WorldWideScience

Sample records for canister handling systems

  1. CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    B. Gorpani

    2000-01-01

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist,; DC--loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the; DC--is fully loaded, the Disposal Container Transport System moves the; DC--to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister

  2. Canister Transfer System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane/hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling

  3. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  4. Preliminary design for spent fuel canister handling systems in a canister transfer and installation vehicle

    International Nuclear Information System (INIS)

    Wendelin, T.; Suikki, M.

    2008-12-01

    The report presents a spent fuel canister transfer and installation vehicle. The vehicle is used for carrying the fuel canister into a disposal tunnel and installing it into a deposition hole. The report outlines basic requirements and a design for canister handling equipment used in a canister transfer and installation vehicle, a description regarding the operation and maintenance of the equipment, as well as a cost estimate. Specific vehicles will be manufactured for all canister types in order to minimize the height of the disposal tunnels. This report is only focused on a transfer and installation vehicle for OL1-2 fuel canisters. Detailed designing and selection of final components have not yet been carried out. The report also describes the vehicle's requirements for the structures of a repository system, as well as actions in possible malfunction or fault situations. The spent fuel canister is brought from an encapsulation plant by a canister lift down to the repository level. The fuel canister is driven from the canister lift by an automated guided vehicle onto a canister hoist at a canister loading station. The canister transfer and installation vehicle is waiting for the canister with its radiation shield in an upright position above the canister hoist. The hoist carries the canister upward until the vehicle's own lifting means grab hold of the canister and raise it up into the vehicle's radiation shield. This is followed by turning the radiation shield to a transport position and by closing it in a radiation-proof manner against a rear radiation shield. The vehicle is driven along the central tunnel into the disposal tunnel and parked on top of the deposition hole. The vehicle's radiation shield is turned to the upright position and the canister is lowered with the vehicle's hydraulic winches into a bentonite-lined deposition hole. The radiation shield is turned back to the transport position and the vehicle can be driven out of the disposal tunnel

  5. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for

  6. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  7. Multi-purpose canister system evaluation: A systems engineering approach

    International Nuclear Information System (INIS)

    1994-09-01

    This report summarizes Department of Energy (DOE) efforts to investigate various container systems for handling, transporting, storing, and disposing of spent nuclear fuel (SNF) assemblies in the Civilian Radioactive Waste Management System (CRWMS). The primary goal of DOE's investigations was to select a container technology that could handle the vast majority of commercial SNF at a reasonable cost, while ensuring the safety of the public and protecting the environment. Several alternative cask and canister concepts were evaluated for SNF assembly packaging to determine the most suitable concept. Of these alternatives, the multi-purpose canister (MPC) system was determined to be the most suitable. Based on the results of these evaluations, the decision was made to proceed with design and certification of the MPC system. A decision to fabricate and deploy MPCs will be made after further studies and preparation of an environmental impact statement

  8. A welding system for spent fuel canister lid

    International Nuclear Information System (INIS)

    Suikki, M.; Wendelin, T.

    2008-06-01

    The report presents a proposed welding system for spent fuel canister lids. The system is used for welding the copper lid to the copper overpack. The apparatus will be installed in the encapsulation plant. The report presents basic requirements for and implementation of the welding system, operation, service and maintenance of the equipment, as well as a cost estimate. Some aspects of the apparatus design are quite specified, but the actual detailed planning and final selection of components is not included. The report also describes actions for possible malfunction and fault conditions. Closing of the copper cylinder's lid is carried out by electron beam welding, which must be performed in vacuum. The welding system for spent fuel canister lid consists of two welding chambers, a canister docking system, an EB-welding machine with its accessories, a vacuum apparatus, as well as necessary auxiliary equipment. The system's equipment is housed in a welding room, an auxiliary system room, an operation control room, as well as mounted on the ceiling of a transfer corridor. One of the welding chambers is intended for carrying out test welding procedures and for calibration of welding parameters. The actual spent fuel canister lid welding chamber has a weldingready canister docked thereto in an airtight manner. The chamber is pumped for a vacuum, followed by closing the canister's copper lid and carrying out the lid welding process. The lid is brought into the chamber prior to docking the canister by means of a canister transfer trolley lifting gear. Lifting of the canister and rotating it during a welding process are also handled by means of the transfer trolley. The lid welding chamber houses equipment for the alignment and installation of the lid, as well as heating means for the top side of a copper overpack for ensuring a sufficient installation clearance between the lid and the overpack. The equipment not needed in the immediate vicinity of welding chambers, is

  9. HLW Canister and Can-In-Canister Drop Calculation

    International Nuclear Information System (INIS)

    H. Marr

    1999-01-01

    The purpose of this calculation is to evaluate the structural response of the standard high-level waste (HLW) canister and the HLW canister containing the cans of immobilized plutonium (''can-in-canister'' throughout this document) to the drop event during the handling operation. The objective of the calculation is to provide the structure parameter information to support the canister design and the waste handling facility design. Finite element solution is performed using the commercially available ANSYS Version (V) 5.4 finite element code. Two-dimensional (2-D) axisymmetric and three-dimensional (3-D) finite element representations for the standard HLW canister and the can-in-canister are developed and analyzed using the dynamic solver

  10. Groundwork for Universal Canister System Development

    Energy Technology Data Exchange (ETDEWEB)

    Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gross, Mike [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prouty, Jeralyn L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Craig, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Zenghu [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, John Hok [Argonne National Lab. (ANL), Argonne, IL (United States); Liu, Yung [Argonne National Lab. (ANL), Argonne, IL (United States); Pope, Ron [Argonne National Lab. (ANL), Argonne, IL (United States); Connolly, Kevin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feldman, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jarrell, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Radulescu, Georgeta [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used for handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system

  11. Thermal studies of the canister staging pit in a hypothetical Yucca Mountain canister handling facility using computational fluid dynamics

    International Nuclear Information System (INIS)

    Soltani, Mehdi; Barringer, Chris; Bues, Timothy T. de

    2007-01-01

    The proposed Yucca Mountain nuclear waste storage site will contain facilities for preparing the radioactive waste canisters for burial. A previous facility design considered was the Canister Handling Facility Staging Pit. This design is no longer used, but its thermal evaluation is typical of such facilities. Structural concrete can be adversely affected by the heat from radioactive decay. Consequently, facilities must have heating ventilation and air conditioning (HVAC) systems for cooling. Concrete temperatures are a function of conductive, convective and radiative heat transfer. The prediction of concrete temperatures under such complex conditions can only be adequately handled by computational fluid dynamics (CFD). The objective of the CFD analysis was to predict concrete temperatures under normal and off-normal conditions. Normal operation assumed steady state conditions with constant HVAC flow and temperatures. However, off-normal operation was an unsteady scenario which assumed a total HVAC failure for a period of 30 days. This scenario was particularly complex in that the concrete temperatures would gradually rise, and air flows would be buoyancy driven. The CFD analysis concluded that concrete wall temperatures would be at or below the maximum temperature limits in both the normal and off-normal scenarios. While this analysis was specific to a facility design that is no longer used, it demonstrates that such facilities are reasonably expected to have satisfactory thermal performance. (author)

  12. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J.F. Beesley

    2005-04-21

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  13. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Beesley. J.F.

    2005-01-01

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process

  14. Analysis of Welding Joint on Handling High Level Waste-Glass Canister

    International Nuclear Information System (INIS)

    Herlan Martono; Aisyah; Wati

    2007-01-01

    The analysis of welding joint of stainless steel austenitic AISI 304 for canister material has been studied. At the handling of waste-glass canister from melter below to interim storage, there is a step of welding of canister lid. Welding quality must be kept in a good condition, in order there is no gas out pass welding pores and canister be able to lift by crane. Two part of stainless steel plate in dimension (200 x 125 x 3) mm was jointed by welding. Welding was conducted by TIG machine with protection gas is argon. Electric current were conducted for welding were 70, 80, 90, 100, 110, 120, 130, and 140 A. Welded plates were cut with dimension according to JIS 3121 standard for tensile strength test. Hardness test in welding zone, HAZ, and plate were conducted by Vickers. Analysis of microstructure by optic microscope. The increasing of electric current at the welding, increasing of tensile strength of welding yields. The best quality welding yields using electric current was 110 A. At the welding with electric current more than 110 A, the electric current influence towards plate quality, so that decreasing of stainless steel plate quality and breaking at the plate. Tensile strength of stainless steel plate welding yields in requirement conditions according to application in canister transportation is 0.24 kg/mm 2 . (author)

  15. Preliminary Transportation, Aging and Disposal Canister System Performance Specification

    International Nuclear Information System (INIS)

    C.A Kouts

    2006-01-01

    This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others

  16. Remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility is being constructed at the Savannah River Plant at a cost of $870 million to immobilize the defense high-level radioactive waste. This radioactive waste is being added to borosilicate glass for later disposal in a federal repository. The borosilicate glass is poured into stainless steel canisters for storage. These canisters must be handled remotely because of their high radioactivity, up to 5000 R/h. After the glass has been poured into the canister which will be temporarily sealed, it is transferred to a decontamination cell and decontaminated. The canister is then transferred to the weld cell where a permanent cap is welded into place. The canisters must then be transported from the processing building to a storage vault on the plant until the federal repository is available. A shielded canister transporter (SCT) has been designed and constructed for this purpose. The design of the SCT vehicle allows the safe transport of a highly radioactive canister containing borosilicate glass weighing 2300 kg with a radiation level up to 5000 R/h from one building to another. The design provides shielding for the operator in the cab of the vehicle to be below 0.5 rem/h. The SCT may also be used to load the final shipping cask when the federal repository is ready to receive the canisters

  17. Shielded Canister Transporter

    International Nuclear Information System (INIS)

    Eidem, G.G. Jr.; Fages, R.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) will produce canisters filled with high-level radioactive waste immobilized in borosilicate glass. This report discusses a Shielded Canister Transporter (SCT) which will provide the means for safe transportation and handling of the canisters from the Vitrification Building to the Canister Storage Building (CSB). The stainless steel canisters are 0.61 meters in diameter, 3.0 meters tall, and weigh approximately 2,135 kilograms, with a maximum exterior surface dose rate of 90,000 R/hr. The canisters are placed into storage tubes to a maximum of three tall (two for overpack canisters) with an impact limiter placed at the tube bottom and between each canister. A floor plug seals the top of the storage tube at the operating floor level of the CSB

  18. FEMA and RAM Analysis for the Multi Canister Overpack (MCO) Handling Machine

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    The Failure Modes and Effects Analysis and the Reliability, Availability, and Maintainability Analysis performed for the Multi-Canister Overpack Handling Machine (MHM) has shown that the current design provides for a safe system, but the reliability of the system (primarily due to the complexity of the interlocks and permissive controls) is relatively low. No specific failure modes were identified where significant consequences to the public occurred, or where significant impact to nearby workers should be expected. The overall reliability calculation for the MHM shows a 98.1 percent probability of operating for eight hours without failure, and an availability of the MHM of 90 percent. The majority of the reliability issues are found in the interlocks and controls. The availability of appropriate spare parts and maintenance personnel, coupled with well written operating procedures, will play a more important role in successful mission completion for the MHM than other less complicated systems

  19. System for handling and storing radioactive waste

    Science.gov (United States)

    Anderson, John K.; Lindemann, Paul E.

    1984-01-01

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  20. Structural performance of a multipurpose canister shell for HLNW under normal handling conditions

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Rajagopalan, R.

    1994-01-01

    A Multipurpose Canister (MPC) is analyzed for critical stresses that occur during normal handling conditions and accidental scenarios. Linear and Non-linear Finite Element Analysis is performed and the stresses at various critical locations in the MPC and its weldments are studied extensively. Progressive failure analysis of the MPC's groove and fillet welds, is presented. The structural response of the MPC to dynamic lifting loads, to loads resulting from an accidental slippage of a crane cable carrying the MPC, and from the impact between two canisters, is evaluated. Nonlinear structural analysis is used in the evaluation of the local buckling and the ultimate failure phenomena in the shell when the steel is in the strain hardening state during impact. Results make a case for increasing the thickness of the shell and all the welds

  1. Design of double containment canister cask storage system

    International Nuclear Information System (INIS)

    Asami, M.; Matsumoto, T.; Oohama, T.; Kuriyama, K.; Kawakami, K.

    2004-01-01

    Spent fuels discharged from Japanese LWR will be stored as recycled-fuel-resources in interim storage facilities. The concrete cask storage system is one of important forms for the spent fuel interim storage. In Japan, the interim storage facility will be located near the coast, therefore it is important to prevent SCC (Stress Corrosion Cracking) caused by sea salt particles and to assure the containment integrity of the canister which contains spent fuels. KEPCO, NFT and OCL have designed the double containment canister cask storage system that can assure the long-term containment integrity and monitor the containment performance without storage capacity decrease. Major features of the combined canister cask system are shown as follows: This system can survey containment integrity of dual canisters by monitoring the pressure of the gap between canisters. The primary canister has dual lids sealed by welding. The secondary canister has single lid tightened by bolts and sealed by metallic gaskets. The primary canister is contained in the transport cask during transportation, and the gap between the primary canister and the transport cask is filled with He gas. Under storage condition in the concrete cask, the primary canister is contained in the secondary canister, and the gap between these canisters is filled with helium gas. Hence this system can prevent the primary canister to contact sea salt particle in the air and from SCC. Decrease of cooling performance because of the double canister is compensated by fins fitted on the secondary canister surface. Then, this system can prevent the decrease of storage capacity determined by the fuel temperature limit. This system can assure that the primary canister will keep intact for long term storage. Therefore, in the case of pressure down of the gap between canisters, it can be considered that the secondary canister containment is damaged, and the primary canister will be transferred to another secondary canister at the

  2. Stakeholder involvement in the evaluation of a multipurpose canister system

    International Nuclear Information System (INIS)

    Williams, J.R.; Kane, D.; Smith, T.B. Jr.

    1994-01-01

    The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), began evaluating a multipurpose canister (MPC) concept in October of 1992. This followed recommendations by the Nuclear Waste Technical Review Board (NWTRB) and the U.S. Nuclear Regulatory Commission (NRC) that DOE develop a nuclear waste management system that achieves system integration, standardization, and reduced fuel-handling operations. Industry organizations such as Edison Electric Institute (EEI) and Electric Power Research Institute (EPRI) had conducted earlier studies that concluded advantages to the nuclear waste management system may be offered by such a concept. The MPC concept involves a metal canister which would contain multiple spent nuclear fuel assemblies. The canister would be sealed at the nuclear power plant and would not be reopened. The MPC would then be placed inside separate casks or overpacks for storage, transportation, and disposal. An important factor in DOE's evaluation of the MPC concept was the involvement of external parties. This paper describes that involvement process for the OCRWM's MPC implementation program. External parties who have an interest or stake in the program are referred to as stakeholders

  3. Spent fuel canister docking station

    International Nuclear Information System (INIS)

    Suikki, M.

    2006-01-01

    The working report for the spent fuel canister docking station presents a design for the operation and structure of the docking equipment located in the fuel handling cell for the spent fuel in the encapsulation plant. The report contains a description of the basic requirements for the docking station equipment and their implementation, the operation of the equipment, maintenance and a cost estimate. In the designing of the equipment all the problems related with the operation have been solved at the level of principle, nevertheless, detailed designing and the selection of final components have not yet been carried out. In case of defects and failures, solutions have been considered for postulated problems, and furthermore, the entire equipment was gone through by the means of systematic risk analysis (PFMEA). During the docking station designing we came across with needs to influence the structure of the actual disposal canister for spent nuclear fuel, too. Proposed changes for the structure of the steel lid fastening screw were included in the report. The report also contains a description of installation with the fuel handling cell structures. The purpose of the docking station for the fuel handling cell is to position and to seal the disposal canister for spent nuclear fuel into a penetration located on the cell floor and to provide suitable means for executing the loading of the disposal canister and the changing of atmosphere. The designed docking station consists of a docking ring, a covering hatch, a protective cone and an atmosphere-changing cap as well as the vacuum technology pertaining to the changing of atmosphere and the inert gas system. As far as the solutions are concerned, we have arrived at rather simple structures and most of the actuators of the system are situated outside of the actual fuel handling cell. When necessary, the equipment can also be used for the dismantling of a faulty disposal canister, cut from its upper end by machining. The

  4. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    International Nuclear Information System (INIS)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems' Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment

  5. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  6. Multi-purpose canisters as an alternative for storage, transportation, and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Hollaway, W.R.; Rozier, R.; Nitti, D.A.; Williams, J.R.

    1993-01-01

    A study was conducted to assess the feasibility of using multi-purpose canisters to handle spent nuclear fuel throughout the Civilian Radioactive Waste Management System. Multi-purpose canisters would be sealed, metallic containers maintaining multiple spent fuel assemblies in a dry, inert environment and overpacked separately and uniquely for the various system elements of storage, transportation, and disposal. Using five implementation scenarios, the multi-purpose canister was evaluated with regard to several measures of effectiveness, including number of handlings, radiation exposure, cost, schedule and licensing considerations, and public perception. Advantages and disadvantages of the multi-purpose canister were identified relative to the current reference system within each scenario, and the scenarios were compared to determine the most effective method of implementation

  7. Multi Canister Overpack (MCO) Handling Machine - Independent Review of Seismic Structural Analysis

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    The following separate reports and correspondence pertains to the independent review of the seismic analysis. The original analysis was performed by GEC-Alsthom Engineering Systems Limited (GEC-ESL) under subcontract to Foster-Wheeler Environmental Corporation (FWEC) who was the prime integration contractor to the Spent Nuclear Fuel Project for the Multi-Canister Overpack (MCO) Handling Machine (MHM). The original analysis was performed to the Design Basis Earthquake (DBE) response spectra using 5% damping as required in specification, HNF-S-0468 for the 90% Design Report in June 1997. The independent review was performed by Fluor-Daniel (Irvine) under a separate task from their scope as Architect-Engineer of the Canister Storage Building (CSB) in 1997. The comments were issued in April 1998. Later in 1997, the response spectra of the Canister Storage Building (CSB) was revised according to a new soil-structure interaction analysis and accordingly revised the response spectra for the MHM and utilized 7% damping in accordance with American Society of Mechanical Engineers (ASME) NOG-1, ''Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder).'' The analysis was re-performed to check critical areas but because manufacturing was underway, designs were not altered unless necessary. FWEC responded to SNF Project correspondence on the review comments in two separate letters enclosed. The dispositions were reviewed and accepted. Attached are supplier source surveillance reports on the procedures and process by the engineering group performing the analysis and structural design. All calculation and analysis results are contained in the MHM Final Design Report which is part of the Vendor Information File 50100. Subsequent to the MHM supplier engineering analysis, there was a separate analyses for nuclear safety accident concerns that used the electronic input data files provided by FWEC/GEC-ESL and are contained in document SNF-6248

  8. Multi Canister Overpack (MCO) Handling Machine Independent Review of Seismic Structural Analysis

    Energy Technology Data Exchange (ETDEWEB)

    SWENSON, C.E.

    2000-09-22

    The following separate reports and correspondence pertains to the independent review of the seismic analysis. The original analysis was performed by GEC-Alsthom Engineering Systems Limited (GEC-ESL) under subcontract to Foster-Wheeler Environmental Corporation (FWEC) who was the prime integration contractor to the Spent Nuclear Fuel Project for the Multi-Canister Overpack (MCO) Handling Machine (MHM). The original analysis was performed to the Design Basis Earthquake (DBE) response spectra using 5% damping as required in specification, HNF-S-0468 for the 90% Design Report in June 1997. The independent review was performed by Fluor-Daniel (Irvine) under a separate task from their scope as Architect-Engineer of the Canister Storage Building (CSB) in 1997. The comments were issued in April 1998. Later in 1997, the response spectra of the Canister Storage Building (CSB) was revised according to a new soil-structure interaction analysis and accordingly revised the response spectra for the MHM and utilized 7% damping in accordance with American Society of Mechanical Engineers (ASME) NOG-1, ''Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder).'' The analysis was re-performed to check critical areas but because manufacturing was underway, designs were not altered unless necessary. FWEC responded to SNF Project correspondence on the review comments in two separate letters enclosed. The dispositions were reviewed and accepted. Attached are supplier source surveillance reports on the procedures and process by the engineering group performing the analysis and structural design. All calculation and analysis results are contained in the MHM Final Design Report which is part of the Vendor Information File 50100. Subsequent to the MHM supplier engineering analysis, there was a separate analyses for nuclear safety accident concerns that used the electronic input data files provided by FWEC/GEC-ESL and are contained in

  9. TMI-2 [Three Mile Island Nuclear Power Station] fuel canister and core sample handling equipment used in INEL hot cells

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Shurtliff, W.T.; Lynch, R.J.; Croft, K.M.; Whitmill, L.J.; Allen, S.M.

    1987-01-01

    This paper describes the specialized remote handling equipment developed and used at the Idaho National Engineering Laboratory (INEL) to handle samples obtained from the core of the damaged Unit 2 reactor at Three Mile Island Nuclear Power Station (TM-2). Samples of the core were removed, placed in TMI-2 fuel canisters, and transported to the INEL. Those samples will be examined as part of the analysis of the TMI-2 accident. The equipment described herein was designed for removing sample materials from the fuel canisters, assisting with initial examination, and processing samples in preparation for detailed examinations. The more complex equipment used microprocessor remote controls with electric motor drives providing the required force and motion capabilities. The remaining components were unpowered and manipulator assisted

  10. Shippingport Spent Fuel Canister System Description

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available

  11. As-Built Verification Plan Spent Nuclear Fuel Canister Storage Building MCO Handling Machine

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    This as-built verification plan outlines the methodology and responsibilities that will be implemented during the as-built field verification activity for the Canister Storage Building (CSB) MCO HANDLING MACHINE (MHM). This as-built verification plan covers THE ELECTRICAL PORTION of the CONSTRUCTION PERFORMED BY POWER CITY UNDER CONTRACT TO MOWAT. The as-built verifications will be performed in accordance Administrative Procedure AP 6-012-00, Spent Nuclear Fuel Project As-Built Verification Plan Development Process, revision I. The results of the verification walkdown will be documented in a verification walkdown completion package, approved by the Design Authority (DA), and maintained in the CSB project files

  12. Feasibility study for a DOE research and production fuel multipurpose canister

    International Nuclear Information System (INIS)

    Lopez, D.A.; Abbott, D.G.

    1994-02-01

    This is a report of the feasibility of multipurpose canisters for transporting, storing, and sing of Department of Energy research and production spent nuclear fuel. Six representative Department of Energy fuel assemblies were selected, and preconceptual canister designs were developed to accommodate these assemblies. The study considered physical interface, structural adequacy, criticality safety, shielding capability, thermal performance of the canisters, and fuel storage site infrastructure. The external envelope of the canisters was designed to fit within the overpack casks for commercial canisters being developed for the Department of Energy Office of Civilian Radioactive Waste Management. The budgetary cost of canisters to handle all fuel considered is estimated at $170.8M. One large conceptual boiling water reactor canister design, developed for the Office of Civilian Radioactive Waste Management, and two new canister designs can accommodate at least 85% of the volume of the Department of Energy fuel considered. Canister use minimizes public radiation exposure and is cost effective compared with bare fuel handling. Results suggest the need for additional study of issues affecting canister use and for conceptual design development of the three canisters

  13. High-level waste canister storage final design, installation, and testing. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

  14. High-level waste canister storage final design, installation, and testing. Topical report

    International Nuclear Information System (INIS)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project's radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project's vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access

  15. Design, production and initial state of the canister

    International Nuclear Information System (INIS)

    Cederqvist, Lars; Johansson, Magnus; Leskinen, Nina; Ronneteg, Ulf

    2010-12-01

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility.The report provides input on the initial state of the canisters to the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the canisters shall be handled and disposed. The report presents the design premises and reference design of the canister and verifies the conformity of the reference design to the design premises. The production methods and the ability to produce canisters according to the reference design are described. Finally, the initial state of the canisters and their conformity to the reference design and design premises are presented

  16. Design, production and initial state of the canister

    Energy Technology Data Exchange (ETDEWEB)

    Cederqvist, Lars; Johansson, Magnus; Leskinen, Nina; Ronneteg, Ulf

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility.The report provides input on the initial state of the canisters to the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the canisters shall be handled and disposed. The report presents the design premises and reference design of the canister and verifies the conformity of the reference design to the design premises. The production methods and the ability to produce canisters according to the reference design are described. Finally, the initial state of the canisters and their conformity to the reference design and design premises are presented

  17. Drop Calculations of HLW Canister and Pu Can-in-Canister

    International Nuclear Information System (INIS)

    Sreten Mastilovic

    2001-01-01

    The objective of this calculation is to determine the structural response of the standard high-level waste (HLW) canister and the canister containing the cans of immobilized plutonium (Pu) (''can-in-canister'' [CIC] throughout this document) subjected to drop DBEs (design basis events) during the handling operation. The evaluated DBE in the former case is 7-m (23-ft) vertical (flat-bottom) drop. In the latter case, two 2-ft (0.61-m) corner (oblique) drops are evaluated in addition to the 7-m vertical drop. These Pu CIC calculations are performed at three different temperatures: room temperature (RT) (20 C), T = 200 F = 93.3 C , and T = 400 F = 204 C ; in addition to these the calculation characterized by the highest maximum stress intensity is performed at T = 750 F = 399 C as well. The scope of the HLW canister calculation is limited to reporting the calculation results in terms of: stress intensity and effective plastic strain in the canister, directional residual strains at the canister outer surface, and change of canister dimensions. The scope of Pu CIC calculation is limited to reporting the calculation results in terms of stress intensity, and effective plastic strain in the canister. The information provided by the sketches from Reference 26 (Attachments 5.3,5.5,5.8, and 5.9) is that of the potential CIC design considered in this calculation, and all obtained results are valid for this design only. This calculation is associated with the Plutonium Immobilization Project and is performed by the Waste Package Design Section in accordance with Reference 24. It should be noted that the 9-m vertical drop DBE, included in Reference 24, is not included in the objective of this calculation since it did not become a waste acceptance requirement. AP-3.124, ''Calculations'', is used to perform the calculation and develop the document

  18. Handling encapsulated spent fuel in a geologic repository environment

    International Nuclear Information System (INIS)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy's Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site (approx. 100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground

  19. Simulation of Multi Canister Overpack (MCO) Handling Machine Impact with Cask and MCO During Insertion into the Transfer Pit (FDT-137)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2000-04-13

    The K-Basin Cask and Transportation System will be used for safely packaging and transporting approximately 2,100 metric tons of unprocessed, spent nuclear fuel from the 105 K East and K West Basins to the 200 E Area Canister Storage Building (CSB). Portions of the system will also be used for drying the spent fuel under cold vacuum conditions prior to placement in interim storage. The spent nuclear fuel is currently stored underwater in the two K-Basins. The K-Basins loadout pit is the area selected for loading spent nuclear fuel into the Multi-Canister Overpack (MCO) which in turn is located within the transportation cask. This Cask/MCO unit is secured.in the pit with a pail load out structure whose primary function is lo suspend and support the Cask/MCO unit at.the desired elevations and to protect the unit from the contaminated K-Basin water. The fuel elements will be placed in special baskets and stacked in the MCO that have been previously placed in the cask. The casks will be removed from the K Basin load out areas and taken to the cold vacuum drying station. Then the cask will be prepared for transportation to the CSB. The shipments will occur exclusively on the Hanford Site between K-Basins and the CSB. Travel will be by road with one cask per trailer. At the CSB receiving area the cask will be removed from the trailer. A gantry crane will then move the cask over to the transfer pit and load the cask into the transfer pit. From the transfer pit the MCO will be removed from the cask by the MCO Handling Machine (MHM). The MHM will move the MCO from the transfer pit to a canister storage tube in the CSB. MCOs will be piled two high in each canister Storage tube.

