WorldWideScience

Sample records for cantilever bridges

  1. Pembuatan Cantilever Bridge Anterior Rahang Atas sebagai Koreksi Estetik

    Directory of Open Access Journals (Sweden)

    Yusrina Sumartati

    2012-12-01

    Full Text Available Latar belakang. Kehilangan gigi anterior rahang atas mengakibatkan gangguan fungsi fonetik dan estetik. Gangguan fungsi estetik menyebabkan pasie menjadi rendah diri. Kondisi ini dapat diatasi oleh dokter gigi, salah satunya dengan pembuatan cantilever bridge. Tujuan. Penulisan ini yaitu untuk memberi informasi bahwa pada kasus kehilangan gigi-gigi anterior rahang atas dengan space yang telah menyempit dan malposisi gigi dapat dibuatkan protesa berupa gigi tiruan cekat dengan desain cantilever bridge. Kasus dan perawatan. Laporan kasus ini membahas tentang pasien perempuan umur 39 tahun yang datang ke Rumah Sakit Gigi dan Mulut Prof. Soedomo, dengan keluhan merasa kurang percaya diri karena gigi depan rahang atas hilang sejak 5 tahun yang lalu akibat kecelakaan. Gigi-gigi anterior rahang atas yang masih ada mengalami malposisi akibat pemakaian gigi tiruan sebagian lepasan yang tidak baik. Perawatan yang dilakukan adalah dengan pembuatan cantilever bridge pada gigi 11, 12, 13 dan 21, 22, 23. Kesimpulan. Gangguan fungsi estetik pada gigi anterior rahang atas dapat diatasi dengan pembuatan cantilever bridge.   Background. Maxillary anteriortooth loss resulting in impaired function of phonetic and aesthetic. Impaired function of aesthetic cause patients to become self conscious. This condition can be treated by a dentist, one with a cantilever bridge. Purpose. To inform that in case of missing anterior teeth of the upper jaw with a space that has been narrowed, and malposition of teeth can be made prosthesis denture fixed bridge with a cantilever design. Case and treatment. This case report discusses the 39 years old female patient who came to he Dental Hospital Prof. Soedomo, with complaints of feeling less confident due to the maxillary front teeth missing since 5 years ago due to an accident. Anterior teeth of the upper jaw are still experiencing malposition due to the use of removable partial dentures are not good. The treatment is done is by

  2. Monolithic Concrete vs Precast Concrete for the Construction of Bridge by Th Cantilever Method

    Directory of Open Access Journals (Sweden)

    Morlova Dumitru Daniel

    2015-07-01

    Full Text Available In the article "Monolithic Concrete vs Precast Concrete for the Construction of Bridges by the Cantilever Method", there are approached a number of issues that come out in the design and execution of prestressed concrete bridge structures using the cantilever method.

  3. Piezoelectric cantilever sensors

    Science.gov (United States)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  4. Resonance frequencies of AFM cantilevers in contact with a surface

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G.J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Rost, M.J., E-mail: Rost@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2016-12-15

    To make the forces in an Atomic Force Microscope that operates in a dynamic mode with one or multiple vibrations applied to the cantilever, quantitative, one needs to relate a change in resonance frequency of the cantilever to a specific tip–sample interaction. Due to the time dependence of the force between the tip and sample caused by the vibrations, this task is not only difficult, but in fact only possible to solve for certain limiting cases, if one follows common theoretical approaches with a Taylor expansion around the deflection point. Here, we present an analytical method for calculating the resonance frequencies of the cantilever that is valid for any tip–sample interaction. Instead of linearizing the tip–sample interaction locally, we calculate an averaged, weighted linearization taking into account all positions of the tip while vibrating. Our method bridges, therefore, the difficult gap between a free oscillating cantilever and a cantilever that is pushed infinitely hard into contact with a surface, which describes a clamped-pinned boundary condition. For a correct description of the cantilever dynamics, we take into account both the tip mass and the tip moment of inertia. Applying our model, we show that it is possible to calculate the modal response of a cantilever as a function of the tip–sample interaction strength. Based on these modal vibration characteristics, we show that the higher resonance frequencies of a cantilever are completely insensitive to the strength of the tip–sample interaction. - Highlights: • A method to calculate the resonances of AFM cantilevers under any force is proposed. • The analytical model is based on Euler-beam theory. • The shift in resonance frequency due to forces decrease with increasing mode number. • The proposed method enables quantitative ultrasound AFM experiments. • Our results explain also the applicability of the higher modes in SubSurface-AFM.

  5. Combination of natural teeth and osseointegrated implants as prosthesis abutments in a posterior cantilever bridge

    Directory of Open Access Journals (Sweden)

    Michael Josef Kridanto Kamadjaja

    2008-06-01

    Full Text Available Dental implants have been used for several decades. Patients of all ages have chosen dental implants to replace a single tooth or several teeth or to support partial or full dentures. This paper reports two cases of patients treated with dental implant as alternative to replace the missing teeth and connected with natural tooth as abutments in a fixed restoration with distal cantilever bridge. The underlining reasons that we decided to make such kind fixed prostheses are because of clinically imposible to put the implant on certain area and the patients asked for prostheses as optimum as possible, so the mastication function could return to the homeostasis condition. The benefit of these treatments are that prostheses could be made as optimum as possible with a more economic price, so the patients feel quite satisfied. The result shows that a few years after the treatments finished there is no any disadvantageous effect of connecting teeth to implants as abutments in fixed partial dentures and there is no sign of a harmful effect to the opposing teeth either.

  6. Anterior Cantilever Resin-Bonded Fixed Dental Prostheses: A Review of the Literature.

    Science.gov (United States)

    Mourshed, Bilal; Samran, Abdulaziz; Alfagih, Amal; Samran, Ahalm; Abdulrab, Saleem; Kern, Matthias

    2018-03-01

    This review evaluated the survival rate of single retainer anterior resin-bonded fixed dental prostheses (RBFDPs) to determine whether the choice of material affects their clinical outcome. An electronic search of the English peer-reviewed dental literature in PubMed was conducted to identify all publications reporting on cantilever RBFDPs until May 2016. Study information extraction and methodological quality assessments were accomplished by two reviewers independently. The searched keywords were as follows: "resin-bonded, single retainer, all-ceramic resin-bonded fixed dental prostheses (RBFDPs), all-ceramic RBFDPs, cantilever resin, RBFDPs, cantilever resin-bonded bridge, two units cantilevered, two-unit cantilevered, metal-ceramic cantilever, and metal-ceramic." Furthermore, the ''Related Articles'' feature of PubMed was used to identify further references of interest within the primary search. The bibliographies of the obtained references were used to identify pertinent secondary references. Review articles were also used to identify relevant articles. After the application of exclusion criteria, the definitive list of articles was screened to extract the qualitative data, and the results were analyzed. Overall 2588 articles were dedicated at the first review phase; however, only 311 studies were left after the elimination of duplicates and unrelated studies. Seventeen studies passed the second review phase. Five studies were excluded because they were follow-up studies of the same study cohort. Twelve studies were finally selected. The use of cantilever RBFDPs showed promising results and high survival rates. © 2016 by the American College of Prosthodontists.

  7. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  8. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  9. Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticle mass

    Science.gov (United States)

    Wasisto, H. S.; Merzsch, S.; Stranz, A.; Waag, A.; Uhde, E.; Kirsch, I.; Salthammer, T.; Peiner, E.

    2011-06-01

    A silicon cantilever with slender geometry based Micro Electro Mechanical System (MEMS) for nanoparticles mass detection is presented in this work. The cantilever is actuated using a piezoactuator at the bottom end of the cantilever supporting frame. The oscillation of the microcantilever is detected by a self-sensing method utilizing an integrated full Wheatstone bridge as a piezoresistive strain gauge for signal read out. Fabricated piezoresistive cantilevers of 1.5 mm long, 30 μm wide and 25 μm thick have been employed. This self-sensing cantilever is used due to its simplicity, portability, high-sensitivity and low-cost batch microfabrication. In order to investigate air pollution sampling, a nanoparticles collection test of the piezoresistive cantilever sensor is performed in a sealed glass chamber with a stable carbon aerosol inside. The function principle of cantilever sensor is based on detecting the resonance frequency shift that is directly induced by an additional carbon nanoparticles mass deposited on it. The deposition of particles is enhanced by an electrostatic field. The frequency measurement is performed off-line under normal atmospheric conditions, before and after carbon nanoparticles sampling. The calculated equivalent mass-induced resonance frequency shift of the experiment is measured to be 11.78 +/- 0.01 ng and a mass sensitivity of 8.33 Hz/ng is obtained. The proposed sensor exhibits an effective mass of 2.63 μg, a resonance frequency of 43.92 kHz, and a quality factor of 1230.68 +/- 78.67. These results and analysis indicate that the proposed self-sensing piezoresistive silicon cantilever can offer the necessary potential for a mobile nanoparticles monitor.

  10. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  11. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin

    2016-10-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.

  12. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    International Nuclear Information System (INIS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Wasisto, Hutomo Suryo; Peiner, Erwin

    2016-01-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor ( Q ) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10 -6 . This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor. (paper)

  13. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  14. Investigation of aerodynamic stability by wind response observation during cantilever construction of the Ikara Ohashi bridge; Ikara Ohashi haridashi sekoji no kaze kansoku ni yoru taifu anteisei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Mukai, H.; Takeda, T. [Kajima Corp., Tokyo (Japan)

    1995-12-20

    In order to ensure aerodynamic stability during cantilever construction of the Ikara Ohashi Bridge, wind response observation was carried out and discussions were given on the result. The Ikara Ohashi Bridge is a 5-span continuous PC cable-stayed bridge with the central span being a concrete bridge having a length of 260 m, which is the longest in Japan. The bridge was constructed using a method that main girders are extended from the central tower to the right and left sides while the girders are stayed by bracing cables. The bridge construction site is in an area which is often subjected to typhoons and gusts like seasonal winds in winter, hence a discussion on aerodynamic stability of the bridge especially during extension work was viewed as an important matter. In addition, the construction used two small-capacity cables spaced and bundled as the bracing material, which required verification on their aerodynamic stability. In order to identify vibration characteristics of the main girders and the central tower, wind response observation has been performed as soon as the construction was begun. As a result, the vibration characteristics of the main girders and the central tower were identified, and it was verified that vibration shape and dominant frequency can be evaluated properly by an intrinsic value analysis that uses a multi-material point frame model. Furthermore, effects of different vibration absorbing measures were compared, and the effective methods were adopted as the result. 4 refs., 12 figs.

  15. Construction Technology of Long Span Bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    2000-01-01

    A large variety of construction methods are used during construction of major bridges, and in many cases the final structural system must be chosen with due respect to the construction process. Today the preferred construction methods are: the free-cantilever method, the launching method...

  16. Cantilever sensors: Nanomechanical tools for diagnostics

    DEFF Research Database (Denmark)

    Datar, R.; Kim, S.; Jeon, S.

    2009-01-01

    Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science and microfab......Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science...... and microfabrication technology for the label-free detection of biological molecules, allowing miniaturization. Molecular adsorption, when restricted to a single side of a deformable cantilever beam, results in measurable bending of the cantilever. This nanoscale deflection is caused by a variation in the cantilever...... surface stress due to biomolecular interactions and can be measured by optical or electrical means, thereby reporting on the presence of biomolecules. Biological specificity in detection is typically achieved by immobilizing selective receptors or probe molecules on one side of the cantilever using...

  17. Polymeric Cantilever Arrays for Biosensing Applications

    DEFF Research Database (Denmark)

    Calleja, M.; Tamayo, J.; Johansson, Alicia

    2003-01-01

    We report the fabrication of arrays of polymeric cantilevers for biochemistry applications. The cantilevers are fabricated in the polymer SU-8. The use of a polymer as the component material for the cantilevers provides the sensors with very high sensitivity due to convenient mechanical material...... properties. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. The method allows obtaining well-controlled and uniform mechanical properties of the cantilevers. The elastic constant of the cantilevers was measured, and their dynamic response...

  18. Cantilevered probe detector with piezoelectric element

    Science.gov (United States)

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  19. Development of Robust and Standardized Cantilever Sensors Based on Biotin/Neutravidin Coupling for Antibody Detection

    Directory of Open Access Journals (Sweden)

    Christoph Gerber

    2013-04-01

    Full Text Available A cantilever-based protein biosensor has been developed providing a customizable multilayer platform for the detection of antibodies. It consists of a biotin-terminated PEG layer pre-functionalized on the gold-coated cantilever surface, onto which NeutrAvidin is adsorbed through biotin/NeutrAvidin specific binding. NeutrAvidin is used as a bridge layer between the biotin-coated surface and the biotinylated biomolecules, such as biotinylated bovine serum albumin (biotinylated BSA, forming a multilayer sensor for direct antibody capture. The cantilever biosensor has been successfully applied to the detection of mouse anti-BSA (m-IgG and sheep anti-BSA(s-IgG antibodies. As expected, the average differential surface stress signals of about 5.7 ± 0.8 ´ 10−3 N/m are very similar for BSA/m-IgG and BSA/s-IgG binding, i.e., they are independent of the origin of the antibody. A statistic evaluation of 112 response curves confirms that the multilayer protein cantilever biosensor shows high reproducibility. As a control test, a biotinylated maltose binding protein was used for detecting specificity of IgG, the result shows a signal of bBSA layer in response to antibody is 5.8 ´ 10−3 N/m compared to bMBP. The pre-functionalized biotin/PEG cantilever surface is found to show a long shelf-life of at least 40 days and retains its responsivity of above 70% of the signal when stored in PBS buffer at 4 °C. The protein cantilever biosensor represents a rapid, label-free, sensitive and reliable detection technique for a real-time protein assay.

  20. Graphene cantilever under Casimir force

    Science.gov (United States)

    Derras-Chouk, Amel; Chudnovsky, Eugene M.; Garanin, Dmitry A.; Jaafar, Reem

    2018-05-01

    The stability of graphene cantilever under Casimir attraction to an underlying conductor is investigated. The dependence of the instability threshold on temperature and flexural rigidity is obtained. Analytical work is supplemented by numerical computation of the critical temperature above which the graphene cantilever irreversibly bends down and attaches to the conductor. The geometry of the attachment and exfoliation of the graphene sheet is discussed. It is argued that graphene cantilever can be an excellent tool for precision measurements of the Casimir force.

  1. Three-way flexible cantilever probes for static contact

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Jensen, Helle Vendelbo

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze...

  2. Oscillations of end loaded cantilever beams

    International Nuclear Information System (INIS)

    Macho-Stadler, E; Elejalde-García, M J; Llanos-Vázquez, R

    2015-01-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam. (paper)

  3. Oscillations of end loaded cantilever beams

    Science.gov (United States)

    Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.

    2015-09-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.

  4. Cantilever-like micromechanical sensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Dohn, Søren; Keller, Stephan Sylvest

    2011-01-01

    The field of cantilever-based sensing emerged in the mid-1990s and is today a well-known technology for label-free sensing which holds promise as a technique for cheap, portable, sensitive and highly parallel analysis systems. The research in sensor realization as well as sensor applications has...... increased significantly over the past 10 years. In this review we will present the basic modes of operation in cantilever-like micromechanical sensors and discuss optical and electrical means for signal transduction. The fundamental processes for realizing miniaturized cantilevers are described with focus...... on silicon-and polymer-based technologies. Examples of recent sensor applications are given covering such diverse fields as drug discovery, food diagnostics, material characterizations and explosives detection....

  5. Understanding interferometry for micro-cantilever displacement detection

    Directory of Open Access Journals (Sweden)

    Alexander von Schmidsfeld

    2016-06-01

    Full Text Available Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions.

  6. Three-way flexible cantilever probes for static contact

    International Nuclear Information System (INIS)

    Wang, Fei; Petersen, Dirch H; Hansen, Christian; Mortensen, Dennis; Friis, Lars; Hansen, Ole; Jensen, Helle V

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze the geometrical design space that must be fulfilled for the cantilevers to obtain static contact with the test sample. The design space relates the spring constant tensor of the cantilevers to the minimal value of the static tip-to-sample friction coefficient. Using an approximate model, we provide the analytical calculation of the compliance matrix of the L-shaped cantilever. Compared to results derived from finite element model simulations, the theoretical model provides a good qualitative analysis while deviations for the absolute values are seen. From a statistical analysis, the deviation is small for cantilevers with low effective spring constants, while the deviation is significant for large spring constants where the quasi one-dimensional approximation is no longer valid

  7. Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Suryo Wasisto, Hutomo; Uhde, Erik; Peiner, Erwin

    2017-06-01

    In this paper, the asymmetric resonance frequency (f 0) responses of thermally in-plane excited silicon cantilevers for a pocket-sized, cantilever-based airborne nanoparticle detector (Cantor) are analysed. By measuring the shift of f 0 caused by the deposition of nanoparticles (NPs), the cantilevers are used as a microbalance. The cantilever sensors are low cost manufactured from silicon by bulk-micromachining techniques and contain an integrated p-type heating actuator and a sensing piezoresistive Wheatstone bridge. f 0 is tracked by a homemade phase-locked loop (PPL) for real-time measurements. To optimize the sensor performance, a new cantilever geometry was designed, fabricated and characterized by its frequency responses. The most significant characterisation parameters of our application are f 0 and the quality factor (Q), which have high influences on sensitivity and efficiency of the NP detector. Regarding the asymmetric resonance signal, a novel fitting function based on the Fano resonance replacing the conventionally used function of the simple harmonic oscillator and a method to calculate Q by its fitting parameters were developed for a quantitative evaluation. To obtain a better understanding of the resonance behaviours, we analysed the origin of the asymmetric line shapes. Therefore, we compared the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator. In correspondence to the Fano effect, we could reconstruct the measured resonance curves by coupling two signals with constant amplitude and the expected signal of the cantilever, respectively. Moreover, the phase of the measurement signal can be analysed by this method, which is important to understand the locking process of the PLL circuit. Besides the frequency analysis, experimental results and calibration measurements with different particle types are presented. Using the described analysis method, decent results to optimize a next

  8. Development of a microfabricated electrochemical-cantilever hybrid platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Pedersen, Christoffer; Elkjær, Karl

    2011-01-01

    The design and fabrication of a combined electrochemical-cantilever microfluidic system is described. A chip integrating cantilevers with electrodes into a microchannel is presented with the accompanying polymer flow cell. Issues such as electrical and fluid connections are addressed......, electromechanical behavior in ionic solution is investigated, and two uses of the system are demonstrated. First, all cantilevers are functionalized with cysteine, to facilitate detection of Cu2+ ions, then one cantilever is electrochemically cleaned in situ to generate a reference cantilever for differential...

  9. Polymeric cantilever-based biosensors with integrated readout

    DEFF Research Database (Denmark)

    Johansson, Alicia; Blagoi, Gabriela; Boisen, Anja

    2006-01-01

    The authors present an SU-8 cantilever chip with integrated piezoresistors for detection of surface stress changes due to adsorption of biomolecules on the cantilever surface. Mercaptohexanol is used as a model biomolecule to study molecular interactions with Au-coated SU-8 cantilevers and surfac...

  10. Microstructuring of piezoresistive cantilevers for gas detection and analysis

    International Nuclear Information System (INIS)

    Sarov, Y.; Sarova, V.; Bitterlich, Ch.; Richter, O.; Guliyev, E.; Zoellner, J.-P.; Rangelow, I. W.; Andok, R.; Bencurova, A.

    2011-01-01

    In this work we report on a design and fabrication of cantilevers for gas detection and analysis. The cantilevers have expanded area of interaction with the gas, while the signal transduction is realized by an integrated piezoresistive deflection sensor, placed at the narrowed cantilever base with highest stress along the cantilever. Moreover, the cantilevers have integrated bimorph micro-actuator detection in a static and dynamic mode. The cantilevers are feasible as pressure, temperature and flow sensors and under chemical functionalization - for gas recognition, tracing and composition analysis. (authors)

  11. Bridge and steel structures. History and vision on bridge erection; Kyoryo kokozobutsu. Kasetsu gijutsu no shorai

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, S.; Hayashi, T. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1998-08-20

    This paper describes the progress of bridge erection technology. It introduces the results of cable erection, rotated/extruded erection, and cantilever erection. The cable erection is a multi point suspension erection using cables. For the rotated/extruded erection, the monolithic construction is conducted on a working yard set in a right angle to the construction position, and the horizontal beams of the bridge piers (corbel girders) are constructed by the rotated method using a slewing base incorporated around the bridge piers at one side. For the construction of stiffening girders of Innoshima-ohashi Bridge of Honshu-Shikoku Joint Bridge in 1978, trussed face bar blocks were extruded from the main tower in order using a travel crane. For the suspension bridges and cable stayed bridges, main towers were erected using various types of cranes. The erection of Tamashima-ohashi Bridge with a weight of 500 ton using an offshore floating crane is introduced as a large block method. Analysis methods and measurement techniques at the site are used in order to analyze the shape in each step under the erection and to ensure the accurate final complete shape. Reduction of the construction cost, improvement of erection technology, and technology development for large-scale projects are subjects in the future. 22 refs., 8 figs., 1 tab.

  12. Design and construction of superstructure in prestressed concrete cable-stayed bridge. ; Aomori Bay Bridge. PC shachokyo jobuko no sekkei to seko. ; Aomori Bay Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, T.; Fujimori, S.; Oba, M.; Tsuyoshi, T. (East Japan Railway Co., Tokyo (Japan))

    1991-12-01

    Aomori Bay Bridge is a 1,219m long elevated bridge, a part of No.2 Bay Highway of 1,993m in total length crossing over Aomori railway station which was planned in ordecr to integrate the port facilities of Aomori Harbor and expedite cargo traffic smoothly. Of this Bay Bridge, its main bridge portion crossing over Aomori railway station and the sea area was planned as a continuous prestressed concrete cable-stayed bridge of 498m in total length and consisting of three portions including the central portion in which the main span between the central bridge piers was 240m. It is scheduled to open in the summer of 1992. With regard to the design of this bridge, special care for the view of the bridge has been taken covering from the structure style to the accessories. For this bridge, a large scale underground continuous wall solid base with a box-shaped section consisting of 6 chambers was adopted for the base of a main tower. It has the cantilever suspension structure of the wide girder with the inverted Y-shaped pylons. For its stav cable, was adopted a large capacity stay cable with standard tensile strength of 1,942 fabricated on the site and for its covering tube, a FRP tube was adopted. In this article, the construction of the main girder and stay cables, and the construction control during their installation by projection are reported. 7 refs., 14 figs., 9 tabs.

  13. Cantilever-Based Microwave Biosensors: Analysis, Designs and Optimizations

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Jónasson, Sævar Þór

    2011-01-01

    This paper presents a novel microwave readout scheme for measuring deflection of cantilevers in nanometer range. The cantilever deflection can be sensed by the variation of transmission levels or resonant frequencies of microwave signals. The sensitivity of the cantilever biosensor based on LC...

  14. Lorentz force actuation of a heated atomic force microscope cantilever.

    Science.gov (United States)

    Lee, Byeonghee; Prater, Craig B; King, William P

    2012-02-10

    We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift.

  15. An electrochemical-cantilever platform for hybrid sensing applications

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Dohn, Søren; Boisen, Anja

    2011-01-01

    This work presents a fully-functional, microfabricated electrochemical-cantilever hybrid platform with flow control. A new cantilever chip format is designed, fabricated, and mounted in a custom polymer flow cell. Issues such as leakage and optical/electrical access are addressed, and combined...... mechanical and electrochemical performance is investigated. Lastly, a cantilever is “defunctionalized” in situ to create a reference cantilever for differential measurements in detection of Cu2+ ions at concentrations of 10 μM and 100 nM....

  16. Design, fabrication, erection of Yuge-Ohashi bridge; Yuge ohashi no sekkei seisaku kasetsu

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, T.; Konishi, T.; Sasaki, K.; Miyakawa, T. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1995-12-20

    Introduced herein is the construction of Yuge-Ohashi Bridge, a 325-meter long three-span cable-stayed structure. Each tower is provided with deflectors to prevent galloping vibration that the bridge may experience after completion. Because it was afraid that the towers during the erection process would experience at the base sections a bend that would be greater than their withstand strength, vibration dampers TMDs (Tuned Mass Dampers) were installed. To enable the spars to withstand strong wind after completion, wing-type flaps were arranged on their sides. To damp vibration during the spar cantilever erection process, TMDs of the cantilever type were provided capable of responding to the vertical direction vibration, for which weights were caused to travel along the arms for tuning. To prevent the top-stage cables from rain caused vibration, U-shape grooves were provided. To prevent the intermediate-stage cables from rain caused vibration, high-attenuation rubber dampers were installed. A side span spar and a tower were installed en bloc by FC (Floating Crane) boats, and the central span spar was installed by cantilever erection. Thanks to the fuzzy control-aided accuracy management system, cable adjustment was efficiently accomplished and the accuracy fell within the target value range. 4 refs., 5 figs.

  17. Cantilever arrays with self-aligned nanotips of uniform height

    International Nuclear Information System (INIS)

    Koelmans, W W; Peters, T; Berenschot, E; De Boer, M J; Siekman, M H; Abelmann, L

    2012-01-01

    Cantilever arrays are employed to increase the throughput of imaging and manipulation at the nanoscale. We present a fabrication process to construct cantilever arrays with nanotips that show a uniform tip–sample distance. Such uniformity is crucial, because in many applications the cantilevers do not feature individual tip–sample spacing control. Uniform cantilever arrays lead to very similar tip–sample interaction within an array, enable non-contact modes for arrays and give better control over the load force in contact modes. The developed process flow uses a single mask to define both tips and cantilevers. An additional mask is required for the back side etch. The tips are self-aligned in the convex corner at the free end of each cantilever. Although we use standard optical contact lithography, we show that the convex corner can be sharpened to a nanometre scale radius by an isotropic underetch step. The process is robust and wafer-scale. The resonance frequencies of the cantilevers within an array are shown to be highly uniform with a relative standard error of 0.26% or lower. The tip–sample distance within an array of up to ten cantilevers is measured to have a standard error around 10 nm. An imaging demonstration using the AFM shows that all cantilevers in the array have a sharp tip with a radius below 10 nm. The process flow for the cantilever arrays finds application in probe-based nanolithography, probe-based data storage, nanomanufacturing and parallel scanning probe microscopy. (paper)

  18. Calibration of higher eigenmodes of cantilevers

    International Nuclear Information System (INIS)

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger; Lysy, Martin

    2016-01-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  19. Calibration of higher eigenmodes of cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Kocun, Marta; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger [Asylum Research, an Oxford Instruments Company, Santa Barbara, California 93117 (United States); Lysy, Martin [Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-07-15

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  20. A more comprehensive modeling of atomic force microscope cantilever

    International Nuclear Information System (INIS)

    Mahdavi, M.H.; Farshidianfar, A.; Tahani, M.; Mahdavi, S.; Dalir, H.

    2008-01-01

    This paper focuses on the development of a complete model of an atomic force microscope (AFM) micro-cantilever beam, based on considering the effects of four major factors in modeling the cantilever. They are: rotary inertia and shear deformation of the beam and mass and rotary inertia of the tip. A method based on distributed-parameter modeling approach is proposed to solve the governing equations. The comparisons generally show a very good agreement between the present results and the results of other investigators. As expected, rotary inertia and shear deformation of the beam decrease resonance frequency especially at high ratio of cantilever thickness to its length, and it is relatively more pronounced for higher-order frequencies, than lower ones. Mass and rotary inertia of the tip have similar effects when the mass-ratio of the tip to the cantilever is high. Moreover, the influence of each of these four factors, thickness of the cantilever, density of the tip and inclination of the cantilever on the resonance frequencies has been investigated, separately. It is felt that this work might help the engineers in reducing AFM micro-cantilever design time, by providing insight into the effects of various parameters with the micro-cantilever.

  1. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al; Jabbour, Ghassan E.

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films

  2. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  3. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    Full Text Available Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young’s modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature

  4. Realization of cantilever arrays for parallel proximity imaging

    International Nuclear Information System (INIS)

    Sarov, Y; Ivanov, Tz; Frank, A; Zoellner, J-P; Nikolov, N; Rangelow, I W

    2010-01-01

    This paper reports on the fabrication and characterisation of self-actuating, and self-sensing cantilever arrays for large-scale parallel surface scanning. Each cantilever is integrated with a sharp silicon tip, a thermal-driven bimorph actuator, and a piezoresistive deflection sensor. Thus, the tip to the sample distance can be controlled individually for each cantilever. A radius of the tips below 10 nm is obtained, which enables nanometre in-plane surface imaging by Angstrom resolution in vertical direction. The fabricated cantilever probe arrays are also applicable for large-area manipulation, sub-10 nm metrology, bottom-up synthesis, high-speed gas analysis, for different bio-applications like recognition of DNA, RNA, or various biomarkers of a single disease, etc.

  5. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  6. Fracture probability properties of pure and cantilever bending fatigue of STS304 steel

    International Nuclear Information System (INIS)

    Roh, Sung Kuk; Park, Dae Hyun; Jeong, Soon Uk

    2001-01-01

    Big accidents of flyings, vessel, subways, gas equipments, buildings and bridge happens frequently. Therefore many people are suffering harm of property. The destruction cause of marcaine components is almost accused by fatigue. This study is test for STS304 specimen using pure and cantilever bending state. Rounded and notched specimen including fracture surface investigation was comparatively experimented, fatigue life according to degree of surface finishing was examined. Fatigue fracture probability of notched canilever specimens were predicted by P-S-N curve, median rank and Weibull distribution. And at the relation with the rotational speed and stress, the fatigue life of the test specimen was higher at high speed than low speed

  7. In-situ piezoresponse force microscopy cantilever mode shape profiling

    International Nuclear Information System (INIS)

    Proksch, R.

    2015-01-01

    The frequency-dependent amplitude and phase in piezoresponse force microscopy (PFM) measurements are shown to be a consequence of the Euler-Bernoulli (EB) dynamics of atomic force microscope (AFM) cantilever beams used to make the measurements. Changes in the cantilever mode shape as a function of changes in the boundary conditions determine the sensitivity of cantilevers to forces between the tip and the sample. Conventional PFM and AFM measurements are made with the motion of the cantilever measured at one optical beam detector (OBD) spot location. A single OBD spot location provides a limited picture of the total cantilever motion, and in fact, experimentally observed cantilever amplitude and phase are shown to be strongly dependent on the OBD spot position for many measurements. In this work, the commonly observed frequency dependence of PFM response is explained through experimental measurements and analytic theoretical EB modeling of the PFM response as a function of both frequency and OBD spot location on a periodically poled lithium niobate sample. One notable conclusion is that a common choice of OBD spot location—at or near the tip of the cantilever—is particularly vulnerable to frequency dependent amplitude and phase variations stemming from dynamics of the cantilever sensor rather than from the piezoresponse of the sample

  8. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Grutzik, Scott J.; Zehnder, Alan T. [Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 (United States); Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F. [Nanomechanical Properties Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  9. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-01-01

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included

  10. Magnetic force driven magnetoelectric effect in bi-cantilever composites

    Science.gov (United States)

    Zhang, Ru; Wu, Gaojian; Zhang, Ning

    2017-12-01

    The magnetic force driven magnetoelectric (ME) effect in bi-cantilever Mn-Zn-Ferrite /PZT composites is presented. Compared with single cantilever, the ME voltage coefficient in bi-cantilever composite is a little lower and the resonance frequency is higher, but the bi-cantilever structure is advantageous for integration. When the magnetic gap is 3 mm, the ME voltage coefficient can achieve 6.2 Vcm-1Oe-1 at resonance under optimum bias field Hm=1030 Oe; when the magnetic gap is 1.5 mm, the ME voltage coefficient can get the value as high as 4.4 Vcm-1Oe-1 under much lower bias field H=340 Oe. The stable ME effect in bi-cantilever composites has important potential application in the design of new type ME device.

  11. Drift study of SU8 cantilevers in liquid and gaseous environments.

    Science.gov (United States)

    Tenje, Maria; Keller, Stephan; Dohn, Søren; Davis, Zachary J; Boisen, Anja

    2010-05-01

    We present a study of the drift, in terms of cantilever deflections without probe/target interactions, of polymeric SU8 cantilevers. The drift is measured in PBS buffer (pH 7.4) and under vacuum (1mbar) conditions. We see that the cantilevers display a large drift in both environments. We believe this is because the polymer matrix absorbs liquid in one situation whereas it is being degassed in the other. An inhomogeneous expansion/contraction of the cantilever is seen because one surface of the cantilever may still have remains of the release layer from the fabrication. To further study the effect, we coat the cantilevers with a hydrophobic coating, perfluorodecyltrichlorosilane (FDTS). Fully encapsulating the SU8 cantilever greatly reduces the drift in liquid whereas a less significant change is seen in vacuum.

  12. Drift study of SU8 cantilevers in liquid and gaseous environments

    DEFF Research Database (Denmark)

    Tenje, Maria; Keller, Stephan Sylvest; Dohn, Søren

    2010-01-01

    We present a study of the drift, in terms of cantilever deflections without probe/target interactions, of polymeric SU8 cantilevers. The drift is measured in PBS buffer (pH 7.4) and under vacuum (1 mbar) conditions. We see that the cantilevers display a large drift in both environments. We believe...... coat the cantilevers with a hydrophobic coating, perfluorodecyltrichlorosilane (FDTS). Fully encapsulating the SU8 cantilever greatly reduces the drift in liquid whereas a less significant change is seen in vacuum....... this is because the polymer matrix absorbs liquid in one situation whereas it is being degassed in the other. An inhomogeneous expansion/contraction of the cantilever is seen because one surface of the cantilever may still have remains of the release layer from the fabrication. To further study the effect, we...

  13. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    OpenAIRE

    Franchetti Paolo; Frizzarin Michele; Leonardi Andrea; Zeni Fabio

    2015-01-01

    A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention ...

  14. Micro‑cantilevers for optical sensing of biogenic amines

    DEFF Research Database (Denmark)

    Wang, Ying; Bravo Costa, Carlos André; Sobolewska, Elżbieta Karolina

    2017-01-01

    molecules in the gas phase. Different functionalization conditions were investigated by immersing gold coated AFM cantilevers in cyclam solutions at different concentrations, for different functionalization times, and for different post-annealing treatments. The optimum morphology for high capture...... micro-cantilever based mass detection. We demonstrate that besides conventional AFM systems a MEMS cantilever in combination with an optical read out is a powerful analytic system which is highly attractive for widespread use in diagnostic applications, with optimized functionalization conditions...

  15. Fabrication of resonant micro cantilevers with integrated transparent fluidic channel

    DEFF Research Database (Denmark)

    Khan, Faheem; Schmid, Silvan; Davis, Zachary James

    2011-01-01

    Microfabricated cantilevers are proving their potential as excellent tools for analysis applications. In this paper, we describe the design, fabrication and testing of resonant micro cantilevers with integrated transparent fluidic channels. The cantilevers have been devised to measure the density...

  16. Structural Behavior of a Long-Span Partially Earth-Anchored Cable-Stayed Bridge during Installation of a Key Segment by Thermal Prestressing

    Directory of Open Access Journals (Sweden)

    Sang-Hyo Kim

    2016-08-01

    Full Text Available This study investigated structural behavior of long-span partially earth-anchored cable-stayed bridges with a main span length of 810 m that use a new key segment closing method based on a thermal prestressing technique. A detailed construction sequence analysis matched with the free cantilever method (FCM was performed using a three-dimensional finite element (FE model of a partially earth-anchored cable-stayed bridge. The new method offers an effective way of connecting key segments by avoiding large movements resulting from the removal of the longitudinal restraint owing to the asymmetry of axial forces in the girders near the pylons. The new method develops new member forces through the process of heating the cantilever system before installing the key segment and cooling the system continuously after installing key segments. The resulting forces developed by the thermal process enhance the structural behavior of partially earth-anchored cable-stayed bridges owing to decreased axial forces in the girders.

  17. Self-heating in piezoresistive cantilevers.

    Science.gov (United States)

    Doll, Joseph C; Corbin, Elise A; King, William P; Pruitt, Beth L

    2011-05-30

    We report experiments and models of self-heating in piezoresistive microcantilevers that show how cantilever measurement resolution depends on the thermal properties of the surrounding fluid. The predicted cantilever temperature rise from a finite difference model is compared with detailed temperature measurements on fabricated devices. Increasing the fluid thermal conductivity allows for lower temperature operation for a given power dissipation, leading to lower force and displacement noise. The force noise in air is 76% greater than in water for the same increase in piezoresistor temperature.

  18. Improving tapping mode atomic force microscopy with piezoelectric cantilevers

    International Nuclear Information System (INIS)

    Rogers, B.; Manning, L.; Sulchek, T.; Adams, J.D.

    2004-01-01

    This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 μm/s - a threefold improvement in bandwidth versus conventional piezotube actuators

  19. Upstand Finite Element Analysis of Slab Bridges

    OpenAIRE

    O'Brien, Eugene J.; Keogh, D.L.

    1998-01-01

    For slab bridge decks with wide transverse edge cantilevers, the plane grillage analogy is shown to be an inaccurate method of linear elastic analysis due to variations in the vertical position of the neutral axis. The upstand grillage analogy is also shown to give inaccurate results, this time due to inappropriate modelling of in-plane distortions. An alternative method, known as upstand finite element analysis, is proposed which is sufficiently simple to be used on an everyday basis in the ...

  20. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also acts...

  1. Cantilevers orthodontics forces measured by fiber sensors

    Science.gov (United States)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  2. Development of an Electrochemical-Cantilever Hybrid Platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie

    . For at binde kobber (II) ioner blev rækker af cantilevere funktionaliseret med aminosyre L-cysteine(Cys) og tetrapeptid Cys-Gly-Gly-His (CGGH). Dette funktionelle lag blev fjernet fra en enkelt cantilever, ved selektivt at anvende et voltammetrisk signal til at generere en ren reference cantilever til brug...

  3. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Eduard Dechant

    2017-12-01

    Full Text Available Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs. The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two- and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power.

  4. Electrostatic force microscopy with a self-sensing piezoresistive cantilever

    International Nuclear Information System (INIS)

    Pi, U. H.; Kye, J. I.; Shin, S.; Khim, Z. G.; Hong, J. W.; Yoon, S.

