole performance gets improvement a lots

  18. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  19. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  20. Bioenergetics of mammalian sperm capacitation.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.

  1. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham

    2014-09-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  2. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham; Arsalan, Muhammad; Salama, Khaled N.

    2014-01-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  3. A reciprocity-based formula for the capacitance with quadrupolar electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungbo [Gachon University of Medicine and Science, Incheon (Korea, Republic of)

    2011-11-15

    A new capacitance formula for the practical design and characterization of quadrupolar electrode arrays with capacitive structures was derived based on the reciprocal theorem. The reciprocity-based capacitance formula agreed with the empirical equations established to estimate the capacitance of a single strip line or disk electrode compensating for the fringing field effect that occurs at the electrode edge. The reciprocity-based formula was applied to compute the capacitance measurable by using a quadrupolar square electrode array with a symmetric dipole-dipole configuration and was compared with the analytical equation established based on the image method assuming that the electrodes were points. The results showed that the capacitance of the quadrupolar electrodes was determined by the size of the quadrupolar electrodes relative to the separation distance between the electrodes and that the reciprocity-based capacitance formula was in agreement with the established analytical equation if the separated distance between the electrodes relative to the electrode size was large enough.

  4. A reciprocity-based formula for the capacitance with quadrupolar electrodes

    International Nuclear Information System (INIS)

    Cho, Sungbo

    2011-01-01

    A new capacitance formula for the practical design and characterization of quadrupolar electrode arrays with capacitive structures was derived based on the reciprocal theorem. The reciprocity-based capacitance formula agreed with the empirical equations established to estimate the capacitance of a single strip line or disk electrode compensating for the fringing field effect that occurs at the electrode edge. The reciprocity-based formula was applied to compute the capacitance measurable by using a quadrupolar square electrode array with a symmetric dipole-dipole configuration and was compared with the analytical equation established based on the image method assuming that the electrodes were points. The results showed that the capacitance of the quadrupolar electrodes was determined by the size of the quadrupolar electrodes relative to the separation distance between the electrodes and that the reciprocity-based capacitance formula was in agreement with the established analytical equation if the separated distance between the electrodes relative to the electrode size was large enough.

  5. Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-03-01

    Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.

  6. Development trends of combined inductance-capacitance electromechanical energy converters

    Directory of Open Access Journals (Sweden)

    Karayan Hamlet

    2018-01-01

    Full Text Available In the article the modern state of completely new direction of electromechanical science such as combined inductive-capacitive electromechanics is considered. The wide spectra of its possible practical applications and prospects for further development are analyzed. A new approach for mathematical description of transients in dualcon jugate dynamic systems is proposed. On the basis of the algorithm differential equations for inductive-capacitive compatible electromechanical energy converters are derived. The generalized Lagrangian theory of combined inductively-capacitive electric machines was developed as a union of generalized Lagrangian models of inductive and capacitive electro-mechanical energy converters developed on the basis of the basic principles of binary-conjugate electrophysics. The author gives equations of electrodynamics and electromechanics of combined inductive-capacitive electric machines in case there are active electrotechnical materials of dual purpose (ferroelectromagnets in the structure of their excitation system. At the same time, the necessary Lagrangian for combined inductive-capacitive forces was built using new technologies of interaction between inductive and capacitive subsystems. The joint solution of these equations completely determines the dynamic behavior and energy characteristics of the generalized model of combined machines of any design and in any modes of interaction of their functional elements

  7. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    Directory of Open Access Journals (Sweden)

    Alpha A. Lee

    2016-06-01

    Full Text Available Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and hence power density. We show via an analytical theory and Monte Carlo simulations that charging is sensitively dependent on the affinity of ions to the pores, and that high capacitances can be obtained for ionophobic pores of widths significantly larger than the ion diameter. Our theory also predicts that charging can be hysteretic with a significant energy loss per cycle for intermediate ionophilicities. We use these observations to explore the parameter regimes in which a capacitance-power-hysteresis trilemma may be avoided.

  8. A capacitive ECG array with visual patient feedback.

    Science.gov (United States)

    Eilebrecht, Benjamin; Schommartz, Antje; Walter, Marian; Wartzek, Tobias; Czaplik, Michael; Leonhardt, Steffen

    2010-01-01

    Capacitive electrocardiogram (ECG) sensing is a promising technique for less constraining vital signal measurement and close to a commercial application. Even bigger trials testing the diagnostic significance were already done with single lead systems. Anyway, most applications to be found in research are limited to one channel and thus limited in its diagnostic relevance as only diseases coming along with a change of the heart rate can be diagnosed adequately. As a consequence the need for capacitive multi-channel ECGs combining the diagnostic relevance and the advantages of capacitive ECG sensing emerges. This paper introduces a capacitive ECG measurement system which allows the recording of standardized ECG leads according to Einthoven and Goldberger by means of an electrode array with nine electrodes.

  9. Negative capacitance in a ferroelectric capacitor.

    Science.gov (United States)

    Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-02-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

  10. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  11. cLite – A Capacitive Signal Conditioning IC

    Directory of Open Access Journals (Sweden)

    Krauss Gudrun

    2009-12-01

    Full Text Available The ZMD31210 cLite™ – a new member of the ZMDI’s Lite™ family of low-cost sensor signal conditioner (SSC integrated circuits – is described in this paper. The cLite™ is the first conditioner for capacitive sensors. Supporting sensor capacitances from 2 pF up to 260 pF, the new sensor signal conditioner covers a wide range of applications. An important aspect of conditioning a capacitance sensor input signal is the adaptation of the capacitive-to-digital converter (CDC input range to the sensor signal span and offset values in order to maximize accuracy. All typical features of the Lite™ family including the digital calibration math based on EEPROM-stored coefficients and a variety of outputs (I2C™, SPI, PDM, and programmable alarms are integrated in the cLite™ as well. Additional features including a sleep mode and low supply voltage range (down to 2.3 V support the low power concept. The paper focuses in particular on the capacitance sensor adaptation and high precision sensor conditioning.

  12. Study on effective MOSFET channel length extracted from gate capacitance

    Science.gov (United States)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  13. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  14. Reducing the capacitance of piezoelectric film sensors

    International Nuclear Information System (INIS)

    González, Martín G.; Sorichetti, Patricio A.; Santiago, Guillermo D.

    2016-01-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N"2, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  15. Capacitive-discharge-pumped copper bromide vapour laser

    International Nuclear Information System (INIS)

    Sukhanov, V B; Fedorov, V F; Troitskii, V O; Gubarev, F A; Evtushenko, Gennadii S

    2007-01-01

    A copper bromide vapour laser pumped by a high-frequency capacitive discharge is developed. It is shown that, by using of a capacitive discharge, it is possible to built a sealed off metal halide vapour laser of a simple design allowing the addition of active impurities into the working medium. (letters)

  16. The split delivery capacitated team orienteering problem

    NARCIS (Netherlands)

    Archetti, C.; Bianchessi, N.; Speranza, M. G.; Hertz, A.

    2014-01-01

    In this article, we study the capacitated team orienteering problem where split deliveries are allowed. A set of potential customers is given, each associated with a demand and a profit. The set of customers to be served by a fleet of capacitated vehicles has to be identified in such a way that the

  17. Percoll gradient-centrifuged capacitated mouse sperm have increased fertilizing ability and higher contents of sulfogalactosylglycerolipid and docosahexaenoic acid-containing phosphatidylcholine compared to washed capacitated mouse sperm.

    Science.gov (United States)

    Furimsky, Anna; Vuong, Ngoc; Xu, Hongbin; Kumarathasan, Premkumari; Xu, Min; Weerachatyanukul, Wattana; Bou Khalil, Maroun; Kates, Morris; Tanphaichitr, Nongnuj

    2005-03-01

    Although Percoll gradient centrifugation has been used routinely to prepare motile human sperm, its use in preparing motile mouse sperm has been limited. Here, we showed that Percoll gradient-centrifuged (PGC) capacitated mouse sperm had markedly higher fertilizing ability (sperm-zona pellucida [ZP] binding and in vitro fertilization) than washed capacitated mouse sperm. We also showed that the lipid profiles of PGC capacitated sperm and washed capacitated sperm differed significantly. The PGC sperm had much lower contents of cholesterol and phospholipids. This resulted in relative enrichment of male germ cell-specific sulfogalactosylglycerolipid (SGG), a ZP-binding ligand, in PGC capacitated sperm, and this would explain, in part, their increased ZP-binding ability compared with that of washed capacitated sperm. Analyses of phospholipid fatty acyl chains revealed that PGC capacitated sperm were enriched in phosphatidylcholine (PC) molecular species containing highly unsaturated fatty acids (HUFAs), with docosahexaenoic acid (DHA; C22: 6n-3) being the predominant HUFA (42% of total hydrocarbon chains of PC). In contrast, the level of PC-HUFAs comprising arachidonic acid (20:4n-6), docosapentaenoic acid (C22:5n-6), and DHA in washed capacitated sperm was only 27%. Having the highest unsaturation degree among all HUFAs in PC, DHA would enhance membrane fluidity to the uppermost. Therefore, membranes of PGC capacitated sperm would undergo fertilization-related fusion events at higher rates than washed capacitated sperm. These results suggested that PGC mouse sperm should be used in fertilization experiments and that SGG and DHA should be considered to be important biomarkers for sperm fertilizing ability.

  18. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  19. Can root electrical capacitance be used to predict root mass in soil?

    Science.gov (United States)

    Dietrich, R C; Bengough, A G; Jones, H G; White, P J

    2013-07-01

    Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates. The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes. Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series. The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.

  20. Carbon nanofiber supercapacitors with large areal capacitances

    KAUST Repository

    McDonough, James R.

    2009-01-01

    We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60 mg/ cm2 and 1.2 F/ cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical. © 2009 American Institute of Physics.

  1. Capacitive behavior of highly-oxidized graphite

    Science.gov (United States)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  2. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  3. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    Science.gov (United States)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  4. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  5. Carrier accumulation and depletion in point-contact capacitance-voltage measurements

    Science.gov (United States)

    Naitou, Yuichi

    2017-11-01

    Scanning capacitance microscopy (SCM) is a variation of atomic force microscopy in which a conductive probe tip detects the bias modulated capacitance for the purpose of measuring the nanoscale semiconductor carrier concentration. SCM can be regarded as a point-contact capacitance-voltage system, and its capacitance-voltage properties are different from those of a conventional parallel-plate capacitor. In this study, the charge accumulation and depletion behavior of a semiconductor sample were closely investigated by SCM. By analyzing the tip-sample approach curve, the effective probe tip area and charge depletion depth could be quantitatively determined.

  6. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  7. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  8. The capacitated team orienteering problem with incomplete service

    NARCIS (Netherlands)

    Archetti, Claudia; Bianchessi, Nicola; Speranza, M. Grazia

    2013-01-01

    In this paper we study the capacitated version of the Team Orienteering Problem (TOP), that is the Capacitated TOP (CTOP) and the impact of relaxing the assumption that a customer, if served, must be completely served. We prove that the profit collected by the CTOP with Incomplete Service (CTOP-IS)

  9. Capacitance for carbon capture

    International Nuclear Information System (INIS)

    Landskron, Kai

    2018-01-01

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO 2 into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Automatic Power Factor Correction Using Capacitive Bank

    OpenAIRE

    Mr.Anant Kumar Tiwari,; Mrs. Durga Sharma

    2014-01-01

    The power factor correction of electrical loads is a problem common to all industrial companies. Earlier the power factor correction was done by adjusting the capacitive bank manually [1]. The automated power factor corrector (APFC) using capacitive load bank is helpful in providing the power factor correction. Proposed automated project involves measuring the power factor value from the load using microcontroller. The design of this auto-adjustable power factor correction is ...

  11. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ya' akobovitz, A. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva (Israel); Bedewy, M. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. J. [Mechanosynthesis Group, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  12. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    International Nuclear Information System (INIS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-01-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices

  13. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    Science.gov (United States)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  14. EFFECT OF DIESEL CONTAMINATION ON CAPACITANCE VALUES OF CRUDE PALM OIL

    Directory of Open Access Journals (Sweden)

    C. H. FIZURA

    2014-06-01

    Full Text Available Measurement of crude palm oil (CPO contamination is a major concern in CPO quality monitoring. In this study, capacitive sensing technique was used to monitor diesel contamination levels in CPO. A low cost capacitive sensing system was developed by using AD7746 capacitance to digital converter. The capacitance value of CPO samples with different contamination levels (v/v% ranged from 0% to 50% was collected at a room temperature (25°C. The objective of this study is to find a relationship between capacitance values and diesel contamination levels in CPO. The results showed that capacitance value decreased as the diesel contamination levels increased. For the 0% to 50% contamination range, the regression equation was y = 0.0002x2 - 0.0125x + 0.936 with R2 value of 0.96. For the 0% to 10% contamination range (where the percentage was the representative of potential contaminations levels found in CPO the correlation equation was y = -0.02x + 0.95 with R2 value of 0.95. These results indicated that capacitive sensing technique has potential for CPO quality monitoring.

  15. High Voltage Bi-directional Flyback Converter for Capacitive Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    in the converter, including the most dominating parameters of the high voltage transformer viz., self-capacitance and leakage inductance. The specific capacitive load for this converter is a dielectric electro active polymer (DEAP) actuator, which can be used as an effective replacement for conventional actuators...... in a number of applications. In this paper, the discharging energy efficiency definition is introduced. The proposed converter has been experimentally tested with the film capacitive load and the DEAP actuator, and the experimental results are shown together with the efficiency measurements....

  16. Capacitance for carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Landskron, Kai [Department of Chemistry, Lehigh University, Bethlehem, PA (United States)

    2018-03-26

    Metal recycling: A sustainable, capacitance-assisted carbon capture and sequestration method (Supercapacitive Swing Adsorption) can turn scrap metal and CO{sub 2} into metal carbonates at an attractive energy cost. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    International Nuclear Information System (INIS)

    Fumagalli, L; Ferrari, G; Sampietro, M; Casuso, I; MartInez, E; Samitier, J; Gomila, G

    2006-01-01

    Nanoscale capacitance imaging with attofarad resolution (∼1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale

  18. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, L [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Ferrari, G [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Sampietro, M [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Casuso, I [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); MartInez, E [Plataforma de Nanotecnologia, Parc Cientific de Barcelona, C/ Josep Samitier 1-5, 08028-Barcelona (Spain); Samitier, J [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); Gomila, G [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain)

    2006-09-28

    Nanoscale capacitance imaging with attofarad resolution ({approx}1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale.

  19. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    Science.gov (United States)

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  20. Low Power/Low Voltage Interface Circuitry for Capacitive Sensors

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    This thesis focuses mainly on low power/low voltage interface circuits, implemented in CMOS, for capacitive sensors. A brief discussion of demands and possibilities for analog signal processing in the future is presented. Techniques for low power design is presented. This is done by analyzing power...... power consumption. It is shown that the Sigma-Delta modulator is advantageous when embedded in a feedback loop with a mechanical sensor. Here a micro mechanical capacitive microphone. Feedback and detection circuitry for a capacitive microphone is presented. Practical implementations of low power....../low voltage interface circuitry is presented. It is demonstrated that an amplifier optimized for a capacitive microphone implemented in a standard 0.7 micron CMOS technology competes well with a traditional JFET amplifier. Furthermore a low power/low voltage 3rd order Sigma-Delta modulator is presented...

  1. Development of electrical capacitance sensor for tomography

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Jaafar Abdullah; Ismail Mustapha; Sazrol Azizee Ariff; Susan Maria Sipaun; Lojius Lombigit

    2004-01-01

    Electrical capacitance tomography (ECT) is one of the successful methods for imaging 2-phase liquid/gas mixture in oil pipelines and solids/gas mixture in fluidized bed and pneumatic conveying system for improvement of process plants. This paper presents the design development of an electrical capacitance sensor for use with an ECT system. This project is aimed at developing a demonstration ECT unit to be used in the oil pipe line. (Author)

  2. Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors

    OpenAIRE

    Lee, Alpha A; Vella, Dominic; Goriely, Alain; Kondrat, Svyatoslav

    2015-01-01

    Nanoporous supercapacitors are an important player in the field of energy storage that fill the gap between dielectric capacitors and batteries. The key challenge in the development of supercapacitors is the perceived trade-off between capacitance and power delivery. Current efforts to boost the capacitance of nanoporous supercapacitors focus on reducing the pore size so that they can only accommodate a single layer of ions. However, this tight packing compromises the charging dynamics and he...

  3. Capacitance and surface of carbons in supercapacitors

    OpenAIRE

    Lobato Ortega, Belén; Suárez Fernández, Loreto; Guardia, Laura; Álvarez Centeno, Teresa

    2017-01-01

    This research is focused in the missing link between the specific surface area of carbons surface and their electrochemical capacitance. Current protocols used for the characterization of carbons applied in supercapacitors electrodes induce inconsistencies in the values of the interfacial capacitance (in F m−2), which is hindering the optimization of supercapacitors. The constraints of both the physisorption of N2 at 77 K and the standard methods used for the isotherm analysis frequently lead...

  4. Dispersion capacitive de l'interface H2SO4/Pt Capacitive dispersion ...

    African Journals Online (AJOL)

    Administrateur

    Département de Physique, Faculté des Sciences Exactes. Université des .... d'un comportement idéal de la capacité. Au vu .... Figure 2 : Photographie de la cellule Pt/0,5 MH2SO4 (fabriquée par Verre-Lab Constantine) plongée dans un bain.

  5. Capacitance level probe, Type FSK 88

    International Nuclear Information System (INIS)

    Vogt, W.

    2001-01-01

    The aim of the capacitive level probe, Type FSK 88, is to supervise the level within vessels continuously and to signalize alterations immediately. Since 1987 the level probe is installed in the pool for burn up fuel elements and in the reactor containment sump of BWRs, PWRs and WWERs. The capacitive level probe of type FSK 88 was qualified for Loss of Coolant Accidents and seismic events according to international rules. The measuring principle takes credit from the fact that the dielectric with different dielectric constants in a condensator changes the capacity of the condensator. (Authors)

  6. Clean energy generation using capacitive electrodes in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David; Bajracharya, S.; Bastos Sales, B.; Saakes, Michel; Hamelers, B.; Nijmeijer, Dorothea C.

    2013-01-01

    Capacitive reverse electrodialysis (CRED) is a newly proposed technology to generate electricity from mixing of salt water and fresh water (salinity gradient energy) by using a membrane pile as in reverse electrodialysis (RED) and capacitive electrodes. The salinity difference between salt water and

  7. Accurate sizing of supercapacitors storage system considering its capacitance variation.

    OpenAIRE

    Trieste , Sony; Bourguet , Salvy; Olivier , Jean-Christophe; Loron , Luc; Le Claire , Jean-Claude

    2011-01-01

    International audience; This paper highlights the energy errors made for the design of supercapacitors used as a main energy source. First of all, the paper presents the two definitions of capacitance of a capacitance-voltage dependent material. The number of supercapacitors is important for the application purchasing cost. That is why the paper introduces an analytical model and an electrical model along with an identification method for the capacitance variation. This variation is presented...

  8. Design of capacitance measurement module for determining critical cold temperature of tea leaves

    Directory of Open Access Journals (Sweden)

    Yongzong Lu

    2016-12-01

    Full Text Available Critical cold temperature is one of the most crucial control factors for crop frost protection. Tea leaf's capacitance has a significant response to cold injury and appears as a peak response to a typical low temperature which is the critical temperature. However, the testing system is complex and inconvenient. In view of these, a tea leaf's critical temperature detector based on capacitance measurement module was designed and developed to measure accurately and conveniently the capacitance. Software was also designed to measure parameters, record data, query data as well as data deletion module. The detector utilized the MSP430F149 MCU as the control core and ILI9320TFT as the display module, and its software was compiled by IAR5.3. Capacitance measurement module was the crucial part in the overall design which was based on the principle of oscillator. Based on hardware debugging and stability analysis of capacitance measurement module, it was found that the output voltage of the capacitance measurement circuit is stable with 0.36% average deviation. The relationship between capacitance and 1/Uc2 was found to be linear distribution with the determination coefficient above 0.99. The result indicated that the output voltage of capacitance measurement module well corresponded to the change in value of the capacitance. The measurement error of the circuit was also within the required range of 0 to 100 pF which meets the requirement of tea leaf's capacitance. Keywords: Tea leaves, Critical cold temperature, Capacitance peak response, Frost protection, Detector

  9. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  10. Electric field theory and the fallacy of void capacitance

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The concept of the capacitance of a gaseous void is discussed as applied to electrical insulation science. The most pertinent aspect of the capacitance definition is that of reference to a single-valued potential difference between surfaces. This implies that these surfaces must be surfaces...

  11. Capacitive Coupling in Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Zdenka Benesova

    2004-01-01

    Full Text Available The paper describes an algorithm for calculation of capacitances and charges on conductors in systems with earth wires and in double-circuit overhead lines with respect to phase arrangement. A balanced voltage system is considered. A suitable transposition of individual conductors enables to reduce the electric and magnetic fields in vicinity of overhead lines and to limit the inductive and capacitive linkage. The procedure is illustrated on examples the results of which lead to particular recommendations for designers.

  12. Transparent Flexible Active Faraday Cage Enables In Vivo Capacitance Measurement in Assembled Microsensor.

    Science.gov (United States)

    Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar

    2017-10-01

    Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.

  13. An integrated energy-efficient capacitive sensor digital interface circuit

    KAUST Repository

    Omran, Hesham

    2014-06-19

    In this paper, we propose an energy-efficient 13-bit capacitive sensor interface circuit. The proposed design fully relies on successive approximation algorithm, which eliminates the need for oversampling and digital decimation filtering, and thus low-power consumption is achieved. The proposed architecture employs a charge amplifier stage to acheive parasitic insensitive operation and fine absolute resolution. Moreover, the output code is not affected by offset voltages or charge injection. The successive approximation algorithm is implemented in the capacitance-domain using a coarse-fine programmable capacitor array, which allows digitizing wide capacitance range in compact area. Analysis for the maximum achievable resolution due to mismatch is provided. The proposed design is insensitive to any reference voltage or current which translates to low temperature sensitivity. The operation of a prototype fabricated in a standard CMOS technology is experimentally verified using both on-chip and off-chip capacitive sensors. Compared to similar prior work, the fabricated prototype achieves and excellent energy efficiency of 34 pJ/step.

  14. Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions.

    Science.gov (United States)

    Uralcan, Betul; Aksay, Ilhan A; Debenedetti, Pablo G; Limmer, David T

    2016-07-07

    We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid in agreement with recent experimental observations. The nonmonotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. Mirroring the capacitance, we find that the characteristic decay length of charge density correlations away from the electrode is also nonmonotonic. The correlation length first decreases with ion concentration as a result of better electrostatic screening but increases with ion concentration as a result of enhanced steric interactions. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such capacitive behavior is expected to be generic.

  15. Conjugate Image Theory Applied on Capacitive Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-01-01

    Full Text Available Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this optimal network as a function of the characteristics of the capacitive wireless link, as well for the series as for the parallel topology. The results are compared with the inductive power transfer system. Introduction of a new concept, the coupling function, enables the description of the compensation network of both an inductive and a capacitive system in two elegant equations, valid for the series and the parallel topology. This approach allows better understanding of the fundamentals of the wireless power transfer link, necessary for the design of an efficient system.

  16. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    Science.gov (United States)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  17. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.

    Science.gov (United States)

    Zhan, Cheng; Jiang, De-en

    2016-03-03

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. Our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  18. Development of an Intelligent Capacitive Mass Sensor Based on Co-axial Cylindrical Capacitor

    Directory of Open Access Journals (Sweden)

    Amir ABU AL AISH

    2009-06-01

    Full Text Available The paper presents a linear, robust and intelligent capacitive mass sensor made of a co-axial cylindrical capacitor. It is designed such that the mass under measurement is directly proportional to the capacitance of the sensor. The average value of the output voltage of a capacitance to voltage converter is proportional to the capacitance of the sensor. The output of the converter is measured and displayed, as mass, with the help of microcontroller. The results are free from the effect of stray capacitances which cause errors at low values of capacitances. Developed sensor is linear, free from errors due to temperature and highly flexible in design. The proto-type of the mass sensor can weigh up to 4 kilogram only.

  19. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.

    Science.gov (United States)

    Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan

    2016-11-14

    There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H₂SO₄. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.

  20. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Dang

    2016-11-01

    Full Text Available There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs on reduced graphene oxide (rGO. The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H2SO4. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g, and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.

  1. The Design of Phase-Locked-Loop Circuit for Precision Capacitance Micrometer

    Directory of Open Access Journals (Sweden)

    Li Shujie

    2016-01-01

    Full Text Available High precision non-contact micrometer is normally divided into three categories: inductance micrometer, capacitance micrometer and optical interferometer micrometer. The capacitance micrometer is widely used because it has high performance to price ratio. With the improvement of automation level, precision of capacitance micrometer is required higher and higher. Generally, capacitance micrometer consists of the capacitance sensor, capacitance/voltage conversion circuit, and modulation and demodulation circuits. However, due to the existing of resistors, capacitors and other components in the circuit, the phase shift of the carrier signal and the modulated signal might occur. In this case, the specific value of phase shift cannot be determined. Therefore, error caused by the phase shift cannot be eliminated. This will reduce the accuracy of micrometer. In this design, in order to eliminate the impact of the phase shift, the phase-locked-loop (PLL circuit is employed. Through the experiment, the function of tracking the input signal phase and frequency is achieved by the phase-locked-loop circuit. This signal processing method can also be applied to tuber electrical resistance tomography system and other precision measurement circuit.

  2. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    Science.gov (United States)

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  3. Calculating and optimizing inter-electrode capacitances of charge division microchannel plate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Bo, E-mail: chenb@ciomp.ac.cn [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Hong-Ji; Wang, Hai-Feng; He, Ling-Ping [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Jin, Fang-Yuan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-04-01

    Based on the principle of charge division microchannel plate detectors, the inter-electrode capacitances of charge division anodes which are related to electronic noise of the charge sensitive amplifier and crosstalk effect of the anode are presented. Under all the requirements of charge division microchannel plate detectors such as the imaging linearity and spatial resolution, decreasing the inter-electrode capacitances is one way to improve the imaging performance. In this paper, we illustrate the simulation process of calculating the inter-electrode capacitances. Moreover, a Wedge and Strip (WSZ) anode is fabricated with the picosecond laser micromachining process. Comparing the simulated capacitances and measured capacitances, the three-dimensional finite element method is proved to be valid. Furthermore, by adjusting the design parameters of the anode, the effects of the substrate permittivity, insulation width and the size of pitch on the inter-electrode capacitances have been analysed. The structure of the charge division anode has been optimized based on the simulation data.

  4. 3D capacitive tactile sensor using DRIE micromachining

    Science.gov (United States)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  5. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    OpenAIRE

    Chen, Jian Z.; Darhuber, Anton A.; Troian, Sandra M.; Wagner, Sigurd

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable wi...

  6. 3D printed biomimetic whisker-based sensor with co-planar capacitive sensing

    NARCIS (Netherlands)

    Delamare, John; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2016-01-01

    This paper describes the development of a whisker sensor for tactile purposes and which is fabricated by 3D printing. Read-out consists of a capacitive measurement of a co-planar capacitance which is affected by a dielectric that is driven into the electric field of the capacitance. The current

  7. Capacitance-voltage characteristics of GaAs ion-implanted structures

    Directory of Open Access Journals (Sweden)

    Privalov E. N.

    2008-08-01

    Full Text Available A noniterative numerical method is proposed to calculate the barrier capacitance of GaAs ion-implanted structures as a function of the Schottky barrier bias. The features of the low- and high-frequency capacitance-voltage characteristics of these structures which are due to the presence of deep traps are elucidated.

  8. A new recontruction algorithm for use with capacitance-based tomography

    Directory of Open Access Journals (Sweden)

    Ø. Isaksen

    1994-01-01

    Full Text Available A new reconstruction algorithm for use with capacitance-based process tomography is proposed. A numerical simulator, capable of calculating the capacitances for a particular sensor configuration and flow regime is used together with a parameter representation of the dielectric distribution and an optimization algorithm. The algorithm calculates these parameters and hence the dielectric distribution, by minimizing a function defined as a weighted sum of square differences between the measured and estimated capacitances. The method is tested by using both synthetic and experimental data, and the results are compared with results from the commonly used Linear Back Projection (LBP algorithm. The method is capable of obtaining the correct parameter values for all the flow regimes tested, and does provide a better estimate than the LBP method. The method proves to be very promising, and is a step towards quantitative capacitance tomography.

  9. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237 (China)

    2010-08-15

    Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm{sup -1} at 25 C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H{sub 2}SO{sub 4} aqueous solution. Its initial specific capacitance was 500 F g{sup -1} at a constant current density of 1.5 A g{sup -1}, and the capacitance still reached about 400 F g{sup -1} after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g{sup -1}, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors. (author)

  10. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  11. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.

    Science.gov (United States)

    Song, Ce; Wang, Jinyan; Meng, Zhaoliang; Hu, Fangyuan; Jian, Xigao

    2018-03-31

    Graphene oxide has become an attractive electrode-material candidate for supercapacitors thanks to its higher specific capacitance compared to graphene. The quantum capacitance makes relative contributions to the specific capacitance, which is considered as the major limitation of graphene electrodes, while the quantum capacitance of graphene oxide is rarely concerned. This study explores the quantum capacitance of graphene oxide, which bears epoxy and hydroxyl groups on its basal plane, by employing density functional theory (DFT) calculations. The results demonstrate that the total density of states near the Fermi level is significantly enhanced by introducing oxygen-containing groups, which is beneficial for the improvement of the quantum capacitance. Moreover, the quantum capacitances of the graphene oxide with different concentrations of these two oxygen-containing groups are compared, revealing that more epoxy and hydroxyl groups result in a higher quantum capacitance. Notably, the hydroxyl concentration has a considerable effect on the capacitive behavior. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2010-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a

  13. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...

  14. Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones

    International Nuclear Information System (INIS)

    Rosli, A D; Baharudin, R; Hashim, H; Khairuzzaman, N A; Mohd Sampian, A F; Abdullah, N E; Kamaru'zzaman, M; Sulaiman, M S

    2015-01-01

    This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water. (paper)

  15. Capacitive Imaging For Skin Characterization and Solvent Penetration

    OpenAIRE

    Xiao, P; Zhang, X; Bontozoglou, C

    2016-01-01

    Capacitive contact imaging has shown potential in measuring skin properties including hydration, micro relief analysis, as well as solvent penetration measurements . Through calibration we can also measure the absolute permittivity of the skin, and from absolute permittivity we then work out the absolute water content (or solvent content) in skin. In this paper, we present our latest study of capacitive contact imaging for skin characterization, i.e. skin hydration and skin damages etc. The r...

  16. Introducing radiality constraints in capacitated location-routing problems

    Directory of Open Access Journals (Sweden)

    Eliana Mirledy Toro Ocampo

    2017-03-01

    Full Text Available In this paper, we introduce a unified mathematical formulation for the Capacitated Vehicle Routing Problem (CVRP and for the Capacitated Location Routing Problem (CLRP, adopting radiality constraints in order to guarantee valid routes and eliminate subtours. This idea is inspired by formulations already employed in electric power distribution networks, which requires a radial topology in its operation. The results show that the proposed formulation greatly improves the convergence of the solver.

  17. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    Science.gov (United States)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  18. A new capacitive/resistive probe method for studying magnetic surfaces

    International Nuclear Information System (INIS)

    Kitajima, Sumio; Takayama, Masakazu; Zama, Tatsuya; Takaya, Kazuhiro; Takeuchi, Nobunao; Watanabe, Hiroshige

    1991-01-01

    A new capacitive/resistive probe method for mapping the magnetic surfaces from resistance or capacitance between a magnetic surface and a vacuum vessel was developed and tested. Those resistances and capacitances can be regarded as components of a simple electrical bridge circuit. This method exploits electrical transient response of the bridge circuit for a square pulse. From equiresistance or equicapacitance points, the magnetic surface structure can be deduced. Measurements on the Tohoku University Heliac, which is a small-size standard heliac, show good agreement with numerical calculations. This method is particularly useful for pulse-operated machines. (author)

  19. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    Science.gov (United States)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  20. New Type Multielectrode Capacitance Sensor for Liquid Level

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y R [China University of Petroleum (Huadong), Qingdao (China); Shi, A P [Shandong University of Science and Technology, Qingdao (China); Chen, G Q [Shandong University of Science and Technology, Qingdao (China); Chang, Y Y [Shandong University of Science and Technology, Qingdao (China); Hang, Z [Shandong University of Science and Technology, Qingdao (China); Liu, B M [Binzhou University, Binzhou (China)

    2006-10-15

    This paper introduces the design of a new type multielectrode capacitance sensor for liquid level. The system regards electric field sensor MC33794 as the core and applies microcontroller MC9S12DJ128 to realize intelligent liquid level monitoring system, which overcomes the disadvantages of the traditional capacitance sensor, improves on the anti-jamming ability and the measurement precision and simplifies the system structure. Finally, the paper sums up the design of the system.

  1. Detecting size and shape of bodies capacitatively

    International Nuclear Information System (INIS)

    Walton, H.

    1980-01-01

    The size and shape of a body is determined by rolling it between the plates of capacitors and measuring the capacitance changes. A capacitor comprising two parallel, spaced wires inclined to the rolling direction and above and below the rolling body scans sections of the body along its longitudinal axis, another determines the body's lengths and a third comprising two non-parallel wires determines the position of the body. The capacitance changes are compared with those produced by a body of known size and shape so that the size and shape of the body can be determined. (author)

  2. Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Hatef Sadeghi

    2013-01-01

    Full Text Available Our focus in this study is on characterizing the capacitance voltage (C-V behavior of Bernal stacking bilayer graphene (BG and trilayer graphene (TG as the channel of FET devices. The analytical models of quantum capacitance (QC of BG and TG are presented. Although QC is smaller than the classic capacitance in conventional devices, its contribution to the total metal oxide semiconductor capacitor in graphene-based FET devices becomes significant in the nanoscale. Our calculation shows that QC increases with gate voltage in both BG and TG and decreases with temperature with some fluctuations. However, in bilayer graphene the fluctuation is higher due to its tunable band structure with external electric fields. In similar temperature and size, QC in metal oxide BG is higher than metal oxide TG configuration. Moreover, in both BG and TG, total capacitance is more affected by classic capacitance as the distance between gate electrode and channel increases. However, QC is more dominant when the channel becomes thinner into the nanoscale, and therefore we mostly deal with quantum capacitance in top gate in contrast with bottom gate that the classic capacitance is dominant.

  3. Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena

    Science.gov (United States)

    White, William E.

    2013-01-01

    Measuring neuron capacitance is important for morphological description, conductance characterization, and neuron modeling. One method to estimate capacitance is to inject current pulses into a neuron and fit the resulting changes in membrane potential with multiple exponentials; if the neuron is purely passive, the amplitude and time constant of the slowest exponential give neuron capacitance (Major G, Evans JD, Jack JJ. Biophys J 65: 423–449, 1993). Golowasch et al. (Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F. J Neurophysiol 102: 2161–2175, 2009) have shown that this is the best method for measuring the capacitance of nonisopotential (i.e., most) neurons. However, prior work has not tested for, or examined how much error would be introduced by, slow voltage-dependent phenomena possibly present at the membrane potentials typically used in such work. We investigated this issue in lobster (Panulirus interruptus) stomatogastric neurons by performing current clamp-based capacitance measurements at multiple membrane potentials. A slow, voltage-dependent phenomenon consistent with residual voltage-dependent conductances was present at all tested membrane potentials (−95 to −35 mV). This phenomenon was the slowest component of the neuron's voltage response, and failure to recognize and exclude it would lead to capacitance overestimates of several hundredfold. Most methods of estimating capacitance depend on the absence of voltage-dependent phenomena. Our demonstration that such phenomena make nonnegligible contributions to neuron responses even at well-hyperpolarized membrane potentials highlights the critical importance of checking for such phenomena in all work measuring neuron capacitance. We show here how to identify such phenomena and minimize their contaminating influence. PMID:23576698

  4. Lightweight linear alternators with and without capacitive tuning

    Science.gov (United States)

    Niedra, Janis M.