  20. Simulation of Multi Canister Overpack (MCO) Handling Machine Impact with Cask and MCO During Insertion into the Transfer Pit (FDT-137)

    International Nuclear Information System (INIS)

    BAZINET, G.D.

    2000-01-01

    The K-Basin Cask and Transportation System will be used for safely packaging and transporting approximately 2,100 metric tons of unprocessed, spent nuclear fuel from the 105 K East and K West Basins to the 200 E Area Canister Storage Building (CSB). Portions of the system will also be used for drying the spent fuel under cold vacuum conditions prior to placement in interim storage. The spent nuclear fuel is currently stored underwater in the two K-Basins. The K-Basins loadout pit is the area selected for loading spent nuclear fuel into the Multi-Canister Overpack (MCO) which in turn is located within the transportation cask. This Cask/MCO unit is secured.in the pit with a pail load out structure whose primary function is lo suspend and support the Cask/MCO unit at.the desired elevations and to protect the unit from the contaminated K-Basin water. The fuel elements will be placed in special baskets and stacked in the MCO that have been previously placed in the cask. The casks will be removed from the K Basin load out areas and taken to the cold vacuum drying station. Then the cask will be prepared for transportation to the CSB. The shipments will occur exclusively on the Hanford Site between K-Basins and the CSB. Travel will be by road with one cask per trailer. At the CSB receiving area the cask will be removed from the trailer. A gantry crane will then move the cask over to the transfer pit and load the cask into the transfer pit. From the transfer pit the MCO will be removed from the cask by the MCO Handling Machine (MHM). The MHM will move the MCO from the transfer pit to a canister storage tube in the CSB. MCOs will be piled two high in each canister Storage tube

  1. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    Energy Technology Data Exchange (ETDEWEB)

    TU, K.C.

    1999-10-08

    Multi-Canister Overpacks (MCOs) containing spent nuclear fuel (SNF) will be routinely handled at the Canister Storage Building (CSB) during fuel movement operations in the SNF Project. This analysis was performed to investigate the potential for damage from an eccentric accidental drop onto the standard storage tube, overpack tube, service station, or sample/weld station. Appendix D was added to the FDNW document to include the peer Review Comment Record & transmittal record.

  2. Analysis for Eccentric Multi Canister Overpack (MCO) Drops at the Canister Storage Building (CSB) (CSB-S-0073)

    International Nuclear Information System (INIS)

    TU, K.C.

    1999-01-01

    Multi-Canister Overpacks (MCOs) containing spent nuclear fuel (SNF) will be routinely handled at the Canister Storage Building (CSB) during fuel movement operations in the SNF Project. This analysis was performed to investigate the potential for damage from an eccentric accidental drop onto the standard storage tube, overpack tube, service station, or sample/weld station. Appendix D was added to the FDNW document to include the peer Review Comment Record and transmittal record

  3. Conceptual designs of radioactive canister transporters

    International Nuclear Information System (INIS)

    1978-02-01

    This report covers conceptual designs of transporters for the vertical, horizontal, and inclined installation of canisters containing spent-fuel elements, high-level waste, cladding waste, and intermediate-level waste (low-level waste is not discussed). Included in the discussion are cask concepts; transporter vehicle designs; concepts for mechanisms for handling and manipulating casks, canisters, and concrete plugs; transporter and repository operating cycles; shielding calculations; operator radiation dosages; radiation-resistant materials; and criteria for future design efforts

  4. Electropolishing decontamination system for high-level waste canisters

    International Nuclear Information System (INIS)

    Larson, D.E.; Berger, D.N.; Allen, R.P.; Bryan, G.H.; Place, B.G.

    1988-10-01

    As part of a US Department of Energy (DOE) project agreement with the Federal Ministry for Research and Technology (BMFT) in the Federal Republic of Germany (FRG). The Nuclear Waste Treatment Program at the Pacific Northwest Laboratory (PNL) is preparing 30 radioactive canisters containing borosilicate glass for use in high-level waste repository related tests at the Asse Salt Mine. After filling, the canisters will be welded closed and decontaminated in preparation for shipping to the FRG. Electropolishing was selected as the primary decontamination approach, and an electropolishing system with associated canister inspection equipment has been designed and fabricated for installation in a large hot cell. This remote electropolishing system, which is currently undergoing preliminary testing, is described in this report. 3 refs., 3 figs., 1 tab

  5. Commercial radioactive waste management system feasibility with the universal canister concept. Volume 1

    International Nuclear Information System (INIS)

    Morissette, R.P.; Schneringer, P.E.; Lane, R.K.; Moore, R.L.; Young, K.A.

    1986-01-01

    A Program Research and Development Announcement (PRDA) was initiated by DOE to solicit from industry new and novel ideas for improvements in the nuclear waste management system. GA Technologies Inc. was contracted to study a system utilizing a universal canister which could be loaded at the reactor and used throughout the waste management system. The proposed canister was developed with the objective of meeting the mission requirements with maximum flexibility and at minimum cost. Canister criteria were selected from a thorough analysis of the spent fuel inventory, and canister concepts were evaluated along with the shipping and storage casks to determine the maximum payload. Engineering analyses were performed on various cask/canister combinations. One important criterion was the interchangeability of the canisters between truck and rail cask systems. A canister was selected which could hold three PWR intact fuel elements or up to eight consolidated PWR fuel elements. One canister could be shipped in an overweight truck cask or six in a rail cask. Economic analysis showed a cost savings of the reference system under consideration at that time

  6. Canister design concepts for disposal of spent fuel and high level waste

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Punshon, C.; Nicholas, J.; Bastid, P.; Zhou, R.; Schneider, C.; Bagshaw, N.; Howse, D.; Hutchinson, E. [TWI Ltd, Cambridge, (United Kingdom); Asano, R. [Hitachi Zosen Corporation, Osaka (Japan); King, S. [Integrity Corrosion Consulting Ltd, Calgary, Alberta (Canada)

    2012-10-15

    As part of its long-term plans for development of a repository for spent fuel (SF) and high level waste (HLW), Nagra is exploring various options for the selection of materials and design concepts for disposal canisters. The selection of suitable canister options is driven by a series of requirements, one of the most important of which is providing a minimum 1000 year lifetime without breach of containment. One candidate material is carbon steel, because of its relatively low corrosion rate under repository conditions and because of the advanced state of overall technical maturity related to construction and fabrication. Other materials and design options are being pursued in parallel studies. The objective of the present study was to develop conceptual designs for carbon steel SF and HLW canisters along with supporting justification. The design process and outcomes result in design concepts that deal with all key aspects of canister fabrication, welding and inspection, short-term performance (handling and emplacement) and long-term performance (corrosion and structural behaviour after disposal). A further objective of the study is to use the design process to identify the future work that is required to develop detailed designs. The development of canister designs began with the elaboration of a number of design requirements that are derived from the need to satisfy the long-term safety requirements and the operational safety requirements (robustness needed for safe handling during emplacement and potential retrieval). It has been assumed based on radiation shielding calculations that the radiation dose rate at the canister surfaces will be at a level that prohibits manual handling, and therefore a hot cell and remote handling will be needed for filling the canisters and for final welding operations. The most important canister requirements were structured hierarchically and set in the context of an overall design methodology. Conceptual designs for SF canisters

  7. Canister design concepts for disposal of spent fuel and high level waste

    International Nuclear Information System (INIS)

    Patel, R.; Punshon, C.; Nicholas, J.; Bastid, P.; Zhou, R.; Schneider, C.; Bagshaw, N.; Howse, D.; Hutchinson, E.; Asano, R.; King, S.

    2012-10-01

    As part of its long-term plans for development of a repository for spent fuel (SF) and high level waste (HLW), Nagra is exploring various options for the selection of materials and design concepts for disposal canisters. The selection of suitable canister options is driven by a series of requirements, one of the most important of which is providing a minimum 1000 year lifetime without breach of containment. One candidate material is carbon steel, because of its relatively low corrosion rate under repository conditions and because of the advanced state of overall technical maturity related to construction and fabrication. Other materials and design options are being pursued in parallel studies. The objective of the present study was to develop conceptual designs for carbon steel SF and HLW canisters along with supporting justification. The design process and outcomes result in design concepts that deal with all key aspects of canister fabrication, welding and inspection, short-term performance (handling and emplacement) and long-term performance (corrosion and structural behaviour after disposal). A further objective of the study is to use the design process to identify the future work that is required to develop detailed designs. The development of canister designs began with the elaboration of a number of design requirements that are derived from the need to satisfy the long-term safety requirements and the operational safety requirements (robustness needed for safe handling during emplacement and potential retrieval). It has been assumed based on radiation shielding calculations that the radiation dose rate at the canister surfaces will be at a level that prohibits manual handling, and therefore a hot cell and remote handling will be needed for filling the canisters and for final welding operations. The most important canister requirements were structured hierarchically and set in the context of an overall design methodology. Conceptual designs for SF canisters

  8. Monitored Retrievable Storage/Multi-Purpose Canister analysis: Simulation and economics of automation

    International Nuclear Information System (INIS)

    Bennett, P.C.; Stringer, J.B.

    1994-01-01

    Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility. Automation of key operational aspects for the MRS/MPC system are analyzed to determine equipment requirements, through-put times and equipment costs is described. The economic and radiation dose impacts resulting from this automation are compared to manual handling methods

  9. Remote controlled mover for disposal canister transfer

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  10. Remote controlled mover for disposal canister transfer

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for an earlier automatic guided vehicle design (Pietikaeinen 2003). The short horizontal transfers of disposal canisters manufactured in the encapsulation process are conducted with remote controlled movers both in the encapsulation plant and in the underground areas at the canister loading station of the disposal facility. The canister mover is a remote controlled transfer vehicle mobile on wheels. The handling of canisters is conducted with the assistance of transport platforms (pallets). The very small automatic guided vehicle of the earlier design was replaced with a commercial type mover. The most important reasons for this being the increased loadbearing requirement and the simpler, proven technology of the vehicle. The larger size of the vehicle induced changes to the plant layouts and in the principles for dealing with fault conditions. The selected mover is a vehicle, which is normally operated from alongside. In this application, the vehicle steering technology must be remote controlled. In addition, the area utilization must be as efficient as possible. This is why the vehicle was downsized in its outer dimensions and supplemented with certain auxiliary equipment and structures. This enables both remote controlled operation and improves the vehicle in terms of its failure tolerance. Operation of the vehicle was subjected to a risk analysis (PFMEA) and to a separate additional calculation conserning possible canister toppling risks. The total cost estimate, without value added tax for manufacturing the system amounts to 730 000 euros. (orig.)

  11. Preparing, Loading and Shipping Irradiated Metals in Canisters Classified as Remote-Handled (RH) Low-Level Waste (LLW) From Oak Ridge National Laboratory (ORNL) to the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    McClelland, B.C.; Moore, T.D.

    2006-01-01

    Irradiated metals, classified as remote-handled low-level waste generated at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, were containerised in various sized canisters for long-term storage. The legacy waste canisters were placed in below-grade wells located at the 7827 Facility until a pathway for final disposal at the Nevada Test Site (NTS) could be identified and approved. Once the pathway was approved, WESKEM, LLC was selected by Bechtel Jacobs Company, LLC to prepare, load, and ship these canisters from ORNL to the NTS. This paper details some of the technical challenges encountered during the retrieval process and solutions implemented to ensure the waste was safely and efficiently over-packed and shipped for final disposal. The technical challenges detailed in this paper include: 1) how to best perform canister/lanyard pre-lift inspections since some canisters had not been moved in ∼10 years, so deterioration was a concern; 2) replacing or removing damaged canister lanyards; 3) correcting a mis-cut waste canister lanyard resulting in a shielded overpack lid not seating properly; 4) retrieving a stuck canister; and 5) developing a path forward after an overstrained lanyard failed causing a well shield plug to fall and come in contact with a waste canister. Several of these methods can serve as positive lessons learned for other projects encountering similar situations. (authors)

  12. DOE requests waiver on double containment for HLW canisters

    International Nuclear Information System (INIS)

    Lobsenz, G.

    1994-01-01

    The Energy Department has asked the Nuclear Regulatory Commission to waive double containment requirements for vitrified high-level radioactive waste canisters, saying the additional protection is not necessary and too costly. NRC said it had received a petition from DOE contending that the vitrified waste canisters were durable enough without double containment to prevent any potential plutonium release during handling and shipping. DOE said testing had shown that the vitrified waste canisters were similar - even superior - in durability to spent reactor fuel shipments, which NRC specifically exempted from the double containment requirement

  13. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    Hamilton, L.

    2001-01-01

    This paper covers the design, development and testing of the magazines (cylinders containing cans of plutonium-ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed robotic arm that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102mm) diameter canister throat

  14. Performance Specification Shippinpark Pressurized Water Reactor Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shippingport Spent Fuel Canisters

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders

  15. Encapsulation and handling of spent nuclear fuel for final disposal

    International Nuclear Information System (INIS)

    Loennerberg, B.; Larker, H.; Ageskog, L.

    1983-05-01

    The handling and embedding of those metal parts which arrive to the encapsulation station with the fuel is described. For the encapsulation of fuel two alternatives are presented, both with copper canisters but with filling of lead and copper powder respectively. The sealing method in the first case is electron beam welding, in the second case hot isostatic pressing. This has given the headline of the two chapters describing the methods: Welded copper canister and Pressed copper canister. Chapter 1, Welded copper canister, presents the handling of the fuel when it arrives to the encapsulation station, where it is first placed in a buffer pool. From this pool the fuel is transferred to the encapsulation process and thereby separated from fuel boxes and boron glass rod bundles, which are transported together with the fuel. The encapsulation process comprises charging into a copper canister, filling with molten lead, electron beam welding of the lid and final inspection. The transport to and handling in the final repository are described up to the deposition and sealing in the deposition hole. Handling of fuel residues is treated in one of the sections. In chapter 2, Pressed copper canister, only those parts of the handling, which differ from chapter 1 are described. The hot isostatic pressing process is given in the first sections. The handling includes drying, charging into the canister, filling with copper powder, seal lid application and hot isostatic pressing before the final inspection and deposition. In the third chapter, BWR boxes in concrete moulds, the handling of the metal parts, separated from the fuel, are dealt with. After being lifted from the buffer pool they are inserted in a concrete mould, the mould is filled with concrete, covered with a lid and after hardening transferred to its own repository. The deposition in this repository is described. (author)

  16. Canister Cleaning System Final Design Report - Project A.2.A

    International Nuclear Information System (INIS)

    FARWICK, C.C.

    2000-01-01

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. The Canister Cleaning System (CCS) is part of the Debris Removal Project. The CCS will be installed in the KW Basin and operated during the fuel removal activity. The KW Basin has approximately 3600 canisters that require removal from the basin. The CCS is being designed to ''clean'' empty fuel canisters and lids and package them for disposal to the Environmental Restoration Disposal Facility complex. The system will interface with the KW Basin and be located in the Dummy Elevator Pit

  17. Thermal and mechanical analyses of the spent nuclear fuel disposal canister and its barriers according to the design variable change

    International Nuclear Information System (INIS)

    Kwon, Young Joo

    2006-03-01

    -plastic materials. In this report, additionally, the nonlinear structural analysis of the composite system, i.e., 'canister + buffer' structural system, due to the 10cm sudden rock movement caused by earthquake etc., is conducted to determine the structural safety of the KDC-1 canister model with diameter of D=102cm. Summarizing all the structural analysis results of the canister, the structural safety of the KDC-1 canister model with diameter with D=102cm is secured for the falling accidents happened while handling the canister in the repository and for the 10cm sudden rock movement cause by the earthquake etc. The rigid body dynamic analysis of the canister for the falling accident is carried out using the CAE system, RecurDyn, and the nonlinear structural analysis is performed using the finite element analysis code, NISA

  18. Status of the Multipurpose Canister (MPC) Project

    International Nuclear Information System (INIS)

    Hopper, J.P.

    1996-01-01

    The multipurpose canister (MPC) project represents a cornerstone of the current U.S. Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) program for handling spent nuclear fuel. The MPC and associated support equipment is being designed to accommodate the requirements for not only storage and transport but also for the specified disposal requirements of the mined geologic repository system. The phase 1 design effort for the MPC system, being performed by the Westinghouse team on behalf of TRW Environmental Safety Systems (TESS), the OCRWM management ampersand operating (M ampersand O) contractor, is on schedule for delivery of completed safety analysis reports (SARs) in April 1996

  19. MCC-15: waste/canister accident testing and analysis method

    International Nuclear Information System (INIS)

    Slate, S.C.; Pulsipher, B.A.; Scott, P.A.

    1985-02-01

    The Materials Characterization Center (MCC) at the Pacific Northwest Laboratory (PNL) is developing standard tests to characterize the performance of nuclear waste forms under normal and accident conditions. As part of this effort, the MCC is developing MCC-15, Waste/Canister Accident Testing and Analysis. MCC-15 is used to test canisters containing simulated waste forms to provide data on the effects of accidental impacts on the waste form particle size and on canister integrity. The data is used to support the design of transportation and handling equipment and to demonstrate compliance with repository waste acceptance specifications. This paper reviews the requirements that led to the development of MCC-15, describes the test method itself, and presents some early results from tests on canisters representative of those proposed for the Defense Waste Processing Facility (DWPF). 13 references, 6 figures

  20. Development of remote handling techniques for the HLLW solidification plant

    International Nuclear Information System (INIS)

    Tosha, Yoshitsugu; Iwata, Toshio; Inada, Eiichi; Nagaki, Hiroshi; Yamamoto, Masao

    1982-01-01

    To develop the techniques for the remote maintenance of the equipment in a HLLW (high-level liquid waste) solidification plant, the mock-up test facility (MTF) has been designed and constructed. Before its construction, the specific mock-up equipment was manufactured and tested. The results of the test and the outline of the MTF are described. As the mock-up equipment, a denitrater-concentrator, a ceramic melter and a canister handling equipment were selected. Remote operation was performed according to the maintenance program, and the evaluation of the component was conducted on the easiness of operation, performance, and the suitability to remote handling equipment. As a result of the test, four important elements were identified; they were guides, lifting fixtures, remote handling bolts, and remote pipe connectors. Many improvements of these elements were achieved, and reflected in the design of the MTF. The MTF is a steel-framed and slate-covered building (25 mL x 20 mW x 27 mH) with five storys of test bases. It contains the following four main systems: pretreatment and off-gas treatment system, glass melting system, canister handling system and secondary waste liquid recovery system. Further development of the remote maintenance techniques is expected through the test in the MTF. (Aoki, K.)

  1. Analytical Evaluation of Preliminary Drop Tests Performed to Develop a Robust Design for the Standardized DOE Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    Ware, A.G.; Morton, D.K.; Smith, N.L.; Snow, S.D.; Rahl, T.E.

    1999-01-01

    The Department of Energy (DOE) has developed a design concept for a set of standard canisters for the handling, interim storage, transportation, and disposal in the national repository, of DOE spent nuclear fuel (SNF). The standardized DOE SNF canister has to be capable of handling virtually all of the DOE SNF in a variety of potential storage and transportation systems. It must also be acceptable to the repository, based on current and anticipated future requirements. This expected usage mandates a robust design. The canister design has four unique geometries, with lengths of approximately 10 feet or 15 feet, and an outside nominal diameter of 18 inches or 24 inches. The canister has been developed to withstand a drop from 30 feet onto a rigid (flat) surface, sustaining only minor damage - but no rupture - to the pressure (containment) boundary. The majority of the end drop-induced damage is confined to the skirt and lifting/stiffening ring components, which can be removed if de sired after an accidental drop. A canister, with its skirt and stiffening ring removed after an accidental drop, can continue to be used in service with appropriate operational steps being taken. Features of the design concept have been proven through drop testing and finite element analyses of smaller test specimens. Finite element analyses also validated the canister design for drops onto a rigid (flat) surface for a variety of canister orientations at impact, from vertical to 45 degrees off vertical. Actual 30-foot drop testing has also been performed to verify the final design, though limited to just two full-scale test canister drops. In each case, the analytical models accurately predicted the canister response

  2. TMI-2 fuel canister interface requirements for INEL. Revision 1

    International Nuclear Information System (INIS)

    Wilkins, D.E.; Martz, D.E.; Reno, H.W.

    1984-06-01

    This report focuses on fuel canister interface requirements at INEL which should be incorporated into the canister design criteria. The requirements will ensure compatibility with existing INEL structures and equipment to be used for receipt, unloading, and storage of fuel canisters. INEL can and does receive and store radioactive materials in many different forms, including reactor fuel. INEL requires detailed descriptions of canisters and casks. Therefore, requirements listed represent engineering design features which will simplify the handling and storage operations; consequently, they are not to be viewed as absolute or non-negotiable. However, the core acquisition contract was negotiated with certain storage assumptions which effect costs of storage. Deviations from those assumptions which significantly effect costs would require approval by DOE-Idaho. If some stated requirements are too restrictive, modifications based on sound engineering principles may be negotiated with INEL. 11 figures

  3. Summary of Preliminary Criticality Analysis for Peach Bottom Fuel in the DOE Standardized Spent Nuclear Fuel Canister

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1999-01-01

    The Department of Energy's (DOE's) National Spent Nuclear Fuel Program is developing a standardized set of canisters for DOE spent nuclear fuel (SNF). These canisters will be used for DOE SNF handling, interim storage, transportation, and disposal in the national repository. Several fuels are being examined in conjunction with the DOE SNF canisters. This report summarizes the preliminary criticality safety analysis that addresses general fissile loading limits for Peach Bottom graphite fuel in the DOE SNF canister. The canister is considered both alone and inside the 5-HLW/DOE Long Spent Fuel Co-disposal Waste Package, and in intact and degraded conditions. Results are appropriate for a single DOE SNF canister. Specific facilities, equipment, canister internal structures, and scenarios for handling, storage, and transportation have not yet been defined and are not evaluated in this analysis. The analysis assumes that the DOE SNF canister is designed so that it maintains reasonable geometric integrity. Parameters important to the results are the canister outer diameter, inner diameter, and wall thickness. These parameters are assumed to have nominal dimensions of 45.7-cm (18.0-in.), 43.815-cm (17.25-in), and 0.953-cm (0.375-in.), respectively. Based on the analysis results, the recommended fissile loading for the DOE SNF canister is 13 Peach Bottom fuel elements if no internal steel is present, and 15 Peach Bottom fuel elements if credit is taken for internal steel

  4. Equipment for deployment of canisters with spent nuclear fuel and bentonite buffer in horizontal holes

    International Nuclear Information System (INIS)

    Henttonen, V.; Suikki, M.

    1992-08-01

    The study presents the predesign of equipment for the deployment of canisters in long horizontal holes. The canisters are placed in the centre of the hole and are surrounded by a bentonite buffer. In thE study the canisters are assumed to have a diameter of 1.6 m and a length of 5.9 m, including the hemispherical ends. Their total weight is 60 tonnes. The bentonite buffer after homogenization is 400 mm thick, making a total package diameter of 2.4 m. The deployment system consists of four wagons for handling The canisters and the bentonite blocks. To ensure safe emplacement, every part is installed separately in its final position. This also makes it possible to use small clearances between the canisters and the bentonite blocks and between the blocks and the rock wall. With small clearances, backfilling can be avoided. Another basic design idea is that the wagons are equipped with wheels, which are in direct contact with the rock walls. Thus, rails, which have to be removed as the deployment progresses, are unnecessary. To minimize the time taken for deploying one canister, the wagons are designed so that only three trips from the service area to the deposit area are needed. Due to the radiation in the vicinity of the canisters, the wagons have to be teleoperated

  5. Equipment for deployment of canisters with spent nuclear fuel and bentonite buffer in horisontal holes

    International Nuclear Information System (INIS)

    Henttonen, V.; Suikki, M.

    1992-06-01

    This study presents the predesign of equipment for the deployment of canisters in long horizontal holes. The canisters are placed in the centre of the hole and are surrounded by a bentonite buffer. In this study the canisters are assumed to have a diameter of 1.6 m and a length of 5.9 m, including the hemispherical ends. Their total weight is 60 tonnes. The bentonite buffer after homogenization is 400 mm thick, making a total package diameter of 2.4 m. The deployment system consists of four wagons for handling the canisters and the bentonite blocks. To ensure safe emplacement, every part is installed separately in its final position. This also makes it possible to use small clearances between the canisters and the bentonite blocks and between the blocks and the rock wall. With small clearances, backfilling can be avoided. Another basic design idea is that the wagons are equipped with wheels, which are in direct contact with the rock walls. Thus, rails, which have to be removed as the deployment progresses, are unnecessary. To minimize the time taken for deploying one canister, the wagons are designed so that only three trips from the service area to the deposit area are needed. Due to the radiation in the vicinity of the canisters, the wagons have to be teleoperated. (au)

  6. Comments on 'SKB RD and D-Programme 98'. Focused on canister integrity and corrosion

    International Nuclear Information System (INIS)

    Bowyer, W.H.; Hermansson, H.P.

    1999-04-01

    level of metallurgical support is required. We disagree that suitable full size canisters have already been created and that production technology is available for both canisters at full size. We also disagree that the long time durability is ascertained. i. a. it is easy to find corrosion mechanisms and handling procedures for the canister system that have to be demonstrated not to be harmful. We feel that there are many areas, which need further evaluation but are granted too little space in the programme. This is valid for i.a. effects of non-uniform loading and creep, welding, quality control, effects of radiolysis and corrosion properties. We also consider that more information should be provided on the detail and timing of the development plan for the trial fabrication programme of the canister, the canister test programme, determination of quality standards and development of non destructive testing procedures. We also feel that insufficient emphasis has been placed on the further development on alternatives to high power electron beam welding, non-destructive testing and over all handling. Copper will be exposed for both general and different kinds of localised corrosion in the repository. The complex mechanical, chemical and microbial environment with high pressures varying in time and location and with oxygen, chloride, sulphur and carbon bearing compounds present will cause different types of attacks that are going to prevail during different time periods. The procedures of production, handling and treatment of the canister throughout the processes of filling, transportation and deposition are crucial for its later, corrosion related integrity throughout the storage period in the repository. There is a risk that due to systematically induced faults, many canisters may have later corrosion related problems. The QA system should be developed to cover all steps of canister handling. We feel a large uncertainty when expressions like 'known corrosion processes

  7. Desludging of N Reactor fuel canisters: Analysis, Test, and data requirements

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.