    2003-01-01

    We present a new method for electrostatic force microscopy (EFM) using a piezoresistive cantilever instead of the conventional cantilever with an optical detector. In EFM with a piezoresistive cantilever, the electrostatic force between the tip and the sample is monitored by sensing the change in the resistance of the piezoresistive cantilever at a frequency of several tens of kHz. A large stray capacitance effect can be rejected by using an appropriate phase tuning of the phase-sensitive detection. We observed the ferroelectric domain images of a triglycine sulfate single crystal. We could also write fine patterns on a lead-zirconate-titanate (PZT) thin film through domain reversal by applying various dc voltages between the tip and the sample. We suggest that the EFM technique using a self-sensing and self-actuating piezoresistive cantilever can be applied to a high-density data storage field

  5. Optimization of sensitivity and noise in piezoresistive cantilevers

    DEFF Research Database (Denmark)

    Yu, Xiaomei; Thaysen, Jacob; Hansen, Ole

    2002-01-01

    In this article, the sensitivity and the noise of piezoresistive cantilevers were systematically investigated with respect to the piezoresistor geometry, the piezoresistive materials, the doping dose, the annealing temperature, and the operating biased voltage. With the noise optimization results......(-6), the biggest gauge factors was 95, and the minimum detectable deflection (MDD) at 6 V and 200 Hz-measurement bandwidth was 0.3 nm for a single-crystal silicon cantilever. Of the two LPCVD silicon piezoresistive cantilevers, amorphous silicon piezoresistors had relatively lower 1/f noise. The MDD for a LPCVD...

  6. New technique of railway bridges in Hokuriku Shinkansen; Hokuriku Shinkansen tetsudokyo no gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Miyabayashi, H. [Japan Railway Construction Public Corp., Tokyo (Japan)

    1996-09-01

    This paper presents new technologies of the railway bridges in Hokuriku Shinkansen. Hokuriku Shinkansen of 117km between Takasaki and Nagano is a part of Shinkansen connecting Tokyo with Nagano by nearly 1.5 hours. Its construction is in promotion under severe financial condition, and cost reduction is an essential target. Among the concrete bridges in this section, Kirizumigawa bridge, a prestressed concrete strutted 3-span continuous beam bridge, adopted a lowering erection method for its slant pier. In this method featured by high safety and profitability, the rib component of a concrete arch bridge is vertically erected on a arch support, and installed by swinging it toward the central span. In addition, a cantilever method was adopted to keep the scenery of a national park. Daini Chikumagawa bridge with the longest span of 133.9m among concrete railway bridges is the first cable-stayed prestressed concrete bridge in Shinkansen. Yashiro Minami and Kita bridges of 105m and 90m in central span are the extradosed bridges which were adopted as optimum structure for lowering the beam height of meddle-sized railway bridges. 3 refs., 12 figs., 2 tabs.

  7. Micromechanical testing of SU-8 cantilevers

    OpenAIRE

    Hopcroft, M; Kramer, T; Kim, G; Takashima, K; Higo, Y; Moore, D; Brugger, J

    2005-01-01

    SU-8 is a photoplastic polymer with a wide range of possible applications in microtechnology. Cantilevers designed for atomic force microscopes were fabricated in SU-8. The mechanical properties of these cantilevers were investigated using two microscale testing techniques: contact surface profilometer beam deflection and static load deflection at a point on the beam using a specially designed test machine. The SU-8 Young's modulus value from the microscale test methods is approximately 2-3 GPa.

  8. Cantilever-based micro-particle filter with simultaneous single particle detection

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    Currently, separation of whole blood samples on lab-on-a-chip systems is achieved via filters followed by analysis of the filtered matter such as counting of blood cells. Here, a micro-chip based on cantilever technology is developed, which enables simultaneous filtration and counting of micro-particles...... from a liquid. A hole-array is integrated into a micro-cantilever, which is inserted into a microfluidic channel perpendicular to the flow. A metal pad at the apex of the cantilever enables an optical read-out of the deflection of the cantilever. When a micro-particle is too large to pass a hole...

  9. Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement

    Science.gov (United States)

    Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad

    2018-05-01

    In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be  ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.

  10. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes......, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors....

  11. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors

    Science.gov (United States)

    Mathew, Ribu; Ravi Sankar, A.

    2018-06-01

    In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.

  12. SU-8 Cantilever Sensor with Integrated Read-Out

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte

    2007-01-01

    Cantilever baserede biosensorer kan bruges til så kaldet label-free detektion af små koncentrationer af molekyler i en opløsning. Når et specifikt molekyle binder til overfladen af en cantilever induceres et overfladestress som resulterer i en udbøjning af cantileveren. Cantileverens udbøjningen ...

  13. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  14. SU-8 hollow cantilevers for AFM cell adhesion studies

    Science.gov (United States)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  15. SU-8 hollow cantilevers for AFM cell adhesion studies

    International Nuclear Information System (INIS)

    Martinez, Vincent; Behr, Pascal; Vörös, Janos; Zambelli, Tomaso; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva

    2016-01-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m −1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification. (paper)

  16. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Tang, J., E-mail: jtang@engr.uconn.edu [Department of Mechanical Engineering, The University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  17. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    International Nuclear Information System (INIS)

    Xu, J.; Tang, J.

    2015-01-01

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined

  18. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape

    Energy Technology Data Exchange (ETDEWEB)

    Sader, John E. [Department of Mathematics and Statistics, University of Melbourne, Victoria 3010 (Australia); Kavli Nanoscience Institute and Department of Physics, California Institute of Technology, Pasadena, California 91125 (United States); Sanelli, Julian A.; Adamson, Brian D.; Bieske, Evan J. [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Monty, Jason P.; Marusic, Ivan [Department of Mechanical Engineering, University of Melbourne, Victoria 3010 (Australia); Wei Xingzhan; Mulvaney, Paul [School of Chemistry, University of Melbourne, Victoria 3010 (Australia); Bio21 Institute, University of Melbourne, Victoria 3010 (Australia); Crawford, Simon A. [School of Botany, University of Melbourne, Victoria 3010 (Australia); Friend, James R. [Melbourne Centre for Nanofabrication, Clayton, Victoria 3800 (Australia); MicroNanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001 (Australia)

    2012-10-15

    The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

  19. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape

    International Nuclear Information System (INIS)

    Sader, John E.; Sanelli, Julian A.; Adamson, Brian D.; Bieske, Evan J.; Monty, Jason P.; Marusic, Ivan; Wei Xingzhan; Mulvaney, Paul; Crawford, Simon A.; Friend, James R.

    2012-01-01

    The spring constant of an atomic force microscope cantilever is often needed for quantitative measurements. The calibration method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] for a rectangular cantilever requires measurement of the resonant frequency and quality factor in fluid (typically air), and knowledge of its plan view dimensions. This intrinsically uses the hydrodynamic function for a cantilever of rectangular plan view geometry. Here, we present hydrodynamic functions for a series of irregular and non-rectangular atomic force microscope cantilevers that are commonly used in practice. Cantilever geometries of arrow shape, small aspect ratio rectangular, quasi-rectangular, irregular rectangular, non-ideal trapezoidal cross sections, and V-shape are all studied. This enables the spring constants of all these cantilevers to be accurately and routinely determined through measurement of their resonant frequency and quality factor in fluid (such as air). An approximate formulation of the hydrodynamic function for microcantilevers of arbitrary geometry is also proposed. Implementation of the method and its performance in the presence of uncertainties and non-idealities is discussed, together with conversion factors for the static and dynamic spring constants of these cantilevers. These results are expected to be of particular value to the design and application of micro- and nanomechanical systems in general.

  20. Polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Alicia; Calleja, M.; Dimaki, Maria

    2004-01-01

    A polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes has been designed and realized. Multi-walled carbon nanotubes from aqueous solution have been assembled between two metal electrodes that are separated by 2 mu m and embedded in the polymer cantilever. The entire chip......, except for the metallic electrodes and wiring, was fabricated in the photoresist SU-8. SU-8 allows for an inexpensive, flexible and fast fabrication method, and the cantilever platform provides a hydrophobic surface that should be well suited for nanotube assembly. The device can be integrated in a micro...

  1. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers

    International Nuclear Information System (INIS)

    Yeh, M.-K.; Tai, N.-Ha; Chen, B.-Y.

    2008-01-01

    Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 deg. and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1 μN landing force and decrease 18.60% for the V-shaped cantilever with 50 nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy

  2. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  3. Integrated MEMS/NEMS Resonant Cantilevers for Ultrasensitive Biological Detection

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    2009-01-01

    Full Text Available The paper reviews the recent researches implemented in Chinese Academy of Sciences, with achievements on integrated resonant microcantilever sensors. In the resonant cantilevers, the self-sensing elements and resonance exciting elements are both top-down integrated with silicon micromachining techniques. Quite a lot of effort is focused on optimization of the resonance mode and sensing structure for improvement of sensitivity. On the other hand, to enable the micro-cantilevers specifically sensitive to bio/chemical molecules, sensing materials are developed and modified on the cantilever surface with a self-assembled monolayer (SAM based bottom-up construction and surface functionalization. To improve the selectivity of the sensors and depress environmental noise, multiple and localized surface modifications are developed. The achieved volume production capability and satisfactory detecting resolution to trace-level biological antigen of alpha-fetoprotein (AFP give the micro-cantilever sensors a great promise for rapid and high-resoluble detection.

  4. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2013-12-01

    Full Text Available Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA was used as an initial tool to compare the three geometries’ stiffness (K, output open-circuit voltage (Vave, and average normal strain in the piezoelectric transducer (εave that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3, has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle.

  5. Cantilever surface stress sensors with single-crystalline silicon piezoresistors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Andreas; Hansen, Ole; Boisen, Anja

    2005-01-01

    We present a cantilever with piezoresistive readout optimized for measuring the static deflection due to isotropic surface stress on the surface of the cantilever [Sens. Actuators B 79(2-3), 115 (2001)]. To our knowledge nobody has addressed the difference in physical regimes, and its influence o...

  6. Sobol method application in dimensional sensitivity analyses of different AFM cantilevers for biological particles

    Science.gov (United States)

    Korayem, M. H.; Taheri, M.; Ghahnaviyeh, S. D.

    2015-08-01

    Due to the more delicate nature of biological micro/nanoparticles, it is necessary to compute the critical force of manipulation. The modeling and simulation of reactions and nanomanipulator dynamics in a precise manipulation process require an exact modeling of cantilevers stiffness, especially the stiffness of dagger cantilevers because the previous model is not useful for this investigation. The stiffness values for V-shaped cantilevers can be obtained through several methods. One of them is the PBA method. In another approach, the cantilever is divided into two sections: a triangular head section and two slanted rectangular beams. Then, deformations along different directions are computed and used to obtain the stiffness values in different directions. The stiffness formulations of dagger cantilever are needed for this sensitivity analyses so the formulations have been driven first and then sensitivity analyses has been started. In examining the stiffness of the dagger-shaped cantilever, the micro-beam has been divided into two triangular and rectangular sections and by computing the displacements along different directions and using the existing relations, the stiffness values for dagger cantilever have been obtained. In this paper, after investigating the stiffness of common types of cantilevers, Sobol sensitivity analyses of the effects of various geometric parameters on the stiffness of these types of cantilevers have been carried out. Also, the effects of different cantilevers on the dynamic behavior of nanoparticles have been studied and the dagger-shaped cantilever has been deemed more suitable for the manipulation of biological particles.

  7. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  8. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Science.gov (United States)

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  9. On the calibration of rectangular atomic force microscope cantilevers modified by particle attachment and lamination

    International Nuclear Information System (INIS)

    Bowen, James; Zhang, Zhibing; Adams, Michael J; Cheneler, David; Ward, Michael C L; Walliman, Dominic; Arkless, Stuart G

    2010-01-01

    A simple but effective method for estimating the spring constant of commercially available atomic force microscope (AFM) cantilevers is presented, based on estimating the cantilever thickness from knowledge of its length, width, resonant frequency and the presence or absence of an added mass, such as a colloid probe at the cantilever apex, or a thin film of deposited material. The spring constant of the cantilever can then be estimated using standard equations for cantilever beams. The results are compared to spring constant calibration measurements performed using reference cantilevers. Additionally, the effect of the deposition of Cr and Ti thin films onto rectangular Si cantilevers is investigated

  10. Tresfjord Bridge - a human friendly and traffic efficient structure

    Science.gov (United States)

    Dahl, Kristian B.; Anta Magerøy Tønnessen, Aja; Toverud, Lars I.

    2017-09-01

    The E136 Tresfjord Bridge opened in October 2015, and crosses the Tresfjorden on the west coast of Norway. It is a concrete bridge with a total length of 1290 m, consisting of 19 viaduct spans, 60 m each, and a FCM (free cantilever method) main span of 160 m. The E136 is one of the most important transportation routes in the county of Møre and Romsdal and starts in Ålesund, and passes along Tresfjorden to Åndalsnes. The existing road is very narrow with speed limit of 60 km/h and characterizes by many accidents involving cars and people. The traffic flow is approximately ca 2500 vehicles a day, of this is 25% heavy vehicles. Those transport fresh salmon from the breeders in the fjords along the coast. To try to decrease the transportation time is very important for the fresh salmon. The bridge reduces the distance between Ålesund and Åndalsnes by 13 km. The speed limit is now 80 km/h, and with much less risk for accidents since there are separate lanes for cars and pedestrians over the whole bridge. This means that the bridge represents a human friendly and traffic efficient structure to the benefit for the people and the region.

  11. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.© 2011 Elsevier Ltd. All rights reserved.

  12. Conductive oxide cantilever for cryogenic nano-potentiometry

    International Nuclear Information System (INIS)

    Hiroya, Tsutomu; Inagaki, Katsuhiko; Tanda, Satoshi; Tsuneta, Taku; Yamaya, Kazuhiko

    2003-01-01

    Nanoscale electrical transport properties have attracted attentions because of new phenomena such as ballistic transport, quantized resistance, and Coulomb blockade. For measurement of nanoscale resistance, we have been developing a cryogenic atomic force microscope that can operate at 1.8 K. To use it as an electrode, we coated the cantilever with conductive oxides of TiO and indium tin oxide (ITO). We verified that TiO and ITO thin films remain conductive even at 4.2 K. Also we measured I-V characteristics of the tip-sample contact with a standard sample of NbSe 2 single crystal, and found that the conductive coats were not lost under large stresses due to the tip-sample contact. Moreover, we succeeded in obtaining a room temperature nano-potentiometry of a gold thin film with the ITO coated cantilever. In conclusion, the TiO and ITO coated cantilevers are applicable to cryogenic nano-potentiometry

  13. Cantilever piezoelectric energy harvester with multiple cavities

    International Nuclear Information System (INIS)

    S Srinivasulu Raju; M Umapathy; G Uma

    2015-01-01

    Energy harvesting employing piezoelectric materials in mechanical structures such as cantilever beams, plates, diaphragms, etc, has been an emerging area of research in recent years. The research in this area is also focused on structural tailoring to improve the harvested power from the energy harvesters. Towards this aim, this paper presents a method for improving the harvested power from a cantilever piezoelectric energy harvester by introducing multiple rectangular cavities. A generalized model for a piezoelectric energy harvester with multiple rectangular cavities at a single section and two sections is developed. A method is suggested to optimize the thickness of the cavities and the number of cavities required to generate a higher output voltage for a given cantilever beam structure. The performance of the optimized energy harvesters is evaluated analytically and through experimentation. The simulation and experimental results show that the performance of the energy harvester can be increased with multiple cavities compared to the harvester with a single cavity. (paper)

  14. Dynamic state switching in nonlinear multiferroic cantilevers

    Science.gov (United States)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Lofland, Samuel E.; Takeuchi, Ichiro

    2013-03-01

    We demonstrate read-write-read-erase cyclical mechanical-memory properties of all-thin-film multiferroic heterostructured Pb(Zr0.52Ti0.48) O3 / Fe0.7Ga0.3 cantilevers when a high enough voltage around the resonant frequency of the device is applied on the Pb(Zr0.52Ti0.48) O3 piezo-film. The device state switching process occurs due to the presence of a hysteresis loop in the piezo-film frequency response, which comes from the nonlinear behavior of the cantilever. The reference frequency at which the strain-mediated Fe0.7Ga0.3 based multiferroic device switches can also be tuned by applying a DC magnetic field bias that contributes to the increase of the cantilever effective stiffness. The switching dynamics is mapped in the phase space of the device measured transfer function characteristic for such high piezo-film voltage excitation, providing additional information on the dynamical stability of the devices.

  15. The Correlated Dynamics of Micron-Scale Cantilevers in a Viscous Fluid

    Science.gov (United States)

    Robbins, Brian A.

    A number of microcantilever systems of fundamental importance are explored using theoretical and numerical methods to quantify and provide physical insights into the dynamics of experimentally accessible systems that include a variety of configurations and viscous fluids. It is first shown that the correlated dynamics of both a laterally and vertically offset cantilever pair can be accurately predicted by numerical simulations. This is verified by comparing the correlated dynamics yielded by numerical simulations with experimental measurement. It is also demonstrated that in order to obtain these accurate predictions, geometric details of the cantilever must be included in the numerical simulation to directly reflect the experimental cantilever. A microrheology technique that utilizes the fluctuation-dissipation theorem is proposed. It is shown that by including the frequency dependence of the fluid damping, improvements in accuracy of the predictions of the rheological properties of the surrounding fluid are observed over current techniques. The amplitude spectrum of a 2-D cantilever in a power-law fluid is studied. The resulting amplitude spectrum yielded a curve similar to an overdamped system. It is observed that the amplitude and noise spectrum yield the same qualitative response for a 2-D cantilever in a shear-thinning, power-law fluid. The correlated dynamics of a tethered vertically offset cantilever pair is investigated. It is shown that for a range of stiffness ratios, which is the ratio of the spring constant of the tethering relative to the cantilever spring constant, the change in the correlated dynamics of a Hookean spring tethered cantilever pair can be seen in the presence of fluid coupling. The dynamics of a spring-mass tethered, vertically offset cantilever pair is qualitatively studied by simplifying the model to an array of springs and masses. The resulting study found that the correlated dynamics of the displacement of mass of the tethered

  16. Fabrication Effects on Polysilicon-based Micro cantilever Piezo resistivity for Biological Sensing Application

    International Nuclear Information System (INIS)

    Nina Korlina Madzhi; Balkish Natra; Mastura Sidek; Khuan, L.Y.; Anuar Ahmad

    2011-01-01

    In principle, adsorption of biological molecules on a functionalized surface of a micro fabricated cantilever will cause a surface stress and consequently the cantilever bending. In this work, four different type of polysilicon-based piezo resistive micro cantilever sensors were designed to increase the sensitivity of the micro cantilevers sensor because the forces involved is very small. The design and optimization was performed by using finite element analysis to maximize the relative resistance changes of the piezo resistors as a function of the cantilever vertical displacements. The resistivity of the piezo resistivity micro cantilevers was analyzed before and after dicing process. The maximum resistance changes were systematically investigated by varying the piezo resistor length. The results show that although the thickness of piezo resistor was the same at 0.5 μm the resistance value was varied. (author)

  17. Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Wu, Wenze; Uhde, Erik; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Low-cost and low-power piezoresistive cantilever resonators with integrated electrothermal heaters are developed to support the sensing module enhancement of the second generation of handheld cantilever-based airborne nanoparticle (NP) detector (CANTOR-2). These sensors are used for direct-reading of exposure to carbon engineered nanoparticles (ENPs) at indoor workplaces. The cantilever structures having various shapes of free ends are created using silicon bulk micromachining technologies (i.e, rectangular, hammer-head, triangular, and U-shaped cantilevers). For a complete wearable CANTOR-2, all components of the proposed detector can be grouped into two main units depending on their packaging placements (i.e., the NP sampler head and the electronics mounted in a handy-format housing). In the NP sampler head, a miniaturized electrophoretic aerosol sampler and a resonant silicon cantilever mass sensor are employed to collect the ENPs from the air stream to the cantilever surfaces and measuring their mass concentration, respectively. After calibration, the detected ENP mass concentrations of CANTOR-2 show a standard deviation from fast mobility particle sizer (FMPS, TSI 3091) of 8-14%.

  18. On the electromechanical modelling of a resonating nano-cantilever-based transducer

    DEFF Research Database (Denmark)

    Teva, J.; Abadal, G.; Davis, Zachary James

    2004-01-01

    deflection and the frequency response of the oscillation amplitude for different voltage polarization conditions. For the electrostatic force calculation the model takes into account the real deflection shape of the cantilever and the contribution to the cantilever-driver capacitance of the fringing field....... Both the static and dynamic predictions have been validated experimentally by measuring the deflection of the cantilever by means of an optical microscope. (C) 2004 Elsevier B.V. All rights reserved....

  19. Determination of young's modulus of PZT-influence of cantilever orientation

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    Calculation of the resonance frequency of cantilevers fabricated from an elastically anisotropic material requires the use of an effective Young’s modulus. In this paper a technique to determine the appropriate effective Young’s modulus for arbitrary cantilever geometries is introduced. This

  20. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  1. Construction of a composite cable stayed bridge. Karnali river bridge in Nepal. Gosei shachokyo no kensetsu. Karnali kawa kyoryo

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Nakamura, K.; Shimodoi, H.; Amako, M.; Miyoshi, S.; Haruta, M.; Okada, S.; Kuroki, S. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1994-07-20

    The present report reports the construction of Karnali River Bridge in Nepal by Kawasaki Heavy Industries, Ltd. The present bridge is a composite cable stayed bridge, two-spanned with a main span length of 325m and side span length of 175m. Having an about 125m-high single tower, it is 11.3m in breadth and 3m in main truss height. The main truss is supported by both faces of 30 cables per face, i.e., 60 cables. (Each of both main and side spans has 15 cables per face.) The design and construction are described with the following their itemization: design (bending moment properties in the erected system, composite structure of main truss and stress analysis at the time of erection). Wind resisting measures (measures for the wind resistant stability at the time of erection of both tower and main truss cantilever). Fabrication and transportation of steel structural members. Fabrication of precast floor plates (concrete mixing, and fabrication and curing of floor plates). Construction of tower foundation (tremie concrete and air concrete). Erection of upper structures (erection of tower, both main and side spans, and accuracy management). 14 figs., 4 tabs.

  2. A new approach for elasto-plastic finite strain analysis of cantilever ...

    Indian Academy of Sciences (India)

    A new approach for elasto-plastic finite strain analysis of cantilever beams subjected to uniform bending moment ... Curvature; deflection curve; cantilever beam; elasto-plastic analysis; tapered beam subjected to tipmoment; ... Sadhana | News.

  3. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    International Nuclear Information System (INIS)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-01-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array

  4. Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss

    Energy Technology Data Exchange (ETDEWEB)

    Schmidsfeld, A. von, E-mail: avonschm@uos.de; Reichling, M., E-mail: reichling@uos.de [Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück (Germany)

    2015-09-21

    In a non-contact atomic force microscope, based on interferometric cantilever displacement detection, the optical return loss of the system is tunable via the distance between the fiber end and the cantilever. We utilize this for tuning the interferometer from a predominant Michelson to a predominant Fabry-Pérot characteristics and introduce the Fabry-Pérot enhancement factor as a quantitative measure for multibeam interference in the cavity. This experimentally easily accessible and adjustable parameter provides a control of the opto-mechanical interaction between the cavity light field and the cantilever. The quantitative assessment of the light pressure acting on the cantilever oscillating in the cavity via the frequency shift allows an in-situ measurement of the cantilever stiffness with remarkable precision.

  5. Computer aided design of Langasite resonant cantilevers: analytical models and simulations

    Science.gov (United States)

    Tellier, C. R.; Leblois, T. G.; Durand, S.

    2010-05-01

    Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.

  6. Potential of interferometric cantilever detection and its application for SFM/AFM in liquids

    International Nuclear Information System (INIS)

    Hoogenboom, B W; Frederix, P L T M; Engel, A; Fotiadis, D; Hug, H J

    2008-01-01

    We have developed an optical cantilever deflection detector with a spot size -1/2 sensitivity over a>10 MHz bandwidth. In this work, we demonstrate its potential for detecting small-amplitude oscillations of various flexural and torsional oscillation modes of cantilevers. The high deflection sensitivity of the interferometer is particularly useful for detecting cantilever oscillations in aqueous solutions, enabling us to reach the thermal noise limit in scanning or atomic force microscopy experiments with stiff cantilevers. This has resulted in atomic-resolution images of solid-liquid interfaces and submolecular-resolution images of native membranes

  7. Size-dependent effective Young’s modulus of silicon nitride cantilevers

    NARCIS (Netherlands)

    Babaei Gavan, K.; Westra, H.J.R.; Van der Drift, E.W.J.M.; Venstra, W.J.; Van der Zant, H.S.J.

    2009-01-01

    The effective Young’s modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20–684 nm by measuring resonance frequencies from thermal noise spectra. A significant deviation from the bulk value is observed for cantilevers thinner than 150 nm. To explain the observations

  8. Biosensors based on cantilevers.

    Science.gov (United States)

    Alvarez, Mar; Carrascosa, Laura G; Zinoviev, Kiril; Plaza, Jose A; Lechuga, Laura M

    2009-01-01

    Microcantilevers based-biosensors are a new label-free technique that allows the direct detection of biomolecular interactions in a label-less way and with great accuracy by translating the biointeraction into a nanomechanical motion. Low cost and reliable standard silicon technologies are widely used for the fabrication of cantilevers with well-controlled mechanical properties. Over the last years, the number of applications of these sensors has shown a fast growth in diverse fields, such as genomic or proteomic, because of the biosensor flexibility, the low sample consumption, and the non-pretreated samples required. In this chapter, we report a dedicated design and a fabrication process of highly sensitive microcantilever silicon sensors. We will describe as well an application of the device in the environmental field showing the immunodetection of an organic toxic pesticide as an example. The cantilever biofunctionalization process and the subsequent pesticide determination are detected in real time by monitoring the nanometer-scale bending of the microcantilever due to a differential surface stress generated between both surfaces of the device.

  9. The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.

    Science.gov (United States)

    Satzinger, Kevin J; Brown, Keith A; Westervelt, Robert M

    2012-09-15

    A realistic interpretation of the measured contact potential difference (CPD) in Kelvin probe force microscopy (KPFM) is crucial in order to extract meaningful information about the sample. Central to this interpretation is a method to include contributions from the macroscopic cantilever arm, as well as the cone and sharp tip of a KPFM probe. Here, three models of the electrostatic interaction between a KPFM probe and a sample are tested through an electrostatic simulation and compared with experiment. In contrast with previous studies that treat the KPFM cantilever as a rigid object, we allow the cantilever to bend and rotate; accounting for cantilever bending provides the closest agreement between theory and experiment. We demonstrate that cantilever dynamics play a major role in CPD measurements and provide a simulation technique to explore this phenomenon.

  10. Three-electrode self-actuating self-sensing quartz cantilever: design, analysis, and experimental verification.

    Science.gov (United States)

    Chen, C Julian; Schwarz, Alex; Wiesendanger, Roland; Horn, Oliver; Müller, Jörg

    2010-05-01

    We present a novel quartz cantilever for frequency-modulation atomic force microscopy (FM-AFM) which has three electrodes: an actuating electrode, a sensing electrode, and a ground electrode. By applying an ac signal on the actuating electrode, the cantilever is set to vibrate. If the frequency of actuation voltage closely matches one of the characteristic frequencies of the cantilever, a sharp resonance should be observed. The vibration of the cantilever in turn generates a current on the sensing electrode. The arrangement of the electrodes is such that the cross-talk capacitance between the actuating electrode and the sensing electrode is less than 10(-16) F, thus the direct coupling is negligible. To verify the principle, a number of samples were made. Direct measurements with a Nanosurf easyPPL controller and detector showed that for each cantilever, one or more vibrational modes can be excited and detected. Using classical theory of elasticity, it is shown that such novel cantilevers with proper dimensions can provide optimized performance and sensitivity in FM-AFM with very simple electronics.

  11. Cancelation of thermally induced frequency shifts in bimaterial cantilevers by nonlinear optomechanical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vy, Nguyen Duy, E-mail: nguyenduyvy@tdt.edu.vn [Theoretical Physics Research Group, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam); Tri Dat, Le [Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 748355 (Viet Nam); Iida, Takuya [Department of Physical Science, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2016-08-01

    Bimaterial cantilevers have recently been used in, for example, the calorimetric analysis with picowatt resolution in microscopic space based on state-of-the-art atomic force microscopes. However, thermally induced effects usually change physical properties of the cantilevers, such as the resonance frequency, which reduce the accuracy of the measurements. Here, we propose an approach to circumvent this problem that uses an optical microcavity formed between a metallic layer coated on the back of the cantilever and one coated at the end of an optical fiber irradiating the cantilever. In addition to increasing the sensitivity, the optical rigidity of this system diminishes the thermally induced frequency shift. For a coating thickness of several tens of nanometers, the input power is 5–10 μW. These values can be evaluated from parameters derived by directly irradiating the cantilever in the absence of the microcavity. The system has the potential of using the cantilever both as a thermometer without frequency shifting and as a sensor with nanometer-controlled accuracy.

  12. MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyung [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to the reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (Kd) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA

  13. Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    Directory of Open Access Journals (Sweden)

    Aamand Jens

    2011-01-01

    Full Text Available Abstract The attachment of an antibody to an antigen-coated cantilever has been investigated by repeated experiments, using a cantilever-based detection system by Cantion A/S. The stress induced by the binding of a pesticide residue BAM (2,6 dichlorobenzamide immobilized on a cantilever surface to anti-BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending and increase in mass of each cantilever has also been investigated using a light interferometer and a Doppler Vibrometer. The system has been analyzed during repeated measurements to investigate whether the CantiLab4© system is a suited platform for a pesticide assay system.

  14. Feedback cooling of cantilever motion using a quantum point contact transducer

    International Nuclear Information System (INIS)

    Montinaro, M.; Mehlin, A.; Solanki, H. S.; Peddibhotla, P.; Poggio, M.; Mack, S.; Awschalom, D. D.

    2012-01-01

    We use a quantum point contact (QPC) as a displacement transducer to measure and control the low-temperature thermal motion of a nearby micromechanical cantilever. The QPC is included in an active feedback loop designed to cool the cantilever's fundamental mechanical mode, achieving a squashing of the QPC noise at high gain. The minimum achieved effective mode temperature of 0.2 K and the displacement resolution of 10 -11 m/√(Hz) are limited by the performance of the QPC as a one-dimensional conductor and by the cantilever-QPC capacitive coupling.

  15. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    Science.gov (United States)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  16. Potential of interferometric cantilever detection and its application for SFM/AFM in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B W [London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Frederix, P L T M; Engel, A [M E Mueller Institute, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel (Switzerland); Fotiadis, D [Institute of Biochemistry and Molecular Medicine, University of Berne, Buehlstrasse 28, 3012 Berne (Switzerland); Hug, H J [Swiss Federal Laboratories for Materials Testing and Research, EMPA, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland)], E-mail: b.hoogenboom@ucl.ac.uk

    2008-09-24

    We have developed an optical cantilever deflection detector with a spot size <3 {mu}m and fm Hz{sup -1/2} sensitivity over a>10 MHz bandwidth. In this work, we demonstrate its potential for detecting small-amplitude oscillations of various flexural and torsional oscillation modes of cantilevers. The high deflection sensitivity of the interferometer is particularly useful for detecting cantilever oscillations in aqueous solutions, enabling us to reach the thermal noise limit in scanning or atomic force microscopy experiments with stiff cantilevers. This has resulted in atomic-resolution images of solid-liquid interfaces and submolecular-resolution images of native membranes.

  17. Fabrication of thin SU-8 cantilevers: initial bending, release and time stability

    International Nuclear Information System (INIS)

    Keller, Stephan; Boisen, Anja; Haefliger, Daniel

    2010-01-01

    SU-8 cantilevers with a thickness of 2 µm were fabricated using a dry release method and two steps of SU-8 photolithography. The processing of the thin SU-8 film defining the cantilevers was experimentally optimized to achieve low initial bending due to residual stress gradients. In parallel, the rotational deformation at the clamping point allowed a qualitative assessment of the device release from the fluorocarbon-coated substrate. The change of these parameters during several months of storage at ambient temperature was investigated in detail. The introduction of a long hard bake in an oven after development of the thin SU-8 film resulted in reduced cantilever bending due to removal of residual stress gradients. Further, improved time-stability of the devices was achieved due to the enhanced cross-linking of the polymer. A post-exposure bake at a temperature T PEB = 50 °C followed by a hard bake at T HB = 90 °C proved to be optimal to ensure low cantilever bending and low rotational deformation due to excellent device release and low change of these properties with time. With the optimized process, the reproducible fabrication of arrays with 2 µm thick cantilevers with a length of 500 µm and an initial bending of less than 20 µm was possible. The theoretical spring constant of these cantilevers is k = 4.8 ± 2.5 mN m −1 , which is comparable to the value for Si cantilevers with identical dimensions and a thickness of 500 nm.

  18. Calibration of atomic force microscope cantilevers using standard and inverted static methods assisted by FIB-milled spatial markers

    International Nuclear Information System (INIS)

    Slattery, Ashley D; Blanch, Adam J; Quinton, Jamie S; Gibson, Christopher T

    2013-01-01

    Static methods to determine the spring constant of AFM cantilevers have been widely used in the scientific community since the importance of such calibration techniques was established nearly 20 years ago. The most commonly used static techniques involve loading a trial cantilever with a known force by pressing it against a pre-calibrated standard or reference cantilever. These reference cantilever methods have a number of sources of uncertainty, which include the uncertainty in the measured spring constant of the standard cantilever, the exact position of the loading point on the reference cantilever and how closely the spring constant of the trial and reference cantilever match. We present a technique that enables users to minimize these uncertainties by creating spatial markers on reference cantilevers using a focused ion beam (FIB). We demonstrate that by combining FIB spatial markers with an inverted reference cantilever method, AFM cantilevers can be accurately calibrated without the tip of the test cantilever contacting a surface. This work also demonstrates that for V-shaped cantilevers it is possible to determine the precise loading position by AFM imaging the section of the cantilever where the two arms join. Removing tip-to-surface contact in both the reference cantilever method and sensitivity calibration is a significant improvement, since this is an important consideration for AFM users that require the imaging tip to remain in pristine condition before commencing measurements. Uncertainties of between 5 and 10% are routinely achievable with these methods. (paper)

  19. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Ashley D.; Blanch, Adam J.; Quinton, Jamie S.; Gibson, Christopher T., E-mail: christopher.gibson@flinders.edu.au

    2013-08-15

    Considerable attention has been given to the calibration of AFM cantilever spring constants in the last 20 years. Techniques that do not require tip-sample contact are considered advantageous since the imaging tip is not at risk of being damaged. Far less attention has been directed toward measuring the cantilever deflection or sensitivity, despite the fact that the primary means of determining this factor relies on the AFM tip being pressed against a hard surface, such as silicon or sapphire; which has the potential to significantly damage the tip. A recent method developed by Tourek et al. in 2010 involves deflecting the AFM cantilever a known distance from the imaging tip by pressing the cantilever against a sharpened tungsten wire. In this work a similar yet more precise method is described, whereby the deflection of the cantilever is achieved using an AFM probe with a spring constant much larger than the test cantilever, essentially a rigid cantilever. The exact position of loading on the test cantilever was determined by reverse AFM imaging small spatial markers that are milled into the test cantilever using a focussed ion beam. For V shaped cantilevers it is possible to reverse image the arm intersection in order to determine the exact loading point without necessarily requiring FIB milled spatial markers, albeit at the potential cost of additional uncertainty. The technique is applied to tip-less, beam shaped and V shaped cantilevers and compared to the hard surface contact technique with very good agreement (on average less than 5% difference). While the agreement with the hard surface contact technique was very good the error on the technique is dependent upon the assumptions inherent in the method, such as cantilever shape, loading point distance and ratio of test to rigid cantilever spring constants. The average error ranged between 2 to 5% for the majority of test cantilevers studied. The sensitivity derived with this technique can then be used to

  20. Research on fiber-optic cantilever-enhanced photoacoustic spectroscopy for trace gas detection

    Science.gov (United States)

    Chen, Ke; Zhou, Xinlei; Gong, Zhenfeng; Yu, Shaochen; Qu, Chao; Guo, Min; Yu, Qingxu

    2018-01-01

    We demonstrate a new scheme of cantilever-enhanced photoacoustic spectroscopy, combining a sensitivity-improved fiber-optic cantilever acoustic sensor with a tunable high-power fiber laser, for trace gas detection. The Fabry-Perot interferometer based cantilever acoustic sensor has advantages such as high sensitivity, small size, easy to install and immune to electromagnetic. Tunable erbium-doped fiber ring laser with an erbium-doped fiber amplifier is used as the light source for acoustic excitation. In order to improve the sensitivity for photoacoustic signal detection, a first-order longitudinal resonant photoacoustic cell with the resonant frequency of 1624 Hz and a large size cantilever with the first resonant frequency of 1687 Hz are designed. The size of the cantilever is 2.1 mm×1 mm, and the thickness is 10 μm. With the wavelength modulation spectrum and second-harmonic detection methods, trace ammonia (NH3) has been measured. The gas detection limits (signal-to-noise ratio = 1) near the wavelength of 1522.5 nm is achieved to be 3 ppb.

  1. A piezoresistive cantilever for lateral force detection fabricated by a monolithic post-CMOS process

    International Nuclear Information System (INIS)

    Ji Xu; Li Zhihong; Li Juan; Wang Yangyuan; Xi Jianzhong

    2008-01-01

    This paper presents a post-CMOS process to monolithically integrate a piezoresistive cantilever for lateral force detection and signal processing circuitry. The fabrication process includes a standard CMOS process and one more lithography step to micromachine the cantilever structure in the post-CMOS process. The piezoresistors are doped in the CMOS process but defined in the post-CMOS micromachining process without any extra process required. A partially split cantilever configuration is developed for the lateral force detection. The piezoresistors are self-aligned to the split cantilever, and therefore the width of the beam is only limited by lithography. Consequently, this kind of cantilever potentially has a high resolution. The preliminary experimental results show expected performances of the fabricated piezoresistors and electronic circuits

  2. Modified cantilevers to probe unambiguously out-of-plane piezoresponse

    Science.gov (United States)

    Alyabyeva, Natalia; Ouvrard, Aimeric; Lindfors-Vrejoiu, Ionela; Kolomiytsev, Alexey; Solodovnik, Maxim; Ageev, Oleg; McGrouther, Damien

    2018-06-01

    We demonstrate and investigate the coupling of contributions from both in-plane (IP) polarization and out-of-plane (OP) components in BiFeO3 (BFO) thin-film polarization probed by piezoresponse force microscopy (PFM). Such coupling leads to image artifacts which prevent the correct determination of OP polarization vector directions and the corresponding piezoelectric coefficient d33. Using material strength theory with a one-dimensional modeling of the cantilever oscillation amplitude under electrostatic and elastic forces as a function of the tip length, we have evidenced the impact of IP piezoresponse to the OP signal for tip length longer than 4 μm. The IP polarization vector induces a significant longitudinal bending of the cantilever, due to the small spring constant of long tips, which provokes a normal deviation superimposed to the OP piezoresponse. These artifacts can be reduced by increasing the longitudinal spring constant of the cantilever by shortening the tip length. Standard cantilevers with 15-μm-long tips were modified to reach the desired tip length, using focused ion-beam techniques and tested using PFM on the same BFO thin film. Tip length shortening has strongly reduced IP artifacts as expected, while the impact of nonlocal electrostatic forces, becoming predominant for tips shorter than 1 μm, has led to a non-negligible deflection offset. For shorter tips, a strong electric field from a cantilever beam can induce polarization switching as observed for a 0.5-μm-long tip. Tip length ranging from 1 to 4 μm allowed minimizing both artifacts to probe unambiguously OP piezoresponse and quantify the d33 piezoelectric coefficient.