    1993-06-01

    Permanent magnet excited linear alternators rated tens of kW and coupled to free-piston Stirling engines are presently viewed as promising candidates for long term generation of electric power in both space and terrestrial applications. Series capacitive cancellation of the internal inductive reactance of such alternators was considered a viable way to both increase power extraction and to suppress unstable modes of the thermodynamic oscillation. Idealized toroidal and cylindrical alternator geometries are used for a comparative study of the issues of specific mass and capacitive tuning, subject to stability criteria. The analysis shows that the stator mass of an alternator designed to be capacitively tuned is always greater than the minimum achievable stator mass of an alternator designed with no capacitors, assuming equal utilization of materials ratings and the same frequency and power to a resistive load. This conclusion is not substantially altered when the usually lesser masses of the magnets and of any capacitors are added. Within the reported stability requirements and under circumstances of normal materials ratings, this study finds no clear advantage to capacitive tuning. Comparative plots of the various constituent masses are presented versus the internal power factor taken as a design degree of freedom. The explicit formulas developed for stator core, coil, capacitor, and magnet masses and for the degree of magnet utilization provide useful estimates of scaling effects.

  5. Mechanical strain can switch the sign of quantum capacitance from positive to negative.

    Science.gov (United States)

    Hanlumyuang, Yuranan; Li, Xiaobao; Sharma, Pradeep

    2014-11-14

    Quantum capacitance is a fundamental quantity that can directly reveal many-body interactions among electrons and is expected to play a critical role in nanoelectronics. One of the many tantalizing recent physical revelations about quantum capacitance is that it can possess a negative value, hence allowing for the possibility of enhancing the overall capacitance in some particular material systems beyond the scaling predicted by classical electrostatics. Using detailed quantum mechanical simulations, we found an intriguing result that mechanical strains can tune both signs and values of quantum capacitance. We used a small coaxially gated carbon nanotube as a paradigmatical capacitor system and showed that, for the range of mechanical strain considered, quantum capacitance can be adjusted from very large positive to very large negative values (in the order of plus/minus hundreds of attofarads), compared to the corresponding classical geometric value (0.31035 aF). This finding opens novel avenues in designing quantum capacitance for applications in nanosensors, energy storage, and nanoelectronics.

  6. Negative quantum capacitance induced by midgap states in single-layer graphene.

    Science.gov (United States)

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  7. The interfacial capacitance of an oxidised polycrystalline gold electrode in an aqueous HClO4 electrolyte

    International Nuclear Information System (INIS)

    Grdeń, M.

    2013-01-01

    The interfacial capacitance of a polycrystalline gold electrode electrochemically oxidised in an aqueous 0.1 M HClO 4 electrolyte has been investigated by means of the electrochemical impedance spectroscopy. From 1.3 to 3 monolayers of Au atoms were oxidised under constant potential conditions and for various oxidation times. The capacitance of the oxidised layers was analysed as a function of the electrode potential and the extent of the surface oxidation. It was found that the interfacial capacitance decreases upon surface oxidation. The components of the interfacial capacitance of the oxidised layer: the double layer capacitance and the capacitance of the oxidised layer; have been separated. The capacitance of the double layer of the oxidised surface was found to be comparable to the capacitance measured for the metallic surface. - Highlights: • The impedance spectra for thin layers of Au oxides/hydroxides were acquired. • Separate determination of the double layer and the oxide capacitances of oxidised Au • The double layer capacitances of oxidised and non-oxidised Au surfaces are comparable

  8. Low Capacitive Inductors for Fast Switching Devices in Active Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2014-01-01

    This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work is to inves......This paper examines different winding strategies for reduced capacitance inductors in active power factor correction circuits (PFC). The effect of the parasitic capacitance is analyzed from an electro magnetic compatibility (EMI) and efficiency point of views. The purpose of this work...... is to investigate different winding approaches and identify suitable solutions for high switching frequency/high speed transition PFC designs. A low parasitic capacitance PCB based inductor design is proposed to address the challenges imposed by high switching frequency PFC Boost converters....

  9. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    Directory of Open Access Journals (Sweden)

    Xiang Zhi

    2015-03-01

    Full Text Available This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  10. Development of a capacitive ice sensor to measure ice growth in real time.

    Science.gov (United States)

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  11. CMOS capacitive biosensors for highly sensitive biosensing applications.

    Science.gov (United States)

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  12. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  13. CMOS capacitive sensors for lab-on-chip applications a multidisciplinary approach

    CERN Document Server

    Ghafar-Zadeh, Ebrahim

    2010-01-01

    The main components of CMOS capacitive biosensors including sensing electrodes, bio-functionalized sensing layer, interface circuitries and microfluidic packaging are verbosely explained in chapters 2-6 after a brief introduction on CMOS based LoCs in Chapter 1. CMOS Capacitive Sensors for Lab-on-Chip Applications is written in a simple pedagogical way. It emphasises practical aspects of fully integrated CMOS biosensors rather than mathematical calculations and theoretical details. By using CMOS Capacitive Sensors for Lab-on-Chip Applications, the reader will have circuit design methodologies,

  14. Energy-Efficient Capacitance-to-Digital Converters for Smart Sensor Applications

    KAUST Repository

    Alhoshany, Abdulaziz

    2017-12-01

    One of the key requirements in the design of wireless sensor nodes and miniature biomedical devices is energy efficiency. For a sensor node, which is a sensor and readout circuit, to survive on limited energy sources such as a battery or harvested energy, its energy consumption should be minimized. Capacitive sensors are candidates for use in energy-constrained applications, as they do not consume static power and can be used in a wide range of applications to measure different physical, chemical or biological quantities. However, the energy consumption is dominated by the capacitive interface circuit, i.e. the capacitance-to-digital converter (CDC). Several energy-efficient CDC architectures are introduced in this dissertation to meet the demand for high resolution and energy efficiency in smart capacitive sensors. First, we propose an energy-efficient CDC based on a differential successive-approximation data converter. The proposed differential CDC employs an energy-efficient operational transconductance amplifier (OTA) based on an inverter. A wide capacitance range with fine absolute resolution is implemented in the proposed coarse-fine DAC architecture which saves 89% of silicon area. The proposed CDC achieves an energy efficiency figure-of-merit () of 45.8fJ/step, which is the best reported energy efficiency to date. Second, we propose an energy efficient CDC for high-precision capacitive resolution by using oversampling and noise shaping. The proposed CDC achieves 150 aF absolute resolution and an energy efficiency of 187fJ/conversion-step which outperforms state of the art high-precision differential CDCs. In the third and last part, we propose an in-vitro cancer diagnostic biosensor-CMOS platform for low-power, rapid detection, and low cost. The introduced platform is the first to demonstrate the ability to screen and quantify the spermidine/spermine N1 acetyltransferase (SSAT) enzyme which reveals the presence of early-stage cancer, on the surface of a

  15. Inside-out electrical capacitance tomography

    DEFF Research Database (Denmark)

    Kjærsgaard-Rasmussen, Jimmy; Meyer, Knud Erik

    2011-01-01

    In this work we demonstrate the construction of an ‘inside-out’ sensor geometry for electrical capacitance tomography (ECT). The inside-out geometry has the electrodes placed around a tube, as usual, but measuring ‘outwards’. The flow between the electrodes and an outer tube is reconstructed...

  16. Triboelectricity in capacitive biopotential measurements.

    Science.gov (United States)

    Wartzek, Tobias; Lammersen, Thomas; Eilebrecht, Benjamin; Walter, Marian; Leonhardt, Steffen

    2011-05-01

    Capacitive biopotential measurements suffer from strong motion artifacts, which may result in long time periods during which a reliable measurement is not possible. This study examines contact electrification and triboelectricity as possible reasons for these artifacts and discusses local triboelectric effects on the electrode-body interface as well as global electrostatic effects as common-mode interferences. It will be shown that most probably the triboelectric effects on the electrode-body interface are the main reason for artifacts, and a reduction of artifacts can only be achieved with a proper design of the electrode-body interface. For a deeper understanding of the observed effects, a mathematical model for triboelectric effects in highly isolated capacitive biopotential measurements is presented and verified with experiments. Based on these analyses of the triboelectric effects on the electrode-body interface, different electrode designs are developed and analyzed in order to minimize artifacts due to triboelectricity on the electrode-body interface. © 2011 IEEE

  17. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    Science.gov (United States)

    Biesheuvel, P. M.; Bazant, M. Z.

    2010-03-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) valid in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory for the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) in the “supercapacitor regime” of small voltages and/or early times, the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore, and (ii) in the “desalination regime” of large voltages and long times, the porous electrode slowly absorbs counterions, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration.

  18. Quality assessment of MOZAIC and IAGOS capacitive hygrometers: insights from airborne field studies

    Directory of Open Access Journals (Sweden)

    Patrick Neis

    2015-10-01

    Full Text Available In 2011, the MOZAIC (Measurement of Ozone by AIRBUS In-Service Aircraft successor programme IAGOS (In-service Aircraft for a Global Observing System started to equip their long-haul passenger aircraft with the modified capacitive hygrometer Vaisala HUMICAP® of type H. The assurance of the data quality and the consistency of the data set during the transition from MOZAIC Capacitive Hygrometers to IAGOS Capacitive Hygrometers were evaluated within the CIRRUS-III and AIRTOSS-ICE field studies. During these performance tests, the capacitive hygrometers were operated aboard a Learjet 35A aircraft together with a closed-cell Lyman-α fluorescence hygrometer, an open-path tunable diode laser (TDL system and a closed-cell, direct TDL absorption hygrometer for water vapour measurement. For MOZAIC-typical operation conditions, the comparison of relative humidity (RH data from the capacitive hygrometers and reference instruments yielded remarkably good agreement with an uncertainty of 5% RH. The temperature dependence of the sensor's response time was derived from the cross-correlation of capacitive hygrometer data and smoothed data from the fast-responding reference instruments. The resulting exponential moving average function could explain the major part of the observed deviations between the capacitive hygrometers and the reference instruments.

  19. Intermittent-contact scanning capacitance microscopy imaging and modeling for overlay metrology

    International Nuclear Information System (INIS)

    Mayo, S.; Kopanski, J. J.; Guthrie, W. F.

    1998-01-01

    Overlay measurements of the relative alignment between sequential layers are one of the most critical issues for integrated circuit (IC) lithography. We have implemented on an AFM platform a new intermittent-contact scanning capacitance microscopy (IC-SCM) mode that is sensitive to the tip proximity to an IC interconnect, thus making it possible to image conductive structures buried under planarized dielectric layers. Such measurements can be used to measure IC metal-to-resist lithography overlay. The AFM conductive cantilever probe oscillating in a vertical plane was driven at frequency ω, below resonance. By measuring the tip-to-sample capacitance, the SCM signal is obtained as the difference in capacitance, ΔC(ω), at the amplitude extremes. Imaging of metallization structures was obtained with a bars-in-bars aluminum structure embedded in a planarized dielectric layer 1 μm thick. We have also modeled, with a two-dimensional (2D) electrostatic field simulator, IC-SCM overlay data of a metallization structure buried under a planarized dielectric having a patterned photoresist layer deposited on it. This structure, which simulates the metal-to-resist overlay between sequential IC levels, allows characterization of the technique sensitivity. The capacitance profile across identical size electrically isolated or grounded metal lines embedded in a dielectric was shown to be different. The floating line shows capacitance enhancement at the line edges, with a minimum at the line center. The grounded line shows a single capacitance maximum located at the line center, with no edge enhancement. For identical line dimensions, the capacitance is significantly larger for grounded lines making them easier to image. A nonlinear regression algorithm was developed to extract line center and overlay parameters with approximately 3 nm resolution at the 95% confidence level, showing the potential of this technique for sub-micrometer critical dimension metrology. Symmetric test

  20. Integrated microelectronic capacitive readout subsystem for lab-on-a-chip applications

    International Nuclear Information System (INIS)

    Spathis, Christos; Georgakopoulou, Konstantina; Petrellis, Nikos; Efstathiou, Konstantinos; Birbas, Alexios

    2014-01-01

    A mixed-signal capacitive biosensor readout system is presented with its main readout functionality embedded in an integrated circuit, compatible with complementary metal oxide semiconductor-type biosensors. The system modularity allows its usage as a consumable since it eventually leads to a system-on-chip where sensor and readout circuitry are hosted on the same die. In this work, a constant current source is used for measuring the input capacitance. Compared to most capacitive biosensor readout circuits, this method offers the convenience of adjusting both the range and the resolution, depending on the requirements dictated by the application. The chip consumes less than 5 mW of power and the die area is 0.06 mm 2 . It shows a broad input capacitance range (capable of measuring bio-capacitances from 6 pF to 9.8 nF), configurable resolution (down to 1 fF), robustness to various biological experiments and good linearity. The integrated nature of the readout system is proven to be sufficient both for one-time in situ (consumable-type) bio-measurements and its incorporation into a point-of-care system. (paper)

  1. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  2. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2015-10-01

    Full Text Available Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  3. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    Science.gov (United States)

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  4. Capacitors and Resistance-Capacitance Networks.

    Science.gov (United States)

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  5. A new normalization method based on electrical field lines for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Zhang, L F; Wang, H X

    2009-01-01

    Electrical capacitance tomography (ECT) is considered to be one of the most promising process tomography techniques. The image reconstruction for ECT is an inverse problem to find the spatially distributed permittivities in a pipe. Usually, the capacitance measurements obtained from the ECT system are normalized at the high and low permittivity for image reconstruction. The parallel normalization model is commonly used during the normalization process, which assumes the distribution of materials in parallel. Thus, the normalized capacitance is a linear function of measured capacitance. A recently used model is a series normalization model which results in the normalized capacitance as a nonlinear function of measured capacitance. The newest presented model is based on electrical field centre lines (EFCL), and is a mixture of two normalization models. The multi-threshold method of this model is presented in this paper. The sensitivity matrices based on different normalization models were obtained, and image reconstruction was carried out accordingly. Simulation results indicate that reconstructed images with higher quality can be obtained based on the presented model

  6. Effect of hysteretic and non-hysteretic negative capacitance on tunnel FETs DC performance

    Science.gov (United States)

    Saeidi, Ali; Jazaeri, Farzan; Stolichnov, Igor; Luong, Gia V.; Zhao, Qing-Tai; Mantl, Siegfried; Ionescu, Adrian M.

    2018-03-01

    This work experimentally demonstrates that the negative capacitance effect can be used to significantly improve the key figures of merit of tunnel field effect transistor (FET) switches. In the proposed approach, a matching condition is fulfilled between a trained-polycrystalline PZT capacitor and the tunnel FET (TFET) gate capacitance fabricated on a strained silicon-nanowire technology. We report a non-hysteretic switch configuration by combining a homojunction TFET and a negative capacitance effect booster, suitable for logic applications, for which the on-current is increased by a factor of 100, the transconductance by 2 orders of magnitude, and the low swing region is extended. The operation of a hysteretic negative capacitance TFET, when the matching condition for the negative capacitance is fulfilled only in a limited region of operation, is also reported and discussed. In this late case, a limited improvement in the device performance is observed. Overall, the paper demonstrates the main beneficial effects of negative capacitance on TFETs are the overdrive and transconductance amplification, which exactly address the most limiting performances of current TFETs.

  7. Large area, low capacitance Si(Li) detectors for high rate x-ray applications

    International Nuclear Information System (INIS)

    Rossington, C.S.; Fine, P.M.; Madden, N.W.

    1992-10-01

    Large area, single-element Si(Li) detectors have been fabricated using a novel geometry which yields detectors with reduced capacitance and hence reduced noise at short amplifier pulse-processing times. A typical device employing the new geometry with a thickness of 6 mm and an active area of 175 mm 2 has a capacitance of only 0.5 pf, compared to 2.9 pf for a conventional planar device with equivalent dimensions. These new low capacitance detectors, used in conjunction with low capacitance field effect transistors, will result in x-ray spectrometers capable of operating at very high count rates while still maintaining excellent energy resolution. The spectral response of the low capacitance detectors to a wide range of x-ray energies at 80 K is comparable to typical state-of-the-art conventional Si(Li) devices. In addition to their low capacitance, the new devices offer other advantages over conventional detectors. Detector fabrication procedures, I-V and C-V characteristics, noise performance, and spectral response to 2-60 keV x-rays are described

  8. Capacitance enhancement via electrode patterning

    International Nuclear Information System (INIS)

    Ho, Tuan A.; Striolo, Alberto

    2013-01-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties

  9. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  10. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation

    NARCIS (Netherlands)

    Chen, J.-Z.; Darhuber, A.A.; Troian, S.M.; Wagner, S.

    2004-01-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is

  11. A Flexible Capacitive Sensor with Encapsulated Liquids as Dielectrics

    Directory of Open Access Journals (Sweden)

    Yasunari Hotta

    2012-03-01

    Full Text Available Flexible and high-sensitive capacitive sensors are demanded to detect pressure distribution and/or tactile information on a curved surface, hence, wide varieties of polymer-based flexible MEMS sensors have been developed. High-sensitivity may be achieved by increasing the capacitance of the sensor using solid dielectric material while it deteriorates the flexibility. Using air as the dielectric, to maintain the flexibility, sacrifices the sensor sensitivity. In this paper, we demonstrate flexible and highly sensitive capacitive sensor arrays that encapsulate highly dielectric liquids as the dielectric. Deionized water and glycerin, which have relative dielectric constants of approximately 80 and 47, respectively, could increase the capacitance of the sensor when used as the dielectric while maintaining flexibility of the sensor with electrodes patterned on flexible polymer substrates. A reservoir of liquids between the electrodes was designed to have a leak path, which allows the sensor to deform despite of the incompressibility of the encapsulated liquids. The proposed sensor was microfabricated and demonstrated successfully to have a five times greater sensitivity than sensors that use air as the dielectric.

  12. Probing 2D black phosphorus by quantum capacitance measurements

    International Nuclear Information System (INIS)

    Kuiri, Manabendra; Kumar, Chandan; Chakraborty, Biswanath; Gupta, Satyendra N; Naik, Mit H; Jain, Manish; Sood, A K; Das, Anindya

    2015-01-01

    Two-dimensional materials and their heterostructures have emerged as a new class of materials, not only for fundamental physics but also for electronic and optoelectronic applications. Black phosphorus (BP) is a relatively new addition to this class of materials. Its strong in-plane anisotropy makes BP a unique material for making conceptually new types of electronic devices. However, the global density of states (DOS) of BP in device geometry has not been measured experimentally. Here, we report the quantum capacitance measurements together with the conductance measurements on an hBN-protected few-layer BP (∼six layers) in a dual-gated field effect transistor (FET) geometry. The measured DOS from our quantum capacitance is compared with density functional theory (DFT). Our results reveal that the transport gap for quantum capacitance is smaller than that in conductance measurements due to the presence of localized states near the band edge. The presence of localized states is confirmed by the variable range hopping seen in our temperature dependence conductivity. A large asymmetry is observed between the electron and hole side. This asymmetric nature is attributed to the anisotropic band dispersion of BP. Our measurements establish the uniqueness of quantum capacitance in probing the localized states near the band edge, hitherto not seen in conductance measurements. (paper)

  13. A Micro Dynamically Tuned Gyroscope with Adjustable Static Capacitance

    Directory of Open Access Journals (Sweden)

    Lun Kong

    2013-02-01

    Full Text Available This paper presents a novel micro dynamically tuned gyroscope (MDTG with adjustable static capacitance. First, the principle of MDTG is theoretically analyzed. Next, some simulations under the optimized structure parameters are given as a reference for the mask design of the rotor wafer and electrode plates. As two key components, the process flows of the rotor wafer and electrode plates are described in detail. All the scanning electron microscopy (SEM photos show that the fabrication process is effective and optimized. Then, an assembly model is designed for the static capacitance adjustable MDTG, whose static capacitance can be changed by rotating the lower electrode plate support and substituting gasket rings of different thicknesses. Thus, the scale factor is easily changeable. Afterwards, the digitalized closed-loop measurement circuit is simulated. The discrete correction and decoupling modules are designed to make the closed-loop stable and cross-coupling effect small. The dual axis closed-loop system bandwidths can reach more than 60 Hz and the dual axis scale factors are completely symmetrical. All the simulation results demonstrate the proposed fabrication of the MDTG can meet the application requirements. Finally, the paper presents the test results of static and dynamic capacitance values which are consistent with the simulation values.

  14. Fabrication of a printed capacitive air-gap touch sensor

    Science.gov (United States)

    Lee, Sang Hoon; Seo, Hwiwon; Lee, Sangyoon

    2018-05-01

    Unlike lithography-based processes, printed electronics does not require etching, which makes it difficult to fabricate electronic devices with an air gap. In this study, we propose a method to fabricate capacitive air-gap touch sensors via printing and coating. First, the bottom electrode was fabricated on a flexible poly(ethylene terephthalate) (PET) substrate using roll-to-roll gravure printing with silver ink. Then poly(dimethylsiloxane) (PDMS) was spin coated to form a sacrificial layer. The top electrode was fabricated on the sacrificial layer by spin coating with a stretchable silver ink. The sensor samples were then put in a tetrabutylammonium (TBAF) bath to generate the air gap by removing the sacrificial layer. The capacitance of the samples was measured for verification, and the results show that the capacitance increases in proportion to the applied force from 0 to 2.5 N.

  15. A microcontroller-based interface circuit for lossy capacitive sensors

    International Nuclear Information System (INIS)

    Reverter, Ferran; Casas, Òscar

    2010-01-01

    This paper introduces and analyses a low-cost microcontroller-based interface circuit for lossy capacitive sensors, i.e. sensors whose parasitic conductance (G x ) is not negligible. Such a circuit relies on a previous circuit also proposed by the authors, in which the sensor is directly connected to a microcontroller without using either a signal conditioner or an analogue-to-digital converter in the signal path. The novel circuit uses the same hardware, but it performs an additional measurement and executes a new calibration technique. As a result, the sensitivity of the circuit to G x decreases significantly (a factor higher than ten), but not completely due to the input capacitances of the port pins of the microcontroller. Experimental results show a relative error in the capacitance measurement below 1% for G x x ) shows the effectiveness of the circuit

  16. Conjugate Image Theory Applied on Capacitive Wireless Power Transfer

    OpenAIRE

    Ben Minnaert; Nobby Stevens

    2017-01-01

    Wireless power transfer using a magnetic field through inductive coupling is steadily entering the market in a broad range of applications. However, for certain applications, capacitive wireless power transfer using electric coupling might be preferable. In order to obtain a maximum power transfer efficiency, an optimal compensation network must be designed at the input and output ports of the capacitive wireless link. In this work, the conjugate image theory is applied to determine this opti...

  17. Structural, electronic properties, and quantum capacitance of B, N and P-doped armchair carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi-Khoshdel, S. Morteza, E-mail: mmousavi@iust.ac.ir [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Jahanbakhsh-bonab, Parisa [Department of Chemistry, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Targholi, Ehsan [Young Researchers and Elite Club, Abhar Branch, Islamic Azad University, Abhar (Iran, Islamic Republic of)

    2016-10-07

    Using DFT calculations, we study the structural parameters, electronic properties and quantum capacitance of N, B, and P-doped armchair carbon nanotubes (CNTs). Fermi level shifts towards conduction band and valence band in N- and B-doped CNTs, respectively. While in the case of P atom, despite having an extra valence electron than carbon, there is no shift in Fermi level. The results revealed from a symmetric capacitance enhancement in P-doped CNT and an asymmetric capacitance enhancement in B and N-doped CNTs. The greatest amount of quantum capacitance of N-doped (6, 6) CNT could be achieved at the concentration range of 0.1–0.15. - Highlights: • Exploration of variation in quantum capacitance of CNTs through doping N, B and P atoms. • Quantum capacitance of CNTs is sensitive to impurities entered in carbon nanotubes. • Maximum quantum capacitance of N-doped CNTs is achieved at the concentration range of 0.1–0.15.

  18. An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress

    Directory of Open Access Journals (Sweden)

    Wen-Ying Chang

    2014-04-01

    Full Text Available This paper presents a cost-effective sensor system for mattresses that can classify the sleeping posture of an individual and prevent pressure ulcers. This system applies projected capacitive sensing to the field of health care. The charge time (CT method was used to sensitively and accurately measure the capacitance of the projected electrodes. The required characteristics of the projected capacitor were identified to develop large-area applications for sensory mattresses. The area of the electrodes, the use of shielding, and the increased length of the transmission line were calibrated to more accurately measure the capacitance of the electrodes in large-size applications. To offer the users comfort in the prone position, a flexible substrate was selected and covered with 16 × 20 electrodes. Compared with the static charge sensitive bed (SCSB, our proposed system-flexible projected capacitive-sensing mattress (FPCSM comes with more electrodes to increase the resolution of posture identification. As for the body pressure system (BPS, the FPCSM has advantages such as lower cost, higher aging-resistance capability, and the ability to sense the capacitance of the covered regions without physical contact. The proposed guard ring design effectively absorbs the noise and interrupts leakage paths. The projected capacitive electrode is suitable for proximity-sensing applications and succeeds at quickly recognizing the sleeping pattern of the user.

  19. Capacitive Sensors for Feedback Control of Microfluidic Devices

    Science.gov (United States)

    Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.

    2003-11-01

    Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).

  20. A branch-and-cut-and-price algorithm for the mixed capacitated general routing problem

    DEFF Research Database (Denmark)

    Bach, Lukas; Wøhlk, Sanne; Lysgaard, Jens

    2016-01-01

    In this paper, we consider the Mixed Capacitated General Routing Problem which is a combination of the Capacitated Vehicle Routing Problem and the Capacitated Arc Routing Problem. The problem is also known as the Node, Edge, and Arc Routing Problem. We propose a Branch-and-Cut-and-Price algorithm...

  1. Capacitive properties of polypyrrole/activated carbon composite

    Directory of Open Access Journals (Sweden)

    Porjazoska-Kujundziski Aleksandra

    2014-01-01

    Full Text Available Electrochemical synthesis of polypyrrole (PPy and polypyrrole / activated carbon (PPy / AC - composite films, with a thickness between 0.5 and 15 μm were performed in a three electrode cell containing 0.1 mol dm-3 Py, 0.5 mol dm-3 NaClO4 dissolved in ACN, and dispersed particles of AC (30 g dm-3. Electrochemical characterization of PPy and PPy / AC composites was performed using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS techniques. The linear dependences of the capacitance (qC, redox capacitance (qred, and limiting capacitance (CL of PPy and PPy / AC - composite films on their thickness (L, obtained by electrochemical and impedance analysis, indicate a nearly homogeneous distribution of the incorporated AC particles in the composite films (correlation coefficient between 0.991 and 0.998. The significant enhancement of qC, qred, and CL, was observed for composite films (for ∼40 ± 5% in respect to that of the “pure” PPy. The decreased values of a volume resistivity in the reduced state of the composite film, ρ = 1.3 ⋅ 106 Ω cm (for L = 7.5 μm, for two orders of magnitude, compared to that of PPy - film with the same thickness, ρ ∼ 108 Ω cm, was also noticed.

  2. Flexible PVDF ferroelectric capacitive temperature sensor

    KAUST Repository

    Khan, Naveed; Omran, Hesham; Yao, Yingbang; Salama, Khaled N.

    2015-01-01

    sensitivity of 16pF/°C. The linearity measurement of the capacitance-temperature relation shows less than 0.7°C error from a best fit straight line. An LC oscillator based temperature sensor is demonstrated based on this capacitor.

  3. Ultrahigh Temperature Capacitive Pressure Sensor

    Science.gov (United States)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  4. Capacitive Feedthroughs for Medical Implants.

    Science.gov (United States)

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  5. A Possible Minimum Toy Model with Negative Differential Capacitance for Self-sustained Current Oscillation

    International Nuclear Information System (INIS)

    Xiong Gang; Sun Zhouzhou; Wang Xiangrong

    2007-01-01

    We generalize a simple model for superlattices to include the effect of differential capacitance. It is shown that the model always has a stable steady-state solution (SSS) if all differential capacitances are positive. On the other hand, when negative differential capacitance is included, the model can have no stable SSS and be in a self-sustained current oscillation behavior. Therefore, we find a possible minimum toy model with both negative differential resistance and negative differential capacitance which can include the phenomena of both self-sustained current oscillation and I-V oscillation of stable SSSs.

  6. Intrinsic Low Hysteresis Touch Mode Capacitive Pressure Sensor

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Pedersen, Thomas; Hansen, Ole

    2011-01-01

    Hysteresis has always been one of the main concerns when fabricating touch mode capacitive pressure sensors (TMCPS). This phenomenon can be fought at two different levels: during fabrication or after fabrication with the aid of a dedicated signal conditioning circuit. We will describe...... a microfabrication step that can be introduced in order to reduce drastically the hysteresis of this type of sensors without compromising their sensitivity. Medium-high range (0 to 10 bar absolute pressure) TMCPS with a capacitive signal span of over 100pF and less than 1 % hysteresis in the entire pressure range...

  7. A multichannel portable ECG system with capacitive sensors

    International Nuclear Information System (INIS)

    Oehler, M; Schilling, M; Ling, V; Melhorn, K

    2008-01-01

    Capacitive sensors can be employed for measuring the electrocardiogram of a human heart without electric contact with the skin. This configuration avoids contact problems experienced by conventional electrocardiography. In our studies, we integrated these capacitive electrocardiogram electrodes in a 15-sensor array and combined this array with a tablet personal computer. By placing the system on the patient's body, we can measure a 15-channel electrocardiogram even through clothes and without any preparation. The goal of this development is to provide a new diagnostic tool that offers the user a reproducible, easy access to a fast and spatially resolved diagnostic 'heart view'

  8. Capacitive sensor for continuous monitoring of high-volume droplet microfluidic generation

    KAUST Repository

    Conchouso Gonzalez, David

    2016-12-19

    This paper presents a capacitive sensor for monitoring parallel microfluidic droplet generation. The great electric permittivity difference between common droplet microfluidic fluids such as air, oil and water (ϵoil ≈ 2–3 and ϵwater ≈ 80.4), allows for accurate detection of water in oil concentration changes. Capacitance variations as large as 10 pF between a channel filled with water or dodecane, are used to continuously monitor the output of a parallelization system producing 150 µl/min of water in dodecane emulsions. We also discuss a low cost fabrication process to manufacture these capacitive sensors, which can be integrated to different substrates.

  9. Performance relations in Capacitive Deionization systems

    NARCIS (Netherlands)

    Limpt, van B.

    2010-01-01

    Capacitive Deionization (CDI) is a relatively new deionization technology based on the temporary storage of ions on an electrically charged surface. By directing a flow between two oppositely charged surfaces, negatively charged ions will adsorb onto the positively charged surface, and positively

  10. Comparison of gate capacitance extraction methodologies

    NARCIS (Netherlands)

    Kazmi, S.N.R.; Schmitz, Jurriaan

    2008-01-01

    In recent years, many new capacitance-voltage measurement approaches have been presented in literature. New approaches became necessary with the rapidly increasing gate current density in newer CMOS generations. Here we present a simulation platform using Silvaco software, to describe the full chain

  11. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  12. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...... depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0....

  13. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0.......We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...

  14. Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.

    Science.gov (United States)

    Ebrish, Mona A; Olson, Eric J; Koester, Steven J

    2014-07-09

    The concentration-dependent density of states in graphene allows the capacitance in metal-oxide-graphene structures to be tunable with the carrier concentration. This feature allows graphene to act as a variable capacitor (varactor) that can be utilized for wireless sensing applications. Surface functionalization can be used to make graphene sensitive to a particular species. In this manuscript, the effect on the quantum capacitance of noncovalent basal plane functionalization using 1-pyrenebutanoic acid succimidyl ester and glucose oxidase is reported. It is found that functionalized samples tested in air have (1) a Dirac point similar to vacuum conditions, (2) increased maximum capacitance compared to vacuum but similar to air, (3) and quantum capacitance "tuning" that is greater than that in vacuum and ambient atmosphere. These trends are attributed to reduced surface doping and random potential fluctuations as a result of the surface functionalization due to the displacement of H2O on the graphene surface and intercalation of a stable H2O layer beneath graphene that increases the overall device capacitance. The results are important for future application of graphene as a platform for wireless chemical and biological sensors.

  15. Design, Development and Testing of a Semicircular Type Capacitive Angular Position Sensor

    Directory of Open Access Journals (Sweden)

    Nikhil GAURAV

    2011-06-01

    Full Text Available A low cost semicircular type capacitive angular position sensor has been designed, developed and tested. It is made of two semicircular parallel plates where one plate is fixed and another plate is connected with the rotor whose angular position is to be measured. When the angular position of the rotor changes with respect to the fixed plate, the overlapping area between the two plates of the capacitor is varied causing a change in capacitance value. Capacitance variation obtained due to the change in angular position is in the nano farad range. For signal conditioning, series R-L-C resonating circuit instead of conventional bridge circuit has been used to convert the sensor capacitance variation in to voltage. Experimental result shows that the capacitance for change in angular position 0º-180º increases linearly and for 180º-360º it decreases linearly. To get a linearly increasing response of same slope for the full scale of 0º-360º, a suitable linearising circuit has been designed, developed and tested. Sensor output along with the signal conditioning shows good linearity and repeatability.

  16. Electric double-layer capacitance between an ionic liquid and few-layer graphene.

    Science.gov (United States)

    Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro

    2013-01-01

    Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.

  17. Development and analysis of a capacitive touch sensor using a liquid metal droplet

    International Nuclear Information System (INIS)

    Baek, Seungbum; Won, Dong-Joon; Kim, Joong Gil; Kim, Joonwon

    2015-01-01

    In this paper, we introduce a small-sized capacitive touch sensor with large variations in its capacitance. This sensor uses the changes in capacitance caused by the variation of the overlap area between a liquid metal (LM) droplet and a flat electrode while keeping the gap between the droplet and the bottom electrode at a small constant value (i.e. thickness of dielectric layer). Initially, the droplet is placed inside a polydimethylsiloxane (PDMS) chamber, and a thin silicon dioxide film separates the droplet and the electrode. Owing to the high surface tension of the LM, the droplet retains its spherical shape and the overlap area remains small, which means that the capacitance between the droplet and the electrode also remains small. When normal force is applied, the pressure on the membrane pushes the droplet downward, thus spreading the droplet to the bottom of the chamber and increasing the capacitance. To verify our concept, we performed theoretical analyses and experiments using a 2 mm  ×  2 mm  ×  2 mm 1-cell touch sensor. Finally, we obtained a capacitance variation of ∼30 pF by applying forces between 0 N and 1 N. (paper)

  18. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage

    Energy Technology Data Exchange (ETDEWEB)

    Milián-Sánchez, V., E-mail: vicmisan@iqn.upv.es [Institute for Industrial, Radiophysical and Environmental Safety, Universitat Politècnica de València, Camino de Vera, s/n, Valencia (Spain); Mocholí-Salcedo, A., E-mail: amocholi@eln.upv.es [Traffic Control Systems Group, ITACA Institute, Universitat Politécnica de, Camino de Vera, s/n, Valencia (Spain); Milián, C., E-mail: carles.milian@cpht.polytechnique.fr [Centre de Physique Théorique, CNRS, École Polytechnique, F-91128 Palaiseau (France); Kolombet, V.A., E-mail: kolombet@iteb.ru [Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Moscow Region, Pushchino 142290 (Russian Federation); Verdú, G., E-mail: gverdu@iqn.upv.es [Institute for Industrial, Radiophysical and Environmental Safety, Universitat Politècnica de València, Camino de Vera, s/n, Valencia (Spain); Chemical and Nuclear Engineering Department, Universitat Politécnica de Valencia, Camino de Vera, s/n, Valencia (Spain)

    2016-08-21

    We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates. - Highlights: • Background counts and decay rates changes of different nuclides are described. • Those changes are observed inside a multilayer modified Faraday cage. • Noise in a multichannel analyzer increases inside the multilayer enclosure. • Capacitance of a class-I multilayer ceramic capacitor varies inside the enclosure. • Capacitance changes depend on the used frequency.

  19. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage

    International Nuclear Information System (INIS)

    Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V.A.; Verdú, G.

    2016-01-01

    We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates. - Highlights: • Background counts and decay rates changes of different nuclides are described. • Those changes are observed inside a multilayer modified Faraday cage. • Noise in a multichannel analyzer increases inside the multilayer enclosure. • Capacitance of a class-I multilayer ceramic capacitor varies inside the enclosure. • Capacitance changes depend on the used frequency.