    1996-01-01

    The N Reactor fuel is currently stored in canisters in the K East (KE) and K West (KW) Basins. In KE, the canisters have open tops; in KW, the cans have sealed lids, but are vented to release gases. Corrosion products have formed on exposed uranium metal fuel, on carbon steel basin component surfaces, and on aluminum alloy canister surfaces. Much of the corrosion product is retained on the corroding surfaces; however, large inventories of particulates have been released. Some of the corrosion product particulates form sludge on the basin floors; some particulates are retained within the canisters. The floor sludge inventories are much greater in the KE Basin than in the KW Basin because KE Basin operated longer and its water chemistry was less controlled. Another important factor is the absence of lids on the KE canisters, allowing uranium corrosion products to escape and water-borne species, principally iron oxides, to settle in the canisters. The inventories of corrosion products, including those released as particulates inside the canisters, are only beginning to be characterized for the closed canisters in KW Basin. The dominant species in the KE floor sludge are oxides of aluminum, iron, and uranium. A large fraction of the aluminum and uranium floor sludge particulates may have been released during a major fuel segregation campaign in the 1980s, when fuel was emptied from 4990 canisters. Handling and jarring of the fuel and aluminum canisters seems likely to have released particulates from the heavily corroded surfaces. Four candidate methods are discussed for dealing with canister sludge emerged in the N Reactor fuel path forward: place fuel in multi-canister overpacks (MCOs) without desludging; drill holes in canisters and drain; drill holes in canisters and flush with water; and remove sludge and repackage the fuel

  8. DISPOSABLE CANISTER WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2001-07-30

    The purpose of this calculation is to provide the bases for defining the preclosure limits on radioactive material releases from radioactive waste forms to be received in disposable canisters at the Monitored Geologic Repository (MGR) at Yucca Mountain. Specifically, this calculation will provide the basis for criteria to be included in a forthcoming revision of the Waste Acceptance System Requirements Document (WASRD) that limits releases in terms of non-isotope-specific canister release dose-equivalent source terms. These criteria will be developed for the Department of Energy spent nuclear fuel (DSNF) standard canister, the Multicanister Overpack (MCO), the naval spent fuel canister, the High-Level Waste (HLW) canister, the plutonium can-in-canister, and the large Multipurpose Canister (MPC). The shippers of such canisters will be required to demonstrate that they meet these criteria before the canisters are accepted at the MGR. The Quality Assurance program is applicable to this calculation. The work reported in this document is part of the analysis of DSNF and is performed using procedure AP-3.124, Calculations. The work done for this analysis was evaluated according to procedure QAP-2-0, Control of Activities, which has been superseded by AP-2.21Q, Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities. This evaluation determined that such activities are subject to the requirements of DOE/RW/0333P, Quality Assurance Requirements and Description (DOE 2000). This work is also prepared in accordance with the development plan titled Design Basis Event Analyses on DOE SNF and Plutonium Can-In-Canister Waste Forms (CRWMS M&O 1999a) and Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages (CRWMS M&O 2000d). This calculation contains no electronic data applicable to any electronic data management system.

  9. Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research; Price, Laura L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research

    2016-08-01

    This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth of about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.

  10. Debris Removal Project K West Canister Cleaning System Performance Specification

    International Nuclear Information System (INIS)

    FARWICK, C.C.

    1999-01-01

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. Design criteria for a Canister Cleaning System to be installed in the KW Basin. This documents the requirements for design and installation of the system

  11. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    Hamilton, L.

    2001-01-01

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a jointed arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  12. Plutonium Immobilization Project - Can-In-Canister Hardware Development/Selection

    International Nuclear Information System (INIS)

    Hamilton, L.

    2001-01-01

    The Plutonium Immobilization Project (PIP) is a program funded by the U.S. Department of Energy to develop technology to disposition excess weapons grade plutonium. This program introduces the ''Can-in-Canister'' (CIC) technology that immobilizes the plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding it with high-level waste glass to provide a deterrent to recovery. Since there are significant radiation, contamination and security concerns, the project team is developing unique technologies to remotely perform plutonium immobilization tasks. This paper covers the design, development and testing of the magazines (cylinders containing cans of ceramic pucks) and the rack that holds them in place inside the waste glass canister. Several magazine and rack concepts were evaluated to produce a design that gives the optimal balance between resistance to thermal degradation and facilitation of remote handling. This paper also reviews the effort to develop a join ted arm robot that can remotely load seven magazines into defined locations inside a stationary canister working only through the 4 inch (102 mm) diameter canister throat

  13. Comments on 'SKB RD and D-Programme 98'. Focused on canister integrity and corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom); Hermansson, H.P. [Studsvik Material AB, Nykoeping (Sweden)

    1999-04-01

    SKB and that a higher level of metallurgical support is required. We disagree that suitable full size canisters have already been created and that production technology is available for both canisters at full size. We also disagree that the long time durability is ascertained. i. a. it is easy to find corrosion mechanisms and handling procedures for the canister system that have to be demonstrated not to be harmful. We feel that there are many areas, which need further evaluation but are granted too little space in the programme. This is valid for i.a. effects of non-uniform loading and creep, welding, quality control, effects of radiolysis and corrosion properties. We also consider that more information should be provided on the detail and timing of the development plan for the trial fabrication programme of the canister, the canister test programme, determination of quality standards and development of non destructive testing procedures. We also feel that insufficient emphasis has been placed on the further development on alternatives to high power electron beam welding, non-destructive testing and over all handling. Copper will be exposed for both general and different kinds of localised corrosion in the repository. The complex mechanical, chemical and microbial environment with high pressures varying in time and location and with oxygen, chloride, sulphur and carbon bearing compounds present will cause different types of attacks that are going to prevail during different time periods. The procedures of production, handling and treatment of the canister throughout the processes of filling, transportation and deposition are crucial for its later, corrosion related integrity throughout the storage period in the repository. There is a risk that due to systematically induced faults, many canisters may have later corrosion related problems. The QA system should be developed to cover all steps of canister handling. We feel a large uncertainty when expressions like &apos

  14. Handling of final storage of unreprocessed spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-01-01

    In this report the various facilities incorporated in the proposed handling chain for spent fuel from the power stations to the final repository are discribed. Thus the geological conditions which are essential for a final repository is discussed as well as the buffer and canister materials and how they contribute towards a long-term isolation of the spent fuel. Furthermore one chapter deals with leaching of the deposited fuel in the event that the canister is penetrated as well as the transport mechanisms which determine the migration of the radioactive substances through the buffer material. The dispersal processes in the geosphere and the biosphere are also described together with the transfer mechanisms to the ecological systems as well as radiation doses. Finally a summary is given of the safety analysis of the proposed method for the handling and final storage of the spent fuel. (E.R.)

  15. Multi Canister Overpack (MCO) Handling Machine Trolley Seismic Uplift Constraint Design Loads

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    The MCO Handling Machine (MHM) trolley moves along the top of the MHM bridge girders on east-west oriented rails. To prevent trolley wheel uplift during a seismic event, passive uplift constraints are provided as shown in Figure 1-1. North-south trolley wheel movement is prevented by flanges on the trolley wheels. When the MHM is positioned over a Multi-Canister Overpack (MCO) storage tube, east-west seismic restraints are activated to prevent trolley movement during MCO handling. The active seismic constraints consist of a plunger, which is inserted into slots positioned along the tracks as shown in Figure 1-1. When the MHM trolley is moving between storage tube positions, the active seismic restraints are not engaged. The MHM has been designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis (Reference 3) reported seismic uplift restraint loading and EDERER performed corresponding structural calculations. The ALSTHOM and EDERER calculations were performed with the east-west seismic restraints activated and the uplift restraints experiencing only vertical loading. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the east-west trolley restraints are not engaged. For this case, the associated trolley movements would result in east-west lateral loads on the uplift constraints due to friction, as shown in Figure 1-2. During preliminary evaluations, questions were raised as to whether the EDERER calculations considered the latest ALSTHOM seismic analysis loads (See NCR No. 00-SNFP-0008, Reference 5). Further evaluation led to the conclusion that the EDERER calculations used appropriate vertical loading, but the uplift restraints would need to be re-analyzed and modified to account for lateral loading. The disposition of NCR 00-SNFP-0008 will track the redesign and modification effort. The purpose of this calculation is to establish bounding seismic

  16. DISPOSAL CONTAINER HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    E. F. Loros

    2000-06-30

    The Disposal Container Handling System receives and prepares new disposal containers (DCs) and transfers them to the Assembly Transfer System (ATS) or Canister Transfer System (CTS) for loading. The system receives the loaded DCs from ATS or CTS and welds the lids. When the welds are accepted the DCs are termed waste packages (WPs). The system may stage the WP for later transfer or transfer the WP directly to the Waste Emplacement/Retrieval System. The system can also transfer DCs/WPs to/from the Waste Package Remediation System. The Disposal Container Handling System begins with new DC preparation, which includes installing collars, tilting the DC upright, and outfitting the container for the specific fuel it is to receive. DCs and their lids are staged in the receipt area for transfer to the needed location. When called for, a DC is put on a cart and sent through an airlock into a hot cell. From this point on, all processes are done remotely. The DC transfer operation moves the DC to the ATS or CTS for loading and then receives the DC for welding. The DC welding operation receives loaded DCs directly from the waste handling lines or from interim lag storage for welding of the lids. The welding operation includes mounting the DC on a turntable, removing lid seals, and installing and welding the inner and outer lids. After the weld process and non-destructive examination are successfully completed, the WP is either staged or transferred to a tilting station. At the tilting station, the WP is tilted horizontally onto a cart and the collars removed. The cart is taken through an air lock where the WP is lifted, surveyed, decontaminated if required, and then moved into the Waste Emplacement/Retrieval System. DCs that do not meet the welding non-destructive examination criteria are transferred to the Waste Package Remediation System for weld preparation or removal of the lids. The Disposal Container Handling System is contained within the Waste Handling Building System

  17. Status of Closure Welding Technology of Canister for Transportation and Storage of High Level Radioactive Material and Waste

    International Nuclear Information System (INIS)

    Lee, H. J.; Bang, K. S.; Seo, K. S.; Seo, C. S.

    2010-10-01

    Closure seal welding is one of the key technologies in fabricating and handling the canister which is used for transportation and storage of high radioactive material and waste. Simple industrial fabrication processes are used before filling the radioactive waste into the canister. But, automatic and remote processes should be used after filling the radioactive material because the thickness of canister is not sufficient to shield the high radiation from filled material or waste. In order to simplify the welding process the closure structure of canister and the sealing method are investigated and developed properly. Two types of radioactive materials such as vitrified waste and compacted solid waste are produced in nuclear industry. Because the filling method of two types of waste is different, the shapes of closure and opening of canister and welding method is also different. The canister shape and sealing method should be standardized to standardize the handling facilities and inspection process such as leak test after closure welding. In order to improve the productivity of disposal and compatibility of the canister, the structure and shape of canister should be standardized considering the type of waste. Two kind of welding process such as arc welding and resistance welding are reported and used in the field. In the arc welding process GTAW and PAW are considered proper processes for closure welding. The closure seal welding process can be selected by considering material of canister, thickness of body, productivity, and applicable codes and rules. Because the storage time of nuclear waste in canister is very long, at least 20 years, the long-time corrosion at the weld should be estimated including mechanical integrity. Recently, the mitigation of residual stress around weld region, which causes stress corrosion cracking, is also interesting research issue

  18. Safeguards considerations related to the use of multi-purpose canisters in the Civilian Radioactive Waste Management system

    International Nuclear Information System (INIS)

    Floyd, W.C.

    1995-01-01

    The US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the nation's high-level radioactive waste. Currently, DOE is considering the use of Multi-Purpose Canisters (MPCs) to containerize commercial spent nuclear fuel (SNF) to be handled by the system. To achieve its safeguards and security objectives, OCRWM plans to institute a US Regulatory Commission (NRC)-approved safeguards program. Since the Mined Geologic Disposal System (MGDS) facility and a possible Monitored Retrievable Storage (MRS) facility may be subject to selection for International Atomic Energy Agency (IAEA) inspections, the safeguards program for MPCs may not preclude compliance with the requirements of the IAEA's Annex D, Special Criteria for Difficult-to-Access Fuel Items. MPC safeguards are based on three principles: Verification, Material Control and Accounting, and Physical Protection

  19. Evaluation of Multi Canister Overpack (MCO) Handling Machine Uplift Restraint for a Seismic Event During Repositioning Operations

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    Insertion of the Multi-Canister Overpack (MCO) assemblies into the Canister Storage Building (CSB) storage tubes involves the use of the MCO Handling Machine (MHM). During MCO storage tube insertion operations, inadvertent movement of the MHM is prevented by engaging seismic restraints (''active restraints'') located adjacent to both the bridge and trolley wheels. During MHM repositioning operations, the active restraints are not engaged. When the active seismic restraints are not engaged, the only functioning seismic restraints are non-engageable (''passive'') wheel uplift restraints which function only if the wheel uplift is sufficient to close the nominal 0.5-inch gap at the uplift restraint interface. The MHM was designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis reported seismic loads on the MHM uplift restraints and EDERER performed corresponding structural calculations to demonstrate structural adequacy of the seismic uplift restraint hardware. The ALSTHOM and EDERER calculations were performed for a parked MHM with the active seismic restraints engaged, resulting in uplift restraint loading only in the vertical direction. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the active seismic restraints are not engaged. If a seismic event occurs during MHM repositioning operations, a moving contact at a seismic uplift restraint would introduce a friction load on the restraint in the direction of the movement. These potential horizontal friction loads on the uplift restraints were not included in the existing restraint hardware design calculations. One of the purposes of the current evaluation is to address the structural adequacy of the MHM seismic uplift restraints with the addition of the horizontal friction associated with MHM repositioning movements

  20. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  1. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  2. Design support document for the K Basins Vertical Fuel Handling Tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the design support information for the Vertical Fuel Handling Tools, developed for the removal of N Reactor fuel elements from their storage canisters in the K Basins storage pool and insertion into the Single Fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N Reactor fuel elements is part of the overall characterization effort. These new hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element vertically from the storage canister. Additionally, a Mark II storage canister Lip Seal Protector was designed and fabricated for use during fuel retrieval. This device was required to prevent damage to the canister lip should a fuel element accidentally be dropped during its retrieval, using the handling tools. Supporting documentation for this device is included in this document

  3. Transporting existing VSC-24 canisters using a risk-based licensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R.; Sisley, S.E.; Hopf, J.E. [BNFL Fuel Solutions, Campbell, CA (United States)

    2004-07-01

    The eventual disposition of the spent fuel assemblies loaded in canisters and casks currently designed and licensed only for on-site storage is an industry-wide issue. The canister-specific BUC evaluation approach developed by BFS can be used to license many of these storage canisters and casks for transportation. This will allow these storage canisters and casks to be transported intact to a long-term storage facility or repository, thereby minimizing fuel handling operations, impact on plant operations, and occupational exposure, as well as total infrastructure costs. Application of the proposed canister-specific BUC analysis approach to a preliminary evaluation of the 58 loaded MSBs demonstrates the benefits of this approach. The results of this preliminary evaluation show that a more rigorous analysis based on the known characteristics of the loaded spent fuel, rather than the design-basis fuel parameters, produces significantly lower maximum keff values and can be used to qualify many of the existing loaded storage canisters for transportation. Transportation certification for storage canisters having more reactive spent fuel payloads may require reliance on BUC approaches that are more aggressive than current NRC guidelines allow. Credit may be required for fission- product isotopes that do not have sufficient chemical assay data for benchmarking. In addition, reduced criticality safety margins may be required. For these more-aggressive BUC approaches, a risk assessment should be provided to support the NRC-approval basis. The risk assessment should evaluate the possibility and consequences of an accidental criticality event based upon inaccuracies in the characterization of the spent-fuel payloads.

  4. Transporting existing VSC-24 canisters using a risk-based licensing approach

    International Nuclear Information System (INIS)

    Srinivasan, R.; Sisley, S.E.; Hopf, J.E.

    2004-01-01

    The eventual disposition of the spent fuel assemblies loaded in canisters and casks currently designed and licensed only for on-site storage is an industry-wide issue. The canister-specific BUC evaluation approach developed by BFS can be used to license many of these storage canisters and casks for transportation. This will allow these storage canisters and casks to be transported intact to a long-term storage facility or repository, thereby minimizing fuel handling operations, impact on plant operations, and occupational exposure, as well as total infrastructure costs. Application of the proposed canister-specific BUC analysis approach to a preliminary evaluation of the 58 loaded MSBs demonstrates the benefits of this approach. The results of this preliminary evaluation show that a more rigorous analysis based on the known characteristics of the loaded spent fuel, rather than the design-basis fuel parameters, produces significantly lower maximum keff values and can be used to qualify many of the existing loaded storage canisters for transportation. Transportation certification for storage canisters having more reactive spent fuel payloads may require reliance on BUC approaches that are more aggressive than current NRC guidelines allow. Credit may be required for fission- product isotopes that do not have sufficient chemical assay data for benchmarking. In addition, reduced criticality safety margins may be required. For these more-aggressive BUC approaches, a risk assessment should be provided to support the NRC-approval basis. The risk assessment should evaluate the possibility and consequences of an accidental criticality event based upon inaccuracies in the characterization of the spent-fuel payloads

  5. Choices of canisters and elements for the first fuel shipment from K West Basin

    International Nuclear Information System (INIS)

    Makenas, B.J.

    1995-03-01

    Twenty-two canisters (10 prime and 12 backup candidates) in the K West Basin have been identified as containing fuel which, when examined, will satisfy the Data Quality Objectives for the first fuel shipment from this basin. These were chosen as meeting criteria such as containing relatively long fuel elements, locking bar integrity, and the availability of gas/liquid interface level measurements for associated canister gas traps. Two canisters were identified as having reported broken fuel on initial loading. Usage and interpretation of canister cesium concentration measurements have also been established and levels of maximum and minimum acceptable cesium concentration (from a data optimization point of view) for decapping have been determined although other operational cesium limits may also apply. Criteria for picking particular elements, once a canister is opened, are reviewed in this document. A pristine, a slightly damaged, and a badly damaged element are desired. The latter includes elements with end caps removed but does not include elements which have large amounts of swelling or split cladding that might interfere with handling tools. Finally, operational scenarios have been suggested to aid in the selections of canisters and elements in a way that utilizes anticipated canister gas sampling and leads to a correct and quick choice of elements which will supply the desired data

  6. Test plan for the Sample Transfer Canister system

    International Nuclear Information System (INIS)

    Flanagan, B.D.

    1998-01-01

    The Sample Transfer Canister will be used by the Waste Receiving and Processing Facility (WRAP) for the transport of small quantity liquid samples that meet the definition of a limited quantity radioactive material, and may also be corrosive and/or flammable. These samples will be packaged and shipped in accordance with the US Department of Transportation (DOT) regulation 49 CFR 173.4, ''Exceptions for small quantities.'' The Sample Transfer Canister is of a ''French Can'' design, intended to be mated with a glove box for loading/unloading. Transport will typically take place north of the Wye Barricade between WRAP and the 222-S Laboratory. The Sample Transfer Canister will be shipped in an insulated ice chest, but the ice chest will not be a part of the small quantity package during prototype testing

  7. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tracy T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutz, Frederick C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-29

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN’s CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  8. Numerical analysis of a natural convection cooling system for radioactive canisters storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsal, R.J.; Anwar, S.; Mercada, M.G. [Fluor Daniel Inc., Irvine, CA (United States)

    1995-02-01

    This paper describes the use of numerical analysis for studying natural convection cooling systems for long term storage of heat producing radioactive materials, including special nuclear materials and nuclear waste. The paper explains the major design philosophy, and shares the experiences of numerical modeling. The strategy of storing radioactive material is to immobilize nuclear high-level waste by a vitrification process, convertion it into borosilicate glass, and cast the glass into stainless steel canisters. These canisters are seal welded, decontaminated, inspected, and temporarily stored in an underground vault until they can be sent to a geologic repository for permanent storage. These canisters generate heat by nuclear decay of radioactive isotopes. The function of the storage facility ventilation system is to ensure that the glass centerline temperature does not exceed the glass transition temperature during storage and the vault concrete temperatures remain within the specified limits. A natural convection cooling system was proposed to meet these functions. The effectiveness of a natural convection cooling system is dependent on two major factors that affect air movement through the vault for cooling the canisters: (1) thermal buoyancy forces inside the vault which create a stack effect, and (2) external wind forces, that may assist or oppose airflow through the vault. Several numerical computer models were developed to analyze the thermal and hydraulic regimes in the storage vault. The Site Model is used to simulate the airflow around the building and to analyze different air inlet/outlet devices. The Airflow Model simulates the natural convection, thermal regime, and hydraulic resistance in the vault. The Vault Model, internal vault temperature stratification; and, finally, the Hot Area Model is used for modeling concrete temperatures within the vault.

  9. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  10. Effect of Canister Movement on Water Turbidity

    International Nuclear Information System (INIS)

    TRIMBLE, D.J.

    2000-01-01

    Requirements for evaluating the adherence characteristics of sludge on the fuel stored in the K East Basin and the effect of canister movement on basin water turbidity are documented in Briggs (1996). The results of the sludge adherence testing have been documented (Bergmann 1996). This report documents the results of the canister movement tests. The purpose of the canister movement tests was to characterize water turbidity under controlled canister movements (Briggs 1996). The tests were designed to evaluate methods for minimizing the plumes and controlling water turbidity during fuel movements leading to multi-canister overpack (MCO) loading. It was expected that the test data would provide qualitative visual information for use in the design of the fuel retrieval and water treatment systems. Video recordings of the tests were to be the only information collected

  11. 2D and 3D thermal simulations for storage systems with internal natural convection for canistered spent fuel

    International Nuclear Information System (INIS)

    Yaksh, M.; Wang, C.

    2004-01-01

    In the US, the number of nuclear plants expected to implement on-site dry storage is increasing each year. As reactors burn advanced fuel assemblies to higher burnups, the dry storage systems will be required to accommodate higher heat loads. This is due to the increasing capacity of the systems and the need to store higher burnup fuel with reasonable cooling periods (i.e., five to six years). As the storage systems heat rejection design must be passive, natural convection is an efficient means for rejection of heat from the spent fuel to the surface of the canister boundary. The design presented in this paper is a canistered system that employs conduction, radiation and convection to reject heat from the canister, which is stored in a vertical concrete cask. The canister containing the spent fuel in this design is a right circular stainless steel vessel capable of storing 37 PWR fuel assemblies with a total canister heat load of 40 kW. Accompanying any design effort is the use of a numerical methodology that can accurately predict the peak-clad temperatures of the fuel and the structural components of the system. The main challenge to any analysis employing internal natural convection may be perceived as a practical limitation due to the size of the model. Since canisters are typically cylindrical, a two-dimensional model can be used to represent the canister. The fuel basket structure, which maintains the configuration of the spent fuel, is an array of square tubes, and is non-axisymmetric. Flow up through the fuel region in the basket encounters a complex cross section due to the fuel assembly rod array (up to 17 x 17). The flow region of the heated gas down the outside of the basket in the annulus between the canister shell and the basket assembly (downcomer) is also an irregular shaped area. To confirm that a two-dimensional (2D) modelling methodology is appropriate, a benchmark using results from a thermal test is required. The thermal test focuses on the

  12. Application of plutonium inventory measurement system (PIMS) and temporary canister verification system (TCVS) at RRP

    International Nuclear Information System (INIS)

    Noguchi, Yoshihiko; Nakamura, Hironobu; Adachi, Hideto; Iwamoto, Tomonori

    2004-01-01

    In U-Pu co-denitration area at Rokkasho Reprocessing Plant (RRP), Plutonium Inventory Measurement System (PIMS) and Temporary Canister Verification System (TCVS) are installed to provide efficient and effective safeguards. PIMS measures Pu quantity inside pipes and vessels installed in glove boxes by total neutron counting method. PIMS consists of total 142 neutron detector attached on the wall and top of glove boxes and neutron count rates of each detectors are related to each other to calculate Pu quantity of each process areas. In this moment, inactive calibration using Cf-source was completed. On the other hand, TCVS measures Pu quantity of canisters inside temporary storage by coincidence counting method and it will be installed before the active test. These systems have monitoring function as additional measures. This paper describes specification, performance and measurement principles of PIMS and TCVS. (author)

  13. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  14. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  15. SRL canister impact tests

    International Nuclear Information System (INIS)

    Kelker, J.W. Jr.

    1986-05-01

    The Defense Waste Processing Facility (DWPF) is being constructed at the SRP for the containerization of high-level nuclear waste as a waste form for eventual permanent disposal. The waste will be incorporated in molten glass and solidified in Type 304L stainless steel canisters 2 feet in diameter x 9 feet 10 inches long. The canisters have a minimum wall thickness of 3/8 inch. Over a three-year period, nineteen drop-tests of nine canisters, filled with simulated waste glass, were made in support of the DWPF containerization program. Eight of the canister evaluation tests were of Type 304L stainless steel material and one was of commercially pure titanium. Three different length (9.44, 5.06, and 7.88 inch) nozzle configurations containing final closure upset welds were evaluated for the stainless steel canisters. All impact tests of the stainless steel canisters, which included bottom-, side-, and top-drops, were acceptable. The bottom-drop test of the titanium canister, which contained a final closure upset weld, was acceptable; however, the top-drop resulted in a breaching of the top head where it joins the nozzle. The final closure titanium upset weld was acceptable. The titanium canister wall thickness was 1/4 inch

  16. The concrete canister program

    International Nuclear Information System (INIS)

    Ohta, M.M.