  3. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.

    Science.gov (United States)

    Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L

    2010-02-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.

  4. Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity

    Science.gov (United States)

    Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.

    2010-01-01

    An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183

  5. Highly sensitive polymer-based cantilever-sensors for DNA detection

    International Nuclear Information System (INIS)

    Calleja, M.; Nordstroem, M.; Alvarez, M.; Tamayo, J.; Lechuga, L.M.; Boisen, A.

    2005-01-01

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized as a function of the dimensions and the medium. The devices have been tested for measurement of the adsorption of single stranded DNA and subsequent interstitial adsorption of lateral spacer molecules. We demonstrate that sensitivity is enhanced by a factor of six compared to that of commercial silicon nitride cantilevers

  6. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    Directory of Open Access Journals (Sweden)

    Yunpeng Song

    2015-03-01

    Full Text Available Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  7. A new approach to integrate PLZT thin films with micro-cantilevers

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 34; Issue 4. A new approach to integrate PLZT thin films with micro-cantilevers ... Different types of cantilever beams incorporating PLZT films have been successfully fabricated using 'lift-off' process and bulk micromachining technology. The proposed process can be advantageously ...

  8. A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides

    DEFF Research Database (Denmark)

    Nordström, M.; Calleja, M.; Hübner, Jörg

    2008-01-01

    We present a novel bonding technique developed for the fabrication of a cantilever-based biosensing system with integrated optical read-out. The read-out mechanism is based on single-mode waveguides fabricated monolithically in SU-8. For optimal operation of the read-out mode, the cantilever...

  9. Fiber-top cantilever: a new generation of micromachined sensors for multipurpose applications

    NARCIS (Netherlands)

    Iannuzzi, D.; Deladi, S.; Schreuders, H.; Slaman, M.; Rector, J.H.; Elwenspoek, Michael Curt

    2006-01-01

    Fiber-top cantilevers are new monolithic devices obtained by carving a cantilever out of the edge of a single-mode optical fiber. Here we report evidences of their potential impact as sensing devices for multipurpose applications.

  10. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    Science.gov (United States)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  11. Finite-Element Simulation of Cantilever Vibrations in Atomic Force Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, F J Espinoza [Centro de Investigacion y Estudios Avanzados del IPN. Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Scholz, T [Hamburg University of Technology, Institute of Advanced Ceramics, Denickestrasse 15, D-21073 Hamburg (Germany); Schneider, G A [Hamburg University of Technology, Institute of Advanced Ceramics, Denickestrasse 15, D-21073 Hamburg (Germany); Munoz-Saldana, J [Centro de Investigacion y Estudios Avanzados del IPN. Unidad Queretaro, Apdo. Postal 1-798, 76001 Queretaro, Qro. (Mexico); Rabe, U [Fraunhofer Institute for Non-Destructive Testing (IZFP), Bldg. E3.1, University, D-66123 Saarbruecken (Germany); Arnold, W [Fraunhofer Institute for Non-Destructive Testing (IZFP), Bldg. E3.1, University, D-66123 Saarbruecken (Germany)

    2007-03-15

    Atomic Force Acoustic Microscopy has been proven to be a powerful technique for materials characterization with nanoscale lateral resolution. This technique allows one to obtain images of elastic properties of materials. By means of spectroscopic measurements of the tip-sample contact-resonance frequencies, it is possible to obtain quantitative values of the mechanical stiffness of the sample surface. For quantitative analysis a reliable relation between the spectroscopic data and the contact stiffness is required based on a correct geometrical model of the cantilever vibrations. This model must be precise enough for predicting the resonance frequencies of the tip-sample interaction when excited over a wide range of frequencies. Analytical models have served as a good reference for understanding the vibrational behavior of the AFM cantilever. They have certain limits, however, for reproducing the tip-sample contact-resonances due to the cantilever geometries used. For obtaining the local elastic modulus of samples, it is necessary to know the tip-sample contact area which is usually obtained by a calibration procedure with a reference sample. In this work we show that finiteelement modeling may be used to replace the analytical inversion procedure for AFAM data. First, the three first bending modes of cantilever resonances were used for finding the geometrical dimension of the cantilever employed. Then the normal and in-plane stiffness of the sample were obtained for each measurement on the surface to be measured. A calibration was needed to obtain the tip position of the cantilever by making measurements on a sample with known surface elasticity, here crystalline silicon. The method developed in this work was applied to AFAM measurements on silicon, zerodur, and strontium titanate.

  12. Highly sensitive polymer-based cantilever-sensors for DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain) and Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark)]. E-mail: mcalleja@imm.cnm.csic.es; Nordstroem, M. [Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark); Alvarez, M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Tamayo, J. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Lechuga, L.M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Boisen, A. [Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark)

    2005-11-15

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized as a function of the dimensions and the medium. The devices have been tested for measurement of the adsorption of single stranded DNA and subsequent interstitial adsorption of lateral spacer molecules. We demonstrate that sensitivity is enhanced by a factor of six compared to that of commercial silicon nitride cantilevers.

  13. A DVD-ROM based high-throughput cantilever sensing platform

    DEFF Research Database (Denmark)

    Bosco, Filippo

    and October 2011. The project was part of the Xsense research network, funded by the Strategic Danish Research Council, and supervised by Prof. Anja Boisen. The goal of the Xsense project is to design and fabricate a compact and cheap device for explosive sensing in air and liquid. Four different technologies...... of a high-throughput label-free sensor platform utilizing cantilever based sensors. These sensors have often been acclaimed to facilitate highly parallelized operation. Unfortunately, so far no concept has been presented which offers large data sets as well as easy liquid sample handling. We use optics...... and mechanics from a DVD player to handle liquid samples and to read-out cantilever deflection and resonant frequency. In a few minutes, several liquid samples can be analyzed in parallel, measuring over several hundreds of individual cantilevers. Three generations of systems have been developed and tested...

  14. Multifrequency Piezoelectric Energy Harvester Based on Polygon-Shaped Cantilever Array

    Directory of Open Access Journals (Sweden)

    Dalius Mažeika

    2018-01-01

    Full Text Available This paper focuses on numerical and experimental investigations of a novel design piezoelectric energy harvester. Investigated harvester is based on polygon-shaped cantilever array and employs multifrequency operating principle. It consists of eight cantilevers with irregular design of cross-sectional area. Cantilevers are connected to each other by specific angle to form polygon-shaped structure. Moreover, seven seismic masses with additional lever arms are added in order to create additional rotation moment. Numerical investigation showed that piezoelectric polygon-shaped energy harvester has five natural frequencies in the frequency range from 10 Hz to 240 Hz, where the first and the second bending modes of the cantilevers are dominating. Maximum output voltage density and energy density equal to 50.03 mV/mm3 and 604 μJ/mm3, respectively, were obtained during numerical simulation. Prototype of piezoelectric harvester was made and experimental investigation was performed. Experimental measurements of the electrical characteristics showed that maximum output voltage density, energy density, and output power are 37.5 mV/mm3, 815.16 μJ/mm3, and 65.24 μW, respectively.

  15. A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides

    International Nuclear Information System (INIS)

    Nordström, Maria; Hübner, Jörg; Boisen, Anja; Calleja, Montserrat

    2008-01-01

    We present a novel bonding technique developed for the fabrication of a cantilever-based biosensing system with integrated optical read-out. The read-out mechanism is based on single-mode waveguides fabricated monolithically in SU-8. For optimal operation of the read-out mode, the cantilever waveguides should be homogenous and this bonding technique ensures free-hanging cantilevers that are surrounded by the same material for bottom and top claddings. The bonding step is necessary because SU-8 is a negative resist where free-hanging structures cannot be fabricated directly. This paper gives details on the processing aspects and the parameters of the fabrication steps

  16. Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Gongbo Zhou

    2015-01-01

    Full Text Available Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectric bimorph cantilever beam are given in detail. Finally, an experiment is also conducted. The results show that wind-induced piezoelectric bimorph cantilever beam has low resonant frequency and stable output under the first modal mode and can achieve the maximum output voltage under the resonant condition. The output voltage increases with the increase of the length and width of wind-induced piezoelectric bimorph cantilever beam, but the latter increasing amplitude is relatively smaller. In addition, the output voltage decreases with the increase of the thickness and the ratio of metal substrate to piezoelectric patches thickness. The experiment showed that the voltage amplitude generated by the piezoelectric bimorph cantilever beam can reach the value simulated in ANSYS, which is suitable for actual working conditions.

  17. Study on the Spatial Stress of the Chongqing Yangtze River Bridge in China

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-09-01

    Full Text Available Continuous rigid-frame bridges are usually used in building bridges with long span and high piers. It is characterized by the consolidation between piers and beams in the middle of bridge piers and flexible bridge piers in the lower part. Among all the factors, curvature has the most obvious influence on the stress of curved continuous rigid-frame bridge, because of which, the curved beam bridge produces coupling effect of bending moment and receives complicated stress, leading to the deformation such as torsion and displacement of radial direction. No matter it is the castscaffold construction or cantilever construction, for continuous rigid-frame bridges, considering that after the long term creep of concrete, structure stress tends to be in a drop-frame state, so it is necessary to know the mechanical properties of the finished bridge. Taking the Chongqing Yangtze River Bridge as an example, this paper mainly analyzes the internal forces and deformations of a finished curved continuotus rigid-frame bridge by establishing a spatial finite element model with Midas Civil 2006 software and by changing the model’s radius of curvature. The results show that as the curvature increases, the vertical deformation and torsion angle of the long-span curved continuous rigid-frame bridge are both reduced under the effect of a dead load and prestressed load, presenting mechanical properties of bridge, namely, “coupling effect of bending moment”. In the model analyzed, the deformation of the bridge in the transverse direction also behaves a trend of gradual decrease with an increase in radius of curvature with the range 500–2000 m.

  18. Indium phosphide-based monolithically integrated PIN waveguide photodiode readout for resonant cantilever sensors

    Energy Technology Data Exchange (ETDEWEB)

    Siwak, N. P. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States); Fan, X. Z.; Ghodssi, R. [Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States); Kanakaraju, S.; Richardson, C. J. K. [Laboratory for the Physical Sciences, 8050 Greenmead Drive, College Park, Maryland 20740 (United States)

    2014-10-06

    An integrated photodiode displacement readout scheme for a microelectromechanical cantilever waveguide resonator sensing platform is presented. III-V semiconductors are used to enable the monolithic integration of passive waveguides with active optical components. This work builds upon previously demonstrated results by measuring the displacement of cantilever waveguide resonators with on-chip waveguide PIN photodiodes. The on-chip integration of the readout provides an additional 70% improvement in mass sensitivity compared to off-chip photodetector designs due to measurement stability and minimized coupling loss. In addition to increased measurement stability, reduced packaging complexity is achieved due to the simplicity of the readout design. We have fabricated cantilever waveguides with integrated photodetectors and experimentally characterized these cantilever sensors with monolithically integrated PIN photodiodes.

  19. Cantilever contribution to the total electrostatic force measured with the atomic force microscope

    International Nuclear Information System (INIS)

    Guriyanova, Svetlana; Golovko, Dmytro S; Bonaccurso, Elmar

    2010-01-01

    The atomic force microscope (AFM) is a powerful tool for surface imaging at the nanometer scale and surface force measurements in the piconewton range. Among long-range surface forces, the electrostatic forces play a predominant role. They originate if the electric potentials of the substrate and of the tip of the AFM cantilever are different. A quantitative interpretation of the AFM signal is often difficult because it depends in a complicated fashion on the cantilever–tip–surface geometry. Since the electrostatic interaction is a long-range interaction, the cantilever, which is many microns from the surface, contributes to the total electrostatic force along with the tip. Here we present results of the electrostatic interaction between a conducting flat surface and horizontal or tilted cantilevers, with and without tips, at various distances from the surface. As addressed in a previous work, we show that the contribution of the cantilever to the overall force cannot be neglected. Based on a predictive model and on 3D confocal measurements, we discuss the influence of the tilting angle of the cantilever

  20. Vibrational fatigue failures in short cantilevered piping with socket-welding fittings

    International Nuclear Information System (INIS)

    Smith, J.K.

    1996-01-01

    Approximately 80% of the vibrational fatigue failures in nuclear power plants have been caused by high cycle vibrational fatigue. Many of these failures have occurred in short, small bore (2 in. nominal diameter and smaller), unbraced, cantilevered piping with socket-welding fittings. The fatigue failures initiated in the socket welds. These failures have been unexpected, and have caused costly, unscheduled outages in some cases. In order to reduce the number of vibrational fatigue failures in these short cantilevered pipes, an acceleration based vibrational fatigue screening criteria was developed under Electric Power Research Institute (EPRI) sponsorship. In this paper, the acceleration based criteria will be compared to the results obtained from detailed dynamic modeling of a short, cantilevered pipe

  1. A new detection system for extremely small vertically mounted cantilevers

    International Nuclear Information System (INIS)

    Antognozzi, M; Ulcinas, A; Picco, L; Simpson, S H; Miles, M J; Heard, P J; Szczelkun, M D; Brenner, B

    2008-01-01

    Detection techniques currently used in scanning force microscopy impose limitations on the geometrical dimensions of the probes and, as a consequence, on their force sensitivity and temporal response. A new technique, based on scattered evanescent electromagnetic waves (SEW), is presented here that can detect the displacement of the extreme end of a vertically mounted cantilever. The resolution of this method is tested using different cantilever sizes and a theoretical model is developed to maximize the detection sensitivity. The applications presented here clearly show that the SEW detection system enables the use of force sensors with sub-micron size, opening new possibilities in the investigation of biomolecular systems and high speed imaging. Two types of cantilevers were successfully tested: a high force sensitivity lever with a spring constant of 0.17 pN nm -1 and a resonant frequency of 32 kHz; and a high speed lever with a spring constant of 50 pN nm -1 and a resonant frequency of 1.8 MHz. Both these force sensors were fabricated by modifying commercial microcantilevers in a focused ion beam system. It is important to emphasize that these modified cantilevers could not be detected by the conventional optical detection system used in commercial atomic force microscopes

  2. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    Directory of Open Access Journals (Sweden)

    Franchetti Paolo

    2015-01-01

    Full Text Available A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention of rehabilitation of the bridge led to a reinforcement of the existing hinges with the coupling of new metallic devices: new tongue and groove hinges were applied, that by one side allow the horizontal displacements and rotation, by the other side strongly reduce the relative vertical displacements of the two parts of the bridge. A dynamic test campaign was set up in order to assess the effectiveness of the intervention. The principal dynamic parameters were calculated and analysed with respect to the intervention that was realized. The tests clearly showed the effectiveness of the intervention, and helped the designer to have a better understanding of the structural behaviour of the bridge.

  3. Multi-frequency response from a designed array of micromechanical cantilevers fabricated using a focused ion beam

    International Nuclear Information System (INIS)

    Ghatnekar-Nilsson, S; Graham, J; Hull, R; Montelius, L

    2006-01-01

    We demonstrate arrays of cantilevers with different lengths, fabricated by focused ion beam milling. The arrays of oscillators generate a spectrum of different resonant frequencies, where each frequency correlates to the corresponding individual cantilever. The frequency response from all the cantilevers is collected from a single measurement under the same environment and conditions for the entire array. The mass response of the system generated the same Δf/f 0 for the cantilevers, within 0.1% accuracy. We denote the method MFSAC: multi-frequency signal analysis from an array of cantilevers. The simultaneous detection of several frequencies in one spectrum has great benefits in mass sensor applications, offering the possibility for true label-free detection

  4. Highly Sensitive Polymer-based Cantilever-sensors for DNA Detection

    DEFF Research Database (Denmark)

    Gomez, Montserrat; Nordström, Maria; Alvarez, M.

    2005-01-01

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel...... polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized...

  5. Squeeze-film damping characteristics of cantilever microresonators ...

    African Journals Online (AJOL)

    user

    perturbation approach does not apply to cantilever plates because of ...... Direct coupling of electrostatic and structural domain has been achieved using ... forces are computed to obtain the modal squeeze stiffness and damping parameters.

  6. 〈c + a〉 Dislocations in deformed Ti–6Al–4V micro-cantilevers

    International Nuclear Information System (INIS)

    Ding, Rengen; Gong, Jicheng; Wilkinson, Angus J.; Jones, Ian P.

    2014-01-01

    Single α–β colony micro-cantilevers with an equilateral triangular cross-section and an apex at the bottom were machined from a polycrystalline commercial Ti–6Al–4V sample using a focused ion beam (FIB). Each cantilever contained several α lamellae separated by thin fillets of β. A nano-indenter was used to perform micro-bending tests (Ding et al., 2012) [1]. 〈c + a〉 Slip systems were selectively activated in the cantilevers by controlling the crystal direction along the micro-cantilever to be [0 0 0 1]. Specimens for transmission electron microscopy were prepared from the deformed micro-cantilevers using a dual-beam FIB. Bright field scanning transmission electron microscopy was used to investigate the processes of slip nucleation, propagation and transmission through the α/β interface. Dislocations initiate first near the bottom of the cantilever and subsequently from the top. Both sets of dislocations move inward toward the neutral axis. Planar pyramidal {101 ¯ 1} slip was observed at the top (tension) but cross-slip was observed at the bottom (compression). All the 〈c + a〉 slip systems are equally stressed, but only a limited number is activated. This is tentatively interpreted in terms of dislocation transmission through the β fillets

  7. Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Salwa [University of Tennessee, Knoxville (UTK); Lee, Ida [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); Eliza, Sazia A. [University of Tennessee, Knoxville (UTK); Shekhawat, Gajendra [Northwestern University, Evanston; Dravid, Vinayak [Northwestern University, Evanston; Tulip, Fahmida S [ORNL

    2011-01-01

    In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/ L.

  8. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    DEFF Research Database (Denmark)

    Larsson, David; Greve, Anders; Hvam, Jørn Märcher

    2009-01-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power...... and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was 60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed....

  9. Optical device comprising a cantilever and method of fabrication and use thereof

    NARCIS (Netherlands)

    Iannuzzi, Davide; Deladi, S.; Elwenspoek, Michael Curt

    2008-01-01

    The present invention provides an optical device, comprising an optical fiber and a cantilever that is arranged on an end of the optical fiber; The cantilever may be an integral part of the optical fiber, and may have a length that is substantially equal to a diameter of the optical fiber.

  10. Optical device comprising a cantilever and method of fabrication and use thereof

    NARCIS (Netherlands)

    Iannuzzi, Davide; Deladi, S.; Elwenspoek, Michael Curt

    2011-01-01

    The present invention provides an optical device, comprising an optical fiber and a cantilever that is arranged on an end of the optical fiber; The cantilever may be an integral part of the optical fiber, and may have a length that is substantially equal to a diameter of the optical fiber.

  11. Calibration of optical cantilever deflection readers

    International Nuclear Information System (INIS)

    Hu Zhiyu; Seeley, Tim; Kossek, Sebastian; Thundat, Thomas

    2004-01-01

    Because of its ultrahigh sensitivity, the optical lever detection method similar to that used in the atomic force microscope (AFM) has been widely employed as a standard technique for measuring microcantilever deflection. Along with the increasing interest in using the microcantilever as a sensing platform, there is also a requirement for a reliable calibration technique. Many researchers have used the concept of optical lever detection to construct microcantilever deflection readout instruments for chemical, physical, and biological detection. However, without an AFM piezo z scanner, it is very difficult to precisely calibrate these instruments. Here, we present a step-by-step method to conveniently calibrate an instrument using commercially available piezoresistive cantilevers. The experimental results closely match the theoretical calculation. Following this procedure, one can easily calibrate any optical cantilever deflection detection system with high reproducibility, precision, and reliability. A detailed discussion of the optical lever readout system design has been addressed in this article

  12. Optimization of Q-factor of AFM cantilevers using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Cruz, Angel, E-mail: elapc27@gmail.com [Faculty of Engineering, Universidad Autonoma de Queretaro, Queretaro (Mexico); Dominguez-Gonzalez, Aurelio [Faculty of Engineering, Universidad Autonoma de Queretaro, Queretaro (Mexico); Stiharu, Ion [Department of Mechanical and Industrial Engineering, Concordia University, Montreal (Canada); Osornio-Rios, Roque A. [Faculty of Engineering, Universidad Autonoma de Queretaro, Queretaro (Mexico)

    2012-04-15

    Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect. Thus, the optimization of the configuration of an AFM micro-cantilever is presented in this work with the objective of improving its Q-factor. To accomplish this task, we propose the inclusion of holes as breathing chimneys in the initial design to reduce the squeeze-film damping effect. The evaluation of the Q-factor was carried out using finite element model, which is implemented to work together with the squeeze-film damping model. The methodology applied in the optimization process was genetic algorithms, which considers as constraints the maximum allowable stress, fundamental frequency and spring constant with respect to the initial design. The results show that the optimum design, which includes holes with an optimal location, increases the Q-factor almost five times compared to the initial design. -- Highlights: Black-Right-Pointing-Pointer It was optimized the Q-factor of a cantilever, which operates near to the surface in air. Black-Right-Pointing-Pointer It was proposed the inclusion of holes as breathing chimneys in the cantilever's surface. Black-Right-Pointing-Pointer Genetic algorithms and finite element analysis were applied to find the optimum configuration for the Q-factor. Black-Right-Pointing-Pointer Optimum design keeps first frequency and the spring constant very close to the original and has a better force resolution. Black-Right-Pointing-Pointer Final design can be easily manufactured through a mask.

  13. Characterizing Vibrating Cantilevers for Liquid Viscosity and Density Sensing

    Directory of Open Access Journals (Sweden)

    Bernhard Jakoby

    2008-10-01

    Full Text Available Miniaturized liquid sensors are essential devices in online process or condition monitoring. In case of viscosity and density sensing, microacoustic sensors such as quartz crystal resonators or SAW devices have proved particularly useful. However, these devices basically measure a thin-film viscosity, which is often not comparable to the macroscopic parameters probed by conventional viscometers. Miniaturized cantilever-based devices are interesting alternatives for such applications, but here the interaction between the liquid and the oscillating beam is more involved. In our contribution, we describe a measurement setup, which allows the investigation of this interaction for different beam cross-sections. We present an analytical model based on an approximation of the immersed cantilever as an oscillating sphere comprising the effective mass and the intrinsic damping of the cantilever and additional mass and damping due to the liquid loading. The model parameters are obtained from measurements with well-known sample liquids by a curve fitting procedure. Finally, we present the measurement of viscosity and density of an unknown sample liquid, demonstrating the feasibility of the model.

  14. Scanning probe microscopy with vertically oriented cantilevers made easy

    International Nuclear Information System (INIS)

    Valdrè, G; Moro, D; Ulian, G

    2012-01-01

    Non-contact imaging in scanning probe microscopy (SPM) is becoming of great importance in particular for imaging biological matter and in general soft materials. Transverse dynamic force microscopy (TDFM) is an SPM-based methodology that exploiting a cantilever oriented in a vertical configuration with respect to the sample surface may work with very low tip to sample interaction forces. The probe is oscillated parallel to the sample surface, usually by a piezoelectric element. However, this methodology often requires complex microscope setups and detection systems, so it is usually developed in specific laboratories as a prototype microscope. Here, we present a very simple device that easily enables a commercial SPM head to be oriented in such a way to have the cantilever long axis perpendicular to the sample surface. No modifications of the SPM hardware and software are required and commercial available cantilevers can be used as probes. Performance tests using polystyrene spheres, muscovite crystallographic steps and DNA single molecules were successful and all resulted in agreement with other TDFM and SPM observations demonstrating the reliability of the device. (paper)

  15. GaAs/AlAs/InGaP heterostructure: a versatile material basis for cantilever designs

    International Nuclear Information System (INIS)

    Gregušová, Dagmar; Kúdela, Róbert; Eliáš, Peter; Šoltýs, Ján; Cambel, Vladimír; Kostič, Ivan

    2010-01-01

    We report on the design, fabrication and initial mechanical testing of cantilevers with tips based on a GaAs/In 0.485 Ga 0.515 P/AlAs heterostructure grown by metal organic chemical vapor deposition. They were produced using a dedicated technological process based on (1) the formation of integrated tips through an AlAs-assisted surface sacrificial wet-etching process and (2) the GaAs cantilever release fully protected between two InGaP etch-stop layers. 2 µm thick InGaP/GaAs/InGaP cantilevers had integrated pyramidal tips with the sides at ∼45° to (1 0 0). Metallic elements were processed close to the tip apexes using non-standard optical lithography. The cantilever release was accomplished using photolithography, Ar ion milling of InGaP and wet chemical etching of GaAs via resist layers deposited by a draping technique. A tip–cantilever prototype with length, width and thickness of 150, 35 and 2 µm, respectively, exhibited a resonance frequency of 66.2 kHz, which correlated well with a theoretical value of 57 kHz for a GaAs cantilever of identical dimensions. (technical note)

  16. An AlN cantilever for a wake-up switch triggered by air pressure change

    International Nuclear Information System (INIS)

    Kaiho, Y; Itoh, T; Maeda, R; Takahashi, H; Matsumoto, K; Shimoyama, I; Tomimatsu, Y; Kobayashi, T

    2013-01-01

    This research reports an AlN cantilever with an air chamber for a wake-up switch triggered by air pressure change. The proposed sensor is designed to fulfil both high sensitivity and low power consumption. By combining an air chamber to the one side of the AlN cantilever surface, the barometric pressure change generates a piezoelectric voltage. Thus, a wake-up switch triggered by air pressure change can be achieved using an AlN cantilever. The size of the fabricated AlN cantilever was 2000 μm × 1000 μm × 2 μm. The sensitivity to static differential pressure was 11.5 mV/Pa at the range of −20 Pa to 20 Pa. We evaluated the response of the sensor, which was composed of the AlN cantilever and the chamber of 60 ml in volume, when air pressure change was applied. The output voltage increased with increasing the applied air pressure change. It was observed that the maximum output voltage of 50 mV was generated when the air pressure change was 13 Pa

  17. Cantilever-based bio-chemical sensor integrated in a microliquid handling system

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Marie, Rodolphe; Boisen, Anja

    2001-01-01

    The cantilevers have integrated piezoresistive readout which, compared to optical readout, enables simple measurements on even non-transparent liquids, such as blood. First, we introduce a simple theory for using piezoresistive cantilevers as surface stress sensors. Then, the sensor fabrication...... based on conventional microfabrication is described and the sensor characterization is discussed. During the characterization we found a stress sensitivity of (ΔR/R)=4.6:10 -4 (N/m)-1 and a minimum detectable surface stress change of 2.6 mN/m. Aqua regia etch of gold on top of the cantilevers has been...... monitored, and immobilization of single-stranded thiol modified DNA-oligos has been detected by the sensor. Finally, it is demonstrated that it is possible to analyze two samples simultaneously by utilizing the laminar flow in the microliquid handling system....

  18. Investigation of polymer derived ceramics cantilevers for application of high speed atomic force microscopy

    Science.gov (United States)

    Wu, Chia-Yun

    High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques

  19. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    Science.gov (United States)

    Larsson, David; Greve, Anders; Hvam, Jørn M.; Boisen, Anja; Yvind, Kresten

    2009-03-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and the junction voltage depends on the laser injection current and the distance to the cantilever. The highest power visibility obtained from cantilevers without reflective coatings was ˜60%, resulting in a very high sensitivity of 45 mV/nm with a noise floor below 1.2 mV. Different detection schemes are discussed.

  20. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    Science.gov (United States)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  1. Experimental Determination of Bending Resonances of Millimeter Size PVF2 Cantilevers

    Directory of Open Access Journals (Sweden)

    David F. Thompson

    2003-07-01

    Full Text Available The polymer piezoelectric polvinylidene fluoride has found widespread use in sensors and actuators. The bending mode of piezoelectricity offers very high sensitivities and low mechanical input impedance, but has not been studied in as much detail for sensor applications. We report the dynamic electromechanical properties of millimeter size cantilevers made from electroded films of PVF2. All devices tested had a single polymer layer. Several resonances are found below 1 kHz and the experimentally observed resonance frequency dependence on cantilever thickness and length are seen to agree well with published models which take the properties of the electrodes into account. It is found that bending resonances are also modulated by the width of the cantilever. Therefore, though the length and thickness control the resonance frequency most strongly, the actual realized value can be fine-tuned by changing cantilever width and the electrode material and its thickness. Further, all resonances display high piezoelectric coupling coefficients (keff, ranging between 0.2 - 0.35. The data presented here will be extremely useful in the design of sensors and actuators for a number of applications, since the combination of millimeter size scales and high piezoelectric sensitivities in the low audio range can be realized with this marriage of polymeric materials and cantilever geometries. Such an array of sensors can be used in cochlear implant applications, and when integrated with a resonance interrogation circuit can be used for the detection of low frequency vibrations of large structures. If appropriate mass/elasticity sensitive layers are coated on the electrodes, such a sensor can be used for the detection of a wide range of chemicals and biochemicals.

  2. Static and fatigue investigation of second generation steel free bridge decks

    International Nuclear Information System (INIS)

    Klowak, C.; Memon, Amjad H.; Mufti, Aftab A.

    2006-01-01

    This paper outlines the static and fatigue behavior of two different cast-in-place second generation steel-free bridge decks, which are: hybrid carbon fiber reinforced polymer (CFRP); and glass fiber reinforced polymer (GFRP) and steel strap design. Although cast monolithically, the first deck slab was divided into three segments with different reinforcement configurations. All three segments were tested under a 222kN cyclic loading to investigate fatigue behavior. The second bridge deck comprised an internal panel and two cantilevers and was equipped with a civionics system. The internal panel static test that this paper deals with is useful in the development of fatigue theory derived from fatigue testing of the first bridge deck. Test results form the cyclic loading of the first bridge deck indicated that the cross-sectional area of the reinforcement used in the test bridge deck can be reduced by 40% based on the reinforcement provided in the deck under service loads. The hybrid system also reduced the development of longitudinal crack widths to approximately 0.4 mm under service conditions, compared to the cracks that occurred approximately halfway between adjacent bridge girders that were determined to be roughly 1 mm in several first generation steel-free bridge decks constructed in Canada. Civionics, also discussed in the paper, is a new term coined from Civil-Electronics, which is the application of electronics to civil structures. The Civionics Specifications (2004) developed by ISIS Canada researchers are a helpful design tool for engineers and contractors to develop civionics and structural health monitoring systems for civil infrastructure that will last the lifetime of a structure. The use of civionics for the second test bridge deck ensured the survival of 100% of the 63 internal sensors throughout the rigors of the construction and casting of the deck. (author)

  3. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    Science.gov (United States)

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.

  4. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    Science.gov (United States)

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  5. Design and Simulation of A Novel Piezoelectric AlN-Si Cantilever Gyroscope

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2018-02-01

    Full Text Available A novel design of piezoelectric aluminum nitride (AlN-Si composite cantilever gyroscope is proposed in this paper. The cantilever is stimulated to oscillate in plane by two inverse voltages which are applied on the two paralleled drive electrodes, respectively. The whole working principles are deduced, which based on the piezoelectric equation and elastic vibration equation. In this work, a cantilever gyroscope has been simulated and optimized by COMSOL Multiphysics 5.2a. The drive mode frequency is 87.422 kHz, and the sense mode frequency is 87.414 kHz. The theoretical sensitivity of this gyroscope is 0.145 pm/◦/s. This gyroscope has a small size and simple structure. It will be a better choice for the consumer electronics.

  6. System identification and control parameter optimization for a stylus profiler with exchangeable cantilevers

    Directory of Open Access Journals (Sweden)

    Felix Ströer

    2018-02-01

    Full Text Available Stylus instruments are widely used in production metrology due to their robustness. Interchangeable cantilevers allow a wide range of measuring tasks to be covered with one measuring device. When approaching the sample, the positioning of the stylus instrument tip relative to the measurement object has to be accomplished in a controlled way in order to prevent damages to the specimen and the stylus cantilever. This is achieved by a closed-loop control. We present a method for the objective description of the stylus cantilever dynamics with system-theoretical techniques and show a simple iterative approach to optimize closed-loop control parameters with boundary conditions.

  7. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    Directory of Open Access Journals (Sweden)

    Darius Zizys

    2015-12-01

    Full Text Available The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  8. Nonlinear dynamic response of cantilever beam tip during atomic force microscopy (AFM) nanolithography of copper surface

    International Nuclear Information System (INIS)

    Yeh, Y-L; Jang, M-J; Wang, C-C; Lin, Y-P; Chen, K-S

    2008-01-01

    This paper investigates the nonlinear dynamic response of an atomic force microscope (AFM) cantilever beam tip during the nanolithography of a copper (Cu) surface using a high-depth feed. The dynamic motion of the tip is modeled using a combined approach based on Newton's law and empirical observations. The cutting force is determined from experimental observations of the piling height on the Cu surface and the rotation angle of the cantilever beam tip. It is found that the piling height increases linearly with the cantilever beam carrier velocity. Furthermore, the cantilever beam tip is found to execute a saw tooth motion. Both this motion and the shear cutting force are nonlinear. The elastic modulus in the y direction is variable. Finally, the velocity of the cantilever beam tip as it traverses the specimen surface has a discrete characteristic rather than a smooth, continuous profile

  9. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2008-03-01

    Full Text Available Here, we present the activities within our research group over the last five yearswith cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interestingpolymer for fabrication of cantilevers for bio/chemical sensing due to its simple processingand low Young’s modulus. We show examples of different integrated read-out methodsand their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity tochanges in the environmental temperature and pH of the buffer solution. Moreover, weshow that the SU-8 cantilever surface can be functionalised directly with receptormolecules for analyte detection, thereby avoiding gold-thiol chemistry.

  10. Fabrication and characterization of large arrays of mesoscopic gold rings on large-aspect-ratio cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, D. Q.; Petković, I., E-mail: ivana.petkovic@yale.edu; Lollo, A. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Castellanos-Beltran, M. A. [National Institute for Standards and Technology, Boulder, Colorado 80305 (United States); Harris, J. G. E. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2014-10-15

    We have fabricated large arrays of mesoscopic metal rings on ultrasensitive cantilevers. The arrays are defined by electron beam lithography and contain up to 10{sup 5} rings. The rings have a circumference of 1 μm, and are made of ultrapure (6N) Au that is deposited onto a silicon-on-insulator wafer without an adhesion layer. Subsequent processing of the SOI wafer results in each array being supported at the end of a free-standing cantilever. To accommodate the large arrays while maintaining a low spring constant, the cantilevers are nearly 1 mm in both lateral dimensions and 100 nm thick. The extreme aspect ratio of the cantilevers, the large array size, and the absence of a sticking layer are intended to enable measurements of the rings' average persistent current in the presence of relatively small magnetic fields. We describe the motivation for these measurements, the fabrication of the devices, and the characterization of the cantilevers' mechanical properties. We also discuss the devices' expected performance in measurements of .

  11. Search for the optimally suited cantilever type for high-frequency MFM

    International Nuclear Information System (INIS)

    Koblischka, M R; Wei, J D; Kirsch, M; Lessel, M; Pfeifer, R; Brust, M; Hartmann, U; Richter, C; Sulzbach, T

    2007-01-01

    To optimize the performance of the high-frequency MFM (HF-MFM) technique [1-4], we performed a search for the best suited cantilever type and magnetic material coating. Using a HF-MFM setup with hard disk writer poles as test samples, we carried out HF-MFM imaging at frequencies up to 2 GHz. For HF-MFM, it is an essential ingredient that the tip material can follow the fast switching of the high-frequency fields. In this contribution, we investigated 6 different types of cantilevers (i) the 'standard' MFM tip (Nanoworld Pointprobe) with 30 nm CoCr coating, (ii) a 'SSS' (Nanoworld SuperSharpSilicon TM ) cantilever with a 10 nm CoCr coating, (iii) a (Ni, Zn)-ferrite coated pointprobe tip (iv) a Ba 3 Co 2 Fe 23 O 41 (BCFO) coated pointprobe tip, (v) a low-coercivity NiCo alloy coated tip, and (vi) a permalloy-coated tip

  12. A wall shear stress sensor using a pair of sidewall doped cantilevers

    Science.gov (United States)

    Nguyen, Thanh-Vinh; Kazama, Ryohei; Takahashi, Hidetoshi; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2017-07-01

    In this paper, we report on a micro-electro mechanical system (MEMS)-based piezoresistive sensor for measuring shear stress induced by an airflow. The advantages of the proposed sensor include a simple sensing method and a high resonance frequency due to the small size of the sensing elements. Our sensor consists of a pair of 3 µm thick cantilevers with piezoresistors formed on the sidewall of their hinges to detect lateral deformation in the cantilevers induced by an airflow. Each cantilever has a 200 µm  ×  400 µm plate supported by two 150 µm long, 4 µm wide beams. The piezoresistors on the two cantilevers are designed to deform in opposite manners when a shear stress is applied and in the same manner when a pressure is applied. Therefore, the applied shear stress can be detected from the difference in the responses of the two cantilevers without becoming conflated with pressure. In this paper, the design, fabrication and evaluation of the proposed sensor are reported and compared to numerical simulation results. From the experimental results, the resolution of the sensor and its first resonance frequency are 1.3 Pa and 3.9 kHz, respectively. Moreover, we show that the effect of temperature on the readout of the sensor can be eliminated using a temperature-compensating piezoresistor fabricated on the same sensor chip. Finally, using the fabricated sensor, the measurement of the shear stress induced by an airflow with velocity between  -10 and 10 m s-1 is demonstrated.