  20. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    Science.gov (United States)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  1. CMOS MEMS capacitive absolute pressure sensor

    International Nuclear Information System (INIS)

    Narducci, M; Tsai, J; Yu-Chia, L; Fang, W

    2013-01-01

    This paper presents the design, fabrication and characterization of a capacitive pressure sensor using a commercial 0.18 µm CMOS (complementary metal–oxide–semiconductor) process and postprocess. The pressure sensor is capacitive and the structure is formed by an Al top electrode enclosed in a suspended SiO 2 membrane, which acts as a movable electrode against a bottom or stationary Al electrode fixed on the SiO 2 substrate. Both the movable and fixed electrodes form a variable parallel plate capacitor, whose capacitance varies with the applied pressure on the surface. In order to release the membranes the CMOS layers need to be applied postprocess and this mainly consists of four steps: (1) deposition and patterning of PECVD (plasma-enhanced chemical vapor deposition) oxide to protect CMOS pads and to open the pressure sensor top surface, (2) etching of the sacrificial layer to release the suspended membrane, (3) deposition of PECVD oxide to seal the etching holes and creating vacuum inside the gap, and finally (4) etching of the passivation oxide to open the pads and allow electrical connections. This sensor design and fabrication is suitable to obey the design rules of a CMOS foundry and since it only uses low-temperature processes, it allows monolithic integration with other types of CMOS compatible sensors and IC (integrated circuit) interface on a single chip. Experimental results showed that the pressure sensor has a highly linear sensitivity of 0.14 fF kPa −1 in the pressure range of 0–300 kPa. (paper)

  2. Beating of magnetic oscillations in a graphene device probed by quantum capacitance

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2012-01-01

    We report the quantum capacitance of a monolayergraphene device in an external perpendicular magnetic field including the effects of Rashba spin-orbit interaction(SOI). The SOI mixes the spin up and spin down states of neighbouring Landau levels into two (unequally spaced) energy branches. In order to investigate the role of the SOI for the electronic transport, we study the density of states to probe the quantum capacitance of monolayergraphene.SOIeffects on the quantum magnetic oscillations (Shubnikov de Haas and de Hass-van Alphen) are deduced from the quantum capacitance.

  3. Beating of magnetic oscillations in a graphene device probed by quantum capacitance

    KAUST Repository

    Tahir, M.

    2012-07-05

    We report the quantum capacitance of a monolayergraphene device in an external perpendicular magnetic field including the effects of Rashba spin-orbit interaction(SOI). The SOI mixes the spin up and spin down states of neighbouring Landau levels into two (unequally spaced) energy branches. In order to investigate the role of the SOI for the electronic transport, we study the density of states to probe the quantum capacitance of monolayergraphene.SOIeffects on the quantum magnetic oscillations (Shubnikov de Haas and de Hass-van Alphen) are deduced from the quantum capacitance.

  4. A capacitive level shifter for high voltage (2.5kV)

    DEFF Research Database (Denmark)

    Andersen, Thomas; Andersen, Michael A. E.; Thomsen, Ole Cornelius

    2012-01-01

    with focus on low power consumption as well as low capacitive load between the floating half-bridge node and ground (output capacitance). The operation of the level-shifter is tested and verified by measurements on a prototype half-bridge gate driver. Results conclude stabile operation at 2.44kV, 50k...

  5. Thermodynamic cycle analysis for capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.

    2009-01-01

    Capacitive deionization (CDI) is an ion removal technology based on temporarily storing ions in the polarization layers of two oppositely positioned electrodes. Here we present a thermodynamic model for the minimum work required for ion separation in the fully reversible case by describing the ionic

  6. Profiling of barrier capacitance and spreading resistance using a transient linearly increasing voltage technique.

    Science.gov (United States)

    Gaubas, E; Ceponis, T; Kusakovskij, J

    2011-08-01

    A technique for the combined measurement of barrier capacitance and spreading resistance profiles using a linearly increasing voltage pulse is presented. The technique is based on the measurement and analysis of current transients, due to the barrier and diffusion capacitance, and the spreading resistance, between a needle probe and sample. To control the impact of deep traps in the barrier capacitance, a steady state bias illumination with infrared light was employed. Measurements of the spreading resistance and barrier capacitance profiles using a stepwise positioned probe on cross sectioned silicon pin diodes and pnp structures are presented.

  7. A New Wide Frequency Band Capacitance Transducer with Application to Measuring Metal Fill Time

    Directory of Open Access Journals (Sweden)

    Wael DEABES

    2009-01-01

    Full Text Available A novel low cost, high frequency circuit for measuring capacitance is proposed in this paper. This new capacitance measuring circuit is able to measure small coupling capacitance variations with high stray-immunity. Hence, it could be used in many potential applications such as measuring the metal fill time in the Lost Foam Casting (LFC process and Electrical Capacitive Tomography (ECT system. The proposed circuit is based on differential charging/discharging method using current feedback amplifier and a synchronous demodulation stage. The circuit has a wide high frequency operating range with zero phase shift; hence multiple circuits can work at different frequencies simultaneously to measure the capacitance. The non-ideal characteristic of the circuit has been analyzed and the results verified through LTSpice simulation. Results from the tests on a prototype and a simulation elucidate the practicality of the proposed circuit.

  8. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    OpenAIRE

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently matured and is widely employed in industry. A voltage across the electrodes will attract the movable part. This relation between electric field and separation (or capacitance) can be conveniently em...

  9. Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Inyong, E-mail: iykwon@umich.edu [University of Michigan, Ann Arbor, MI (United States); Kang, Taehoon, E-mail: thnkang@umich.edu [University of Michigan, Ann Arbor, MI (United States); Wells, Byron T., E-mail: wells@galtresearch.com [Galt LLC, Ypsilanti, MI (United States); D’Aries, Lawrence J., E-mail: lawrence.j.daries.civ@mail.mil [Picatinny Arsenal, Rockaway Township, NJ (United States); Hammig, Mark D., E-mail: hammig@umich.edu [University of Michigan, Ann Arbor, MI (United States)

    2015-06-01

    This paper describes an integrated circuit design for a modified charge-sensitive amplifier (CSA) that compensates for the effect of capacitance presented by nuclear radiation detectors and other sensors. For applications that require large area semiconductor detectors or for those semiconductor sensors derived from high permittivity materials such as PbSe, the detector capacitance can degrade the system gain and bandwidth of a front-end preamplifier, resulting in extended rise times and attenuated output voltage signals during pulse formation. In order to suppress the effect of sensor capacitance, we applied a bootstrap technique into a traditional CSA. The technique exploits the Miller effect by reducing the effective voltage difference between the two sides of a radiation detector which minimizes the capacitance presented to the differential common-source amplifier. This new configuration is successfully designed to produce effective gain even at high detector capacitance. The entire circuit, including a core CSA with feedback components and a bootstrap amplifier, are implemented in a 0.18 μm CMOS process with a 3.3 V supply voltage. - Highlights: • A modified CSA was implemented for detector capacitance compensation. • Increasing detector capacitance degrades gain and rise time. • A bootstrap amplifier exploiting the Miller effect is described. • It allows using large area radiation sensors for high radiation-interaction rates. • Intensive noise analyses show that SNR is much better with the technique.

  10. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  11. DNA Nucleotides Detection via capacitance properties of Graphene

    Science.gov (United States)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  12. Role of Catecholamine in Tumor Angiogenesis Linked to Capacitance Relaxation Phenomenon

    Directory of Open Access Journals (Sweden)

    Guangyue SHI

    2010-08-01

    Full Text Available The present paper deals with the CgA level during metastasis linked with Capacitance relaxation phenomenon in cancer cell. CgA co-stored and correlated by exocytosis with catecholamines is a precursor to peptides that exert feedback regulatory control on catecholamine secretion. It is to be noted that CgA was the most sensitive marker for detecting patients with tumor angiogenesis. The progressive rise in CgA increases with the tumor size and this fact has been correlated with the Capacitance relaxation phenomenon (T. K. Basak, US patent No. 5691178, 1997 in different stages. The experimental results of Capacitance relaxation phenomenon were given as inputs to a model for correlation with the CgA level. This model is a control system model, the output of which is the CgA level. It is to be noted that the model is simulated in MATLAB. The expression of tumorogenisis in prostate and liver is also linked to Capacitance relaxation phenomenon in respect of its correlation with the CgA level.

  13. Inverter-based successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham

    2017-03-23

    An energy-efficient capacitance-to-digital converter (CDC) is provided that utilizes a capacitance-domain successive approximation (SAR) technique. Unlike SAR analog- to-digital converters (ADCs), analysis shows that for SAR CDCs, the comparator offset voltage will result in signal-dependent and parasitic-dependent conversion errors, which necessitates an op-amp-based implementation. The inverter-based SAR CDC contemplated herein provides robust, energy-efficient, and fast operation. The inverter- based SAR CDC may include a hybrid coarse-fine programmable capacitor array. The design of example embodiments is insensitive to analog references, and thus achieves very low temperature sensitivity without the need for calibration. Moreover, this design achieves improved energy efficiency.

  14. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Science.gov (United States)

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  15. A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs

    Directory of Open Access Journals (Sweden)

    Zhen-Gang Zhao

    2009-09-01

    Full Text Available A new type of capacitive humidity sensor is introduced in this paper. The sensor consists of two plate electrodes coated with MWCNT films and four pieces of isolating medium at the four corners of the sensor. According to capillary condensation, the capacitance signal of the sensor is sensitive to relative humidity (RH, which could be transformed to voltage signal by a capacitance to voltage converter circuit. The sensor is tested using different saturated saline solutions at the ambient temperature of 25 °C, which yielded approximately 11% to 97% RH, respectively. The function of the MWCNT films, the effect of electrode distance, the temperature character and the repeatability of the sensor are discussed in this paper.

  16. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2016-05-01

    Full Text Available A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range.

  17. Overview of capacitive couplings in windings

    NARCIS (Netherlands)

    Djukic, N.; Encica, L.; Paulides, J.J.H.

    2015-01-01

    The use of electrical machines (EMs) with variable-frequency drives (VFDs) results in electromagnetic interference (EMI). At high frequencies (HFs) of conducted EMI, the impedance of an EM insulation system fed from a VFD is small due to the parasitic capacitive couplings. Thus, the conducted EMI

  18. Simulation and optimization of a dc SQUID with finite capacitance

    Energy Technology Data Exchange (ETDEWEB)

    de Waal, V.J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise an the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT = 1.2 and 5 nHK. Within a range of ..beta.. and ..beta../sub c/ between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 nHK.

  19. Simulation and optimization of a dc SQUID with finite capacitance

    Science.gov (United States)

    de Waal, V. J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 mH K.

  20. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    Science.gov (United States)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  1. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    Science.gov (United States)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  2. Evaluation of Capacitive Markers Fabricated by 3D Printing, Laser Cutting and Prototyping

    Directory of Open Access Journals (Sweden)

    Julian Kreimeier

    2018-01-01

    Full Text Available With Tangible User Interfaces, the computer user is able to interact in a fundamentally different and more intuitive way than with usual 2D displays. By grasping real physical objects, information can also be conveyed haptically, i.e., the user not only sees information on a 2D display, but can also grasp physical representations. To recognize such objects (“tangibles” it is skillful to use capacitive sensing, as it happens in most touch screens. Thus, real objects can be located and identified by the touch screen display automatically. Recent work already addressed such capacitive markers, but focused on their coding scheme and automated fabrication by 3D printing. This paper goes beyond the fabrication by 3D printers and, for the first time, applies the concept of capacitive codes to laser cutting and another immediate prototyping approach using modeling clay. Beside the evaluation of additional properties, we adapt recent research results regarding the optimized detection of tangible objects on capacitive screens. As a result of our comprehensive study, the detection performance is affected by the type of capacitive signal processing (respectively the device and the geometry of the marker. 3D printing revealed to be the most reliable technique, though laser cutting and immediate prototyping of markers showed promising results. Based on our findings, we discuss individual strengths of each capacitive marker type.

  3. A Multifunction Low-Power Preamplifier for MEMS Capacitive Microphones

    DEFF Research Database (Denmark)

    Jawed, Syed Arsalan; Nielsen, Jannik Hammel; Gottardi, Massimo

    2009-01-01

    A multi-function two-stage chopper-stabilized preamplifier (PAMP) for MEMS capacitive microphones (MCM) is presented. The PAMP integrates digitally controllable gain, high-pass filtering and offset control, adding flexibility to the front-end readout of MCMs. The first stage of the PAMP consists...... of a source-follower (SF) while the second-stage is a capacitive gain stage. The second-stage employs chopper-stabilization (CHS), while SF buffer shields the MCM sensor from the switching spurs. The PAMP uses M poly bias resistors for the second-stage, exploiting Miller effect to achieve flat audio...

  4. Stray capacitances in the watt balance operation: electrostatic forces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Mana, G.

    2014-01-01

    In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results of a fin......In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results...

  5. Development of Image Reconstruction Algorithms in electrical Capacitance Tomography

    International Nuclear Information System (INIS)

    Fernandez Marron, J. L.; Alberdi Primicia, J.; Barcala Riveira, J. M.

    2007-01-01

    The Electrical Capacitance Tomography (ECT) has not obtained a good development in order to be used at industrial level. That is due first to difficulties in the measurement of very little capacitances (in the range of femto farads) and second to the problem of reconstruction on- line of the images. This problem is due also to the small numbers of electrodes (maximum 16), that made the usual algorithms of reconstruction has many errors. In this work it is described a new purely geometrical method that could be used for this purpose. (Author) 4 refs

  6. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    Science.gov (United States)

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  7. A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Il-Oun Lee

    2017-09-01

    Full Text Available Growth of the Internet of Things (IoT spurs need for new ways of delivering power. Wireless power transfer (WPT has come into the spotlight from both academia and industry as a promising way to power the IoT devices. As one of the well-known WPT techniques, the capacitive power transfer (CPT has the merit of low electromagnetic radiation and amenability of combined power and data transfer over a capacitive interface. However, applying the CPT to the IoT devices is still challenging in reality. One of the major issues is due to the small capacitance of the capacitive interface, which results in low efficiency of the power transfer. To tackle this problem, we present a new step-up single-switch quasi-resonant (SSQR converter for the CPT system. To enhance the CPT efficiency, the proposed converter is designed to operate at low frequency and drive small current into the capacitive interfaces. In addition, by eliminating resistor-capacitor-diode (RCD snubber in the converter, we reduce the implementation cost of the CPT system. Based on intensive experimental work with a CPT system prototype that supports maximum 50 W (100 V/0.5 A power transfer, we demonstrate the functional correctness of the converter that achieves up to 93% efficiency.

  8. Electropolymerized Star-Shaped Benzotrithiophenes Yield π-Conjugated Hierarchical Networks with High Areal Capacitance

    KAUST Repository

    Ringk, Andreas

    2016-03-30

    High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that P(TEBTT/EDOT)-based frameworks can achieve higher areal capacitance (e.g., as high as 443.8 mF cm-2 at 1 mA cm-2) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2) and PEDOT: 12.1 mF cm-2 (at 1 mA cm-2)). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35x capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT) copolymers can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1,000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.

  9. Electropolymerized Star-Shaped Benzotrithiophenes Yield π-Conjugated Hierarchical Networks with High Areal Capacitance

    KAUST Repository

    Ringk, Andreas; Lignie, Adrien; Hou, Yuanfang; Alshareef, Husam N.; Beaujuge, Pierre

    2016-01-01

    High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that P(TEBTT/EDOT)-based frameworks can achieve higher areal capacitance (e.g., as high as 443.8 mF cm-2 at 1 mA cm-2) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2) and PEDOT: 12.1 mF cm-2 (at 1 mA cm-2)). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35x capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT) copolymers can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1,000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.

  10. Fringe Capacitance of a Parallel-Plate Capacitor.

    Science.gov (United States)

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  11. Protein phosphatases decrease their activity during capacitation: a new requirement for this event.

    Directory of Open Access Journals (Sweden)

    Janetti R Signorelli

    Full Text Available There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate. The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1 NCM; 2 NCM plus inhibitors; 3 RCM; and 4 RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important

  12. Capacitance-voltage characterization of fully silicided gated MOS capacitor

    International Nuclear Information System (INIS)

    Wang Baomin; Ru Guoping; Jiang Yulong; Qu Xinping; Li Bingzong; Liu Ran

    2009-01-01

    This paper investigates the capacitance-voltage (C-V) measurement on fully silicided (FUSI) gated metal-oxide-semiconductor (MOS) capacitors and the applicability of MOS capacitor models. When the oxide leakage current of an MOS capacitor is large, two-element parallel or series model cannot be used to obtain its real C-V characteristic. A three-element model simultaneously consisting of parallel conductance and series resistance or a four-element model with further consideration of a series inductance should be used. We employed the three-element and the four-element models with the help of two-frequency technique to measure the Ni FUSI gated MOS capacitors. The results indicate that the capacitance of the MOS capacitors extracted by the three-element model still shows some frequency dispersion, while that extracted by the four-element model is close to the real capacitance, showing little frequency dispersion. The obtained capacitance can be used to calculate the dielectric thickness with quantum effect correction by NCSU C-V program. We also investigated the influence of MOS capacitor's area on the measurement accuracy. The results indicate that the decrease of capacitor area can reduce the dissipation factor and improve the measurement accuracy. As a result, the frequency dispersion of the measured capacitance is significantly reduced, and real C-V characteristic can be obtained directly by the series model. In addition, this paper investigates the quasi-static C-V measurement and the photonic high-frequency C-V measurement on Ni FUSI metal gated MOS capacitor with a thin leaky oxide. The results indicate that the large tunneling current through the gate oxide significantly perturbs the accurate measurement of the displacement current, which is essential for the quasi-static C-V measurement. On the other hand, the photonic high-frequency C-V measurement can bypass the leakage problem, and get reliable low-frequency C-V characteristic, which can be used to

  13. Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Guang [Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Li, Song [Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Atchison, Jennifer S. [Leibniz Inst. for New Materials (INM), Saarbrücken (Germany); Presser, Volker [Leibniz Inst. for New Materials (INM), Saarbrücken (Germany); Cummings, Peter T. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science

    2013-04-12

    Molecular dynamics (MD) simulations of supercapacitors with single-walled carbon nanotube (SWCNT) electrodes in room-temperature ionic liquids were performed to investigate the influences of the applied electrical potential, the radius/curvature of SWCNTs, and temperature on their capacitive behavior. It is found that (1) SWCNTs-based supercapacitors exhibit a near-flat capacitance–potential curve, (2) the capacitance increases as the tube radius decreases, and (3) the capacitance depends little on the temperature. We report the first MD study showing the influence of the electrode curvature on the capacitance–potential curve and negligible dependence of temperature on capacitance of tubular electrode. The latter is in good agreement with recent experimental findings and is attributed to the similarity of the electrical double layer (EDL) microstructure with temperature varying from 260 to 400 K. The electrode curvature effect is explained by the dominance of charge overscreening and increased ion density per unit area of electrode surface.

  14. 3D simulations and modeling of new low capacitance silicon pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Bo; Li, Yu Yun [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Center for Semiconductor Particle and photon Imaging Detector Development and Fabrication, Xiangtan University, Xiangtan 411105 (China); Li, Zheng, E-mail: zhengli58@gmail.com [School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105 (China); Center for Semiconductor Particle and photon Imaging Detector Development and Fabrication, Xiangtan University, Xiangtan 411105 (China)

    2016-09-21

    With signal to noise ratio (S/N) being a key parameter of a high performance detector, reducing the detector noise has been one of the main tasks in detector development. A new low capacitance silicon pixel detector is proposed, which is based on a new electrode geometry with reduced effective electrode area while keeping the sensitive volume unchanged. Detector electrical characteristics including electrostatic potential, electric field, full depletion voltage, and capacitance have been simulated in detail using a 3D TCAD tool. From these simulations and calculations, we confirm that the new detector structure has a much reduced capacitance (by a factor of 3) as compared to the traditional pixel detectors with the same sensitive volume. This reduction in detector capacitance can certainly improve the detector signal to noise ratio. However, the full depletion voltage for the new structure is larger than that of the traditional one due to the small electrode effect.

  15. Effects of electrolytic composition on the electric double-layer capacitance at smooth-surface carbon electrodes in organic media

    International Nuclear Information System (INIS)

    Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko; Morita, Masayuki

    2010-01-01

    As a fundamental research on the optimization of electrolyte composition in practical electrochemical capacitor device, double-layer capacitance at Glassy Carbon (GC) and Boron-doped Diamond (BDD), as typical smooth-surface carbon electrodes, has been studied as a function of the electrolyte composition in organic media. Specific capacitance (differential capacitance: F cm -2 ) determined by an AC impedance method, in which no contribution of mass-transport effects is included, corresponded well to integrated capacitance evaluated by conventional cyclic voltammetry. The specific capacitance at the GC electrode varied with polarized potential and showed clear PZC (potential of zero charge), while the potential dependence of the capacitance at BDD was very small. The effects of the solvent and the electrolytic salt on the capacitance behavior were common for both electrodes. That is, the sizes of the solvent molecule and the electrolytic ion (cation) strongly affected the capacitance at these smooth-surface carbon electrodes.

  16. Na/K-ATPase regulates bovine sperm capacitation through raft- and non-raft-mediated signaling mechanisms.

    Science.gov (United States)

    Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C

    2017-11-01

    Highly dynamic lipid microdomains (rafts) in the sperm plasma membrane contain several signaling proteins that regulate sperm capacitation. Na/K-ATPase isoforms (testis-specific isoform ATP1A4 and ubiquitous isoform ATP1A1) are abundant in bovine sperm plasma membrane. We previously reported that incubation of bovine sperm with ouabain, a specific Na/K-ATPase ligand, induced tyrosine phosphorylation of several sperm proteins during capacitation. The objective of this study was to investigate the roles of lipid rafts and non-rafts in Na/K-ATPase enzyme activity and signaling during bovine sperm capacitation. Content of ATP1A4 and, to a lesser extent, ATP1A1 was increased in raft and non-raft fractions of capacitated sperm, although non-raft enzyme activities of both isoforms were higher than the corresponding activities in rafts from capacitated sperm. Yet, ATP1A4 was the predominant isoform responsible for total Na/K-ATPase activity in both rafts and non-rafts. A comparative increase in phosphorylation of signaling molecules was observed in both raft (CAV1) and non-raft (EGFR and ERK1/2) membrane fractions during capacitation. Although SRC was phosphorylated in both membrane fractions, the non-raft fraction possessed more of this activated form. We also inferred, by immunoprecipitation, that ATP1A4 interacted with CAV1 and EGFR in the raft fraction, whereas interactions of ATP1A4 with SRC, EGFR, and ERK1/2 occurred in the non-raft fraction of ouabain-capacitated sperm; conversely, ATP1A1 interacted only with CAV1 in both fractions of uncapacitated and capacitated sperm. In conclusion, both raft and non-raft cohorts of Na/K-ATPase isoforms contributed to phosphorylation of signaling molecules during bovine sperm capacitation. © 2017 Wiley Periodicals, Inc.

  17. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    Science.gov (United States)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  18. Capacitive Structures for Gas and Biological Sensing

    KAUST Repository

    Sapsanis, Christos

    2015-04-01

    The semiconductor industry was benefited by the advances in technology in the last decades. This fact has an impact on the sensors field, where the simple transducer was evolved into smart miniaturized multi-functional microsystems. However, commercially available gas and biological sensors are mostly bulky, expensive, and power-hungry, which act as obstacles to mass use. The aim of this work is gas and biological sensing using capacitive structures. Capacitive sensors were selected due to its design simplicity, low fabrication cost, and no DC power consumption. In the first part, the dominant structure among interdigitated electrodes (IDEs), fractal curves (Peano and Hilbert) and Archimedean spiral was investigated from capacitance density perspective. The investigation consists of geometrical formula calculations, COMSOL Multiphysics simulations and cleanroom fabrication of the capacitors on a silicon substrate. Moreover, low-cost fabrication on flexible plastic PET substrate was conducted outside cleanroom with rapid prototyping using a maskless laser etching. The second part contains the humidity, Volatile Organic compounds (VOCs) and Ammonia sensing of polymers, Polyimide and Nafion, and metal-organic framework (MOF), Cu(bdc)2.xH2O using IDEs and tested in an automated gas setup for experiment control and data extraction. The last part includes the biological sensing of C - reactive protein (CRP) quantification, which is considered as a biomarker of being prone to cardiac diseases and Bovine serum albumin (BSA) protein quantification, which is used as a reference for quantifying unknown proteins.

  19. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI

  20. Electrochemical capacitive performances of nanoporous carbon derived from sunflower seed shell

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Xing, W.; Zhuo, S.; Zhou, J. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    Electrochemical double-layer capacitances (EDLCs) are used in applications were high power density and long cycle life are required. Nanoporous materials are typically used to prepare EDLC electrodes due to their high surface area, good physicochemical stability, and high conductivity. In this study, nanoporous carbon materials were prepared from sunflower seed shells and used as an electrode material for an EDLC. The surface and structural properties of the carbon materials were analyzed using N{sub 2} adsorption and scanning electron microscopy (SEM) techniques. The study showed that AC-X-Y carbons prepared using the impregnation-activation process had a better capacitive behaviour and higher capacitance retention ratio at fast charge-discharge rates than carbons made using the carbonization-activation process. The improved electrochemical performance of the carbons was attributed to the abundant macroscopic pores and decreased interior micropore surface. The specific capacitances of the carbon was approximately twice that of a hard-templated mesoporous carbon in all current densities ranging from 0.25 to 10 A per g. Results indicated that sunflower seed shells can be used to prepare EDLCs. 2 refs., 1 fig.

  1. Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors.

    Science.gov (United States)

    Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M

    2013-07-24

    A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.

  2. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    Science.gov (United States)

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance.

  3. Designing a robust high-speed CMOS-MEMS capacitive humidity sensor

    International Nuclear Information System (INIS)

    Lazarus, N; Fedder, G K

    2012-01-01

    In our previous work (Lazarus and Fedder 2011 J. Micromech. Microeng. 21 0650281), we demonstrated a CMOS-MEMS capacitive humidity sensor with a 72% improvement in sensitivity over the highest previously integrated on a CMOS die. This paper explores a series of methods for creating a faster and more manufacturable high-sensitivity capacitive humidity sensor. These techniques include adding oxide pillars to hold the plates apart, spin coating polymer to allow sensors to be fabricated more cheaply, adding a polysilicon heater and etching away excess polymer in the release holes. In most cases a tradeoff was found between sensitivity and other factors such as response time or robustness. A robust high-speed sensor was designed with a sensitivity of 0.21% change in capacitance per per cent relative humidity, while dropping the response time constant from 70 to 4s. Although less sensitive than our design, the sensor remains 17% more sensitive than the most sensitive interdigitated designs successfully integrated with CMOS. (paper)

  4. Design and test of a capacitance detection circuit based on a transimpedance amplifier

    International Nuclear Information System (INIS)

    Mu Linfeng; Zhang Wendong; He Changde; Zhang Rui; Song Jinlong; Xue Chenyang

    2015-01-01

    This paper presents a transimpedance amplifier (TIA) capacitance detection circuit aimed at detecting micro-capacitance, which is caused by ultrasonic stimulation applied to the capacitive micro-machined ultrasonic transducer (CMUT). In the capacitance interface, a TIA is adopted to amplify the received signal with a center frequency of 400 kHz, and finally detect ultrasound pressure. The circuit has a strong anti-stray property and this paper also studies the calculation of compensation capacity in detail. To ensure high resolution, noise analysis is conducted. After optimization, the detected minimum ultrasound pressure is 2.1 Pa, which is two orders of magnitude higher than the former. The test results showed that the circuit was sensitive to changes in ultrasound pressure and the distance between the CMUT and stumbling block, which also successfully demonstrates the functionality of the developed TIA of the analog-front-end receiver. (paper)

  5. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.; Bai, Y. Z., E-mail: abai@mail.hust.edu.cn; Zhou, Z. B., E-mail: zhouzb@mail.hust.edu.cn; Li, Z. X.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-05-15

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.

  6. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    International Nuclear Information System (INIS)

    Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.

    2014-01-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided

  7. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.; Cusick, Roland D.; Logan, Bruce E.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  8. Two models of the capacitated vehicle routing problem

    Directory of Open Access Journals (Sweden)

    Zuzana Borčinova

    2017-01-01

    Full Text Available The aim of the Capacitated Vehicle Routing Problem (CVRP is to find a set of minimum total cost routes for a fleet of capacitated vehicles based at a single depot, to serve a set of customers. There exist various integer linear programming models of the CVRP. One of the main differences lies in the way to eliminate sub-tours, i.e. cycles that do not go through the depot. In this paper, we describe a well-known flow formulation of CVRP, where sub-tour elimination constraints have a cardinality exponentially growing with the number of customers. Then we present a mixed linear programming formulation with polynomial cardinality of sub-tour elimination constraints. Both of the models were implemented and compared on several benchmarks.

  9. Spin-orbit controlled capacitance of a polar heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)

    2015-07-01

    Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.

  10. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    Science.gov (United States)

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  11. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    Directory of Open Access Journals (Sweden)

    Guillermo Royo

    2016-12-01

    Full Text Available In this work, we present a capacitance-to-voltage converter (CVC for capacitive accelerometers based on microelectromechanical systems (MEMS. Based on a fully-differential transimpedance amplifier (TIA, it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  12. Capacitive system detects and locates fluid leaks

    Science.gov (United States)

    1966-01-01

    Electronic monitoring system automatically detects and locates minute leaks in seams of large fluid storage tanks and pipelines covered with thermal insulation. The system uses a capacitive tape-sensing element that is adhesively bonded over seams where fluid leaks are likely to occur.

  13. Maximizing the value of gate capacitance in field-effect devices using an organic interface layer

    Science.gov (United States)

    Kwok, H. L.

    2015-12-01

    Past research has confirmed the existence of negative capacitance in organics such as tris (8-Hydroxyquinoline) Aluminum (Alq3). This work explored using such an organic interface layer to enhance the channel voltage in the field-effect transistor (FET) thereby lowering the sub-threshold swing. In particular, if the values of the positive and negative gate capacitances are approximately equal, the composite negative capacitance will increase by orders of magnitude. One concern is the upper frequency limit (∼100 Hz) over which negative capacitance has been observed. Nonetheless, this frequency limit can be raised to kHz when the organic layer is subjected to a DC bias.

  14. Compressed magnetic flux amplifier with capacitive load

    International Nuclear Information System (INIS)

    Stuetzer, O.M.

    1980-03-01

    A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime

  15. A current driven capacitively coupled chlorine discharge

    International Nuclear Information System (INIS)

    Huang, Shuo; Gudmundsson, J T

    2014-01-01

    The effect of driving current, driving frequency and secondary electrons on capacitively coupled chlorine discharge is systematically investigated using a hybrid approach consisting of a particle-in-cell/Monte Carlo simulation and a volume-averaged global model. The driving current is varied from 20 to 80 A m −2 , the driving frequency is varied from 13.56 to 60 MHz and the secondary electron emission coefficient is varied from 0.0 to 0.4. Key plasma parameters including electron energy probability function, electron heating rate, ion energy and angular distributions are explored and their variations with control parameters are analyzed and compared with other discharges. Furthermore, we extend our study to dual-frequency (DF) capacitively coupled chlorine discharge by adding a low-frequency current source and explore the effect of the low-frequency source on the discharge. The low-frequency current density is increased from 0 to 4 A m −2 . The flux of Cl 2 + ions to the surface increases only slightly while the average energy of Cl 2 + ions to the surface increases almost linearly with increasing low-frequency current, which shows possible independent control of the flux and energy of Cl 2 + ions by varying the low-frequency current in a DF capacitively coupled chlorine discharge. However, the increase in the flux of Cl + ions with increasing low-frequency current, which is mainly due to the increased dissociation fraction of the background gas caused by extra power supplied by the low-frequency source, is undesirable. (paper)

  16. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications.

    Science.gov (United States)

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-06-07

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm², which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply.

  17. Varying carbon structures templated from KIT-6 for optimum electrochemical capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Li Fujun; Laak, Nicole van der; Ting, S.-W. [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Chan, K.-Y., E-mail: hrsccky@hku.h [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)

    2010-03-01

    Bicontinuous ordered mesoporous carbons (OMCs), fabricated from a KIT-6 template using aluminosilicate as catalyst and furfuryl alcohol as carbon source, were successfully prepared and studied as electrodes in supercapacitors. Their structures were characterized by transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXD) and N{sub 2} cryosorption methods. Using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the capacitive performance of the OMCs was found to be strongly dependent on the mesostructure. Specific capacitance value greater than 130 F g{sup -1} at 20 mV s{sup -1} were obtained from an OMC that featured high surface area with the existence of additional large pores to enhance the specific capacitance at high discharge rate. For the OMC with the best performance, we found that a power density as high as 4.5 kW kg{sup -1} at an energy density of 6.1 Wh kg{sup -1} can be delivered when the discharge current density is 20 A g{sup -1} and can also be continuously charged and discharged with little variation in capacitance after 2500 cycles. These results indicate that this OMC with optimized structure has potential to be used as a power component in electric vehicles.

  18. Label-free detection of sex determining region Y (SRY) via capacitive biosensor

    KAUST Repository

    Sivashankar, Shilpa

    2016-10-20

    In this work, we present for the first time, the use of a simple fractal capacitive biosensor for the quantification and detection of sex-determining region Y (SRY) genes. This section of genetic code, which is found on the Y chromosome, finds importance for study as it causes fetuses to develop characteristics of male sex-like gonads when a mutation occurs. It is also an important genetic code in men, and disorders involving the SRY gene can cause infertility and sexual malfunction that lead to a variety of gene mutational disorders. We have therefore designed silicon-based, label-free fractal capacitive biosensors to quantify various proteins and genes. We take advantage of a good dielectric material, Parylene C for enhancing the performance of the sensors. We have integrated these sensors with a simple microchannel for easy handling of fluids on the detection area. The read-out value of an Agilent LCR meter used to measure capacitance of the sensor at a frequency of 1 MHz determined gene specificity and gene quantification. These data revealed that the capacitance measurement of the capacitive biosensor for the SRY gene depended on both the target and the concentration of DNA. The experimental outcomes in the present study can be used to detect DNA and its variations in crucial fields that have a great impact on our daily lives, such as clinical and veterinary diagnostics, industrial and environmental testing and forensic sciences.

  19. Analysis of small deflection touch mode behavior in capacitive pressure sensors

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Ansbæk, Thor; Pedersen, Thomas

    2010-01-01

    Due to an increasing need for devices with low power consumption, capacitive pressure sensors have become good substitutes for the well known piezoresistive pressure sensors. Mathematical models are necessary to design and characterize the device, preferably the model is analytical...... such that geometrical scalings are revealed. We show that, in the case of linear elastic behavior, a simple analytical model can be found for a touch mode capacitive pressure sensor (TMCPS). With this model it is possible to readily evaluate the main features of a TMCPS such as: sensitivity (both in normal and touch...... mode), touch point pressure and parasitic capacitance. Therefore, the desired device can be designed without using finite element modeling (FEM). This reduces the effort needed to design a micromachined TMCPS. Finally, the model has been compared with a micromachined TMCPS showing an excellent...

  20. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  1. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    Science.gov (United States)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  2. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage

    Science.gov (United States)

    Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.

    2016-08-01

    We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates.

  3. Morphological reason for enhancement of electrochemical double layer capacitances of various acetylene blacks by electrochemical polarization

    International Nuclear Information System (INIS)

    Kim, Taegon; Ham, Chulho; Rhee, Choong Kyun; Yoon, Seong-Ho; Tsuji, Masaharu; Mochida, Isao

    2008-01-01

    Enhancement of electrochemical capacitance and morphological variations of various acetylene blacks caused by electrochemical polarization are presented. Acetylene blacks of different mean particle diameters were modified by air-oxidation and heat treatment to diversify the morphologies of the acetylene blacks before electrochemical polarization. The various acetylene blacks were electrochemically oxidized at 1.6 V (vs. Ag/AgCl) for 10 s and the polarization step was repeated until the capacitance values did not change any longer. These polarization steps enhanced the capacitances of the acetylene blacks and the specific enhancement factors range from 2 to 5.5. Such an enhancement is strongly related to morphological modification as revealed by transmission electron microscopic observations. The electrochemical polarization resulted in formation of tiny graphene sheets on the wide graphitic carbon surfaces, which were most responsible for the observed capacitive enhancement. Although the pseudo-capacitance increased after polarization by forming oxygenated species on the surfaces, its contribution to the total capacitance was less than 10%. The mechanism of the formation of the tiny graphene sheets during the electrochemical oxidation is described schematically

  4. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity.

    Science.gov (United States)

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-21

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of design.

  5. A Superresolution Image Reconstruction Algorithm Based on Landweber in Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    Chen Deyun

    2013-01-01

    Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.

  6. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer-to-layer......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...... extraction tool shows that the side-by-side coupling dominated structure can perform better than the layer-to-layer coupling dominated structure, in terms of on-resistance times input or output capacitance, by 9.2% and 4.9%, respectively....