    1978-02-01

    In the spring of 1974, WNRE began development and demonstration of a dry storage concept, called the concrete canister, as a possible alternative to storage of irradiated CANDU fuel in water pools. The canister is a thick-walled concrete monolith containing baskets of fuel in the dry state. The decay heat from the fuel is dissipated to the environment by natural heat transfer. Four canisters were designed and constructed. Two canisters containing electric heaters have been subjected to heat loads of 2.5 times the design, ramp heat-load cycling, and simulated weathering tests. The other two canisters were loaded with irradiated fuel, one containing fuel bundles of uniform decay heat and the other containing bundles of non-uniform decay heat in a non-symmetrical radial and axial array. The collected data were used to verify the analytical tools for prediction of effectiveness of heat transfer and radiation shielding and to verify the design of the basket and canisters. The demonstration canisters have shown that this concept is a viable alternative to water pools for the storage of irradiated CANDU fuel. (author)

  17. K West Basin canister survey

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1998-01-01

    A survey was conducted of the K West Basin to determine the distribution of canister types that contain the irradiated N Reactor fuel. An underwater camera was used to conduct the survey during June 1998, and the results were recorded on videotape. A full row-by-row survey of the entire basin was performed, with the distinction between aluminum and stainless steel Mark 1 canisters made by the presence or absence of steel rings on the canister trunions (aluminum canisters have the steel rings). The results of the survey are presented in tables and figures. Grid maps of the three bays show the canister lid ID number and the canister type in each location that contained fuel. The following abbreviations are used in the grid maps for canister type designation: IA = Mark 1 aluminum, IS = Mark 1 stainless steel, and 2 = Mark 2 stainless steel. An overall summary of the canister distribution survey is presented in Table 1. The total number of canisters found to contain fuel was 3842, with 20% being Mark 1 Al, 25% being Mark 1 SS, and 55% being Mark 2 SS. The aluminum canisters were predominantly located in the East and West bays of the basin

  18. SPENT NUCLEAR FUEL (SNF) PROJECT CANISTER STORAGE BUILDING (CSB) MULTI CANISTER OVERPACK (MCO) SAMPLING SYSTEM VALIDATION (OCRWM)

    International Nuclear Information System (INIS)

    BLACK, D.M.; KLEM, M.J.

    2003-01-01

    Approximately 400 Multi-canister overpacks (MCO) containing spent nuclear fuel are to be interim stored at the Canister Storage Building (CSB). Several MCOs (monitored MCOs) are designated to be gas sampled periodically at the CSB sampling/weld station (Bader 2002a). The monitoring program includes pressure, temperature and gas composition measurements of monitored MCOs during their first two years of interim storage at the CSB. The MCO sample cart (CART-001) is used at the sampling/weld station to measure the monitored MCO gas temperature and pressure, obtain gas samples for laboratory analysis and refill the monitored MCO with high purity helium as needed. The sample cart and support equipment were functionally and operationally tested and validated before sampling of the first monitored MCO (H-036). This report documents the results of validation testing using training MCO (TR-003) at the CSB. Another report (Bader 2002b) documents the sample results from gas sampling of the first monitored MCO (H-036). Validation testing of the MCO gas sampling system showed the equipment and procedure as originally constituted will satisfactorily sample the first monitored MCO. Subsequent system and procedural improvements will provide increased flexibility and reliability for future MCO gas sampling. The physical operation of the sampling equipment during testing provided evidence that theoretical correlation factors for extrapolating MCO gas composition from sample results are unnecessarily conservative. Empirically derived correlation factors showed adequate conservatism and support use of the sample system for ongoing monitored MCO sampling

  19. Shaft shock absorber tests for a spent fuel canister

    International Nuclear Information System (INIS)

    Kukkola, T.; Toermaelae, V.P.

    2005-06-01

    The disposal canister for spent nuclear fuel will be transferred by a lift to the repository, which is 500 m deep in the bedrock. Model tests were carried out with the objective to estimate weather feasible shock absorber can be developed against the design accident case where the canister should survive a free fall to the lift shaft. If the velocity of the canister is not controlled by air drag or by any other deceleration means, the impact velocity may reach ultimate speed of 100m/s. The canister would retain its integrity in impact on water when the bottom pit of the lift well is filled with groundwater. However, the canister would hit the pit bottom with high velocity since the water hardly slows down the canister. The impact to the bottom of the pit should be dampened mechanically. The tests demonstrated that 20 m high filling to the bottom pit of the lift well by Light Expanded Clay Aggregate (LECA), gives fair impact absorption to protect the fuel canister. Presence of ground water is not harmful for impact absorption system provided that the ceramic gravel is not floating too high from the pit bottom. Almost ideal impact absorption conditions are met if the water high level does not exceed two thirds of the height of the gravel. Shaping of the bottom head of the cylindrical canister does not give meaningful advantages to the impact absorption system. The flat nose bottom head of the fuel canister gives adequate deceleration properties. (orig.)

  20. Shaft shock absorber tests for a spent fuel canister

    International Nuclear Information System (INIS)

    Kukkola, T.; Toermaelae, V.P.

    2003-01-01

    The holding canister for spent nuclear fuel will be transferred by a lift to the final disposal tunnels 500m deep in the bedrock. Model tests were carried out with an objective to estimate weather feasible shock absorbing properties can be met in a design accident case where the canister should survive a free fall due to e.g. sabotage. If the velocity of the canister is not controlled by air drag or any other deceleration means, the impact velocity may reach ultimate speed of 100m/s. The canister would retain its integrity when stricken by the surface penetration impact if the bottom pit of the lift well would be filled with groundwater. However the canister would hit the pit bottom with high velocity since the water hardly slows down the canister. The impact to the bottom of the pit should be dampened mechanically. The tests demonstrated that 20m high filling to the bottom pit of the lift well by ceramic gravel, trade mark LECA-sora, gives a fair impact absorption to protect the spent fuel canister. Presence of ground water is not harmful for impact absorption system provided that the ceramic gravel is not floating too high from the pit bottom. Almost ideal impact absorption conditions are met if the water high level does not exceed two thirds of the height of the gravel. Shaping of the bottom head of the cylindrical canister does not give meaningful advantages to the impact absorption system. The flat nose bottom head of the fuel canister gives adequate deceleration properties. (orig.)

  1. Chemical compatibility of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1993-01-01

    The Waste Acceptance Preliminary Specifications (WAPS) require that the contents of the canistered waste form are compatible with one another and the stainless steel canister. The canistered waste form is a closed system comprised of a stainless steel vessel containing waste glass, air, and condensate. This system will experience a radiation field and an elevated temperature due to radionuclide decay. This report discusses possible chemical reactions, radiation interactions, and corrosive reactions within this system both under normal storage conditions and after exposure to temperatures up to the normal glass transition temperature, which for DWPF waste glass will be between 440 and 460 degrees C. Specific conclusions regarding reactions and corrosion are provided. This document is based on the assumption that the period of interim storage prior to packaging at the federal repository may be as long as 50 years

  2. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    International Nuclear Information System (INIS)

    PICKETT, W.W.

    2000-01-01

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure

  3. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  4. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    International Nuclear Information System (INIS)

    KLEM, M.J.

    2000-01-01

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the

  5. Conceptual design for remote handling methods using the HIP process in the Calcine Immobilization Program

    International Nuclear Information System (INIS)

    Berry, S.M.; Cox, C.G.; Hoover, M.A.

    1994-03-01

    This report recommends the remote conceptual design philosophy for calcine immobilization using the hot isostatic press (HIP) process. Areas of remote handling operations discussed in this report include: (1) introducing the process can into the front end of the HIP process, (2) filling and compacting the calcine/frit mixture into the process can, (3) evacuating and sealing the process can, (4) non-destructive testing of the seal on the process can, (5) decontamination of the process can, (6) HIP furnace loading and unloading the process can for the HIPing operation, (7) loading an overpack canister with processed HIP cans, (8) sealing the canister, with associated non-destructive examination (NDE) and decontamination, and (9) handling canisters for interim storage at the Idaho Chemical Processing Plant (ICPP) located on the Idaho National Engineering Laboratory (INEL) site

  6. Handling of multiassembly sealed baskets between reactor storage and a remote handling facility

    International Nuclear Information System (INIS)

    Massey, J.V.; Kessler, J.H.; McSherry, A.J.

    1989-06-01

    The storage of multiple fuel assemblies in sealed (welded) dry storage baskets is gaining increasing use to augment at-reactor fuel storage capacity. Since this increasing use will place a significant number of such baskets on reactor sites, some initial downstream planning for their future handling scenarios for retrieving multi-assembly sealed baskets (MSBs) from onsite storage and transferring and shipping the fuel (and/or the baskets) to a federally operated remote handling facility (RHF). Numerous options or at-reactor and away-from-reactor handling were investigated. Materials handling flowsheets were developed along with conceptual designs for the equipment and tools required to handle and open the MSBs. The handling options were evaluated and compared to a reference case, fuel handling sequence (i.e., fuel assemblies are taken from the fuel pool, shipped to a receiving and handling facility and placed into interim storage). The main parameters analyzed are throughout, radiation dose burden and cost. In addition to evaluating the handling of MSBs, this work also evaluated handling consolidated fuel canisters (CFCs). In summary, the handling of MSBs and CFCs in the store, ship and bury fuel cycle was found to be feasible and, under some conditions, to offer significant benefits in terms of throughput, cost and safety. 14 refs., 20 figs., 24 tabs

  7. Thermal analysis of dry concrete canister storage system for CANDU spent fuel

    International Nuclear Information System (INIS)

    Ryu, Yong Ho

    1992-02-01

    This paper presents the results of a thermal analysis of the concrete canisters for interim dry storage of spent, irradiated Canadian Deuterium Uranium(CANDU) fuel. The canisters are designed to contain 6-year-old fuel safely for periods of 50 years in stainless steel baskets sealed inside a steel-lined concrete shield. In order to assure fuel integrity during the storage, fuel rod temperature shall not exceed the temperature limit. The contents of thermal analysis include the following : 1) Steady state temperature distributions under the conservative ambient temperature and insolation load. 2) Transient temperature distributions under the changes in ambient temperature and insolation load. Accounting for the coupled heat transfer modes of conduction, convection, and radiation, the computer code HEATING5 was used to predict the thermal response of the canister storage system. As HEATING5 does not have the modeling capability to compute radiation heat transfer on a rod-to-rod basis, a separate calculating routine was developed and applied to predict temperature distribution in a fuel bundle. Thermal behavior of the canister is characterized by the large thermal mass of the concrete and radiative heat transfer within the basket. The calculated results for the worst case (steady state with maximum ambient temperature and design insolation load) indicated that the maximum temperature of the 6 year cooled fuel reached to 182.4 .deg. C, slightly above the temperature limit of 180 .deg. C. However,the thermal inertia of the thick concrete wall moderates the internal changes and prevents a rise in fuel temperature in response to ambient changes. The maximum extent of the transient zone was less than 75% of the concrete wall thickness for cyclic insolation changes. When transient nature of ambient temperature and insolation load are considered, the fuel temperature will be a function of the long term ambient temperature as opposed to daily extremes. The worst design

  8. Mechanical integrity of canisters

    International Nuclear Information System (INIS)

    Nilsson, Fred

    1992-12-01

    This document constitutes the final report from 'SKBs reference group for mechanical integrity of canisters for spent nuclear fuel'. A complete list of all reports initiated by the reference group can be found in the summary report in this document. The main task of the reference group has been to advice SKB regarding the choice (ranking of alternatives) of canister type for different types of storage. The choice should be based on requirements of impermeability for a given time period and identification of possible limiting mechanisms. The main conclusions from the work were: From mechanical point of view, low phosphorous oxygen free copper (Cu-OFP) is a preferred canisters material. It exhibits satisfactory ductility both during tensile and creep testing. The residual stresses in the canisters are of such a magnitude that the estimated time to creep rupture with the data obtained for the Cu-OFP material is essentially infinite. Based on the present knowledge of stress corrosion cracking of copper there appears to be a small risk for such to occur in the projected environment. This risk need some further study. Rock shear movements of the size of 10 cm should pose no direct threat to the integrity of the canisters. Considering mechanical integrity, the composite copper/steel canister is an advantageous alternative. The recommendations for further research included continued studies of the creep properties of copper and of stress corrosion cracking. However, the studies should focus more directly on the design and fabrication aspect of the canister

  9. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-03

    A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intended to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and

  10. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2001-05-15

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. Revision 1 documented verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted in section 3

  11. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those

  12. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    International Nuclear Information System (INIS)

    BAZINET, G.D.

    2001-01-01

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. Revision 1 documented verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted in section 3.1.5 and will be

  13. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    International Nuclear Information System (INIS)

    BAZINET, G.D.

    2000-01-01

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted

  14. Friction welded closures of waste canisters

    International Nuclear Information System (INIS)

    Klein, R.F.

    1987-01-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it into a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive-seal weld, the properties and thickness of which must be at least equal to those of the canister material. All studies and tests performed in the work discussed in this paper have the inertia friction welding concept to be highly feasible in this application. This paper describes the decision to investigate the inertia friction welding process, the inertia friction welding process itself, and a proposed equipment design concept. This system would provide a positive, reliable, inspectable, and full-thickness seal weld while utilizing easily maintainable equipment. This high-quality weld can be achieved even in highly contaminated hot cell

  15. Finite element modelling of an evacuated canister for removal of molten radioactive glass

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Deibler, J.E.; Ketner, G.L.

    1994-05-01

    Pacific Northwest Laboratory (PNL) has prepared a preliminary design for the West Valley Demonstration Project evacuated canister system. The function of the evacuated canister is to remove radioactive molten glass from a hot cell melter cavity during a planned melter shutdown. The proposed evacuated canister system consists of an L-shaped 4-inch 304L stainless steel (SS) schedule 40 pipe, sealed at one end with an aluminum plug and attached at the other end to a canister. While the canister is being filled, it is positioned and held above the melter at approximately 15 degree from horizontal by two turntable-mounted cranes. ANSYS finite element analyses were conducted to evaluate the heat transfer from the glass to the canister and establish a maximum canister temperature for material strength evaluation. Finite element structural analyses were conducted to identify areas that required reinforcement for high temperature use. Finite element results will be used to locate strain gauges at high stress locations during prototype testing

  16. Evaluation of a molybdenum assay canister

    International Nuclear Information System (INIS)

    Yoshizumi, T.T.; Keener, S.J.

    1988-01-01

    The performance characteristics of a commercial molybdenum assay canister were evaluated. The geometrical variation of the technetium-99m (/sup 99m/Tc) activity reading was studied as a function of the elution volume for the standard vials. It was found that the /sup 99m/Tc canister activity reading was ∼ 5% lower than that of the standard method. This is due to attenuation by the canister wall. However, the effect of the geometric variation on the clinical dose preparation was found to be insignificant. The molybdenum-99 ( 99 Mo) contamination level was compared by two methods: (1) the commercial canister and (2) the standard assay kit. The 99 Mo contamination measurements with the canister indicated consistently lower readings than those with the standard 99 Mo assay kit. The authors conclude that the canister may be used in the clinical settings. However, the user must be aware of the problems and the limitations associated with this canister

  17. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs) 2 SO 4 , (Na, K, Cs)BF 4 , (Na, K) 2 B 4 O 7 and (Na,K)CrO 4 species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK) 2 SO 4 , (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na 2 BF 4 ) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur

  18. Storage, transportation and disposal system for used nuclear fuel assemblies

    Science.gov (United States)

    Scaglione, John M.; Wagner, John C.

    2017-01-10

    An integrated storage, transportation and disposal system for used fuel assemblies is provided. The system includes a plurality of sealed canisters and a cask sized to receive the sealed canisters in side by side relationship. The plurality of sealed canisters include an internal basket structure to receive a plurality of used fuel assemblies. The internal basket structure includes a plurality of radiation-absorbing panels and a plurality of hemispherical ribs generally perpendicular to the canister sidewall. The sealed canisters are received within the cask for storage and transportation and are removed from the cask for disposal at a designated repository. The system of the present invention allows the handling of sealed canisters separately or collectively, while allowing storage and transportation of high burnup fuel and damaged fuel to the designated repository.

  19. Am/Cm canister temperature evaluation in CIM5

    International Nuclear Information System (INIS)

    Baich, M.A.

    2000-01-01

    To facilitate the evaluation of alternate canister designs, 2 canisters were outfitted with thermocouples at elevations of 1/2, 3 1/2, and 6 1/2 inches from the canister bottom. The canisters were fabricated from two inch diameter schedule 10 and two inch diameter schedule 40 stainless steel pipe. Each canister was filled with approximately 2 kilograms of 49 wt percent lanthanide (Ln) loaded 25SrABS glass during 5 inch Cylindrical Induction Melter (CIM5) runs for TTR Tasks 3.03 and 4.03. Melter temperature, total mass of glass poured, and the glass pour rates were almost identical in both runs. The schedule 40 canister has a slightly smaller ID compared to the schedule 10 canister and therefore filled to a level of 9.5 inches compared to 8.0 inches for the schedule 40 canister. The schedule 40 canister had an empty mass of 1906 grams compared to 919 grams for the schedule 10 canister. The schedule 10 canister was found to have a higher maximum surface temperature by about 50--100 C (depending on height) during the glass pour compared to the schedule 40 canister. The additional thermal mass of the schedule 40 canister accounts for this difference. Once filled with glass, each of the canisters cooled at about the same rate, taking about an hour to cool below a maximum surface temperature of 200 C. No significant deformation of the either of the canisters was visually observed

  20. Performance of CASTORR HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    International Nuclear Information System (INIS)

    Wilmsmeier, Marco; Vossnacke, Andre

    2008-01-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR R HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR R HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR R HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR R HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out as well. GNS long-term CASTOR R

  1. Decontamination of stainless steel canisters that contain high-level waste

    International Nuclear Information System (INIS)

    Bray, L.A.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally 137 Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system [Ce(III)/Ce(IV)] in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels

  2. Monitored retrievable storage and multi-purpose canister robotic applications: Feasibility, dose savings and cost analysis

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1995-01-01

    Robotic automation is examined as a possible alternative to manual spent nuclear fuel, transport cask and Multi-Purpose Canister (MPC) handling at a Monitored Retrievable Storage (MRS) facility, and as an alternative to current MPC closure and welding methods at commercial nuclear reactor sites. Automation of key operational aspects is analyzed to determine equipment requirements, through-put times and equipment costs. The economic analysis approach is described, and economic and radiation dose impacts resulting from this automation are compared to manual handling methods. (author). 5 refs, 5 figs, 3 tabs

  3. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  4. Transport of multiassembly sealed canisters

    International Nuclear Information System (INIS)

    Quinn, R.D.; Lehnert, R.A.; Rosa, J.M.

    1992-01-01

    A significant portion of the commercial spent nuclear fuel in dry storage in the US will be stored in multiassembly sealed canisters before the DOE begins accepting fuel from utilities in 1998. This paper reports that it is desirable from economic and ALARA perspectives to transfer these canisters directly from the plant to the MRS. To this end, it is necessary that the multiassembly sealed canisters, which have been licensed for storage under 10CFR72, be qualified for shipment within a suitable shipping cask under the rules of 10CFR71. Preliminary work performed to date indicates that it is feasible to license a current canister design for transportation, and work is proceeding on obtaining NRC approval

  5. Prototype spent-fuel canister design, analysis, and test

    International Nuclear Information System (INIS)

    Leisher, W.B.; Eakes, R.G.; Duffey, T.A.

    1982-03-01

    Sandia National Laboratories was asked by the US Energy Research and Development Administration (now US Department of Energy) to design the spent fuel shipping cask system for the Clinch River Breeder Reactor Plant (CRBRP). As a part of this task, a canister which holds liquid sodium and the spent fuel assembly was designed, analyzed, and tested. The canister body survived the regulatory Type-B 9.1-m (30-ft) drop test with no apparent leakage. However, the commercially available metal seal used in this design leaked after the tests. This report describes the design approach, analysis, and prototype canister testing. Recommended work for completing the design, when funding is available, is included

  6. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Austin Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Runnels, Joel T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  7. Assessment of a spent fuel disposal canister. Assessment studies for a copper canister with cast steel inner component

    International Nuclear Information System (INIS)

    Bond, A.E.; Hoch, A.R.; Jones, G.D.; Tomczyk, A.J.; Wiggin, R.M.; Worraker, W.J.

    1997-05-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden, is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in vertical storage holes drilled in a series of caverns excavated from the granite bedrock at a depth of about 500 m. Each canister will be surrounded by compacted bentonite clay. In this report, a simple model of the behaviour of the canister subsequent to a first breach in its copper overpack is developed. This model is used to predict: -the ingress of water to the canister (as a function of the size and the shape of the initial defect, the buffer conductivity, the corrosion rate and the pressure inside the canister); -the build-up of corrosion products in the canister (as a function of the available water in the canister, the corrosion rate and the properties of the corrosion products); -the effect of corrosion on the structural integrity of the canister. A number of different scenarios for the location of the breach in the copper overpack are considered

  8. Thermal analysis of heat storage canisters for a solar dynamic, space power system

    Science.gov (United States)

    Wichner, R. P.; Solomon, A. D.; Drake, J. B.; Williams, P. T.

    1988-01-01

    A thermal analysis was performed of a thermal energy storage canister of a type suggested for use in a solar receiver for an orbiting Brayton cycle power system. Energy storage for the eclipse portion of the cycle is provided by the latent heat of a eutectic mixture of LiF and CaF2 contained in the canister. The chief motivation for the study is the prediction of vapor void effects on temperature profiles and the identification of possible differences between ground test data and projected behavior in microgravity. The first phase of this study is based on a two-dimensional, cylindrical coordinates model using an interim procedure for describing void behavor in 1-g and microgravity. The thermal analysis includes the effects of solidification front behavior, conduction in liquid/solid salt and canister materials, void growth and shrinkage, radiant heat transfer across the void, and convection in the melt due to Marangoni-induced flow and, in 1-g, flow due to density gradients. A number of significant differences between 1-g and o-g behavior were found. This resulted from differences in void location relative to the maximum heat flux and a significantly smaller effective conductance in 0-g due to the absence of gravity-induced convection.

  9. Acceptance Test Report for the high pressure water jet system canister cleaning fixture

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, J.R.

    1995-10-25

    This Acceptance Test confirmed the test results and recommendations, documented in WHC-SD-SNF-DTR-001, Rev. 0 Development Test Report for the High Pressure Water Jet System Nozzles, for decontaminating empty fuel canisters in KE-Basin. Optimum water pressure, water flow rate, nozzle size and overall configuration were tested

  10. Acceptance Test Report for the high pressure water jet system canister cleaning fixture

    International Nuclear Information System (INIS)

    Burdin, J.R.

    1995-01-01

    This Acceptance Test confirmed the test results and recommendations, documented in WHC-SD-SNF-DTR-001, Rev. 0 Development Test Report for the High Pressure Water Jet System Nozzles, for decontaminating empty fuel canisters in KE-Basin. Optimum water pressure, water flow rate, nozzle size and overall configuration were tested

  11. Corrosion resistance of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban

    2007-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  12. Corrosion resistance of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban [Corrosion and Metals Research Institute, Sto ckholm (Sweden)

    2007-03-15

    The proposed design for a final repository for spent fuel and other long-lived residues is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast iron insert fitted inside a copper canister. SKB has since several years developed manufacturing processes for the canister components using a network of manufacturers. For the encapsulation process SKB has built the Canister Laboratory to demonstrate and develop the encapsulation technique in full scale. The critical part of the encapsulation of spent fuel is the sealing of the canister which is done by welding the copper lid to the cylindrical part of the canister. Two welding techniques have been developed in parallel, Electron Beam Welding (EBW) and Friction Stir Welding (FSW). During the past two decades, SKB has developed the technology EBW at The Welding Institute (TWI) in Cambridge, UK. The development work at the Canister Laboratory began in 1999. In electron beam welding, a gun is used to generate the electron beam which is aimed at the joint. The beam heats up the material to the melting point allowing a fusion weld to be formed. The gun was developed by TWI and has a unique design for use at reduced pressure. The system has gone through a number of improvements under the last couple of years including implementation of a beam oscillation system. However, during fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities at the new grain boundaries that might pose adverse effects on the corrosion resistance of welds. As a new method for joining, SKB has been developing friction stir welding (FSW) for sealing copper canisters for spent nuclear fuel in cooperation with TWI since 1997. FSW was invented in 1991 at TWI and is a thermo

  13. End-Effector Development for the PIP Puck Handling Robot

    International Nuclear Information System (INIS)

    Fowley, M.D.

    2001-01-01

    It has been decided that excess, weapons-grade plutonium shall be immobilized to prevent nuclear proliferation. The method of immobilization is to encapsulate the plutonium in a ceramic puck, roughly the size of a hockey puck, using a sintering process. This method has been officially identified as the Plutonium Immobilization Process (PIP). A Can-in-Canister storage method will be used to further immobilize the plutonium. The Can-in-Canister method uses the existing design of a Defense Waste Processing Facility (DWPF) canister to house the plutonium pucks. the process begins with several pucks being stacked in a stainless steel can. Several of the stainless steel cans are stacked in a cage-like magazine. Several of the magazines are then placed in a DWPF canister. The DWPF canister is then filled with molten glass containing high-level, radioactive waste from the DWPF vitrification process. The Can-in-Canister method makes reclamation of plutonium from the pucks technically difficult and highly undesirable. The mechanical requirements of the Can-in-Canister process, in conjunction with the amount of time required to immobilize the vast quantities of weapons-grade plutonium, will expose personnel to unnecessarily high levels of radiation if the processes were completed manually, in glove boxes. Therefore, automated equipment is designed into the process to reduce or eliminate personnel exposure. Robots are used whenever the automated handling operations become complicated. There are two such operations in the initial stages of the Can-in-Canister process, which required a six-axis robot. The first operation is a press unloading process. The second operation is a tray transfer process. To successfully accomplish the operational tasks described in the two operations, the end-effector of the robot must be versatile, lightweight, and rugged. As a result of these demands, an extensive development process was undertaken to design the optimum end-effector for these puck-handling

  14. Mechanical design of the storage tubes in the HWVP canister storage building

    International Nuclear Information System (INIS)

    Divona, C.J.; Fages, R.; Janicek, G.P.; Mullally, J.A.

    1993-01-01

    Canisters of high-level waste from the Hanford Waste Vitrification Plant (HWVP) will be stored in an adjacent facility, the Canister Storage Building (CSB). The canisters are stored vertically in an array of tubes within the shielded vault area of the CSB. This paper describes the mechanical design of the storage tubes, the shield floor plugs that confine the waste within the tubes and the impact absorber system used to assure that the canisters are not breached in the event of an accidental drop. Installation and testing of the components is also discussed

  15. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  16. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  17. Potential Indoor Worker Exposure From Handling Area Leakage: Example Event Sequence Frequency Analysis

    International Nuclear Information System (INIS)

    Benke, Roland R.; Adams, George R.