  13. A wall shear stress sensor using a pair of sidewall doped cantilevers

    International Nuclear Information System (INIS)

    Nguyen, Thanh-Vinh; Shimoyama, Isao; Kazama, Ryohei; Takahashi, Hidetoshi; Takahata, Tomoyuki; Matsumoto, Kiyoshi

    2017-01-01

    In this paper, we report on a micro-electro mechanical system (MEMS)-based piezoresistive sensor for measuring shear stress induced by an airflow. The advantages of the proposed sensor include a simple sensing method and a high resonance frequency due to the small size of the sensing elements. Our sensor consists of a pair of 3 µ m thick cantilevers with piezoresistors formed on the sidewall of their hinges to detect lateral deformation in the cantilevers induced by an airflow. Each cantilever has a 200 µ m  ×  400 µ m plate supported by two 150 µ m long, 4 µ m wide beams. The piezoresistors on the two cantilevers are designed to deform in opposite manners when a shear stress is applied and in the same manner when a pressure is applied. Therefore, the applied shear stress can be detected from the difference in the responses of the two cantilevers without becoming conflated with pressure. In this paper, the design, fabrication and evaluation of the proposed sensor are reported and compared to numerical simulation results. From the experimental results, the resolution of the sensor and its first resonance frequency are 1.3 Pa and 3.9 kHz, respectively. Moreover, we show that the effect of temperature on the readout of the sensor can be eliminated using a temperature-compensating piezoresistor fabricated on the same sensor chip. Finally, using the fabricated sensor, the measurement of the shear stress induced by an airflow with velocity between  −10 and 10 m s −1 is demonstrated. (paper)

  14. Shielded piezoresistive cantilever probes for nanoscale topography and electrical imaging

    International Nuclear Information System (INIS)

    Yang, Yongliang; Ma, Eric Yue; Cui, Yong-Tao; Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael; Shen, Zhi-Xun; Haemmerli, Alexandre; Harjee, Nahid; Pruitt, Beth L

    2014-01-01

    This paper presents the design and fabrication of piezoresistive cantilever probes for microwave impedance microscopy (MIM) to enable simultaneous topographic and electrical imaging. Plasma enhanced chemical vapor deposited Si 3 N 4  cantilevers with a shielded center conductor line and nanoscale conductive tip apex are batch fabricated on silicon-on-insulator wafers. Doped silicon piezoresistors are integrated at the root of the cantilevers to sense their deformation. The piezoresistive sensitivity is 2 nm for a bandwidth of 10 kHz, enabling topographical imaging with reasonable speed. The aluminum center conductor has a low resistance (less than 5 Ω) and small capacitance (∼1.7 pF) to ground; these parameters are critical for high sensitivity MIM imaging. High quality piezoresistive topography and MIM images are simultaneously obtained with the fabricated probes at ambient and cryogenic temperatures. These new piezoresistive probes remarkably broaden the horizon of MIM for scientific applications by operating with an integrated feedback mechanism at low temperature and for photosensitive samples. (paper)

  15. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well sui...

  16. Environmental sensors based on micromachined cantilevers with integrated read-out

    DEFF Research Database (Denmark)

    Boisen, Anja; Thaysen, Jacob; Jensenius, Henriette

    2000-01-01

    -out facilitates measurements in liquid. The probe has been successfully implemented in gaseous as well as in liquid experiments. For example, the probe has been used as an accurate and minute thermal sensor and as a humidity sensor. In liquid, the probe has been used to detect the presence of alcohol in water. (C......An AFM probe with integrated piezoresistive read-out has been developed and applied as a cantilever-based environmental sensor. The probe has a built-in reference cantilever, which makes it possible to subtract background drift directly in the measurement. Moreover, the integrated read...

  17. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation

    International Nuclear Information System (INIS)

    Korayem, Moharam Habibnejad; Saraie, Maniya B.; Saraee, Mahdieh B.

    2017-01-01

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry exerts the

  18. Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    DEFF Research Database (Denmark)

    Bache, Michael; Taboryski, Rafael Jozef; Schmid, Silvan

    2011-01-01

    -BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending...

  19. Design of bridges against large tectonic deformation

    Science.gov (United States)

    Anastasopoulos, I.; Gazetas, G.; Drosos, V.; Georgarakos, T.; Kourkoulis, R.

    2008-12-01

    The engineering community has devoted much effort to understanding the response of soil-structure systems to seismic ground motions, but little attention to the effects of an outcropping fault offset. The 1999 earthquakes of Turkey and Taiwan, offering a variety of case histories of structural damage due to faulting, have (re)fueled the interest on the subject. This paper presents a methodology for design of bridges against tectonic deformation. The problem is decoupled in two analysis steps: the first (at the local level) deals with the response of a single pier and its foundation to fault rupture propagating through the soil, and the superstructure is modeled in a simplified manner; and the second (at the global level) investigates detailed models of the superstructure subjected to the support (differential) displacements of Step 1. A parametric study investigates typical models of viaduct and overpass bridges, founded on piles or caissons. Fixed-head piled foundations are shown to be rather vulnerable to faulting-induced deformation. End-bearing piles in particular are unable to survive bedrock offsets exceeding 10 cm. Floating piles perform better, and if combined with hinged pile-to-cap connections, they could survive much larger offsets. Soil resilience is beneficial in reducing pile distress. Caisson foundations are almost invariably successful. Statically-indeterminate superstructures are quite vulnerable, while statically-determinate are insensitive (allowing differential displacements and rotations without suffering any distress). For large-span cantilever-construction bridges, where a statically determinate system is hardly an option, inserting resilient seismic isolation bearings is advantageous as long as ample seating can prevent the deck from falling off the supports. An actual application of the developed method is presented for a major bridge, demonstrating the feasibility of design against tectonic deformation.

  20. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    Science.gov (United States)

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  1. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    OpenAIRE

    Anja Boisen; Mogens Havsteen-Jakobsen; Gabriela Blagoi; Daniel Haefliger; Søren Dohn; Alicia Johansson; Michael Lillemose; Stephan Keller; Maria Nordström

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the bu...

  2. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different...... is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external...

  3. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    International Nuclear Information System (INIS)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-01-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials. (paper)

  4. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    Science.gov (United States)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  5. Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar, E-mail: skparashar@rtu.ac.in [Department of Mechanical Engineering, Rajasthan Technical University, Kota (India)

    2016-04-13

    In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d{sub 15} has much higher value than coupling coefficients d{sub 31} and d{sub 33}, hence in the present work the micro cantilever beam actuated by d{sub 15} effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done. The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.

  6. Fabrication of thin SU-8 cantilevers: initial bending, release and time stability

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Haefliger, D.; Boisen, Anja

    2010-01-01

    SU-8 cantilevers with a thickness of 2 mu m were fabricated using a dry release method and two steps of SU-8 photolithography. The processing of the thin SU-8 film defining the cantilevers was experimentally optimized to achieve low initial bending due to residual stress gradients. In parallel......, the rotational deformation at the clamping point allowed a qualitative assessment of the device release from the fluorocarbon-coated substrate. The change of these parameters during several months of storage at ambient temperature was investigated in detail. The introduction of a long hard bake in an oven after...... development of the thin SU-8 film resulted in reduced cantilever bending due to removal of residual stress gradients. Further, improved time-stability of the devices was achieved due to the enhanced cross-linking of the polymer. A post-exposure bake at a temperature T-PEB = 50 degrees C followed by a hard...

  7. Discussion of the Improved Methods for Analyzing a Cantilever Beam Carrying a Tip-Mass under Base Excitation

    Directory of Open Access Journals (Sweden)

    Wang Hongjin

    2014-01-01

    Full Text Available Two improved analytical methods of calculations for natural frequencies and mode shapes of a uniform cantilever beam carrying a tip-mass under base excitation are presented based on forced vibration theory and the method of separation of variables, respectively. The cantilever model is simplified in detail by replacing the tip-mass with an equivalent inertial force and inertial moment acting at the free end of the cantilever based on D’Alembert’s principle. The concentrated equivalent inertial force and inertial moment are further represented as distributed loads using Dirac Delta Function. In this case, some typical natural frequencies and mode shapes of the cantilever model are calculated by the improved and unimproved analytical methods. The comparing results show that, after improvement, these two methods are in extremely good agreement with each other even the offset distance between the gravity center of the tip-mass and the attachment point is large. As further verification, the transient and steady displacement responses of the cantilever system under a sine base excitation are presented in which two improved methods are separately utilized. Finally, an experimental cantilever system is fabricated and the theoretical displacement responses are validated by the experimental measurements successfully.

  8. AFM cantilever with in situ renewable mercury microelectrode

    NARCIS (Netherlands)

    Schön, Peter Manfred; Geerlings, J.; Tas, Niels Roelof; Sarajlic, Edin

    2013-01-01

    We report here first results obtained on a novel, in situ renewable mercury microelectrode integrated into an atomic force microscopy (AFM) cantilever. Our approach is based on a fountain pen probe with appropriate dimensions enabling reversible filling with(nonwetting) mercury under changing the

  9. Variable RF capacitor based on a-Si:H (P-doped) multi-length cantilevers

    International Nuclear Information System (INIS)

    Fu, Y Q; Milne, S B; Luo, J K; Flewitt, A J; Wang, L; Miao, J M; Milne, W I

    2006-01-01

    A variable RF capacitor with a-Si:H (doped with phosphine) cantilevers as the top electrode were designed and fabricated. Because the top multi-cantilever electrodes have different lengths, increasing the applied voltage pulled down the cantilever beams sequentially, thus realizing a gradual increase of the capacitance with the applied voltage. A high-k material, H f O 2 , was used as an insulating layer to increase the tuning range of the capacitance. The measured capacitance from the fabricated capacitor was much lower and the pull-in voltage was much higher than those from theoretical analysis because of incomplete contact of the two electrodes, existence of film differential stresses and charge injection effect. Increase of sweeping voltage rate could significantly shift the pull-in voltage to higher values due to the charge injection mechanisms

  10. Orthodontic Traction of Impacted Canine Using Cantilever

    Directory of Open Access Journals (Sweden)

    Cláudia Nakandakari

    2016-01-01

    Full Text Available The impaction of the maxillary canines causes relevant aesthetic and functional problems. The multidisciplinary approach to the proper planning and execution of orthodontic traction of the element in question is essential. Many strategies are cited in the literature; among them is the good biomechanical control in order to avoid possible side effects. The aim of this paper is to present a case report in which a superior canine impacted by palatine was pulled out with the aid of the cantilever on the Segmented Arch Technique (SAT concept. A 14.7-year-old female patient appeared at clinic complaining about the absence of the upper right permanent canine. The proposed treatment prioritized the traction of the upper right canine without changing the occlusion and aesthetics. For this, it only installed the upper fixed appliance (Roth with slot 0.018, opting for SAT in order to minimize unwanted side effects. The use of cantilever to the traction of the upper right canine has enabled an efficient and predictable outcome, because it is of statically determined mechanics.

  11. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shingo [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Uchihashi, Takayuki; Ando, Toshio [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  12. Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers

    International Nuclear Information System (INIS)

    Cheng, Chao-Lin; Fang, Weileun; Tsai, Ming-Han

    2015-01-01

    Many standard CMOS processes, provided by existing foundries, are available. These standard CMOS processes, with stacking of various metal and dielectric layers, have been extensively applied in integrated circuits as well as micro-electromechanical systems (MEMS). It is of importance to determine the material properties of the metal and dielectric films to predict the performance and reliability of micro devices. This study employs an existing approach to determine the coefficients of thermal expansion (CTEs) of metal and dielectric films for standard CMOS processes. Test cantilevers with different stacking of metal and dielectric layers for standard CMOS processes have been designed and implemented. The CTEs of standard CMOS films can be determined from measurements of the out-of-plane thermal deformations of the test cantilevers. To demonstrate the feasibility of the present approach, thin films prepared by the Taiwan Semiconductor Manufacture Company 0.35 μm 2P4M CMOS process are characterized. Eight test cantilevers with different stacking of CMOS layers and an auxiliary Si cantilever on a SOI wafer are fabricated. The equivalent elastic moduli and CTEs of the CMOS thin films including the metal and dielectric layers are determined, respectively, from the resonant frequency and static thermal deformation of the test cantilevers. Moreover, thermal deformations of cantilevers with stacked layers different to those of the test beams have been employed to verify the measured CTEs and elastic moduli. (paper)

  13. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further...

  14. The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever

    Science.gov (United States)

    Palosaari, Jaakko; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli

    2018-06-01

    In this research four piezoelectric bimorph type cantilevers for energy harvesting were manufactured, measured and analyzed to study the effects of substrate layer thickness on energy harvesting efficiency and durability under different accelerations. The cantilevers had the same dimensions of the piezoelectric ceramic components, but had different thicknesses of the steel substrate (no steel, 30 μm, 50 μm and 75 μm). The cantilevers were tuned to the same resonance frequency with different sizes of tip mass (2.13 g, 3.84 g, 4.17 g and 5.08 g). The energy harvester voltage outputs were then measured across an electrical load near to the resonance frequency (∼40 Hz) with sinusoidal vibrations under different accelerations. The stress exhibited by the four cantilevers was compared and analyzed and their durability was tested with accelerations up to 2.5 g-forces.

  15. Design optimization of piezoresistive cantilevers for force sensing in air and water

    Science.gov (United States)

    Doll, Joseph C.; Park, Sung-Jin; Pruitt, Beth L.

    2009-01-01

    Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems. PMID:19865512

  16. Influence of cantilevered sheet pile deflection on adjacent roadways.

    Science.gov (United States)

    2009-06-01

    Cantilevered sheet pile walls are often used adjacent roadways as temporary support during construction. Excess movement of these walls has led to excessive roadway distress causing additional repairs to be necessary. This study assessed the effects ...

  17. Dynamic modelling and experimental study of cantilever beam with clearance

    International Nuclear Information System (INIS)

    Li, B; Jin, W; Han, L; He, Z

    2012-01-01

    Clearances occur in almost all mechanical systems, typically such as the clearance between slide plate of gun barrel and guide. Therefore, to study the clearances of mechanisms can be very important to increase the working performance and lifetime of mechanisms. In this paper, rigid dynamic modelling of cantilever with clearance was done according to the subject investigated. In the rigid dynamic modelling, clearance is equivalent to the spring-dashpot model, the impact of beam and boundary face was also taken into consideration. In ADAMS software, the dynamic simulation was carried out according to the model above. The software simulated the movement of cantilever with clearance under external excitation. Research found: When the clearance is larger, the force of impact will become larger. In order to study how the stiffness of the cantilever's supporting part influences natural frequency of the system, A Euler beam which is restricted by a draught spring and a torsion spring at its end was raised. Through numerical calculation, the relationship between natural frequency and stiffness was found. When the value of the stiffness is close to the limit value, the corresponding boundary condition is illustrated. An ADAMS experiment was carried out to check the theory and the simulation.

  18. Dynamic modelling and experimental study of cantilever beam with clearance

    Science.gov (United States)

    Li, B.; Jin, W.; Han, L.; He, Z.

    2012-05-01

    Clearances occur in almost all mechanical systems, typically such as the clearance between slide plate of gun barrel and guide. Therefore, to study the clearances of mechanisms can be very important to increase the working performance and lifetime of mechanisms. In this paper, rigid dynamic modelling of cantilever with clearance was done according to the subject investigated. In the rigid dynamic modelling, clearance is equivalent to the spring-dashpot model, the impact of beam and boundary face was also taken into consideration. In ADAMS software, the dynamic simulation was carried out according to the model above. The software simulated the movement of cantilever with clearance under external excitation. Research found: When the clearance is larger, the force of impact will become larger. In order to study how the stiffness of the cantilever's supporting part influences natural frequency of the system, A Euler beam which is restricted by a draught spring and a torsion spring at its end was raised. Through numerical calculation, the relationship between natural frequency and stiffness was found. When the value of the stiffness is close to the limit value, the corresponding boundary condition is illustrated. An ADAMS experiment was carried out to check the theory and the simulation.

  19. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  20. Vertical gust response prediction of cable-stayed bridges in yawed wind; Shachokyo no shafu ni yoru enchoku gust oto no yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S.; Nagamachi, K.; Kawai, Y. [Kawasaki Steel Corp., Tokyo (Japan); Kimura, K.; Fujino, Y. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Tanaka, H.

    1996-03-01

    This paper outlines the vertical gust response analysis method in a yawed wind, gives an analytic example, and compares the experimental result with the analytic result to investigate the application of an analysis method and the validity of assumption and approximation. The vertical gust response to two cable-stayed bridges under construction in a yawed wind was predicted by applying assumption and approximation to the gust response prediction method in a yawed wind with the cantilever model having a plate cross-section manipulated. In this case, the wind velocity component perpendicular to the leading edge was defined as an effective wind velocity, and a bridge axis and the component perpendicular to a bridge axis were separately calculated in response. Moreover, some aerodynamic coefficients of a bridge girder cross-section were approximately obtained from the characteristics of the flat blades with same aspect ratio. The obtained analytic result was compared with the wind tunnel test result based on all bridge models. The result showed that the former almost coincides with the latter, the assumption and approximation of this time are verified in validity, and this analysis method can be used for cable-stayed bridges under construction. 10 refs., 7 figs., 2 tabs.

  1. Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Korayem, Moharam Habibnejad, E-mail: hkorayem@iust.ac.ir; Saraie, Maniya B.; Saraee, Mahdieh B.

    2017-04-15

    An important challenge when using an atomic force microscope (AFM) is to be able to control the force exerted by the AFM for performing various tasks. Nevertheless, the exerted force is proportional to the deflection of the AFM cantilever, which itself is affected by a cantilever's stiffness coefficient. Many papers have been published so far on the methods of obtaining the stiffness coefficients of AFM cantilevers in 2D; however, a comprehensive model is yet to be presented on 3D cantilever motion. The discrepancies between the equations of the 2D and 3D analysis are due to the number and direction of forces and moments that are applied to a cantilever. Moreover, in the 3D analysis, contrary to the 2D analysis, due to the interaction between the forces and moments applied on a cantilever, its stiffness values cannot be separately expressed for each direction; and instead, a stiffness matrix should be used to correctly derive the relevant equations. In this paper, 3D stiffness coefficient matrices have been obtained for three common cantilever geometries including the rectangular, V-shape and dagger-shape cantilevers. The obtained equations are validated by two methods. In the first approach, the Finite Element Method is combined with the cantilever deflection values computed by using the obtained stiffness matrices. In the second approach, by reducing the problem's parameters, the forces applied on a cantilever along different directions are compared with each other in 2D and 3D cases. Then the 3D manipulation of a stiff nanoparticle is modeled and simulated by using the stiffness matrices obtained for the three cantilever geometries. The obtained results indicate that during the manipulation process, the dagger-shaped and rectangular cantilevers exert the maximum and minimum amounts of forces on the stiff nanoparticle, respectively. Also, by examining the effects of different probe tip geometries, it is realized that a probe tip of cylindrical geometry

  2. Difficulties in fitting the thermal response of atomic force microscope cantilevers for stiffness calibration

    International Nuclear Information System (INIS)

    Cole, D G

    2008-01-01

    This paper discusses the difficulties of calibrating atomic force microscope (AFM) cantilevers, in particular the effect calibrating under light fluid-loading (in air) and under heavy fluid-loading (in water) has on the ability to use thermal motion response to fit model parameters that are used to determine cantilever stiffness. For the light fluid-loading case, the resonant frequency and quality factor can easily be used to determine stiffness. The extension of this approach to the heavy fluid-loading case is troublesome due to the low quality factor (high damping) caused by fluid-loading. Simple calibration formulae are difficult to realize, and the best approach is often to curve-fit the thermal response, using the parameters of natural frequency and mass ratio so that the curve-fit's response is within some acceptable tolerance of the actual thermal response. The parameters can then be used to calculate the cantilever stiffness. However, the process of curve-fitting can lead to erroneous results unless suitable care is taken. A feedback model of the fluid–structure interaction between the unloaded cantilever and the hydrodynamic drag provides a framework for fitting a modeled thermal response to a measured response and for evaluating the parametric uncertainty of the fit. The cases of uncertainty in the natural frequency, the mass ratio, and combined uncertainty are presented and the implications for system identification and stiffness calibration using curve-fitting techniques are discussed. Finally, considerations and recommendations for the calibration of AFM cantilevers are given in light of the results of this paper

  3. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  4. DESIGN of MICRO CANTILEVER BEAM for VAPOUR DETECTION USING COMSOL MULTI PHYSICS SOFTWARE

    OpenAIRE

    Sivacoumar R; Parvathy JM; Pratishtha Deep

    2015-01-01

    This paper gives an overview of micro cantilever beam of various shapes and materials for vapour detection. The design of micro cantilever beam, analysis and simulation is done for each shape. The simulation is done using COMSOL Multi physics software using structural mechanics and chemical module. The simulation results of applied force and resulting Eigen frequencies will be analyzed for different beam structures. The vapour analysis is done using flow cell that consists of chemical pill...

  5. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations

    International Nuclear Information System (INIS)

    Erturk, A; Inman, D J

    2009-01-01

    Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance

  6. Spring constant measurement using a MEMS force and displacement sensor utilizing paralleled piezoresistive cantilevers

    Science.gov (United States)

    Kohyama, Sumihiro; Takahashi, Hidetoshi; Yoshida, Satoru; Onoe, Hiroaki; Hirayama-Shoji, Kayoko; Tsukagoshi, Takuya; Takahata, Tomoyuki; Shimoyama, Isao

    2018-04-01

    This paper reports on a method to measure a spring constant on site using a micro electro mechanical systems (MEMS) force and displacement sensor. The proposed sensor consists of a force-sensing cantilever and a displacement-sensing cantilever. Each cantilever is composed of two beams with a piezoresistor on the sidewall for measuring the in-plane lateral directional force and displacement. The force resolution and displacement resolution of the fabricated sensor were less than 0.8 µN and 0.1 µm, respectively. We measured the spring constants of two types of hydrogel microparticles to demonstrate the effectiveness of the proposed sensor, with values of approximately 4.3 N m-1 and 15.1 N m-1 obtained. The results indicated that the proposed sensor is effective for on-site spring constant measurement.

  7. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    Science.gov (United States)

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  8. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Science.gov (United States)

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  9. Determination of Fluid Density and Viscosity by Analyzing Flexural Wave Propagations on the Vibrating Micro-Cantilever

    Directory of Open Access Journals (Sweden)

    Deokman Kim

    2017-10-01

    Full Text Available The determination of fluid density and viscosity using most cantilever-based sensors is based on changes in resonant frequency and peak width. Here, we present a wave propagation analysis using piezoelectrically excited micro-cantilevers under distributed fluid loading. The standing wave shapes of microscale-thickness cantilevers partially immersed in liquids (water, 25% glycerol, and acetone, and nanoscale-thickness microfabricated cantilevers fully immersed in gases (air at three different pressures, carbon dioxide, and nitrogen were investigated to identify the effects of fluid-structure interactions to thus determine the fluid properties. This measurement method was validated by comparing with the known fluid properties, which agreed well with the measurements. The relative differences for the liquids were less than 4.8% for the densities and 3.1% for the viscosities, and those for the gases were less than 6.7% for the densities and 7.3% for the viscosities, showing better agreements in liquids than in gases.

  10. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    Directory of Open Access Journals (Sweden)

    Tobias Meier

    2015-02-01

    Full Text Available We describe an atomic force microscope (AFM for the characterization of self-sensing tunneling magnetoresistive (TMR cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.

  11. Cantilever steel post damaged by wind

    Directory of Open Access Journals (Sweden)

    Wei Sha

    2014-10-01

    Full Text Available An analysis for the cause of fracture failure of a cantilever steel sign post damaged by wind has been carried out. An unusual cause of failure has been identified, which is the subject of this paper. Microscopy and microanalysis of the fracture surface showed that the failure was due to pre-existing cracks, from the fabrication of the post. This conclusion was reached after detecting and analysing a galvanised layer on the fracture surfaces.

  12. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud; Alshareef, Husam N.

    2012-01-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates

  13. Energy harvesting from the interaction of a Lamb dipole with a flexible cantilever

    Science.gov (United States)

    Tang, Hui; Wang, Chenglei

    2017-11-01

    Energy harvesting from interactions of coherent flow structures with flexible solid structures can be used for powering miniature electronic devices. Although effective, the fundamental mechanism of such an energy extraction process has not been fully understood. Therefore, this study aims to provide more physical insights into this problem. The coherent flow structure is represented by a Lamb dipole, and the solid structure is assumed as a two-dimensional flexible cantilever. The cantilever is placed along the propagation direction of the dipole, with its fixed end initially towards or away from the dipole and its lateral distance from the dipole center varied. As the dipole passes through the cantilever, the latter can extract energy from the former through effective interactions. Such a two-dimensional fluid-structure interaction problem is numerically studied at a low Reynolds number of 200 using a lattice Boltzmann method (LBM) based numerical framework. The simulation results reveal that the flexible cantilever with a moderate stiffness is more beneficial to the energy harvesting, and it can scavenge more energy from the ambient vortices when its fixed end is initially away from the dipole with a relatively small lateral distance. The authors gratefully acknowledge the financial support for this study from the Research Grants Council of Hong Kong under General Research Fund (Project No. PolyU 152493/16E).

  14. Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.

    Science.gov (United States)

    An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng

    2018-05-13

    Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.

  15. Micro-fabricated flexible PZT cantilever using d33 mode for energy harvesting

    Science.gov (United States)

    Cho, Hyunok; Park, Jongcheol; Park, Jae Yeong

    2017-12-01

    This paper presents a micro-fabricated flexible and curled PZT [Pb(Zr0.52Ti0.48)O3] cantilever using d33 piezoelectric mode for vibration based energy harvesting applications. The proposed cantilever based energy harvester consists of polyimide, PZT thin film, and inter-digitated IrOx electrodes. The flexible cantilever was formed using bulk-micromachining on a silicon wafer to integrate it with ICs. The d33 piezoelectric mode was applied to achieve a large output voltage by using inter-digitated electrodes, and the PZT thin film on polyimide layer has a remnant polarization and coercive filed of approximately 2 P r = 47.9 μC/cm2 and 2 E c = 78.8 kV/cm, respectively. The relative dielectric constant was 900. The fabricated micro-electromechanical systems energy harvester generated output voltages of 1.2 V and output power of 117 nW at its optimal resistive load of 6.6 MΩ from its resonant frequency of 97.8 Hz with an acceleration of 5 m/s2.

  16. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad; Chappanda, Karumbaiah N.; Hafiz, Md Abdullah Al; Ramini, Abdallah; Younis, Mohammad I.

    2016-01-01

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever

  17. System identification and control parameter optimization for a stylus profiler with exchangeable cantilevers

    OpenAIRE

    Felix Ströer; Katharina Trinkaus; Indek Raid; Jörg Seewig

    2018-01-01

    Stylus instruments are widely used in production metrology due to their robustness. Interchangeable cantilevers allow a wide range of measuring tasks to be covered with one measuring device. When approaching the sample, the positioning of the stylus instrument tip relative to the measurement object has to be accomplished in a controlled way in order to prevent damages to the specimen and the stylus cantilever. This is achieved by a closed-loop control. We present a method for the objective de...

  18. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    Science.gov (United States)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  19. Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement

    International Nuclear Information System (INIS)

    Yu Haitao; Li Xinxin; Gan Xiaohua; Liu Yongjing; Liu Xiang; Xu Pengcheng; Li Jungang; Liu Min

    2009-01-01

    With an integrated resonance exciting heater and a self-sensing piezoresistor, resonant micro-cantilever bio/chemical sensors are optimally designed and fabricated by micromachining techniques. This study is emphasized on the optimization of the integrated heating resistor. Previous research has put the heater at either the cantilever clamp end, the midpoint or the free end. Aiming at sufficiently high and stable resonant amplitude, our research indicates that the optimized location of the thermal-electric exciting resistor is the clamp end instead of other positions. By both theoretical analysis and resonance experiments where three heating resistors are placed at the three locations of the fabricated cantilever, it is clarified that the clamp end heating provides the most efficient resonance excitation in terms of resonant amplitude, Q-factor and resonance stability. Besides, the optimized combination of dc bias and ac voltage is determined by both analysis and experimental verification. With the optimized heating excitation, the resonant cantilever is used for biotin–avidin-specific detection, resulting in a ±0.1 Hz ultra-low noise floor of the frequency signal and a 130 fg mass resolution. In addition to resonance excitation, the heater is used to heat up the cantilever for speed-up desorption after detection that helps rapid and repeated sensing to chemical vapor. The clamp end is determined (by simulation) as the optimal heating location for uniform temperature distribution on the cantilever. Using the resonant cantilever, a rapid and repeated sensing experiment on dimethyl methylphosphonate (DMMP) vapor shows that a short-period heating at the detection interval significantly quickens the signal recovery and enhances the sensing repeatability

  20. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer

    Directory of Open Access Journals (Sweden)

    Rui Zhao

    2018-02-01

    Full Text Available In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene/poly (styrene sulfonate (PEDOT/PSS was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10−7 nm−1, respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG. The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances.

  1. Polymeric Flexible Immunosensor Based on Piezoresistive Micro-Cantilever with PEDOT/PSS Conductive Layer.

    Science.gov (United States)

    Zhao, Rui; Sun, Ying

    2018-02-03

    In this paper, a fully polymeric micro-cantilever with the surface passivation layer of parylene-C and the strain resistor of poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT/PSS) was proposed and demonstrated for immunoassays. By optimizing the design and fabrication of the polymeric micro-cantilever, a square resistance of 220 Ω/□ for PEDOT/PSS conductive layer have been obtained. The experimental spring constant and the deflection sensitivity were measured to be 0.017 N/m and 8.59 × 10 -7 nm -1 , respectively. The biological sensing performances of polymeric micro-cantilever were investigated by the immunoassay for human immunoglobulin G (IgG). The immunosensor was experimentally demonstrated to have a linear behavior for the detection of IgG within the concentrations of 10~100 ng/mL with a limit of detection (LOD) of 10 ng/mL. The experimental results indicate that the proposed polymeric flexible conductive layer-based sensors are capable of detecting trace biological substances.

  2. SU-8 cantilevers for bio/chemical sensing; Fabrication, characterisation and development of novel read-out methods

    DEFF Research Database (Denmark)

    Nordström, M.; Keller, Stephan Urs; Lillemose, Michael

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show...

  3. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raegan Lynn [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  4. Intrinsically aligned chemo-mechanical functionalization of twin cantilever structures

    International Nuclear Information System (INIS)

    Toffoli, V; Esch, F; Melli, M; Pozzato, A; Tormen, M; Lazzarino, M; Cataruzza, F; Carrato, S; Scoles, G

    2008-01-01

    Mechanical oscillators became a main focus of research in recent years for potential applications in biomolecule detectors. We recently demonstrated the feasibility of a scheme based on twin cantilevers with a sensitivity down to the single molecule. This approach is extremely promising under the condition that the two terminals of the device can be functionalized with high selectivity and nanometric accuracy by linker molecules. Here we demonstrate a chemo-mechanical method to achieve the intrinsically aligned functionalization of two silicon surfaces, which can be separated by a gap controllable with nanometric precision. The chemical binding of the target molecules in the selected position is obtained through a cycloaddition reaction which exploits the reactivity of the freshly cleaved surfaces that form when the cantilever gap is created. The general validity of this approach is shown by the use in different chemical environments of two compounds with different reactive functional groups.

  5. Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Helbo, Bjarne

    2001-01-01

    A simple linear electromechanical model for an electrostatically driven resonating cantilever is derived. The model has been developed in order to determine dynamic quantities such as the capacitive current flowing through the cantilever-driver system at the resonance frequency, and it allows us ...

  6. Fabrication of a cantilever-based microfluidic flow meter with nL min(-1) resolution

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    A microfluidic flow meter based on cantilever deflection is developed, showing a resolution down to 3 nL min(-1) for flows in the microliter range. The cantilevers are fabricated in SU-8 and have integrated holes with dimensions from 5 x 5 to20x 20 mu m(2). The holes make it possible to measure i......, hole-to-hole distance, amount of holes, etc) the sensitivity of the sensor can be changed....

  7. Higher Order Modes Excitation of Micro Cantilever Beams

    KAUST Repository

    Jaber, Nizar

    2014-05-01

    In this study, we present analytical and experimental investigation of electrically actuated micro cantilever based resonators. These devices are fabricated using polyimide and coated with chrome and gold layers from both sides. The cantilevers are highly curled up due to stress gradient, which is a common imperfection in surface micro machining. Using a laser Doppler vibrometer, we applied a noise signal to experimentally find the first four resonance frequencies. Then, using a data acquisition card, we swept the excitation frequency around the first four natural modes of vibrations. Theoretically, we derived a reduced order model using the Galerkin method to simulate the dynamics of the system. Extensive numerical analysis and computations were performed. The numerical analysis was able to provide good matching with experimental values of the resonance frequencies. Also, we proved the ability to excite higher order modes using partial electrodes with shapes that resemble the shape of the mode of interest. Such micro-resonators are shown to be promising for applications in mass and gas sensing.

  8. Precise mass determination of single cell with cantilever-based microbiosensor system.

    Directory of Open Access Journals (Sweden)

    Bogdan Łabędź

    Full Text Available Having determined the mass of a single cell of brewer yeast Saccharomyces cerevisiae by means of a microcantilever-based biosensor Cantisens CSR-801 (Concentris, Basel, Switzerland, it was found that its dry mass is 47,65 ± 1,05 pg. Found to be crucial in this mass determination was the cell position along the length of the cantilever. Moreover, calculations including cells positions on the cantilever provide a threefold better degree of accuracy than those which assume uniform mass distribution. We have also examined the influence of storage time on the single cell mass. Our results show that after 6 months there is an increase in the average mass of a single yeast cell.

  9. Precise mass determination of single cell with cantilever-based microbiosensor system.

    Science.gov (United States)

    Łabędź, Bogdan; Wańczyk, Aleksandra; Rajfur, Zenon

    2017-01-01

    Having determined the mass of a single cell of brewer yeast Saccharomyces cerevisiae by means of a microcantilever-based biosensor Cantisens CSR-801 (Concentris, Basel, Switzerland), it was found that its dry mass is 47,65 ± 1,05 pg. Found to be crucial in this mass determination was the cell position along the length of the cantilever. Moreover, calculations including cells positions on the cantilever provide a threefold better degree of accuracy than those which assume uniform mass distribution. We have also examined the influence of storage time on the single cell mass. Our results show that after 6 months there is an increase in the average mass of a single yeast cell.

  10. An Astigmatic Detection System for Polymeric Cantilever-based Sensors

    DEFF Research Database (Denmark)

    Hwu, En-Te; Liao, Hsien-Shun; Bosco, Filippo

    2012-01-01

    fluctuation measurements on cantilever beams with a subnanometer resolution. Furthermore, an external excitation can intensify the resonance amplitude, enhancing the signal- to-noise ratio. The full width at half maximum (FWHM) of the laser spot is 568 nm, which facilitates read-out on potentially...

  11. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    International Nuclear Information System (INIS)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-01-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8–12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed–fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than −25 dB and an insertion loss of around 0.1 dB at 8–12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW −1 at 8, 10 and 12 GHz, respectively. (paper)

  12. Influence of tip mass on dynamic behavior of cracked cantilever pipe conveying fluid with moving mass

    International Nuclear Information System (INIS)

    Yoon, Han Ik; Son, In Soo

    2005-01-01

    In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified

  13. Global consequences of a local Casimir force : Adhered cantilever

    NARCIS (Netherlands)

    Svetovoy, V. B.; Melenev, A. E.; Lokhanin, M. V.; Palasantzas, G.

    2017-01-01

    Although stiction is a cumbersome problem for microsystems, it stimulates investigations of surface adhesion. In fact, the shape of an adhered cantilever carries information of the adhesion energy that locks one end to the substrate. We demonstrate here that the system is also sensitive to the

  14. Fracture strength of fiber-reinforced surface-retained anterior cantilever restorations

    NARCIS (Netherlands)

    Oezcan, Mutlu; Kumbuloglu, Ovul; User, Atilla

    2008-01-01

    Purpose: This study compared the fracture strength of direct anterior cantilever fiber-reinforced composite (FRC) fixed partial dentures (FPD) reinforced with 3 types of E-glass fibers preimpregnated with either urethane tetramethacrylate, bisphenol glycidylmethacrylate/polymethyl methacrylate, or

  15. A low-noise measurement system for scanning thermal microscopy resistive nanoprobes based on a transformer ratio-arm bridge

    Science.gov (United States)

    Świątkowski, Michał; Wojtuś, Arkadiusz; Wielgoszewski, Grzegorz; Rudek, Maciej; Piasecki, Tomasz; Jóźwiak, Grzegorz; Gotszalk, Teodor

    2018-04-01

    Atomic force microscopy (AFM) is a widely used technology for the investigation and characterization of nanomaterials. Its functionality can be easily expanded by applying dedicated extension modules, which can measure the electrical conductivity or temperature of a sample. In this paper, we introduce a transformer ratio-arm bridge setup dedicated to AFM-based thermal imaging. One of the key features of the thermal module is the use of a low-power driving signal that prevents undesirable tip heating during resistance measurement, while the other is the sensor location in a ratio-arm transformer bridge working in the audio frequency range and ensuring galvanic isolation of the tip, enabling contact-mode scanning of electronic circuits. The proposed expansion module is compact and it can be integrated onto the AFM head close to the cantilever. The calibration process and the resolution of 11 mK of the proposed setup are shown.

  16. Computational analysis of the effect of surface roughness on the deflection of gold coated silicon micro-cantilevers due to molecular adsorption

    Science.gov (United States)

    Hayden, Victor

    In this work numerical simulations were performed in order to study the effects of surface roughness on the deflection of gold coated silicon cantilevers due to molecular adsorption. The cantilever was modeled using a ball and spring system where the spring constants for the Si-Si, Si-Au, and Au-Au bonds were obtained from first principal calculations. The molecular adsorption process was simulated by elongating the natural bond length at available bonding sites chosen randomly on the cantilever. Increasing the bond length created a surface stress on the cantilever causing it to deflect. In all cases the structure refinement was performed by minimizing the energy of the system using a simulated annealing algorithm and a high quality random number generator called Mersenne Twister. The system studied consisted of a 1 micrometer by 1 micrometer portion of a cantilever of various surface roughnesses with variable boundary condition and was processed in parallel on the ACEnet (Atlantic Computational Excellence Network) cluster. The results have indicated that cantilevers with a rougher gold surface deflected more than those with a smoother surface. The increase in deflection is attributed to an increase in stress raisers in the gold film localized around the surface features. The onset of stress raisers increases the differential stress between the top and bottom surfaces and results in an increase in the deflection of the cantilever.

  17. A Quad-Cantilevered Plate micro-sensor for intracranial pressure measurement.

    Science.gov (United States)

    Lalkov, Vasko; Qasaimeh, Mohammad A

    2017-07-01

    This paper proposes a new design for pressure-sensing micro-plate platform to bring higher sensitivity to a pressure sensor based on piezoresistive MEMS sensing mechanism. The proposed design is composed of a suspended plate having four stepped cantilever beams connected to its corners, and thus defined as Quad-Cantilevered Plate (QCP). Finite element analysis was performed to determine the optimal design for sensitivity and structural stability under a range of applied forces. Furthermore, a piezoresistive analysis was performed to calculate sensor sensitivity. Both the maximum stress and the change in resistance of the piezoresistor associated with the QCP were found to be higher compared to previously published designs, and linearly related to the applied pressure as desired. Therefore, the QCP demonstrates greater sensitivity, and could be potentially used as an efficient pressure sensor for intracranial pressure measurement.

  18. Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers

    Science.gov (United States)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-01-01

    °Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.

  19. A comparative finite elemental analysis of glass abutment supported and unsupported cantilever fixed partial denture.