  7. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Science.gov (United States)

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  8. Mesoporous nanocrystalline film architecture for capacitive storage devices

    Science.gov (United States)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John; Brezesinski, Torsten; Gruner, George

    2017-05-16

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).

  9. Origin of Negative Capacitance in Bipolar Organic Diodes

    Science.gov (United States)

    Niu, Quan; Crǎciun, N. Irina; Wetzelaer, Gert-Jan A. H.; Blom, Paul W. M.

    2018-03-01

    Negative differential capacitance (NC) occurring at low frequencies in organic light-emitting diodes (OLEDs) is a poorly understood phenomenon. We study the origin of the NC effect by systematically varying the number of electron traps in OLEDs based on the polymeric semiconductor poly(p -phenylene vinylene). Increasing the electron trap density enhances the NC effect. The magnitude and observed decrease of the relaxation time is consistent with the (inverse) rate of trap-assisted recombination. The absence of NC in a nearly trap-free light-emitting diode unambiguously shows that trap-assisted recombination is the responsible mechanism for the negative contribution to the capacitance in bipolar organic diodes. Our results reveal that the NC effect can be exploited to quantitatively determine the number of traps in organic semiconductors in a nondestructive fashion.

  10. Energy-Efficient Capacitance-to-Digital Converters for Low-Energy Sensor Nodes

    KAUST Repository

    Omran, Hesham

    2015-11-01

    Energy efficiency is a key requirement for wireless sensor nodes, biomedical implants, and wearable devices. The energy consumption of the sensor node needs to be minimized to avoid battery replacement, or even better, to enable the device to survive on energy harvested from the ambient. Capacitive sensors do not consume static power; thus, they are attractive from an energy efficiency perspective. In addition, they can be employed in a wide range of sensing applications. However, the sensor readout circuit–i.e., the capacitance-to-digital converter (CDC)–can be the dominant source of energy consumption in the system. Thus, the development of energy-efficient CDCs is crucial to minimizing the energy consumption of capacitive sensor nodes. In the first part of this dissertation, we propose several energy-efficient CDC architectures for low-energy sensor nodes. First, we propose a digitally-controlled coarsefine multislope CDC that employs both current and frequency scaling to achieve significant improvement in energy efficiency. Second, we analyze the limitations of successive approximation (SAR) CDC, and we address these limitations by proposing a robust parasitic-insensitive opamp-based SAR CDC. Third, we propose an inverter-based SAR CDC that achieves an energy efficiency figure-of-merit (FoM) of 31fJ/Step, which is the best energy efficiency FoM reported to date. Fourth, we propose a differential SAR CDC with quasi-dynamic operation to maintain excellent energy efficiency for a scalable sample rate. In the second part of this dissertation, we study the matching properties of small integrated capacitors, which are an integral component of energy-efficient CDCs. Despite conventional wisdom, we experimentally illustrate that the mismatch of small capacitors can be directly measured, and we report mismatch measurements for subfemtofarad integrated capacitors. We also correct the common misconception that lateral capacitors match better than vertical capacitors

  11. A Capacitance-Based Methodology for the Estimation of Piezoelectric Coefficients of Poled Piezoelectric Materials

    KAUST Repository

    Al Ahmad, Mahmoud; Alshareef, Husam N.

    2010-01-01

    A methodology is proposed to estimate the piezoelectric coefficients of bulk piezoelectric materials using simple capacitance measurements. The extracted values of d33 and d31 from the capacitance measurements were 506 pC/N and 247 p

  12. Capacitive discharge exciplex lamps

    Energy Technology Data Exchange (ETDEWEB)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F [High Current Electronics Institute, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2005-09-07

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications.

  13. Capacitive discharge exciplex lamps

    International Nuclear Information System (INIS)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F

    2005-01-01

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications

  14. Preparatory research for development of a capacitance sensor monitoring the liquid fraction in an inclined pipe

    International Nuclear Information System (INIS)

    Ko, Min Seok; Lee, Bo An; Kim, Sin; Yun, Byong Jo

    2012-01-01

    Two phase flow is a highly general phenomenon in various engineering fields including thermal hydraulic systems of the nuclear power plant. In particular, the liquid fraction in two phase system is one of the most important parameters to be considered for efficient system design and analysis. There have been various methods for the liquid fraction measurement. Wojtan et al. employed an optical fiber for liquid fraction measurement. Elbow and Rezkallah adopted the capacitance signal, Tsochatzidis et al. and Fossa used the conductance response in order to monitor the liquid fraction in various two phase flow regimes. The electrical methods are based on the fact that the liquid and gas have different conductivity and permittivity values, and these electrical properties directly correspond to phase distributions. In the capacitance method, in particular, one or more pairs of electrodes attached inside or outside the pipe wall measure the capacitance between electrode pairs and this measured capacitance signal is directly converted to the liquid fraction. In this work, as a preparatory research for development of a capacitance sensor monitoring the liquid fraction in an inclined pipe whose diameter and inclination angle are 45mm and 3rad, respectively, a capacitance is designed. Also, data evaluation procedures of a wire mesh sensor which would be employed for the verification of capacitance sensor performance are verified by comparing static experiments

  15. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    Science.gov (United States)

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  16. Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board

    Directory of Open Access Journals (Sweden)

    Lee Jacqueline Ann L.

    2016-01-01

    Full Text Available A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.

  17. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu

    2009-07-15

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  18. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    International Nuclear Information System (INIS)

    Mansuripur, T S; Pascall, A J; Squires, T M

    2009-01-01

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  19. Enhanced specific capacitance of modified needle cokes by controlling oxidation treatment

    International Nuclear Information System (INIS)

    Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Soo Kim, Hyun; Tack Kim, Yu

    2010-01-01

    The electric double-layer performance of needle cokes can be affected by the morphology of structures. Hence, we introduce modified needle cokes by using simple oxidation treatment. The degree of graphitization with high specific capacitance is controlled by acid and heat treatment. The active sites of cokes are increased with increasing oxidation time. Dilute nitric acid (HNO 3 ) and sodium chlorate (NaClO 3 ) are used for the activation of cokes. In this case, the interlayer distance is dramatically increased from 3.5 to 8.9 A. The specific capacitances are 33 F g -1 and 30 F ml -1 , respectively, on a two-electrode system with a potential range of 0-2.5 V. The behaviors of double-layer capacitance are demonstrated by the charge-discharge process and the morphologies of modified needle cokes are analyzed by XRD, FE-SEM, BET and elemental analysis.

  20. CMOS based capacitance to digital converter circuit for MEMS sensor

    Science.gov (United States)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  1. Response to capacitating stimuli indicates extender-related differences in boar sperm function.

    Science.gov (United States)

    Schmid, S; Henning, H; Petrunkina, A M; Weitze, K F; Waberski, D

    2013-10-01

    Spermatozoa, especially those of the porcine species, are highly susceptible to in vitro chilling and ageing. Extenders are continuously developed to protect boar spermatozoa from chilling injury. New semen extenders and other modified preservation strategies require sensitive testing for essential sperm functions. The key process on the pathway of fertilization is capacitation. The aim of the present study was to examine whether the specific response to capacitating stimuli is sensitive enough to indicate different preservation capacities of extenders during hypothermic storage of boar spermatozoa. Semen was diluted in Beltsville Thawing Solution (BTS) and Androstar Plus and kept for 3 h at 22°C or stored at 17°C, 10°C, and 5°C. Semen was analyzed at 24 and 96 h of storage. Motility and membrane integrity remained at high levels, except for lower values when stored in BTS at 5°C. Washed subsamples were incubated in capacitating medium (Tyrode) and control medium and were assessed for intracellular calcium concentration and integrity of plasma membranes using a flow cytometer. On the basis of the loss of low-calcium live cells in a kinetic approach, the specific response to capacitation stimuli was determined. There was a higher loss of response in semen stored hypothermically in the standard extender BTS compared to Androstar Plus. Assessment of the extent of phospholipid disorder under capacitating and control conditions by use of merocyanine staining did not reveal any significant extender-related differences. A field insemination trial with 778 sows was performed to relate in vitro results to fertility. Fertility parameters did not differ in semen stored up to 48 h at 10°C in Androstar Plus compared to controls stored at 17°C in BTS. In conclusion, assessment of specific reactivity to capacitating stimuli appears to be a sensitive tool for detection of extender-dependent alterations in functionality of chilled boar spermatozoa.

  2. Capacitive VAr requirements for wind driven self-excited induction generators

    International Nuclear Information System (INIS)

    Singaravelu, S.; Velusami, S.

    2007-01-01

    This paper presents the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, used as isolated power sources by a constant speed or a variable speed prime mover, to obtain the desired voltage regulation at various values of load and speed. Different performance criteria such as constant terminal voltage or constant air gap flux have been considered. The developed mathematical model using nodal analysis based on graph theory is quite general in nature and can be used for any combination of the unknown variables such as magnetizing reactance (X M ) and frequency (F) or capacitive reactance (X C ) and frequency (F) or capacitive reactance (X C ) and speed (υ). The proposed model completely avoids the tedious and erroneous manual work of segregating the real and imaginary components of the complex impedance of the machine for deriving the specific model for each operating modes. Moreover, any element, like the core loss component, can be included or excluded from the model if required. Next, to obtain the capacitive VAr requirements of a three phase pole changing self-excited induction generator and a single phase self-excited induction generator, a fuzzy logic approach is used for the first time to find the unknown variables using the above model. The results are presented in a normalized form so that they are valid for a wide range of machines and would be useful for the design of voltage regulators for such generators

  3. Investigation of capacitance characteristics in metal/high-k ...

    Indian Academy of Sciences (India)

    MS received 4 May 2016; accepted 10 January 2017; published online 21 August 2017. Abstract. Capacitance vs. ... with high-k materials is the prime technological challenge. [2]. ... reliability of MOS devices are strongly dependent on the for-.

  4. Amorphous carbon nanofibres inducing high specific capacitance of deposited hydrous ruthenium oxide

    International Nuclear Information System (INIS)

    Barranco, V.; Pico, F.; Ibanez, J.; Lillo-Rodenas, M.A.; Linares-Solano, A.; Kimura, M.; Oya, A.; Rojas, R.M.; Amarilla, J.M.; Rojo, J.M.

    2009-01-01

    Composites consisting of ruthenium oxide particles deposited on amorphous carbon nanofibres are prepared by a repetitive impregnation procedure. The choice of amorphous carbon nanofibres as support of amorphous ruthenium oxide leads to composites in which the deposited oxide consists of aggregates of extremely small primary particles (1-1.5 nm-size) and showing high porosity (specific surface area of 450 m 2 g -1 ). This special deposition of the oxide seems to favour: (i) high oxide capacitance (1000 Fg -1 ) at high oxide loadings (up to 20 wt%) and (ii) high capacitance retention (ca. 80% from the initial oxide capacitance) at high current densities (200 mA cm -2 ). Amorphous carbon nanofibres are suitable supports for amorphous ruthenium oxide and perhaps for other amorphous oxides acting as active electrode materials.

  5. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.

    Science.gov (United States)

    Paydar, Omeed H; Wottawa, Christopher R; Fan, Richard E; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O; Candler, Rob N

    2012-01-01

    Although surgical robotic systems provide several advantages over conventional minimally invasive techniques, they are limited by a lack of tactile feedback. Recent research efforts have successfully integrated tactile feedback components onto surgical robotic systems, and have shown significant improvement to surgical control during in vitro experiments. The primary barrier to the adoption of tactile feedback in clinical use is the unavailability of suitable force sensing technologies. This paper describes the design and fabrication of a thin-film capacitive force sensor array that is intended for integration with tactile feedback systems. This capacitive force sensing technology could provide precise, high-sensitivity, real-time responses to both static and dynamic loads. Capacitive force sensors were designed to operate with optimal sensitivity and dynamic range in the range of forces typical in minimally invasive surgery (0-40 N). Initial results validate the fabrication of these capacitive force-sensing arrays. We report 16.3 pF and 146 pF for 1-mm(2) and 9-mm(2) capacitive areas, respectively, whose values are within 3% of theoretical predictions.

  6. A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Zhu, Guorong

    2016-01-01

    capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters...

  7. Parallel double-plate capacitive proximity sensor modelling based on effective theory

    International Nuclear Information System (INIS)

    Li, Nan; Zhu, Haiye; Wang, Wenyu; Gong, Yu

    2014-01-01

    A semi-analytical model for a double-plate capacitive proximity sensor is presented according to the effective theory. Three physical models are established to derive the final equation of the sensor. Measured data are used to determine the coefficients. The final equation is verified by using measured data. The average relative error of the calculated and the measured sensor capacitance is less than 7.5%. The equation can be used to provide guidance to engineering design of the proximity sensors

  8. [Impact of sperm capacitation on various populations of human spermatozoa].

    Science.gov (United States)

    Villanueva Díaz, C; Suárez Juárez, M; Díaz, M A; Ayala Ruiz, A

    1989-02-01

    With the purpose of evaluating the impact of spermatic capacitation on different spermatozooa populations, 49 samples of semen, before and after in vitro spermatic capacitation with Ham F-10 medium, were studied; motility of cells was evaluated according to WHO criteria. There was diminution of percentage of immobile cells, 27.8 to 20.0, as well as increase in population of cells with more mobility, 28.6% to 39.1%. Both difference were statistically significant (p = less than 0.05 and p = less than 0.005, respectively). These data suggest that spermatic capacitacion activates "in cascade" all groups of gametes.

  9. Reduction of parasitic capacitance in 10 kV SiC MOSFET power modules using 3D FEM

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Christensen, Nicklas; Dalal, Dipen Narendrabhai

    2017-01-01

    The benefits of emerging wide-band gap semiconductors can only be utilized if the semiconductor is properly packaged. Capacitive coupling in the package causes electromagnetic interference during high dv/dt switching. This paper investigates the current flowing in the parasitic capacitance between...... the output node and the grounded heat sink for a custom silicon carbide power module. A circuit model of the capacitive coupling path is presented, using parasitic capacitances extracted from ANSYS Q3D. Simulated values are compared with experimental results. A new iteration of the silicon carbide power...

  10. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  11. Minimization of the transformer inter-winding parasitic capacitance for modular stacking power supply applications

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Ouyang, Ziwei; Knott, Arnold

    2014-01-01

    In an isolated power supply, the inter-winding parasitic capacitance plays a vital role in the mitigation of common mode noise currents created by fast voltage transient responses. The lower the transformer inter-winding capacitance, the more immune the power supply is to fast voltage transient...... responses. This requirement is even more critical for modular stacking applications in which multiple power supplies are stacked. This paper addresses the issue by presenting a detailed analysis and design of an unconventional isolated power supply that uses a ring core transformer with a very low inter......-winding parasitic capacitance of 10 pF. Considering its output power of 300 W, this approach yields about 0.033 pF/W inter-winding capacitance over output power, approximately thirty times lower than existing approaches in the literature. This makes the converter a suitable solution for modular stacking of fast...

  12. Development of capacitive sensor for automatically measuring tumbler water level with FEA simulation.

    Science.gov (United States)

    Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha

    2018-01-01

    Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.

  13. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  14. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    Science.gov (United States)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  15. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    Science.gov (United States)

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  16. Investigation and Modeling of Capacitive Human Body Communication.

    Science.gov (United States)

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  17. Study the Z-Plane Strip Capacitance

    International Nuclear Information System (INIS)

    Parikh, H.; Swain, S.

    2005-01-01

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate (φ coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m 2 ) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints

  18. Instrumentation to Measure the Capacitance of Biosensors by Sinusoidal Wave Method

    Directory of Open Access Journals (Sweden)

    Pavan Kumar KATHUROJU

    2009-09-01

    Full Text Available Micro Controller based instrumentation to measure the capacitance of biosensors is developed. It is based on frequency domain technique with sinusoidal wave input. Changes in the capacitance of biosensor because of the analyte specific reaction are calculated by knowing the current flowing through the sample. A dedicated 8-bit microcontroller (AT89C52 and its associated peripherals are employed for the hardware and application specific software is developed in ‘C’ language. The paper describes the methodology, instrumentation details along with a specific application to glucose sensing. The measurements are conducted with glucose oxidase based capacitance biosensor and the obtained results are compared with the conventional method of sugar measurements using the UV-Visible spectroscopy (Phenol-Sulphuric acid assay method. Measurement accuracy of the instrument is found to be ± 5 %. Experiments are conducted on glucose sensor with different bias voltages. It is found that for bias voltages varying from 0.5 to 0.7 Volt, the measurements are good for this application.

  19. Modeling of Potential Distribution of Electrical Capacitance Tomography Sensor for Multiphase Flow Image

    Directory of Open Access Journals (Sweden)

    S. Sathiyamoorthy

    2007-09-01

    Full Text Available Electrical Capacitance Tomography (ECT was used to develop image of various multi phase flow of gas-liquid-solid in a closed pipe. The principal difficulties to obtained real time image from ECT sensor are permittivity distribution across the plate and capacitance is nonlinear; the electric field is distorted by the material present and is also sensitive to measurement errors and noise. This work present a detailed description is given on method employed for image reconstruction from the capacitance measurements. The discretization and iterative algorithm is developed for improving the predictions with minimum error. The author analyzed eight electrodes square sensor ECT system with two-phase water-gas and solid-gas.

  20. Topology Optimization of Stressed Capacitive RF MEMS Switches

    DEFF Research Database (Denmark)

    Philippine, Mandy A.; Sigmund, Ole; Rebeiz, Gabriel M.

    2013-01-01

    Geometry design can improve a capacitive radio-frequency microelectromechanical system switch's reliability by reducing the impacts of intrinsic biaxial stresses and stress gradients on the switch's membrane. Intrinsic biaxial stresses cause stress stiffening, whereas stress gradients cause out-o...

  1. Method of Measuring the Mismatch of Parasitic Capacitance in MEMS Accelerometer Based on Regulating Electrostatic Stiffness

    Directory of Open Access Journals (Sweden)

    Xianshan Dong

    2018-03-01

    Full Text Available For the MEMS capacitive accelerometer, parasitic capacitance is a serious problem. Its mismatch will deteriorate the performance of accelerometer. Obtaining the mismatch of the parasitic capacitance precisely is helpful for improving the performance of bias and scale. Currently, the method of measuring the mismatch is limited in the direct measuring using the instrument. This traditional method has low accuracy for it would lead in extra parasitic capacitive and have other problems. This paper presents a novel method based on the mechanism of a closed-loop accelerometer. The strongly linear relationship between the output of electric force and the square of pre-load voltage is obtained through theoretical derivation and validated by experiment. Based on this relationship, the mismatch of parasitic capacitance can be obtained precisely through regulating electrostatic stiffness without other equipment. The results can be applied in the design of decreasing the mismatch and electrical adjusting for eliminating the influence of the mismatch.

  2. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance

    Science.gov (United States)

    Zhi, Lei; Zhang, Wenliang; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Liu, Zonghuai; Lei, Zhibin

    2018-05-01

    Strong coupling of electroactive components on conductive carbonaceous matrix to fabricate flexible hybrid electrodes represents a promising approach towards high performance supercapacitors. This work reports the fabrication of holey nickel cobalt layered double hydroxide (NiCo-LDH) nanosheets that are vertically grown on the cotton cloth-derived activated textile carbon (aTC). The abundant nanoholes on the thin-sheet NiCo-LDH not only enhance the electrode efficiency for efficient Faradaic redox reactions but also facilitate access of electrolyte to the electrode surface, thus giving rise to 70% capacitance arising from their outer surface. As a result, the aTC-NiCo hybrid electrode is capable of simultaneously achieving extremely high areal capacitance (6.37 F cm-2), mass capacitance (525 F g-1) and volumetric capacitance (249 F cm-3) at a practical level of mass loading (6.72 mg cm-2). Moreover, a solid-state asymmetric capacitor built with aTC-NiCo as positive electrode and active carbon-coated on aTC as negative electrode can deliver a volumetric energy density of 7.4 mWh cm-3 at a power density of 103 mW cm-3, while preserving a superior power performance, satisfying cycling stability and good mechanical flexibility.

  3. Design, Development and Testing of a Semi Cylindrical Capacitive Sensor for Liquid Level Measurement

    Directory of Open Access Journals (Sweden)

    Sagarika PAL

    2010-05-01

    Full Text Available In the present paper a low cost noncontact semi cylindrical capacitive type liquid level sensor has been designed, developed and tested. The semi cylindrical capacitive sensor consisting of two thin semi cylindrical metal plates separated by a gap distance and mounted around a non conducting storage tank, has been used to measure the liquid level in the tank. The measured capacitance variation with variation of liquid level is linear and obtained in the nano farad range which again has been converted into voltage variation by using proper signal conditioning circuit. Since the sensor is noncontact type it can be used for both conducting and non conducting type of liquid contained within a non conducting tank. For converting the capacitance variation in to voltage variation a series R-L-C resonating circuit has been used instead of conventional bridge circuit. Experimental results confirm the satisfactory performance of the sensor for liquid level measurement.

  4. Impact of Slim DC Capacitance on Floating Capacitor H-bridge Motor Drive

    DEFF Research Database (Denmark)

    Leng, Siyu; Muyeen, S.M.; Al-Durra, Ahmed

    2018-01-01

    harmonics will be generated in the motor line voltage. This demonstrates the possibility of drastically reducing the dc capacitance of the proposed system. Induction motor as well as H-bridge performance with respect to different dc capacitance values is demonstrated by experiments, which lays......This paper discusses the impact of small dc capacitance in a motor drive using a floating capacitor H-bridge topology. The proposed topology is intended for applications where variable frequency control is not required. Special attention is paid on investigating the second-order dc capacitor...... voltage ripples, whose influence on the induction motor as well as on the motor drive itself is of importance. This issue is addressed in this paper through rigorous mathematical formulations. It is found that by inverting the second-order dc ripple voltage using the conventional SVPWM, no harmful...

  5. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    Science.gov (United States)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  6. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    Science.gov (United States)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  7. Levels of semenogelin in human spermatozoa decrease during capacitation: involvement of reactive oxygen species and zinc.

    Science.gov (United States)

    de Lamirande, E; Lamothe, G

    2010-07-01

    Semenogelin (Sg), the main protein of human semen coagulum, prevents sperm capacitation. The objective of this study was to examine the role of Sg and its mechanism of action. Sg blocked sperm capacitation triggered by various stimuli, via inhibition of superoxide anion (O(2)*-; luminescence assay) and nitric oxide (NO*; tested using diaminofluorescein) generation. Triton-soluble and -insoluble sperm fractions contained Sg and Sg peptides (immunoblotting), the level of which decreased with initiation of capacitation. This drop was prevented by superoxide dismutase and NO* synthase inhibitor and was reproduced by addition of O(2)*- and NO*. Zinc (Zn(2+)) blocked and a zinc chelator (TPEN) promoted the decline in Sg levels. There was a decreased labelling of Sg on the head in capacitating spermatozoa with the two fixation techniques tested (immunocytochemistry). Reactive oxygen species (ROS) (O(2)*- and NO*) caused, these changes, and zinc prevented them. Spermatozoa quickly internalized Sg upon incubation and Sg was then rapidly degraded in a zinc-inhibitable manner. Sg blocked capacitation mainly via inhibition of ROS generation. Spermatozoa appeared permeable to Sg and processed Sg in a zinc-inhibitable fashion. ROS themselves could promote sperm disposal of Sg which maybe one of the mechanisms that allows initiation of capacitation.

  8. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    OpenAIRE

    Jiahao Guo; Pengcheng Hu; Jiubin Tan

    2016-01-01

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented...

  9. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius; Kodzius, Rimantas; Vanagas, Galius

    2013-01-01

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here

  10. Experimental study of a variable-capacitance micromotor with electrostatic suspension

    Science.gov (United States)

    Han, F. T.; Wu, Q. P.; Wang, L.

    2010-11-01

    A variable-capacitance micromotor where the rotor is supported electrostatically in five degrees of freedom was designed, fabricated and tested in order to study the behavior of this electrostatic motor. The micromachined device is based on a glass/silicon/glass stack bonding structure, fabricated by bulk micromachining and initially operated in atmospheric environment. The analytical torque model is obtained by calculating the capacitances between different stator electrodes and the rotor. Capacitance values in the order of 10-13 pF and torque values in the order of 10-10 N m have been calculated from the motor geometry and attainable drive voltage. A dynamic model of the motor is proposed by further estimating the air-film damping effect in an effort to explain the experimental rotation measurements. Experimental results of starting voltage, continuous operation, switching response and electric bearing of the micromotor are presented and discussed. Preliminary measurements indicate that a rotor rotating speed of 73.3 r min-1 can be achieved at a drive voltage of 28.3 V, equivalent to a theoretical motive torque of 517 pN m. Starting voltage results obtained from experimental measurement are in agreement with the developed dynamic model.

  11. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  12. Ultrahigh capacitance density for multiple ALD-grown MIM capacitor stacks in 3-D silicon

    NARCIS (Netherlands)

    Klootwijk, J.H.; Jinesh, K.B.; Dekkers, W.; Verhoeven, J.F.C.; Heuvel, van den F.C.; Kim, H.-D.; Blin, D.; Verheijen, M.A.; Weemaes, R.G.R.; Kaiser, M.; Ruigrok, J.J.M.; Roozeboom, F.

    2008-01-01

    "Trench" capacitors containing multiple metal-insulator-metal (MIM) layer stacks are realized by atomic-layer deposition (ALD), yielding an ultrahigh capacitance density of 440 nF/mm2 at a breakdown voltage VBD > 6 V. This capacitance density on silicon is at least 10 times higher than the values

  13. Optimization of the coplanar interdigital capacitive sensor

    Science.gov (United States)

    Huang, Yunzhi; Zhan, Zheng; Bowler, Nicola

    2017-02-01

    Interdigital capacitive sensors are applied in nondestructive testing and material property characterization of low-conductivity materials. The sensor performance is typically described based on the penetration depth of the electric field into the sample material, the sensor signal strength and its sensitivity. These factors all depend on the geometry and material properties of the sensor and sample. In this paper, a detailed analysis is provided, through finite element simulations, of the ways in which the sensor's geometrical parameters affect its performance. The geometrical parameters include the number of digits forming the interdigital electrodes and the ratio of digit width to their separation. In addition, the influence of the presence or absence of a metal backplane on the sample is analyzed. Further, the effects of sensor substrate thickness and material on signal strength are studied. The results of the analysis show that it is necessary to take into account a trade-off between the desired sensitivity and penetration depth when designing the sensor. Parametric equations are presented to assist the sensor designer or nondestructive evaluation specialist in optimizing the design of a capacitive sensor.

  14. A capacitively coupled dose-rate-dependent transient upset mechanism in a bipolar memory

    International Nuclear Information System (INIS)

    Turfler, R.M.; Pease, R.L.; Dinger, G.; Armstrong, B.

    1992-01-01

    This paper reports on a pattern sensitivity that was observed in the threshold dose rate response of a bipolar 16K PROM for radiation pulse widths of 20-100 ns. For the worst case pattern, the upset threshold was a factor of three lower than for the commonly used checkerboard pattern. The mechanism for this pattern sensitivity was found to be a capacitively coupled voltage transient on a sensitive node which caused a low-to-high transition at the output. A design fix was implemented to significantly alter the ratio of the two parasitic capacitances in a capacitive divider which reduced the amplitude of the voltage transient at the sensitive node. It was demonstrated that in the redesign, the pattern sensitivity was eliminated

  15. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  16. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    Science.gov (United States)

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  17. Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure

    Directory of Open Access Journals (Sweden)

    Rajesh Agarwal

    2016-04-01

    Full Text Available Mobility of carriers at the organic/insulator interface is crucial to the performance of organic thin film transistors. The present work describes estimation of mobility using admittance measurements performed on an asymmetric capacitive test structure. Besides the advantage of simplicity, it is shown that at low frequencies, the measured capacitance comes from a large area of channel making the capacitance-voltage characteristics insensitive to contact resistances. 2-D numerical simulation and experimental results obtained with Pentacene/Poly(4-vinyphenol system are presented to illustrate the operation and advantages of the proposed technique.

  18. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.

    Science.gov (United States)

    Chen, Jiafeng; Han, Yulei; Kong, Xianghua; Deng, Xinzhou; Park, Hyo Ju; Guo, Yali; Jin, Song; Qi, Zhikai; Lee, Zonghoon; Qiao, Zhenhua; Ruoff, Rodney S; Ji, Hengxing

    2016-10-24

    Low-energy density has long been the major limitation to the application of supercapacitors. Introducing topological defects and dopants in carbon-based electrodes in a supercapacitor improves the performance by maximizing the gravimetric capacitance per mass of the electrode. However, the main mechanisms governing this capacitance improvement are still unclear. We fabricated planar electrodes from CVD-derived single-layer graphene with deliberately introduced topological defects and nitrogen dopants in controlled concentrations and of known configurations, to estimate the influence of these defects on the electrical double-layer (EDL) capacitance. Our experimental study and theoretical calculations show that the increase in EDL capacitance due to either the topological defects or the nitrogen dopants has the same origin, yet these two factors improve the EDL capacitance in different ways. Our work provides a better understanding of the correlation between the atomic-scale structure and the EDL capacitance and presents a new strategy for the development of experimental and theoretical models for understanding the EDL capacitance of carbon electrodes. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.

    Science.gov (United States)

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton

    2017-08-16

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

  20. Design of pressure-sensing diaphragm for MEMS capacitance diaphragm gauge considering size effect

    Science.gov (United States)

    Li, Gang; Li, Detian; Cheng, Yongjun; Sun, Wenjun; Han, Xiaodong; Wang, Chengxiang

    2018-03-01

    MEMS capacitance diaphragm gauge with a full range of (1˜1000) Pa is considered for its wide application prospect. The design of pressure-sensing diaphragm is the key to achieve balanced performance for this kind of gauges. The optimization process of the pressure-sensing diaphragm with island design of a capacitance diaphragm gauge based on MEMS technique has been reported in this work. For micro-components in micro scale range, mechanical properties are very different from that in the macro scale range, so the size effect should not be ignored. The modified strain gradient elasticity theory considering size effect has been applied to determine the bending rigidity of the pressure-sensing diaphragm, which is then used in the numerical model to calculate the deflection-pressure relation of the diaphragm. According to the deflection curves, capacitance variation can be determined by integrating over the radius of the diaphragm. At last, the design of the diaphragm has been optimized based on three parameters: sensitivity, linearity and ground capacitance. With this design, a full range of (1˜1000) Pa can be achieved, meanwhile, balanced sensitivity, resolution and linearity can be kept.

  1. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  2. Variations in creatine kinase activity and reactive oxygen species levels are involved in capacitation of bovine spermatozoa.

    Science.gov (United States)

    Córdoba, M; Pintos, L; Beconi, M T

    2008-12-01

    The generation of reactive oxygen species (ROS) is associated with some factors such as oxidative substrate sources, mitochondrial function and NAD(P)H oxidase activity. In bovine spermatozoa, heparin capacitation produces a respiratory burst sensitive to diphenyleneiodonium (DPI). Creatine kinase (CK) is related to extramitochondrial ATP disponibility. Our purpose was to determine the variation in ROS level and its relation with NAD(P)H oxidase sensitive to DPI and CK participation, as factors involved in redox state and energy generation in capacitation. The chlortetracycline technique was used to evaluate capacitation. CK activity and ROS level were measured by spectrophotometry and spectrofluorometry respectively. The capacitation percentage was increased by heparin or quercetin treatment (P level as control (238.62 +/- 23.47 arbitrary units per 10(8) spermatozoa) (P > 0.05). CK activity decreased by 50% with heparin or quercetin (P level variations were observed in heparin- or quercetin-treated samples (P bovine spermatozoa, capacitation requires equilibrium between oxidative damage susceptibility and ROS levels. CK activity is associated with redox state variation and energy sources. In conclusion, capacitation induction depends on NADPH oxidase and the shuttle creatine-creatine phosphate, both sensitive to DPI.

  3. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.

    Science.gov (United States)

    Yan, Jian; Khoo, Eugene; Sumboja, Afriyanti; Lee, Pooi See

    2010-07-27

    In this paper, a very simple solution-based method is employed to coat amorphous MnO2 onto crystalline SnO2 nanowires grown on stainless steel substrate, which utilizes the better electronic conductivity of SnO2 nanowires as the supporting backbone to deposit MnO2 for supercapacitor electrodes. Cyclic voltammetry (CV) and galvanostatic charge/discharge methods have been carried out to study the capacitive properties of the SnO2/MnO2 composites. A specific capacitance (based on MnO2) as high as 637 F g(-1) is obtained at a scan rate of 2 mV s(-1) (800 F g(-1) at a current density of 1 A g(-1)) in 1 M Na2SO4 aqueous solution. The energy density and power density measured at 50 A g(-1) are 35.4 W h kg(-1) and 25 kW kg(-1), respectively, demonstrating the good rate capability. In addition, the SnO2/MnO2 composite electrode shows excellent long-term cyclic stability (less than 1.2% decrease of the specific capacitance is observed after 2000 CV cycles). The temperature-dependent capacitive behavior is also discussed. Such high-performance capacitive behavior indicates that the SnO2/MnO2 composite is a very promising electrode material for fabricating supercapacitors.

  4. The capacitance of Pt/Pb0.65La0.28Ti0.96O3/Pt structures

    International Nuclear Information System (INIS)

    Shaw, T.M.; Laibowitz, R.B.; Beach, D.; Duncombe, P.R.

    1996-01-01

    The capacitance/voltage characteristics of thin paraelectric lead lanthanum titanate films are measured using platinum electrodes. The films have a maximum capacitance when either a small positive or negative bias voltage is applied. This characteristic is consistent with the electrode interfaces acting as Schottky-like barriers. The voltage at which the capacitance maxima occur increases linearly with film thickness indicating that the film is highly resistive. On the basis of the high apparent film resistance it is proposed that the voltage dependence of the capacitance of the electrode interfaces arises from the ionization of deep level traps within the film and not from depletion layers associated with shallow donor or acceptor states. Application of voltages larger than about 2 endash 3 V results in the disappearance of the capacitance maxima indicating that irreversible changes in the electrode interfaces occur at higher electric fields. copyright 1995 American Institute of Physics

  5. Investigation of capacitance characteristics in metal/high-k

    Indian Academy of Sciences (India)

    Keywords. C − V characteristic; high-k dielectric; interface state density; MIS structure; nanotechnology; TCAD simulation. Abstract. Capacitance vs. voltage ( C − V ) curves at AC high frequency of a metal–insulator–semiconductor (MIS) capacitorare investigated in this paper. Bi-dimensional simulations with Silvaco TCAD ...

  6. A capacitive device approach to gravitational wave detection

    International Nuclear Information System (INIS)

    Mours, B.; Yvert, M.

    1988-05-01

    The possible use of a capacitive device to detect gravitational waves is discussed. Special emphasis is put on the detection of permanent periodic sources. The intrinsic properties of such a method, its sensitivity, directionality and its wide frequency band, makes it a very appealing one

  7. A Dew Point Meter Comprising a Nanoporous Thin Film Alumina Humidity Sensor with a Linearizing Capacitance Measuring Electronics

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Ghara

    2008-02-01

    Full Text Available A novel trace moisture analyzer is presented comprising a capacitive nanoporous film of metal oxide sensor and electronics. The change in capacity of the sensor is due to absorption of water vapor by the pores. A simple capacitance measuring electronics is developed which can detect any change in capacitance and correlates to ambient humidity. The circuit can minimize the parasitic earth capacitance. The non linear response of the sensor is linearized with a micro-controller linearizing circuit. The experimental result shows a resolution of -4°C DP and accuracy within 2%.

  8. A modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array

    International Nuclear Information System (INIS)

    Liang, Guanhao; Wang, Yancheng; Mei, Deqing; Xi, Kailun; Chen, Zichen

    2015-01-01

    This paper presents a modified analytical model to study the sensing performance of a flexible capacitive tactile sensor array, which utilizes solid polydimethylsiloxane (PDMS) film as the dielectric layer. To predict the deformation of the sensing unit and capacitance changes, each sensing unit is simplified into a three-layer plate structure and divided into central, edge and corner regions. The plate structure and the three regions are studied by the general and modified models, respectively. For experimental validation, the capacitive tactile sensor array with 8  ×  8 (= 64) sensing units is fabricated. Experiments are conducted by measuring the capacitance changes versus applied external forces and compared with the general and modified models’ predictions. For the developed tactile sensor array, the sensitivity predicted by the modified analytical model is 1.25%/N, only 0.8% discrepancy from the experimental measurement. Results demonstrate that the modified analytical model can accurately predict the sensing performance of the sensor array and could be utilized for model-based optimal capacitive tactile sensor array design. (paper)

  9. Bases génétiques et biochimiques de la capacité germinative des ...

    African Journals Online (AJOL)

    recherche et discute de la relation entre capacité germinative des graines et sécurité alimentaire. Mots clé: Semence, capacité germinative, facteurs biochimiques, gènes, systèmes semenciers, sécurité alimentaire. Abstract. Genetic and biochemical bases of seed germination capacity: implications for seed systems and.