    2008-01-01

    The U.S. Department of Energy (DOE) is currently considering design options for the facilities that will handle spent nuclear fuel and high-level radioactive waste at the potential nuclear waste repository at Yucca Mountain, Nevada. The license application must demonstrate compliance with the performance objectives of 10 CFR Part 63, which include occupational dose limits from 10 CFR Part 20. If DOE submits a license application under 10 CFR Part 63, the U.S. Nuclear Regulatory Commission (NRC) will conduct a risk-informed, performance-based review of the DOE license application and its preclosure safety analysis, in which in-depth technical evaluations are focused on technical areas that are significant to preclosure safety and risk. As part of pre-licensing activities, the Center for Nuclear Waste Regulatory Analyses (CNWRA) developed the Preclosure Safety Analysis Tool software to aid in the regulatory review of a DOE license application and support any independent confirmatory assessments that may be needed. Recent DOE information indicates a primarily canister-based handling approach that includes the wet transfer of individual assemblies where Heating, Ventilation, and Air Conditioning (HVAC) systems may be relied on to provide confinement and limit the spread of any airborne radioactive material from handling operations. Workers may be involved in manual and remote operations in handling transportation casks, canisters, waste packages, or bare spent nuclear fuel assemblies inside facility buildings. As part of routine operations within these facilities, radioactive material may potentially become airborne if canisters are opened or bare fuel assemblies are handled. Leakage of contaminated air from the handling area into adjacent occupied areas, therefore, represents a potential radiological exposure pathway for indoor workers. The objective of this paper is to demonstrate modeling capabilities that can be used by the regulator to estimate frequencies of

  18. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    International Nuclear Information System (INIS)

    Jaminet, J.F.; Kendall, J.S.

    1976-01-01

    Accomplishment of the UF 6 critical cavity experiments, currently in progress, and planned confined flowing UF 6 initial experiments requires development of reliable techniques for handling heated UF 6 throughout extended ranges of temperature, pressure, and flow rate. The development of three laboratory-scale flow systems for handling gaseous UF 6 at temperatures up to 500 K, pressures up to approximately 40 atm, and continuous flow rates up to approximately 50 g/s is presented. A UF 6 handling system fabricated for static critical tests currently being conducted at Los Alamos Scientific Laboratory (LASL) is described. The system was designed to supply UF 6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressures up to 4 atm. A second UF 6 handling system designed to provide a circulating flow of up to 50 g/s of gaseous UF 6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described

  19. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    Werme, L.

    1990-09-01

    A near-field performance evaluation of an Advanced Cold Process Canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. The canister design was originally proposed by TVO. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. Throughout the analysis, present day underground conditions has been assumed to persist during the service life of the canister. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie localized corrosion for the steel or copper canisters can be dismissed as a failure mechanism. The evaluation of the effects of processes outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. This factor will ensure the safety of the concept. (orig.)

  20. Work plan for development of K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1994-01-01

    The purpose of this document is to provide the engineering work plan for the development of handling tools for the removal of N-Reactor fuel elements from their storage canisters in the K-Basins storage pool and insertion into the Single Fuel Element Cans for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element from the storage canister

  1. Design premises for canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    Werme, L.

    1998-09-01

    The purpose of this report is to establish the basic premises for designing canisters for the disposal of spent nuclear fuel, the requirements for canister characteristics, and the design criteria, and to present alternative canister designs that satisfy these premises. The point of departure for canister design has been that the canister must be able to be used for both BWR and PWR fuel

  2. Reliability in sealing of canister for spent nuclear fuel

    International Nuclear Information System (INIS)

    Ronneteg, Ulf; Cederqvist, Lars; Ryden, Haakan; Oeberg, Tomas; Mueller, Christina

    2006-06-01

    obtained with NDT. The predicted maximum discontinuity size in connection with the welding of 4,500 canisters at the present stage of development of the process was conservatively determined to be less than one centimetre. All factors considered, the predicted minimum copper coverage for a 5 cm thick canister is 4 cm. Acceptance criteria for permitted settings in the welding process in a future sealing system are proposed, as is the use of statistical process control based on nondestructive testing as an independent inspection system. Furthermore, principles for handling of process non conformances are presented

  3. Reliability in sealing of canister for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ronneteg, Ulf [Bodycote Materials Testing AB, Nykoeping (Sweden); Cederqvist, Lars; Ryden, Haakan [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Oeberg, Tomas [Tomas Oeberg Konsult AB, Karlskrona (Sweden); Mueller, Christina [Federal Inst. for Materials Research and Testing, Berlin (Germany)

    2006-06-15

    obtained with NDT. The predicted maximum discontinuity size in connection with the welding of 4,500 canisters at the present stage of development of the process was conservatively determined to be less than one centimetre. All factors considered, the predicted minimum copper coverage for a 5 cm thick canister is 4 cm. Acceptance criteria for permitted settings in the welding process in a future sealing system are proposed, as is the use of statistical process control based on nondestructive testing as an independent inspection system. Furthermore, principles for handling of process non conformances are presented.

  4. Design premises for canister for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Werme, L

    1998-09-01

    The purpose of this report is to establish the basic premises for designing canisters for the disposal of spent nuclear fuel, the requirements for canister characteristics, and the design criteria, and to present alternative canister designs that satisfy these premises. The point of departure for canister design has been that the canister must be able to be used for both BWR and PWR fuel 43 refs, 4 figs, 6 tabs

  5. Choices of canisters and elements for the first fuel and canister sludge shipment from K East Basin

    International Nuclear Information System (INIS)

    Makenas, B.J.

    1996-01-01

    The K East Basin contains open-top canisters with up to fourteen N Reactor fuel assemblies distributed between the two barrels of each canister. Each fuel assembly generally consists of inner and outer concentric elements fabricated from uranium metal with zirconium alloy cladding. The canisters also contain varying amounts of accumulated sludge. Retrieval of sample fuel elements and associated sludge for examination is scheduled to occur in the near future. The purpose of this document is to specify particular canisters and elements of interest as candidate sources of fuel and sludge to be shipped to laboratories

  6. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    International Nuclear Information System (INIS)

    D.R. Jackson; G.R. Kiebel

    1999-01-01

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training

  7. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  8. Techniques for freeing deposited canisters. Final report

    International Nuclear Information System (INIS)

    Kalbantner, P.; Sjoeblom, R.

    2000-06-01

    frequency alternating current technique. Little information was found, however, regarding the interaction between high frequency alternating current and bentonite. It could nonetheless be assessed that the technique would be associated with a high degree of complexity as well as a high demand for energy/power. None of the methods studied for determining the position of the canister could be assessed to have any significant potential for an accurate determination of the position of the canister in an opened deposition hole. The conclusion is that the choice of methods for freeing should be focussed on methods which do not require any detailed determination of the position of the canister. A number of generic criteria were identified and used in the subsequent categorization of the different techniques for freeing. After the evaluation the techniques were divided into three groups: Techniques which have a high potential for development of a system for freeing of the canister. Techniques which have a low potential for development of a system for freeing of the canister. Techniques which are not recommended for further investigation. Only one technique was identified in the high potential category, namely the low-pressure hydrodynamic technique. Four techniques were identified to have a low potential (cooling of the buffer, cooling of the canister, water jet technique and application of direct current). The other seven techniques included are not recommended for further studies. Since the comparison had to be based on a simple and generic set of criteria, a further analysis was made in order to determine whether or not the low pressure hydrodynamic method is robust enough in order to remain in the high potential category even when some other relevant issues are considered. This was found to be the case

  9. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  10. System Configuration Management Implementation Procedure for the Canister Storage Building (CSB)

    International Nuclear Information System (INIS)

    GARRISON, R.C.

    2000-01-01

    This document implements the procedure for providing configuration control for the monitoring and control systems associated with the operation of the Canister Storage Building (CSB). It identifies and defines the configuration items in the monitoring and control systems, provides configuration control of these items throughout the system life cycle, provides configuration status accounting, physical protection and control, and verifies the completeness and correctness of the items. It is written to comply with HNF-SD-SNF-CM-001, Spent Nuclear Fuel Configuration Management Plan (Forehand 1998), HNF-PRO-309, Computer Software Quality Assurance Requirements, HNF-PRO-2778, IRM Application Software System Life Cycle Standards, and applicable sections of administrative procedure AP-CM-6-037-00, SNF Project Process Automation Software and Equipment Configuration Management

  11. Multi-purpose canister project overview

    International Nuclear Information System (INIS)

    Williams, J.

    1995-01-01

    In this presentation, the author lists the approved and proposed dry storage technologies. He discusses the compatibility of dry storage systems with waste management systems. Historical aspects, recent history, key features of the program approach, benefits, specifications, acquisition and potential utility use of the multi-purpose canister (MPC) are covered. The MPCs provide standardization in the waste management system and a cost savings to utilities and government. MPC will be developed to the same level as existing dry storage systems

  12. Neutron interrogator assay system for the Idaho Chemical Processing Plant waste canisters and spent fuel: preliminary description and operating procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.; Close, D.A.; Speir, L.G.

    1978-05-01

    A neutron interrogation assay system is being designed for the measurement of waste canisters and spent fuel packages at the new Idaho Chemical Processing Plant to be operated by Allied Chemical Corp. The assay samples consist of both waste canisters from the fluorinel dissolution process and spent fuel assemblies. The assay system is a 252 Cf ''Shuffler'' that employs a cyclic sequence of fast-neutron interrogation with a 252 Cf source followed by delayed-neutron counting to determine the 235 U content

  13. Can-in-canister cold demonstration in DWPF (U)

    International Nuclear Information System (INIS)

    Kuehn, N.H.

    1996-07-01

    The Department of Energy Fissile Materials Disposition Program is evaluating a number of options for disposition of weapons-usable plutonium surplus to national defense needs. One of the immobilization options is the Can-In-Canister approach. In this option small cans of a plutonium glass, which contains a neutron absorber, are placed on a support structure in a large Savannah River Site Defense Waste Processing Facility (DWPF) canister. The top is then welded onto the canister. This canister is filled with High Level Waste (HLW) glass at the DWPF. The HLW glass provides the radiation source for proliferation resistance. These canisters are to be placed in a Federal Repository. To provide information on the technical feasibility of this option prior to the Record of Decision on plutonium disposition, the Department of Energy Fissile Materials Disposition Program funded a demonstration in the DWPF. This demonstration was conducted before the start of radioactive operations. Two test canisters containing cans of surrogate (non- radioactive) plutonium glass were successfully filled with simulated HLW glass at the DWPF using standard pouring procedures. One canister had twenty cans of surrogate plutonium glass. The other had eight cans of surrogate plutonium glass. After the canisters were filled, the contents of the canisters were examined to provide data on the effect of the rack and cans on the filling of the DWPF canister, the effect of the pour on the surrogate plutonium glass and the effect of the rack and cans on the simulated HLW glass. There was no deformation of the support racks during the pour. The simulated HLW glass filled all the regions around the rack and cans and the regions between the cans and the wall of the canister. This report discusses the design of the racks and cans, the modification of the DWPF canisters to accommodate the rack and cans, the conditions during the pours and the results of the post pour analysis

  14. Canister disposition plan for the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.; Payne, C.H.

    1990-01-01

    This report details the disposition of canisters and the canistered waste forms produced during the DWPF Startup Test Program. The six melter campaigns (DWPF Startup Tests FA-13, WP-14, WP-15, WP-16, WP-17, and FA-18) will produce 126 canistered waste forms. In addition, up to 20 additional canistered waste forms may be produced from glass poured during the transition between campaigns. In particular, this canister disposition plan (1) assigns (by alpha-numeric code) a specific canister to each location in the six campaign sequences, (2) describes the method of access for glass sampling on each canistered waste form, (3) describes the nature of the specific tests which will be carried out, (4) details which tests will be carried out on each canistered waste form, (5) provides the sequence of these tests for each canistered waste form, and (6) assigns a storage location for each canistered waste form. The tests are designed to provide evidence, as detailed in the Waste Form Compliance Plan (WCP 1 ), that the DWPF product will comply with the Waste Acceptance Product Specifications (WAPS 2 ). The WAPS must be met before the canistered waste form is accepted by DOE for ultimate disposal at the Federal Repository. The results of these tests will be included in the Waste Form Qualification Report (WQR)

  15. Design basis for the copper/steel canister

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1996-02-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the point of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress which have been made between March 1995 and Feb 1996 and the result of further literature studies. A first trial canister has been produced using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. Similar problems exist with plate used for the fabricated tubular, but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. Welding of lids and bottoms to the copper canister is problematical.There is as yet no satisfactory non destructive test procedures for the parent metal or the welds in the copper canister material, partly due to the coarse grain size which arise in the proposed material processed by the proposed routes. Further studies are also required on crevice corrosion, galvanic attack and stress corrosion cracking in the copper 50 ppm phosphorus alloy. 28 refs

  16. Development of cold sprayed Cu coating for canister

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Kang, Yoon Ha

    2010-01-01

    Cold sprayed Cu deposition was studied for the application of outer part of canister for high level nuclear waste. Five commercially available pure Cu powders were analyzed and sprayed by high pressure cold spray system. Electrochemical corrosion test using potentiostat in 3.5% NaCl solution was conducted as well as microstructural analysis including hardness and oxygen content measurements. Overall evaluation of corrosion performance of cold sprayed Cu deposition is inferior to forged and extruded Cu plates, but some of Cu depositions are comparable to Cu plates. The simulated corrosion test in 200m underground cave is still in progress. The effect of cold spray process parameters was also studied and the results show that the type of nozzle is the most important other than powder feed rate, spray distance, and scan speed. 1/10 scale miniature of canister was manufactured confirming that the production of full scale canister is possible

  17. DESIGN VERIFICATION REPORT SPENT NUCLEAR FUEL (SNF) PROJECT CANISTER STORAGE BUILDING (CSB)

    International Nuclear Information System (INIS)

    BAZINET, G.D.

    2003-01-01

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. Revision 1 documented verification actions that were pending at the time the initial report was prepared. Revision 3 of this document incorporates MCO Cover Cap Assembly welding verification activities. Verification activities for the installed and operational SSCs have been completed

  18. Near-field performance of the advanced cold process canister

    International Nuclear Information System (INIS)

    Werme, L.

    1991-12-01

    A near-field performance evaluation of an advanced cold process canister for spent fuel disposal has been performed jointly by TVO, Finland and SKB, Sweden. The canister consists of a steel canister as a load bearing element, with an outer corrosion shield of copper. In the analysis, as well internal (ie corrosion processes from the inside of the canister) as external processes (mechanical and chemical) have been considered both prior to and after canister breach. The major conclusions for the evaluation are: Internal processes cannot cause the canister breach under foreseen conditions, ie local-iced corrosion for the steel or copper canisters can be dismissed as a failure mechanism; The evaluation of the effects of processed outside the canister indicate that there is no rapid mechanism to endanger the integrity of the canister. Consequently the service life of the canister will be several million years. For completeness also evaluation of post-failure behaviour was carried out. Analyses were focussed on low probability phenomena from faults in canisters. Some items were identified where further research is justified in order to increase knowledge of the phenomena and thus strengthen the confidence of safety margins. However, it can be concluded that the risks of these scenarios can be judged to be acceptable. This is due to the fact that firstly, the probability of occurrence of most of these scenarios can be controlled to a large extent through technical measures. Secondly, these analyses indicated that the consequences would not be severe

  19. Thermal dimensioning of the deep repository. Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature

    International Nuclear Information System (INIS)

    Hoekmark, Harald; Faelth, Billy

    2003-12-01

    The report addresses the problem of the minimum spacing required between neighbouring canisters in the deep repository. That spacing is calculated for a number of assumptions regarding the conditions that govern the temperature in the nearfield and at the surfaces of the canisters. The spacing criterion is that the temperature at the canister surfaces must not exceed 100 deg C .The results are given in the form of nomographic charts, such that it is in principle possible to determine the spacing as soon as site data, i.e. the initial undisturbed rock temperature and the host rock heat transport properties, are available. Results of canister spacing calculations are given for the KBS-3V concept as well as for the KBS-3H concept. A combination of numerical and analytical methods is used for the KBS-3H calculations, while the KBS-3V calculations are purely analytical. Both methods are described in detail. Open gaps are assigned equivalent heat conductivities, calculated such that the conduction across the gaps will include also the heat transferred by radiation. The equivalent heat conductivities are based on the emissivities of the different gap surfaces. For the canister copper surface, the emissivity is determined by back-calculation of temperatures measured in the Prototype experiment at Aespoe HRL. The size of the different gaps and the emissivity values are of great importance for the results and will be investigated further in the future

  20. ATA diagnostic data handling system: an overview

    International Nuclear Information System (INIS)

    Chambers, F.W.; Kallman, J.; McDonald, J.; Slominski, M.

    1984-01-01

    The functions to be performed by the ATA diagnostic data handling system are discussed. The capabilities of the present data acquisition system (System 0) are presented. The goals for the next generation acquisition system (System 1), currently under design, are discussed. Facilities on the Octopus system for data handling are reviewed. Finally, we discuss what has been learned about diagnostics and computer based data handling during the past year

  1. Mitigation of sliding motion of a cask-canister by fluid-structure interaction in an annular region - 59208

    International Nuclear Information System (INIS)

    Ito, Tomohiro; Fujiwara, Yoshihiro; Shintani, Atsuhiko; Nakagaw, Chihiro; Furuta, Kazuhisa

    2012-01-01

    The cask-canister system is a coaxial circular cylindrical structure in which several spent fuels are installed. This system is a free-standing structure thus, it is very important to reduce sliding motion for very large seismic excitations. In this study, we propose a mitigation method for sliding motion. Water is installed in an annular region between a cask and a canister. The equations of motion are derived taking fluid-structure interaction into consideration for nonlinear sliding motion analyses. Based on these equations, mitigation effects of sliding motions are studied analytically. Furthermore, a fundamental test model of a cask-canister system is fabricated and shaking table tests are conducted. From the analytical and test results, sliding motion mitigation effects are investigated. In this paper, the sliding motion of the cask-canister system subjected to a horizontal base excitation is studied and the effectiveness of water filled in the annular region between the cask and the canister is evaluated. This water brings inertia force coupling effect which is proportional to acceleration of the cask and the canister. Therefore, due to this fluid coupling, the cask and canister system couples through 3 types of forces, i.e., spring force, damping force and inertia force of the liquid. Equations of motion for the sliding motion are derived based on the fluid-structure coupling effects formulated by Fritz. Based on these equations of motion, nonlinear sliding motion of the cask-canister system is analyzed and the sliding suppression effects are investigated numerically. Furthermore, a fundamental test model of a cask-canister system is fabricated and the shaking table tests are conducted. From these analytical and test results, the sliding motion suppression effects due to fluid-structure coupling effects are investigated. As a result, it is confirmed that the inertia coupling effects due to water filled in the annular region are relatively large, and the

  2. Sophisticated fuel handling system evolved

    International Nuclear Information System (INIS)

    Ross, D.A.

    1988-01-01

    The control systems at Sellafield fuel handling plant are described. The requirements called for built-in diagnostic features as well as the ability to handle a large sequencing application. Speed was also important; responses better than 50ms were required. The control systems are used to automate operations within each of the three main process caves - two Magnox fuel decanners and an advanced gas-cooled reactor fuel dismantler. The fuel route within the fuel handling plant is illustrated and described. ASPIC (Automated Sequence Package for Industrial Control) which was developed as a controller for the plant processes is described. (U.K.)

  3. Fracturing of simulated high-level waste glass in canisters

    International Nuclear Information System (INIS)

    Peters, R.D.; Slate, S.C.

    1981-09-01

    Waste-glass castings generated from engineering-scale developmental processes at the Pacific Northwest Laboratory are generally found to have significant levels of cracks. The causes and extent of fracturing in full-scale canisters of waste glass as a result of cooling and accidental impact are discussed. Although the effects of cracking on waste-form performance in a repository are not well understood, cracks in waste forms can potentially increase leaching surface area. If cracks are minimized or absent in the waste-glass canisters, the potential for radionuclide release from the canister package can be reduced. Additional work on the effects of cracks on leaching of glass is needed. In addition to investigating the extent of fracturing of glass in waste-glass canisters, methods to reduce cracking by controlling cooling conditions were explored. Overall, the study shows that the extent of glass cracking in full-scale, passively-cooled, continuous melting-produced canisters is strongly dependent on the cooling rate. This observation agrees with results of previously reported Pacific Northwest Laboratory experiments on bench-scale annealed canisters. Thus, the cause of cracking is principally bulk thermal stresses. Fracture damage resulting from shearing at the glass/metal interface also contributes to cracking, more so in stainless steel canisters than in carbon steel canisters. This effect can be reduced or eliminated with a graphite coating applied to the inside of the canister. Thermal fracturing can be controlled by using a fixed amount of insulation for filling and cooling of canisters. In order to maintain production rates, a small amount of additional facility space is needed to accomodate slow-cooling canisters. Alternatively, faster cooling can be achieved using the multi-staged approach. Additional development is needed before this approach can be used on full-scale (60-cm) canisters

  4. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cuta, Judith M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  5. Performance of CASTOR{sup R} HAW Cask Cold Trials for Loading, Transport and Storage of HAW canisters

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeier, Marco; Vossnacke, Andre [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany)

    2008-07-01

    On the basis of reprocessing contracts, concluded between the German Nuclear Utilities (GNUs) and the reprocessing companies in France (AREVA NC) and the UK (Nuclear Decommissioning Authority), GNS has the task to return the resulting residues to Germany. The high active waste (HAW) residuals from nuclear fuel reprocessing are vitrified and filled into steel cans, the HAW canisters. According to reprocessing contracts the equivalent number of HAW canisters to heavy metals delivered has to be returned to the country of origin and stored at an interim storage facility where applicable. The GNS' CASTOR{sup R} HAW casks are designed and licensed to fulfil the requirements for transport and long-term storage of HAW canisters. The new cask type CASTOR{sup R} HAW28M is capable of storing 28 HAW canisters with a maximum thermal power of 56 kW in total. Prior to the first active cask loading at a reprocessing facility it is required to demonstrate all important handling steps with the CASTOR{sup R} HAW28M cask according to a specific and approved sequence plan (MAP). These cold trials have to be carried out at the cask loading plant and at the reception area of an interim storage facility in Gorleben (TBL-G), witnessed by the licensing authorities and their independent experts. At transhipment stations GNS performs internal trials to demonstrate safe handling. A brand-new, empty CASTOR{sup R} HAW28M cask has been shipped from the GNS cask assembly facility in Muelheim to the TBL-G for cold trials. With this cask, GNS has to demonstrate the transhipment of casks at the Dannenberg transfer station from rail to road, transport to and reception at the TBL-G as well as incoming dose rate and contamination measurements and preparation for storage. After removal of all shock absorbers with a cask specific handling frame, tilting operation and assembly of the secondary lid with a pressure sensor, the helium leak tightness and 'Block-mass' tests have to be carried out

  6. The development of a Martian atmospheric Sample collection canister

    Science.gov (United States)

    Kulczycki, E.; Galey, C.; Kennedy, B.; Budney, C.; Bame, D.; Van Schilfgaarde, R.; Aisen, N.; Townsend, J.; Younse, P.; Piacentine, J.

    The collection of an atmospheric sample from Mars would provide significant insight to the understanding of the elemental composition and sub-surface out-gassing rates of noble gases. A team of engineers at the Jet Propulsion Laboratory (JPL), California Institute of Technology have developed an atmospheric sample collection canister for Martian application. The engineering strategy has two basic elements: first, to collect two separately sealed 50 cubic centimeter unpressurized atmospheric samples with minimal sensing and actuation in a self contained pressure vessel; and second, to package this atmospheric sample canister in such a way that it can be easily integrated into the orbiting sample capsule for collection and return to Earth. Sample collection and integrity are demonstrated by emulating the atmospheric collection portion of the Mars Sample Return mission on a compressed timeline. The test results achieved by varying the pressure inside of a thermal vacuum chamber while opening and closing the valve on the sample canister at Mars ambient pressure. A commercial off-the-shelf medical grade micro-valve is utilized in the first iteration of this design to enable rapid testing of the system. The valve has been independently leak tested at JPL to quantify and separate the leak rates associated with the canister. The results are factored in to an overall system design that quantifies mass, power, and sensing requirements for a Martian atmospheric Sample Collection (MASC) canister as outlined in the Mars Sample Return mission profile. Qualitative results include the selection of materials to minimize sample contamination, preliminary science requirements, priorities in sample composition, flight valve selection criteria, a storyboard from sample collection to loading in the orbiting sample capsule, and contributions to maintaining “ Earth” clean exterior surfaces on the orbiting sample capsule.

  7. Design report of the canister for nuclear fuel disposal

    International Nuclear Information System (INIS)

    Raiko, H.; Salo, J.P.

    1996-12-01

    The report provides a summary of the design of the canister for final disposal of nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 11 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (26 refs.)

  8. Heat transfer analysis of the geologic disposal of spent fuel and high-level waste storage canisters

    International Nuclear Information System (INIS)

    Allen, G.K.

    1980-08-01

    Near-field temperatures resulting from the storage of high-level waste canisters and spent unreprocessed fuel assembly canisters in geologic formations were determined. Preliminary design of the repository was modeled for a heat transfer computer code, HEATING5, which used the Crank-Nicolson finite difference method to evaluate transient heat transfer. The heat transfer system was evaluated with several two- and three-dimensional models which transfer heat by a combination of conduction, natural convention, and radiation. Physical properties of the materials in the model were based upon experimental values for the various geologic formations. The effects of canister spacing, fuel age, and use of an overpack were studied for the analysis of the spent fuel canisters; salt, granite, and basalt were considered as the storage media for spent fuel canisters. The effects of canister diameter and use of an overpack were studied for the analysis of the high-level waste canisters; salt was considered as the only storage media for high-level waste canisters. Results of the studies on spent fuel assembly canisters showed that the canisters could be stored in salt formations with a maximum heat loading of 134 kw/acre without exceeding the temperature limits set for salt stability. The use of an overpack had little effect on the peak canister temperatures. When the total heat load per acre decreased, the peak temperatures reached in the geologic formations decreased; however, the time to reach the peak temperatures increased. Results of the studies on high-level waste canisters showed that an increased canister diameter will increase the canister interior temperatures considerably; at a constant areal heat loading, a 381 mm diameter canister reached almost a 50 0 C higher temperature than a 305 mm diameter canister. An overpacked canister caused almost a 30 0 C temperature rise in either case

  9. Interim transfer canister for consolidating nuclear fuel rods

    International Nuclear Information System (INIS)

    Formanek, F.J.