    Science.gov (United States)

    Ramakrishaniah, Ravikumar; Al Kheraif, Abdulaziz A; Elsharawy, Mohamed A; Alsaleh, Ayman K; Ismail Mohamed, Karem M; Rehman, Ihtesham Ur

    2015-05-01

    The purpose of this study was to investigate and compare the load distribution and displacement of cantilever prostheses with and without glass abutment by three dimensional finite element analysis. Micro-computed tomography was used to study the relationship between the glass abutment and the ridge. The external surface of the maxilla was scanned, and a simplified finite element model was constructed. The ZX-27 glass abutment and the maxillary first and second premolars were created and modified. The solid model of the three-unit cantilever fixed partial denture was scanned, and the fitting surface was modified with reference to the created abutments using the 3D CAD system. The finite element analysis was completed in ANSYS. The fit and total gap volume between the glass abutment and dental model were determined by Skyscan 1173 high-energy spiral micro-CT scan. The results of the finite element analysis in this study showed that the cantilever prosthesis supported by the glass abutment demonstrated significantly less stress on the terminal abutment and overall deformation of the prosthesis under vertical and oblique load. Micro-computed tomography determined a gap volume of 6.74162 mm(3). By contacting the mucosa, glass abutments transfer some amount of masticatory load to the residual alveolar ridge, thereby preventing damage to the periodontal microstructures of the terminal abutment. The passive contact of the glass abutment with the mucosa not only preserves the health of the mucosa covering the ridge but also permits easy cleaning. It is possible to increase the success rate of cantilever FPDs by supporting the cantilevered pontic with glass abutments. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  1. In silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors

    Directory of Open Access Journals (Sweden)

    Ribu Mathew

    2017-03-01

    Full Text Available Over the years, piezoresistive nano cantilever sensors have been extensively investigated for various biological sensing applications. Piezoresistive cantilever sensor is a composite structure with different materials constituting its various layers. Design and modeling of such sensors become challenging since their response is governed by the interplay between their geometrical and constituent material parameters. Even though, piezoresistive nano cantilever biosensors have several advantages, they suffer from a limitation in the form of self-heating induced inaccuracy which is seldom considered in design stages. Although, a few simplified mathematical models have been reported which incorporate the self-heating effect, several assumptions made in the modeling stages result in inaccuracy in predicting sensor terminal response. In this paper, we model and investigate the effect of self-heating on the thermo-electro-mechanical response of piezoresistive cantilever sensors as a function of the relative geometries of the piezoresistor and the cantilever platform. Finite element method (FEM based numerical computations are used to model the target-receptor interactions induced surface stress response in steady state and maximize the electrical sensitivity to thermal sensitivity ratio of the sensor. Simulation results show that the conduction mode of heat transfer is the dominant heat transfer mechanism. Furthermore, the isolation and immobilization layers play a critical role in determining the thermal sensitivity of the sensor. It is found that the shorter and wider cantilever platforms are more suitable to reduce self-heating induced inaccuracies. In addition, results depict that the piezoresistor width plays a more dominant role in determining the thermal drift induced inaccuracies compared to the piezoresistor length. It is found that for surface stress sensors at large piezoresistor width, the electrical sensitivity to thermal sensitivity ratio

  2. Microelectromechanical system device for calibration of atomic force microscope cantilever spring constants between 0.01 and 4 N/m

    International Nuclear Information System (INIS)

    Cumpson, Peter J.; Hedley, John; Clifford, Charles A.; Chen Xinyong; Allen, Stephanie

    2004-01-01

    Calibration of atomic force microscope (AFM) cantilevers is necessary for the measurement of nano-newton and pico-newton forces, which are critical to analytical application of AFM in the analysis of polymer surfaces, biological structures and organic molecules. Previously we have described microfabricated array of reference spring (MARS) devices for AFM cantilever spring-constant calibration. Hitherto, these have been limited to the calibration of AFM cantilevers above 0.03 N/m, although they can be used to calibrate cantilevers of lower stiffness with reduced accuracy. Below this limit MARS devices similar to the designs hitherto described would be fragile and difficult to manufacture with reasonable yield. In this work we describe a device we call torsional MARS. This is a large-area torsional mechanical resonator, manufactured by bulk micromachining of a 'silicon-on-insulator' wafer. By measuring its torsional oscillation accurately in vacuum we can deduce its torsional spring constant. The torsional reference spring spans the range of spring constant (from 4 down to 0.01 N/m) that is important in biological AFM, allowing even the most compliant AFM cantilever to be calibrated easily and rapidly

  3. Influence of silicon orientation and cantilever undercut on the determination of the Young’s modulus of thin films

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    The Young’s modulus of thin films can be determined by deposition on a micronsized Si cantilever and measuring the resonance frequency before and after deposition. The accuracy of the method depends strongly on the initial determination of the mechanical properties and dimensions of the cantilever.

  4. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  5. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    Science.gov (United States)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  6. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    International Nuclear Information System (INIS)

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-01-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air

  7. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.

    2013-01-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power s...... spectrum is difficult to obtain due to the high resonance frequency and low signal/noise ratio. The applicability is shown to be general and this simple approach can thus be used to obtain torsional constants for any beam shaped cantilever. © 2013 AIP Publishing LLC....

  8. Impact of Isolation and Immobilization Layers on the Electro-Mechanical Response of Piezoresistive Nano Cantilever Sensors.

    Science.gov (United States)

    Mathew, Ribu; Sankar, A Ravi

    2018-03-01

    In the last decade, piezoresistive nano cantilever sensors have been extensively explored, especially for chemical and biological sensing applications. Piezoresistive cantilever sensors are multi-layer structures with different constituent materials. Performance of such sensors is a function of their geometry and constituent materials. For a fixed material set, the pre-requisite for optimizing the performance of a composite piezoresistive cantilever sensor is careful geometrical design of its constituent layers. Even though, treatise encompasses various designs of such sensors, typically for computational simplicity the functional layers i.e., the isolation and immobilization layers are neglected in the modeling stages. In this paper, we elucidate the impact of the functional layers on the electro-mechanical response of composite piezoresistive nano cantilever sensors. Systematic and detailed computations are performed using theoretical models and numerical simulations. Results show that both the isolation and immobilization layers play a critical role in governing the sensor performance. Simulation results depict that compared to a sensor with an isolation layer of thickness 100 nm, a sensor without isolation layer has 36.29% and 42.51% better deflection sensitivity and electrical sensitivity respectively. Furthermore, it is found that when an immobilization layer of thickness 40 nm is added atop the isolation layer, the deflection sensitivity and electrical sensitivity reduces by 12.98% and 15.83% respectively. Through our investigation it is shown that the isolation and immobilization layers not only play a vital role in determining the stability and electro-mechanical response of the sensor but their negligence in the design stages can be detrimental. Apart from investigating the impact of the immobilization layer thickness, to model the sensor closer to real time operational conditions, we have performed analysis to understand the impact of non-uniformity in

  9. Cantilever-based sensing: the origin of surface stress and optimization strategies

    International Nuclear Information System (INIS)

    Godin, Michel; Tabard-Cossa, Vincent; Miyahara, Yoichi; Grutter, Peter; Monga, Tanya; Bruce Lennox, R; Williams, P J; Beaulieu, L Y

    2010-01-01

    Many interactions drive the adsorption of molecules on surfaces, all of which can result in a measurable change in surface stress. This article compares the contributions of various possible interactions to the overall induced surface stress for cantilever-based sensing applications. The surface stress resulting from adsorption-induced changes in the electronic density of the underlying surface is up to 2-4 orders of magnitude larger than that resulting from intermolecular electrostatic or Lennard-Jones interactions. We reveal that the surface stress associated with the formation of high quality alkanethiol self-assembled monolayers on gold surfaces is independent of the molecular chain length, supporting our theoretical findings. This provides a foundation for the development of new strategies for increasing the sensitivity of cantilever-based sensors for various applications.

  10. Enhancing output power of a piezoelectric cantilever energy harvester using an oscillator

    International Nuclear Information System (INIS)

    Liu, Haili; Huang, Zhenyu; Xu, Tianzhu; Chen, Dayue

    2012-01-01

    The piezoelectric cantilever with a tip mass (Mass-PC), as a conventional vibration energy harvester, usually works at its fundamental frequency matching ambient excitation. By attaching an oscillator to a piezoelectric cantilever (Osc-PC), a double-mode energy harvester is developed to harvest more power from two matched ambient driving frequencies. Meanwhile, it allows the first operating frequency of the Osc-PC to be adjusted to be very low with only a limited mass attached. A distributed-parameter model of this harvester and the explicit expressions of its operating frequencies are derived to analyze and design the Osc-PC. Numerical investigations reveal that a heaver oscillator placed near the clamped end of the piezoelectric cantilever has better performance at the given exciting frequencies. Following the specified design criteria, an Osc-PC whose operating frequencies match two given exciting frequencies was constructed for the purpose of experimental testing. The results show that, compared to that of a corresponding Mass-PC whose operating frequency matches the lower exciting frequency, the energy harvesting efficiency of the Osc-PC increases by almost four times at the first operating frequency, while the output power at the second operating frequency of the Osc-PC accounts for 68% of that of the Mass-PC. (paper)

  11. Strategy Guideline: Quality Management in Existing Homes - Cantilever Floor Example

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Sikora, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wood, A. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented.

  12. Design optimization and fatigue testing of an electronically-driven mechanically-resonant cantilever spring mechanism

    International Nuclear Information System (INIS)

    Kheng, Lim Boon; Kean, Koay Loke; Gitano-Briggs, Horizon

    2010-01-01

    A light scanning device consisting of an electronically-driven mechanically-resonant cantilever spring-mirror system has been developed for innovative lighting applications. The repeated flexing of the cantilever spring during operation can lead to premature fatigue failure. A model was created to optimize the spring design. The optimized spring design can reduce stress by approximately one-third from the initial design. Fatigue testing showed that the optimized spring design can operate continuously for over 1 month without failure. Analysis of failures indicates surface cracks near the root of the spring are responsible for the failures.

  13. Influence of silicon orientation and cantilever undercut on the determination of Young's modulus of pulsed laser deposited PZT

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Nguyen, Duc Minh; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    In this work we show for the first time that the effective in-plane Young’s modulus of PbZr0.52Ti0.48O3 (PZT) thin films, deposited by pulsed laser deposition (PLD) on dedicated single crystal silicon cantilevers, is independent of the in-plane orientation of cantilevers.

  14. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    Directory of Open Access Journals (Sweden)

    Guangming Cheng

    2012-12-01

    Full Text Available A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  15. Orthodontic Traction of Impacted Canine Using Cantilever

    OpenAIRE

    Nakandakari, Cláudia; Gonçalves, João Roberto; Cassano, Daniel Serra; Raveli, Taísa Boamorte; Bianchi, Jonas; Raveli, Dirceu Barnabé

    2016-01-01

    The impaction of the maxillary canines causes relevant aesthetic and functional problems. The multidisciplinary approach to the proper planning and execution of orthodontic traction of the element in question is essential. Many strategies are cited in the literature; among them is the good biomechanical control in order to avoid possible side effects. The aim of this paper is to present a case report in which a superior canine impacted by palatine was pulled out with the aid of the cantilever...

  16. Label-free glucose detection using cantilever sensor technology based on gravimetric detection principles.

    Science.gov (United States)

    Hsieh, Shuchen; Hsieh, Shu-Ling; Hsieh, Chiung-Wen; Lin, Po-Chiao; Wu, Chun-Hsin

    2013-01-01

    Efficient maintenance of glucose homeostasis is a major challenge in diabetes therapy, where accurate and reliable glucose level detection is required. Though several methods are currently used, these suffer from impaired response and often unpredictable drift, making them unsuitable for long-term therapeutic practice. In this study, we demonstrate a method that uses a functionalized atomic force microscope (AFM) cantilever as the sensor for reliable glucose detection with sufficient sensitivity and selectivity for clinical use. We first modified the AFM tip with aminopropylsilatrane (APS) and then adsorbed glucose-specific lectin concanavalin A (Con A) onto the surface. The Con A/APS-modified probes were then used to detect glucose by monitoring shifts in the cantilever resonance frequency. To confirm the molecule-specific interaction, AFM topographical images were acquired of identically treated silicon substrates which indicated a specific attachment for glucose-Con A and not for galactose-Con A. These results demonstrate that by monitoring the frequency shift of the AFM cantilever, this sensing system can detect the interaction between Con A and glucose, one of the biomolecule recognition processes, and may assist in the detection and mass quantification of glucose for clinical applications with very high sensitivity.

  17. Modelling of Spring Constant and Pull-down Voltage of Non-uniform RF MEMS Cantilever Incorporating Stress Gradient

    Directory of Open Access Journals (Sweden)

    Shimul Chandra SAHA

    2008-11-01

    Full Text Available We have presented a model for spring constant and pull-down voltage of a non-uniform radio frequency microelectromechanical systems (RF MEMS cantilever that works on electrostatic actuation. The residual stress gradient in the beam material that may arise during the fabrication process is also considered in the model. Using basic force deflection calculation of the suspended beam, a stand-alone model for the spring constant and pull-down voltage of the non-uniform cantilever is developed. To compare the model, simulation is performed using standard Finite Element Method (FEM analysis tolls from CoventorWare. The model matches very well with the FEM simulation results. The model will offer an efficient means of design, analysis, and optimization of RF MEMS cantilever switches.

  18. Determination of Young's modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method

    Science.gov (United States)

    Lim, J. H.; Ratnam, M. M.; Azid, I. A.; Mutharasu, D.

    2011-11-01

    Young's moduli of various epoxy coated polyethylene terephthalate (PET) micro-cantilevers were determined from the deflection results obtained using the phase-shift shadow moiré (PSSM) method. The filler materials for epoxy coatings were aluminum and graphite powders that were mixed with epoxy at various percentages. Young's moduli were calculated from theory based on the deflection results. The PET micro-cantilever coated with aluminum-epoxy coating showed increasing value of Young's modulus when the ratios of the aluminum-epoxy were increased. The graphite-epoxy coating on the PET micro-cantilever also showed the same trend. The experimental results also show that Young's modulus of the graphite-epoxy coating is higher than aluminum-epoxy coating in comparison at the same mixing ratio.

  19. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    OpenAIRE

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using mill...

  20. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, M., E-mail: mujdatbalantekin@iyte.edu.tr

    2015-02-15

    We present a high-speed operating method with feedback to be used in dynamic atomic force microscope (AFM) systems. In this method we do not use an actuator that has to be employed to move the tip or the sample as in conventional AFM setups. Instead, we utilize a Q-controlled eigenmode of an AFM cantilever to perform the function of the actuator. Simulations show that even with an ordinary tapping-mode cantilever, imaging speed can be increased by about 2 orders of magnitude compared to conventional dynamic AFM imaging. - Highlights: • A high-speed imaging method is developed for dynamic-AFM systems. • An eigenmode of an AFM cantilever is utilized to perform fast actuation. • Simulations show 2 orders of magnitude increase in scan speed. • The time spent for dynamic-AFM imaging experiments will be minimized.

  1. SEM in situ MiniCantilever Beam Bending of U-10Mo/Zr/Al Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mook, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baldwin, Jon K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Ricardo M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-06-16

    In this work, the fracture behavior of Al/Zr and Zr/dU-10Mo interfaces was measured via the minicantilever bend technique. The energy dissipation rates were found to be approximately 3.7-5 mj/mm2 and 5.9 mj/mm2 for each interface, respectively. It was found that in order to test the Zr/U-10Mo interface, location of the hinge of the cantilever was a key parameter. While this test could be adapted to hot cell use through careful alignment fixturing and measurement of crack lengths with an optical microscope (as opposed to SEM, which was used here out of convenience), machining of the cantilevers via MiniMill in such a way as to locate the interfaces at the cantilever hinge, as well as proper placement of a femtosecond laser notch will continue to be key challenges in a hot cell environment.

  2. MEMS Tunneling Micro Thermometer Based onTip Deflection of Bimetallic Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Samrand K. Nezhadian

    2007-10-01

    Full Text Available Micro-electro-mechanical (MEM technology promises to significantly reduce the size, weight and cost of a variety of sensor systems. In this article has been described a highly sensitive novel type of thermometer based on deflection of a “bimetallic” microbeam. The proposed thermometer converts the thermal changes of a cantilevered bimetallic beam of submillimeter size into an electrical signal through tunneling-current modulation. The governing thermo-mechanical equation of a bimetallic cantilever beam has been derived and solved analytically. The obtained results show that the proposed tunneling micro thermometer is very sensitive to temperature changes due to exponential increasing of tunneling current but because of small gap between metallic electrodes, measurable range of temperature changes is small.

  3. Numerical analysis of dynamic force spectroscopy using the torsional harmonic cantilever

    International Nuclear Information System (INIS)

    Solares, Santiago D; Hoelscher, Hendrik

    2010-01-01

    A spectral analysis method has been recently introduced by Stark et al (2002 Proc. Natl Acad. Sci. USA 99 8473-8) and implemented by Sahin et al (2007 Nat. Nanotechnol. 2 507-14) using a T-shaped cantilever design, the torsional harmonic cantilever (THC), which is capable of performing simultaneous tapping-mode atomic force microscopy imaging and force spectroscopy. Here we report on numerical simulations of the THC system using a simple dual-mass flexural-torsional model, which is applied in combination with Fourier data processing software to illustrate the spectroscopy process for quality factors corresponding to liquid, air and vacuum environments. We also illustrate the acquisition of enhanced topographical images and deformed surface contours under the application of uniform forces, and compare the results to those obtained with a previously reported linear dual-spring-mass model.

  4. A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor

    Directory of Open Access Journals (Sweden)

    Myung-Sic Chae

    2015-07-01

    Full Text Available Preventing unexpected explosive attacks and tracing explosion-related molecules require the development of highly sensitive gas-vapor detection systems. For that purpose, a micromechanical cantilever-based olfactory sensing system including a sample preconcentrator was developed to detect 2,4-dinitrotoluene (2,4-DNT, which is a well-known by-product of the explosive molecule trinitrotoluene (TNT and exists in concentrations on the order of parts per billion in the atmosphere at room temperature. A peptide receptor (His-Pro-Asn-Phe-Ser-Lys-Tyr-Ile-Leu-His-Gln-Arg that has high binding affinity for 2,4-DNT was immobilized on the surface of the cantilever sensors to detect 2,4-DNT vapor for highly selective detection. A micro-preconcentrator (µPC was developed using Tenax-TA adsorbent to produce higher concentrations of 2,4-DNT molecules. The preconcentration was achieved via adsorption and thermal desorption phenomena occurring between target molecules and the adsorbent. The µPC directly integrated with a cantilever sensor and enhanced the sensitivity of the cantilever sensor as a pretreatment tool for the target vapor. The response was rapidly saturated within 5 min and sustained for more than 10 min when the concentrated vapor was introduced. By calculating preconcentration factor values, we verified that the cantilever sensor provides up to an eightfold improvement in sensing performance.

  5. Nonlinear mathematical modeling of vibrating motion of nanomechanical cantilever active probe

    Directory of Open Access Journals (Sweden)

    Reza Ghaderi

    Full Text Available Nonlinear vibration response of nanomechanical cantilever (NMC active probes in atomic force microscope (AFM application has been studied in the amplitude mode. Piezoelectric layer is placed piecewise and as an actuator on NMC. Continuous beam model has been chosen for analysis with regard to the geometric discontinuities of piezoelectric layer attachment and NMC's cross section. The force between the tip and the sample surface is modeled using Leonard-Jones potential. Assuming that cantilever is inclined to the sample surface, the effect of nonlinear force on NMC is considered as a shearing force and the concentrated bending moment is regarded at the end. Nonlinear frequency response of NMC is obtained close to the sample surface using the dynamic modeling. It is then become clear that the distance and angle of NMC, the probe length, and the geometric dimensions of piezoelectric layer can affect frequency response bending of the curve.

  6. Fabrication of biopolymer cantilevers using nanoimprint lithography

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Feidenhans'l, Nikolaj Agentoft; Fisker-Bødker, Nis

    2011-01-01

    The biodegradable polymer poly(l-lactide) (PLLA) was introduced for the fabrication of micromechanical devices. For this purpose, thin biopolymer films with thickness around 10 μm were spin-coated on silicon substrates. Patterning of microcantilevers is achieved by nanoimprint lithography. A major...... challenge was the high adhesion between PLLA and silicon stamp. Optimized stamp fabrication and the deposition of a 125 nm thick fluorocarbon anti-stiction coating on the PLLA allowed the fabrication of biopolymer cantilevers. Resonance frequency measurements were used to estimate the Young’s modulus...

  7. All-thin-film PZT/FeGa Multiferroic Cantilevers and Their Applications in Switching Devices and Parametric Amplification

    Science.gov (United States)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Chris; Lofland, Samuel; Takeuchi, Ichiro

    2014-03-01

    We are investigating the characteristics of microfabricated PZT/FeGa multiferroic cantilevers. The cantilevers can be driven by AC or DC magnetic and electric field, and the device response can be read off as a piezo-induced voltage. We can use the multiple input parameters to operate the devices in a variety of manners for different applications. They include electromagnetic energy harvesting, pulse triggered nonlinear memory devices, and parametrically amplified ME sensors. Due to the competition of anisotropy and Zeeman energies, the mechanical resonant frequency of the cantilevers was found to follow a hysteresis behavior with DC bias magnetic field applied in the cantilever easy axis. We can also control and tune the occurrence of nonlinear bifurcation in the frequency spectrum. The resulting hysteresis in the frequency spectrum can be used to make switching devices, where the input can be DC electric and magnetic fields, as well as pulses of AC fields. We have also demonstrated parametric pumping of the response from an AC magnetic field using frequency-doubled AC electric field. The enhanced equivalent ME coefficient is as high as 10 million V/(cm*Oe), when the pumping voltage is very close to a threshold voltage. The quality factor also increases from 2000 to 80000 with pumping.

  8. Nonlinear vibration of rectangular atomic force microscope cantilevers by considering the Hertzian contact theory

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, A., E-mail: a_sadeghi@srbiau.ac.ir [Islamic Azad Univ., Dept. of Mechanical and Aerospace Engineering, Science and Research Branch, Tehran (Iran, Islamic Republic of); Zohoor, H. [Sharif Univ. of Technology, Center of Excellence in Design, Robotics and Automation, Tehran (Iran, Islamic Republic of); The Academy of Sciences if I.R. Iran (Iran, Islamic Republic of)

    2010-05-15

    The nonlinear flexural vibration for a rectangular atomic force microscope cantilever is investigated by using Timoshenko beam theory. In this paper, the normal and tangential tip-sample interaction forces are found from a Hertzian contact model and the effects of the contact position, normal and lateral contact stiffness, tip height, thickness of the beam, and the angle between the cantilever and the sample surface on the nonlinear frequency to linear frequency ratio are studied. The differential quadrature method is employed to solve the nonlinear differential equations of motion. The results show that softening behavior is seen for most cases and by increasing the normal contact stiffness, the frequency ratio increases for the first mode, but for the second mode, the situation is reversed. The nonlinear-frequency to linear-frequency ratio increases by increasing the Timoshenko beam parameter, but decreases by increasing the contact position for constant amplitude for the first and second modes. For the first mode, the frequency ratio decreases by increasing both of the lateral contact stiffness and the tip height, but increases by increasing the angle α between the cantilever and sample surface. (author)

  9. Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor

    DEFF Research Database (Denmark)

    Gammelgaard, Lauge; Rasmussen, Peter Andreas; Calleja, M.

    2006-01-01

    We present an SU-8 micrometer sized cantilever strain sensor with an integrated piezoresistor made of a conductive composite of SU-8 polymer and carbon black particles. The composite has been developed using ultrasonic mixing. Cleanroom processing of the polymer composite has been investigated...

  10. Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam

    KAUST Repository

    Ruzziconi, Laura; Lenci, Stefano; Younis, Mohammad I.

    2016-01-01

    This study deals with the nonlinear dynamics arising in an atomic force microscope cantilever beam. After analyzing the static behavior, a single degree of freedom Galerkin reduced order model is introduced, which describes the overall scenario

  11. Instability of a cantilevered flexible plate in viscous channel flow

    Science.gov (United States)

    Balint, T. S.; Lucey, A. D.

    2005-10-01

    The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.

  12. Fluid-structure interactions of photo-responsive polymer cantilevers

    Science.gov (United States)

    Bin, Jonghoon; Oates, William S.; Yousuff Hussaini, M.

    2013-02-01

    A new class of photomechanical liquid crystal networks (LCNs) has emerged, which generate large bending deformation and fast response times that scale with the resonance of the polymer films. Here, a numerical study is presented that describes the photomechanical structural dynamic behavior of an LCN in a fluid medium; however, the methodology is also applicable to fluid-structure interactions of a broader range of adaptive structures. Here, we simulate the oscillation of photomechanical cantilevers excited by light while simultaneously modeling the effect of the surrounding fluid at different ambient pressures. The photoactuated LCN is modeled as an elastic thin cantilever plate, and gradients in photostrain from the external light are computed from the assumptions of light absorption and photoisomerization through the film thickness. Numerical approximations of the equations governing the plate are based on cubic B-spline shape functions and a second order implicit Newmark central scheme for time integration. For the fluid, three dimensional unsteady incompressible Navier-Stokes equations are solved using the arbitrary Lagrangian-Eulerian (ALE) method, which employs a structured body-fitted curvilinear coordinate system where the solid-fluid interface is a mesh line of the system, and the complicated interface boundary conditions are accommodated in a conventional finite-volume formulation. Numerical examples are given which provide new insight into material behavior in a fluid medium as a function of ambient pressure.

  13. Temperature effects in Au piezoresistors integrated in SU-8 cantilever chips

    DEFF Research Database (Denmark)

    Johansson, Alicia; Hansen, Ole; Hales, Jan Harry

    2006-01-01

    We present a cantilever-based biosensor chip made for the detection of biochemical molecules. The device is fabricated entirely in the photosensitive polymer SU-8 except for integrated piezoresistors made of Au. The integrated piezoresistors are used to monitor the surface stress changes due to b...

  14. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  15. Design and fabrication of a micro PZT cantilever array actuator for applications in fluidic systems

    DEFF Research Database (Denmark)

    Kim, H.; In, C.; Yoon, Gil Ho

    2005-01-01

    In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating......, dielectric constant, and dielectric loss. Tip deflections of 12 mu m at 5 V are measured, which agreed well with the predicted value. The 18 mu l/s leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed....

  16. Analytical simulation of the cantilever-type energy harvester

    Directory of Open Access Journals (Sweden)

    Jie Mei

    2016-01-01

    Full Text Available This article describes an analytical model of the cantilever-type energy harvester based on Euler–Bernoulli’s beam theory. Starting from the Hamiltonian form of total energy equation, the bending mode shapes and electromechanical dynamic equations are derived. By solving the constitutive electromechanical dynamic equation, the frequency transfer function of output voltage and power can be obtained. Through a case study of a unimorph piezoelectric energy harvester, this analytical modeling method has been validated by the finite element method.

  17. Cantilever torque magnetometry on coordination compounds

    DEFF Research Database (Denmark)

    Perfetti, Mauro

    2017-01-01

    compounds, such as quantum computation or information storage. This review enlightens that CTM offers a unique combination of accuracy and precision to disentangle noncollinear contributions inside Single Crystals as well as the sensitivity to detect molecular order of thin films. CTM can also detect......Cantilever Torque Magnetometry (CTM) is one of the leading techniques to deeply understand magnetic anisotropy of coordination compounds. The knowledge of magnetic anisotropy is a mandatory requirement before proceeding with any future application related to the magnetic properties of coordination...... quantum phenomena such as magnetization steps and molecular hysteresis curves. Moreover, it can also provide the energy levels splitting and avefunctions composition, especially if coupled with microwave radiation....

  18. Forced vibrations of a cantilever beam

    International Nuclear Information System (INIS)

    Repetto, C E; Roatta, A; Welti, R J

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is ‘downwards’, i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping resonance response are compared for the case of an elastic beam made from PVC plastic excited over a frequency range from 1 to 30 Hz. The current analysis predicts the presence of ‘pseudo-nodes’ in the normal modes of oscillation. It is important to note that our results were obtained using very simple equipment, present in the teaching laboratory. (paper)

  19. An Experimental Study of the Local Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  20. An Experimental Study of the Modal Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  1. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun

    2011-01-01

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  2. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  3. Nonlinear Stability Analysis of a Composite Girder Cable-Stayed Bridge with Three Pylons during Construction

    Directory of Open Access Journals (Sweden)

    Xiaoguang Deng

    2015-01-01

    Full Text Available Based on the nonlinear stability analysis method, the 3D nonlinear finite element model of a composite girder cable-stayed bridge with three pylons is established to research the effect of factors including geometric nonlinearity, material nonlinearity, static wind load, and unbalanced construction load on the structural stability during construction. Besides, the structural nonlinear stability in different construction schemes and the determination of temporary pier position are also studied. The nonlinear stability safety factors are calculated to demonstrate the rationality and safety of construction schemes. The results show that the nonlinear stability safety factors of this bridge during construction meet the design requirement and the minimum value occurs in the maximum double cantilever stage. Besides, the nonlinear stability of the structure in the side of edge-pylon meets the design requirement in the two construction schemes. Furthermore, the temporary pier can improve the structure stability, effectively, and the actual position is reasonable. In addition, the local buckling of steel girder occurs earlier than overall instability under load in some cable tension stages. Finally, static wind load and the unbalanced construction load should be considered in the stability analysis for the adverse impact.

  4. MODELLING AND OPTIMISATION OF A BIMORPH PIEZOELECTRIC CANTILEVER BEAM IN AN ENERGY HARVESTING APPLICATION

    Directory of Open Access Journals (Sweden)

    CHUNG KET THEIN

    2016-02-01

    Full Text Available Piezoelectric materials are excellent transducers in converting vibrational energy into electrical energy, and vibration-based piezoelectric generators are seen as an enabling technology for wireless sensor networks, especially in selfpowered devices. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite element method for both static and dynamic frequency analyses. Experiments are performed to validate the model and the simulation results. In addition, a novel approach is presented for optimising the structure of the bimorph cantilever beam, by which the power output is maximised and the structural volume is minimised simultaneously. Finally, the results of the optimised design are presented and compared with other designs.

  5. First application of multilayer graphene cantilever for laser photoacoustic detection

    Czech Academy of Sciences Publication Activity Database

    Suchánek, Jan; Dostál, Michal; Vlasáková, T.; Janda, Pavel; Klusáčková, Monika; Kubát, Pavel; Nevrlý, V.; Bitala, P.; Civiš, Svatopluk; Zelinger, Zdeněk

    2017-01-01

    Roč. 101, APR 2017 (2017), s. 9-14 ISSN 0263-2241 R&D Projects: GA ČR(CZ) GA14-14696S; GA MŠk(CZ) LD14022 Grant - others:COST(XE) TD1105 Institutional support: RVO:61388955 Keywords : Cantilever * Multilayer graphene * Photoacoustic detection * Methanol detection Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.359, year: 2016

  6. Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [Department of Materials, University of Oxford, Oxdord OX1 3PH (United Kingdom); Hardie, C.D. [Department of Materials, University of Oxford, Oxdord OX1 3PH (United Kingdom); EURATOM/CCFE Association, Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Gibson, J.S.K.L. [Department of Materials, University of Oxford, Oxdord OX1 3PH (United Kingdom); Bushby, A.J. [School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Edmondson, P.D. [Department of Materials, University of Oxford, Oxdord OX1 3PH (United Kingdom); Roberts, S.G. [Department of Materials, University of Oxford, Oxdord OX1 3PH (United Kingdom); EURATOM/CCFE Association, Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-07-15

    This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron–12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected.

  7. Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials

    International Nuclear Information System (INIS)

    Armstrong, D.E.J.; Hardie, C.D.; Gibson, J.S.K.L.; Bushby, A.J.; Edmondson, P.D.; Roberts, S.G.

    2015-01-01

    This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron–12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected

  8. Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials

    Science.gov (United States)

    Armstrong, D. E. J.; Hardie, C. D.; Gibson, J. S. K. L.; Bushby, A. J.; Edmondson, P. D.; Roberts, S. G.

    2015-07-01

    This paper demonstrates the ability of advanced micro-mechanical testing methods, based on FIB machined micro-cantilevers, to measure the mechanical properties of ion implanted layers without the influence of underlying unimplanted material. The first section describes a study of iron-12 wt% chromium alloy implanted with iron ions. It is shown that by careful cantilever design and finite element modelling that changes in yield stress after implantation can be measured even with the influence of a strong size effect. The second section describes a study of tungsten implanted with both tungsten ions and tungsten and helium ions using spherical and sharp nanoindentation, and micro-cantilevers. The spherical indentation allows yield properties and work hardening behaviour of the implanted layers to be measured. However the brittle nature of the implanted tungsten is only revealed when using micro-cantilevers. This demonstrates that when applying micro-mechanical methods to ion implanted layers care is needed to understand the nature of size effects, careful modelling of experimental procedure is required and multiple experimental techniques are needed to allow the maximum amount of mechanical behaviour information to be collected.

  9. Desain Cantilever Beam Piezoelectric Untuk Aplikasi Energi Harvesting

    Directory of Open Access Journals (Sweden)

    Roer Pawinanto

    2016-12-01

    Full Text Available Material piezoelektrik sudah mulai diaplkasikan dalam beberapa aplikasi seperti sebagai transduser untuk energi harvesting. Dalam studi ini kami menggunakan metode FEA untuk mengoptimasi beam piezoelektrik. Defleksi yang diperoleh pada studi ini yaitu sebesar 83 nm manakala frekuensi resonansi nya diperoleh di 13.4 Hz. Material piezoelektrik ini dapat menghasilkan defleksi yang besar ketika bergetar pada frekuensi resonansinya. Hasil optimisasi juga menunjukkan bahwa daya listrik yang dihasilkan mengindikasikan resistansi yang besar juga dan berkaitan dengan panjang material PZT serta dapat mempengaruhi defleksi dari cantilever beam.

  10. Development and characterization of electrochemical cantilever sensor for bio/chemical sensing applications

    DEFF Research Database (Denmark)

    Quan, Xueling; Fischer, Lee MacKenzie; Boisen, Anja

    2011-01-01

    We report the improvements made to our previously developed electrochemical cantilever (EC) sensor, where nanoporous gold material is employed as working electrodes in microcantilever arrays, while combined counter-reference electrodes are integrated on the chip. For a surface stress change of 1m...

  11. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie [Key laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academic of Sciences, Beijing 100029 (China); Ou, Yi; Ou, Wen [Key laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academic of Sciences, Beijing 100029 (China); Smart Sensor Engineering Center, Jiangsu R& D Center for Internet of Things, Wuxi 214315 (China)

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  12. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    Science.gov (United States)

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-04-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20-100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

  13. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    International Nuclear Information System (INIS)

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie; Ou, Yi; Ou, Wen

    2015-01-01

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes

  14. Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications

    Science.gov (United States)

    Sökmen, Ü.; Stranz, A.; Waag, A.; Ababneh, A.; Seidel, H.; Schmid, U.; Peiner, E.

    2010-06-01

    We report on a micro-machined resonator for mass sensing applications which is based on a silicon cantilever excited with a sputter-deposited piezoelectric aluminium nitride (AlN) thin film actuator. An inductively coupled plasma (ICP) cryogenic dry etching process was applied for the micro-machining of the silicon substrate. A shift in resonance frequency was observed, which was proportional to a mass deposited in an e-beam evaporation process on top. We had a mass sensing limit of 5.2 ng. The measurements from the cantilevers of the two arrays revealed a quality factor of 155-298 and a mass sensitivity of 120.34 ng Hz-1 for the first array, and a quality factor of 130-137 and a mass sensitivity of 104.38 ng Hz-1 for the second array. Furthermore, we managed to fabricate silicon cantilevers, which can be improved for the detection in the picogram range due to a reduction of the geometrical dimensions.

  15. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    Science.gov (United States)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  16. A novel approach to the sensing of liquid density using a plastic optical fibre cantilever beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is attached. Due to the apparent loss of the true weight of the displacer there is a deflection in the cantilever beam, which causes macro bending in the POF. The loss of intensity due to macro bending of the POF is a measure of the density of the liquid under test. The variation of weight loss with the density of different liquids showed that the weight loss is proportional to density. This sensor is capable of detecting the weight loss with respect to their densities even for liquids having close values of density like distilled water, tap water, and milk of various brands. The resolution of the sensor is observed to be 1.1 mg cm-3.

  17. The effect of rotatory inertia on the dynamic response of cantilever structures

    International Nuclear Information System (INIS)

    Lin, Y.J.; Hadjian, A.H.

    1977-01-01

    For the dynamic response of cantilever beams, the error introduced by the bending theory becomes significant as the ratio of the radius of gyration to the beam length (r/l), exceeds 0.1. In this case, the use of Timoshenko's beam equation becomes more appropriate. This equation includes, in addition to the bending effects, both shear deformation and rotatory inertia effects. In the discrete modeling of beam elements, both the shear deformation and rotatory inertia terms play roles in the mass matrix, while only the shear deformation terms appear in the stiffness matrix. The effect of rotatory inertia on the frequencies and dynamic response of cantilever structures subjected to lateral earthquake excitation is thoroughly studied. This is done by using both the consistent and lumped mass matrices and analytical solution. The beam support is treated either as fixed or elastically restrained to consider soil-structure interaction effects. Since containment structures can be treated as hollow beams, the cantilever beam of uniform cross-section is examined first. For those cases where the ratio of the radius of gyration to beam length lies within the range of interest, all the solutions show that rotatory inertia has an important impact on both the frequencies (other than that of the fundamental mode) and the vertical component of the response. However, as the soil-structure interaction effects become significant rotatory inertia effects become secondary. For shear wall structures used in nuclear power plants, the floors may be treated as rigid diaphragms and the shear walls between floors are usually considered to be beam elements of uniform cross-section

  18. Fiber Bragg grating sensor based on cantilever structure embedded in polymer 3D printed material

    Science.gov (United States)

    Lima, Rita; Tavares, R.; Silva, S. O.; Abreu, P.; Restivo, Maria T.; Frazão, O.

    2017-04-01

    A cantilever structure in 3D printed based on a fiber Bragg grating (FBG) sensor embedded in polymer material is proposed. The FBG sensor was embedded in 3D printed coating and was tested under three physical parameters: displacement, temperature and vibration. The sensor was tested in displacement in two different regions of the cantilever, namely, on its midpoint and end point. The maximum displacement sensitivity achieved was (3 +/- 0.1) pm/mm for end point displacement, and a temperature sensitivity of (30 +/- 1) pm/°C was also attained. In the case of vibration measurements it was possible to obtain a 10.23Hz-low frequency oscillation.

  19. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives.