  10. Regulation of capacitative and non-capacitative Ca2+ entry in A7r5 vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    COLIN W TAYLOR

    2004-01-01

    Full Text Available A capacitative Ca2+ entry (CCE pathway, activated by depletion of intracellular Ca2+ stores, is thought to mediate much of the Ca2+ entry evoked by receptors that stimulate phospholipase C (PLC. However, in A7r5 vascular smooth muscle cells, vasopressin, which stimulates PLC, empties intracellular Ca2+ stores but simultaneously inhibits their ability to activate CCE. The diacylglycerol produced with the IP3 that empties the stores is metabolized to arachidonic and this leads to activation of nitric oxide (NO synthase, production of NO and cyclic GMP, and consequent activation of protein kinase G. The latter inhibits CCE. In parallel, NO directly activates a non-capacitative Ca2+ entry (NCCE pathway, which is entirely responsible for the Ca2+ entry that occurs in the presence of vasopressin. This reciprocal regulation of two Ca2+ entry pathways ensures that there is sequential activation of first NCCE in the presence of vasopressin, and then a transient activation of CCE when vasopressin is removed. We suggest that the two routes for Ca2+ entry may selectively direct Ca2+ to processes that mediate activation and then recovery of the cell.

  11. Coherent charge fluctuations in Josephson junctions and the oscillations of the effective capacitance

    International Nuclear Information System (INIS)

    Krive, I.V.; Rozhavsky, A.S.

    1990-07-01

    We predict novel voltage oscillations of the effective capacitance of small Josephson junctions. This macroscopic effect involves coherent charge fluctuations with charge 2e, leading to a period of oscillations, V c = 2e/C, where C is the junction capacitance. The amplitude of the effect decreases with temperature as exp(-π 2 T/ε c ), where ε c = (2e) 2 /C. (author). 6 refs

  12. Development of a contactless capacitive immunosensor

    OpenAIRE

    Perruche, Brice Emmanuel

    2011-01-01

    In the present work, a label-free, contactless and capacitive immunosensor is developed using impedance spectroscopy, in the aim to perform low-cost immunoassays. Chapter 1 puts this work in perspective with some existing techniques, while a presentation of impedance theory used in this work is carried out in chapter 2. In Chapter 3, numerical simulations using a commercial finite element method software is carried out. The response of coplanar and fa...

  13. The correlation of the results of capacitance mapping and of sheet resistance mapping in semi-insulating 6H-SiC

    International Nuclear Information System (INIS)

    Lin Shenghuang; Chen Zhiming; Liang Peng; Jiang Dong; Xie Huajie; Yang Ying

    2010-01-01

    A combination of complex surface capacitance mapping and sheet resistance mapping is applied to establish the origin of resistance variations on semi-insulating (SI) 6H-SiC substrates. The direct correlation between the capacitance quadrature and the sheet resistance is found in vanadium-doped SI samples. Regions with low capacitance quadrature show high sheet resistance. This indicates, associated with the nonhomogeneity of sheet resistance on the substrate, that the quality of crystallization is not good enough, which also leads to resistivity nonhomogeneity when comparing with different types of deep defects. According to the capacitance mapping, the region with bad crystallization quality has a high radio absorption coefficient. Another correlation is established between the capacitance in-phase and sheet resistance for the vanadium-doped sample. In this sample, the capacitance in-phase map shows not only the surface topography, but also the same distribution trend as the sheet resistance, namely, regions of high capacitance in-phase reveal high sheet resistance.

  14. Glucose Sensing Using Capacitive Biosensor Based on Polyvinylidene Fluoride Thin Film

    Directory of Open Access Journals (Sweden)

    Ambran Hartono

    2018-01-01

    Full Text Available A polyvinylidene fluoride (PVDF film-based capacitive biosensor was developed for glucose sensing. This device consists of a PVDF film sandwiched between two electrodes. A capacitive biosensor measures the dielectric properties of the dielectric layers at the interface between the electrolyte and the electrode. A glucose oxidase (GOx enzyme was immobilized onto the electrode to oxidize glucose. In practice, the biochemical reaction of glucose with the GOx enzyme generates free electron carriers. Consequently, the potential difference between the electrodes is increased, resulting in a measurable voltage output of the biosensor. The device was tested for various glucose concentrations in the range of 0.013 to 5.85 M, and various GOx enzyme concentrations between 4882.8 and 2.5 million units/L. We found that the sensor output increased with increasing glucose concentration up to 5.85 M. These results indicate that the PVDF film-based capacitive biosensors can be properly applied to glucose sensing and provide opportunities for the low-cost fabrication of glucose-based biosensors based on PVDF materials.

  15. Design and fabrication of capacitive interdigitated electrodes for smart gas sensors

    KAUST Repository

    Omran, Hesham

    2016-09-05

    In this paper, we study the design parameters of capacitive interdigitated electrodes (IDEs) and the effect of these parameters on the sensitivity of the IDEs when employed as a capacitive gas sensor. Finite element simulations using COMSOL Multiphysics were carried out to evaluate the sensitivity of the capacitive sensor. Simulations show that for permittivity-based sensing, the optimum thickness of the sensing film is slightly more than half the wavelength of the IDEs structure. On the other hand, sensing films that are thinner than half wavelength should be used if the required sensing mechanism is based on structural swelling. Increasing the IDEs metal thickness can increase the sensitivity by increasing the sidewall electric field, but this is only true if the sensing film is thick enough to completely fill the spacing between the electrodes. A simple and reliable IDEs structure and fabrication process are proposed. Physical dry etching provides good yield and fine resolution compared to liftoff technique. Fabricated and packaged prototype sensors are presented. © 2015 IEEE.

  16. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Science.gov (United States)

    Aslam, Muhammad Zubair; Tang, Tong Boon

    2014-01-01

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606

  17. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Aslam

    2014-06-01

    Full Text Available This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design.

  18. Research of grounding capacitive current of neutral non-grounding auxiliary system in nuclear power plants

    International Nuclear Information System (INIS)

    Yang Shan; Liu Li; Huang Xiaojing

    2014-01-01

    In the domestic and abroad standards, the grounding capacitive current limitation in the non-grounding electric auxiliary system is less than 10 A. Limiting capacitive current in the standard aims to speed up the arc extinguishing to reduce the duration of arc over-voltage, but not to prevent the arc producing, The arc over-voltage harm is related to the multiple, frequency and duration of the over-voltage. When the insulation vulnerabilities appear in the equipment, the arc over-voltage may result in insulation vulnerabilities of the electrical equipment breakdown, which leads to multiple, short-circuit accidents. The cable connector, accessory and electromotor winding are all insulation vulnerabilities. Setting the arc suppression coil which can counteract the grounding capacitive current makes the arc vanish quickly. Using the casting bus which remarkably reduces the ground capacitance of the electric transmission line makes the equipment safer. (authors)

  19. Primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store

    International Nuclear Information System (INIS)

    Chen Jun; Yang Jianhua; Shu Ting; Zhang Jiande; Zhou Xiang; Wen Jianchun

    2008-01-01

    The primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store is studied. The principle of primary power supply circuit and its time diagram of switches are presented. The circuit is analyzed and some expressions are got, especially, the usable voltage scope of capacitance of energy store, and the correlation between the parameters of circuit and time delay, which is between the turn-on of the charging circuit of capacitance of energy store and the circuit of recuperation. The time delay of 256 x 256 lookup table is made with the instruction of theory and the simulation of the actual parameters of circuits. The table is used by the control program to control the repetitive operating of the actual pulsed intense current accelerator. Finally, some conclusions of the primary power supply of repetitive pulsed intense current accelerator charged by capacitance of energy store are got. (authors)

  20. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    Science.gov (United States)

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  1. A Probabilistic Mass Estimation Algorithm for a Novel 7- Channel Capacitive Sample Verification Sensor

    Science.gov (United States)

    Wolf, Michael

    2012-01-01

    A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.

  2. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    Science.gov (United States)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  3. Lumped thermal capacitance analysis of transient heat conduction ...

    African Journals Online (AJOL)

    Lumped thermal capacitance analysis has been undertaken to investigate the transient temperature variations, associated induced thermal stress distributions, and the structural integrity of Ghana Research Reactor-1 (GHAR R-1) vessel after 15 years of operation. The beltline configuration of the cylindrical vessel of the ...

  4. Rapid Prototyping of Tangibles with a Capacitive Mouse

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Esbensen, Morten; Kogutowska, Magdalena

    2011-01-01

    lays the capacitive surface and communication capa- bilities of a Microsoft TouchMouse, both of which are ap- propriated to fulfill the mentined requirements. Unlike ex- isting approaches for rapid prototyping of tangibles like the Arduino boards, using the Toki toolkit does not require de- velopers...

  5. Investigation of the capacitive performance of tobacco solution reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Milan [Surface Engineering and Tribology Division, Council of Scientific and Industrial Research – Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra [Surface Engineering and Tribology Division, Council of Scientific and Industrial Research – Central Mechanical Engineering Research Institute, Durgapur 713209 (India); Lee, Joong Hee, E-mail: jhl@jbnu.ac.kr [Advanced Materials Research Institute for BIN Fusion Technology (BK Plus Global, Program), Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas, E-mail: tkuila@gmail.com [Surface Engineering and Tribology Division, Council of Scientific and Industrial Research – Central Mechanical Engineering Research Institute, Durgapur 713209 (India)

    2015-02-01

    A facile and green approach for the reduction of graphene oxide (GO) using tobacco leaves solution was reported. The benefits of this approach were the use of green and cheap reducing agent as compared to the commercially available toxic and hazardous chemicals. Moreover, the purification of reduced GO (rGO) sheets can be avoided by using naturally occurring reducing agents. The obtained rGO sheets were characterised by Ultra violet visible, Fourier transform infrared, Raman and X-ray photo electron spectroscopy analysis. The morphologies were recorded by transmission electron and field emission scanning electron microscopy analysis and these showed the formation of a few layer rGO sheets. The electrical conductivity of rGO was found to be ∼410 S m{sup −1} at room temperature. Electrochemical performances were characterised by cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy analysis. A two electrode symmetric supercapacitor device was designed using nickel foam as current collector. The specific capacitance of the two-electrode device reached to 206 F g{sup −1} at a current density of 0.16 A g{sup −1}. The retention in specific capacitance was found to be ∼112% after 1000 charge–discharge cycles. - Highlights: • Reduced graphene has been prepared by bio-reduction of graphene oxide. • Few layers of graphene has been synthesised as observed by Raman spectra. • Two electrode based supercapacitors are fabricated. • Highest specific capacitance is found to be 206 F g{sup −1}. • Retention in specific capacitance is 112% after 1000 charge–discharge cycles.

  6. Torque magnetometry by use of capacitance type transducer

    International Nuclear Information System (INIS)

    Braught, M.C.; Pechan, M.J.

    1992-01-01

    Interfacial anisotropy in magnetic multilayered samples comprised of nanometer thick magnetic layers alternating with non-magnetic layers is investigated by torque magnetometry in the temperature regime of 4 to 300K. The design, construction and use of a capacitance type transducer wherein the sample is mounted directly on with the plate of the capacitor, will be described. As a result the sample and transducer spatially coexist at the sample temperature in an applied external field, eliminating mechanical coupling from the cryogenic region to a remote room temperature transducer. The capacitor measuring the torque of the sample is paired with a reference capacitor. The difference between torque influenced capacitance and the reference is then determined by a differential transimpedance amplifier. Since both capacitors are physically identical variables such as temperature, vibration, orientation and external devices are minimized. Torques up to 300 dyne-cm can be measured with a sensitivity of 0.010 dyne-cm

  7. Faster Time Response by the Use of Wire Electrodes in Capacitive Salinity Gradient Energy Systems

    NARCIS (Netherlands)

    Burheim, O.S.; Liu, F.; Sales, B.B.; Schaetzle, O.; Buisman, C.J.N.; Hamelers, H.V.M.

    2012-01-01

    Capacitive energy extraction based on Donnan potential (CDP) and capacitive energy extraction based on double layer expansion (CDLE) are novel electroctrochemical processes to convert the potential free energy of mixing sea and river water into electric work. This is done by the use of

  8. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    Science.gov (United States)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends

  9. A branch-and-cut algorithm for the capacitated profitable tour problem

    DEFF Research Database (Denmark)

    Jepsen, Mads Kehlet; Petersen, Bjørn; Spoorendonk, Simon

    2014-01-01

    This paper considers the Capacitated Profitable Tour Problem (CPTP) which is a special case of the Elementary Shortest Path Problem with Resource Constraints (ESPPRC). The CPTP belongs to the group of problems known as traveling salesman problems with profits. In CPTP each customer is associated...... with a profit and a demand and the objective is to find a capacitated tour (rooted in a depot node) that minimizes the total travel distance minus the profit of the visited customers. The CPTP can be recognized as the sub-problem in many column generation applications, where it is traditionally solved through...

  10. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    Directory of Open Access Journals (Sweden)

    Jiahao Guo

    2016-01-01

    Full Text Available An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ±40°. This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  11. Changes in exposed membrane proteins during in vitro capacitation of boar sperm

    International Nuclear Information System (INIS)

    Berger, T.

    1990-01-01

    Exposed plasma membrane proteins were labeled with 125 I before and after incubation of boar sperm under capacitating conditions. Labeled protein profiles were compared to the ability of the sperm to penetrate zona-free hamster ova. Quantitatively, the labeled sperm membrane proteins were primarily low Mr prior to capacitation. The majority of the labeled seminal plasma protein was also low Mr. After capacitation, two new proteins (64,000 Mr and 78,000 Mr) were labeled. Sperm did not exhibit these exposed membrane proteins when incubated under noncapacitating conditions. Appearance of these proteins was not correlated to the percentage of acrosome-reacted sperm. Although the 64,000 Mr protein was not consistently observed, the relative labeling of the 78,000 Mr protein was highly correlated with the ability of sperm to fuse with zona-free hamster ova. The 78,000 Mr protein may be a sperm protein involved in fusion with the egg plasma membrane

  12. A variable capacitance based modeling and power capability predicting method for ultracapacitor

    Science.gov (United States)

    Liu, Chang; Wang, Yujie; Chen, Zonghai; Ling, Qiang

    2018-01-01

    Methods of accurate modeling and power capability predicting for ultracapacitors are of great significance in management and application of lithium-ion battery/ultracapacitor hybrid energy storage system. To overcome the simulation error coming from constant capacitance model, an improved ultracapacitor model based on variable capacitance is proposed, where the main capacitance varies with voltage according to a piecewise linear function. A novel state-of-charge calculation approach is developed accordingly. After that, a multi-constraint power capability prediction is developed for ultracapacitor, in which a Kalman-filter-based state observer is designed for tracking ultracapacitor's real-time behavior. Finally, experimental results verify the proposed methods. The accuracy of the proposed model is verified by terminal voltage simulating results under different temperatures, and the effectiveness of the designed observer is proved by various test conditions. Additionally, the power capability prediction results of different time scales and temperatures are compared, to study their effects on ultracapacitor's power capability.

  13. Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Liu

    2009-12-01

    Full Text Available The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa.

  14. Pencil-on-Paper Capacitors for Hand-Drawn RC Circuits and Capacitive Sensing

    Directory of Open Access Journals (Sweden)

    Jonathan E. Thompson

    2017-01-01

    Full Text Available Electronic capacitors were constructed via hand-printing on paper using pencil graphite. Graphite traces were used to draw conductive connections and capacitor plates on opposing sides of a sheet of standard notebook paper. The paper served as the dielectric separating the plates. Capacitance of the devices was generally < 1000 pF and scaled with surface area of the plate electrodes. By combining a pencil-drawn capacitor with an additional resistive pencil trace, an RC low-pass filter was demonstrated. Further utility of the pencil-on-paper devices was demonstrated through description of a capacitive force transducer and reversible chemical sensing. The latter was achieved for water vapor when the hygroscopic cellulose matrix of the paper capacitor’s dielectric adsorbed water. The construction and demonstration of pencil-on-paper capacitive elements broadens the scope of paper-based electronic circuits while allowing new opportunities in the rapidly expanding field of paper-based sensors.

  15. PERBEDAAN SKIN CAPACITANCE DAN TRANSEPIDERMAL WATER LOSS PADA KULIT NON-LESI PASIEN PITIRIASIS VERSIKOLOR DENGAN NON-PITIRIASIS VERSIKOLOR

    Directory of Open Access Journals (Sweden)

    Satya Wydya Yenny

    2008-09-01

    Full Text Available AbstrakPada pitiriasis versikolor sering timbul kekambuhan, diduga salah satu penyebabnya adalah kelembaban kulit yang tinggi. Kelembaban kulit dipengaruhi oleh skin capacitance dan transepidermal water loss.Mengetahui skin capacitance dan transepidermal water loss kulit pasien pitiriasis versikolor dan perbedaannya dengan non-pitiriasis versikolor.Penelitian ini merupakan studi potong lintang perbandingan antar kelompok, yang dilakukan pada bulan September sampai dengan Nopember 2004 di Rumah Sakit Dr. Cipto Mangunkusumo. Subyek penelitian pasien pitiriasis versikolor dan kontrol non-pitiriasis versikolor yang dipasangkan dalam hal umur dan jenis kelamin dan dilakukan pemeriksaan skin capacitance dan transepidermal water loss pada kulit yang tampak normal di punggung menggunakan alat Tewameter/Corneometer 350.Dalam kurun waktu tersebut telah diperiksa sebanyak 32 pasien pitiriasis versikolor dan 32 kontrol non-pitiriasis versikolor. Skin capacitance pasien pitiriasis versikolor secara statistik tidak berbeda dengan kontrol non-pitiriasis versikolor (p = 0,730. Transepidermal water loss pasien pitiriasis versikolor secara bermakna lebih rendah dari pada kelompok kontrol non-pitiriasis versikolor (p = 0,000.Tidak ada perbedaan skin capacitance kulit pasien pitiriasis versikolor dengan non-pitiriasis versikolor. Transepidermal water loss kulit pasien pitiriasis versikolor lebih rendah daripada non-pitiriasis versikolor.Kata kunci: pitiriasis versikolor, skin capacitance, transepidermal water lossAbstractThe recurrence of pityriasis versicolor is high, it could be caused by high skin hydration. Skin hydration was influenced by skin capacitance and transepidermal water loss.ARTIKEL PENELITIAN168The purpose of this study was to compare the differences of the skin capacitance and transepidermal water loss between the pityriasis versicolor skin and healthy non-pityriasis versicolor skin.The design of this study was comparative cross-sectional study

  16. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors.

    Science.gov (United States)

    Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming

    2012-10-05

    It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.

  17. Experimental study of a variable-capacitance micromotor with electrostatic suspension

    International Nuclear Information System (INIS)

    Han, F T; Wu, Q P; Wang, L

    2010-01-01

    A variable-capacitance micromotor where the rotor is supported electrostatically in five degrees of freedom was designed, fabricated and tested in order to study the behavior of this electrostatic motor. The micromachined device is based on a glass/silicon/glass stack bonding structure, fabricated by bulk micromachining and initially operated in atmospheric environment. The analytical torque model is obtained by calculating the capacitances between different stator electrodes and the rotor. Capacitance values in the order of 10 −13 pF and torque values in the order of 10 −10 N m have been calculated from the motor geometry and attainable drive voltage. A dynamic model of the motor is proposed by further estimating the air-film damping effect in an effort to explain the experimental rotation measurements. Experimental results of starting voltage, continuous operation, switching response and electric bearing of the micromotor are presented and discussed. Preliminary measurements indicate that a rotor rotating speed of 73.3 r min −1 can be achieved at a drive voltage of 28.3 V, equivalent to a theoretical motive torque of 517 pN m. Starting voltage results obtained from experimental measurement are in agreement with the developed dynamic model

  18. One-step electroplating porous graphene oxide electrodes of supercapacitors for ultrahigh capacitance and energy density.

    Science.gov (United States)

    Wang, Yongjie; Zhu, Jiaqi

    2015-02-06

    An electroplating method was used for the first time to synthesize 3D porous graphene oxide (PGO) architectures, exhibiting ultrahigh capacitance and energy density as electrodes of supercapacitors. Scanning electron microscopy illustrated the porous structures which promoted the stability and alleviated the stacking of the graphene oxide layers. As investigated in a three-electrode supercapacitor cell, PGO electrodes exhibited the maximum capacitance and energy of 973 F · g(-1) and 98.4 Wh · Kg(-1), which are better than current reports and comparable to batteries. At 4 A · g(-1) for high-power applications, PGO electrodes reached a capacitance, energy, and power density of 493 F · g(-1), 49.9 Wh · Kg(-1), and 1700 W · Kg(-1), and they retained ∼97.83% of capacitance after 10 000 charge/discharge processes. Furthermore, when the PGO was bent exaggeratedly, it still displayed identical properties, which is of important significance for supporting wearable devices.

  19. Capacitance evolution of electrochemical capacitors with tailored nanoporous electrodes in pure and dissolved ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Mysyk, R.; Raymundo-Pinero, E. [CRMD, CNRS/University, Orleans (France); Ruiz, V.; Santamaria, R. [Instituto Nacional del Carbon (CSIC), Oviedo (Spain); Beguin, F.

    2010-10-15

    A homologous series of ionic liquids (IL) with 1-alkyl-3-methylimidazolium cations of different lengths of alkyl chain was used to study the effect of cation size on the capacitive response of two carbons with a tailored pore size distribution. The results reveal a clear ion-sieving effect in pure ILs, while the effect is heavily mitigated for the same salts used in solution, most likely due to somewhat stronger geometrical flexibility of dissolved ions. For the electrode material showing the ion-sieving effect in solution, the gravimetric capacitance values are higher than in pure ILs. The dissimilarity of capacitance values between pure and dissolved ILs with ion-sieving carbons highlights their respective advantages and disadvantages in terms of energy density: whereas pure ILs can potentially provide a larger working voltage window, the corresponding dissolved salts can access smaller pores, mostly contributing to higher capacitance values. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    Science.gov (United States)

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  1. Vibration damping with negative capacitance shunts: theory and experiment

    International Nuclear Information System (INIS)

    De Marneffe, B; Preumont, A

    2008-01-01

    This paper analyzes in detail the enhancement of piezoelectric stack transducers by means of the well known 'negative' capacitive shunting. The stability is thoroughly studied: starting from the electrical admittance curve of the transducer, a method is introduced that quantifies the stability margins of the shunted structure. Two different implementations (series vs parallel) are investigated, and the lack of robustness of the parallel one is demonstrated. Next, this technique is experimentally applied on a truss structure. Its performances are compared with those of passive shunt circuits and with those of an active control law, the so-called Integral Force Feedback or IFF. As expected, the damping introduced by the negative capacitance shunt is larger than the damping obtained with the passive shunts; it remains, however, one order of magnitude smaller than that obtained with the IFF

  2. Comparison of neutron scattering and DFM capacitance instruments ...

    African Journals Online (AJOL)

    Soil water evaporation is an important parameter that needs to be accurately measured for the design of water-efficient agricultural systems. With this study, the abilities of the DFM capacitance probes and a neutron water meter (NWM) to measure evaporation from the soil surface were compared. Measured evaporation was ...

  3. The influence of fluorides on mouse sperm capacitation

    Czech Academy of Sciences Publication Activity Database

    Dvořáková-Hortová, K.; Šandera, M.; Jursová, M.; Vašínová, J.; Pěknicová, Jana

    2008-01-01

    Roč. 108, 1-2 (2008), s. 157-170 ISSN 0378-4320 R&D Projects: GA MŠk(CZ) 1M06011 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mouse spermatozoa * Capacitation * Fluorides Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 1.890, year: 2008

  4. The influence of fluorides on mouse sperm capacitation

    Czech Academy of Sciences Publication Activity Database

    Dvořáková-Hortová, K.; Šandera, M.; Jursová, M.; Vašinová, J.; Pěknicová, Jana

    2008-01-01

    Roč. 108, 1-2 (2008), s. 157-170 ISSN 0378-4320 R&D Projects: GA MŠk 1M06011 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : mouse spermatozoa * capacitation * fluorides Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.890, year: 2008

  5. Modeling of frequency-dependent negative differential capacitance in InGaAs/InP photodiode

    Science.gov (United States)

    Wang, Yidong; Chen, Jun; Xu, Jintong; Li, Xiangyang

    2018-03-01

    The negative differential capacitance (NDC) of p-i-n InGaAs/InP photodetector has been clearly observed, and the small signal model of frequency-dependent NDC is established, based on the accumulation and emission of electrons at the p-InP/i-InGaAs interface. The NDC phenomenon is contributed by the additional capacitance (CT), which is caused by the charging-discharging process in the p-InP/i-InGaAs interface. It is found that the NDC becomes more obvious with decreasing frequency, which is consistent with the conclusion of the experiment. It is proved that the probability of electron capture/escape in the p-i interface is affected by frequency. Therefore, the smaller frequency applied, the higher additional capacitance is obtained.

  6. Capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode

    Science.gov (United States)

    Gawri, Isha; Sharma, Mamta; Jindal, Silky; Singh, Harpreet; Tripathi, S. K.

    2018-05-01

    The present paper reports the capacitance-voltage characterization of Al/Al2O3/PVA-PbSe MIS diode using chemical bath deposition method. Here anodic alumina layer prepared using electrolytic deposition method on Al substrate is used as insulating material. Using the capacitance-voltage variation at a fixed frequency, the different parameters such as Depletion layer width, Barrier height, Built-in voltage and Carrier concentration has been calculated at room temperature as well as at temperature range from 123 K to 323 K. With the increase in temperature the barrier height and depletion layer width follow a decreasing trend. Therefore, the capacitance-voltage characterization at different temperatures characterization provides strong evidence that the properties of MIS diode are primarily affected by diode parameters.

  7. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines.

    Science.gov (United States)

    Alonso, Carlos Agustín I; Osycka-Salut, Claudia E; Castellano, Luciana; Cesari, Andreína; Di Siervi, Nicolás; Mutto, Adrián; Johannisson, Anders; Morrell, Jane M; Davio, Carlos; Perez-Martinez, Silvina

    2017-08-01

    Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 μM), Gö6983 (PKC inhibitor, 10 μM), PD98059 (ERK-1/2 inhibitor, 30 μM), H89 and KT (PKA inhibitors, 50 μM and 100 nM, respectively), KH7 (sAC inhibitor, 10 μM), BAPTA

  8. Adding Resistances and Capacitances in Introductory Electricity

    Science.gov (United States)

    Efthimiou, C. J.; Llewellyn, R. A.

    2005-09-01

    All introductory physics textbooks, with or without calculus, cover the addition of both resistances and capacitances in series and in parallel as discrete summations. However, none includes problems that involve continuous versions of resistors in parallel or capacitors in series. This paper introduces a method for solving the continuous problems that is logical, straightforward, and within the mathematical preparation of students at the introductory level.

  9. Novel graphene-like electrodes for capacitive deionization.

    Science.gov (United States)

    Li, Haibo; Zou, Linda; Pan, Likun; Sun, Zhuo

    2010-11-15

    Capacitive deionization (CDI) is a novel technology that has been developed for removal of charged ionic species from salty water, such as salt ions. The basic concept of CDI, as well as electrosorption, is to force charged ions toward oppositely polarized electrodes through imposing a direct electric field to form a strong electrical double layer and hold the ions. Once the electric field disappears, the ions are instantly released back to the bulk solution. CDI is an alternative low-energy consumption desalination technology. Graphene-like nanoflakes (GNFs) with relatively high specific surface area have been prepared and used as electrodes for capacitive deionization. The GNFs were synthesized by a modified Hummers' method using hydrazine for reduction. They were characterized by atomic force microscopy, N2 adsorption at 77 K and electrochemical workstation. It was found that the ratio of nitric acid and sulfuric acid plays a vital role in determining the specific surface area of GNFs. Its electrosorption performance was much better than commercial activated carbon (AC), suggesting a great potential in capacitive deionisation application. Further, the electrosorptive performance of GNFs electrodes with different bias potentials, flow rates and ionic strengths were measured and the electrosorption isotherm and kinetics were investigated. The results showed that GNFs prepared by this process had the specific surface area of 222.01 m²/g. The specific electrosorptive capacity of the GNFs was 23.18 µmol/g for sodium ions (Na+) when the initial concentration was at 25 mg/L, which was higher than that of previously reported data using graphene and AC under the same experimental condition. In addition, the equilibrium electrosorption capacity was determined as 73.47 µmol/g at 2.0 V by fitting data through the Langmuir isotherm, and the rate constant was found to be 1.01 min⁻¹ by fitting data through pseudo first-order adsorption. The results suggested that the

  10. A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers

    KAUST Repository

    Omran, Hesham

    2016-11-16

    A 12 - bit energy-efficient capacitive sensor interface circuit that fully relies on capacitance-domain successive approximation (SAR) technique is presented. Analysis shows that for SAR capacitance-to-digital converter (CDC) comparator offset voltage will result in parasitic-dependent conversion errors, which necessitates using an offset cancellation technique. Based on the presented analysis, a SAR CDC that uses a chain of cascode inverter-based amplifiers with near-threshold biasing is proposed to provide robust, energy-efficient, and fast operation. A hybrid coarse-fine capacitive digital-to-analog converter (CapDAC) achieves 11.7 - bit effective resolution, and provides 83% area saving compared to a conventional binary weighted implementation. The prototype fabricated in a 0.18μm CMOS technology is experimentally verified using MEMS capacitive pressure sensor. Experimental results show an energy efficiency figure-of-merit (FoM) of 33 f J/Step which outperforms the state-of-the-art. The CDC output is insensitive to analog references; thus, a very low temperature sensitivity of 2.3 ppm/°C is achieved without the need for calibration.

  11. A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers

    KAUST Repository

    Omran, Hesham; Alhoshany, Abdulaziz; Alahmadi, Hamzah; Salama, Khaled N.

    2016-01-01

    A 12 - bit energy-efficient capacitive sensor interface circuit that fully relies on capacitance-domain successive approximation (SAR) technique is presented. Analysis shows that for SAR capacitance-to-digital converter (CDC) comparator offset voltage will result in parasitic-dependent conversion errors, which necessitates using an offset cancellation technique. Based on the presented analysis, a SAR CDC that uses a chain of cascode inverter-based amplifiers with near-threshold biasing is proposed to provide robust, energy-efficient, and fast operation. A hybrid coarse-fine capacitive digital-to-analog converter (CapDAC) achieves 11.7 - bit effective resolution, and provides 83% area saving compared to a conventional binary weighted implementation. The prototype fabricated in a 0.18μm CMOS technology is experimentally verified using MEMS capacitive pressure sensor. Experimental results show an energy efficiency figure-of-merit (FoM) of 33 f J/Step which outperforms the state-of-the-art. The CDC output is insensitive to analog references; thus, a very low temperature sensitivity of 2.3 ppm/°C is achieved without the need for calibration.

  12. High Capacitive Storage Performance of Sulfur and Nitrogen Codoped Mesoporous Graphene.

    Science.gov (United States)

    Ma, Xinlong; Gao, Daowei

    2018-03-22

    Mesoporous graphene is synthesized based on the chemical vapor deposition methodology by using heavy MgO flakes as substrates in a fluidized-bed reactor. Subsequently, sulfur and nitrogen coincorporation into graphene frameworks is realized by the reaction between carbon atoms and thiourea molecules. The as-obtained sulfur and nitrogen codoped mesoporous graphene (SNMG) exhibits remarkable capacitive energy-storage behavior, as a result of well-developed pore channels, in terms of that in a symmetric supercapacitor and lithium-ion hybrid capacitor (LIHC). The ultrahigh durability of the SNMG/SNMG symmetric supercapacitor is demonstrated by long-term cycling, for which no capacitance decay is found after 20 000 cycles. A LIHC constructed from commercial Li 4 Ti 5 O 12 (LTO) as the anode and SNMG as the cathode is capable of delivering much enhanced lithium-storage ability and better rate capability than that of activated carbon (AC)/LTO LIHC. Moreover, SNMG/LTO LIHC exhibits maximum energy and power densities of 86.2 Wh kg -1 and 7443 W kg -1 and maintains 87 % capacitance retention after 2000 cycles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SnO2 Nanoparticle-Based Passive Capacitive Sensor for Ethylene Detection

    Directory of Open Access Journals (Sweden)

    Mangilal Agarwal

    2012-01-01

    Full Text Available A passive capacitor-based ethylene sensor using SnO2 nanoparticles is presented for the detection of ethylene gas. The nanoscale particle size (10 nm to 15 nm and film thickness (1300 nm of the sensing dielectric layer in the capacitor model aid in sensing ethylene at room temperature and eliminate the need for microhotplates used in existing bulk SnO2-resistive sensors. The SnO2-sensing layer is deposited using room temperature dip coating process on flexible polyimide substrates with copper as the top and bottom plates of the capacitor. The capacitive sensor fabricated with SnO2 nanoparticles as the dielectric showed a total decrease in capacitance of 5 pF when ethylene gas concentration was increased from 0 to 100 ppm. A 7 pF decrease in capacitance was achieved by introducing a 10 nm layer of platinum (Pt and palladium (Pd alloy deposited on the SnO2 layer. This also improved the response time by 40%, recovery time by 28%, and selectivity of the sensor to ethylene mixed in a CO2 gas environment by 66%.

  14. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    Directory of Open Access Journals (Sweden)

    Shi C

    2010-01-01

    Full Text Available Abstract Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0–3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g−1 was observed for the sample with a specific mass of 89 μg cm−2 at a scan rate of 2 mV s−1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES.

  15. Electrodeposition and Capacitive Behavior of Films for Electrodes of Electrochemical Supercapacitors

    Science.gov (United States)

    Shi, C.; Zhitomirsky, I.

    2010-03-01

    Polypyrrole films were deposited by anodic electropolymerization on stainless steel substrates from aqueous pyrrole solutions containing sodium salicylate and tiron additives. The deposition yield was studied under galvanostatic conditions. The amount of the deposited material was varied by the variation of deposition time at a constant current density. SEM studies showed the formation of porous films with thicknesses in the range of 0-3 μm. Cyclic voltammetry data for the films tested in 0.5 M Na2SO4 solutions showed capacitive behavior and high specific capacitance (SC) in a voltage window of 0.9 V. The films prepared from pyrrole solutions containing tiron showed better capacitive behavior compared to the films prepared from the solutions containing sodium salicylate. A highest SC of 254 F g-1 was observed for the sample with a specific mass of 89 μg cm-2 at a scan rate of 2 mV s-1. The SC decreased with an increasing film thickness and scan rate. The results indicated that the polypyrrole films deposited on the stainless steel substrates by anodic electropolymerization can be used as electrodes for electrochemical supercapacitors (ES).

  16. Circuit and Measurement Technique for Radiation Induced Drift in Precision Capacitance Matching

    Science.gov (United States)

    Prasad, Sudheer; Shankar, Krishnamurthy Ganapathy

    2013-04-01

    In the design of radiation tolerant precision ADCs targeted for space market, a matched capacitor array is crucial. The drift of capacitance ratios due to radiation should be small enough not to cause linearity errors. Conventional methods for measuring capacitor matching may not achieve the desired level of accuracy due to radiation induced gain errors in the measurement circuits. In this work, we present a circuit and method for measuring capacitance ratio drift to a very high accuracy (<; 1 ppm) unaffected by radiation levels up to 150 krad.

  17. Enhanced Buck–Boost Neutral-Point-Clamped Inverters With Simple Capacitive-Voltage Balancing

    DEFF Research Database (Denmark)

    Tan, Kuan Khoon; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    introduced for extending the inverters’ variation range to include voltageboost operation, but they generally require the inclusion of large passive components or have not yet been optimized in terms of waveform quality. The balancing of their capacitive voltages using a simple technique has also not yet...... simultaneously, two new buck–boost NPC inverters with simple capacitive-voltage-balancing capability are proposed. Both inverters are demonstrated to exhibit a doubling of voltage gain, with one of them also shown to produce a better output waveform quality. Simulation and experimental results are provided...