    1987-01-01

    This patent describes a canister for receiving and consolidating a group of uniformly spaced apart nuclear fuel rods, comprising: a rectangular, vertically oriented straight back panel; a pair of oppositely disposed side panels connected perpendicularly to the back panel, having a vertical straight upper portion and an inwardly tapered lower portion; a front panel opposite the back panel and connected to the side panels, having a straight vertical upper portion and inwardly tapered lower portion; whereby the back, side and front panels define a rectangular upper opening at the upper end of the canister and a generally rectangular lower opening at the other end, the lower opening having a cross-sectional area less than one-half that of the upper opening; parallel plate members spanning the canister from the front panel to the back panel, each plate spaced from the other the same uniform distance, the plates extending downwardly into the tapered portion of the canister while remaining spaced above the tapered sidewalls; first base means at the lower end of the canister, removably mounted and having an oblique orientation generally downward from the front panel to the back panel, for guiding the fuel rods to be inserted preferentially toward the lower portion of the back panel; and second base means removably mounted within the canister below first base means and oriented transversely to the longitudinal extent of the canister, for supporting the fuel rods when the first base means is removed from the canister

  10. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  11. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  12. Engineered Barrier System - Mechanical Integrity of KBS-3 Spent Fuel Canisters. Report from a Workshop. Synthesis and extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for a final repository for the geological disposal of spent nuclear fuel in the year 2009. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS). The workshop reported here mainly dealt with the mechanical integrity of KBS-3 spent fuel canisters. This included assessment and review of various loading conditions, structural integrity models and mechanical properties of the copper shell and the cast iron insert. Degradation mechanisms such as stress corrosion cracking and brittle creep fracture were also briefly addressed. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS, the performance confirmation for the EBS, long-term stability of the buffer and the backfill, corrosion properties of copper canisters and the spent fuel dissolution and source term modelling. The goal of ongoing review work in connection of the workshop series is to achieve a comprehensive overview of all aspects of SKB's EBS and spent fuel work prior to the handling of the forthcoming license application. This report aims to summarise the issues discussed at the workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of all the discussions at the workshop, and individual statements made by workshop participants should be regarded as personal opinions rather than SKI viewpoints. Results from the EBS workshops series will be used as one important basis in future review work. This reports includes in addition to the workshop synthesis, questions to SKB identified prior to the workshop, and extended abstracts for introductory presentations

  13. An Assessment of Using Vibrational Compaction of Calcined HLW and LLW in DWPF Canisters

    International Nuclear Information System (INIS)

    Yi, Yun-Bo; Amme, Robert C.; Shayer, Zeev

    2008-01-01

    both of them) of applying the vibrational forces? 2) What is best mode of operation: first fill the canister with calcined waste and then vibrate it and refill it again, or apply vibrational forces during the filling process. By optimum or best we mean less creation of stress/strain forces during the volume reduction vibration process. Lessons learnt: This preliminary study shows that; 1) The maximum stress concentration always occurs in the canister wall, however its location varies and depends on the loading condition, and vibration process. 2) The proposed vibrational process would not cause any damages to the granulated calcined waste. 3) The first natural frequency of the longitudinal vibration of the canister is around 400 Hz, which is far away from the applied vibrational frequencies and from possibility of resonance phenomena that may cause damage to the canister 4) The relationship between the maximum internal stress and the frequency of the applied load is not parabolic. 5) The mechanical properties of the granulated calcined nuclear waste have small impact on the internal stress of the canister. Finally, the calculated data suggested that applying vibrational forces will keep the entire canister whole without any indication of development defects, and will have significant economical benefits of handling HLW and LLW in calcined forms, from waste manipulation, storage and transportation

  14. Topical safety analysis report for the transportation of the NUHOMS reg-sign dry shielded canister

    International Nuclear Information System (INIS)

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS reg-sign) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS reg-sign DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS reg-sign Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport

  15. Criticality safety calculations for the nuclear waste disposal canisters

    International Nuclear Information System (INIS)

    Anttila, M.

    1996-12-01

    The criticality safety of the copper/iron canisters developed for the final disposal of the Finnish spent fuel has been studied with the MCNP4A code based on the Monte Carlo technique and with the fuel assembly burnup programs CASMO-HEX and CASMO-4. Two rather similar types of spent fuel disposal canisters have been studied. One canister type has been designed for hexagonal VVER-440 fuel assemblies used at the Loviisa nuclear power plant (IVO canister) and the other one for square BWR fuel bundles used at the Olkiluoto nuclear power plant (TVO canister). (10 refs.)

  16. Development of Copper Canister through Cold Sprayed Coating Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo; Lee, Jong Youl; Jeong, Jong Tae; Kim, Sung Ki; Cho, Dong Keun

    2007-12-15

    General thickness of a copper canister is 5 cm for a underground disposal application. The lower limit of a thickness is determined by a forging technology. But many experts in this area agrees that the thickness 1 cm is enough at the underground disposal for the life time of 1,000,000 years. Thus new technology is suggested for the making 1 cm thickness copper canister, that is a cold spray coating method(CSC). In this report, the CSC is examined and the technical possibility for making copper canister is measured. The overview of CSC and its characteristics are discussed. Various copper particles for the CSC are analyzed and the formed coating layers are examined to find their porosity and uniformity. A Tafa copper particle and Chang-sung copper particle are selected for making 1 cm thick test specimen. Using the CSC specimens, tensile test and XRD analysis are performed. As a corrosion evaluation, a electrochemical test such as a polarization test is done, together with humid corrosion test and chloric acid immersion test. Through the corrosion tests, it is tried to confirm that the CSC is valuable method for making a copper canister. Consequently, it is confirmed that the CSC method is very usful for making 1 cm thick copper canister. the porosity of CSC layer is very low at 0.3 in case of Tafa copper layer. In corrosion tests, the CSC layers are very stable in active environments. It is hard to say that the difference of processing method but the purity of copper is important for the corrosion rate evaluation. The CSC method is very effective method for making 1 cm thick copper canister, It is hoped that the CSC method is applied in a HLW underground disposal system in the future.

  17. Development of Copper Canister through Cold Sprayed Coating Method

    International Nuclear Information System (INIS)

    Lee, Min Soo; Choi, Jong Won; Choi, Heui Joo; Lee, Jong Youl; Jeong, Jong Tae; Kim, Sung Ki; Cho, Dong Keun

    2007-12-01

    General thickness of a copper canister is 5 cm for a underground disposal application. The lower limit of a thickness is determined by a forging technology. But many experts in this area agrees that the thickness 1 cm is enough at the underground disposal for the life time of 1,000,000 years. Thus new technology is suggested for the making 1 cm thickness copper canister, that is a cold spray coating method(CSC). In this report, the CSC is examined and the technical possibility for making copper canister is measured. The overview of CSC and its characteristics are discussed. Various copper particles for the CSC are analyzed and the formed coating layers are examined to find their porosity and uniformity. A Tafa copper particle and Chang-sung copper particle are selected for making 1 cm thick test specimen. Using the CSC specimens, tensile test and XRD analysis are performed. As a corrosion evaluation, a electrochemical test such as a polarization test is done, together with humid corrosion test and chloric acid immersion test. Through the corrosion tests, it is tried to confirm that the CSC is valuable method for making a copper canister. Consequently, it is confirmed that the CSC method is very usful for making 1 cm thick copper canister. the porosity of CSC layer is very low at 0.3 in case of Tafa copper layer. In corrosion tests, the CSC layers are very stable in active environments. It is hard to say that the difference of processing method but the purity of copper is important for the corrosion rate evaluation. The CSC method is very effective method for making 1 cm thick copper canister, It is hoped that the CSC method is applied in a HLW underground disposal system in the future

  18. Plutonium Immobilization Project - Robotic canister loading

    International Nuclear Information System (INIS)

    Hamilton, R.L.

    2000-01-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF)

  19. Physical properties of encapsulate spent fuel in canisters

    International Nuclear Information System (INIS)

    1999-01-01

    Spent fuel and high-level wastes will be permanently stored in a deep geological repository (AGP). Prior to this, they will be encapsulated in canisters. The present report is dedicated to the study of such canisters under the different physical demands that they may undergo, be those in operating or accident conditions. The physical demands of interest include mechanical demands, both static and dynamic, and thermal demands. Consideration is given to the complete file of the canister, from the time when it is empty and without lid to the final conditions expected in the repository. Thermal analyses of canisters containing spent fuel are often carried out in two dimensions, some times with hypotheses of axial symmetry and some times using a plane transverse section through the centre of the canister. The results obtained in both types of analyses are compared here to those of complete three-dimensional analyses. The latter generate more reliable information about the temperatures that may be experienced by the canister and its contents; they also allow calibrating the errors embodied in the two-dimensional calculations. (Author)

  20. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  1. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    J. D. Bigbee

    2000-01-01

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status

  2. DESIGN VERIFICATION REPORT SPENT NUCLEAR FUEL (SNF) PROJECT CANISTER STORAGE BUILDING (CSB)

    Energy Technology Data Exchange (ETDEWEB)

    BAZINET, G.D.

    2003-02-12

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. Revision 1 documented verification actions that were pending at the time the initial report was prepared. Revision 3 of this document incorporates MCO Cover Cap Assembly welding verification activities. Verification activities for the installed and operational SSCs have been completed.

  3. Status report, canister fabrication

    International Nuclear Information System (INIS)

    Andersson, Claes-Goeran; Eriksson, Peter; Westman, Marika; Emilsson, Goeran

    2004-06-01

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  4. Status report, canister fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Claes-Goeran; Eriksson, Peter; Westman, Marika [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Emilsson, Goeran [CSM Materialteknik AB, Linkoeping (Sweden)

    2004-06-01

    The report gives an account of the development of material and fabrication technology for copper canisters with cast inserts during the period from 2000 until the start of 2004. The engineering design of the canister and the choice of materials in the constituent components described in previous status reports have not been significantly changed. In the reference canister, the thickness of the copper shell is 50 mm. Fabrication of individual components with a thinner copper thickness is done for the purpose of gaining experience and evaluating fabrication and inspection methods for such canisters. As a part of the development of cast inserts, computer simulations of the casting processes and techniques used at the foundries have been performed for the purpose of optimizing the material properties. These properties have been evaluated by extensive tensile testing and metallographic inspection of test material taken from discs cut at different points along the length of the inserts. The testing results exhibit a relatively large spread. Low elongation values in certain tensile test specimens are due to the presence of poorly formed graphite, porosities, slag or other casting defects. It is concluded in the report that it will not be possible to avoid some presence of observed defects in castings of this size. In the deep repository, the inserts will be exposed to compressive loading and the observed defects are not critical for strength. An analysis of the strength of the inserts and formulation of relevant material requirements must be based on a statistical approach with probabilistic calculations. This work has been initiated and will be concluded during 2004. An initial verifying compression test of a canister in an isostatic press has indicated considerable overstrength in the structure. Seamless copper tubes are fabricated by means of three methods: extrusion, pierce and draw processing, and forging. It can be concluded that extrusion tests have revealed a

  5. Design report of the disposal canister for twelve fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1999-05-01

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.) 35 refs.

  6. Design report of the disposal canister for twelve fuel assemblies

    International Nuclear Information System (INIS)

    Raiko, H.; Salo, J.P.

    1999-05-01

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.)

  7. Fuel and canister process report for the safety assessment SR-Can

    International Nuclear Information System (INIS)

    Werme, Lars

    2006-10-01

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The report is written by, and for, experts in the relevant scientific fields. It should though be possible for a generalist in the area of long-term safety assessments of geologic nuclear waste repositories to comprehend the contents of the report. The report is an important part of the documentation of the SR-Can project and an essential reference within the project, providing a scientifically motivated plan for the handling of geosphere processes. It is, furthermore, foreseen that the report will be essential for reviewers scrutinising the handling of geosphere issues in the SR-Can assessment. Several types of fuel will be emplaced in the repository. For the reference case with 40 years of reactor operation, the fuel quantity from boiling water reactors, BWR fuel, is estimated at 7,000 tonnes, while the quantity from pressurized water reactors, PWR fuel, is estimated at about 2,300 tonnes. In addition, 23 tonnes of mixed-oxide fuel (MOX) fuel of German origin from BWR and PWR reactors and 20 tonnes of fuel from the decommissioned heavy water reactor in Aagesta will be disposed of. To allow for future changes in the Swedish nuclear programme, the safety assessment assumes a total of 6,000 canister corresponding to 12,000 tonnes of fuel

  8. Fuel and canister process report for the safety assessment SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Werme, Lars (ed.)

    2006-10-15

    This report documents fuel and canister processes identified as relevant to the long-term safety of a KBS-3 repository. It forms an important part of the reporting of the safety assessment SR-Can. The detailed assessment methodology, including the role of the process report in the assessment, is described in the SR-Can Main report. The report is written by, and for, experts in the relevant scientific fields. It should though be possible for a generalist in the area of long-term safety assessments of geologic nuclear waste repositories to comprehend the contents of the report. The report is an important part of the documentation of the SR-Can project and an essential reference within the project, providing a scientifically motivated plan for the handling of geosphere processes. It is, furthermore, foreseen that the report will be essential for reviewers scrutinising the handling of geosphere issues in the SR-Can assessment. Several types of fuel will be emplaced in the repository. For the reference case with 40 years of reactor operation, the fuel quantity from boiling water reactors, BWR fuel, is estimated at 7,000 tonnes, while the quantity from pressurized water reactors, PWR fuel, is estimated at about 2,300 tonnes. In addition, 23 tonnes of mixed-oxide fuel (MOX) fuel of German origin from BWR and PWR reactors and 20 tonnes of fuel from the decommissioned heavy water reactor in Aagesta will be disposed of. To allow for future changes in the Swedish nuclear programme, the safety assessment assumes a total of 6,000 canister corresponding to 12,000 tonnes of fuel.

  9. Structural Integrity Evaluation for Damaged Fuel Canister of a Research Reactor

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwak, Jinsung; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo

    2016-01-01

    The purpose of this document is to confirm the structural integrity of damaged fuel canister through the numerical simulation. The analysis results of canister including damaged fuel are evaluated with design limits of the ASME Sec. III NF Codes and Standards. The main function of canister is to store and protect the damaged fuel assembly generated from the operation of the research reactor. The canister is classified into safety class NNS (Non-nuclear Safety) and seismic category II. The shape of the canister is designed into commercialized circular tube due to economic benefit and easy manufacturing. The damaged fuel assembly is loaded in a dedicated canister by using special tool and supported by lower block in the canister. Then it is move into the damaged fuel storage rack under safeguards arrangements. The canister is securely supported at guide plate and base plate of rack. The structural integrity evaluation for the canister is performed by using response spectrum analysis. The analysis results show that the stress intensity of the canister under the seismic loads is within the ASME Code limits. Thus, the validity of the present design of the canister has been demonstrated

  10. Structural Integrity Evaluation for Damaged Fuel Canister of a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwak, Jinsung; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this document is to confirm the structural integrity of damaged fuel canister through the numerical simulation. The analysis results of canister including damaged fuel are evaluated with design limits of the ASME Sec. III NF Codes and Standards. The main function of canister is to store and protect the damaged fuel assembly generated from the operation of the research reactor. The canister is classified into safety class NNS (Non-nuclear Safety) and seismic category II. The shape of the canister is designed into commercialized circular tube due to economic benefit and easy manufacturing. The damaged fuel assembly is loaded in a dedicated canister by using special tool and supported by lower block in the canister. Then it is move into the damaged fuel storage rack under safeguards arrangements. The canister is securely supported at guide plate and base plate of rack. The structural integrity evaluation for the canister is performed by using response spectrum analysis. The analysis results show that the stress intensity of the canister under the seismic loads is within the ASME Code limits. Thus, the validity of the present design of the canister has been demonstrated.

  11. Thermo-hydro-mechanical mode of canister retrieval test

    International Nuclear Information System (INIS)

    Zandarin, M.T.; Olivella, S.; Gens', A.; Alonso, E.E.

    2010-01-01

    Document available in extended abstract form only. The Canister Retrieval Tests (CRT) is a full scale in situ experiment performed by SKB at Aespoe Laboratory. The experiment involves placing a canister equipped with electrical heaters inside of a deposition hole bored in Aespoe diorite. The deposition hole is 8.55 metres deep and has a diameter of 1.76 metres. The space between canister and the hole is filled with a MX-80 bentonite buffer. The bentonite buffer was installed in form of blocks and rings of bentonite. At the top of the canister bentonite bricks occupy the volume between the canister top surface and the bottom surface of the plug. Due to the bentonite ring size there are two gaps; once between canister and buffer which was left empty and another one between buffer and rock that was filled with bentonite pellets. The top of the hole was sealed with a retaining plug composed of concrete and a steel plate. The plug was secured against heave caused by the swelling clay with nine cables anchored in the rock. An artificial pressurised saturation system was used because the supply of water from the rock was judged to be insufficient for saturating the buffer in a feasible time. A large number of instruments were installed to monitor the test as follows: - Canister - temperature and strain. - Rock mass - temperature and stress. - Retaining system - force and displacement. - Buffer - temperature, relative humidity, pore pressure and total pressure. After dismantling the tests the final dry density and water content of bentonite and pellets were measured. The comprehensive record of the Thermo-Hydro-Mechanical (THM) processes in the buffer give the possibility to investigate theoretical formulations and models, since the results of THM analyses can be checked against experimental data. As part of the European project THERESA, a 2-D axisymmetric model simulation of CRT bas been carried out. Some of the main objectives of this simulation are the study of the

  12. Canister transfer into repository in shaft alternative

    International Nuclear Information System (INIS)

    Raiko, H.; Kukkola, T.; Autio, J.

    2005-09-01

    In this report, a study of lift transportation of a massive canister for spent nuclear fuel is considered. The canister is transferred from ground level to repository, which lies in the depth of 400 to 500 m in the bedrock. The canister is a massive metal vessel, whose weight is 19 to 29 tons, and which is strongly irradiant (gamma and neutrons), and which contains 1.4 to 2.2 tons of very strongly radio-active material, the activity of the fuel should not be spread in the environment even during postulated accidents. The study observes that the lift alternative is possible to be built and through good design practices and good maintenance procedures its safety, reliability and usability can be kept on such high level that canister transport is estimated to be licensable. (orig.)

  13. Transportation system benefits of early deployment of a 75-ton multipurpose canister system

    International Nuclear Information System (INIS)

    Wankerl, M.W.; Schmid, S.P.

    1995-01-01

    In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper

  14. White Paper: Multi-purpose canister (MPC) for DOE-owned spent nuclear fuel (SNF)

    International Nuclear Information System (INIS)

    Knecht, D.A.

    1994-04-01

    The paper examines the issue, What are the advantages, disadvantages, and other considerations for using the MPC concept as part of the strategy for interim storage and disposal of DOE-owned SNF? The paper is based in part on the results of an evaluation made for the DOE National Spent Fuel Program by the Waste Form Barrier/Canister Team, which is composed of knowledgeable DOE and DOE-contractor personnel. The paper reviews the MPC and DOE SNF status, provides criteria and other considerations applicable to the issue, and presents an evaluation, conclusions, and recommendations. The primary conclusion is that while most of DOE SNF is not currently sufficiently characterized to be sealed into an MPC, the advantages of standardized packages in handling, reduced radiation exposure, and improved human factors should be considered in DOE SNF program planning. While the design of MPCs for DOE SNF are likely premature at this time, the use of canisters should be considered which are consistent with interim storage options and the MPC design envelope

  15. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  16. Canister arrangement for storing radioactive waste

    Science.gov (United States)

    Lorenzo, D.K.; Van Cleve, J.E. Jr.

    1980-04-23

    The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

  17. Results of stainless steel canister corrosion studies and environmental sample investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Laboratories, Albuquerque, NM (United States); Enos, David [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-12-01

    . First, a full-diameter canister mockup, made using materials and techniques identical to those used to make interim storage canisters, was designed and ordered from Ranor Inc., a cask vendor for Areva/TN. The mockup will be delivered prior to the end of FY14, and will be used for evaluating weld residual stresses and degrees of sensitization for typical interim storage canister welds. Following weld characterization, the mockup will be sectioned and provided to participating organizations for corrosion testing purposes. A test plan is being developed for these efforts. In a second task, experimental work was carried out to evaluate crevice corrosion of 304SS in the presence of limited reactants, as would be present on a dustcovered storage canister. This work tests the theory that limited salt loads will limit corrosion penetration over time, and is a continuation of work carried out in FY13. Laser confocal microscopy was utilized to assess the volume and depth of corrosion pits formed during the crevice corrosion tests. Results indicate that for the duration of the current experiments (100 days), no stifling of corrosion occurred due to limitations in the amount of reactants present at three different salt loadings. Finally, work has been carried out this year perfecting an instrument for depositing sea-salts onto metal surfaces for atmospheric corrosion testing purposes. The system uses an X-Y plotter system with a commercial airbrush, and deposition is monitored with a quartz crystal microbalance. The system is capable of depositing very even salt loadings, even at very low total deposition rates.

  18. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    International Nuclear Information System (INIS)

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs

  19. Torus sector handling system

    International Nuclear Information System (INIS)

    Grisham, D.L.

    1981-01-01

    A remote handling system is proposed for moving a torus sector of the accelerator from under the cryostat to a point where it can be handled by a crane and for the reverse process for a new sector. Equipment recommendations are presented, as well as possible alignment schemes. Some general comments about future remote-handling methods and the present capabilities of existing systems will also be included. The specific task to be addressed is the removal and replacement of a 425 to 450 ton torus sector. This requires a horizontal movement of approx. 10 m from a normal operating position to a point where its further transport can be accomplished by more conventional means (crane or floor transporter). The same horizontal movement is required for reinstallation, but a positional tolerance of 2 cm is required to allow reasonable fit-up for the vacuum seal from the radial frames to the torus sector. Since the sectors are not only heavy but rather tall and narrow, the transport system must provide a safe, stable, and repeatable method fo sector movement. This limited study indicates that the LAMPF-based method of transporting torus sectors offers a proven method of moving heavy items. In addition, the present state of the art in remote equipment is adequate for FED maintenance

  20. Uncertainty quantification methodologies development for stress corrosion cracking of canister welds

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    This letter report presents a probabilistic performance assessment model to evaluate the probability of canister failure (through-wall penetration) by SCC. The model first assesses whether environmental conditions for SCC – the presence of an aqueous film – are present at canister weld locations (where tensile stresses are likely to occur) on the canister surface. Geometry-specific storage system thermal models and weather data sets representative of U.S. spent nuclear fuel (SNF) storage sites are implemented to evaluate location-specific canister surface temperature and relative humidity (RH). As the canister cools and aqueous conditions become possible, the occurrence of corrosion is evaluated. Corrosion is modeled as a two-step process: first, pitting is initiated, and the extent and depth of pitting is a function of the chloride surface load and the environmental conditions (temperature and RH). Second, as corrosion penetration increases, the pit eventually transitions to a SCC crack, with crack initiation becoming more likely with increasing pit depth. Once pits convert to cracks, a crack growth model is implemented. The SCC growth model includes rate dependencies on both temperature and crack tip stress intensity factor, and crack growth only occurs in time steps when aqueous conditions are predicted. The model suggests that SCC is likely to occur over potential SNF interim storage intervals; however, this result is based on many modeling assumptions. Sensitivity analyses provide information on the model assumptions and parameter values that have the greatest impact on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.

  1. Canisters for spent-fuel disposal: Design measures against localized corrosion

    International Nuclear Information System (INIS)

    Werme, L.O.; Oversby, V.M.

    2000-01-01

    Common to all high-level-waste disposal concepts is the encapsulation of the waste into metal canisters. The purpose of this waste canister is to isolate the radioactive waste from contact with its surroundings for a desired time period. The design service life ranges from hundreds to thousands of years depending on the disposal concept. After the isolation has been breached, other barriers in the disposal system will delay and attenuate the radioactive releases to acceptable levels. In a deep geologic repository, the waste package will be exposed to chemical attack and, depending on the type of repository, to mechanical stresses. Each of these factors will by itself or in combination inevitably lead to loss of confinement some time in the future. In the design of the Swedish waste canister, the corrosion resistance is provided by an outer shell of pure copper while an insert supplies the mechanical strength cast nodular iron. The close fit between the insert and the copper results in very small tensile stresses in the copper over very limited areas once the repository has been saturated. Measurements of stress corrosion crack growth show that annealed copper cannot maintain sufficiently high stress intensity factors for cracks to grow. For annealed copper, the stress intensity factor was limited to 25 MPa·m 1/2 because of extensive plastic deformation. For cold-worked copper, no crack growth could be observed for stress intensity factors 1/2 . Through the choices of canister material, canister, and repository design, and considering the expected chemical conditions, the risks for localized corrosion can be lowered to an acceptable level, if not eliminated altogether, and the releases from prematurely failed canisters can be kept well within acceptable dose levels

  2. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  3. NAC's Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system: new generation multipurpose spent fuel storage for global application

    International Nuclear Information System (INIS)

    Pennington, C.W.

    2004-01-01

    Multipurpose canister systems (MCS) have been designed, licensed, fabricated, constructed, and loaded over the last decade within the U.S. These systems are characterized as concrete-based storage overpacks containing transportable canisters utilizing redundantly welded closures. Canisters are designed and intended to be transferred into transport packagings for shipment off-site, and canister designs do not preclude their use in waste disposal overpacks. NAC has learned a number of significant lessons in the deployment of its first generation MCS. During this period prior to the next procurement phase, NAC has developed a new generation MCS, incorporating the lessons learned from the first generation while considering the capabilities of the plants populating the next phase. The system is identified as the Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system, and this paper addresses its unique design, fabrication, and operations features. Among these are: a unique developed cell basket design, under patent review, that increases spent fuel capacities and simplifies fabrication while providing high strength and heat removal efficiency: a significantly enhanced canister closure design that improves welding time, personnel dose, and drying performance: a low profile vertical concrete cask design that improves on-site handling and site dose rates, offers tangible threat limitations for beyond-design-basis events, and maintains proven and simple construction/operation features: a simple, proven transfer system that facilitates transfer without excessive dose or handling: a new approach to water removal and canister drying, using a moisture entrainment, gas absorption vacuum (MEGAVAC) system. The paper includes design and licensing status of the MAGNASTOR system, and prototyping development that NAC has performed to date

  4. Sequence trajectory generation for garment handling systems

    OpenAIRE

    Liu, Honghai; Lin, Hua

    2008-01-01

    This paper presents a novel generic approach to the planning strategy of garment handling systems. An assumption is proposed to separate the components of such systems into a component for intelligent gripper techniques and a component for handling planning strategies. Researchers can concentrate on one of the two components first, then merge the two problems together. An algorithm is addressed to generate the trajectory position and a clothes handling sequence of clothes partitions, which ar...

  5. PREPD O and VE remote handling system

    International Nuclear Information System (INIS)

    Theil, T.N.

    1985-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory is designed for volume reduction and packaging of transuranic (TRU) waste. The PREPP opening and verification enclosure (O and VE) remote handling system, within that facility, is designed to provide examination of the contents of various TRU waste storage containers. This remote handling system will provide the means of performing a hazardous operation that is currently performed manually. The TeleRobot to be used in this system is a concept that will incorporate and develop man in the loop operation (manual mode), standardized automatic sequencing of end effector tools, increased payload and reach over currently available computer-controlled robots, and remote handling of a hazardous waste operation. The system is designed within limited space constraints and an operation that was originally planned, and is currently being manually performed at other plants. The PREPP O and VE remote handling system design incorporates advancing technology to improve the working environment in the nuclear field

  6. Copper canisters for nuclear high level waste disposal. Corrosion aspects

    International Nuclear Information System (INIS)

    Werme, L.; Sellin, P.; Kjellbert, N.