    Science.gov (United States)

    Chen, Ying; Xu, Pengcheng; Li, Xinxin

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO(2) surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO(2) cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  20. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives

    International Nuclear Information System (INIS)

    Chen Ying; Xu Pengcheng; Li Xinxin

    2010-01-01

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO 2 surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO 2 cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  1. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    Science.gov (United States)

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  2. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Science.gov (United States)

    Toffoli, Valeria; Carrato, Sergio; Lee, Dongkyu; Jeon, Sangmin; Lazzarino, Marco

    2013-01-01

    The design and characteristics of a micro-system for thermogravimetric analysis (TGA) in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  3. Accurate characterization of wafer bond toughness with the double cantilever specimen

    Science.gov (United States)

    Turner, Kevin T.; Spearing, S. Mark

    2008-01-01

    The displacement loaded double cantilever test, also referred to as the "Maszara test" and the "crack opening method" by the wafer bonding community, is a common technique used to evaluate the interface toughness or surface energy of direct wafer bonds. While the specimen is widely used, there has been a persistent question as to the accuracy of the method since the actual specimen geometry differs from the ideal beam geometry assumed in the expression used for data reduction. The effect of conducting the test on whole wafer pairs, in which the arms of cantilevers are wide plates rather than slender beams, is examined in this work using finite element analysis. A model is developed to predict the equilibrium shape of the crack front and to develop a corrected expression for calculating interface toughness from crack length measurements obtained in tests conducted on whole wafer pairs. The finite element model, which is validated through comparison to experiments, demonstrates that using the traditional beam theory-based expressions for data reduction can lead to errors of up to 25%.

  4. Spiral-Shaped Piezoelectric MEMS Cantilever Array for Fully Implantable Hearing Systems

    Directory of Open Access Journals (Sweden)

    Péter Udvardi

    2017-10-01

    Full Text Available Fully implantable, self-powered hearing aids with no external unit could significantly increase the life quality of patients suffering severe hearing loss. This highly demanding concept, however, requires a strongly miniaturized device which is fully implantable in the middle/inner ear and includes the following components: frequency selective microphone or accelerometer, energy harvesting device, speech processor, and cochlear multielectrode. Here we demonstrate a low volume, piezoelectric micro-electromechanical system (MEMS cantilever array which is sensitive, even in the lower part of the voice frequency range (300–700 Hz. The test array consisting of 16 cantilevers has been fabricated by standard bulk micromachining using a Si-on-Insulator (SOI wafer and aluminum nitride (AlN as a complementary metal-oxide-semiconductor (CMOS and biocompatible piezoelectric material. The low frequency and low device footprint are ensured by Archimedean spiral geometry and Si seismic mass. Experimentally detected resonance frequencies were validated by an analytical model. The generated open circuit voltage (3–10 mV is sufficient for the direct analog conversion of the signals for cochlear multielectrode implants.

  5. Micro-cantilever flow sensor for small aircraft

    KAUST Repository

    Ghommem, Mehdi; Calo, Victor M.; Claudel, Christian G.

    2013-01-01

    We extend the use of cantilever beams as flow sensors for small aircraft. As such, we propose a novel method to measure the airspeed and the angle of attack at which the air travels across a small flying vehicle. We measure beam deflections and extract information about the surrounding flow. Thus, we couple a nonlinear beam model with a potential flow simulator through a fluid-structure interaction scheme. We use this numerical approach to generate calibration curves that exhibit the trend for the variations of the limit cycle oscillations amplitudes of flexural and torsional vibrations with the air speed and the angle of attack, respectively. © The Author(s) 2013.

  6. Micro-cantilever flow sensor for small aircraft

    KAUST Repository

    Ghommem, Mehdi

    2013-10-01

    We extend the use of cantilever beams as flow sensors for small aircraft. As such, we propose a novel method to measure the airspeed and the angle of attack at which the air travels across a small flying vehicle. We measure beam deflections and extract information about the surrounding flow. Thus, we couple a nonlinear beam model with a potential flow simulator through a fluid-structure interaction scheme. We use this numerical approach to generate calibration curves that exhibit the trend for the variations of the limit cycle oscillations amplitudes of flexural and torsional vibrations with the air speed and the angle of attack, respectively. © The Author(s) 2013.

  7. Energy Harvesting Characteristics from Water Flow by Piezoelectric Energy Harvester Device Using Cr/Nb Doped Pb(Zr,Ti)O3 Bimorph Cantilever

    Science.gov (United States)

    Kim, Kyoung-Bum; Kim, Chang Il; Jeong, Young Hun; Cho, Jeong-Ho; Paik, Jong-Hoo; Nahm, Sahn; Lim, Jong Bong; Seong, Tae-Hyeon

    2013-10-01

    A water flow energy harvester, which can convert water flow energy to electric energy, was fabricated for its application to rivers. This harvester can generate power from the bending and releasing motion of piezoelectric bimorph cantilevers. A Pb(Zr0.54Ti0.46)O3 + 0.2 wt % Cr2O3 + 1.0 wt % Nb2O5 (PZT-CN) thick film and a 250-µm-thick stainless steel were used as a bimorph cantilever. The electrical impedance matching was achieved across a resistive load of 1 kΩ. Four bimorph cantilevers can generate power from 5 to 105 rpm. The output powers were steadily increased by increasing the rpm. The maximum output power was 68 mW by 105 rpm. It was found that the water flow energy harvester can generate 58 mW by a flow velocity of (2 m/s) from the stream with the four bimorph cantilevers.

  8. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    International Nuclear Information System (INIS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-01-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications. (paper)

  9. Investigation of cleaning and regeneration methods for reliable construction of DNA cantilever biosensors

    DEFF Research Database (Denmark)

    Quan, Xueling; Yi, Sun; Heiskanen, Arto

    to clean and regenerate the sensing surface of cantilever biosensors. Perchloric acid potential sweep, potassium hydroxide-hydrogen peroxide, and piranha cleaning are investigated here. Peak-current potential differences from cyclic voltammetry, X-ray photo-electron spectroscopy and fluorescence detection...

  10. Synthesis and Characterization of Pb(Zr., Ti.)O-Pb(Nb/, Zn/)O Thin Film Cantilevers for Energy Harvesting Applications

    KAUST Repository

    Fuentes-Fernandez, E. M. A.

    2012-01-18

    A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.

  11. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy

    International Nuclear Information System (INIS)

    Lai, Y. W.; Ludwig, A.; Hamann, S.; Ehmann, M.

    2011-01-01

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent.

  12. 47 CFR 80.1007 - Bridge-to-bridge radiotelephone installation.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge radiotelephone installation. 80.1007 Section 80.1007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Bridge-to-Bridge Act § 80.1007 Bridge-to-bridge radiotelephone installation. Use of the bridge-to-bridge...

  13. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic.

    Science.gov (United States)

    Sasse, Martin; Kern, Matthias

    2014-06-01

    This study evaluated the clinical outcome of all-ceramic resin-bonded fixed dental prostheses (RBFDPs) with a cantilevered single-retainer design made from zirconia ceramic. Forty-two anterior RBFDPs with a cantilevered single-retainer design were made from yttrium oxide-stabilized zirconium oxide ceramic. RBFDPs were inserted using Panavia 21 TC as luting agent after air-abrasion of the ceramic bonding surface. During a mean observation time of 61.8 months two debondings occurred. Both RBFDPs were rebonded using Panavia 21 TC and are still in function. A caries lesion was detected at one abutment tooth during recall and was treated with a composite filling. Therefore, the overall six-year failure-free rate according to Kaplan-Meier was 91.1%. If only debonding was defined as failure the survival rate increased to 95.2%. Since all RBFDPs are still in function the overall survival rate was 100% after six years. Cantilevered zirconia ceramic RBFDPs showed promising results within the observation period. Single-retainer resin-bonded fixed dental prostheses made from zirconia ceramic show very good mid-term clinical survival rates. They should therefore be considered as a viable treatment alternative for the replacement of single missing anterior teeth especially as compared to an implant therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. High-speed force mapping on living cells with a small cantilever atomic force microscope

    International Nuclear Information System (INIS)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-01-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed

  15. High-speed force mapping on living cells with a small cantilever atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E., E-mail: Tilman.Schaeffer@uni-tuebingen [Institute of Applied Physics and LISA, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  16. Energy Harvesting & Recapture from Human Subjects: Dual-Stage MEMS Cantilever Energy Harvester

    Science.gov (United States)

    2015-03-01

    beam must be anchored to a thermally insulating layer that separates the cantilever from the substrate. Thermal 52 isolation is paramount because the...34Squeeze film air damping in MEMS," Sensors and Actuators A: Physical, vol. 136, pp. 3-27, 2007. 86 [12] Y. Arakawa, "Micro Seismic Power Generator

  17. Effect of loose spring skirt mounting position on vibration damping in a multi segment hanging cantilever

    International Nuclear Information System (INIS)

    Nazeer, M.M.; Khan, A.F.; Shah, R.H; Afzal, M.; Ahmed, N.

    2001-01-01

    The loose spring skirt clearance is the major factor effecting the damping and amplitude control of randomly excited vibrations in a vertically hanging cantilever. However, the spring's mounting position also has an important role to play. In this work, the results of computational model as well as that of experimental set-up for various spring mounting positions having optimum annular clearance between skirted member and the skirt are presented and their vibration damping response is analyzed. It is observed that lower is the mounting position, the better is the damping and its maximum value is attained when the bottom end of spring skirt and the hanging cantilever are mutually flushed. (author)

  18. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  19. Simulation Study on Material Property of Cantilever Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2014-06-01

    Full Text Available For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, relation between output voltage, inherent frequency and material parameter of unimorph, bimorph in series type and bimorph in parallel type piezoelectric vibration generator is analyzed respectively by mechanical model and finite element modeling. The results indicate PZT-4, PZT- 5A and PZT-5H piezoelectric materials and stainless steel, nickel alloy substrate material should be firstly chosen.

  20. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy.

    Science.gov (United States)

    Lai, Y W; Hamann, S; Ehmann, M; Ludwig, A

    2011-06-01

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent. © 2011 American Institute of Physics

  1. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.

    2016-09-15

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  2. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.; Younis, Mohammad I.

    2016-01-01

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator's nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli's beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  3. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  4. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Science.gov (United States)

    Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun

    2010-04-02

    Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  5. 47 CFR 80.331 - Bridge-to-bridge communication procedure.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Bridge-to-bridge communication procedure. 80..., Alarm, Urgency and Safety Procedures § 80.331 Bridge-to-bridge communication procedure. (a) Vessels subject to the Bridge-to-Bridge Act transmitting on the designated navigational frequency must conduct...

  6. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Montanini, Roberto, E-mail: rmontanini@unime.it; Quattrocchi, Antonino, E-mail: aquattrocchi@unime.it [University of Messina, Dept. of Engineering, Contrada di Dio, Messina (Italy)

    2016-06-28

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d{sub 31} mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  7. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors

    Directory of Open Access Journals (Sweden)

    Francesc Torres

    2016-10-01

    Full Text Available Micro and nano electromechanical resonators have been widely used as single or multiple-mass detection sensors. Smaller devices with higher resonance frequencies and lower masses offer higher mass responsivities but suffer from lower frequency stability. Synchronization phenomena in multiple MEMS resonators have become an important issue because they allow frequency stability improvement, thereby preserving mass responsivity. The authors present an array of five cantilevers (CMOS-MEMS system that are forced to vibrate synchronously to enhance their frequency stability. The frequency stability has been determined in closed-loop configuration for long periods of time by calculating the Allan deviation. An Allan deviation of 0.013 ppm (@ 1 s averaging time for a 1 MHz cantilever array MEMS system was obtained at the synchronized mode, which represents a 23-fold improvement in comparison with the non-synchronized operation mode (0.3 ppm.

  8. Self-assembling siloxane bilayer directly on SiO{sub 2} surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ying; Xu Pengcheng; Li Xinxin, E-mail: xxli@mail.sim.ac.cn [State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2010-07-02

    This paper presents a novel sensing layer modification technique for static micro-cantilever sensors that detect trace explosives by measuring specific adsorption-induced surface stress. For the first time, a method of directly modifying a siloxane sensing bilayer on an SiO{sub 2} surface is proposed to replace the conventional self-assembled monolayers (SAMs) of thiols on Au to avoid the trouble from long-term unstable Au-S bonds. For modifying the long-term reliable sensing bilayer on the piezoresistor-integrated micro-cantilevers, a siloxane-head bottom layer is self-assembled directly on the SiO{sub 2} cantilever surface, which is followed by grafting another explosive-sensing-group functionalized molecule layer on top of the siloxane layer. The siloxane-modified sensor has experimentally exhibited a highly resoluble response to 0.1 ppb TNT vapor. More importantly, the repeated detection results after 140 days show no obvious attenuation in sensing signal. Also observed experimentally, the specific adsorption of the siloxane sensing bilayer to TNT molecules causes a tensile surface stress on the cantilever. Herein the measured tensile surface stress is in contrast to the compressive surface stress normally measured from conventional cantilever sensors where the sensitive thiol-SAMs are modified on an Au surface. The reason for this newly observed phenomenon is discussed and preliminarily analyzed.

  9. Cantilever-detected high-frequency ESR measurement using a backward travelling wave oscillator

    International Nuclear Information System (INIS)

    Tokuda, Y; Hirano, S; Ohmichi, E; Ohta, H

    2012-01-01

    Our cantilever-detected electron spin resonance (ESR) technique is motivated for terahertz ESR spectroscopy of a tiny single crystal at low temperature. In this technique, ESR signal is detected as deflection of a sample-mounted cantilever, which is sensitively detected by built-in piezoresistors. So far, ESR detection at 315 GHz was succeeded using Gunn oscillator. In this study, we combine our ESR technique with a backward traveling wave oscillator (BWO), which can cover a wide frequency range 120-1200 GHz, to achieve better spectral resolution. Experiments were carried out at 4.2 K for a single crystal of Co Tutton salt with a newly constructed optical system. We successfully observed two ESR absorption lines in BWO frequencies up to 370 GHz. From multi-frequency measurements, the observed ESR lines shifted linearly with BWO frequency, being consistent with paramagnetic resonance. The estimated g values are g 1 = 3.00 and g 2 = 3.21. The spin sensitivity was estimated to ∼10 12 spins/gauss at 370 GHz.

  10. Chemical gas sensors based on functionalized self-actuated piezo-resistive cantilevers

    OpenAIRE

    Filenko, Denys

    2008-01-01

    Der Schwerpunkt dieser Arbeit liegt in der Anwendung funktionalisierter Mikrocantilever mit integrierter bimorpher Aktuation und piezo-resistiver Detektion als chemische Gassensoren für den schnellen, tragbaren und preisgünstigen Nachweis verschiedener flüchtiger Substanzen. Besondere Beachtung erfährt die Verbesserung der Cantilever-Arbeitsleistung durch den Betrieb in speziellen Modi. Weiterer Schwerpunkt liegt in der Untersuchung von spezifischen Sorptionswechselwirkungen und Anwendung von...

  11. Fifteen-year survival of anterior all-ceramic cantilever resin-bonded fixed dental prostheses.

    Science.gov (United States)

    Kern, Matthias

    2017-01-01

    The aim of this follow-up study was to report the long-term outcome of all-ceramic cantilever resin-bonded fixed dental prostheses (RBFDPs). In 16 patients (mean age of 33.3±17.5years) 22 RBFDPs made from a glass-infiltrated alumina ceramic (In-Ceram) were inserted with a phosphate monomer containing luting agent after air-abrasion of the retainer wings. The abutment preparation included a shallow groove on the cingulum and a small proximal box. The restorations replacing 16 maxillary and 6 mandibular incisors were followed over a mean observation time of 188.7 months. No restoration debonded. Two RBFDPs fractured and were lost 48 and 214 months after insertion, respectively. The 10-year and 15-year survival rates were both 95.4% and dropped to 81.8% after 18 years. Anterior all-ceramic cantilever RBFDPs exhibited an excellent clinical longevity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Bleaching and stimulated recovery of dyes and of photo-cantilevers

    OpenAIRE

    Corbett, D.; Warner, M.

    2008-01-01

    We examine how intense optical beams can penetrate deeply into highly absorbing media by a non-linear, photo-bleaching process. The role of stimulated recovery to the dye ground state can be important and is delineated. This analysis of non-linear absorption processes is applicable in general to situations where chromophores are irradiated, for instance in biology. We examine the implications for the bending of cantilevers made of heavily dye-loaded nematic photo-solids, that is nematic glass...

  13. Quantitative electromechanical impedance method for nondestructive testing based on a piezoelectric bimorph cantilever

    International Nuclear Information System (INIS)

    Fu, Ji; Tan, Chi; Li, Faxin

    2015-01-01

    The electromechanical impedance (EMI) method, which holds great promise in structural health monitoring (SHM), is usually treated as a qualitative method. In this work, we proposed a quantitative EMI method based on a piezoelectric bimorph cantilever using the sample’s local contact stiffness (LCS) as the identification parameter for nondestructive testing (NDT). Firstly, the equivalent circuit of the contact vibration system was established and the analytical relationship between the cantilever’s contact resonance frequency and the LCS was obtained. As the LCS is sensitive to typical defects such as voids and delamination, the proposed EMI method can then be used for NDT. To verify the equivalent circuit model, two piezoelectric bimorph cantilevers were fabricated and their free resonance frequencies were measured and compared with theoretical predictions. It was found that the stiff cantilever’s EMI can be well predicted by the equivalent circuit model while the soft cantilever’s cannot. Then, both cantilevers were assembled into a homemade NDT system using a three-axis motorized stage for LCS scanning. Testing results on a specimen with a prefabricated defect showed that the defect could be clearly reproduced in the LCS image, indicating the validity of the quantitative EMI method for NDT. It was found that the single-frequency mode of the EMI method can also be used for NDT, which is faster but not quantitative. Finally, several issues relating to the practical application of the NDT method were discussed. The proposed EMI-based NDT method offers a simple and rapid solution for damage evaluation in engineering structures and may also shed some light on EMI-based SHM. (paper)

  14. Disimpaction of maxillary canines using temporary bone anchorage and cantilever springs.

    Science.gov (United States)

    Thebault, Benoit; Dutertre, Eric

    2015-03-01

    Impacted canines, particularly in the maxilla, are frequently encountered in orthodontic practice. Unfortunately, depending on their position, correction can often be difficult and sometimes unsuccessful. Thorough diagnosis along with orthodontic treatment combining bone-supported anchorage and cantilever springs appears, in our view, to offer the best solution to this tricky orthodontic challenge while limiting, as far as possible, the risk of failure. Copyright © 2015. Published by Elsevier Masson SAS.

  15. Force Measurement with a Piezoelectric Cantilever in a Scanning Force Microscope

    OpenAIRE

    Tansock, J.; Williams, C. C.

    1992-01-01

    Detection of surface forces between a tip and sample has been demonstrated with a piezoelectric cantilever in a scanning force microscope (SFM). The use of piezoelectric force sensing is particularly advantageous in semiconductor applications where stray light from conventional optical force-sensing methods can significantly modify the local carrier density. Additionally, the piezoelectric sensors are simple, provide good sensitivity to force, and can be batch fabricated. Our piezoelectric fo...

  16. The output characteristic of cantilever-like tactile sensor based on the inverse magnetostrictive effect

    Directory of Open Access Journals (Sweden)

    Lili Wan

    2017-05-01

    Full Text Available The output characteristic model of a magnetostrictive cantilever-like tactile sensor has been founded based on the inverse-magnetostrictive effect, the flexure mode, and the Jiles-Atherton model. The magnetostrictive sensor has been designed and an output voltage is analyzed under the conditions of bias magnetic field, contact pressure and deflection of cantilever beam. The experiment has been performed to determine the relation among the induced output voltage, bias magnetic field, and pressure. It is found that the peak of the induced output voltage increases with an increasing pressure under the bias magnetic field of 4.8kA/m. The experimental result agrees well with the theoretical one and it means that the model can describe the relation among the induced output voltage, bias magnetic field, and pressure. The sensor with a Galfenol sheet may hold potentials in sample characterization and deformation predication in artificial intelligence area.

  17. Hybrid 3D printing by bridging micro/nano processes

    International Nuclear Information System (INIS)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-01-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques. (paper)

  18. Hybrid 3D printing by bridging micro/nano processes

    Science.gov (United States)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-06-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques.

  19. Effects of Cement, Abutment Surface Pretreatment, and Artificial Aging on the Force Required to Detach Cantilever Fixed Dental Prostheses from Dental Implants.

    Science.gov (United States)

    Kappel, Stefanie; Chepura, Taras; Schmitter, Marc; Rammelsberg, Peter; Rues, Stefan

    To examine the in vitro effects of different cements, abutment surface preconditioning, and artificial aging on the maximum tensile force needed to detach cantilever fixed dental prostheses (FDPs) from dental implants with titanium abutments. A total of 32 tissue-level implants were combined with standardized titanium abutments. For each test group, eight cantilever FDPs were fabricated using selective laser melting (cobalt-chromium [CoCr] alloy). The inner surfaces of the cantilever FDPs and half of the abutments were sandblasted and then joined by use of four different cements (two permanent and two semi-permanent) in two different amounts per cement. Subgroups were tested after either artificial aging (thermocycling and chewing simulation) or 3 days of water storage. Finally, axial pull off-tests were performed for each abutment separately. Cement type and surface pretreatment significantly affected decementation behavior. The highest retention forces (approximately 1,200 N) were associated with sandblasted abutments and permanent cements. With unconditioned abutments, temporary cements (Fu cement (Fu ≈ 100 N), resulted in rather low retention forces. Zinc phosphate cement guaranteed high retention forces. After aging, retention was sufficient only for cementation with zinc phosphate cement and for the combination of sandblasted abutments and glass-ionomer cement. When glass-ionomer cement is used to fix cantilever FDPs on implants, sandblasting of standard titanium abutments may help prevent loss of retention. Retention forces were still high for FDPs fixed with zinc phosphate cement, even when the abutments were not pretreated. Use of permanent cements only, however, is recommended to prevent unwanted loosening of cantilever FDPs.

  20. Unstable oscillation of tubular cantilevered beams conveying a compressible fluid

    International Nuclear Information System (INIS)

    Johnson, R.O.; Stoneking, J.E.; Carley, T.G.

    1986-01-01

    This paper is concerned with establishing the conditions of stability of a cantilevered tube conveying a compressible fluid. Solutions to Niordson's eigenvalue problem associated with the equations of motion are computed using Muller's method. The effects on critical velocity of compressibility which are accommodated by specifying the tube aspect ratio and fluid sonic velocity are parametrically studied. Aspect ratio is found to have a more pronounced effect on critical velocity than sonic velocity over the parameter range that was considered. (orig.)

  1. High-speed tapping-mode atomic force microscopy using a Q-controlled regular cantilever acting as the actuator: Proof-of-principle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Balantekin, M., E-mail: mujdatbalantekin@iyte.edu.tr [Electrical and Electronics Engineering, İzmir Institute of Technology, Urla, İzmir 35430 (Turkey); Satır, S.; Torello, D.; Değertekin, F. L. [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2014-12-15

    We present the proof-of-principle experiments of a high-speed actuation method to be used in tapping-mode atomic force microscopes (AFM). In this method, we do not employ a piezotube actuator to move the tip or the sample as in conventional AFM systems, but, we utilize a Q-controlled eigenmode of a cantilever to perform the fast actuation. We show that the actuation speed can be increased even with a regular cantilever.

  2. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material...

  3. Nano-DTA and nano-DSC with cantilever-type calorimeter

    International Nuclear Information System (INIS)

    Nakabeppu, Osamu; Deno, Kohei

    2016-01-01

    Highlights: • Nanocalorimetry with original cantilever type calorimeters. • The calorimeters showed the enthalpy resolution of 200 nJ level. • Nano-DTA of a binary alloy captured a probabilistic peak after solidification. • Power compensation DSC of a microgram level sample was demonstrated. • The DSC and DTA behavior were explained with a lumped model. - Abstract: Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) of the minute samples in the range of microgram to nanogram were studied using original cantilever-type calorimeters. The micro-fabricated calorimeter with a heater and thermal sensors was able to perform a fast temperature scan at above 1000 K/s and a high-resolution heat measurement. The DTA of minuscule metal samples demonstrated some advances such as the thermal analysis of a 20 ng level indium and observation of a strange phase transition of a binary alloy. The power compensation type DSC using a thermal feedback system was also performed. Thermal information of a microgram level sample was observed as splitting into the DSC and DTA signals because of a mismatch between the sample and the calorimeter. Although there remains some room for improvement in terms of the heat flow detection, the behavior of the compensation system in the DSC was theoretically understood through a lumped model. Those experiments also produced some findings, such as a fin effect with sample loading, a measurable weight range, a calibration of the calorimeter and a product design concept. The development of the nano-DTA and nano-DSC will enable breakthroughs for the fast calorimetry of the microscopic size samples.

  4. Myocardial Bridge

    Science.gov (United States)

    ... Center > Myocardial Bridge Menu Topics Topics FAQs Myocardial Bridge En español Your heart is made of muscle, ... surface of the heart. What is a myocardial bridge? A myocardial bridge is a band of heart ...

  5. Methodology of structures damage estimation in case of cantilever isotropic beam

    Directory of Open Access Journals (Sweden)

    Sylwester Samborski

    2015-12-01

    Full Text Available This paper focuses on analysis of damage detection cantilever beam. Finite Element Method was used to simulate vibrations of the intact and the damaged beams. Analysis of natural frequencies of both the intact and the damaged beams was performed in order to observe the effect of damage on the beams dynamics. Next, the phase diagrams technique was applied and finally, experimental verification was performed to check the numerical results.

  6. An elastography method based on the scanning contact resonance of a piezoelectric cantilever

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ji; Li, Faxin, E-mail: lifaxin@pku.edu.cn [State Key Lab for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China and HEDPS, Center for Applied Physics and Technologies, Peking University, Beijing 100871 (China)

    2013-12-15

    Purpose: Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. Methods: This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which the sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Results: Testing onin vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method/system is better than 0.5 mm, and could be further enhanced by using more scanning points. Conclusions: The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.

  7. An elastography method based on the scanning contact resonance of a piezoelectric cantilever.

    Science.gov (United States)

    Fu, Ji; Li, Faxin

    2013-12-01

    Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which the sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Testing on in vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method∕system is better than 0.5 mm, and could be further enhanced by using more scanning points. The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.

  8. The effects of loading on the preload and dimensions of the abutment screw for a 3-unit cantilever-fixed prosthesis design.

    Science.gov (United States)

    Setia, Gaurav; Yousef, Hoda; Ehrenberg, David; Luke, Allyn; Weiner, Saul

    2013-08-01

    The purpose of this study was to use an in vitro model system to compare the effects on the screw torque and screw dimensions within 2 commercially available implant systems from occlusal loading on a cantilevered-fixed partial denture. Cantilevered implant-supported 3-unit prostheses with 2 premolar abutments and 1 premolar pontic (7.3 mm in length) were made on resin casts containing 2 implant analogs for 2 implant systems: BioLok Silhouette Tapered Implant System (Birmingham, AL) and Zimmer Tapered Screw-Vent Implant System (Carlsbad, CA) with 10 samples in each group. Each sample was loaded with either of 2 protocols: (1) a load of 50 N on the cantilevered pontic unit and (2) a loading of 150 N on all 3 units. The outcome measures were (1) changes in residual torque of the abutment screws and (2) changes in screw dimension. The BioLok Silhouette Tapered Implant group demonstrated slight but statistically significant torque loss 18.8% to 28.5% in both abutment screws for both protocols, P ≤ 0.05, without any changes in screw dimension. In the Zimmer Tapered Screw-Vent Implant group, there was a significant elongation of the abutment screws and a markedly significant 44.4%, (P ≤ 0.01) loss in torque in the mesial screw and a 28.5%, (P ≤ 0.05) loss in torque in the distal screw when the cantilever alone was loaded. Differences in screw design influence the maintenance of preload and distortion of the shank. The influence of the interface design, namely an internal hex of 1 mm versus an external hex did not influence the preload. Cantilevered prostheses can cause loss of torque and dimensional changes in abutment screws.

  9. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Minhyuk; Lee, Dongkyu; Jung, Namchul; Jeon, Sangmin [Department of Chemical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Seonghwan; Chae, Inseok; Thundat, Thomas [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2012-05-14

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  10. Stability enhancement of an atomic force microscope for long-term force measurement including cantilever modification for whole cell deformation

    Science.gov (United States)

    Weafer, P. P.; McGarry, J. P.; van Es, M. H.; Kilpatrick, J. I.; Ronan, W.; Nolan, D. R.; Jarvis, S. P.

    2012-09-01

    Atomic force microscopy (AFM) is widely used in the study of both morphology and mechanical properties of living cells under physiologically relevant conditions. However, quantitative experiments on timescales of minutes to hours are generally limited by thermal drift in the instrument, particularly in the vertical (z) direction. In addition, we demonstrate the necessity to remove all air-liquid interfaces within the system for measurements in liquid environments, which may otherwise result in perturbations in the measured deflection. These effects severely limit the use of AFM as a practical tool for the study of long-term cell behavior, where precise knowledge of the tip-sample distance is a crucial requirement. Here we present a readily implementable, cost effective method of minimizing z-drift and liquid instabilities by utilizing active temperature control combined with a customized fluid cell system. Long-term whole cell mechanical measurements were performed using this stabilized AFM by attaching a large sphere to a cantilever in order to approximate a parallel plate system. An extensive examination of the effects of sphere attachment on AFM data is presented. Profiling of cantilever bending during substrate indentation revealed that the optical lever assumption of free ended cantilevering is inappropriate when sphere constraining occurs, which applies an additional torque to the cantilevers "free" end. Here we present the steps required to accurately determine force-indentation measurements for such a scenario. Combining these readily implementable modifications, we demonstrate the ability to investigate long-term whole cell mechanics by performing strain controlled cyclic deformation of single osteoblasts.

  11. Approximations for Large Deflection of a Cantilever Beam under a Terminal Follower Force and Nonlinear Pendulum

    Directory of Open Access Journals (Sweden)

    H. Vázquez-Leal

    2013-01-01

    Full Text Available In theoretical mechanics field, solution methods for nonlinear differential equations are very important because many problems are modelled using such equations. In particular, large deflection of a cantilever beam under a terminal follower force and nonlinear pendulum problem can be described by the same nonlinear differential equation. Therefore, in this work, we propose some approximate solutions for both problems using nonlinearities distribution homotopy perturbation method, homotopy perturbation method, and combinations with Laplace-Padé posttreatment. We will show the high accuracy of the proposed cantilever solutions, which are in good agreement with other reported solutions. Finally, for the pendulum case, the proposed approximation was useful to predict, accurately, the period for an angle up to 179.99999999∘ yielding a relative error of 0.01222747.

  12. Application of hydrogel-coated microcantilevers as sensing elements for pH

    International Nuclear Information System (INIS)

    Gonska, Julian; Schelling, Christoph; Urban, Gerald

    2009-01-01

    This note reports on cantilever-based sensor elements coated with a hydrogel. The hydrogel responds with a volume change on varying the pH value of surrounding liquids. The change in volume leads to a static deflection of the cantilevers, which is detected using integrated piezoresistors. To increase deflection sensitivity of the sensor elements, sub-micron, multilayered cantilevers consisting of polycrystalline silicon and silicon oxide are used. A new cantilever design is developed, which decreases the cantilever sensitivity to in situ stresses and thermal bimorph effects. A theoretical model for the sensor elements is introduced providing the output signal of multiple cantilevers connected in a full Wheatstone bridge. Measurements of deflection sensitivity prove the theoretical model. Finally, the cantilevers are coated with a 2-hydroxyethyl methacrylate and 2-(dimethylamino) ethyl methacrylate copolymer-based hydrogel, and changes in the pH value from pH 4 to pH 10 are measured. (technical note)

  13. Improving Performance of Cantilevered Momentum Wheel Assemblies by Soft Suspension Support

    OpenAIRE

    Zhou, Weiyong; Li, Dongxu

    2013-01-01

    This paper focuses on improving the performance of the rigid support cantilevered momentum wheel assemblies (CMWA) by soft suspension support. A CMWA, supported by two angular contact ball bearings, was modeled as a Jeffcott rotor. The support stiffness, before and after in series with a linear soft suspension support, were simplified as two Duffing's type springs respectively. The result shows that the rigid support CMWA produces large disturbance force at the resonance speed range. The soft...

  14. Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates

    NARCIS (Netherlands)

    Sadeghian, H.; Goosen, J.F.L.; Bossche, A.; Van Keulen, F.

    2009-01-01

    In this letter, the dominant role of surface stress and surface elasticity on the overall elastic behavior of ultrathin cantilever plates is studied. A general framework based on two-dimensional plane-stress analysis is presented. Because of either surface reconstruction or molecular adsorption,

  15. Sensing technology for damage assessment of sign supports and cantilever poles : final report, August 31, 2010.

    Science.gov (United States)

    2010-08-31

    This report presents the results of research activities conducted under Contract No. 519691-PIT 008 on Sensing Technology for : Damage Assessment of Sign Supports and Cantilever Poles between the University of Pittsburgh and the Pennsylvania De...

  16. The Akashi Kaikyo Bridge and the Storebælt Bridge

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    1999-01-01

    With the completion of the Akashi Kaikyo Bridge and the Storebælt East Bridge the development of the suspension bridge technology in the 20th century has manifested itself in two impressive structures. With the present echnology may bridges of similar (and also more modest) dimensions...... will undoubtedly be built far into the next century. For bridges going beyond the spans of existing bridges it is, however, likely that new concepts will be developed....

  17. Flexible SiO2 cantilevers for torsional self-aligning micro scale four-point probes

    DEFF Research Database (Denmark)

    Kjær, Daniel; Gammelgaard, Lauge; Bøggild, Peter

    2007-01-01

    In order to successfully measure the conductivity of a sample with a four- point probe, good alignment of the electrodes to the sample is important to establish even contact pressure and contact areas of the electrodes. By incorporating a hinge in a microfabricated SiO2 mono- cantilever the ability...

  18. Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper bridge management systems are discussed with special emphasis on management systems for reinforced concrete bridges. Management systems for prestressed concrete bridges, steel bridges, or composite bridges can be developed in a similar way....

  19. Determining shear modulus of thin wood composite materials using a cantilever beam vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan

    2016-01-01

    Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...

  20. Development of a Micro-SPM (Scanning Probe Microscope by Post-Assembly of a MEMS-Stage and an Independent Cantilever

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2007-08-01

    Full Text Available The development of miniature scanning probe microscopes (SPM on the basis of the MEMS technique has gained more and more interest. Here a novel approach is presented to realize a micro-SPM, in which by means of post-assembly a conventional cantilever is mounted onto a MEMS positioning stage and used to detect the topography variation of the surface under test. Compared with other integrated micro-SPMs, the proposed micro-SPM can maintain the lateral resolution by simply renewing its cantilever in use, and therefore features low cost, practicability and longer lifetime. Preliminary experimental results are reported, which demonstrate that the proposed microSPM can be realized.

  1. 2D MEMS electrostatic cantilever waveguide scanner for potential image display application

    Directory of Open Access Journals (Sweden)

    Gu Kebin

    2015-01-01

    Full Text Available This paper presents the current status of our micro-fabricated SU-8 2D electrostatic cantilever waveguide scanner. The current design utilizes a monolithically integrated electrostatic push-pull actuator. A 4.0 μm SU-8 rib waveguide design allows a relatively large core cross section (4μm in height and 20 μm in width to couple with existing optical fiber and a broad band single mode operation (λ= 0.7μm to 1.3μm with minimal transmission loss (85% to 87% output transmission efficiency with Gaussian beam profile input. A 2D scanning motion has been successfully demonstrated with two fundamental resonances found at 202 and 536 Hz in vertical and horizontal directions. A 130 μm and 19 μm, corresponding displacement and 0.062 and 0.009 rad field of view were observed at a +150V input. Beam divergence from the waveguide was corrected by a focusing GRIN lens and a 5μm beam diameter is observed at the focal plane. The transmission efficiency is low (~10% and cantilever is slightly under tensile residual stress due to inherent imperfection in the process and tooling in fabrication. However, 2D light scanning pattern was successfully demonstrated using 1-D push-pull actuation.

  2. Railroad Bridges

    Data.gov (United States)

    Department of Homeland Security — Bridges-Rail in the United States According to The National Bridge Inspection Standards published in the Code of Federal Regulations (23 CFR 650.3), a bridge isA...

  3. Implementation of Bridge Management System on Interurban Bridge in Maluku Province

    Directory of Open Access Journals (Sweden)

    Erwin Marasabessy

    2015-05-01

    Full Text Available Bridges as transport infrastructures play a vital role in smoothing traffic flows. The success of a bridge in playing its role and serving its function depends on its management. The Directorate General of Highways of the Ministry of Public Work has used a system to manage bridges known as the Bridge Management System (BMS. The system allows a systematic plan and provides a uniform procedure for all bridge operation activities on the national and provincial level. Data from Implementation Agency of National Inter-Urban Roads of Area IX, Northern Maluku in 2011 indicates that the total length of national roads in Maluku Province is 15,238.01 M, with a total of 562 bridges. In Ambon Island, especially, there are 52 bridges totaling 1,176.25 m in length. The study was conducted at several inter-urban bridges in Maluku Province of Ambon Island: Wai Batu Merah, Wai Ruhu, Wai Lawa, Wai Yari and Wai Tua bridges. Assessment of bridge structure conditions was conducted visually to determine the conditions of the existing bridges comprehensively by referring to the Bridge Management System (BMS complemented with a computer-based Bridge Management Information System (BMIS. Condition scores for the five bridges—Wai Batu Merah, Wai Ruhu, Wai Lawa, Wai Yari, and Wai Tua, according to Bridge Management System, are 2, 1, 2, 1, and 2 respectively. The scores of the five bridges indicate that their physical condition can be categorized as good or with minor defects. Based on technical screening, the proposed treatment for Wai Batu Merah, Wai Ruhu, Wai Lawa, dan Wai Tua bridges is the rehabilitation of their sub-elements. As for the Wai Yari Bridge, the treatment will be maintained regularly. The defect repair costs are IDR 149,138,238.00, IDR 81,048,000.00, IDR 174,579,106.10, IDR 79,233,324.01 and IDR 238,323,258.60 for Wai Batu, Wai Ruhu, Wai Lawa, Wai Yari, and Wai Tua Bridges, respectively.

  4. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

    Directory of Open Access Journals (Sweden)

    Daniel Kiracofe

    2013-06-01

    Full Text Available One of the key goals in atomic force microscopy (AFM imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes. It is found that such operation leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth, but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast during nanoscale imaging of materials.

  5. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    Science.gov (United States)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-02-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  6. Long-term bridge performance high priority bridge performance issues.

    Science.gov (United States)

    2014-10-01

    Bridge performance is a multifaceted issue involving performance of materials and protective systems, : performance of individual components of the bridge, and performance of the structural system as a whole. The : Long-Term Bridge Performance (LTBP)...

  7. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    Science.gov (United States)

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  8. 47 CFR 80.163 - Operator requirements of the Bridge-to-Bridge Act.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Operator requirements of the Bridge-to-Bridge... Requirements § 80.163 Operator requirements of the Bridge-to-Bridge Act. Each ship subject to the Bridge-to-Bridge Act must have on board a radio operator who holds a restricted radiotelephone operator permit or...