  18. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  19. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density

    KAUST Repository

    Kurra, Narendra

    2014-09-10

    Metal hydroxide based microfabricated pseudocapacitors with impressive volumetric stack capacitance and energy density are demonstrated. A combination of top-down photolithographic process and bottom-up chemical synthesis is employed to fabricate the micro-pseudocapacitors (μ-pseudocapacitors). The resulting Ni(OH)2-based devices show several excellent characteristics including high-rate redox activity up to 500 V s-1 and an areal cell capacitance of 16 mF cm-2 corresponding to a volumetric stack capacitance of 325 F cm-3. This volumetric capacitance is two-fold higher than carbon and metal oxide based μ-supercapacitors with interdigitated electrode architecture. Furthermore, these μ-pseudocapacitors show a maximum energy density of 21 mWh cm-3, which is superior to the Li-based thin film batteries. The heterogeneous growth of Ni(OH)2 over the Ni surface during the chemical bath deposition is found to be the key parameter in the formation of uniform monolithic Ni(OH)2 mesoporous nanosheets with vertical orientation, responsible for the remarkable properties of the fabricated devices. Additionally, functional tandem configurations of the μ-pseudocapacitors are shown to be capable of powering a light-emitting diode.

  20. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.

    Science.gov (United States)

    Asano, Sho; Muroyama, Masanori; Nakayama, Takahiro; Hata, Yoshiyuki; Nonomura, Yutaka; Tanaka, Shuji

    2017-10-25

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.

  1. A nafion coated capacitive humidity sensor on a flexible PET substrate

    KAUST Repository

    Sapsanis, Christos

    2017-03-07

    This paper reports a simple and low-cost technique for fabricating low-power capacitive humidity sensors without the use of a cleanroom environment. A maskless laser engraving system was utilized to fabricate two different gold electrode structures, interdigitated electrodes and Hilbert\\'s fifth-order fractal. The capacitive structures were implemented on a flexible PET substrate. The usage of Nafion, a well-known polymer for its hydrophilic properties as a sensing film, was attempted on the PET and outperformed the current efforts in flexible substrates. Its humidity sensing properties were evaluated in an automated gas setup with a relative humidity (RH %) ranging from 15% to 95 %.

  2. A nafion coated capacitive humidity sensor on a flexible PET substrate

    KAUST Repository

    Sapsanis, Christos; Buttner, Ulrich; Omran, Hesham; Belmabkhout, Youssef; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N.

    2017-01-01

    This paper reports a simple and low-cost technique for fabricating low-power capacitive humidity sensors without the use of a cleanroom environment. A maskless laser engraving system was utilized to fabricate two different gold electrode structures, interdigitated electrodes and Hilbert's fifth-order fractal. The capacitive structures were implemented on a flexible PET substrate. The usage of Nafion, a well-known polymer for its hydrophilic properties as a sensing film, was attempted on the PET and outperformed the current efforts in flexible substrates. Its humidity sensing properties were evaluated in an automated gas setup with a relative humidity (RH %) ranging from 15% to 95 %.

  3. Dopant density from maximum-minimum capacitance ratio of implanted MOS structures

    International Nuclear Information System (INIS)

    Brews, J.R.

    1982-01-01

    For uniformly doped structures, the ratio of the maximum to the minimum high frequency capacitance determines the dopant ion density per unit volume. Here it is shown that for implanted structures this 'max-min' dopant density estimate depends upon the dose and depth of the implant through the first moment of the depleted portion of the implant. A a result, the 'max-min' estimate of dopant ion density reflects neither the surface dopant density nor the average of the dopant density over the depletion layer. In particular, it is not clear how this dopant ion density estimate is related to the flatband capacitance. (author)

  4. Preconditioning first and second kind integral formulations of the capacitance problem

    Energy Technology Data Exchange (ETDEWEB)

    Tausch, J.; White, J.

    1996-12-31

    Engineering programs which compute electrostatic capacitances for complicated arrangements of conductors commonly set up the electrostatic potential u as a superposition of surface carges {sigma} u(x) = {integral}{sub s}G(x, y){sigma}(y) dS(y). Where G(x, y) = {1/4}{pi}{vert_bar}x - y{vert_bar} is the Green`s function for the Laplacian in the three-space. For a specified potential on the conductor surface(s) S, this approach leads to an integral equation of the first kind on S for the charge density {sigma}. The capacitance is the net-charge on the conductors and is given by the surface integral of {sigma}.

  5. Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route

    International Nuclear Information System (INIS)

    Zhang Jie; Shu Dong; Zhang Tianren; Chen Hongyu; Zhao Haimin; Wang Yongsheng; Sun Zhenjie; Tang Shaoqing; Fang Xueming; Cao Xiufang

    2012-01-01

    Highlights: ► PANI/MnO 2 composite was synthesized by the simultaneous-oxidation route. ► Good contact in inter-molecule level between PANI and MnO 2 improves the conductivity. ► The separation between PANI and MnO 2 prevents the aggregation of nano-composite. ► The maximum specific capacitance of the PANI/MnO 2 electrode is 320 F/g. ► The as-prepared PANI/MnO 2 exhibits excellent cycle stability of 84% capacitance retention after 10,000 cycles. - Abstract: Polyaniline (PANI) and manganese dioxide (MnO 2 ) composite (PANI/MnO 2 ) was synthesized via a simultaneous-oxidation route. In this route, all reactants were dispersed homogenously in precursor solution and existed as ions and molecules, and involved reactions of ions and molecules generating PANI and MnO 2 simultaneously. In this way, PANI molecule and MnO 2 molecule contact each other and arrange alternately in the composite. The inter-molecule contact improves the conductivity of the composite. The alternative arrangement of PANI molecules and MnO 2 molecules separating each other, and prevents the aggregation of PANI and cluster of MnO 2 so as to decrease the particle size of the composite. The morphology, structure, porous and capacitive properties are characterized by scanning electron microscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Branauer–Emmett–Teller test, thermogravimetric analysis, Fourier transform infrared spectroscopy, cyclic voltammetry, charge–discharge test and the electrochemical impedance measurements. The results show that MnO 2 is predominant in the PANI/MnO 2 composite and the composite exhibits larger specific surface area than pure MnO 2 . The maximum specific capacitance of the composite electrode reaches up to 320 F/g by charge–discharge test, 1.56 times higher than that of MnO 2 (125 F/g). The specific capacitance retains approximately 84% of the initial value after 10,000 cycles, indicating the good cycle stability.

  6. Measurement of the quantum capacitance from two-dimensional surface state of a topological insulator at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyunwoo, E-mail: chw0089@gmail.com [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 02841 (Korea, Republic of); Shin, Changhwan, E-mail: cshin@uos.ac.kr [Department of Electrical and Computer Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2017-06-15

    Highlights: • The quantum capacitance in topological insulator (TI) at room temperature is directly revealed. • The physical origin of quantum capacitance, the two dimensional surface state of TI, is experimentally validated. • Theoretically calculated results of ideal quantum capacitance can well predict the experimental data. - Abstract: A topological insulator (TI) is a new kind of material that exhibits unique electronic properties owing to its topological surface state (TSS). Previous studies focused on the transport properties of the TSS, since it can be used as the active channel layer in metal-oxide-semiconductor field-effect transistors (MOSFETs). However, a TI with a negative quantum capacitance (QC) effect can be used in the gate stack of MOSFETs, thereby facilitating the creation of ultra-low power electronics. Therefore, it is important to study the physics behind the QC in TIs in the absence of any external magnetic field, at room temperature. We fabricated a simple capacitor structure using a TI (TI-capacitor: Au-TI-SiO{sub 2}-Si), which shows clear evidence of QC at room temperature. In the capacitance-voltage (C-V) measurement, the total capacitance of the TI-capacitor increases in the accumulation regime, since QC is the dominant capacitive component in the series capacitor model (i.e., C{sub T}{sup −1} = C{sub Q}{sup −1} + C{sub SiO2}{sup −1}). Based on the QC model of the two-dimensional electron systems, we quantitatively calculated the QC, and observed that the simulated C-V curve theoretically supports the conclusion that the QC of the TI-capacitor is originated from electron–electron interaction in the two-dimensional surface state of the TI.

  7. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide

    International Nuclear Information System (INIS)

    Shinomiya, Takuya; Gupta, Vinay; Miura, Norio

    2006-01-01

    The amorphous nano-structured manganese oxide was electrochemically deposited onto a stainless-steel electrode. The structure and surface morphology of the obtained manganese oxide were studied by means of X-ray diffraction analysis and scanning electron microscopy. The capacitive characteristics of the manganese oxide electrodes were investigated by means of cyclic voltammetry and constant current charge-discharge cycling. The morphological and capacitive characteristics of the hydrous manganese oxide was found to be strongly influenced by the electrochemical deposition conditions. The highest specific capacitance value of ca. 410 F g -1 and the specific power of ca. 54 kW kg -1 were obtained at 400 mV s -1 sweep rate of potentiodynamic deposition condition. The cyclic-life data showed that the specific capacitance was highly stable up to 10,000 cycles examined. This suggests the excellent cyclic stability of the obtained amorphous hydrous manganese oxide for supercapacitor application

  8. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Takuya; Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-06-01

    The amorphous nano-structured manganese oxide was electrochemically deposited onto a stainless-steel electrode. The structure and surface morphology of the obtained manganese oxide were studied by means of X-ray diffraction analysis and scanning electron microscopy. The capacitive characteristics of the manganese oxide electrodes were investigated by means of cyclic voltammetry and constant current charge-discharge cycling. The morphological and capacitive characteristics of the hydrous manganese oxide was found to be strongly influenced by the electrochemical deposition conditions. The highest specific capacitance value of ca. 410Fg{sup -1} and the specific power of ca. 54kWkg{sup -1} were obtained at 400mVs{sup -1} sweep rate of potentiodynamic deposition condition. The cyclic-life data showed that the specific capacitance was highly stable up to 10,000 cycles examined. This suggests the excellent cyclic stability of the obtained amorphous hydrous manganese oxide for supercapacitor application. (author)

  9. Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface

    Directory of Open Access Journals (Sweden)

    Pengfei Lu

    2017-09-01

    Full Text Available Molecular dynamics simulations are carried out to investigate the structure and capacitance of the electrical double layers (EDLs at the interface of vertically oriented graphene and ionic liquids [EMIM]+/[BF4]−. The distribution and migration of the ions in the EDL on the rough and non-rough electrode surfaces with different charge densities are compared and analyzed, and the effect of the electrode surface morphology on the capacitance of the EDL is clarified. The results suggest that alternate distributions of anions and cations in several consecutive layers are formed in the EDL on the electrode surface. When the electrode is charged, the layers of [BF4]− anions experience more significant migration than those of [EMIM]+ cations. These ion layers can be extended deeper into the bulk electrolyte solution by the stronger interaction of the rough electrode, compared to those on the non-rough electrode surface. The potential energy valley of ions on the neutral electrode surface establishes a potential energy difference to compensate the energy cost of the ion accumulation, and is capable of producing a potential drop across the EDL on the uncharged electrode surface. Due to the greater effective contact area between the ions and electrode, the rough electrode possesses a larger capacitance than the non-rough one. In addition, it is harder for the larger-sized [EMIM]+ cations to accumulate in the narrow grooves on the rough electrode, when compared with the smaller [BF4]−. Consequently, the double-hump-shaped C–V curve (which demonstrates the relationship between differential capacitance and potential drop across the EDL for the rough electrode is asymmetric, where the capacitance increases more significantly when the electrode is positively charged.

  10. Effect of cation nature of zeolite on carbon replicas and their electrochemical capacitance

    International Nuclear Information System (INIS)

    Zhou, Jin; Li, Wen; Zhang, Zhongshen; Wu, Xiaozhong; Xing, Wei; Zhuo, Shuping

    2013-01-01

    Graphical abstract: Cation nature of zeolite influences the porosity, surface chemical properties of carbon replicas of zeolite, resulting in different electrochemical capacitance. Highlights: ► The porosity of carbon replica strongly depends on zeolite's effective pore size. ► The surface chemical properties influence by the cation nature of zeolite. ► The N-doping introduces large pseudo-capacitance. ► The HYC800 carbon showed a high capacitance of up to 312 F g −1 in 1 M H 2 SO 4 . ► The prepared carbons show good durability of galvanostatic cycle. -- Abstract: N-doped carbon replicas of zeolite Y are prepared, and the effect of cation nature of zeolite (H + or Na + ) on the carbon replicas is studied. The morphology, structure and surface properties of the carbon materials are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N 2 adsorption, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The pore regularity, pore parameter and surface chemical properties of the carbons may strongly depend on the cation nature of the zeolite Y. The carbon replicas of zeolite HY (H-form of zeolite Y) possesses higher pore regularity and much larger surface area than those of zeolite NaY (Na-form of zeolite Y), while the latter carbons seem to possess higher carbonization degrees. Electrochemical measurements show a large faradaic capacitance related to the N- or O-containing groups for the prepared carbons. Owing to the large specific surface area, high pore regularity and heteroatom-doping, the HYC800 sample derived from zeolite HY presents very high gravimetric capacitance, up to 312.4 F g −1 in H 2 SO 4 electrolyte, and this carbon can operate at 1.2 V with good retention ratio in the range of 0.25 to 10 A g −1

  11. Towards understanding the structure and capacitance of electrical double layer in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Maxim V. [Max Planck Institute for Mathematics in the Sciences, D 04103 Leipzig (Germany); Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Kornyshev, Alexei A. [Department of Chemistry, Faculty of Natural Sciences, Imperial College London, SW7 2AZ London (United Kingdom)

    2008-10-01

    In order to understand basic principles of the double layer formation in room temperature ionic liquids, we have performed Molecular Dynamic simulations for a simplified system: dense assembly of charged Lennard-Jones spheres between charged walls. For simplicity, in this first investigation we have considered the cations and anions of the same size. We have calculated the corresponding values of the double layer capacitance as a function of the electrode potential and compared the results with existing theories. We have found that the capacitance curve does not follow the U-shape of the Gouy-Chapman theory, but has a bell-shape in agreement with the mean-field theory that takes into account the effect of limited maximum packing of ions. The wings of capacitance decrease inversely proportional to the square root of the electrode potential, as prescribed by the mean-field theory and the charge conservation law at large electrode polarizations. We have found, however, that the mean-field theory does not quantitatively reproduce the simulation results at small electrode potentials, having detected their remarkable overscreening effects (ionic correlations). The plots for the distributions of ions near the electrode at different electrode charges show that for the considered system, unlike it is often assumed, the double layer is not one layer thick. The overscreening effects, dominating near the potential of zero charge (p.z.c.), are suppressed by the high electrode polarizations, following the onset of the so-called 'lattice saturation effect'. The maximum of the capacitance coincides with the p.z.c., but it is true only for this 'symmetric' system. If sizes of cations and anions are different the maximum will be shifted away from the p.z.c., and generally the shape of the capacitance curve could be more complicated. (author)

  12. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.

  13. Resistance identification and rational process design in Capacitive Deionization

    NARCIS (Netherlands)

    Dykstra, Jouke; Zhao, R.; Biesheuvel, P.M.; Wal, van der A.

    2016-01-01

    Capacitive Deionization (CDI) is an electrochemical method for water desalination employing porous carbon electrodes. To enhance the performance of CDI, identification of electronic and ionic resistances in the CDI cell is important. In this work, we outline a method to identify these resistances.

  14. Implications of vegetation hydraulic capacitance as an indicator of water stress and drought recovery

    Science.gov (United States)

    Matheny, A. M.; Bohrer, G.

    2017-12-01

    Above-ground water storage in vegetation plays an integral role in the avoidance of hydraulic impairment to transpiration. New high temporal resolution measurements of dynamic changes in tree hydraulic capacitance are facilitating insights into vegetation water use strategies. Diurnal withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. The ability to store and use water varies based on soil- and root-water availability, tree size, wood vessel anatomy and density, and stomatal response strategy (i.e. isohydricity). We present results from a three-year long study of stem capacitance dynamics in five species in a mixed deciduous forest in Michigan. The site receives 800mm of rainfall annually, but water potential in the well-drained sandy soil nears the permanent wilting point several times annually. We demonstrate radical differences in stored water use between drought tolerant and intolerant species. Red maple, a drought intolerant, isohydric species, showed a strong dependence on stem capacitance for transpiration during both wet and dry periods. Red oak, a more drought hearty, deep rooted, anisohydric species, was much less reliant on withdrawal from water storage during all conditions. During well-watered conditions, withdrawal from storage by red maple was 10 kg day-1, yet storage withdrawal from similarly sized red oaks was 1 kg day-1. Red oaks only drew strongly upon stored water during the driest extremes. Metrics of hydration status derived from capacitance provide a means to explore drought response and recovery. Declines in consecutive days' maximum capacitance indicate an inability to restore lost water and can be used to mark the onset of water stress. Drought recovery can be quantified as the time required for stem water content to return to pre-drought volumes. Capacitance withdrawal and depletion exhibit a clear threshold response to declining soil water

  15. Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions.

    Science.gov (United States)

    Arnau, A; García, J V; Jimenez, Y; Ferrari, V; Ferrari, M

    2008-07-01

    A new configuration of automatic capacitance compensation (ACC) technique based on an oscillatorlike working interface, which permits the tracking of the series resonant frequency and the monitoring of the motional resistance and the parallel capacitance of a thickness-shear mode quartz crystal microbalance sensor, is introduced. The new configuration permits an easier calibration of the system which, in principle, improves the accuracy. Experimental results are reported with 9 and 10 MHz crystals in liquids with different parallel capacitances which demonstrate the effectiveness of the capacitance compensation. Some frequency deviations from the exact series resonant frequency, measured by an impedance analyzer, are explained by the specific nonideal behavior of the circuit components. A tentative approach is proposed to solve this problem that is also common to previous ACC systems.

  16. Improved electronic interfaces for AT-cut quartz crystal microbalance sensors under variable damping and parallel capacitance conditions

    International Nuclear Information System (INIS)

    Arnau, A.; Garcia, J. V.; Jimenez, Y.; Ferrari, V.; Ferrari, M.

    2008-01-01

    A new configuration of automatic capacitance compensation (ACC) technique based on an oscillatorlike working interface, which permits the tracking of the series resonant frequency and the monitoring of the motional resistance and the parallel capacitance of a thickness-shear mode quartz crystal microbalance sensor, is introduced. The new configuration permits an easier calibration of the system which, in principle, improves the accuracy. Experimental results are reported with 9 and 10 MHz crystals in liquids with different parallel capacitances which demonstrate the effectiveness of the capacitance compensation. Some frequency deviations from the exact series resonant frequency, measured by an impedance analyzer, are explained by the specific nonideal behavior of the circuit components. A tentative approach is proposed to solve this problem that is also common to previous ACC systems

  17. Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors

    Science.gov (United States)

    Nandhini, S.; Muralidharan, G.

    2018-04-01

    The surfactant free nickel sulphide nanoparticles were synthesized via facile hydrothermal method towards supercapacitor applications. The formation of crystalline spherical nanoparticles was confirmed through structural and morphological studies. Electrochemical behaviour of the electrode was analyzed using cyclic voltammetry (CV), galvanostatic charge-discharge studies (GCD) and electrochemical impedance spectroscopy (EIS). The CV studies imply that specific capacitance of the electrode arises from a combination of surface adsorption and Faradic reaction. The NiS electrode delivered a specific capacitance of about 529 F g-1 at a current density of 2 A g-1 (GCD measurements). A profitable charge transfer resistance of 0.5 Ω was obtained from EIS. The 100 % of capacity retention even after 2000 repeated charge-discharge cycles could be observed in 2 M KOH electrolyte at a much larger rate of 30 A g-1. The experimental results suggest that nickel sulphide is a potential candidate for supercapacitor applications.

  18. Capacitive gauging apparatus

    International Nuclear Information System (INIS)

    Walton, H.

    1985-01-01

    Apparatus for gauging physical dimensions of solid or tubular bodies (e.g. a nuclear fuel pellet) comprises a capacitive transducer having electrodes forming diametrically arranged pairs of capacitors and means for connecting the pairs, preferably sequentially, in an arm of a four arm electrical network. For circumferential scanning of a solid body along its length, the body is moved along a path of travel through head assembly including the transducer by means of plungers with the axis of the body being coincident with the axis of the transducer. As the body moves through the transducer the diametrically arranged pairs of capacitors scan the surface to result in a surface profile of the body. For scanning the bore of a pipe or tube the transducer is inserted as a probe and moved along the bore of the pipe or tube, means being provided for maintaining the probe coaxial with the pipe or tube. (author)

  19. TMEM16A inhibition impedes capacitation and acquisition of hyperactivated motility in guinea pig sperm.

    Science.gov (United States)

    Cordero-Martínez, Joaquín; Reyes-Miguel, Tania; Rodríguez-Páez, Lorena; Garduño-Siciliano, Leticia; Maldonado-García, Deneb; Roa-Espitia, Ana L; Hernández-González, Enrique O

    2018-07-01

    Ca 2+ -activated Cl - channels (CaCCs) are anionic channels that regulate many important physiological functions associated with chloride and calcium flux in some somatic cells. The molecular identity of CaCCs was revealed to be TMEM16A and TMEM16B (also known as Anoctamin or ANO1 and ANO2, respectively) in all eukaryotes. A recent study suggests the presence of TMEM16A in human sperm and a relationship with the rhZP-induced acrosome reaction. However, to the best of our knowledge, little is known about the role of TMEM16A in other spermatic processes such as capacitation or motility. In this study, we evaluated the effects of two TMEM16A antagonists on capacitation, acrosome reaction, and motility in guinea pig sperm; these antagonists were T16Ainh-A01, belonging to a second generation of potent antagonists of TMEM16A, and niflumic acid (NFA), a well-known antagonist of TMEM16A (CaCCs). First of all, we confirmed that the absence of Cl - in the capacitation medium changes motility parameters, capacitation, and the progesterone-induced acrosome reaction. Using a specific antibody, TMEM16A was found as a protein band of ∼120 kDa, which localization was in the apical crest of the acrosome and the middle piece of the flagellum. Inhibition of TMEM16A by T16Ainh-A01 affected sperm physiology by reducing capacitation, blocking the progesterone-induced acrosome reaction under optimal capacitation conditions, inhibiting progressive motility, and the acquisition of hyperactivated motility, diminishing [Ca 2+ ]i, and increasing [Cl - ]i. These changes in sperm kinematic parameters provide new evidence of the important role played by TMEM16A in the production of sperm capable of fertilizing oocytes. © 2018 Wiley Periodicals, Inc.

  20. The passive cable properties of hair cell stereocilia and their contribution to somatic capacitance measurements.

    Science.gov (United States)

    Breneman, Kathryn D; Highstein, Stephen M; Boyle, Richard D; Rabbitt, Richard D

    2009-01-01

    Somatic measurements of whole-cell capacitance are routinely used to understand physiologic events occurring in remote portions of cells. These studies often assume the intracellular space is voltage-clamped. We questioned this assumption in auditory and vestibular hair cells with respect to their stereocilia based on earlier studies showing that neurons, with radial dimensions similar to stereocilia, are not always isopotential under voltage-clamp. To explore this, we modeled the stereocilia as passive cables with transduction channels located at their tips. We found that the input capacitance measured at the soma changes when the transduction channels at the tips of the stereocilia are open compared to when the channels are closed. The maximum capacitance is felt with the transducer closed but will decrease as the transducer opens due to a length-dependent voltage drop along the stereocilium length. This potential drop is proportional to the intracellular resistance and stereocilium tip conductance and can produce a maximum capacitance error on the order of fF for single stereocilia and pF for the bundle.

  1. One-step electroplating porous graphene oxide electrodes of supercapacitors for ultrahigh capacitance and energy density

    International Nuclear Information System (INIS)

    Wang, Yongjie; Zhu, Jiaqi

    2015-01-01

    An electroplating method was used for the first time to synthesize 3D porous graphene oxide (PGO) architectures, exhibiting ultrahigh capacitance and energy density as electrodes of supercapacitors. Scanning electron microscopy illustrated the porous structures which promoted the stability and alleviated the stacking of the graphene oxide layers. As investigated in a three-electrode supercapacitor cell, PGO electrodes exhibited the maximum capacitance and energy of 973 F · g −1 and 98.4 Wh · Kg −1 , which are better than current reports and comparable to batteries. At 4 A · g −1 for high-power applications, PGO electrodes reached a capacitance, energy, and power density of 493 F · g −1 , 49.9 Wh · Kg −1 , and 1700 W · Kg −1 , and they retained ∼97.83% of capacitance after 10 000 charge/discharge processes. Furthermore, when the PGO was bent exaggeratedly, it still displayed identical properties, which is of important significance for supporting wearable devices. (paper)

  2. The Neoliberal Circulation of Affects: Happiness, accessibility and the capacitation of disability as wheelchair

    Directory of Open Access Journals (Sweden)

    K. Fritsch

    2013-11-01

    Full Text Available The International Symbol of Access (ISA produces, capacitates, and debilitates disability in particular ways and is grounded by a happy affective economy that is embedded within neoliberal capitalism. This production of disability runs counter to the dismantling of ableism and compulsory able-bodiedness. In charting the development of the modern wheelchair, the rise of disability rights in North America, and the emergence of the ISA as a universally acceptable representation of access for disabled people, I argue that this production of disability serves a capacitating function for particular forms of impairment. These capacitated forms are celebrated through a neoliberal economy of inclusion. I conclude by critically approaching the happy affects of the ISA, including the way in which the symbol creates a sense of cruel optimism for disabled people.

  3. Measurement strategy for rectangular electrical capacitance tomography sensor

    International Nuclear Information System (INIS)

    Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi; Wang, Haigang

    2014-01-01

    To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration. The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation

  4. Instrumentasi Elektrokardiografi dengan Capacitive Contact Electrode pada Kursi

    Directory of Open Access Journals (Sweden)

    Monica Regina Emilia

    2017-01-01

    Full Text Available Elektrokardiograf secara konvensional menggunakan elektroda Ag-AgCl sebagai conductive contact dan kabel sebagai penghubung antara elektroda dengan elektrokardiograf. Metode yang digunakan bersifat direct sehingga elektroda melekat langsung pada kulit. Konfigurasi ini mengakibatkan ruang gerak pengguna menjadi terbatas dan dalam jangka panjang dapat menyebabkan iritasi pada kulit. Oleh karena itu, pada tugas akhir ini akan difokuskan pada perancangan Instrumentasi Elektrokardiografi secara indirect menggunakan capacitive electrode. Elektroda dibuat dengan menggunakan komponen IC dengan input impedansi tinggi sehingga sinyal jantung dapat direkam walau terhalang oleh pakaian sekalipun. Elektroda dibuat sejumlah 2 buah dan diletakkan pada sandaran kursi, sedangkan untuk ground digunakan PCB berukuran 30cmx30cm sebagai alas duduk. Ketiga sinyal ini kemudian dilewatkan pada rangkaian penguat instrumentasi, filter dan baseline restoration untuk menguatkan dan menghilangkan komponen sinyal yang tidak diperlukan. Dari pengujian yang telah dilakukan, sinyal QRS complex dapat terdeteksi dengan jelas. Kualitas sinyal yang dihasilkan sangat bergantung dari pakaian yang digunakan. Oleh karena itu capacitive electrode memiliki peluang yang besar untuk dijadikan sebagai elektroda alternatif yang bisa digunakan dalam jangka panjang.

  5. Electrostatic Self-Assembly of Sandwich-Like CoAl-LDH/Polypyrrole/Graphene Nanocomposites with Enhanced Capacitive Performance.

    Science.gov (United States)

    Zhang, Yu; Du, Dongfeng; Li, Xuejin; Sun, Hongman; Li, Li; Bai, Peng; Xing, Wei; Xue, Qingzhong; Yan, Zifeng

    2017-09-20

    A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g -1 at 1 A g -1 ), high rate performance (75% retention at 20 A g -1 ), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg -1 at 1.2 kW kg -1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.

  6. Use of capacitive sensors with the instantaneous profile method to determine hydraulic conductivity

    Directory of Open Access Journals (Sweden)

    Eurileny Lucas de Almeida

    Full Text Available ABSTRACT Due to the need to monitor soil water tension continuously, the instantaneous profile method is considered laborious, requiring a lot of time, and especially manpower, to set up and maintain. The aim of this work was to evaluate the possibility of using capacitive sensors in place of tensiometers with the instantaneous profile method in an area of the Lower Acaraú Irrigated Perimeter. The experiment was carried out in a Eutrophic Red-Yellow Argisol. The sensors were installed 15, 30, 45 and 60 cm from the surface, and powered by photovoltaic panels, using a power manager to charge the battery and to supply power at night. Records from the capacitive sensors were collected every five minutes and stored on a data acquisition board. With the simultaneous measurement of soil moisture obtained by the sensors, and the total soil water potential from the soil water retention curve, it was possible to determine the hydraulic conductivity as a function of the volumetric water content for each period using the Richards equation. At the end of the experiment, the advantage of using capacitive sensors with the instantaneous profile method was confirmed as an alternative to using a tensiometer. The main advantages of using capacitive sensors were to make the method less laborious and to allow moisture readings at higher tensions in soils of a sandy texture.

  7. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    Science.gov (United States)

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  8. Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization

    Science.gov (United States)

    Chang, Liang; Hu, Yun Hang

    2018-05-01

    Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g-1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g-1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.

  9. Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene

    KAUST Repository

    Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo; Shaukat, A.

    2013-01-01

    Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.

  10. Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene

    KAUST Repository

    Tahir, M.

    2013-12-10

    Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.

  11. Theory of substrate, Zeeman, and electron-phonon interaction effects on the quantum capacitance in graphene

    International Nuclear Information System (INIS)

    Tahir, M.; Sabeeh, K.; Shaukat, A.; Schwingenschlögl, U.

    2013-01-01

    Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements

  12. The compressibility and the capacitance coefficient of helium-oxygen atmospheres.

    Science.gov (United States)

    Imbert, G; Dejours, P; Hildwein, G

    1982-12-01

    The capacitance coefficient beta of an ideal gas mixture depends only on its temperature T, and its value is derived from the ideal gas law (i.e., beta = 1/RT, R being the ideal gas constant). But real gases behave as ideal gases only at low pressures, and this would not be the case in deep diving. High pressures of helium-oxygen are used in human and animal experimental dives (up to 7 or 12 MPa or more, respectively). At such pressures deviations from the ideal gas law cannot be neglected in hyperbaric atmospheres with respect to current accuracy of measuring instruments. As shown both theoretically and experimentally by this study, the non-ideal nature of helium-oxygen has a significant effect on the capacitance coefficient of hyperbaric atmospheres. The theoretical study is based on interaction energy in either homogeneous (He-He and O2-O2) or heterogeneous (He-O2) molecular pairs, and on the virial equation of state for gas mixtures. The experimental study is based on weight determination of samples of known volume of binary helium-oxygen mixtures, which are prepared in well-controlled pressure and temperature conditions. Our experimental results are in good agreement with theoretical predictions. 1) The helium compressibility factor ZHe increases linearly with pressure [ZHe = 1 + 0.0045 P (in MPa) at 30 degrees C]; and 2) in same temperature and pressure conditions (T = 303 K and P = 0.1 to 15 MPa), the same value for Z is valid for a helium-oxygen binary mixture and for pure helium. As derived from the equation of state of real gases, the capacitance coefficient is inversely related to Z (beta = 1/ZRT); therefore, for helium-oxygen mixtures, this coefficient would decrease with increasing pressure. A table is given for theoretical values of helium-oxygen capacitance coefficient, at pressures ranging from 0.1 to 15.0 MPa and at temperatures ranging from 25 degrees C to 37 degrees C.

  13. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Ivan [Laboratoire de Génie Électrique de Paris (LGEP), UMR 8507 CNRS-Supélec, Paris-Sud and UPMC Paris 06 Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Chrétien, Pascal; Schneegans, Olivier; Houzé, Frédéric, E-mail: houze@lgep.supelec.fr [Laboratoire de Génie Électrique de Paris (LGEP), UMR 8507 CNRS-Supélec, Paris-Sud and UPMC Paris 06 Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France)

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  14. The dielectric calibration of capacitance probes for soil hydrology using an oscillation frequency response model

    Directory of Open Access Journals (Sweden)

    D. A. Robinson

    1998-01-01

    Full Text Available Capacitance probes are a fast, safe and relatively inexpensive means of measuring the relative permittivity of soils, which can then be used to estimate soil water content. Initial experiments with capacitance probes used empirical calibrations between the frequency response of the instrument and soil water content. This has the disadvantage that the calibrations are instrument-dependent. A twofold calibration strategy is described in this paper; the instrument frequency is turned into relative permittivity (dielectric constant which can then be calibrated against soil water content. This approach offers the advantages of making the second calibration, from soil permittivity to soil water content. instrument-independent and allows comparison with other dielectric methods, such as time domain reflectometry. A physically based model, used to calibrate capacitance probes in terms of relative permittivity (εr is presented. The model, which was developed from circuit analysis, predicts, successfully, the frequency response of the instrument in liquids with different relative permittivities, using only measurements in air and water. lt was used successfully to calibrate 10 prototype surface capacitance insertion probes (SCIPS and a depth capacitance probe. The findings demonstrate that the geometric properties of the instrument electrodes were an important parameter in the model, the value of which could be fixed through measurement. The relationship between apparent soil permittivity and volumetric water content has been the subject of much research in the last 30 years. Two lines of investigation have developed, time domain reflectometry (TDR and capacitance. Both methods claim to measure relative permittivity and should therefore be comparable. This paper demonstrates that the IH capacitance probe overestimates relative permittivity as the ionic conductivity of the medium increases. Electrically conducting ionic solutions were used to test the

  15. Calibration of capacitance probe sensors using Electric Circuit Theory

    NARCIS (Netherlands)

    Kelleners, T.J.; Soppe, R.W.O.; Robinson, D.A.; Schaap, M.G.; Ayars, J.E.; Skaggs, T.H.

    2004-01-01

    Capacitance probe sensors are an attractive electromagnetic technique for estimating soil water content. There is concern, however, about the influence of soil salinity and soil temperature on the sensors. We present an electric circuit model that relates the sensor frequency to the permittivity of

  16. Carbon nanotube yarns as strong flexible conductive capacitive electrodes

    NARCIS (Netherlands)

    Liu, F.; Wagterveld, R.M.; Gebben, B.; Otto, M.J.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    Carbon nanotube (CNT) yarn, consisting of 23 µm diameter CNT filaments, can be used as capacitive electrodes that are long, flexible, conductive and strong, for applications in energy and electrochemical water treatment. We measure the charge storage capacity as function of salt concentration, and

  17. Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes

    NARCIS (Netherlands)

    Porada, S.; Weinstein, L.; Dash, R.; Wal, van der A.F.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P.M.

    2012-01-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in

  18. Passive inference of collision frequency in magnetized capacitive argon discharge

    Science.gov (United States)

    Binwal, S.; Joshi, J. K.; Karkari, S. K.; Kaw, P. K.; Nair, L.

    2018-03-01

    A non-invasive method of determining the collision frequency νm by measuring the net plasma impendence in a magnetized, capacitive-coupled, radio-frequency (rf) discharge circuit is developed. The collision frequency has been analytically expressed in terms of bulk plasma reactance, wherein standard sheath models have been used to estimate the reactance offered due to the capacitive rf sheaths at the discharge plates. The experimental observations suggest that in the un-magnetized case, νm remains constant over a range of rf current but steadily increases as the background pressure reduces. In the magnetized case, the collision frequency has been observed to decay with the increase in rf current while it remains unaffected by the background pressure. A qualitative discussion has been presented to explain these characteristics.

  19. Modified allocation capacitated planning model in blood supply chain management

    Science.gov (United States)

    Mansur, A.; Vanany, I.; Arvitrida, N. I.

    2018-04-01

    Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.

  20. Synthesis and super capacitance of goethite/reduced graphene oxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huan; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Lu, Ailian; Hu, Yingying; Li, Li; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2013-08-15

    We report a one-step fabrication of α-iron oxyhydroxide/reduced graphene oxide (α-FeOOH/rGO) composites, in which the ferrous sulfate (FeSO{sub 4}·7H{sub 2}O) are used as the iron raw and reducing agent to grow goethite (α-FeOOH) and reduce graphite oxide (GO) to rGO in the same time. The morphology, composition and microstructure of the as-obtained samples are systematically characterized by thermogravimetric (TG) analysis, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and FT-IR. Moreover, their electrochemical properties are investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. The specific capacitance of 452 F g{sup −1} is obtained at a specific current of 1 A g{sup −1} when the mass ratio of α-FeOOH to rGO is up to 80.3:19.7. In addition, the α-FeOOH/rGO composite electrodes exhibit the excellent rate capability (more than 79% retention at 10 A g{sup −1} relative to 1 A g{sup −1}) and well cycling stability (13% capacitance decay after 1000 cycles). These results suggest the importance and great potential of α-FeOOH/rGO composites in the applications of high-performance energy-storage. - Graphical abstract: α-FeOOH loaded on rGO sheets reveals excellent super-capacitive performance. Display Omitted - Highlights: • A one-step synthesis of the environmentally friendly electrode material is designed. • Ferrous sulfate is used as both iron raw source of goethite and reductant of GO. • α-FeOOH nanorods loaded on rGO sheets arrange into a raft-like array. • The resultant composite exhibits high specific capacitance and long cycling stability.