    1992-10-01

    A corrosion analysis of a thick-walled copper canister for spent fuel disposal is discussed. The analysis has shown that there are no rapid mechanisms that may lead to canister failure, indicating an anticipated corrosion service life of several millions years. If further analysis of the copper canister is considered, it should be concentrated on identifying and evaluating processes other than corrosion, which may have a potential for leading to canister failure. (au)

  7. Topical safety analysis report for the transportation of the NUHOMS{reg_sign} dry shielded canister. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-08-01

    This Topical Safety Analysis Report (SAR) describes the design and the generic transportation licensing basis for utilizing the NUTECH HORIZONTAL MODULAR STORAGE (NUHOMS{reg_sign}) system dry shielded canister (DSC) containing twenty-four pressurized water reactor (PWR) spent fuel assemblies (SFA) in conjunction with a conceptually designed Transportation Cask. This SAR documents the design qualification of the NUHOMS{reg_sign} DSC as an integral part of a 10CFR71 Fissile Material Class III, Type B(M) Transportation Package. The package consists of the canister and a conceptual transportation cask (NUHOMS{reg_sign} Transportation Cask) with impact limiters. Engineering analysis is performed for the canister to confirm that the existing canister design complies with 10CFR71 transportation requirements. Evaluations and/or analyses is performed for criticality safety, shielding, structural, and thermal performance. Detailed engineering analysis for the transportation cask will be submitted in a future SAR requesting 10CFR71 certification of the complete waste package. Transportation operational considerations describe various operational aspects of the canister/transportation cask system. operational sequences are developed for canister transfer from storage to the transportation cask and interfaces with the cask auxiliary equipment for on- and off-site transport.

  8. Comparative economics for DUCRETE spent fuel storage cask handling, transportation, and capital requirements

    International Nuclear Information System (INIS)

    Powell, F.P.

    1995-04-01

    This report summarizes economic differences between a DUCRETE spent nuclear fuel storage cask and a conventional concrete storage cask in the areas of handling, transportation, and capital requirements. The DUCRETE cask is under evaluation as a new technology that could substantially reduce the overall costs of spent fuel and depleted U disposal. DUCRETE incorporates depleted U in a Portland cement mixture and functions as the cask's primary radiation barrier. The cask system design includes insertion of the US DOE Multi-Purpose Canister inside the DUCRETE cask. The economic comparison is from the time a cask is loaded in a spent fuel pool until it is placed in the repository and includes the utility and overall US system perspectives

  9. Waste canister for storage of nuclear wastes

    Science.gov (United States)

    Duffy, James B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

  10. Process and machinery description of equipment for deposition of canisters in medium-long deposition holes

    International Nuclear Information System (INIS)

    Kalbantner, P.

    2001-08-01

    In this report twelve methods are presented to deposit a canister with spent nuclear fuel in a horizontal hole, several canisters per hole (MLH). These methods are part of the KBS-3 system. They have been developed successively, after an analysis of weak points and strong points in previously described methods. In conformance with the guidelines for Project JADE, a choices of system has been considered during the development work. This is whether canister and bentonite buffer should be deposited 'in parts', i.e. at different occasions, but shortly after each other or 'in a package', i.e. together in a single package. The other choice in the guidelines for the JADE project, whether the canister should be placed in a radiation shield or not during transport in the secondary tunnels, was not relevant to MLR. The basic technical problem is depositing heavy objects, the canister and the buffer components, in an horizontal hole which is approximately 200 m deep. Two methods for depositing of the bentonite barrier and the canisters in separate processes have been studied. For depositing of the bentonite barrier and the canister 'in a package', four alternative techniques have been studied: a metallic sleeve around the package, a loading scoop that is rotated, a fork carriage and rails. The repeated transports in a hole, a consequence of depositing several canisters in the same hole, could lead to the rock being crushed. The mutual impact of machines, load and rock wall has therefore been particularly considered. In several methods, the use of a gangway has been proposed (steel plates or layer of ice). A failure mode and effect analysis has been performed for one of the twelve methods. When comparing with a method to deposit one canister per hole using the same technique, the need for equipment and resources is far larger for this MLH method if incidents should occur during depositing. The development work reported here has not yet yielded a definitive method for placing

  11. Studies of waste-canister compatibility

    International Nuclear Information System (INIS)

    McCoy, H.E.

    1983-01-01

    Compatibility studies were conducted between 7 waste forms and 15 potential canister structural materials. The waste forms were Al-Si and Pb-Sn matrix alloys, FUETAP, glass, Synroc D, and waste particles coated with carbon or carbon plus silicon carbide. The canister materials included carbon steel (bare and with chromium or nickel coatings), copper, Monel, Cu-35% Ni, titanium (grades 2 and 12), several Inconels, aluminum alloy 5052, and two stainless steels. Tests of either 6888 or 8821 h were conducted at 100 and 300 0 C, which bracket the low and high limits expected during storage. Glass and FUETAP evolved sulfur, which reacted preferentially with copper, nickel, and alloys of these metals. The Pb-Sn matrix alloy stuck to all samples and the carbon-coated particles to most samples at 300 0 C, but the extent of chemical reaction was not determined. Testing for 0.5 h at 800 0 C was included because it is representative of a transportation accident and is required of casks containing nuclear materials. During these tests (1) glass and FUETAP evolved sulfur, (2) FUETAP evolved large amounts of gas, (3) Synroc stuck to titanium alloys, (4) glass was molten, and (5) both matrix alloys were molten with considerable chemical interactions with many of the canister samples. If this test condition were imposed on waste canisters, it would be design limiting in many waste storage concepts

  12. NAC's Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system: new generation multipurpose spent fuel storage for global application

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, C.W. [NAC International, Norcross, GA (United States)

    2004-07-01

    Multipurpose canister systems (MCS) have been designed, licensed, fabricated, constructed, and loaded over the last decade within the U.S. These systems are characterized as concrete-based storage overpacks containing transportable canisters utilizing redundantly welded closures. Canisters are designed and intended to be transferred into transport packagings for shipment off-site, and canister designs do not preclude their use in waste disposal overpacks. NAC has learned a number of significant lessons in the deployment of its first generation MCS. During this period prior to the next procurement phase, NAC has developed a new generation MCS, incorporating the lessons learned from the first generation while considering the capabilities of the plants populating the next phase. The system is identified as the Modular, Advanced Generation, Nuclear All-purpose STORage (MAGNASTOR) system, and this paper addresses its unique design, fabrication, and operations features. Among these are: a unique developed cell basket design, under patent review, that increases spent fuel capacities and simplifies fabrication while providing high strength and heat removal efficiency: a significantly enhanced canister closure design that improves welding time, personnel dose, and drying performance: a low profile vertical concrete cask design that improves on-site handling and site dose rates, offers tangible threat limitations for beyond-design-basis events, and maintains proven and simple construction/operation features: a simple, proven transfer system that facilitates transfer without excessive dose or handling: a new approach to water removal and canister drying, using a moisture entrainment, gas absorption vacuum (MEGAVAC) system. The paper includes design and licensing status of the MAGNASTOR system, and prototyping development that NAC has performed to date.

  13. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  14. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  15. Comparison of Tagging Technologies for Safeguards of Copper Canisters for Nuclear Spent Fuel.

    Science.gov (United States)

    Clementi, Chiara; Littmann, François; Capineri, Lorenzo

    2018-03-21

    Several countries are planning to store nuclear spent fuel in long term geological repositories, preserved by copper canisters with an iron insert. This new approach involves many challenging problems and one is to satisfy safeguards requirements: the Continuity of Knowledge (CoK) of the fuel must be kept from the encapsulation plant up to the final repository. To date, no measurement system has been suggested for a unique identification and authentication. Following the list of the most important safeguards, safety and security requirements for copper canisters identification and authentication, a review of conventional tagging technologies and measurement systems for nuclear items is reported in this paper. The aim of this study is to verify to what extent each technology could be potentially used for keeping the CoK of copper canisters. Several tagging methods are briefly described and compared, discussing advantages and disadvantages.

  16. Further assessment studies of the Advanced Cold Process Canister

    International Nuclear Information System (INIS)

    Henshaw, J.; Hoch, A.; Sharland, S.M.

    1990-08-01

    A preliminary assessment of the performance of the Advanced Cold Process Canister (ACPC) was carried out recently by Marsh. The aim of the study presented in this report is to re-examine the validity of some of the assumptions made, and re-evaluate the canister performance as appropriate. Two areas were highlighted in the preliminary study as requiring more detailed quantitative evaluation. 1) Assessment of the risk of internal stress-corrosion cracking induced by irradiation of moist air inside the canister if, under fault conditions, significant water was carried into the canister before sealing. 2) Evaluation of the corrosion behaviour subsequent to first breach of outer container. (author)

  17. Thermal Predictions of the Cooling of Waste Glass Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2014-11-01

    Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to the surrounding air are reported.

  18. Waste canister for storage of nuclear wastes

    International Nuclear Information System (INIS)

    Duffy, J.B.

    1977-01-01

    A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall. 4 claims, 4 figures

  19. End of FY2014 Report - Filter Measurement System for Nuclear Material Storage Canisters (Including Altitude Correction for Filter Pressure Drop)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-24

    Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2 QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .

  20. Development of the DWPF canister temporary shrink-fit seal

    International Nuclear Information System (INIS)

    Kelker, J.W. Jr.

    1986-04-01

    The Defense Waste Processing Facility is being constructed at The Savannah River Plant for the containerization of high-level nuclear waste in a wasteform for eventual permanent disposal. The waste will be incorporated in molten glass and solidified in type 304L stainless steel canisters, 2-feet in diameter x 9-feet 10-inches long, containing a flanged 6-in.-diam pipe fill-nozzle. The canisters have a minimum wall thickness of 3/8 in. Utilizing the heat from the glass filling operation, a shrink-fit seal for a plug in the end of the canister fill nozzle was developed that: will withstand the radioactive environment; will prevent the spread of contamination, and will keep moisture and water from entering the canister during storage and decontamination of the canister by wet-frit blasting to remove smearable and oxide-film fixed radioactive nuclides; is removable and can be replaced by a new oversize plug in the event the seal fails the pressure decay leakage test ( -4 atm cc/sec helium); will keep the final weld closure clean and free of nuclear contamination; will withstand being pressed into the nozzle without exposing external contamination or completely breaking the seal; is reliable; and is easily installed. The seal consists of: a removable sleeve (with a tapered bore) which is shrink-fitted into the nozzle bore during canister fabrication; and a tapered plug which is placed into the sleeved nozzle after the canister is filled with radioactive molten glass. A leak-tight shrink-fit seal is formed between the nozzle, sleeve, and plug upon temperature equilibrium. The temporarily sealed canister is transferred from the Melt cell to the Decon cell, and the surface is decontaminated. Next it is transferred to the Weld/Test cell where the temporary seal is pressed down into the nozzle, revealing a clean cavity where the canister final closure weld is made

  1. Remote-handled transuranic system assessment appendices. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives.

  2. Remote-handled transuranic system assessment appendices. Volume 2

    International Nuclear Information System (INIS)

    1995-11-01

    Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives

  3. Radon measurements with charcoal canisters temperature and humidity considerations

    Directory of Open Access Journals (Sweden)

    Živanović Miloš Z.

    2016-01-01

    Full Text Available Radon testing by using open-faced charcoal canisters is a cheap and fast screening method. Many laboratories perform the sampling and measurements according to the United States Environmental Protection Agency method - EPA 520. According to this method, no corrections for temperature are applied and corrections for humidity are based on canister mass gain. The EPA method is practiced in the Vinča Institute of Nuclear Sciences with recycled canisters. In the course of measurements, it was established that the mass gain of the recycled canisters differs from mass gain measured by Environmental Protection Agency in an active atmosphere. In order to quantify and correct these discrepancies, in the laboratory, canisters were exposed for periods of 3 and 4 days between February 2015 and December 2015. Temperature and humidity were monitored continuously and mass gain measured. No significant correlation between mass gain and temperature was found. Based on Environmental Protection Agency calibration data, functional dependence of mass gain on humidity was determined, yielding Environmental Protection Agency mass gain curves. The results of mass gain measurements of recycled canisters were plotted against these curves and a discrepancy confirmed. After correcting the independent variable in the curve equation and calculating the corrected mass gain for recycled canisters, the agreement between measured mass gain and Environmental Protection Agency mass gain curves was attained. [Projekat Ministarstva nauke Republike Srbije, br. III43009: New Technologies for Monitoring and Protection of Environment from Harmful Chemical Substances and Radiation Impact

  4. 30 CFR 75.817 - Cable handling and support systems.

    Science.gov (United States)

    2010-07-01

    ... High-Voltage Longwalls § 75.817 Cable handling and support systems. Longwall mining equipment must be provided with cable-handling and support systems that are constructed, installed and maintained to minimize... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable handling and support systems. 75.817...

  5. Canisters and nonfuel components at commercial nuclear reactors

    International Nuclear Information System (INIS)

    Gibbard, K.; Disbrow, J.

    1994-01-01

    This paper discusses detailed data on canisters and nonfuel components (NFC) at US commercial nuclear power reactors. A wide variety of NFC have been reported on the Form RW-859, open-quotes Nuclear Fuel Dataclose quotes survey. They may have been integral with an assembly, noncanistered in baskets, destined for disposal as low-level radioactive waste, or stored in canisters. Similarly, data on the family of canistered spent nuclear fuel (SNF) in storage pools was compiled. Approximately 85 percent of the 40,194 pieces of nonfuel assembly (NFA) hardware reported were integral with an assembly. This represents data submitted by 95 of the 107 reactors in 10 generic assembly classes. In addition, a total of 286 canisters have been reported as being in storage pools as of December 31, 1992. However, an additional 264 open baskets were also reported to contain miscellaneous SNF and nonfuel materials, garbage and debris. All of these 286 canisters meet the dimensional envelope requirements specified for disposal for open-quotes standard fuelclose quotes under the Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR 961); most of the baskets do not

  6. Measurements of Fundamental Fluid Physics of SNF Storage Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Condie, Keith Glenn; Mc Creery, Glenn Ernest; McEligot, Donald Marinus

    2001-09-01

    With the University of Idaho, Ohio State University and Clarksean Associates, this research program has the long-term goal to develop reliable predictive techniques for the energy, mass and momentum transfer plus chemical reactions in drying / passivation (surface oxidation) operations in the transfer and storage of spent nuclear fuel (SNF) from wet to dry storage. Such techniques are needed to assist in design of future transfer and storage systems, prediction of the performance of existing and proposed systems and safety (re)evaluation of systems as necessary at later dates. Many fuel element geometries and configurations are accommodated in the storage of spent nuclear fuel. Consequently, there is no one generic fuel element / assembly, storage basket or canister and, therefore, no single generic fuel storage configuration. One can, however, identify generic flow phenomena or processes which may be present during drying or passivation in SNF canisters. The objective of the INEEL tasks was to obtain fundamental measurements of these flow processes in appropriate parameter ranges.

  7. BRIC-100VC Biological Research in Canisters (BRIC)-100VC

    Science.gov (United States)

    Richards, Stephanie E.; Levine, Howard G. (Compiler); Romero, Vergel

    2016-01-01

    The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations of the effects of space flight on small specimens. The BRIC 100 mm petri dish vacuum containment unit (BRIC-100VC) has supported Dugesia japonica (flatworm) within spring under normal atmospheric conditions for 29 days in space and Hemerocallis lilioasphodelus L. (daylily) somatic embryo development within a 5% CO2 gaseous environment for 4.5 months in space. BRIC-100VC is a completely sealed, anodized-aluminum cylinder (Fig. 1) providing containment and structural support of the experimental specimens. The top and bottom lids of the canister include rapid disconnect valves for filling the canister with selected gases. These specialized valves allow for specific atmospheric containment within the canister, providing a gaseous environment defined by the investigator. Additionally, the top lid has been designed with a toggle latch and O-ring assembly allowing for prompt sealing and removal of the lid. The outside dimensions of the BRIC-100VC canisters are 16.0 cm (height) x 11.4 cm (outside diameter). The lower portion of the canister has been equipped with sufficient storage space for passive temperature and relative humidity data loggers. The BRIC- 100VC canister has been optimized to accommodate standard 100 mm laboratory petri dishes or 50 mL conical tubes. Depending on storage orientation, up to 6 or 9 canisters have been flown within an International Space Station (ISS) stowage locker.

  8. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  9. An assessment of KW Basin radionuclide activity when opening SNF canisters

    International Nuclear Information System (INIS)

    Bergmann, D.W.; Mollerus, F.J.; Wray, J.L.

    1995-01-01

    N Reactor spent fuel is being stored in sealed canisters in the KW Basin. Some of the canisters contain damaged fuel elements. There is the potential for release of Cs 137, Kr 85, H3, and other fission products and transuranics (TRUs) when canisters are opened. Canister opening is required to select and transfer fuel elements to the 300 Area for examination as part of the Spent Nuclear Fuel (SNF) Characterization program. This report estimates the amount of radionuclides that can be released from Mark II spent nuclear fuel (SNF) canisters in KW Basin when canisters are opened for SNF fuel sampling as part of the SNF Characterization Program. The report also assesses the dose consequences of the releases and steps that can be taken to reduce the impacts of these releases

  10. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  11. Feature test report for the Small Debris Collection and Packaging System

    International Nuclear Information System (INIS)

    Brisbin, S.A.

    1995-01-01

    The Spent Nuclear Fuel Equipment Engineering group performed feature testing of the Small Debris Collection and Packaging System (SDCPS) in the 305 Cold Test Facility from January 30, 1995, to February 1, 1995. Feature testing of the Small Debris Collection and Packaging System (SDCPS) was performed for the following reasons: To assess the feasibility of using ''drop-out'' vessels to collect small debris (<2.5 cm) in MK-II fuel canisters while transferring sludge to the Weasel Pit. To evaluate system performance under conditions similar to those in the K-Basins (e.g. submerged under 4.9 meters of water and operated with long handled tools) while using a surrogate sludge mixed with debris. To determine if canister weight could be used to predict the volume of sludge and/or debris contained within the canisters during system operation

  12. Materials for Consideration in Standardized Canister Design Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R.; Ilgen, Anastasia Gennadyevna; Enos, David George; Teich-McGoldrick, Stephanie; Hardin, Ernest

    2014-10-01

    This document identifies materials and material mitigation processes that might be used in new designs for standardized canisters for storage, transportation, and disposal of spent nuclear fuel. It also addresses potential corrosion issues with existing dual-purpose canisters (DPCs) that could be addressed in new canister designs. The major potential corrosion risk during storage is stress corrosion cracking of the weld regions on the 304 SS/316 SS canister shell due to deliquescence of chloride salts on the surface. Two approaches are proposed to alleviate this potential risk. First, the existing canister materials (304 and 316 SS) could be used, but the welds mitigated to relieve residual stresses and/or sensitization. Alternatively, more corrosion-resistant steels such as super-austenitic or duplex stainless steels, could be used. Experimental testing is needed to verify that these alternatives would successfully reduce the risk of stress corrosion cracking during fuel storage. For disposal in a geologic repository, the canister will be enclosed in a corrosion-resistant or corrosion-allowance overpack that will provide barrier capability and mechanical strength. The canister shell will no longer have a barrier function and its containment integrity can be ignored. The basket and neutron absorbers within the canister have the important role of limiting the possibility of post-closure criticality. The time period for corrosion is much longer in the post-closure period, and one major unanswered question is whether the basket materials will corrode slowly enough to maintain structural integrity for at least 10,000 years. Whereas there is extensive literature on stainless steels, this evaluation recommends testing of 304 and 316 SS, and more corrosion-resistant steels such as super-austenitic, duplex, and super-duplex stainless steels, at repository-relevant physical and chemical conditions. Both general and localized corrosion testing methods would be used to

  13. Proposal of a SiC disposal canister for very deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Lee, Minsoo; Lee, Jong-Youl; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper authors proposed a silicon carbide, SiC, disposal canister for the DBD concept in Korea. A. Kerber et al. first proposed the SiC canister for a geological disposal of HLW, CANDU or HTR spent nuclear fuels. SiC has some drawbacks in welding or manufacturing a large canister. Thus, we designed a double layered disposal canister consisting of a stainless steel outer layer and a SiC inner layer. KAERI has been interested in developing a very deep borehole disposal (DBD) of HLW generated from pyroprocessing of PWR spent nuclear fuel and supported the relevant R and D with very limited its own budget. KAERI team reviewed the DBD concept proposed by Sandia National Laboratories (SNL) and developed its own concept. The SNL concept was based on the steel disposal canister. The authors developed a new technology called cold spray coating method to manufacture a copper-cast iron disposal canister for a geological disposal of high level waste in Korea. With this method, 8 mm thin copper canister with 400 mm in diameter and 1200 mm in height was made. In general, they do not give any credit on the lifetime of a disposal canister in DBD concept unlike the geological disposal. In such case, the expensive copper canister should be replaced with another one. We designed a disposal canister using SiC for DBD. According to an experience in manufacturing a small size canister, the fabrication of a large-size one is a challenge. Also, welding of SiC canister is not easy. Several pathways are being paved to overcome it.

  14. Test plan for K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use

  15. Effects of stabilizers on the heat transfer characteristics of a nuclear waste canister

    International Nuclear Information System (INIS)

    Vafai, K.; Ettefagh, J.

    1986-07-01

    This report summarizes the feasibility and the effectiveness of using stabilizers (internal metal structural components) to augment the heat transfer characteristics of a nuclear waste canister. The problem was modeled as a transient two-dimensional heat transfer in two physical domains - the stabilizer and the wedge (a 30-degree-angle canister segment), which includes the heat-producing spent-fuel rods. This problem is solved by a simultaneous and interrelated numerical investigation of the two domains in cartesian and polar coordinate systems. The numerical investigations were performed for three cases. In the first case, conduction was assumed to be the dominant mechanism for heat transfer. The second case assumed that radiation was the dominant mechanism, and in the third case both radiation and conduction were considered as mechanisms of heat transfer. The results show that for typical conditions in a waste package design, the stabilizers are quite effective in reducing the overall temperature in a waste canister. Furthermore, the results show that increasing the stabilizer thickness over the thickness specified in the present design has a negligible effect on the temperature distribution in the canister. Finally, the presence of the stabilizers was found to shift the location of the peak temperature areas in the waste canister

  16. Mechanical Integrity of Canisters Using a Fracture Mechanics Approach

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Tomofumi; Guoxiang Zhang; Lanru Jing [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering

    2006-07-15

    This report presents the methods and results of a research project about numerical modeling of mechanical integrity of cast-iron canisters for the final disposal of spent nuclear fuel in Sweden, using combined boundary element (BEM) and finite element (FEM) methods. The objectives of the project are: 1) to investigate the possibility of initiation and growth of fractures in the cast-iron canisters under the mechanical loading conditions defined in the premises of canister design by Swedish Nuclear Fuel and Waste Management Co. (SKB); 2) to investigate the maximum bearing capacity of the cast iron canisters under uniformly distributed and gradually increasing boundary pressure until plastic failure. Achievement of the two objectives may provide some quantitative evidence for the mechanical integrity and overall safety of the cast-iron canisters that are needed for the final safety assessment of the geological repository of the radioactive waste repository in Sweden. The geometrical dimension, distribution and magnitudes of loads and Material properties of the canisters and possible fractures were provided by the latest investigations of SKB. The results of the BEM simulations, using the commercial code BEASY, indicate that under the currently defined loading conditions the possibility of initiation of new fractures or growth of existing fractures (defects) are very small, due to the reasons that: 1) the canisters are under mainly compressive stresses; 2) the induced tensile stress regions are too small in both dimension and magnitude to create new fractures or to induce growth of existing fractures, besides the fact that the toughness of the fractures in the cast iron canisters are much higher that the stress intensity factors in the fracture tips. The results of the FEM simulation show a approximately 75 MPa maximum pressure beyond which plastic collapse of the cast-iron canisters may occur, using an elastoplastic Material model. This figure is smaller compared

  17. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  18. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  19. Evaluation of canister weld flaw depth for concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Chul; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Jung, Sung Hun; Lee, Young Oh; Jung, In Su [Korea Nuclear Engineering and Service Corp, Daejeon (Korea, Republic of)

    2017-03-15

    Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radioactive materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B and PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

  20. Fracture toughness properties of candidate canister materials for spent fuel storage by concrete cask

    International Nuclear Information System (INIS)

    Arai, Taku; Mayuzumi, Masami; Libin, Niu; Takaku, Hiroshi

    2005-01-01

    It is very significant to clarify the fracture toughness properties of candidate canister materials to ensure the structural integrity against the accidents during handling in the storage facility. Fracture toughness tests on the CT specimens cut from base metal, heat affected zone (HAZ) and weld metal in the 2 types of weld joints made by candidate canister materials (SUS329J4L duplex stainless steel and YUS270 super stainless steel) were conducted under various test temperature between 233K and 473K. Stable ductile crack extensions were observed in all of the specimens. The fracture toughness J Q of the base metal and the HAZ of SUS329L4L showed the smallest value at 233K, and increased with temperature, then reached to the largest value at 298K. At the higher temperature, the value of J Q decreased slightly with temperature. While, the value of J Q in the weld metal increased with temperature. The value of J Q of YUS270 increased with temperature. The values of J Q for weld metal in both of the materials were not greater than those in base metal and HAZ at each test temperature. The values of J Q in weld metal of both materials at 213K and 473K were greater than applied J derived from postulated semi-elliptical surface flaw and maximum allowable stress in JSME design coed. This result suggested that these materials have enough toughness for use as the canister material. (author)

  1. Thermohydraulic analysis of BWR and PWR spent fuel assemblies contained within square canisters

    International Nuclear Information System (INIS)

    Wiles, L.E.; McCann, R.A.

    1981-09-01

    This report presents the results of several thermohydraulic simulations of spent fuel assembly/canister configurations performed in support of a program investigating the feasibility of storing spent nuclear fuel assemblies in canisters that would be stored in an air environment. Eleven thermohydraulic simulations were performed. Five simulations were performed using a single BWR fuel assembly/canister design. The various cases were defined by changing the canister spacing and the heat generation rate of the fuel assembly. For each simulation a steady-state thermohydraulic solution was achieved for the region inside the canister. Similarly, six simulations were performed for a single PWR fuel assembly/canister design. The square fuel rod arrays were contained in square canisters which would permit closer packing of the canisters in a storage facility. However, closer packing of the canisters would result in higher fuel temperatures which would possibly have an adverse impact on fuel integrity. Thus, the most important aspect of the analysis was to define the peak fuel assembly temperatures for each case. These results are presented along with various temperature profiles, heat flux distributions, and air velocity profiles within the canister. 48 figures, 4 tables

  2. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1986-09-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report

  3. QA/QC For Radon Concentration Measurement With Charcoal Canister

    International Nuclear Information System (INIS)

    Pantelic, G.; Zivanovic, M.; Rajacic, M.; Krneta Nikolic, J.; Todorovic, D.