  9. Bridge health monitoring metrics : updating the bridge deficiency algorithm.

    Science.gov (United States)

    2009-10-01

    As part of its bridge management system, the Alabama Department of Transportation (ALDOT) must decide how best to spend its bridge replacement funds. In making these decisions, ALDOT managers currently use a deficiency algorithm to rank bridges that ...

  10. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Vytautas Ostasevicius

    2015-05-01

    Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  11. Micro-cantilevers for non-destructive characterization of nanograss uniformity

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Wang, Fei; Olesen, Mikkel Buster

    2011-01-01

    We demonstrate an application of three-way flexible micro four-point probes for indirect uniformity characterization of surface morphology. The mean sheet conductance of a quasi-planar 3D nanostructured surface is highly dependent on the surface morphology, and thus accurate sheet conductance...... measurements may be useful for process uniformity characterization. The method is applied for characterization of TiW coated nanograss uniformity. Three-way flexible L-shaped cantilever electrodes are used to avoid damage to the fragile surface, and a relative standard deviation on measurement repeatability...... of 0.12 % is obtained with a measurement yield of 97%. Finally, variations in measured sheet conductance are correlated to the surface morphology as characterized by electron microscopy....

  12. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Asghar [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Akbari, Javad [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-01-09

    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature.

  13. 47 CFR 80.309 - Watch required by the Bridge-to-Bridge Act.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Watch required by the Bridge-to-Bridge Act. 80... Safety Watches § 80.309 Watch required by the Bridge-to-Bridge Act. In addition to the watch requirement contained in § 80.148, all vessels subject to the Bridge-to-Bridge Act must keep a watch on the designated...

  14. Towards quantitative determination of the spring constant of a scanning force microscope cantilever with a microelectromechanical nano-force actuator

    International Nuclear Information System (INIS)

    Gao, Sai; Herrmann, Konrad; Zhang, Zhikai; Wu, Yong

    2010-01-01

    The calibration of the performance of an SFM (scanning force microscope) cantilever has gained more and more interest in the past years, particularly due to increasing applications of SFMs for the determination of the mechanical properties of materials, such as biological structures and organic molecules. In this paper, a MEMS-based nano-force actuator with a force resolution up to nN (10 −9 N) is presented to quantitatively determine the stiffness of an SFM cantilever. The principle, structure design and realization of the nano-force actuator are detailed. Preliminary experiments demonstrate that the long-term self-calibration stability of the actuator is better than 3.7 × 10 −3 N m −1 (1σ) over 1 h. With careful calibration of the stiffness of the actuator, the MEMS actuator has the capability to determine the stiffness of various types of cantilevers (from 100 N m −1 down to 0.1 N m −1 ) with high accuracy. In addition, thanks to the large displacement and force range (up to 8 µm and 1 mN, respectively) of the actuator, the calibration procedure with our MEMS nano-force actuator features simple and active operation, and therefore applicability for different types of quantitative SFMs

  15. Field performance of timber bridges. 7, Connell Lake stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop; M. A. Ritter

    The Connell Lake bridge was constructed in early 1991 on the Tongass National Forest, Alaska, as a demonstration bridge under the Timber Bridge Initiative. The bridge is a stress-laminated deck structure with an approximate 36-ft length and 18-ft width and is the first known stress-laminated timber bridge constructed in Alaska. Performance of the bridge was monitored...

  16. Track-Bridge Longitudinal Interaction of Continuous Welded Rails on Arch Bridge

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-01-01

    Full Text Available Taking arch bridges, including deck, half-through, and through arch bridges (short for DAB, HTAB, and TAB as examples, mechanics analysis models of longitudinal interaction between continuously welded rails (short for CWRs and arch bridges are established. Based on the finite element method (FEM, the longitudinal interaction calculation software of CWR on arch bridges has been developed. Focusing on an HTAB, the tension, compression, and deflection conditions are calculated and analyzed. The results show that the mechanics analysis models of three types of arch bridges can truly reflect the real state of the structure; the calculation software can be used for systematic research of the CWR on arch bridge; as for HTAB, temperature difference of arch rib has a small effect on rail tension/compression, and arch bridge can be simplified as a continuous beam for rail tension/compression additional force calculation; in calculation of deflection conditions of HTAB, it is suggested that train loads are arranged on half span and full span and take the direction of load entering bridge into account. Additionally, the deflection additional force variation of CFST basket handle arch bridge is different from that of ordinary bridge.

  17. Modelling and characterization of the roof tile-shaped modes of AlN-based cantilever resonators in liquid media

    International Nuclear Information System (INIS)

    Ruiz-Díez, V; Hernando-García, J; Toledo, J; Manzaneque, T; Sánchez-Rojas, J L; Kucera, M; Pfusterschmied, G; Schmid, U

    2016-01-01

    In this work, roof tile-shaped modes of MEMS (micro electro-mechanical systems) cantilever resonators with various geometries and mode orders are analysed. These modes can be efficiently excited by a thin piezoelectric film and a properly designed top electrode. The electrical and optical characterization of the resonators are performed in liquid media and the device performance is evaluated in terms of quality factor, resonant frequency and motional conductance. A quality factor as high as 165 was measured in isopropanol for a cantilever oscillating in the seventh order roof tile-shaped mode at 2 MHz. To support the results of the experimental characterization, a 2D finite element method simulation model is presented and studied. An analytical model for the estimation of the motional conductance was also developed and validated with the experimental measurements. (paper)

  18. Grated waveguide-based optical cavities as compact sensors for sub-nanometre cantilever deflections, and small refractive-index changes

    NARCIS (Netherlands)

    Kauppinen, L.J.; Hoekstra, Hugo; Dijkstra, Mindert; de Ridder, R.M.; Krijnen, Gijsbertus J.M.; MacCraith, B; McDonagh, C.

    2008-01-01

    The paper reports on theoretical and experimental results of integrated optical (IO) cavities defined by grated waveguides in $Si_3N_4$ and Si, for the accurate detection of cantilever deflection and bulk index changes.

  19. Investigation of Subcombination Internal Resonances in Cantilever Beams

    Directory of Open Access Journals (Sweden)

    Haider N. Arafat

    1998-01-01

    Full Text Available Activation of subcombination internal resonances in transversely excited cantilever beams is investigated. The effect of geometric and inertia nonlinearities, which are cubic in the governing equation of motion, is considered. The method of time-averaged Lagrangian and virtual work is used to determine six nonlinear ordinary-differential equations governing the amplitudes and phases of the three interacting modes. Frequency- and force-response curves are generated for the case ω ≈ ω4 ≈ 1/2(ω2 + ω5. There are two possible responses: single-mode and three-mode responses. The single-mode periodic response is found to undergo supercritical and subcritical pitchfork bifurcations, which result in three-mode interactions. In the case of three-mode responses, there are conditions where the low-frequency mode dominates the response, resulting in high-amplitude quasiperiodic oscillations.

  20. Vibration energy harvesting using piezoelectric unimorph cantilevers with unequal piezoelectric and nonpiezoelectric lengths

    OpenAIRE

    Gao, Xiaotong; Shih, Wei-Heng; Shih, Wan Y.

    2010-01-01

    We have examined a piezoelectric unimorph cantilever (PUC) with unequal piezoelectric and nonpiezoelectric lengths for vibration energy harvesting theoretically by extending the analysis of a PUC with equal piezoelectric and nonpiezoelectric lengths. The theoretical approach was validated by experiments. A case study showed that for a fixed vibration frequency, the maximum open-circuit induced voltage which was important for charge storage for later use occurred with a PUC that had a nonpiezo...

  1. Bridges

    NARCIS (Netherlands)

    Zant, W.

    2017-01-01

    We estimate to what extent bridges in Mozambique lead to transport cost reductions and attribute these reductions to key determinants, in particular road distance, road quality and crossing borders. For identification we exploit the introduction of a road bridge over the Zambezi river, in August

  2. Numerical Simulation of Output Response of PVDF Sensor Attached on a Cantilever Beam Subjected to Impact Loading

    Directory of Open Access Journals (Sweden)

    Cao Vu Dung

    2016-04-01

    Full Text Available Polyvinylidene Flouride (PVDF is a film-type polymer that has been used as sensors and actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF sensor typically covers an area of the host structure over which mechanical stress/strain is averaged and converted to electrical energy. This study investigates the fundamental “stress-averaging” mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted to simulate the “stress-averaging” mechanism of a PVDF sensor attached on a cantilever beam subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever beam’s modal properties, and electronic signal conditioning. Impact tests and FEM analysis were also carried out to verify the numerical simulation results. The results of impact tests indicate the excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of the cantilever beam. There is a good agreement between the PVDF sensor’s output voltage predicted by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to generate higher output voltage than a smaller one at the same location. However, the effect of sensor location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.

  3. Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weiqun, E-mail: weiqunliu@home.swjtu.edu.cn; Liu, Congzhi; Ren, Bingyu; Zhu, Qiao; Hu, Guangdi [School of Mechanical Engineering, Southwest Jiaotong University, 610031 Chengdu (China); Yang, Weiqing [School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu (China)

    2016-07-25

    A nonlinear wideband generator architecture by clamping the cantilever beam generator with a curve fixture is proposed. Devices with different nonlinear stiffness can be obtained by properly choosing the fixture curve according to the design requirements. Three available generator types are presented and discussed for polynomial curves. Experimental investigations show that the proposed mechanism effectively extends the operation bandwidth with good power performance. Especially, the simplicity and easy feasibility allow the mechanism to be widely applied for vibration generators in different scales and environments.

  4. Field performance of timber bridges. 4, Graves Crossing stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter

    The Graves Crossing bridge was constructed October 1991 in Antrim County, Michigan, as part of the demonstration timber bridge program sponsored by the USDA Forest Service. The bridge is a two-span continuous, stress-laminated deck superstructure and it is 36-ft long and 26-ft wide. The bridge is one of the first stress-laminated deck bridges to be built of sawn lumber...

  5. Optimization of Pb(Zr0.53,Ti0.47)O3 films for micropower generation using integrated cantilevers

    KAUST Repository

    Fuentes-Fernandez, E. M A

    2011-09-01

    Lead zirconate titanate, Pb(Zr0.53,Ti0.47)O 3 or PZT, thin films and integrated cantilevers have been fabricated for energy harvesting applications. The PZT films were deposited on PECVD SiO2/Si substrates with a sol-gel derived ZrO2 buffer layer. It is found that lead content in the starting solution and ramp rate during film crystallization are critical to achieving large-grained films on the ZrO2 surface. The electrical properties of the PZT films were measured using metal-ferroelectric-metal and inter-digital electrode structures, and revealed substantial improvement in film properties by controlling the process conditions. Functional cantilevers are demonstrated using the optimized films with output of 1.4 V peak-to-peak at 1 kHz and 2.5 g. © 2011 Elsevier Ltd. All rights reserved.

  6. Myocardial Bridging

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2016-02-01

    Full Text Available Abstract Myocardial bridging is rare. Myocardial bridges are most commonly localized in the middle segment of the left anterior descending coronary artery. The anatomic features of the bridges vary significantly. Alterations of the endothelial morphology and the vasoactive agents impact on the progression of atherosclerosis of myocardial bridging. Patients may present with chest pain, myocardial infarction, arrhythmia and even sudden death. Patients who respond poorly to the medical treatment with β-blockers warrant a surgical intervention. Myotomy is a preferred surgical procedure for the symptomatic patients. Coronary stent deployment has been in limited use due to the unsatisfactory long-term results.

  7. The hepatic bridge.

    Science.gov (United States)

    Sugarbaker, Paul H

    2018-07-01

    The hepatic bridge forms a tunnel of liver parenchyma that may obscure peritoneal metastases associated with the round ligament. Visualization and then resection of nodules associated with this structure is necessary. The incidence of a hepatic bridge and the extent that it covered the round ligament was determined in consecutive patients. Extent of coverage of the round ligament by the hepatic bridge was determined: Class 1 indicates up to one-third of the round ligament obscured, Class 2 up to two-thirds and Class 3 more than two-thirds. In 102 patients in whom the round ligament of the liver could be completely visualized, 50 had a hepatic bridge. Class 1 was 22 (44%) of the bridges, Class 2 was 16 (32%) and Class 3 was 12 (24%). A hepatic bridge was more frequently present in 28 of 45 male patients (62%) vs. 22 of 57 female patients (38%). Approximately one-half of our patients having cytoreductive surgery for peritoneal metastases were observed to have a hepatic bridge. Up to 56% of these patients have Class 2 or 3 hepatic bridge and may require division of the hepatic bridge to completely visualize the contents of the tunnel created by this structure. Copyright © 2018 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  8. Bridge resource program.

    Science.gov (United States)

    2013-09-01

    The mission of Rutgers Universitys Center for Advanced Infrastructure and Transportation (CAIT) Bridge Resource Program (BRP) is to provide bridge engineering support to the New Jersey Department of Transportation (NJDOT)s Bridge Engineering an...

  9. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams

    Science.gov (United States)

    Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.

    2015-04-01

    In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized

  10. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  11. Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brandon [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Rocha da Costa, Leandro Jose [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Poirel, Dominique [Royal Military College of Canada, Kingston (Canada). Dept. of Mechanical and Aerospace Engineering; Pettit, Chris [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical and Aerospace Engineering; Khalil, Mohammad [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sarkar, Abhijit [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering

    2017-09-01

    Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.

  12. Laboratory and field testing of an accelerated bridge construction demonstration bridge : US Highway 6 bridge over Keg Creek.

    Science.gov (United States)

    2013-04-01

    The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice : newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated ...

  13. Guardrails for Use on Historic Bridges: Volume 2—Bridge Deck Overhang Design

    OpenAIRE

    Frosch, Robert J.; Morel, Adam J.

    2016-01-01

    Bridges that are designated historic present a special challenge to bridge engineers whenever rehabilitation work or improvements are made to the bridges. Federal and state laws protect historically significant bridges, and railings on these bridges can be subject to protection because of the role they play in aesthetics. Unfortunately, original railings on historic bridges do not typically meet current crash-test requirements and typically do not meet current standards for railing height and...

  14. Comment on 'Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation'

    International Nuclear Information System (INIS)

    Erturk, A; Inman, D J

    2008-01-01

    In a recent paper, Ajitsaria et al (2007 Smart Mater. Struct. 16 447–54) presented a mathematical formulation for the modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Their motivation was the recent increasing trend in using the piezoelectric effect to harvest electrical energy from ambient vibrations. This comment addresses the modeling errors and numerous undefined and missing terms in the mentioned work. (comment)

  15. Improved process for forming a three-dimensional undersurface on a printed cantilever

    Science.gov (United States)

    Kanazawa, Shusuke; Kusaka, Yasuyuki; Yamamoto, Noritaka; Ushijima, Hirobumi

    2018-05-01

    An improvement in the lift-on offset printing process is reported as a means of enabling the structural customization of hollow structures used as moving parts of sensors and actuators. The improved process can add structures to the underside of a hollow structure by modifying the preparation of the pre-structure. As a demonstration, the mechanical displacement of a cantilever in a gravitational acceleration sensor was enhanced by the addition of a proof mass. The improved process can be expected to further produce functionalized hollow structures by an efficient manufacturing process.

  16. White Noise Responsiveness of an AlN Piezoelectric MEMS Cantilever Vibration Energy Harvester

    International Nuclear Information System (INIS)

    Jia, Y; Seshia, A A

    2014-01-01

    This paper reports the design, analysis and experimental characterisation of a piezoelectric MEMS cantilever vibration energy harvester, the enhancement of its power output by adding various values of end mass, as well as assessing the responsiveness towards white noise. Devices are fabricated using a 0.5 μm AlN on 10 μm doped Si process. Cantilevers with 5 mm length and 2 mm width were tested at either unloaded condition (MC0: f n 577 Hz) or subjected to estimated end masses of 2 mg (MC2: f n 129 Hz) and 5 mg (MC5: f n 80 Hz). While MC0 was able to tolerate a higher drive acceleration prior to saturation (7 g with 0.7 μW), MC5 exhibited higher peak power attainable at a lower input vibration (2.56 μW at 3 ms −2 ). MC5 was also subjected to band-limited (10 Hz to 2 kHz) white noise vibration, where the power response was only a fraction of its resonant counterpart for the same input: peak instantaneous power >1 μW was only attainable beyond 2 g of white noise, whereas single frequency resonant response only required 2.5 ms −2 . Both the first resonant response and the band-limited white noise response were also compared to a numerical model, showing close agreements

  17. Dynamic assessment of bridge deck performance considering realistic bridge-traffic interaction

    Science.gov (United States)

    2017-09-01

    Concrete bridge decks are directly exposed to daily traffic loads and may experience some surface cracking caused by excessive stress or fatigue accumulation, which requires repair or replacement. Among typical bridges in North America, bridge decks ...

  18. Cable Supported Bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    Cable supported bridges in the form of suspension bridges and cable-stayed bridges are distinguished by their ability to overcome large spans.The book concentrates on the synthesis of cable supported bridges, covering both design and construction aspects. The analytical part covers simple methods...... to quantify the different structural configurations and allows a preliminary optimization of the main structure.Included are the most recent advances in structural design, corrosion protection of cables, aerodynamic safety, and erection procedures....

  19. Bridge Programs in Illinois: Results of the 2010 Illinois Bridge Status Survey

    Science.gov (United States)

    Taylor, J. L.; Harmon, T.

    2010-01-01

    This report provides a summary of major results of the Illinois Bridge Status Survey, administered online between April and June 2010. The purpose of the survey was to understand the extent to which bridge programs are being implemented in Illinois, as well as to build an online directory of bridge programs. Bridge programs are an emerging…

  20. Field performance of timber bridges. 6, Hoffman Run stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; P. D. Hilbrich Lee; G. J. Porter

    The Hoffman Run bridge, located just outside Dahoga, Pennsylvania, was constructed in October 1990. The bridge is a simple-span, single-lane, stress-laminated deck superstructure that is approximately 26 ft long and 16 ft wide. It is the second stress-laminated timber bridge to be constructed of hardwood lumber in Pennsylvania. The performance of the bridge was...

  1. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  2. On the dynamics of tapered vibro-impacting cantilever with tip mass

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, P. S.; Vyas, Vishal [Suman Mashruwala Advanced Microengineering Laboratory, Dept. of Mechanical Engineering, Indian Institute of Technology - Bombay, Mumai (India)

    2017-01-15

    This paper explores nonlinear dynamic behavior of vibro-impacting tapered cantilever with tip mass with regard to frequency response analysis. A typical frequency response curve of vibro-impacting beams displays well-known resonance frequency shift along with a hysteric jump and drop phenomena. We did a comprehensive parametric analysis capturing the effects of taper, tip-mass, stop location, and gap on the non-smooth frequency response. Analysis is presented in a non-dimensional form useful for other similar cases. Simulation results are further validated with corresponding experimental results for a few cases. Illustrative comparison of simulation results for varying parameters brings out several interesting aspects of variation in the nonlinear behavior.

  3. Analysis of the FELIX experiments with cantilevered beams and hollow cylinders

    International Nuclear Information System (INIS)

    Turner, L.R.; Hua, T.Q.; Lee, S.-Y.

    1986-01-01

    Experiments have been performed with the FELIX facility at Argonne National Laboratory to study the coupling between eddy currents and deflections and to provide data for validating eddy current computer programs. Experiments with cantilevered beams in crossed steady and decaying magnetic fields verify that coupling effects act to alleviate the large currents, deflections, and stresses predicted by uncoupled analyses. Measurements of magnetic fields induced in conducting hollow cylinders are analyzed by exponential fitting and by transfer functions. Spatial variation in the parameters of the exponential fit and in those of the one-and two-pole transfer functions suggests that several eddy current modes are acting in the cylinder test pieces. (author)

  4. Analysis of the FELIX experiments with cantilevered beams and hollow cylinders

    International Nuclear Information System (INIS)

    Turner, L.R.; Hua, T.Q.; Lee, S.Y.

    1986-01-01

    Experiments have been performed with the FELIX facility at Argonne National Laboratory to study the coupling between eddy currents and deflections and to provide data for validating eddy current computer programs. Experiments with cantilevered beams in crossed steady and decaying magnetic fields verify that coupling effects act to alleviate the large currents, deflections, and stresses predicted by uncoupled analyses. Measurements of magnetic fields induced in conducting hollow cylinders are analyzed by exponential fitting and by transfer functions. Spatial variation in the parameters of the exponential fit and in those of the one- and two-pole transfer functions suggests that several eddy current modes are acting in the cylinder test pieces

  5. Bridging Anticoagulation

    Science.gov (United States)

    ... clinical centers in the United States, Canada, and Brazil. A more detailed description of the study is ... Your Personal Message Send Message Share on Social Media Bridging Anticoagulation The BRIDGE Study Investigators Circulation. 2012; ...

  6. Charles River Crossing

    Science.gov (United States)

    2012-04-06

    duration, deck sections will be prefabricated off-site and delivered just-in-time for assembly and installation. The schedule assumes that the parts of...on one side (the side which abuts the existing bridges) there will be the appearance that the new bridges cantilever off the existing bridges. (See...many events that takes place on the Charles River such as crew racings and the “Head of the Charles”. Prefabricated off 19  ANCHORAGE GROUP, LTD

  7. Piezoresistive cantilever force-clamp system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  8. 3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers.

    Science.gov (United States)

    Credi, Caterina; Fiorese, Alessandro; Tironi, Marco; Bernasconi, Roberto; Magagnin, Luca; Levi, Marinella; Turri, Stefano

    2016-10-05

    In the present work, prototypes of polymeric cantilever-based magnetic microstructures were fabricated by means of stereolithography (SL). To this end, a UV-curable system suitable for high-resolution SL-processing was formulated by blending a bifunctional acrylic monomer with photoinitiator and visible dye whose content was tuned to tailor resin SL sensitivity. Subsequently, to confer ferromagnetic properties to the photopolymer, two different strategies were implemented. A two-step approach involved selective deposition of a metal layer on photopolymer SL-cured surfaces through an electroless plating process. On the other hand, SL-processable ferromagnetically responsive nanocomposites (FRCs) were obtained by directly loading magnetite nanoparticles within the photopolymer matrix. In order to achieve high-printing resolution, resin SL sensitivities were studied as a function of the various additives contents. Photocalorimetric analyses were also performed to investigate the photopolymer conversion efficiency upon light exposure. High-performing formulations were characterized by reduced penetration depth (printing of micrometric structures. Finally, the self-standing characteristics of the resin combined with the layered-fashion deposition typical of the 3D printing technologies were exploited for the fabrication of cantilever (CL)-based beams presented as possible magnetic sensors. As a demonstration of the feasibility of the two approaches, the magnetic beams were successfully actuated and their sensing performances in terms of static deflection vs applied magnetic field applied were qualitatively studied. Being not restricted to CL-based geometries, the combination of SL-printing with the formulation of novel smart photopolymers open the way toward the fabrication of high-customized complex 3D models integrating functional microstructures.

  9. Bridging the Gap

    DEFF Research Database (Denmark)

    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska

    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures.......Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures....

  10. Microfabrication of Magnetostrictive Beams for Integrated Sensor Systems

    KAUST Repository

    Alfadhel, Ahmed

    2012-01-01

    This dissertation reports the fabrication and characterization of integrated micro sensors consisting of magnetostrictive 500 μm long cantilevers or bridges and conducting interrogation elements. The thin films are fabricated by sputter deposition

  11. Long Span Bridges in Scandinavia

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    1998-01-01

    The first Scandinavian bridge with a span of more than 500 m was the Lillebælt Suspension Bridge opened to traffic in 1970.Art the end of the 20th century the longest span of any European bridge is found in the Storebælt East Bridge with a main span of 1624 m. Also the third longest span in Europe...... is found in Scandinavia - the 1210 m span of the Höga Kusten Bridge in Sweden.The Kvarnsund Bridge in Norway was at the completion in 1991 the longest cable-stayed bridge in the world, and the span of 530 m is still thge longest for cable-stayed bridges in concrete. The Øresund Bridge with its sapn of 490...

  12. Elasticity Theory Solution of the Problem on Plane Bending of a Narrow Layered Cantilever Beam by Loads at Its Free End

    Science.gov (United States)

    Goryk, A. V.; Koval'chuk, S. B.

    2018-05-01

    An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.

  13. Position and mass determination of multiple particles using cantilever based mass sensors

    International Nuclear Information System (INIS)

    Dohn, Soeren; Schmid, Silvan; Boisen, Anja; Amiot, Fabien

    2010-01-01

    Resonant microcantilevers are highly sensitive to added masses and have the potential to be used as mass-spectrometers. However, making the detection of individual added masses quantitative requires the position determination for each added mass. We derive expressions relating the position and mass of several added particles to the resonant frequencies of a cantilever, and an identification procedure valid for particles with different masses is proposed. The identification procedure is tested by calculating positions and mass of multiple microparticles with similar mass positioned on individual microcantilevers. Excellent agreement is observed between calculated and measured positions and calculated and theoretical masses.

  14. Integral Abutment and Jointless Bridges

    Directory of Open Access Journals (Sweden)

    Cristian-Claudiu Comisu

    2005-01-01

    Full Text Available Integral bridges, or integral abutment and jointless bridges, as they are more commonly known in the USA, are constructed without any movement joints between spans or between spans and abutments. Typically these bridges have stub-type abutments supported on piles and continuous bridge deck from one embankment to the other. Foundations are usually designed to be small and flexible to facilitate horizontal movement or rocking of the support. Integrally bridges are simple or multiple span ones that have their superstructure cast integrally with their substructure. The jointless bridges cost less to construct and require less maintenance then equivalent bridges with expansion joints. Integral bridges present a challenge for load distribution calculations because the bridge deck, piers, abutments, embankments and soil must all be considered as single compliant system. This paper presents some of the important features of integral abutment and jointless bridge design and some guidelines to achieve improved design. The goal of this paper is to enhance the awareness among the engineering community to use integral abutment and jointless bridges in Romania.

  15. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    OpenAIRE

    Theinchai, Ratchata; Chankan, Siriwan; Yukunthorn, Weera

    2016-01-01

    We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  16. Bridge deterioration models to support Indiana's bridge management system.

    Science.gov (United States)

    2016-02-01

    An effective bridge management system that is equipped with reliable deterioration models enables agency engineers to carry out : monitoring and long-term programming of bridge repair actions. At the project level, deterioration models help the agenc...

  17. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    Science.gov (United States)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

  18. Automatic Bridge Control System

    OpenAIRE

    M. Niraimathi; S.Sivakumar; R.Vigneshwaran; R.Vinothkumar; P.Babu

    2012-01-01

    Bridge vibration control is an important issue whose purpose is to extend the structural service life of bridges. Normally, the bridge is modeled as an elastic beam or plate subject to a moving vehicle. However, the moving truck on a bridge is a complicated problem that must still be researched. In this paper, wepropose a new method, to overcome the huge load in the bridge a load cell is used at the entry which will monitor the load continuously at both ends. To escape from the heavy water fl...

  19. Optimization of Pb(Zr0.53,Ti0.47)O3 films for micropower generation using integrated cantilevers

    KAUST Repository

    Fuentes-Fernandez, E. M A; Baldenegro-Pé rez, Leonardo Aurelio; Quevedo-Ló pez, Manuel Angel Quevedo; Gnade, Bruce E.; Hande, Abhiman; Shah, Pradeep; Alshareef, Husam N.

    2011-01-01

    Lead zirconate titanate, Pb(Zr0.53,Ti0.47)O 3 or PZT, thin films and integrated cantilevers have been fabricated for energy harvesting applications. The PZT films were deposited on PECVD SiO2/Si substrates with a sol-gel derived ZrO2 buffer layer

  20. Determination of young's modulus of PZT and CO80Ni20 thin films by means of micromachined cantilevers

    NARCIS (Netherlands)

    Nazeer, H.; Abelmann, Leon; Tas, Niels Roelof; van Honschoten, J.W.; Siekman, Martin Herman; Elwenspoek, Michael Curt

    2009-01-01

    This paper presents a technique to determine the Young’s modulus and residual stress of thin films using a simple micromachined silicon cantilever as the test structure. An analytical relation was developed based on the shift in resonance frequency caused by the addition of a thin film on the

  1. Pressure sensor based on MEMS nano-cantilever beam structure as a heterodielectric gate electrode of dopingless TFET

    Science.gov (United States)

    Kumar, Gagan; Raman, Ashish

    2016-12-01

    Micro-electromechanical systems (MEMS) technology has enticed numerous scientists since recent decades particularly in the field of miniaturized-sensors and actuators. Pressure sensor is pivotal component in both of the forerunning fields. The pursuance of a pressure sensor is exigently relying upon its different physical properties i.e. Piezo-resistive, Piezoelectric, Capacitive, Magnetic and Electrostatic. This article presents an outline and scrutiny of the Doping-less Cantilever Based Pressure Sensor using tunnel field effect transistor technology. The propounded pressure sensor based on the principle of capacitive gate coupling, due to which the tunneling current is modified. Additionally, to enhance the affectability of pressure sensor, the work function of metal gate electrode is amended using gas molecule diffusion. Simulation uncovers a phenomenal relationship amongst hypothetical and practical accepts of configuration. The pressure sensor is composed at Silvaco Atlas tool utilizing 40 nm technologies. The performance results exhibit that the proposed model consumes ≤1 mW power and 250 μA tunneling current per nm bending of cantilever beam structure. The inclusive length of the proposed device is 100 nm.

  2. Mechanical characterization of biocompatible thin film materials by scanning along micro-machined cantilevers for micro-/nano-system

    International Nuclear Information System (INIS)

    He, J.H.; Luo, J.K.; Le, H.R.; Moore, D.F.

    2006-01-01

    Mechanical characterization is vital for the design of micro-/nano-electro-mechanical system (MEMS/NEMS). This paper describes a new characterization method to extract the mechanical properties of the thin film materials, which is simple, inexpensive and applicable to a wide range of materials including biocompatible ones described in this paper. The beams of the material under tests, are patterned by laser micro-machining and released by alkaline etch. A surface profilometer is used to scan along micro-machined cantilevers and produce a bending profile, from which the Young's modulus can be extracted. Biocompatible SiN x , SiC and nanocrystal diamond cantilevers have been fabricated and their Young's modulus has been evaluated as 154 ± 12, 360 ± 50 and 504 ± 50 GPa, respectively, which is consistent with those measured by nano-indentation. Residual stress gradient has also been extracted by surface profilometer, which is comparable with the results inferred from ZYGO interferometer measurements. This method can be extended to atomic force microscopy stylus or nanometer-stylus profilometer for Bio-NEMS mechanical characterization

  3. A novel method of temperature compensation for piezoresistive microcantilever-based sensors.

    Science.gov (United States)

    Han, Jianqiang; Wang, Xiaofei; Yan, Tianhong; Li, Yan; Song, Meixuan

    2012-03-01

    Microcantilever with integrated piezoresistor has been applied to in situ surface stress measurement in the field of biochemical sensors. It is well known that piezoresistive cantilever-based sensors are sensitive to ambient temperature changing due to highly temperature-dependent piezoresistive effect and mismatch in thermal expansion of composite materials. This paper proposes a novel method of temperature drift compensation for microcantilever-based sensors with a piezoresistive full Wheatstone bridge integrated at the clamped ends by subtracting the amplified output voltage of the reference cantilever from the output voltage of the sensing cantilever through a simple temperature compensating circuit. Experiments show that the temperature drift of microcantilever sensors can be significantly reduced by the method.

  4. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  5. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    Science.gov (United States)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  6. A bulk micromachined lead zinconate titanate cantilever energy harvester with inter-digital IrO(x) electrodes.

    Science.gov (United States)

    Park, Jongcheol; Park, Jae Yeong

    2013-10-01

    A piezoelectric vibration energy harvester with inter-digital IrO(x) electrode was developed by using silicon bulk micromachining technology. Most PZT cantilever based energy harvesters have utilized platinum electrode material. However, the PZT fatigue characteristics and adhesion/delamination problems caused by the platinum electrode might be serious problem in reliability of energy harvester. To address these problems, the iridium oxide was newly applied. The proposed energy harvester was comprised of bulk micromachined silicon cantilever with 800 x 1000 x 20 microm3, which having a silicon supporting membrane, sol-gel-spin coated Pb(Zr52, Ti48)O3 thin film, and sputtered inter-digitally shaped IrO(x) electrodes, and silicon inertial mass with 1000 x 1000 x 500 microm3 to adjust its resonant frequency. The fabricated energy harvester generated 1 microW of electrical power to 470 komega of load resistance and 1.4 V(peak-to-peak) from a vibration of 0.4 g at 1.475 kHz. The corresponding power density was 6.25 mW x cm(-3) x g(-2). As expected, its electrical failure was significantly improved.

  7. Existing Steel Railway Bridges Evaluation

    Science.gov (United States)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  8. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Science.gov (United States)

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  9. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Science.gov (United States)

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  10. Laser self-mixing interferometry in VCSELs - an ultra-compact and massproduceable deflection detection system for nanomechanical polymer cantilever sensors

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2008-01-01

    We have realised an ultra-compact deflection detection system based on laser self-mixing interferometry in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The system can be used together with polymer nanomechanical cantilevers to form chemical sensors capable of detecting less than 1nm deflection....

  11. Hydraulic modeling of flow impact on bridge structures: a case study on Citarum bridge

    Science.gov (United States)

    Siregar, R. I.

    2018-02-01

    Flood waves because of the rapid catchment response to high intense rainfall, breaches of flood defenses may induce huge impact forces on structures, causing structural damage or even failures. Overflowing stream that passes over the bridge, it means to discharge flood water level is smaller than the capacity of the river flow. In this study, the researches present the methodological approach of flood modeling on bridge structures. The amount of force that obtained because of the hydrostatic pressure received by the bridge at the time of the flood caused the bridge structure disrupted. This paper presents simulation of flow impact on bridge structures with some event flood conditions. Estimating the hydrostatic pressure developed new model components, to quantify the flow impact on structures. Flow parameters applied the model for analyzing, such as discharge, velocity, and water level or head that effect of bridge structures. The simulation will illustrate the capability of bridge structures with some event flood river and observe the behavior of the flow that occurred during the flood. Hydraulic flood modeling use HEC-RAS for simulation. This modeling will describe the impact on bridge structures. Based on the above modelling resulted, in 2008 has flood effect more than other years on the Citarum Bridge, because its flow overflow on the bridge.

  12. Existing Steel Railway Bridges Evaluation

    Directory of Open Access Journals (Sweden)

    Vičan Josef

    2016-12-01

    Full Text Available The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  13. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Ratchata Theinchai

    2016-01-01

    Full Text Available We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM. The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  14. Light-weight aluminium bridges and bridge decks. An overview of recent applications

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Kluyver, D. de

    2008-01-01

    The last decades have shown a large increase in the application of aluminium alloys for light-weight bridges. For bridge construction, aluminium alloys have some specific advantages, but also some points of attention. This paper deals with some recent projects of aluminium bridges, and for these

  15. Development of bridge girder movement criteria for accelerated bridge construction.

    Science.gov (United States)

    2014-06-01

    End diaphragms connect multiple girders to form a bridge superstructure system for effective resistance to earthquake loads. Concrete : girder bridges that include end diaphragms consistently proved to perform well during previous earthquake events. ...

  16. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...

  17. Morphological aspects of myocardial bridges.

    Science.gov (United States)

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  18. A longitudinal thermal actuation principle for mass detection using a resonant micro -cantilever in a fluid medium

    DEFF Research Database (Denmark)

    Grigorov, Alexander; Davis, Zachary James; Rasmussen, Peter

    2004-01-01

    We propose a new thermal actuation mechanical principle, which allows dynamic actuation in most media: air, water, etc. It is used to excite a cantilever, aiming to perform mass detection using resonance shifts, in place of the electrostatic or magnetic actuation that are normally used. It differs...... configuration, subject of investigation in the following paper. (C) 2004 Elsevier B.V. All rights reserved....

  19. Field performance of timber bridges. 17, Ciphers stress-laminated deck bridge

    Science.gov (United States)

    James P. Wacker; James A. Kainz; Michael A. Ritter

    In September 1989, the Ciphers bridge was constructed within the Beltrami Island State Forest in Roseau County, Minnesota. The bridge superstructure is a two-span continuous stress-laminated deck that is approximately 12.19 m long, 5.49 m wide, and 305 mm deep (40 ft long, 18 ft wide, and 12 in. deep). The bridge is one of the first to utilize red pine sawn lumber for...

  20. Performance of zirconia ceramic cantilever fixed dental prostheses: 3-year results from a prospective, randomized, controlled pilot study.

    Science.gov (United States)

    Zenthöfer, Andreas; Ohlmann, Brigitte; Rammelsberg, Peter; Bömicke, Wolfgang

    2015-07-01

    Little is known about the clinical performance of ceramic cantilever fixed dental prostheses on natural teeth. The purpose of this randomized controlled pilot study was to evaluate the clinical performance of ceramic and metal ceramic cantilever fixed dental prostheses (CFDPs) after 3 years of service. Twenty-one participants were randomly allocated to 2 treatment groups. Participants in the ceramic (ZC) group (n=11) each received 1 CFDP made of yttria-stabilized, tetragonal zirconia polycrystal; the others (n=10) were fitted with a metal ceramic (MC) CFDP. All CFDPs were retained by 2 complete crown abutments and replaced 1 tooth. The clinical target variables were survival, incidence of complications, probing pocket depth (PPD), probing attachment level (PAL), plaque index (PI), gingival index (GI), and esthetic performance as rated by the participants. The United States Public Health Service (USPHS) criteria were used to evaluate chipping, retention, color, marginal integrity, and secondary caries. Descriptive statistics and nonparametric analyses were applied to the target variables in the 2 groups. The esthetic performance of the CFDPs was also visualized by using a pyramid comparison. The overall survival of the CFDPs was 100% in both groups. During the 3-year study, 6 clinically relevant complications requiring aftercare were observed among 5 participants (4 in the ZC group and 2 in the MC group). Changes in the PI, GI, PPD, and PAL of the abutment teeth were similar for both groups (P>.05). The participants regarded the esthetic performance of ZC-CFDPs and MC-CFDPs as satisfactory. Within the 3-year observation period, the clinical performance of MC-FDPs and ZC-FDPs was acceptable. More extensive research with larger sample sizes is encouraged, however, to confirm the evaluation of the survival of Y-TZP hand-veneered cantilever FPDs. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Remarks on crack-bridging concepts

    International Nuclear Information System (INIS)

    Bao, G.; Suo, Z.