  1. Synthesis and super capacitance of goethite/reduced graphene oxide for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Huan; Hu, Zhongai; Lu, Ailian; Hu, Yingying; Li, Li; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2013-01-01

    We report a one-step fabrication of α-iron oxyhydroxide/reduced graphene oxide (α-FeOOH/rGO) composites, in which the ferrous sulfate (FeSO 4 ·7H 2 O) are used as the iron raw and reducing agent to grow goethite (α-FeOOH) and reduce graphite oxide (GO) to rGO in the same time. The morphology, composition and microstructure of the as-obtained samples are systematically characterized by thermogravimetric (TG) analysis, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and FT-IR. Moreover, their electrochemical properties are investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. The specific capacitance of 452 F g −1 is obtained at a specific current of 1 A g −1 when the mass ratio of α-FeOOH to rGO is up to 80.3:19.7. In addition, the α-FeOOH/rGO composite electrodes exhibit the excellent rate capability (more than 79% retention at 10 A g −1 relative to 1 A g −1 ) and well cycling stability (13% capacitance decay after 1000 cycles). These results suggest the importance and great potential of α-FeOOH/rGO composites in the applications of high-performance energy-storage. - Graphical abstract: α-FeOOH loaded on rGO sheets reveals excellent super-capacitive performance. Display Omitted - Highlights: • A one-step synthesis of the environmentally friendly electrode material is designed. • Ferrous sulfate is used as both iron raw source of goethite and reductant of GO. • α-FeOOH nanorods loaded on rGO sheets arrange into a raft-like array. • The resultant composite exhibits high specific capacitance and long cycling stability

  2. Decrease in the cytosolic NADP+-dependent isocitrate dehydrogenase activity through porcine sperm capacitation.

    Science.gov (United States)

    Katoh, Yuki; Tamba, Michiko; Matsuda, Manabu; Kikuchi, Kazuhiro; Okamura, Naomichi

    2018-02-26

    In order to understand the molecular mechanisms involved in the sperm capacitation, we have identified the proteins tyrosine-phosphorylated during the capacitation especially in conjunction with the regulation of the levels of reactive oxygen species (ROS) in sperm. In the present study, the effects of the tyrosine phosphorylation of cytosolic NADP + -dependent isocitrate dehydrogenase (IDPc) on its catalytic activity and on the levels of ROS in sperm have been studied. The tyrosine phosphorylated IDPc showed a significantly lowered enzymatic activity. The immunocytochemical analyses using the highly specific antisera against IDPc revealed that IDPc was mainly localized to the principal piece of the porcine sperm flagellum. As IDPc is one of the major NADPH regenerating enzymes in porcine sperm, it is strongly suggested that the decrease in IDPc activity is involved in the increased levels of ROS, which results in the induction of hyperactivated flagellar movement and capacitation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    Science.gov (United States)

    Chen, Wei; Rakhi, R. B.; Alshareef, H. N.

    2013-05-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a

  4. Design of electrical capacitance tomography sensors

    International Nuclear Information System (INIS)

    Yang, Wuqiang

    2010-01-01

    Electrical capacitance tomography (ECT) has been developed since the late 1980s for visualization and measurement of a permittivity distribution in a cross section using a multi-electrode capacitance sensor. While the hardware and image reconstruction algorithms for ECT have been published extensively and the topics have been reviewed, few papers have been published to discuss ECT sensors and the design issues, which are crucial for a specific application. This paper will briefly discuss the principles of ECT sensors, but mostly will address key issues for ECT sensor design, with reference to some existing ECT sensors as a good understanding of the key issues would help optimization of the design of ECT sensors. The key issues to be discussed include the number and length of electrodes, the use of external and internal electrodes, implications of wall thickness, earthed screens (including the outer screen, axial end screens and radial screens), driven guard electrodes, dealing with high temperature and high pressure, twin planes for velocity measurement by cross correlation and limitations in sensor diameter. While conventional ECT sensors are circular with the electrodes in a single plane or in twin planes, some non-conventional ECT sensors, such as square, conical and 3D sensors, will also be discussed. As a practical guidance, the procedure to fabricate an ECT sensor will be given. In the end are summary and discussion on future challenges, including re-engineering of ECT sensors. (topical review)

  5. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.

    2012-12-06

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  6. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2012-01-01

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  7. Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces

    Science.gov (United States)

    Limmer, David T.

    2015-12-01

    A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.

  8. Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces.

    Science.gov (United States)

    Limmer, David T

    2015-12-18

    A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.

  9. Steady State Analysis of LCLC Resonant Converter with Capacitive Output Filter

    Directory of Open Access Journals (Sweden)

    Navid Shafiyi

    2010-01-01

    Full Text Available This paper presents the mathematical analysis and modeling of a 4th order LCLC resonant converter with capacitive output filter in steady-state condition. Due to the nonlinearity of the LCLC resonant circuit with capacitive output filter, the conventional modeling procedure cannot thoroughly describe the behavior of the converter. In this paper, a mathematical model is proposed that can accommodate the absence of the output inductor and predict the converter performance for a wide range of operating conditions. A 2.25KW prototype converter is provided to evaluate the accuracy of the proposed model. Experimental results show that the proposed model can precisely predict the behavior of the converter for a wide range of operating conditions.

  10. Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors

    Science.gov (United States)

    Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-11-01

    Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.

  11. Assembly of polypyrrole nanotube@MnO{sub 2} composites with an improved electrochemical capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jiayou; Zhang, Xiaoya; Liu, Jingya; Peng, Linfeng; Chen, Changlang; Huang, Zhiliang [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Liang, E-mail: msell08@163.com [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Xianghua [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Shang, Songmin, E-mail: shang.songmin@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-08-15

    Graphical abstract: - Highlights: • PPy nanotube@MnO{sub 2} composites have been prepared. • The thickness of MnO{sub 2} coating can be tuned by the concentration of KMnO{sub 4}. • Synergistic effect between PPy and MnO{sub 2} generates better capacitance performance. • The composites exhibit high specific capacitance and good cycle stability. - Abstract: A facile strategy is presented to fabricate polypyrrole nanotube@manganese dioxide (PPy@MnO{sub 2}) composites. The effect of KMnO{sub 4} concentration on the morphology and property of PPy@MnO{sub 2} composites is investigated. The microstrucutres and properties of the resulting PPy@MnO{sub 2} composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray diffraction (EDX), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA) and electrochemical measurements. The results indicate that the PPy@MnO{sub 2} composites possess high specific capacitance and good cyclic stability due to the coating of MnO{sub 2} onto PPy nanotubes. The specific capacitance of 403 F/g for the PPy@MnO{sub 2} composite is obtained from galvanostatic charge–discharge experiment at a current density of 1 A/g, exhibiting the potential application for supercapacitors.

  12. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer

    Directory of Open Access Journals (Sweden)

    Sho Asano

    2017-10-01

    Full Text Available This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS with capacitive sensing circuits on a low temperature cofired ceramic (LTCC interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.

  13. Analytical development and optimization of a graphene–solution interface capacitance model

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2014-05-01

    Full Text Available Graphene, which as a new carbon material shows great potential for a range of applications because of its exceptional electronic and mechanical properties, becomes a matter of attention in these years. The use of graphene in nanoscale devices plays an important role in achieving more accurate and faster devices. Although there are lots of experimental studies in this area, there is a lack of analytical models. Quantum capacitance as one of the important properties of field effect transistors (FETs is in our focus. The quantum capacitance of electrolyte-gated transistors (EGFETs along with a relevant equivalent circuit is suggested in terms of Fermi velocity, carrier density, and fundamental physical quantities. The analytical model is compared with the experimental data and the mean absolute percentage error (MAPE is calculated to be 11.82. In order to decrease the error, a new function of E composed of α and β parameters is suggested. In another attempt, the ant colony optimization (ACO algorithm is implemented for optimization and development of an analytical model to obtain a more accurate capacitance model. To further confirm this viewpoint, based on the given results, the accuracy of the optimized model is more than 97% which is in an acceptable range of accuracy.

  14. A flexible capacitive tactile sensing array with floating electrodes

    International Nuclear Information System (INIS)

    Cheng, M-Y; Huang, X-H; Ma, C-W; Yang, Y-J

    2009-01-01

    In this work, we present the development of a capacitive tactile sensing array realized by using MEMS fabrication techniques and flexible printed circuit board (FPCB) technologies. The sensing array, which consists of two micromachined polydimethlysiloxane (PDMS) structures and a FPCB, will be used as the artificial skin for robot applications. Each capacitive sensing element comprises two sensing electrodes and a common floating electrode. The sensing electrodes and the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrode is patterned on one of the PDMS structures. This special design can effectively reduce the complexity of the device structure and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions are measured and discussed. The corresponding scanning circuits are also designed and implemented. The tactile images induced by the PMMA stamps of different shapes are also successfully captured by a fabricated 8 × 8 array

  15. On the hydrophilicity of electrodes for capacitive energy extraction

    International Nuclear Information System (INIS)

    Lian, Cheng; East China University of Science and Technology, Shanghai; Kong, Xian; Tsinghua University, Beijing; Liu, Honglai; Wu, Jianzhong

    2016-01-01

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.

  16. Understanding the Capacitance of PEDOT:PSS

    DEFF Research Database (Denmark)

    Volkov, Anton V.; Wijeratne, Kosala; Mitraka, Evangelia

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is the most studied and explored mixed ion-electron conducting polymer system. PEDOT:PSS is commonly included as an electroactive conductor in various organic devices, e.g., supercapacitors, displays, transistors, and energy......-converters. In spite of its long-term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT...

  17. Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes.

    Science.gov (United States)

    Choi, Tae Young; Hwang, Byeong-Ung; Kim, Bo-Yeong; Trung, Tran Quang; Nam, Yun Hyoung; Kim, Do-Nyun; Eom, Kilho; Lee, Nae-Eung

    2017-05-31

    Stretchable and transparent touch sensors are essential input devices for future stretchable transparent electronics. Capacitive touch sensors with a simple structure of only two electrodes and one dielectric are an established technology in current rigid electronics. However, the development of stretchable and transparent capacitive touch sensors has been limited due to changes in capacitance resulting from dimensional changes in elastomeric dielectrics and difficulty in obtaining stretchable transparent electrodes that are stable under large strains. Herein, a stretch-unresponsive stretchable and transparent capacitive touch sensor array was demonstrated by employing stretchable and transparent electrodes with a simple selective-patterning process and by carefully selecting dielectric and substrate materials with low strain responsivity. A selective-patterning process was used to embed a stretchable and transparent silver nanowires/reduced graphene oxide (AgNWs/rGO) electrode line into a polyurethane (PU) dielectric layer on a polydimethylsiloxane (PDMS) substrate using oxygen plasma treatment. This method provides the ability to directly fabricate thin film electrode lines on elastomeric substrates and can be used in conventional processes employed in stretchable electronics. We used a dielectric (PU) with a Poisson's ratio smaller than that of the substrate (PDMS), which prevented changes in the capacitance resulting from stretching of the sensor. The stretch-unresponsive touch sensing capability of our transparent and stretchable capacitive touch sensor has great potential in wearable electronics and human-machine interfaces.

  18. Novel rf power sensor based on capacitive MEMS technology

    NARCIS (Netherlands)

    Fernandez, L.J.; Visser, Eelke; Sesé, J.; Jansen, Henricus V.; Wiegerink, Remco J.; Flokstra, Jakob

    2003-01-01

    We present the theory, design, fabrication of and first measurements on a novel power for radio frequency (rf) signals, based on capacitive measurements. The novelty of this sensor is thtat it measures the force that is created between the rf signal and a grounded membrande suspended above the line

  19. Some applications of capacitance technology in nuclear reactor components inspections

    International Nuclear Information System (INIS)

    Walton, H.

    1985-01-01

    The paper considers application of a capacitance measuring system that has overcome many of the original contraints, such as sensitivity to cable length, induced electric field and high acoustic noise, and illustrates the ease of use with examples of proven capability in severe environments of high temperature or high radiation. The Capacitance Displacement Transducer (CDT) measuring principle was originally developed as a working technique during the early years of full-scale, on-load refuelling trials performed in the Windscale Civil Advanced Gas-Cooled Reactor (CAGR) test rig where it was necessary to measure the vibrational behaviour of fuel components in simulated reactor conditions. At that time, 1968-1969, no instrumentation existed that would measure displacement in the range 0 to 100 mms to an accuracy of 25x10 -3 mms, without physical contact, at temperatures of 600 0 C in high velocity gas, in high acoustic noise fields of 150 db's over cable lengths approaching 100 metres. The principles incorporated in the CDT overcome all these problems. The advantages inherent in this system have been extended to metrology applications in more recent years by the further development of the electronics to enable linear displacement measurement to be obtained between two capacitance plates whose separation varies, either by plate movement or by surface irregularity. This principle has been used to good effect in novel applications associated with the inspection of nominally inaccessible internal tube surfaces

  20. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  1. Capacitive MEMS-based sensors : thermo-mechanical stability and charge trapping

    NARCIS (Netherlands)

    van Essen, M.C.

    2009-01-01

    Micro-Electro Mechanical Systems (MEMS) are generally characterized as miniaturized systems with electrostatically driven moving parts. In many cases, the electrodes are capacitively coupled. This basic scheme allows for a plethora of specifications and functionality. This technology has presently

  2. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luí s Lemos; Marques, Luí s S A; Pintassilgo, Carlos D.; Wattieaux, Gaë tan; Es-sebbar, Et-touhami; Berndt, Johannes; Kovačević, Eva; Carrasco, Nathalie; Boufendi, Laï fa; Cernogora, Guy

    2012-01-01

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups

  3. Vertically Aligned Carbon Nanotube Arrays as Efficient Supports for Faradaic Capacitive Electrodes

    Science.gov (United States)

    Oguntoye, Moses; Holleran, Mary-Kate; Roberts, Katherine; Pesika, Noshir

    Supercapacitors are notable for their ability to deliver energy at higher power (compared to batteries) and store energy at higher density (compared to capacitors) as well as exhibit a long cycle life. In our efforts to further the development of supercapacitors, our focus is on using vertically aligned carbon nanotubes (VACNT) as supports for faradaic capacitive electrode materials. The objective is to develop electrodes functioning in an inexpensive aqueous environment with small potential windows, that store energy at a higher density than carbon materials alone. We describe the different approaches explored to overcome the challenges of non-uniform deposition, poor wetting and array collapse. Materials that are electrochemically anchored to VACNT supports include NiCo2O4, VOx, Fe2O3 and Co-Mn mixed oxides. In each case, the specific capacitance obtained using the VACNT arrays as supports is significantly more than that obtained by direct deposition onto current collectors or by using VACNT alone. The ease of VACNT growth and the degree of coating control achievable using electrodeposition means there is much potential in exploring them as supports for capacitive electrode materials.

  4. Ultrahigh specific capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Hsing-Chi; Cheng, Wei-Yun; Wang, Yong-Hui; Lu, Shih-Yuan [Department of Chemical Engineering, National Tsing-Hua University, Taiwan (China)

    2012-12-05

    Nickel cobaltite, a low cost and an environmentally friendly supercapacitive material, is deposited as a thin nanostructure of 3-5 nm nanocrystals into carbon aerogels, a mesoporous host template of high specific surface areas and high electric conductivities, with a two-step wet chemistry process. This nickel cobaltite/carbon aerogel composite shows ultrahigh specific capacitances of around 1700 F g{sup -1} at a scan rate of 25 mV s{sup -1} within a potential window of -0.05 to 0.5 V in 1 M NaOH solutions. The composite also possesses an excellent high rate capability manifested by maintaining specific capacitances above 800 F g{sup -1} at a high scan rate of 500 mV s{sup -1}, and an outstanding cycling stability demonstrated by a negligible 2.4% decay in specific capacitances after 2000 cycles. The success is attributable to the fuller utilization of nickel cobaltite for pseudocapacitance generation, made possible by the composite structure enabling well exposed nickel cobaltite to the electrolyte and easy transport of charge carriers, ions, and electrons, within the composite electrode. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    Science.gov (United States)

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  6. A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne; Lysgaard, Jens

    2014-01-01

    The paper considers the Cumulative Capacitated Vehicle Routing Problem (CCVRP), which is a variation of the well-known Capacitated Vehicle Routing Problem (CVRP). In this problem, the traditional objective of minimizing total distance or time traveled by the vehicles is replaced by minimizing...... the sum of arrival times at the customers. A branch-and-cut-and-price algorithm for obtaining optimal solutions to the problem is proposed. Computational results based on a set of standard CVRP benchmarks are presented....

  7. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    Science.gov (United States)

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  8. Measurement of Line-to-Ground Capacitance in Distribution Network Considering Magnetizing Impedance’s Frequency Characteristic

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2017-04-01

    Full Text Available Signal injection method (SIM is widely applied to the insulation parameters’ measurement in distribution network for its convenience and safety. It can be divided into two kinds of patterns: injecting a specific frequency signal or several frequencies’ groups, and scanning frequency in a scheduled frequency scope. In order to avoid the disadvantages in related researches, improved signal injection method (ISIM, in which the frequency characteristic of the transformer magnetizing impedance is taken into consideration, is proposed. In addition, optimization for signal injection position has been accomplished, and the corresponding three calculation methods of line-to-ground capacitance has been derived. Calculations are carried out through the vector information (vector calculation method, the amplitude information (amplitude calculation method, the phase information (phase calculation method of voltage and current in signal injecting port, respectively. The line-to-ground capacitance is represented by lumped parameter capacitances in high-voltage simulation test. Eight different sinusoidal signals are injected into zero-sequence circuit, and then line-to-ground capacitance is calculated with the above-mentioned vector calculation method based on the voltage and the current data of the injecting port. The results obtained by the vector calculation method show that ISIM has a wider application frequency range compared with signal injection method with rated parameters (RSIM and SIM. The RSIM is calculated with the rated transformer parameters of magnetizing impedance, and the SIM based on the ideal transformer model, and the relative errors of calculation results of ISIM are smaller than that for other methods in general. The six groups of two-frequency set are chosen in a specific scope which is recommended by vector calculation results. Based on ISIM, the line-to-ground capacitance calculations through the amplitude calculation method and

  9. Design of interdigital spiral and concentric capacitive sensors for materials evaluation

    Science.gov (United States)

    Chen, Tianming; Bowler, Nicola

    2013-01-01

    This paper describes the design of two circular coplanar interdigital sensors with i) a spiral interdigital configuration and ii) a concentric interdigital configuration for the nondestructive evaluation of multilayered dielectric structures. A numerical model accounting for sensor geometry, test-piece geometry and real permittivity, and metal electrode thickness has been developed to calculate the capacitance of the sensors when in contact with a planar test-piece comprising up to four layers. Compared with a disk-and-ring coplanar capacitive sensor developed previously, the interdigital configurations are predicted to have higher signal-to-noise ratio and better accuracy in materials characterization. The disk-and-ring configuration, on the other hand, possesses advantages such as deeper penetration depth and better immunity to lift-off variations.

  10. The Influence of Materials of Electrodes of Sensitized Solar Cells on Their Capacitive and Electrical Characteristics

    Science.gov (United States)

    Lazarenko, P. I.; Kozyukhin, S. A.; Mokshina, A. I.; Sherchenkov, A. A.; Patrusheva, T. N.; Irgashev, R. A.; Lebedev, E. A.; Kozik, V. V.

    2018-05-01

    An estimation is made of the internal capacitance of sensitized solar cells (SSCs) manufactured by the method of extraction pyrolysis. The structures under study are characterized by a hysteresis in the current-voltage characteristic obtained in the direct and reverse modes of voltage variation. The investigations of SSCs demonstrate a high inertness of the parameters under connection and disconnection of the light source. The use of a transparent conductive ITO-electrode, manufactured by the extraction pyrolysis, increases the external capacitance of the cell and decelerates the processes of current decay after the light source connection compared to the commercial FTO-electrode. The values of charges, capacitances, and SSC charge conservation efficiencies are calculated and the internal resistance of the SSCs under study is estimated. According to the estimations performed, the specimen with an ITO-layer possesses a capacitance equal to C1 = 1.23·10-3 F, which is by two orders of magnitude higher than that of the specimen with a FTO-layer (C2 = 2.06·10-5 F).

  11. Assessment of an ultrasonic sensor and a capacitance probe for measurement of two-phase mixture level

    International Nuclear Information System (INIS)

    Kim, Chang Hyun; Lee, Dong Won; No, Hee Cheon

    2004-01-01

    We perform a comparison of two-phase mixture levels measured by an ultrasonic sensor and a two-wire type capacitance probe with visual data under the same experimental conditions. A series of experiments are performed with various combinations of airflow and initial water level using a test vessel with a height of 2m and an inner diameter of 0.3 m under atmospheric pressure and room temperature. The ultrasonic sensor measures the two-phase mixture level with a maximum error of 1.77% with respect to the visual data. The capacitance probe severely under-predicts the level data in the high void fraction region. The cause of the error is identified as the change of the dielectric constant as the void fraction changes when the probe is applied to the measurement of the two-phase mixture levels. A correction method for the capacitance probe is proposed by correcting the change of dielectric constant of the two-phase mixture. The correction method for the capacitance probe produces a r.m.s. error of 5.4%. (author)

  12. Trade-off between quantum capacitance and thermodynamic stability of defected graphene: an implication for supercapacitor electrodes

    Science.gov (United States)

    Srivastava, Anurag; SanthiBhushan, Boddepalli

    2018-03-01

    Defects are inevitable most of the times either at the synthesis, handling or processing stage of graphene, causes significant deviation of properties. The present work discusses the influence of vacancy defects on the quantum capacitance as well as thermodynamic stability of graphene, and the nitrogen doping pattern needs to be followed to attain a trade-off between these two. Density Functional Theory (DFT) calculations have been performed to analyze various vacancy defects and different possible nitrogen doping patterns at the vacancy site of graphene, with an implication for supercapacitor electrodes. The results signify that vacancy defect improves the quantum capacitance of graphene at the cost of thermodynamic stability, while the nitrogen functionalization at the vacancy improves thermodynamic stability and quantum capacitance both. It has been observed that functionalizing all the dangling carbons at the defect site with nitrogen is the key to attain high thermodynamic stability as well as quantum capacitance. Furthermore, the results signify the suitability of these functionalized graphenes for anode electrode of high energy density asymmetric supercapacitors.

  13. Three formulations of the multi-type capacitated facility location problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    The "multi-type" or "modular" capacitated facility location problem is a discrete location model that addresses non-convex piecewise linear production costs as, for instance, staircase cost functions. The literature basically distinguishes three different ways to formulate non-convex piecewise...

  14. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    International Nuclear Information System (INIS)

    Ahn, S. K.; Chang, H. Y.

    2008-01-01

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with the theories of electromagnetic effects in large area and/or high frequency capacitive discharges

  15. Memory properties and charge effect study in Si nanocrystals by scanning capacitance microscopy and spectroscopy

    Directory of Open Access Journals (Sweden)

    Bassani Franck

    2011-01-01

    Full Text Available Abstract In this letter, isolated Si nanocrystal has been formed by dewetting process with a thin silicon dioxide layer on top. Scanning capacitance microscopy and spectroscopy were used to study the memory properties and charge effect in the Si nanocrystal in ambient temperature. The retention time of trapped charges injected by different direct current (DC bias were evaluated and compared. By ramp process, strong hysteresis window was observed. The DC spectra curve shift direction and distance was observed differently for quantitative measurements. Holes or electrons can be separately injected into these Si-ncs and the capacitance changes caused by these trapped charges can be easily detected by scanning capacitance microscopy/spectroscopy at the nanometer scale. This study is very useful for nanocrystal charge trap memory application.

  16. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dyatkin, Boris [Drexel Univ., Philadelphia, PA (United States); Zhang, Yu [Vanderbilt Univ., Nashville, TN (United States); Mamontov, Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kolesnikov, Alexander I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Yongqiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cummings, Peter T. [Vanderbilt Univ., Nashville, TN (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  17. Nickel oxide film with open macropores fabricated by surfactant-assisted anodic deposition for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Wang, Min-Jyle

    2010-10-07

    Nickel oxide film with open macropores prepared by anodic deposition in the presence of surfactant shows a very high capacitance of 1110 F g(-1) at a scan rate of 10 mV s(-1), and the capacitance value reduces to 950 F g(-1) at a high scan rate of 200 mV s(-1).

  18. Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Murtaza, Imran; Farooq, M.; Cheong, Kuan Yew; Noor, Ahmad Fauzi Mohd

    2010-01-01

    A thin film of blended poly-N-epoxypropylcarbazole (PEPC) (25 wt.%), nickel phthalocyanine (NiPc) (50 wt.%) and ZnO nano-powder (25 wt.%) in benzene (5 wt.%) was spin-coated on a glass substrate with silver electrodes to produce a surface-type Ag/PEPC/NiPc/ZnO/Ag capacitive and resistive sensor. Sensors with two different PEPC/NiPc/ZnO film thicknesses (330 and 400 nm) were fabricated and compared. The effects of humidity on capacitance and resistance of the Ag/PEPC/NiPc/ZnO/Ag sensors were investigated at two frequencies of the applied voltage: 120 Hz and 1 kHz. It was observed that at 120 Hz under humidity of up to 95% RH the capacitance of the sensors increased by 540 times and resistance decreased by 450 times with respect to humidity conditions of 50% RH. It was found that the sensor with a thinner semiconducting film (330 nm) was more sensitive than the sensor with a thicker film (400 nm). The sensitivity was improved when the sensor was used at a lower frequency as compared with a high frequency. It is assumed that the humidity response of the sensors is associated with absorption of water vapors and doping of water molecules in the semiconductor blend layer. This had been proven by simulation of the capacitance-humidity relationship. (semiconductor devices)

  19. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances

    Science.gov (United States)

    Nam, Donghyeon; Heo, Yeongbeom; Cheong, Sanghyuk; Ko, Yongmin; Cho, Jinhan

    2018-05-01

    We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm-3 and 8.79 ± 0.06 mF cm-2 at 5 mV s-1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm-3 and areal capacitance ∼1.95 ± 0.03 mF cm-2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm-3) and power densities (820 mW cm-3).

  20. Simulated Effects of Soil Temperature and Salinity on Capacitance Sensor Measurements

    Directory of Open Access Journals (Sweden)

    Timothy R. Green

    2007-04-01

    Full Text Available Dielectric measurement techniques are used widely for estimation of water contentin environmental media. However, factors such as temperature and salinity affecting thereadings require further quantitative investigation and explanation. Theoretical sensitivities ofcapacitance sensors to liquid salinity and temperature of porous media were derived andcomputed using a revised electrical circuit analogue model in conjunction with a dielectricmixing model and a finite element model of Maxwell’s equation to compute electrical fielddistributions. The mixing model estimates the bulk effective complex permittivities of solid-water-air media. The real part of the permittivity values were used in electric field simulations,from which different components of capacitance were calculated via numerical integration forinput to the electrical circuit analogue. Circuit resistances representing the dielectric losses werecalculated from the complex permittivity of the bulk soil and from the modeled fields. Resonantfrequencies from the circuit analogue were used to update frequency-dependent variables in aniterative manner. Simulated resonant frequencies of the capacitance sensor display sensitivitiesto both temperature and salinity. The gradients in normalized frequency with temperatureranged from negative to positive values as salinity increased from 0 to 10 g L-1. The modeldevelopment and analyses improved our understanding of processes affecting the temperatureand salinity sensitivities of capacitance sensors in general. This study provides a foundation forfurther work on inference of soil water content under field conditions.

  1. Unobtrusive ECG monitoring in the NICU using a capacitive sensing array

    International Nuclear Information System (INIS)

    Atallah, L; Meftah, M; Schellekens, M; Serteyn, A; Vullings, R; Bergmans, J W M; Osagiator, A; Oetomo, S Bambang

    2014-01-01

    The thin skin of preterm babies is easily damaged by adhesive electrodes, tapes, chest drains and needle-marks. The scars caused could be disfiguring or disabling to 10% of preterm newborns. Capacitive sensors present an attractive option for pervasively monitoring neonatal ECG, and can be embedded in a support system or even a garment worn by the neonate. This could improve comfort and reduce pain aiding better recovery as well as avoiding the scars caused by adhesive electrodes. In this work, we investigate the use of an array of capacitive sensors unobtrusively embedded in a mattress and used in a clinical environment for 15 preterm neonates. We also describe the analysis framework including the fusion of information from all sensors to provide a more accurate ECG signal. We propose a channel selection strategy as well as a method using physiological information to obtain a reliable ECG signal. When sensor coverage is well attained, results for both instantaneous heart rate and ECG signal shape analysis are very encouraging. The study also provides several insights on important factors affecting the results. These include the effect of textile type, number of layers, interferences (e.g. people walking by), motion severity and interventions. Incorporating this knowledge in the design of a capacitive sensing system would be crucial in ensuring that these sensors provide a reliable ECG signal when embedded in a neonatal support system. (paper)

  2. Boosting capacitive blue-energy and desalination devices with waste heat

    NARCIS (Netherlands)

    Janssen, Mathijs; Härtel, Andreas; Van Roij, René

    2014-01-01

    We show that sustainably harvesting "blue" energy from the spontaneous mixing process of fresh and salty water can be boosted by varying the water temperature during a capacitive mixing process. Our modified Poisson-Boltzmann calculations predict a strong temperature dependence of the electrostatic

  3. Interface Layering Phenomena in Capacitance Detection of DNA with Biochips

    Directory of Open Access Journals (Sweden)

    Sandro Carrara

    2007-02-01

    Full Text Available Reliable DNA detection is of great importance for the development of the Lab-on-chip technology. The effort of the most recent projects on this field is to integrate all necessary operations, such as sample preparation (mixing, PCR amplification together with the sensor user for DNA detection. Among the different ways to sense the DNA hybridization, fluorescence based detection has been favored by the market. However, fluorescence based approaches require that the DNA targets are labeled by means of chromophores. As an alternative label-free DNA detection method, capacitance detection was recently proposed by different authors. While this effect has been successfully demonstrated by several groups, the model used for data analysis is far too simple to describe the real behavior of a DNA sensor. The aim of the present paper is to propose a different electrochemical model to describe DNA capacitance detection.

  4. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    Science.gov (United States)

    Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-02-01

    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.

  5. Finite-element simulations of coupling capacitances in capacitively coupled pixel detectors

    CERN Document Server

    AUTHOR|(SzGeCERN)755510

    2017-01-01

    Capacitively coupled hybrid silicon pixel-detector assemblies are under study for the vertex detector at the proposed future CLIC linear electron-positron collider. The assemblies consist of active CCPDv3 sensors, with 25 μm pixel pitch implemented in a 180 nm High- Voltage CMOS process, which are glued to the CLICpix readout ASIC, with the same pixel pitch and processed in a commercial 65 nm CMOS technology. The signal created in the silicon bulk of the active sensors passes a two-stage amplifier, in each pixel, and gets transferred as a voltage pulse to metal pads facing the readout chip (ROC). The coupling of the signal to the metal pads on the ROC side proceeds through the capacitors formed between the two chips by a thin layer of epoxy glue. The coupling strength and the amount of unwanted cross coupling to neighbouring pixels depends critically on the uniformity of the glue layer, its thickness and on the alignment precision during the flip-chip assembly process. Finite-element calculations of the coup...

  6. Effect of calcium, bicarbonate, and albumin on capacitation-related events in equine sperm.

    Science.gov (United States)

    Macías-García, B; González-Fernández, L; Loux, S C; Rocha, A M; Guimarães, T; Peña, F J; Varner, D D; Hinrichs, K

    2015-01-01

    Repeatable methods for IVF have not been established in the horse, reflecting the failure of standard capacitating media to induce changes required for fertilization capacity in equine sperm. One important step in capacitation is membrane cholesterol efflux, which in other species is triggered by cholesterol oxidation and is typically enhanced using albumin as a sterol acceptor. We incubated equine sperm in the presence of calcium, BSA, and bicarbonate, alone or in combination. Bicarbonate induced an increase in reactive oxygen species (ROS) that was abolished by the addition of calcium or BSA. Bicarbonate induced protein tyrosine phosphorylation (PY), even in the presence of calcium or BSA. Incubation at high pH enhanced PY but did not increase ROS production. Notably, no combination of these factors was associated with significant cholesterol efflux, as assessed by fluorescent quantitative cholesterol assay and confirmed by filipin staining. By contrast, sperm treated with methyl-β-cyclodextrin showed a significant reduction in cholesterol levels, but no significant increase in PY or ROS. Presence of BSA increased sperm binding to bovine zonae pellucidae in all three stallions. These results show that presence of serum albumin is not associated with a reduction in membrane cholesterol levels in equine sperm, highlighting the failure of equine sperm to exhibit core capacitation-related changes in a standard capacitating medium. These data indicate an atypical relationship among cholesterol efflux, ROS production, and PY in equine sperm. Our findings may help to elucidate factors affecting failure of equine IVF under standard conditions. © 2015 Society for Reproduction and Fertility.

  7. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  8. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    International Nuclear Information System (INIS)

    Baidillah, Marlin R; Takei, Masahiro

    2017-01-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution. (paper)

  9. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  10. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  11. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  12. Capacitive pressure transducer using flexible films. Junan film wo mochiita seiden yoryoshiki atsukaku transducer

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Tsuchida, N.; Imai, K. (Toyota Technological Institute, Aichi (Japan)); Fujita, K. (Nitto Denko Corp., Osaka (Japan)): Tsuboi, O. (Fujitsu Corp., Tokyo (Japan))

    1992-12-20

    This paper describes the design, manufacture, and evaluation of a capacitive pressure transducer made of polyimide films. The structure of a pressure transducer cell was first determined, and then, the deflection-stress and capacitance-load characteristics of the surface film were analyzed using finite element methods. For the practical stage of manufacture, a polyimide film was emboss processed and electrodes were deposited on the film to construct a pressure transducer cell to which a Schmidt-trigger detecting circuit was connected. As a consequence of the examination of operational characteristics of the cell, it was found that the actual relation between the deflection and load approximately agreed with the linear analyses, and that the capacitance depended with little hysteresis on the gap regardless of the native visco-elasticity of the film. Furthermore, small stick-slip vibration of a contact rubber surface was detected by the transducer to verify its high sensitivity. 17 refs., 18 figs.

  13. Blue Energy and Desalination with Nanoporous Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models

    Directory of Open Access Journals (Sweden)

    Michele Simoncelli

    2018-04-01

    Full Text Available Capacitive mixing (CapMix and capacitive deionization (CDI are currently developed as alternatives to membrane-based processes to harvest blue energy—from salinity gradients between river and sea water—and to desalinate water—using charge-discharge cycles of capacitors. Nanoporous electrodes increase the contact area with the electrolyte and hence, in principle, also the performance of the process. However, models to design and optimize devices should be used with caution when the size of the pores becomes comparable to that of ions and water molecules. Here, we address this issue by simulating realistic capacitors based on aqueous electrolytes and nanoporous carbide-derived carbon (CDC electrodes, accounting for both their complex structure and their polarization by the electrolyte under applied voltage. We compute the capacitance for two salt concentrations and validate our simulations by comparison with cyclic voltammetry experiments. We discuss the predictions of Debye-Hückel and Poisson-Boltzmann theories, as well as modified Donnan models, and we show that the latter can be parametrized using the molecular simulation results at high concentration. This then allows us to extrapolate the capacitance and salt adsorption capacity at lower concentrations, which cannot be simulated, finding a reasonable agreement with the experimental capacitance. We analyze the solvation of ions and their confinement within the electrodes—microscopic properties that are much more difficult to obtain experimentally than the electrochemical response but very important to understand the mechanisms at play. We finally discuss the implications of our findings for CapMix and CDI, both from the modeling point of view and from the use of CDCs in these contexts.