    1992-01-01

    The article draws upon recent work by us and our colleagues on metal and ceramic matrix composites for high temperature engines. The central theme here is to deduce mechanical properties, such as toughness, strength and notch-ductility, from bridging laws that characterize inelastic processes associated with fracture. A particular set of normalization is introduced to present the design charts, segregating the roles played by the shape, and the scale, of a bridging law. A single material length, γ 0 E/σ 0 , emerges, where γ 0 is the limiting-separation, σ 0 the bridging-strength, and E the Young's modulus of the solid. It is the huge variation of this length-from a few manometers for atomic bond, to a meter for cross-over fibers - that underlies the richness in material behaviors. Under small-scale bridging conditions, γ 0 E/σ 0 is the only basic length scale in the mechanics problem and represents, with a pre-factor about 0.4, the bridging zone size. A catalog of small-scale bridging solutions is compiled for idealized bridging laws. Large-scale bridging introduces a dimensionless group, a/(γ 0 E/σ 0 ), where a is a length characterizing the component. The group plays a major role in all phenomena associated with bridging, and provides a focus of discussion in this article. For example, it quantifies the bridging scale when a is the unbridged crack length, and notch-sensitivity when a is hole radius. The difference and the connection between Irwin's fracture mechanics and crack bridging concepts are discussed. It is demonstrated that fracture toughness and resistance curve are meaningful only when small-scale bridging conditions prevail, and therefore of limited use in design with composites. Many other mechanical properties of composites, such as strength and notch-sensitivity, can be simulated by invoking large-scale bridging concepts. 37 refs., 21 figs., 3 tabs

  2. 49 CFR 236.312 - Movable bridge, interlocking of signal appliances with bridge devices.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movable bridge, interlocking of signal appliances with bridge devices. 236.312 Section 236.312 Transportation Other Regulations Relating to... SYSTEMS, DEVICES, AND APPLIANCES Interlocking Standards § 236.312 Movable bridge, interlocking of signal...

  3. Comportamiento estructural y criterios de diseño de los puentes extradosados: visión general y estado del arte Structural behavior and design criteria of extradosed bridges: general insight and state of the art

    Directory of Open Access Journals (Sweden)

    José Benjumea

    2010-01-01

    Full Text Available Durante los últimos 10 años, los puentes extradosados se han convertido en una solución estructural atractiva alrededor del mundo, gracias a los buenos resultados obtenidos con las primeras realizaciones en Japón. Esta nueva tipología, reconocida generalmente como una solución intermedia entre los puentes atirantados y los de pretensado de viga cajón construidos por voladizos sucesivos, se ha convertido en una opción interesante. Por consiguiente, dado el interés que hoy en día existe alrededor de este tipo de puente, en este trabajo se presenta el contexto histórico que describe su origen, y se exponen la influencia de los principales elementos estructurales en el comportamiento del puente, y los criterios de diseño que han sido propuestos por investigadores en el tema. De esta manera, se espera ofrecer una visión general de la concepción y el comportamiento estructural de los puentes extradosados para que sea considerada una alternativa más de tipología estructural de puentes en nuestro medio.Over the past 10 years, Extradosed bridges have become an attractive structural type around the world, due to the good results obtained with the first bridges constructed in Japan. This new typology, generally recognized as an intermediate solution between cable stayed bridges and cantilever constructed prestressed box-girder bridges, because these take advantages of design and constructions methods of the other two typologies, has become an interesting option. Therefore, given the interest that exist about this type of bridge, in this paper the historical context that describes its origin, the influence of the principal structural elements and the design criteria proposed by researchers are presented. In this way it is expected to offer a general insight into the design conception and structural behavior of Extradosed Bridges, so that they may be considered as an alternative structure for bridges in the Americas.

  4. Cooperativity of complex salt bridges

    OpenAIRE

    Gvritishvili, Anzor G.; Gribenko, Alexey V.; Makhatadze, George I.

    2008-01-01

    The energetic contribution of complex salt bridges, in which one charged residue (anchor residue) forms salt bridges with two or more residues simultaneously, has been suggested to have importance for protein stability. Detailed analysis of the net energetics of complex salt bridge formation using double- and triple-mutant cycle analysis revealed conflicting results. In two cases, it was shown that complex salt bridge formation is cooperative, i.e., the net strength of the complex salt bridge...

  5. Cantilever arrayed blood pressure sensor for arterial applanation tonometry.

    Science.gov (United States)

    Lee, Byeungleul; Jeong, Jinwoo; Kim, Jinseok; Kim, Bonghwan; Chun, Kukjin

    2014-03-01

    The authors developed a cantilever-arrayed blood pressure sensor array fabricated by (111) silicon bulk-micromachining for the non-invasive and continuous measurement of blood pressure. The blood pressure sensor measures the blood pressure based on the change in the resistance of the piezoresistor on a 5-microm-thick-arrayed perforated membrane and 20-microm-thick metal pads. The length and the width of the unit membrane are 210 and 310 microm, respectively. The width of the insensible zone between the adjacent units is only 10 microm. The resistance change over contact force was measured to verify the performance. The good linearity of the result confirmed that the polydimethylsiloxane package transfers the forces appropriately. The measured sensitivity was about 4.5%/N. The maximum measurement range and the resolution of the fabricated blood pressure sensor were greater than 900 mmHg (= 120 kPa) and less than 1 mmHg (= 133.3 Pa), respectively.

  6. Comprehensive evaluation of fracture critical bridges.

    Science.gov (United States)

    2014-02-01

    Two-girder steel bridges are classified as fracture critical bridges based on the definition given in the AASHTO LRFD Bridge Design Specifications. In a fracture critical bridge a failure of a tension member leads to collapse of the bridge. However, ...

  7. Timber in Bridge Structures

    OpenAIRE

    Detkin, Viktoria

    2016-01-01

    The purpose of this final year project was to study the properties of timber as a structural material and the suitability of wood in load bearing members for bridge structures. For a case study, an existing timber bridge was selected. Due to its condition the bridge should be replaced. The design of a new bridge with steel beams holding a glulam deck was made. During the case study the replacement of steel beams by glulam timber ones was discussed. Some calculations were made in order to ...

  8. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    Science.gov (United States)

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (poptimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  9. Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces

    Energy Technology Data Exchange (ETDEWEB)

    Bahaadini, Reza [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Hosseini, Mohammad, E-mail: hosseini@sirjantech.ac.ir [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Jamalpoor, Ali [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-03-15

    On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton’s principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.

  10. Linear Aspects of Stability in Flow Induced Oscillations of Cantilever Pipes: Application of a Popular Heuristic Algorithm

    Science.gov (United States)

    Hebbar, Ullhas; Krishnan, Abilash; Kadoli, Ravikiran

    2017-11-01

    This work studied linear aspects of flow induced oscillations in cantilever pipes, with an emphasis on the numerical method of solution adopted for the system of governing equations. The complex frequencies of vibration of the different characteristic modes of the system were computed as a function of the flow velocity, wherein multi-variable minimization was performed using the popular Nelder-Mead heuristic algorithm. Results for a canonical fluid-to-pipe mass ratio (β) were validated with literature, and the evolution of frequencies was studied for different mass ratios. Additionally, the numerical scheme was implemented to compute critical conditions of stability for the cantilever system as a function of β. Finally, interesting aspects of the dynamics of the system were analyzed: the supposed `mode exchange' behavior, and an explanation for discontinuities observed in the critical conditions plotted as a function of β. In conclusion, the heuristic optimization based solution used in this study can be used to analyze various aspects of linear stability in pipes conveying fluid. Part of the submitted work was completed at the author's previous affiliation - National Institute of Technology Karnataka, India.

  11. Determination of elastic-plastic properties of Alporas foam at the cell-wall level using microscale-cantilever bending tests

    Czech Academy of Sciences Publication Activity Database

    Doktor, Tomáš; Kytýř, Daniel; Koudelka_ml., Petr; Zlámal, Petr; Fíla, Tomáš; Jiroušek, Ondřej

    2015-01-01

    Roč. 49, č. 2 (2015), s. 203-206 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : aluminium foam * cantilever bending * micromechanics * optical strain measurement Subject RIV: JI - Composite Materials Impact factor: 0.439, year: 2015 http://mit.imt.si/Revija/izvodi/mit152/doktor.pdf

  12. Field performance of timber bridges. 16, North Siwell Road stress-laminated bridge

    Science.gov (United States)

    J. A. Kainz

    The North Siwell Road bridge was constructed during December 1994 in Hinds County, Mississippi. The bridge is a single-span, stress-laminated T-beam structure that measures 9.1 m (30 ft) long and 8.7 m (28.5 ft) wide. Performance of the bridge was monitored for 24 months, beginning at the time of installation. Monitoring involved gathering and evaluating data relative...

  13. Field performance of timber bridges. 10, Sanborn Brook stress-laminated deck bridge

    Science.gov (United States)

    P. D. Hilbrich Lee; J. P. Wacker; M. A. Ritter

    The Sanborn Brook bridge was constructed in August 1991, 10 miles northeast of Concord, New Hampshire, as part of the demonstration timber bridge program of the USDA Forest Service. The bridge is a simple-span, double-lane, stress-laminated deck superstructure constructed from Southern Pine lumber and is approximately 25 ft long and 28 ft wide with a skew of 14 degrees...

  14. Simulation of multivariate diffusion bridges

    DEFF Research Database (Denmark)

    Bladt, Mogens; Finch, Samuel; Sørensen, Michael

    We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges...

  15. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe.

    Science.gov (United States)

    Walke, Peter; Fujita, Yasuhiko; Peeters, Wannes; Toyouchi, Shuichi; Frederickx, Wout; De Feyter, Steven; Uji-I, Hiroshi

    2018-04-26

    Tip-enhanced Raman scattering (TERS) microscopy is a unique analytical tool to provide complementary chemical and topographic information of surfaces with nanometric resolution. However, difficulties in reliably producing the necessary metallized scanning probe tips has limited its widespread utilisation, particularly in the case of cantilever-based atomic force microscopy. Attempts to alleviate tip related issues using colloidal or bottom-up engineered tips have so far not reported consistent probes for both Raman and topographic imaging. Here we demonstrate the reproducible fabrication of cantilever-based high-performance TERS probes for both topographic and Raman measurements, based on an approach that utilises noble metal nanowires as the active TERS probe. The tips show 10 times higher TERS contrasts than the most typically used electrochemically-etched tips, and show a reproducibility for TERS greater than 90%, far greater than found with standard methods. We show that TERS can be performed in tapping as well as contact AFM mode, with optical resolutions around or below 15 nm, and with a maximum resolution achieved in tapping-mode of 6 nm. Our work illustrates that superior TERS probes can be produced in a fast and cost-effective manner using simple wet-chemistry methods, leading to reliable and reproducible high-resolution and high-sensitivity TERS, and thus renders the technique applicable for a broad community.

  16. Application of a Cantilevered SWCNT with Mass at the Tip as a Nanomechanical Sensor

    DEFF Research Database (Denmark)

    Mehdipour, I.; Barari, Amin; Domairry, G.

    2011-01-01

    In this paper, the continuum mechanics method and a bending model is applied to obtain the resonant frequency of the fixed-free SWCNT where the mass is rigidly attached to the tip. This method used the Euler–Bernoulli theory with cantilevered boundary conditions where the effect of attached mass ...... of resonant frequency are decreased. The validity and the accuracy of these formulas are examined with other sensor equations in the literatures. The results indicate that the new sensor equations can be used for CNT like CNT-based biosensors with reasonable accuracy....

  17. Selected Economic Translations on Eastern Europe (201st in the series)

    Science.gov (United States)

    1960-08-08

    prefabricated elements in bridge-building for substruc- tures, columns, and abutments , making use of all possibilities offered by standardization. By...1965, 70 percent of all super- structures of road bridges with a span of up to 12 meters must be built of prefabricated elements. The still existing...structures as well as for columns and abutments . The tension block (spannblock) method and the cantilever building method have to be introduced. The

  18. Steel-soil composite bridge

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2017-01-01

    viability, while their environmental performance is overlooked. Today’s designers are urged to seek new design options to reduce the environmental burdens. Sweden owns more than 24574 bridges and most of them are short spans. Among them, the slab frame bridge (CFB) is a common solution. Soil steel composite...... bridge (SSCB), alternatively, is a functionally equivalent solution to CFB and shows advantages in low cost and easy construction. This paper compares the environmental performance between these two bridge types based on life cycle assessment (LCA). The analysis and result shows that, the SSCB...

  19. Building water bridges in air: Electrohydrodynamics of the floating water bridge

    Science.gov (United States)

    Marín, Álvaro G.; Lohse, Detlef

    2010-12-01

    The interaction of electrical fields and liquids can lead to a phenomenon that defies intuition. Some famous examples can be found in electrohydrodynamics as Taylor cones, whipping jets, or noncoalescing drops. A less famous example is the floating water bridge: a slender thread of water held between two glass beakers in which a high voltage difference is applied. Surprisingly, the water bridge defies gravity even when the beakers are separated at distances up to 2 cm. In this paper, experimental measurements and simple models are proposed and discussed for the stability of the bridge and the source of the flow, revealing an important role of polarization forces on the stability of the water bridge. On the other hand, the observed flow can only be explained due to the non-negligible free charge present in the surface. In this sense, the floating water bridge can be considered as an extreme case of a leaky dielectric liquid [J. R. Melcher and G. I. Taylor, Annu. Rev. Fluid Mech. 1, 111 (1969)].

  20. Microfabrication of magnetostrictive beams based on NiFe film doped with B and Mo for integrated sensor systems

    KAUST Repository

    Alfadhel, Ahmed; Gianchandani, Y.; Kosel, Jü rgen

    2012-01-01

    This paper reports the development of integrated micro-sensors consisting of 1 -µm-thick magnetostrictive cantilevers or bridges with 500 µm in length and conducting interrogation elements. The thin films are fabricated by sputter deposition of Ni

  1. Synthesis and Characterization of Pb(Zr𝟎.𝟓𝟑, Ti𝟎.𝟒𝟕)O𝟑-Pb(Nb𝟏/𝟑, Zn𝟐/𝟑)O𝟑 Thin Film Cantilevers for Energy Harvesting Applications

    KAUST Repository

    Fuentes-Fernandez, E. M. A.; Debray-Mechtaly, W.; Quevedo-Lopez, M. A.; Gnade, B.; Leon-Salguero, E.; Shah, P.; Alshareef, Husam N.

    2012-01-01

    A complete analysis of the morphology, crystallographic orientation, and resulting electrical properties of Pb(Zr0.53,Ti0.47) Pb(Nb1/3, Zn2/3)O3 (PZT-PZN) thin films, as well as the electrical behavior when integrated in a cantilever for energy harvesting applications, is presented. The PZT-PZN films were deposited using sol-gel methods. We report that using 20% excess Pb, a nucleation layer of PbTiO3 (PT), and a fast ramp rate provides large grains, as well as denser films. The PZT-PZN is deposited on a stack of TiO2/PECVD SiO2/Si3N4/thermal SiO2/Poly-Si/Si. This stack is designed to allow wet-etching the poly-Si layer to release the cantilever structures. It was also found that the introduction of the poly-Si layer results in larger grains in the PZT-PZN film. PZT-PZN films with a dielectric constant of 3200 and maximum polarization of 30 μC/cm2 were obtained. The fabricated cantilever devices produced ~300–400 mV peak-to-peak depending on the cantilever design. Experimental results are compared with simulations.

  2. National Bridge Inventory (NBI) Bridges

    Data.gov (United States)

    Department of Homeland Security — The NBI is a collection of information (database) describing the more than 600,000 of the Nation's bridges located on public roads, including Interstate Highways,...

  3. Wright-Fisher diffusion bridges.

    Science.gov (United States)

    Griffiths, Robert C; Jenkins, Paul A; Spanò, Dario

    2017-10-06

    The trajectory of the frequency of an allele which begins at x at time 0 and is known to have frequency z at time T can be modelled by the bridge process of the Wright-Fisher diffusion. Bridges when x=z=0 are particularly interesting because they model the trajectory of the frequency of an allele which appears at a time, then is lost by random drift or mutation after a time T. The coalescent genealogy back in time of a population in a neutral Wright-Fisher diffusion process is well understood. In this paper we obtain a new interpretation of the coalescent genealogy of the population in a bridge from a time t∈(0,T). In a bridge with allele frequencies of 0 at times 0 and T the coalescence structure is that the population coalesces in two directions from t to 0 and t to T such that there is just one lineage of the allele under consideration at times 0 and T. The genealogy in Wright-Fisher diffusion bridges with selection is more complex than in the neutral model, but still with the property of the population branching and coalescing in two directions from time t∈(0,T). The density of the frequency of an allele at time t is expressed in a way that shows coalescence in the two directions. A new algorithm for exact simulation of a neutral Wright-Fisher bridge is derived. This follows from knowing the density of the frequency in a bridge and exact simulation from the Wright-Fisher diffusion. The genealogy of the neutral Wright-Fisher bridge is also modelled by branching Pólya urns, extending a representation in a Wright-Fisher diffusion. This is a new very interesting representation that relates Wright-Fisher bridges to classical urn models in a Bayesian setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Numerical investigation of the effects of compressibility on the flutter of a cantilevered plate in an inviscid, subsonic, open flow

    Science.gov (United States)

    Colera, Manuel; Pérez-Saborid, Miguel

    2018-06-01

    We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.

  5. Ejecución de puentes pretensados por voladizos sucesivos (Continuación

    Directory of Open Access Journals (Sweden)

    Fernández Casado, Carlos

    1964-03-01

    Full Text Available The system of construction whereby successive extensions of a cantilevered structure are carried out has made it possible to extend, to an extraordinary extent, the free spans of straight section prestressed concrete bridges. At present the Bendorf bridge is being constructed, whose central span is 208 m long. This system was first used in Brazil, for the construction of an ordinary reinforced concrete bridge over the river Peixe. But the method fell into disuse, except for very few exceptions, until Firsterwalder again brought it up to date 20 years later, when building the Neckar bridge, made of prestressed concrete. With this new technique all the advantages of the system could be exploited, as well as achieving a very rapid construction. This constructional procedure leads directly to the structural type known as compensated cantilevers. T shaped cells are attached together by means of prestressing cables to form advancing cantilevers. Thereby a, total bridge structure is formed, whose span is twice that of each cantilevered half. This method can be applied to other bridge types, such as dintels with overhanging sections (this was the first new application, single span portal frames, T portal frames, continuous beams, etc. The typical constructional method is to move the formwork, which is anchored and cantilevered beyond the constructed part. A weekly progress of 3,50 m is normal. It is also possible to employ prefabricated sections, which are successively joined to the ones already in place.El sistema de construcción por voladizos sucesivos ha permitido ampliar, de modo extraordinario, las luces de los puentes de tramo recto de hormigón pretensado. Actualmente se construye el Puente de Bendorf con tramo central de 208 metros. Se utilizó por primera vez en Brasil para la construcción de un puente de hormigón armado normal sobre el río Peixe, pero quedó en desuso—salvo poquísimas excepciones—hasta que lo volvió a poner a punto

  6. National Bridge Inventory System (NBI)

    Data.gov (United States)

    Department of Transportation — The NBI System is the collection of bridge inspection information and costs associated with bridge replacements of structurally deficient bridges on and off the NHS....

  7. Extracorporeal Life Support Bridge to Ventricular Assist Device: The Double Bridge Strategy.

    Science.gov (United States)

    Marasco, Silvana F; Lo, Casey; Murphy, Deirdre; Summerhayes, Robyn; Quayle, Margaret; Zimmet, Adam; Bailey, Michael

    2016-01-01

    In patients requiring left ventricular assist device (LVAD) support, it can be difficult to ascertain suitability for long-term mechanical support with LVAD and eventual transplantation. LVAD implantation in a shocked patient is associated with increased morbidity and mortality. Interest is growing in the utilization of extracorporeal life support (ECLS) as a bridge-to-bridge support for these critically unwell patients. Here, we reviewed our experience with ECLS double bridging. We hypothesized that ECLS double bridging would stabilize end-organ dysfunction and reduce ventricular assist device (VAD) implant perioperative mortality. We conducted a retrospective review of prospectively collected data for 58 consecutive patients implanted with a continuous-flow LVAD between January 2010 and December 2013 at The Alfred Hospital, Melbourne, Victoria, Australia. Twenty-three patients required ECLS support pre-LVAD while 35 patients underwent LVAD implantation without an ECLS bridge. Preoperative morbidity in the ECLS bridge group was reflected by increased postoperative intensive care duration, blood loss, blood product use, and postoperative renal failure, but without negative impact upon survival when compared with the no ECLS group. ECLS stabilization improved end-organ function pre-VAD implant with significant improvements in hepatic and renal dysfunction. This series demonstrates that the use of ECLS bridge to VAD stabilizes end-organ dysfunction and reduces VAD implant perioperative mortality from that traditionally reported in these "crash and burn" patients. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Bridge maintenance to enhance corrosion resistance and performance of steel girder bridges

    Science.gov (United States)

    Moran Yanez, Luis M.

    The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. The benefit of regular high-pressure superstructure washing and spot painting were evaluated as effective maintenance activities to reduce the corrosion process. The effectiveness of steel girder washing was assessed by developing models of corrosion deterioration of composite steel girders and analyzing steel coupons at the laboratory under atmospheric corrosion for two alternatives: when high-pressure washing was performed and when washing was not considered. The effectiveness of spot painting was assessed by analyzing the corrosion on steel coupons, with small damages, unprotected and protected by spot painting. A parametric analysis of corroded steel girder bridges was considered. The emphasis was focused on the parametric analyses of corroded steel girder bridges under two alternatives: (a) when steel bridge girder washing is performed according to a particular frequency, and (b) when no bridge washing is performed to the girders. The reduction of structural capacity was observed for both alternatives along the structure service life, estimated at 100 years. An economic analysis, using the Life-Cycle Cost Analysis method, demonstrated that it is more cost-effective to perform steel girder washing as a scheduled maintenance activity in contrast to the no washing alternative.

  9. Strength monitoring of bridge constructions and features of its application. Part 2. Continuous monitoring of bridge construction status

    Directory of Open Access Journals (Sweden)

    Ovchinnikov Igor Georgievich

    2014-06-01

    Full Text Available The article describes a system of continuous monitoring of bridge constructions — a system of observation over the operating conditions and behavior of the bridge structure, which is aimed at ensuring the preservation of its functional application properties within the specified limits, realized on the continuous, long-term basis with the use of instrumentation and ensures on-line presentation of information on the status of structure. To illustrate, one may consider the existing systems of continuous monitoring for a number of bridge constructions in the United States, Japan, Europe, South Korea, Greece and Russia. The article suggests to examine the systems of continuous monitoring of «Commodore John Barry» truss bridge, «Akashi-Kaikyo» suspension bridge, «Siggenthal» reinforced-concrete arch bridge, «Nimhe» suspension bridge, «Jindo»cable-stayed bridge, «Yandzhon» suspension bridge, «Banghwa» bridge, «Seohae» bridge and «Rio-Antirrio» bridge. In addition one may consider monitoring of the longitudinal launching of the bridge superstructures over the Volga River near the village Pristannoye in Saratov region. Finally, it was drawn the conclusion that monitoring of bridge constructions from the standpoint of their consumers is aimed at solving such important problems as preservation of bridge structures, increase in service life of bridge structures through timely detection of faults and their elimination, as well as preservation of bridge structure carrying capacity by controlling their behavior during the operation and improving the efficiency of expenditure of monetary resources for repair activities by correct determination of time and type of the necessary repair.

  10. Building method (concreting) for an offshore platform equipped with several cantilevered pillars. Fremgangsmaate for fremstilling (stoeping) av en fralandsplattform som har flere mot hverandre hellende stoetteben

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, O.

    1985-07-29

    The invention deals with a building method for an offshore platform made of concrete comprising several cantilevered pillars. In accordance with the invention, the building work is to be started in a dry dock, and can be completed in the same place or in deep water. The pillars and the foundation are made as separate structures. The foundation can also be made as separate structures for each of the pillars. The vertical positioned pillars are made by means of moving forms, and finally put into cantilevered position and permanently connected to the foundation and the upper end arrangement. The structure then is to be completed in the normal way. 7 drawings.

  11. Field performance of timber bridges. 15, Pueblo County, Colorado, stress-laminated deck bridge

    Science.gov (United States)

    L. E. Hislop

    The Pueblo County 204B bridge was constructed in March 1990 in Pueblo, Colorado, as a demonstration bridge under the USDA Forest Service Timber Bridge Initiative. The stress-laminated deck superstructure is approximately 10 m long, 9 m wide, and 406 mm deep, with a skew of 10 degrees. Performance monitoring was conducted for 3 years, beginning at...

  12. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated......, and as an example the reliability profile and a sensitivity analyses for a corroded reinforced concrete bridge is shown....

  13. Impact Coefficient Analysis of Long-Span Railway Cable-Stayed Bridge Based on Coupled Vehicle-Bridge Vibration

    Directory of Open Access Journals (Sweden)

    Yongle Li

    2015-01-01

    Full Text Available Compared with medium and small span bridges, very limited attention has been paid on the research of the impact coefficient of long-span railway bridges. To estimate the impact effects of long-span railway bridges subjected to moving vehicles, a real long-span railway cable-stayed bridge is regarded as the research object in this study, and a coupled model of vehicle-bridge system is established. The track irregularities are taken as the system excitation and the dynamic responses of the vehicle-bridge system are calculated. The impact effects on main girder, stayed cable, bearings, and bridge tower are discussed at various vehicle speeds. The results show that different components of the long-span railway cable-stayed bridge have different impact coefficients. Even for each part, the impact coefficient is also different at different local positions. It reveals that the impact coefficients in the actual situation may have significant differences with the related code clauses in the present design codes.

  14. Cantilever-based optical interfacial force microscope in liquid using an optical-fiber tip

    Directory of Open Access Journals (Sweden)

    Byung I. Kim

    2013-03-01

    Full Text Available We developed a novel cantilever-based optical interfacial force microscope (COIFM to study molecular interaction in liquid environments. The force sensor was created by attaching a chemically etched optical-fiber tip to the force sensor with UV epoxy, and characterized by imaging on a calibration grid. The performance of the COIFM was then demonstrated by measuring the force between two oxidized silicon surfaces in 1 mM KCl as a function of distance. The result was consistent with previously reported electrical double layer forces, suggesting that a COIFM using an optical-fiber tip is capable of measuring force in a liquid environment.

  15. Vertical vibration control system for PC cable-stayed bridge during cantilever construction; Shuketa jogedo seishin sochi ni yoru haridashi sekoji no PC shachokyo no seishin

    Energy Technology Data Exchange (ETDEWEB)

    Oshio, M.; Nakano, R.; Niihara, Y.; Yano, K.; Takeda, T. [Kajima Corp., Tokyo (Japan)

    1995-12-20

    A PC cable-stayed bridge under extension construction having long span length may have long-cycle vibration generated because of wind. The vibration puts workers working on main girders into a state of seasick causing the workability to drop. Therefore, with an objective to reduce vibration occurring on the main girders during construction, discussions were given on application of an active type vertical vibration absorbing device. The vibration absorbing device is an active system that a weight is driven vertically by a hydraulic actuator. The device was developed with a target that damping ratio when a maximum extension is 120 m becomes three times that when no vibration is absorbed for a 5-span continuous PC cable-stayed bridge with a length of 675 m, a central span of 260 m, and a width of 11 m. A cage housing the weight is connected with the actuator at its top by using pins, and the weight is supported being suspended from the top of the actuator. Vibration is absorbed by utilizing reactive force generated when the weight is driven vertically by the hydraulic actuator. The hydraulic actuator contains a gas spring that supports the dead weight of the weight. Experiments have verified the effectiveness of the vertical vibration absorbing device. 4 refs., 12 figs., 3 tabs.

  16. Field performance of timber bridges. 8, Lynches Woods Park stress-laminated deck bridge

    Science.gov (United States)

    J. P. Wacker; M. A. Ritter; D. Conger

    The Lynches Woods Park bridge was constructed during the summer of 1990 in Newberry, South Carolina. It is a single-span, single-lane, stress-laminated deck superstructure that measures approximately 30 ft long, 16 ft wide, and 14 in. deep. The bridge is unique in that is one of the first known stress-laminated deck bridges to be constructed of Southern Pine lumber...

  17. Salt-bridge energetics in halophilic proteins.

    Science.gov (United States)

    Nayek, Arnab; Sen Gupta, Parth Sarthi; Banerjee, Shyamashree; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1) exceeds than that of bridge term (-7 kcal mol-1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its

  18. Bridge the Gap

    DEFF Research Database (Denmark)

    Marselis, Randi

    2017-01-01

    This article focuses on photo projects organised for teenage refugees by the Society for Humanistic Photography (Berlin, Germany). These projects, named Bridge the Gap I (2015), and Bridge the Gap II (2016), were carried out in Berlin and brought together teenagers with refugee and German...

  19. Application of a LIPCA for the structural vibration suppression of an aluminum cantilever beam with a tip mass

    International Nuclear Information System (INIS)

    Martua, Landong; Heo, Seok; Goo, Nam Seo

    2007-01-01

    Use of bare PZT as an actuator in the field of active vibration suppression may cause some drawbacks such as critical breaks in the installation process, short circuits in the host material and low fatigue performance. To alleviate these problems, we developed a new actuator called a lightweight piezocomposite actuator (LIPCA). The LIPCA has five layers: three glass-epoxy layers, a carbon-epoxy layer and a PZT layer. We implemented a LIPCA as an actuator to suppress the vibration of an aluminum cantilever beam with a tip mass. For the control algorithm in our test, we used positive position feedback. The filter frequency for this type of feedback should be tuned to the frequency of the target mode. The first three experimental natural frequencies of the aluminum cantilever beam agree well with the results of finite element methods. The effectiveness of using a LIPCA as an actuator in active vibration suppression was investigated with respect to the time and frequency domains, and the experimental results show that LIPCAs can significantly reduce the amplitude of forced vibrations as well as the settling time of free vibrations

  20. A three-layer model of self-assembly induced surface-energy variation experimentally extracted by using nanomechanically sensitive cantilevers

    International Nuclear Information System (INIS)

    Zuo Guomin; Li Xinxin

    2011-01-01

    This research is aimed at elucidating surface-energy (or interfacial energy) variation during the process of molecule-layer self-assembly on a solid surface. A quasi-quantitative plotting model is proposed and established to distinguish the surface-energy variation contributed by the three characteristic layers of a thiol-on-gold self-assembled monolayer (SAM), namely the assembly-medium correlative gold/head-group layer, the chain/chain interaction layer and the tail/medium layer, respectively. The data for building the model are experimentally extracted from a set of correlative thiol self-assemblies in different media. The variation in surface-energy during self-assembly is obtained by in situ recording of the self-assembly induced nanomechanical surface-stress using integrated micro-cantilever sensors. Based on the correlative self-assembly experiment, and by using the nanomechanically sensitive self-sensing cantilevers to monitor the self-assembly induced surface-stressin situ, the experimentally extracted separate contributions of the three layers to the overall surface-energy change aid a comprehensive understanding of the self-assembly mechanism. Moreover, the quasi-quantitative modeling method is helpful for optimal design, molecule synthesis and performance evaluation of molecule self-assembly for application-specific surface functionalization.

  1. Bridge technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. As LANs have proliferated, new technologies and system concepts have come to the fore. One of the key issues is how to interconnect networks. One means of interconnection is to use a 'bridge'. Other competing technologies are repeaters, routers, and gateways. Bridges permit traffic isolation, connect network segments together and operate at the MAC layer. Further, because they operate at the MAC layer, they can handle a variety of protocols such as TCP/IP, SNA, and X.25. This report focuses on the specific technology of bridging two netw

  2. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...... elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  3. Field performance of timber bridges. 12, Christian Hollow stress-laminated box-beam bridge

    Science.gov (United States)

    J. P. Wacker; S. C. Catherman; R. G. Winnett

    In January 1992, the Christian Hollow bridge was constructed in Steuben County, New York. The bridge is a single-span, stress-laminated box-beam superstructure that is 9.1 m long, 9.8 m wide, and 502 mm deep (30 ft long, 32 ft wide, and 19-3/4 in. deep). The performance of the bridge was continuously monitored for 28 months, beginning shortly after installation....

  4. Road Bridges and Culverts, Bridge dataset only includes bridges maintained by Johnson County Public Works in the unincorporated areas, Published in Not Provided, Johnson County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Road Bridges and Culverts dataset current as of unknown. Bridge dataset only includes bridges maintained by Johnson County Public Works in the unincorporated areas.

  5. Laboratory Testing of Precast Bridge Beck Panel Transverse Connections for Use in Accelerated Bridge Construction

    OpenAIRE

    Porter, Scott D.

    2009-01-01

    Precast concrete bridge deck panels have been used for decades to accelerate bridge construction. Cracking of the transverse connection between panels is a common problem that can damage deck overlays and cause connection leaking leading to corrosion of lower bridge elements. To better understand the behavior of bridge deck transverse female-to-female connections, shear and moment lab testing were performed at Utah State University for the Utah Department of Transportation. Two existing UDOT ...

  6. Human Errors and Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, A. S.

    on basis of reliability profiles for bridges without human errors are extended to include bridges with human errors. The first rehabilitation distributions for bridges without and with human errors are combined into a joint first rehabilitation distribution. The methodology presented is illustrated...... for reinforced concrete bridges....

  7. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  8. A bridge with a view, a view with a bridge : Identifying design considerations for bridges to strengthen regional identity

    NARCIS (Netherlands)

    Smits, J.E.P.; van der Hoeven, F.D.

    2015-01-01

    This paper discusses design considerations for creating high quality infrastructural artefacts with an emphasis on bridges. The authors pursue a design study and analysis approach to highlight the specifics of infrastructure design for regional identity, based on their own work on a bridge

  9. Precast concrete elements for accelerated bridge construction : laboratory testing, field testing, evaluation of a precast concrete bridge, Madison County bridge.

    Science.gov (United States)

    2009-01-01

    The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed ...

  10. Modelling the double cantilever beam test with bending moments by using bilinear discontinuous cohesive laws

    DEFF Research Database (Denmark)

    Valvo, Paolo S.; Sørensen, Bent F.; Toftegaard, Helmuth Langmaack

    2015-01-01

    A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) is presented. The specimen is modelled as the assemblage of two laminated beams connected by a cohesive interface. It is assumed that the traction-separation laws – i.e. the relationships between the interfacial...... the cohesive law parameters from experiments. Experimental tests have been conducted on glass fibre reinforced specimens under pure mode I and II loading conditions. The predictions of the theoretical model turn out to be in very good agreement with the experimental results....

  11. Microfabricated Cantilevers Based on Sputtered Thin-Film Ni50Ti50 Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-08-01

    surface coating developed during the NiTi deposition or anneal that is relatively resistant to the wet etch. Fig. 2 SEMs after the NiTi wet -etch...SEMs of NiTi devices after the 600 °C anneal , wet -etch patterning of the NiTi. A 120-nm Au capping layer was also sputtered. Figure 3a shows a 200-nm...Ni50Ti50 Cantilever 2 3. Results and Discussion 3 3.1 Wet -Etch Patterning NiTi 3 3.2 Dry-Etch Release of NiTi Devices 5 3.3 Thermal Actuation of

  12. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    Science.gov (United States)

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  13. The violin bridge as filter.

    Science.gov (United States)

    Bissinger, George

    2006-07-01

    The violin bridge filter role was investigated using modal and acoustic measurements on 12 quality-rated violins combined with systematic bridge rocking frequency f(rock) and wing mass decrements deltam on four bridges for two other violins. No isolated bridge resonances were observed; bridge motions were complex (including a "squat" mode near 0.8 kHz) except for low frequency rigid body pivot motions, all more or less resembling rocking motion at higher frequencies. A conspicuous broad peak near 2.3 kHz in bridge driving point mobility (labeled BH) was seen for good and bad violins. Similar structure was seen in averaged bridge, bridge feet, corpus mobilities and averaged radiativity. No correlation between violin quality and BH driving point, averaged corpus mobility magnitude, or radiativity was found. Increasing averaged-over-f(rock) deltam(g) from 0 to 0.12 generally increased radiativity across the spectrum. Decreasing averaged-over-deltam f(rock) from 3.6 to 2.6 kHz produced consistent decreases in radiativity between 3 and 4.2 kHz, but only few-percent decreases in BH frequency. The lowest f(rock) values were accompanied by significantly reduced radiation from the Helmholtz A0 mode near 280 Hz; this, combined with reduced high frequency output, created overall radiativity profiles quite similar to "bad" violins among the quality-rated violins.

  14. Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam

    Science.gov (United States)

    Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che

    2018-03-01

    This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.

  15. Real-time moving horizon estimation for a vibrating active cantilever

    Science.gov (United States)

    Abdollahpouri, Mohammad; Takács, Gergely; Rohaľ-Ilkiv, Boris

    2017-03-01

    Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.

  16. Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

  17. Role of multiprotein bridging factor 1 in archaea: bridging the domains?

    NARCIS (Netherlands)

    Koning, de B.; Blombach, F.; Wu Hao,; Brouns, S.J.J.; Oost, van der J.

    2009-01-01

    MBF1 (multiprotein bridging factor 1) is a highly conserved protein in archaea and eukaryotes. It was originally identified as a mediator of the eukaryotic transcription regulator BmFTZ-F1 (Bombyx mori regulator of fushi tarazu). MBF1 was demonstrated to enhance transcription by forming a bridge

  18. A point-wise fiber Bragg grating displacement sensing system and its application for active vibration suppression of a smart cantilever beam subjected to multiple impact loadings

    International Nuclear Information System (INIS)

    Chuang, Kuo-Chih; Ma, Chien-Ching; Liao, Heng-Tseng

    2012-01-01

    In this work, active vibration suppression of a smart cantilever beam subjected to disturbances from multiple impact loadings is investigated with a point-wise fiber Bragg grating (FBG) displacement sensing system. An FBG demodulator is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. To investigate the ability of the proposed FBG displacement sensor as a feedback sensor, velocity feedback control and delay control are employed to suppress the vibrations of the first three bending modes of the smart cantilever beam. To improve the control performance for the first bending mode when the cantilever beam is subjected to an impact loading, we improve the conventional velocity feedback controller by tuning the control gain online with the aid of information from a higher vibration mode. Finally, active control of vibrations induced by multiple impact loadings due to a plastic ball is performed with the improved velocity feedback control. The experimental results show that active vibration control of smart structures subjected to disturbances such as impact loadings can be achieved by employing the proposed FBG sensing system to feed back out-of-plane point-wise displacement responses with high sensitivity. (paper)

  19. 23 CFR 650.809 - Movable span bridges.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Movable span bridges. 650.809 Section 650.809 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES, STRUCTURES, AND HYDRAULICS Navigational Clearances for Bridges § 650.809 Movable span bridges. A fixed bridge...

  20. Sustainable Bridge Infrastructure Procurement

    DEFF Research Database (Denmark)

    Safi, Mohammed; Du, Guangli; Simonsson, Peter

    2016-01-01

    The lack of a flexible but systematic approach for integrating lifecycle aspects into bridge investment decisions is a major obstacle hindering the procurement of sustainable bridge infrastructures. This paper addresses this obstacle by introducing a holistic approach that agencies could use...... to procure the most “sustainable” (lifecycle-efficient) bridge through a fair design-build (D-B) tendering process, considering all the main aspects: life-cycle cost (LCC), service life-span, aesthetic demands and environmental impacts (LCA)....