  14. Blue Energy and Desalination with Nanoporous Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models

    Science.gov (United States)

    Simoncelli, Michele; Ganfoud, Nidhal; Sene, Assane; Haefele, Matthieu; Daffos, Barbara; Taberna, Pierre-Louis; Salanne, Mathieu; Simon, Patrice; Rotenberg, Benjamin

    2018-04-01

    Capacitive mixing (CapMix) and capacitive deionization (CDI) are currently developed as alternatives to membrane-based processes to harvest blue energy—from salinity gradients between river and sea water—and to desalinate water—using charge-discharge cycles of capacitors. Nanoporous electrodes increase the contact area with the electrolyte and hence, in principle, also the performance of the process. However, models to design and optimize devices should be used with caution when the size of the pores becomes comparable to that of ions and water molecules. Here, we address this issue by simulating realistic capacitors based on aqueous electrolytes and nanoporous carbide-derived carbon (CDC) electrodes, accounting for both their complex structure and their polarization by the electrolyte under applied voltage. We compute the capacitance for two salt concentrations and validate our simulations by comparison with cyclic voltammetry experiments. We discuss the predictions of Debye-Hückel and Poisson-Boltzmann theories, as well as modified Donnan models, and we show that the latter can be parametrized using the molecular simulation results at high concentration. This then allows us to extrapolate the capacitance and salt adsorption capacity at lower concentrations, which cannot be simulated, finding a reasonable agreement with the experimental capacitance. We analyze the solvation of ions and their confinement within the electrodes—microscopic properties that are much more difficult to obtain experimentally than the electrochemical response but very important to understand the mechanisms at play. We finally discuss the implications of our findings for CapMix and CDI, both from the modeling point of view and from the use of CDCs in these contexts.

  15. Ultrahigh-rate supercapacitors with large capacitance based on edge oriented graphene coated carbonized cellulous paper as flexible freestanding electrodes

    Science.gov (United States)

    Ren, Guofeng; Li, Shiqi; Fan, Zhao-Xia; Hoque, Md Nadim Ferdous; Fan, Zhaoyang

    2016-09-01

    Large-capacitance and ultrahigh-rate electrochemical supercapacitors (UECs) with frequency response up to kilohertz (kHz) range are reported using light, thin, and flexible freestanding electrodes. The electrode is formed by perpendicularly edge oriented multilayer graphene/thin-graphite (EOG) sheets grown radially around individual fibers in carbonized cellulous paper (CCP), with cellulous carbonization and EOG deposition implemented in one step. The resulted ∼10 μm thick EOG/CCP electrode is light and flexible. The oriented porous structure of EOG with large surface area, in conjunction with high conductivity of the electrode, ensures ultrahigh-rate performance of the fabricated cells, with large areal capacitance of 0.59 mF cm-2 and 0.53 mF cm-2 and large phase angle of -83° and -80° at 120 Hz and 1 kHz, respectively. Particularly, the hierarchical EOG/CCP sheet structure allows multiple sheets stacked together for thick electrodes with almost linearly increased areal capacitance while maintaining the volumetric capacitance nearly no degradation, a critical merit for developing practical faraday-scale UECs. 3-layers of EOG/CCP electrode achieved an areal capacitance of 1.5 mF cm-2 and 1.4 mF cm-2 at 120 Hz and 1 kHz, respectively. This demonstration moves a step closer to the goal of bridging the frequency/capacitance gap between supercapacitors and electrolytic capacitors.

  16. Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages

    Science.gov (United States)

    Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei

    2018-03-01

    Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.

  17. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer †

    Science.gov (United States)

    Asano, Sho; Nakayama, Takahiro; Hata, Yoshiyuki; Tanaka, Shuji

    2017-01-01

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively. PMID:29068429

  18. "Negative capacitance" in resistor-ferroelectric and ferroelectric-dielectric networks: Apparent or intrinsic?

    Science.gov (United States)

    Saha, Atanu K.; Datta, Suman; Gupta, Sumeet K.

    2018-03-01

    In this paper, we describe and analytically substantiate an alternate explanation for the negative capacitance (NC) effect in ferroelectrics (FE). We claim that the NC effect previously demonstrated in resistance-ferroelectric (R-FE) networks does not necessarily validate the existence of "S" shaped relation between polarization and voltage (according to Landau theory). In fact, the NC effect can be explained without invoking the "S"-shaped behavior of FE. We employ an analytical model for FE (Miller model) in which the steady state polarization strictly increases with the voltage across the FE and show that despite the inherent positive FE capacitance, reduction in FE voltage with the increase in its charge is possible in a R-FE network as well as in a ferroelectric-dielectric (FE-DE) stack. This can be attributed to a large increase in FE capacitance near the coercive voltage coupled with the polarization lag with respect to the electric field. Under certain conditions, these two factors yield transient NC effect. We analytically derive conditions for NC effect in R-FE and FE-DE networks. We couple our analysis with extensive simulations to explain the evolution of NC effect. We also compare the trends predicted by the aforementioned Miller model with Landau-Khalatnikov (L-K) model (static negative capacitance due to "S"-shape behaviour) and highlight the differences between the two approaches. First, with an increase in external resistance in the R-FE network, NC effect shows a non-monotonic behavior according to Miller model but increases according to L-K model. Second, with the increase in ramp-rate of applied voltage in the FE-DE stack, NC effect increases according to Miller model but decreases according to L-K model. These results unveil a possible way to experimentally validate the actual reason of NC effect in FE.

  19. Artificial Neural Network Algorithm for Condition Monitoring of DC-link Capacitors Based on Capacitance Estimation

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    challenges. A capacitance estimation method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implemented ANN estimated the capacitance of the DC-link capacitor in a back-toback converter. Analysis of the error of the capacitance estimation is also given......In power electronic converters, reliability of DC-link capacitors is one of the critical issues. The estimation of their health status as an application of condition monitoring have been an attractive subject for industrial field and hence for the academic research filed as well. More reliable...... solutions are required to be adopted by the industry applications in which usage of extra hardware, increased cost, and low estimation accuracy are the main challenges. Therefore, development of new condition monitoring methods based on software solutions could be the new era that covers the aforementioned...

  20. 7.9 pJ/Step Energy-Efficient Multi-Slope 13-bit Capacitance-to-Digital Converter

    KAUST Repository

    Omran, Hesham

    2014-08-01

    In this brief, an energy-efficient capacitance-to-digital converter (CDC) is presented. The proposed CDC uses digitally controlled coarse-fine multi-slope integration to digitize a wide range of capacitance in short conversion time. Both integration current and frequency are scaled, which leads to significant improvement in the energy efficiency of both analog and digital circuitry. Mathematical analysis for circuit nonidealities, noise, and improvement in energy efficiency is provided. A prototype fabricated in a 0.35-μm CMOS process occupies 0.09 mm2 and consumes a total of 153 μA from 3.3 V supply while achieving 13-bit resolution. The operation of the prototype is experimentally verified using MEMS capacitive pressure sensor. Compared to recently published work, the prototype achieves an excellent energy efficiency of 7.9 pJ/Step. © 2004-2012 IEEE.

  1. 7.9 pJ/Step Energy-Efficient Multi-Slope 13-bit Capacitance-to-Digital Converter

    KAUST Repository

    Omran, Hesham; Arsalan, Muhammad; Salama, Khaled N.

    2014-01-01

    In this brief, an energy-efficient capacitance-to-digital converter (CDC) is presented. The proposed CDC uses digitally controlled coarse-fine multi-slope integration to digitize a wide range of capacitance in short conversion time. Both integration current and frequency are scaled, which leads to significant improvement in the energy efficiency of both analog and digital circuitry. Mathematical analysis for circuit nonidealities, noise, and improvement in energy efficiency is provided. A prototype fabricated in a 0.35-μm CMOS process occupies 0.09 mm2 and consumes a total of 153 μA from 3.3 V supply while achieving 13-bit resolution. The operation of the prototype is experimentally verified using MEMS capacitive pressure sensor. Compared to recently published work, the prototype achieves an excellent energy efficiency of 7.9 pJ/Step. © 2004-2012 IEEE.

  2. Study on photoelectric parameter measurement method of high capacitance solar cell

    Science.gov (United States)

    Zhang, Junchao; Xiong, Limin; Meng, Haifeng; He, Yingwei; Cai, Chuan; Zhang, Bifeng; Li, Xiaohui; Wang, Changshi

    2018-01-01

    The high efficiency solar cells usually have high capacitance characteristic, so the measurement of their photoelectric performance usually requires long pulse width and long sweep time. The effects of irradiance non-uniformity, probe shielding and spectral mismatch on the IV curve measurement are analyzed experimentally. A compensation method for irradiance loss caused by probe shielding is proposed, and the accurate measurement of the irradiance intensity in the IV curve measurement process of solar cell is realized. Based on the characteristics that the open circuit voltage of solar cell is sensitive to the junction temperature, an accurate measurement method of the temperature of solar cell under continuous irradiation condition is proposed. Finally, a measurement method with the characteristic of high accuracy and wide application range for high capacitance solar cell is presented.

  3. Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2015-01-01

    Highlights: • First time we report the synthesis of CuCo 2 O 4 nanobelts using hydrothermal method. • The spinel CuCo 2 O 4 nanobelts exhibit maximum areal capacitance of 2.42 F cm −2 . • After 1800 cycles, 127% of the initial specific capacitance was retained. - Abstract: One dimensional hierarchical CuCo 2 O 4 nanobelt like architecture was synthesized via hydrothermal method. The synthesized nanomaterial was characterized using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The TEM image clearly shows the nanobelt like architecture of CuCo 2 O 4 . The supercapacitor properties of CuCo 2 O 4 nanobelts electrode were tested using cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. The spinel CuCo 2 O 4 nanobelts exhibit maximum areal and specific capacitance of 2.42 F cm −2 (809 F g −1 ). After 1800 continuous charge-discharge cycles, 127% of the initial capacitance was retained. This superior electrochemical supercapacitor property is mainly due to increased surface area and ion transport of nanobelt like architecture. The charge transfer resistance (R ct ) value of CuCo 2 O 4 nanobelt electrode is 3.85 Ω. This high capacitance and cyclic stability demonstrate that the prepared CuCo 2 O 4 nanobelts are a promising candidate for supercapacitors.

  4. Time-dependent ion selectivity in capacitive charging of porous electrodes

    NARCIS (Netherlands)

    Zhao, R.; Soestbergen, M.; Rijnaarts, H.H.M.; Wal, van der A.F.; Bazant, M.Z.; Biesheuvel, P.M.

    2012-01-01

    In a combined experimental and theoretical study, we show that capacitive charging of porous electrodes in multicomponent electrolytes may lead to the phenomenon of time-dependent ion selectivity of the electrical double layers (EDLs) in the electrodes. This effect is found in experiments on

  5. Energy consumption and constant current operation in membrane capacitive deionization

    NARCIS (Netherlands)

    Zhao, R.; Biesheuvel, P.M.; Wal, van der A.F.

    2012-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In the salt removal step, ions are adsorbed at the carbon–water

  6. RF capacitance-voltage characterization of MOSFETs with high-leakage dielectric

    NARCIS (Netherlands)

    Schmitz, Jurriaan; Cubaynes, F.N; Cubaynes, F.N.; Havens, R.J.; de Kort, R.; Scholten, A.J.; Tiemeijer, L.F.

    2003-01-01

    We present a MOS Capacitance-Voltage measurement methodology that, contrary to present methods, is highly robust against gate leakage current densities up to 1000 A/cm/sup 2/. The methodology features specially designed RF test structures and RF measurement frequencies. It allows MOS parameter

  7. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  8. Effective Heuristics for Capacitated Production Planning with Multiperiod Production and Demand with Forecast Band Refinement

    OpenAIRE

    Philip Kaminsky; Jayashankar M. Swaminathan

    2004-01-01

    In this paper we extend forecast band evolution and capacitated production modelling to the multiperiod demand case. In this model, forecasts of discrete demand for any period are modelled as bands and defined by lower and upper bounds on demand, such that future forecasts lie within the current band. We develop heuristics that utilize knowledge of demand forecast evolution to make production decisions in capacitated production planning environments. In our computational study we explore the ...

  9. The Comparative Study of Electrochemical Capacitance Performance between Sulphur-Doped Co3O4 and CoS Anodes

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-01-01

    Full Text Available Anode materials with high capacitance performance are highly desirable for supercapacitors (SCs. In this work, nanomaterials cobalt sulfide (CoS, sulphur-doped Co3O4 (S-Co3O4, and Co3O4 were fabricated on a carbon cloth substrate by hydrothermal method. The composition and morphology of the material were characterized by X-ray diffraction (XRD patterns and Scanning Electron Microscope (SEM. The electrochemical measurements were performed in a three-electrode system. The result shows that CoS nanomaterial as anode is of the best electrochemical performance, achieving areal capacitance of 1.98 F/cm2 at 2 mA/cm2 in a 5 M LiCl solution. Moreover, the CoS anode has long-term cycling stability with more than 85.7% capacitance retention after 10000 cycles, confirming its larger capacitance, good redox activity, and electrochemical stability.

  10. Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors

    Science.gov (United States)

    Andres, Britta; Engström, Ann-Christine; Blomquist, Nicklas; Forsberg, Sven; Dahlström, Christina; Olin, Håkan

    2016-01-01

    Symmetric electric double-layer capacitors (EDLCs) have equal masses of the same active material in both electrodes. However, having equal electrode masses may prevent the EDLC to have the largest possible specific capacitance if the sizes of the hydrated anions and cations in the electrolyte differ because the electrodes and the electrolyte may not be completely utilized. Here we demonstrate how this issue can be resolved by mass balancing. If the electrode masses are adjusted according to the size of the ions, one can easily increase an EDLC’s specific capacitance. To that end, we performed galvanostatic cycling to measure the capacitances of symmetric EDLCs with different electrode mass ratios using four aqueous electrolytes— Na2SO4, H2SO4, NaOH, and KOH (all with a concentration of 1 M)—and compared these to the theoretical optimal electrode mass ratio that we calculated using the sizes of the hydrated ions. Both the theoretical and experimental values revealed lower-than-1 optimal electrode ratios for all electrolytes except KOH. The largest increase in capacitance was obtained for EDLCs with NaOH as electrolyte. Specifically, we demonstrate an increase of the specific capacitance by 8.6% by adjusting the electrode mass ratio from 1 to 0.86. Our findings demonstrate that electrode mass balancing is a simple and inexpensive method to increase the capacitance of EDLCs. Furthermore, our results imply that one can reduce the amount of unused material in EDLCs and thus decrease their weight, volume and cost. PMID:27658253

  11. Volume Recovery of Polymeric Glasses: Application of a Capacitance-based Measurement Technique

    Science.gov (United States)

    Sakib, Nazam; Simon, Sindee

    Glasses, including polymeric glasses, are inherently non-equilibrium materials. As a consequence, the volume and enthalpy of a glass evolve towards equilibrium in a process termed structural recovery. Several open questions and new controversies remain unanswered in the field. Specifically, the presence of intermediate plateaus during isothermal structural recovery has been reported in recent enthalpy work. In addition, the dependence of the relaxation time on state variables and thermal history is unclear. Dilatometry is particularly useful for structural recovery studies because volume is an absolute quantity and volumetric measurements can be done in-situ. A capillary dilatometer, fitted with a linear variable differential transducer, was used previously to measure volume recovery of polymeric glass formers in our laboratory. To improve on the limitations associated with that methodology, including competition between the range of measurements versus the sensitivity, a capacitance-based technique has been developed following the work of Richert, 2010. The modification is performed by converting the glass capillary dilatometer into a cylindrical capacitor. For precision in capacitance data acquisition, an Andeen-Hagerling ultra-precision capacitance bridge (2550A, 1 kHz) is used. The setup will be tested by performing the signatures of structural recovery as described by Kovacs, 1963. Experiments are also planned to address the open questions in the field.

  12. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    Science.gov (United States)

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  13. Design of a Novel Flexible Capacitive Sensing Mattress for Monitoring Sleeping Respiratory

    Directory of Open Access Journals (Sweden)

    Wen-Ying Chang

    2014-11-01

    Full Text Available In this paper, an algorithm to extract respiration signals using a flexible projected capacitive sensing mattress (FPCSM designed for personal health assessment is proposed. Unlike the interfaces of conventional measurement systems for poly-somnography (PSG and other alternative contemporary systems, the proposed FPCSM uses projected capacitive sensing capability that is not worn or attached to the body. The FPCSM is composed of a multi-electrode sensor array that can not only observe gestures and motion behaviors, but also enables the FPCSM to function as a respiration monitor during sleep using the proposed approach. To improve long-term monitoring when body movement is possible, the FPCSM enables the selection of data from the sensing array, and the FPCSM methodology selects the electrodes with the optimal signals after the application of a channel reduction algorithm that counts the reversals in the capacitive sensing signals as a quality indicator. The simple algorithm is implemented in the time domain. The FPCSM system is used in experimental tests and is simultaneously compared with a commercial PSG system for verification. Multiple synchronous measurements are performed from different locations of body contact, and parallel data sets are collected. The experimental comparison yields a correlation coefficient of 0.88 between FPCSM and PSG, demonstrating the feasibility of the system design.

  14. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  15. Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites

    International Nuclear Information System (INIS)

    Hsieh, C.-T.; Chen, W.-Y.; Cheng, Y.-S.

    2010-01-01

    Gaseous oxidation of carbon papers (CPs) decorated with carbon nanotubes (CNTs) with varying degrees of oxidation was conducted to investigate the influence of surface oxides on the performance of electrochemical capacitors fabricated with oxidized CNT/CP composites. The oxidation period was found to significantly enhance the O/C atomic ratio on the composites, and the increase in oxygen content upon oxidation is mainly contributed by the formation of C=O and C-O groups. The electrochemical behavior of the capacitors was tested in 1 M H 2 SO 4 within a potential of 0 and 1 V vs. Ag/AgCl. Both superhydrophilicity and specific capacitance of the oxidized CNT/CP composites were found to increase upon oxidation treatment. A linearity increase of capacitance with O/C ratio can be attributed to the increase of the population of surface oxides on CNTs, which imparts excess sites for redox reaction (pseudocapacitance) and for the formation of double-layer (double-layer capacitance). The technique of ac impedance combined with equivalent circuit clearly showed that oxidized CNT/CP capacitor imparts not only enhanced capacitance but also a low equivalent series resistance.

  16. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  17. Type-1 cannabinoid receptors reduce membrane fluidity of capacitated boar sperm by impairing their activation by bicarbonate.

    Directory of Open Access Journals (Sweden)

    Barbara Barboni

    Full Text Available BACKGROUND: Mammalian spermatozoa acquire their full fertilizing ability (so called capacitation within the female genital tract, where they are progressively exposed to inverse gradients of inhibiting and stimulating molecules. METHODOLOGY/PRINCIPAL FINDINGS: In the present research, the effect on this process of anandamide, an endocannabinoid that can either activate or inhibit cannabinoid receptors depending on its concentration, and bicarbonate, an oviductal activatory molecule, was assessed, in order to study the role exerted by the type 1 cannabinoid receptor (CB1R in the process of lipid membrane remodeling crucial to complete capacitation. To this aim, boar sperm were incubated in vitro under capacitating conditions (stimulated by bicarbonate in the presence or in the absence of methanandamide (Met-AEA, a non-hydrolysable analogue of anandamide. The CB1R involvement was studied by using the specific inhibitor (SR141716 or mimicking its activation by adding a permeable cAMP analogue (8Br-cAMP. By an immunocytochemistry approach it was shown that the Met-AEA inhibits the bicarbonate-dependent translocation of CB1R from the post-equatorial to equatorial region of sperm head. In addition it was found that Met-AEA is able to prevent the bicarbonate-induced increase in membrane disorder and the cholesterol extraction, both preliminary to capacitation, acting through a CB1R-cAMP mediated pathway, as indicated by MC540 and filipin staining, EPR spectroscopy and biochemical analysis on whole membranes (CB1R activity and on membrane enriched fraction (C/P content and anisotropy. CONCLUSIONS/SIGNIFICANCE: Altogether, these data demonstrate that the endocannabinoid system strongly inhibits the process of sperm capacitation, acting as membrane stabilizing agent, thus increasing the basic knowledge on capacitation-related signaling and potentially opening new perspectives in diagnostics and therapeutics of male infertility.

  18. Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane

    Science.gov (United States)

    Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind

    2018-01-01

    We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.

  19. Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.

    Science.gov (United States)

    Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo

    2017-11-15

    Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.

  20. Effect of displacement on resistance and capacitance of polyaniline film

    International Nuclear Information System (INIS)

    Karimov, Khasan Sanginovich; Saeed, Muhammad Tariq; Khalid, Fazal Ahmad; Moiz, Syed Abdul

    2011-01-01

    This paper investigates the properties of displacement sensors based on polyaniline (PANI) films. About 1 wt% of PANI micropowder is mixed and stirred in a solution of 90 wt% water and 10 wt% alcohol at room temperature. The films of PANI are deposited from solution by drop-casting on Ag electrodes, which are preliminary deposited on glass substrates. The thicknesses of the PANI films are in the range of 20 μm–80 μm. A displacement sensor with polyaniline film as an active material is designed and fabricated. The investigations showed that, on average, the AC resistance of the sensor decreases by 2 times and the capacitance accordingly increases by 1.6 times as the displacement changes in the range of 0 mm–0.5 mm. The polyaniline is the only active material of the displacement sensor. The resistance and capacitance of the PANI changes under the pressure of spring and elastic rubber, and this pressure is created by the downward movement of the micrometer. (general)

  1. Opening of K+ channels by capacitive stimulation from silicon chip

    Science.gov (United States)

    Ulbrich, M. H.; Fromherz, P.

    2005-10-01

    The development of stable neuroelectronic systems requires a stimulation of nerve cells from semiconductor devices without electrochemical effects at the electrolyte/solid interface and without damage of the cell membrane. The interaction must rely on a reversible opening of voltage-gated ion channels by capacitive coupling. In a proof-of-principle experiment, we demonstrate that Kv1.3 potassium channels expressed in HEK293 cells can be opened from an electrolyte/oxide/silicon (EOS) capacitor. A sufficient strength of electrical coupling is achieved by insulating silicon with a thin film of TiO2 to achieve a high capacitance and by removing NaCl from the electrolyte to enhance the resistance of the cell-chip contact. When a decaying voltage ramp is applied to the EOS capacitor, an outward current through the attached cell membrane is observed that is specific for Kv1.3 channels. An open probability up to fifty percent is estimated by comparison with a numerical simulation of the cell-chip contact.

  2. Ion flux nonuniformities in large-area high-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Perret, A.; Chabert, P.; Booth, J.-P.; Jolly, J.; Guillon, J.; Auvray, Ph.

    2003-01-01

    Strong nonuniformities of plasma production are expected in capacitive discharges if the excitation wavelength becomes comparable to the reactor size (standing-wave effect) and/or if the plasma skin depth becomes comparable to the plate separation (skin effect) [M. A. Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)]. Ion flux uniformity measurements were carried out in a large-area square (40 cmx40 cm) capacitive discharge driven at frequencies between 13.56 MHz and 81.36 MHz in argon gas at 150 mTorr. At 13.56 MHz, the ion flux was uniform to ±5%. At 60 MHz (and above) and at low rf power, the standing-wave effect was seen (maximum of the ion flux at the center), in good quantitative agreement with theory. At higher rf power, maxima of the ion flux were observed at the edges, due either to the skin effect or to other edge effects

  3. Analysis of the Influence of Compensation Capacitance Errors of a Wireless Power Transfer System with SS Topology

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-12-01

    Full Text Available In this study, in order to determine the reasonable accuracy of the compensation capacitances satisfying the requirements on the output characteristics for a wireless power transfer (WPT system, taking the series-series (SS compensation structure as an example, the calculation formulas of the output characteristics, such as the power factor, output power, coil transfer efficiency, and capacitors’ voltage stress, are given under the condition of incomplete compensation according to circuit theory. The influence of compensation capacitance errors on the output characteristics of the system is then analyzed. The Taylor expansions of the theoretical formulas are carried out to simplify the formulas. The influence degrees of compensation capacitance errors on the output characteristics are calculated according to the simplified formulas. The reasonable error ranges of the compensation capacitances are then determined according to the requirements of the output characteristics of the system in the system design. Finally, the validity of the theoretical analysis and the simplified processing is verified through experiments. The proposed method has a certain guiding role for practical engineering design, especially in mass production.

  4. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  5. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  6. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis

    NARCIS (Netherlands)

    Zhao, R.; Porada, S.; Biesheuvel, P.M.; Wal, van der A.

    2013-01-01

    Membrane capacitive deionization (MCDI) is a non-faradaic, capacitive technique for desalinating brackish water by adsorbing ions in charged porous electrodes. To compete with reverse osmosis, the specific energy consumption of MCDI needs to be reduced to less than 1 kWh per m3 of freshwater

  7. Design and Fabrication of 3D-Structured Contactless Capacitive-Type Detector for Capillary Electrophoresis Microchip

    International Nuclear Information System (INIS)

    Lee, C-Y; Lin, C-H; Fu, L-M

    2006-01-01

    Using simple and reliable microfabrication techniques, this study develops a capillary electrophoresis (CE) microchip with 3-dimensional-structured (3D-structured) contactless capacitive detector electrodes mounted parallel to the separation channel. The offchannel electrodes are deposited by Au sputtering and patterned using a standard 'lift-off' process. A vacuum fusion bonding process is employed to seal the lower substrate containing the microchannels and electrodes to an upper glass cover plate. The variation in the capacitance between the electrodes in the side channels is measured as different samples and ions pass through the detection region of the CE separation channel. Samples of Rhodamine B and a commercial sports drink are mixed in different buffer solutions and successfully separated and detected using the developed device. The 3D-structured contactless capacitive-type detection device has microscale dimensions and provides a valuable contribution to the realization of the lab-on-a-chip concept

  8. A hybrid algorithm for stochastic single-source capacitated facility location problem with service level requirements

    Directory of Open Access Journals (Sweden)

    Hosseinali Salemi

    2016-04-01

    Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.

  9. A voltage control method for an active capacitive DC-link module with series-connected circuit

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    Many efforts have been made to improve the performance of power electronic systems with active capacitive DC-link module in terms of power density as well as reliability. One of the attractive solution is an active capacitive DC-link with the series-connected circuit because of handling small......-rated power. However, in the existing control method of this circuit, the DC-link current of the backward-stage or forward-stage need to be sensed for extracting the ripple components, which limits the flexibility of the active DC-link module. Thus, in this paper, a voltage control method of an active...... capacitive DC-link module is proposed. Current sensor at the DC-link will be cancel from the circuit. The controller of the series-connected circuit requires internal voltage signals of the DC-link module only, making it possible to be fully independent without any additional connection to the main circuit...

  10. Capacitive properties of PANI/MnO{sub 2} synthesized via simultaneous-oxidation route

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jie [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Shu Dong, E-mail: dshu@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tianneng Group, Changxing 313100, Zhejiang Province (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Zhang Tianren [Tianneng Group, Changxing 313100, Zhejiang Province (China); Chen Hongyu [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Zhao Haimin; Wang Yongsheng [Tianneng Group, Changxing 313100, Zhejiang Province (China); Sun Zhenjie; Tang Shaoqing [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fang Xueming [Tianneng Group, Changxing 313100, Zhejiang Province (China); Cao Xiufang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer PANI/MnO{sub 2} composite was synthesized by the simultaneous-oxidation route. Black-Right-Pointing-Pointer Good contact in inter-molecule level between PANI and MnO{sub 2} improves the conductivity. Black-Right-Pointing-Pointer The separation between PANI and MnO{sub 2} prevents the aggregation of nano-composite. Black-Right-Pointing-Pointer The maximum specific capacitance of the PANI/MnO{sub 2} electrode is 320 F/g. Black-Right-Pointing-Pointer The as-prepared PANI/MnO{sub 2} exhibits excellent cycle stability of 84% capacitance retention after 10,000 cycles. - Abstract: Polyaniline (PANI) and manganese dioxide (MnO{sub 2}) composite (PANI/MnO{sub 2}) was synthesized via a simultaneous-oxidation route. In this route, all reactants were dispersed homogenously in precursor solution and existed as ions and molecules, and involved reactions of ions and molecules generating PANI and MnO{sub 2} simultaneously. In this way, PANI molecule and MnO{sub 2} molecule contact each other and arrange alternately in the composite. The inter-molecule contact improves the conductivity of the composite. The alternative arrangement of PANI molecules and MnO{sub 2} molecules separating each other, and prevents the aggregation of PANI and cluster of MnO{sub 2} so as to decrease the particle size of the composite. The morphology, structure, porous and capacitive properties are characterized by scanning electron microscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Branauer-Emmett-Teller test, thermogravimetric analysis, Fourier transform infrared spectroscopy, cyclic voltammetry, charge-discharge test and the electrochemical impedance measurements. The results show that MnO{sub 2} is predominant in the PANI/MnO{sub 2} composite and the composite exhibits larger specific surface area than pure MnO{sub 2}. The maximum specific capacitance of the composite electrode reaches up to 320 F/g by charge-discharge test, 1.56 times

  11. Modelling and design of a capacitive touch sensor for urinary tract infection detection at the point-of-care.

    Science.gov (United States)

    Barbosa, Cátia; Dong, Tao

    2014-01-01

    Due to great use of touchscreens in mobile telephones and other electronic devices, there has been great evolution in this technology. Its wide applicability makes the touch sensor technology suitable for detection of specific components in urine, responsible for urinary tract infection (UTI). Integration of a touch sensor in a disposable probe tip to be used in UTI detection represents a powerful tool to develop new point-of-care testing (POCT) devices. The simplified structure of an electrodes array touch screen was simulated using the software COMSOL Multiphysics to prove that capacitive based touch screens can be used for detection of UTI. Besides we assumed presence of E.coli, one of the major causes of UTI urine. Results show that global capacitance increases if an E.coli sphere is present near the active electrodes, remaining approximately constant when further apart electrodes are excited. The output simulated voltage varies according to the capacitance value, decreasing when the capacitance is increased.

  12. Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform

    International Nuclear Information System (INIS)

    Brau-Avila, A; Valenzuela-Galvan, M; Herrera-Jimenez, V M; Santolaria, J; Aguilar, J J; Acero, R

    2017-01-01

    The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs. (paper)

  13. Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform

    Science.gov (United States)

    Brau-Avila, A.; Santolaria, J.; Acero, R.; Valenzuela-Galvan, M.; Herrera-Jimenez, V. M.; Aguilar, J. J.

    2017-03-01

    The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs.

  14. Effects of the Particle Size and the Solvent in Printing Inks on the Capacitance of Printed Parallel-Plate Capacitors

    Directory of Open Access Journals (Sweden)

    Sungsik Park

    2016-02-01

    Full Text Available Parallel-plate capacitors were fabricated using a printed multi-layer structure in order to determine the effects of particle size and solvent on the capacitance. The conductive-dielectric-conductive layers were sequentially spun using commercial inks and by intermediate drying with the aid of a masking polymeric layer. Both optical and scanning electron microscopy were used to characterize the morphology of the printed layers. The measured capacitance was larger than the theoretically calculated value when ink with small-sized particles was used as the top plate. Furthermore, the use of a solvent whose polarity was similar to that of the underlying dielectric layer enhanced the penetration and resulted in an increase in capacitance. The functional resistance-capacitance low-pass filter was implemented using printed resistors and capacitors, a process that may be scalable in the future.

  15. 3D self-supported hierarchical Ni−Co architectures with integrated capacitive performance and enhanced electronic conductivity for supercapacitors

    International Nuclear Information System (INIS)

    Tang, YanRu; Cheng, Baohai

    2016-01-01

    3D self-supported hierarchical Ni and Co co-hydroxide architectures are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process and high power density. However, the intrinsic conductivity of Ni and Co co-hydroxide is poor. How to develop a new type of supercapacitors exhibiting enhanced electronic conductivity and involving pseudocapacitive performance and electric double-layer capacitive performance is still challenging. Herein, we present a facile co-electrodeposition method to fabricate self-standing Ni_xCo_2_x(OH)_y@Ni/ITO monolithic electrode by growing a layer of Ni_xCo_2_x(OH)_y with layered structure on surface of conductive Ni nanotube, which increases specific surface area and prompts fast ion adsorption/de-adsotption (electrochemical double layer capacitance performance) and fast surface redox reactions (pseudo-capacitance performance). With the conductive Ni nanotube as current collector and electronic conductor, the binder-free Ni_xCo_2_x(OH)_y@Ni/ITO electrode exhibits high specific capacitance (92.4 mF cm"−"2 at 0.1 mA cm"−"2, the mass of active material per cm"−"2 is typically in 100 s μg). Moreover, Ni_xCo_2_x(OH)_y@Ni/ITO hybrids display excellent cycling stability with 93.3% capacitance retention after 5000 cycles. The results suggest Ni_xCo_2_x(OH)_y@Ni/ITO nanostructure constructed based on integrated features of pseudocapacitive performance and electric double-layer capacitive performance and enhanced electronic conductivity is expected to be a type of excellent electrode material for supercapacitor. - Highlights: • Ni−Co electrode is fabricated by growing layered structure on Ni nanotube surface. • The layered structure prompts fast ion adsorption/de-adsotption and redox reactions. • The Ni nanotube serves as nanostructured current collector and electronic conductor. • The Ni−Co hybrids display 93.3% capacitance retention

  16. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.

    Science.gov (United States)

    Lee, Ju-Young; Chaimongkalayon, Nantanee; Lim, Jinho; Ha, Heung Yong; Moon, Seung-Hyeon

    2016-01-01

    Affordable carbon composite electrodes were developed to treat low-concentrated groundwater using capacitive deionization (CDI). A carbon slurry prepared using activated carbon powder (ACP), poly(vinylidene fluoride), and N-methyl-2-pyrrolidone was employed as a casting solution to soak in a low-cost porous substrate. The surface morphology of the carbon composite electrodes was investigated using a video microscope and scanning electron microscopy. The capacitance and electrical conductivity of the carbon composite electrodes were then examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. According to the CV and EIS measurements, the capacitances and electrical conductivities of the carbon composite electrodes were in the range of 8.35-63.41 F g(-1) and 0.298-0.401 S cm(-1), respectively, depending on ACP contents. A CDI cell was assembled with the carbon composite electrodes instead of with electrodes and current collectors. The arsenate removal test included an investigation of the optimization of several important operating parameters, such as applied voltage and solution pH, and it achieved 98.8% removal efficiency using a 1 mg L(-1) arsenate solution at a voltage of 2 V and under a pH 9 condition.

  17. Developments of capacitance stabilised etalon technology

    Science.gov (United States)

    Bond, R. A.; Foster, M.; Thwaite, C.; Thompson, C. K.; Rees, D.; Bakalski, I. V.; Pereira do Carmo, J.

    2017-11-01

    This paper describes a high-resolution optical filter (HRF) suitable for narrow bandwidth filtering in LIDAR applications. The filter is composed of a broadband interference filter and a narrowband Fabry-Perot etalon based on the capacitance stabilised concept. The key requirements for the HRF were a bandwidth of less than 40 pm, a tuneable range of over 6 nm and a transmission greater than 50%. These requirements combined with the need for very high out-of-band rejection (greater than 50 dB in the range 300 nm to 1200 nm) drive the design of the filter towards a combination of high transmission broadband filter and high performance tuneable, narrowband filter.

  18. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  19. Partenariats pour le renforcement des capacités scientifiques et ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    INRV s'est toujours concentré sur des maladies locales en dépendant, dans une large mesure, des capacités de ses propres .... Indicateurs de performance .... le système de gestion de l'inspection du poisson, les systèmes de gestion de la ...

  20. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Kyung [Department of Chemical Engineering, University of Seoul, 90 Chonnong-dong, Tongdaemun-gu, Seoul (Korea, Republic of); Pathan, Habib M.; Jung, Kwang-Deog; Joo, Oh-Shim [Eco-Nano Research Center, Korea Institute of Science and Technology (KIST), P.O. Box 131, Cheongryang, Seoul (Korea, Republic of)

    2006-09-22

    This work reports the supercapacitive properties of composite films of multiwalled carbon nanotubes (MWNT) and ruthenium oxide (RuO{sub 2}). Transmission and scanning electron microscopy, cyclic voltammetry, and electrochemical studies revealed that the nanoporous three-dimensional arrangement of RuO{sub 2}-coated MWNT in these films facilitated the improvement of electron and ion transfer relative to MWNT films. The capacitance was measured for films of different RuO{sub 2} loading, revealing specific capacitances per mass as high as 628Fg{sup -1}. The energy storage density of the electrode has increased about three times as compared to MWNT treated with piranha solution. (author)