    2015-01-01

    The primary concern of any measuring of radon or radon progeny must be the quality of the results. A good quality assurance program, when properly designed and diligently followed, ensures that laboratory staff will be able to produce the type and quality of measurement results which is needed and expected. Active charcoal detectors are used for testing the concentration of radon in dwellings. The method of measurement is based on radon adsorption on coal and measurement of gamma radiation of radon daughters. Upon closing the detectors, the measurement was carried out after achieving the equilibrium between radon and its daughters (at least 3 hours) using NaI or HPGe detector. Radon concentrations as well as measurement uncertainties were calculated according to US EPA protocol 520/5-87-005. Detectors used for the measurements were calibrated by 226Ra standard of known activity in the same geometry. Standard and background canisters are used for QA and QC, as well as for the calibration of the measurement equipment. Standard canister is a sealed canister with the same matrix and geometry as the canisters used for measurements, but with the known activity of radon. Background canister is a regular radon measurement canister, which has never been exposed. The detector background and detector efficiency are measured to ascertain whether they are within the warning and acceptance limits. (author).

  4. CANDU-9/480-SEU fuel handling system assessment document

    International Nuclear Information System (INIS)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.; Morikawa, D. T.

    1996-11-01

    This report summarize the rationale for the CANDU 9 fuel handling system, and the design choices recommended for components of the system. Some of the design requirements applicable to the CANDU 9 480-SEU fuel handling design choices are described. These requirements imposed by the CANDU 9 project. And the design features for the key components of fuel handling system, such as the fuelling machine, the carriage, the new fuel transfer system and the irradiated fuel transfer system, are described. The carriage seismic load evaluations relevant to the design are contained in the appendices. The majority of the carriage components are acceptable, or will likely be acceptable with some redesign. The concept for the CANDU 9 fuel handling system is based on proven CANDU designs, or on improved CANDU technology. Although some development work must be done, the fuel handling concept is judged to be feasible for the CANDU 9 480-SEU reactor. (author). 2 refs

  5. Application of the air/water cushion technology for handling of heavy waste packages in Sweden and France

    International Nuclear Information System (INIS)

    Bosgiraud, Jean-Michel; Seidler, Wolf K.; Londe, Louis; Thurner, Erik; Pettersson, Stig

    2008-01-01

    The disposal of certain types of radioactive waste canisters in a deep repository involves handling and emplacement of very heavy loads. The weight of these particular canisters can be in the order of 20 to 50 metric tons. They generally have to be handled underground in openings that are not much larger than the canisters themselves as it is time consuming and expensive to excavate and backfill large openings in a repository. This therefore calls for the development of special technology that can meet the requirements for safe operation in an industrial scale in restrained operating spaces. Air/water cushion lifting systems are used world wide in the industry for moving heavy loads. However, until now the technology needed for emplacing heavy cylindrical radioactive waste packages in bored drifts (with narrow annular gaps) has not been developed or demonstrated previously. This paper describes the related R and D work carried out by ANDRA (for air cushion technology) and by SKB and Posiva (for water cushion technology) respectively, mainly within the framework of the European Commission (EC) funded Integrated Project called ESDRED (6th European Framework Programme). The background for both the air and the water cushion applications is presented. The specific characteristics of the two different emplacement concepts are also elaborated. The various phases of the Test Programmes (including the Prototype phases) are detailed and illustrated for the two lifting media. Conclusions are drawn for each system developed and evaluated. Finally, based on the R and D experience, improvements deemed necessary for an industrial application are listed. The tests performed so far have shown that the emplacement equipment developed is operating efficiently. However further tests are required to verify the availability and the reliability of the equipment over longer periods of time and to identify the modifications that would be needed for an industrial application in a nuclear

  6. Interaction between rock, bentonite buffer and canister. FEM calculations of some mechanical effects on the canister in different disposal concepts

    International Nuclear Information System (INIS)

    Boergesson, L.

    1992-07-01

    An important task of the buffer of highly compacted bentonite is to offer a mechanical protection to the canister. This role has been investigated by a number of finite element calculations using the complex elasto plastic material models for the bentonite that have been developed on the basis of laboratory tests and adapted to the code ABAQUS. The following main functions and scenarios have been investigated for some different canister types and repository concepts: - The effect of the water and swelling pressure, - The effect of a rock shear perpendicular to the canister axis, - The effect of creep in the copper after a rock shear displacement, - The thermomechanical effects when an initially saturated buffer is used

  7. Advanced handling-systems with enhanced performance flexibility

    International Nuclear Information System (INIS)

    1986-04-01

    This report describes the results of a project related to future applications and requirements for advanced handling systems. This report consists of six chapters. Following the description of the aims the tools for setting up the requirements for the handling systems including the experience during the data acquisition process is described. Furthermore some information is given about the current state of the art of robotics and manipulators. Of paramount importance are the descriptions of applications and related concepts in the following chapters leading to specific categories of advanced handling units. The paper closes with the description of the first concepts for realization. (orig./HP) [de

  8. Drying tests conducted on Three Mile Island fuel canisters containing simulated debris

    International Nuclear Information System (INIS)

    Palmer, A.J.

    1995-01-01

    Drying tests were conducted on TMI-2 fuel canisters filled with simulated core debris. During these tests, canisters were dried by heating externally by a heating blanket while simultaneously purging the canisters' interior with hot, dry nitrogen. Canister drying was found to be dominated by moisture retention properties of a concrete filler material (LICON) used for geometry control. This material extends the drying process 10 days or more beyond what would be required were it not there. The LICON resides in a nonpurgeable chamber separate from the core debris, and because of this configuration, dew point measurements on the exhaust stream do not provide a good indication of the dew point in the canisters. If the canisters are not dried, but rather just dewatered, 140-240 lb of water (not including the LICON water of hydration) will remain in each canister, approximately 50-110 lb of which is pore water in the LICON and the remainder unbound water

  9. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Tesini, Alessandro

    2014-01-01

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  10. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  11. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    International Nuclear Information System (INIS)

    HEARD, F.J.

    1999-01-01

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels

  12. Thermal assessment of Shippingport pressurized water reactor blanket fuel assemblies within a multi-canister overpack within the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-09

    A series of analyses were performed to assess the thermal performance characteristics of the Shippingport Pressurized Water Reactor Core 2 Blanket Fuel Assemblies as loaded within a Multi-Canister Overpack within the Canister Storage Building. A two-dimensional finite element was developed, with enough detail to model the individual fuel plates: including the fuel wafers, cladding, and flow channels.

  13. Settlement of Canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Pusch, R.

    1986-12-01

    Settlement of canisters containing radioactive waste and being surrounded by dense smectite clay is caused by the stresses and heat induced in the clay. Consolidation by water expulsion of the clay underlying a model canister with 5 cm diameter and 30 cm length would theoretically account for a maximum finite settlement of about 70 my m in a few weeks, while shear-induced creep would yield a settlement of only a few microns in the same time period. These predictions were checked by running a laboratory test in which a dead load of 80 kg was applied to a small cylindrical copper canister embedded in Na bentonite. The settlement, which increased in proportion to log time, turned out to be about 6 my m in the first 2.5 months. After the first loading period at room temperature, heating to 50 degrees C and, after a 4 months long 'room temperature' period, to 70 degrees C took place. This cycling gave strong, instant settlement and upheaval because of the different thermal expansion of the interacting components of the system. After the development of constant temperature conditions in the entire system and completion of the consolidation or expansion that followed from the thermo-mechanical interactions, the settlement proceeded at a rather high rate at 70 degrees C, still following a log time creep law, but with somewhat stronger retardation. At room temperature, i.e. in the post-heating periods, the settlement seemed to cease, on the other hand. The conclusion from the study is that the canister movements under isothermal conditions were in accordance with the log t-type creep settlement that was predicted in theoretical grounds. Pre-heating and low stresses may account for extraordinary retardation of the settlement. (author)

  14. Effect of HNO3-cerium(IV) decontamination on stainless steel canister materials

    International Nuclear Information System (INIS)

    Westerman, R.E.; Mackey, D.B.

    1991-01-01

    Stainless steel canisters will be filled with vitrified radioactive waste at the West Valley Demonstration Project (WVDP), West Valley, NY. After they are filled, the sealed canisters will be decontaminated by immersion in a HNO 3 -Ce(IV) solution, which will remove the oxide film and a small amount of metal from the surface of the canisters. Studies were undertaken in support of waste form qualification activities to determine the effect of this decontamination treatment on the legibility of the weld-bead canister identification label, and to determine whether this decontamination treatment could induce stress-corrosion cracking (SCC) in the AISI 304L stainless steel (SS) canister material. Neither the label legibility nor the canister integrity with regard to SCC were found to be prejudiced by the simulated decontamination treatment

  15. Remote Welding, NDE and Repair of DOE Standardized Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Eric Larsen; Art Watkins; Timothy R. McJunkin; Dave Pace; Rodney Bitsoi

    2006-05-01

    The U.S. Department of Energy (DOE) created the National Spent Nuclear Fuel Program (NSNFP) to manage DOE’s spent nuclear fuel (SNF). One of the NSNFP’s tasks is to prepare spent nuclear fuel for storage, transportation, and disposal at the national repository. As part of this effort, the NSNFP developed a standardized canister for interim storage and transportation of SNF. These canisters will be built and sealed to American Society of Mechanical Engineers (ASME) Section III, Division 3 requirements. Packaging SNF usually is a three-step process: canister loading, closure welding, and closure weld verification. After loading SNF into the canisters, the canisters must be seal welded and the welds verified using a combination of visual, surface eddy current, and ultrasonic inspection or examination techniques. If unacceptable defects in the weld are detected, the defective sections of weld must be removed, re-welded, and re-inspected. Due to the high contamination and/or radiation fields involved with this process, all of these functions must be performed remotely in a hot cell. The prototype apparatus to perform these functions is a floor-mounted carousel that encircles the loaded canister; three stations perform the functions of welding, inspecting, and repairing the seal welds. A welding operator monitors and controls these functions remotely via a workstation located outside the hot cell. The discussion describes the hardware and software that have been developed and the results of testing that has been done to date.

  16. Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister

    Science.gov (United States)

    Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.

    2005-01-01

    Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.

  17. Multi-Canister Overpack (MCO) Topical Report

    International Nuclear Information System (INIS)

    LORENZ, B.D.

    2000-01-01

    In February 1995, the US Department of Energy (DOE) approved the Spent Nuclear Fuel (SNF) Project's ''Path Forward'' recommendation for resolution of the safety and environmental concerns associated with the deteriorating SNF stored in the Hanford Site's K Basins (Hansen 1995). The recommendation included an aggressive series of projects to design, construct, and operate systems and facilitates to permit the safe retrieval, packaging, transport, conditions, and interim storage of the K Basins' SNF. The facilities are the Cold VAcuum Drying Facility (CVDF) in the 100 K Area of the Hanford Site and the Canister Storage building (CSB) in the 200 East Area. The K Basins' SNF is to be cleaned, repackaged in multi-canister overpacks (MCOs), removed from the K Basins, and transported to the CVDF for initial drying. The MCOs would then be moved to the CSB and weld sealed (Loscoe 1996) for interim storage (about 40 years). One of the major tasks associated with the initial Path Forward activities is the development and maintenance of the safety documentation. In addition to meeting the construction needs for new structures, the safety documentation for each must be generated

  18. FPIN2 posttest analysis of cylindrical canisters in SLSF Experiment P4

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, T H; Kramer, J M

    1984-12-01

    Results demonstrate that the clad deformation is dominated by the expansion of the fuel when it melts. In our analysis we moved the end space volume and some of the fuel-clad radial gap volume to an artificial central hole. This approximation may affect the details in the early parts of the transient, but clearly did not affect the major cladding deformation. It is also clear that the accuracy of the value of the fuel expansion upon melting is significant as is the dimensional accuracy of the fuel and canisters. The major conclusions from the FPIN2 posttest analysis of the cylindrical canisters in SLSF Experiment P4 are: The maximum melt fractions in the two canisters were about 75%. Both canisters experienced about the same diametral strains of 12% prior to failure. These strains were almost entirely due to the additional volume that must be created inside the canisters to accommodate the expansion of fuel on melting. The mode of cladding failure was plastic instability by necking of the canister walls. The failure time of the 20% CW canister and the nonmechanical failure of the 10% CW canister are consistent with the FPIN2 calculations using the plastic instability failure criteria.

  19. Multi-purpose canister storage unit and transfer cask thermal analysis

    International Nuclear Information System (INIS)

    Montgomery, R.A.; Niemer, K.A.; Lindner, C.N.

    1997-01-01

    Spent Nuclear Fuel (SNF) generated at commercial nuclear power plants throughout the US is a concern because of continued delays in obtaining a safe, permanent disposal facility. Most utilities maintain their SNF in wet storage pools; however, after decades of use, many pools are filled to capacity. Unfortunately, DOE's proposed final repository at Yucca Mountain is at least 10 years from completion, and commercial power utilities have few options for SNF storage in the interim. The Multi-Purpose Canister (MPC) system, sponsored by DOE's Office of Civilian Radioactive Waste Management, is a viable solution to the interim storage problem. The system is designed for interim dry storage, transport, and ultimate disposal of commercial SNF. The MPC system consists of four separate components: an MPC, Transfer Cask, Storage Unit, and Transport Cask. The SNF assemblies are loaded and sealed inside the helium-filled steel MPC. Once sealed, the MPC is not reopened, eliminating the need to re-handle the individual spent fuel assemblies. The MPC is transferred, using the MPC Transfer Cask, into a cylindrical, reinforced-concrete Storage Unit for on-site dry storage. The MPC may be removed from the Storage Unit at any time and transferred into the MPC Transport Cask for transport to the final repository. This paper discusses the analytical approach used to evaluate the heat transfer characteristics of an MPC containing SNF assemblies in the MPC Transfer Cask and Storage Unit

  20. Canister displacement in KBS-3V. A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Hernelind, Jan [FEMTech AB, Vaesteraas (Sweden)

    2006-02-15

    The vertical displacement of the canister in the KBS-3V concept has been studied in a number of consolidation and creep calculations using the FE-program ABAQUS. The creep model used for the calculations is based on Singh-Mitchell's creep theory, which has been adapted to and verified for the buffer material MX-80 in earlier tests. A porous elastic model with Drucker-Prager plasticity has been used for the consolidation calculations. For simplicity the buffer has been assumed to be water saturated from start. In one set of calculations only the consolidation and creep in the buffer without considering the interaction with the backfill was studied. In the other set of calculations the interaction with the backfill was included for a backfill consisting of an in situ compacted mixture of 30% bentonite and 70% crushed rock. The motivation to also study the behaviour of the buffer alone was that the final choice of backfill material and backfilling technique is not made yet so that set of calculations simulates a backfill that has identical properties with the buffer. The two cases represent two extreme cases, one with a backfill that has a low stiffness and the lowest allowable swelling pressure and one that has the highest possible swelling pressure and stiffness. The base cases in the calculations correspond to the final average density at saturation of 2,000 kg/m{sup 3} with the expected swelling pressure of 7 MPa in a buffer. In order to study the sensitivity of the system to loss in bentonite mass and swelling pressure seven additional calculations were done with reduced swelling pressure down to 80 kPa corresponding to a density at water saturation of about 1,500 kg/m{sup 3}. The calculations included two stages, where the first stage models the swelling and consolidation that takes place in order for the buffer to reach force equilibrium. This stage takes place during the saturation phase and the subsequent consolidation/swelling phase. The second stage

  1. Canister displacement in KBS-3V. A theoretical study

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2006-02-01

    The vertical displacement of the canister in the KBS-3V concept has been studied in a number of consolidation and creep calculations using the FE-program ABAQUS. The creep model used for the calculations is based on Singh-Mitchell's creep theory, which has been adapted to and verified for the buffer material MX-80 in earlier tests. A porous elastic model with Drucker-Prager plasticity has been used for the consolidation calculations. For simplicity the buffer has been assumed to be water saturated from start. In one set of calculations only the consolidation and creep in the buffer without considering the interaction with the backfill was studied. In the other set of calculations the interaction with the backfill was included for a backfill consisting of an in situ compacted mixture of 30% bentonite and 70% crushed rock. The motivation to also study the behaviour of the buffer alone was that the final choice of backfill material and backfilling technique is not made yet so that set of calculations simulates a backfill that has identical properties with the buffer. The two cases represent two extreme cases, one with a backfill that has a low stiffness and the lowest allowable swelling pressure and one that has the highest possible swelling pressure and stiffness. The base cases in the calculations correspond to the final average density at saturation of 2,000 kg/m 3 with the expected swelling pressure of 7 MPa in a buffer. In order to study the sensitivity of the system to loss in bentonite mass and swelling pressure seven additional calculations were done with reduced swelling pressure down to 80 kPa corresponding to a density at water saturation of about 1,500 kg/m 3 . The calculations included two stages, where the first stage models the swelling and consolidation that takes place in order for the buffer to reach force equilibrium. This stage takes place during the saturation phase and the subsequent consolidation/swelling phase. The second stage models the

  2. Canister storage building design basis accident analysis documentation

    International Nuclear Information System (INIS)

    KOPELIC, S.D.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  3. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P; Spahiu, K; Bruno, J [MBT Tecnologia Ambiental, Cerdanyola (Spain)

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10{sup -7} and 4*10{sup -5} mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs.

  4. Kinetic modelling of bentonite-canister interaction. Long-term predictions of copper canister corrosion under oxic and anoxic conditions

    International Nuclear Information System (INIS)

    Wersin, P.; Spahiu, K.; Bruno, J.

    1994-09-01

    A new modelling approach for canister corrosion which emphasises chemical processes and diffusion at the bentonite-canister interface is presented. From the geochemical boundary conditions corrosion rates for both an anoxic case and an oxic case are derived and uncertainties thereof are estimated via sensitivity analyses. Time scales of corrosion are assessed by including calculations of the evolution of redox potential in the near field and pitting corrosion. This indicates realistic corrosion depths in the range of 10 -7 and 4*10 -5 mm/yr, respectively for anoxic and oxic corrosion. Taking conservative estimates, depths are increased by a factor of about 200 for both cases. From these predictions it is suggested that copper canister corrosion does not constitute a problem for repository safety, although certain factors such as temperature and radiolysis have not been explicitly included. The possible effect of bacterial processes on corrosion should be further investigated as it might enhance locally the described redox process. 35 refs, 11 figs, 6 tabs

  5. Decontamination of high-level waste canisters

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces

  6. NDT Reliability - Final Report. Reliability in non-destructive testing (NDT) of the canister components

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Mato; Takahashi, Kazunori; Mueller, Christina; Boehm, Rainer (BAM, Federal Inst. for Materials Research and Testing, Berlin (Germany)); Ronneteg, Ulf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    This report describes the methodology of the reliability investigation performed on the ultrasonic phased array NDT system, developed by SKB in collaboration with Posiva, for inspection of the canisters for permanent storage of nuclear spent fuel. The canister is composed of a cast iron insert surrounded by a copper shell. The shell is composed of the tube and the lid/base which are welded to the tube after the fuel has been place, in the tube. The manufacturing process of the canister parts and the welding process are described. Possible defects, which might arise in the canister components during the manufacturing or in the weld during the welding, are identified. The number of real defects in manufactured components have been limited. Therefore the reliability of the NDT system has been determined using a number of test objects with artificial defects. The reliability analysis is based on the signal response analysis. The conventional signal response analysis is adopted and further developed before applied on the modern ultrasonic phased-array NDT system. The concept of multi-parameter a, where the response of the NDT system is dependent on more than just one parameter, is introduced. The weakness of use of the peak signal response in the analysis is demonstrated and integration of the amplitudes in the C-scan is proposed as an alternative. The calculation of the volume POD, when the part is inspected with more configurations, is also presented. The reliability analysis is supported by the ultrasonic simulation based on the point source synthesis method

  7. Corrosion resistance of canisters for final disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Mattsson, E.

    1979-01-01

    A group of Swedish scientists has evaluated from the corrosion point of view three alternative canister types for final disposal of waste from nuclear reactors in boreholes in rock 500 m below ground. Titanium canisters with a wall-thickness of 6 mm and 100 mm thick lead lining have been estimated to have a life of at least thousands of years, and probably tens of thousands of years. Copper canisters with 200-mm-thick walls would last for hundreds of thousands of years. The third type, α-alumina sintered under isostatic pressure, is a very promising canister material

  8. Canister storage building design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    KOPELIC, S.D.

    1999-02-25

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  9. PFPF canister counter for foreign plutonium (PCAS-3) hardware operations and procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Baca, J.; Kroncke, K.E.; Miller, M.C.; Takahashi, S.; Seki, S.; Inose, S.; Yamamoto, T.

    1993-01-01

    A neutron coincidence counter has been designed for the measurement of plutonium powder contained in tall storage canisters. The counter was designed for installation in the Plutonium Fuel Production Facility fabrication plant. Each canister contains from one to five cans of PuO 2 . The neutron counter measures the spontaneous-fission rate from the plutonium and, when this is combined with the plutonium isotopic ratios, the plutonium mass is determined. The system can accommodate plutonium loadings up to 12 kg, with 10 kg being a typical loading. Software has been developed to permit the continuous operation of the system in an unattended mode. Authentication techniques have been developed for the system. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  10. Research on corrosion aspects of the advanced cold process canister

    International Nuclear Information System (INIS)

    Blackwood, D.J.; Hoch, A.R.; Naish, C.C.; Rance, A.

    1994-01-01

    The Advanced Cold Process Canister (ACPC) is a waste canister being developed jointly by SKB and TVO for the disposal of spent nuclear fuel. It comprises an outer copper canister, with a carbon steel canister inside. A concern regarding the use of the ACPC is that, in the unlikely event that the outer copper canister is penetrated, the anaerobic corrosion of the carbon steel container may result in the formation of hydrogen gas bubbles. These bubbles could disrupt the backfill, and thus increase water flow through the near field and the flux of radionuclides to the host geology. A number of factors that influence the rate at which hydrogen evolves as a result of the anaerobic corrosion of carbon steel in artificial granitic groundwaters have been investigated. A previously observed, time-dependent decline in the hydrogen evolution rate has been confirmed as being due to the production of magnetite film. Once the magnetite film is about 0.7-1.0 μm thick, the rate of hydrogen evolution reaches a steady state value. The pH and the ionic strength of the groundwater were both found to influence the long-term hydrogen evolution rate. The results of the experimental programme were used to update a model of the corrosion behaviour and hydrogen production from the Advanced Cold Process Canister. 36 figs, 5 tabs, 13 refs

  11. Defects which might occur in the copper-iron canister classified according to their likely effect on canister integrity

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    2000-06-01

    Earlier studies identified the material and manufacturing defects that might occur in serially produced canisters to the SKB reference design. This study has considered the defects, which were identified in the earlier works and classified them in terms of their importance to the durability of the canister in service. It has depended on, observations made by the writer over a seven-year involvement with SKI, literature studies and consultation with experts. For ease of reference each section of the report contains a table which includes information on defects taken from the earlier work plus the classification arising from this work. A study has been conducted to identify the material and manufacturing defects that might occur in serially produced canisters to the SKB reference design. The study has depended on cooperation of contractors engaged by SKB to participate in the development program, SKB staff, observations made by the writer over a five-year involvement with SKI, literature studies and consultation with experts. The candidate manufacturing procedures have been described inasmuch as it has been necessary to do so to make the points related to defects. Where possible, the cause of defects, their likely effects on manufacturing procedures or on durability of the canister and the methods available for their detection are given. For ease of reference each section of the report contains a table which summarises the information in it and, in the final section of the report, all the tables are presented en-bloc

  12. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  13. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  14. Mechanical analysis of cylindrical part of canisters for spent nuclear fuel

    International Nuclear Information System (INIS)

    Ikonen, K.

    2005-06-01

    This report describes mechanical analyses of cylindrical part of the VVER 440-, BWR and EPR-type canisters for spent nuclear fuel. The task was first to evaluate the stresses at maximum design pressure and further by increasing pressure load to determine the limit collapse load and corresponding safety factor. Maximum design pressure 44 MPa is a sum of the hydrostatic pressure 30 MPa caused by 3 km ice layer, 7 MPa caused by ground water pressure at the deepest disposal depth of 700 m and 7 MPa from bentonite swelling pressure. The analysis presented in this report concern the middle area of the canisters, where the cast iron insert is considered to be more critical than in the ends of the canister. For the model a piece from the middle area of the canister was separated by two planes perpendicular to the axis of the canister. This piece was studied first by two-dimensional plane strain model, where the planes are constrained and no elongation of the canister takes place. In the second model one of the planes was constrained and the other plane was allowed to displace in axial direction, which remains as a plane during deformation and to which axial pressure force is directed. This analysis, which corresponds better the real condition in the canister, was performed as threedimensional. The analyses gave however practically equal results due to plastic deformation. Thus the analysis can be done by two-dimensional plane strain model leading to same accuracy with less computation effort. Analyses were performed as large displacement and large strain analyses by the PASULA computing package, which has been developed at VTT for a variety of structural analysis and for heat conduction calculations. A special routine was developed for automatic mesh generation. Before the analysis of the VVER 440-, BWR- and EPR-type canisters the calculation methodology was validated with test results, which were received from pressure tests performed with a short BWR canister in Germany

  15. Remote handling systems for the Pride application

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Lee, H.; Kim, S.; Kim, H.

    2010-10-01

    In this paper is described the development of remote handling systems for use in the pyro processing technology development. Remote handling systems mainly include a BDSM (Bridge transported Dual arm Servo-Manipulator) and a simulator, all of which will be applied to the Pride (Pyro process integrated inactive demonstration facility) that is under construction at KAERI. BDMS that will traverse the length of the ceiling is designed to have two pairs of master-slave manipulators of which each pair of master-slave manipulators has a kinematic similarity and a force reflection. A simulator is also designed to provide an efficient means for simulating and verifying the conceptual design, developments, arrangements, and rehearsal of the pyro processing equipment and relevant devices from the viewpoint of remote operation and maintenance. In our research is presented activities and progress made in developing remote handling systems to be used for the remote operation and maintenance of the pyro processing equipment and relevant devices in the Pride. (Author)

  16. Multi-Canister overpack sealing configuration

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The Spent Nuclear Fuel (SNF) position regarding the Multi-Canister Overpack (MCO) sealing configuration is to initially rely on an American Society of Mechanical Engineers (ASME) Section III Subsection NB code compliant mechanical closure/sealing system to quickly and safely establish and maintain full confinement of radioactive materials prior to and during MCO fuel drying activities. Previous studies have shown the mechanical seal to be the preferred closure method, based on dose, cost, and schedule considerations. The cost and schedule impacts of redesigning the mechanical closure to a welded shield plug do not support changing the closure system. The SNF Project has determined that the combined mechanical/welded closure system meets or exceeds the regulatory requirements to provide redundant seals while accommodating key safety and schedule limitations that are unique to K Basins fuel removal effort

  17. Preliminary design of the high-level waste canister storage system: Topical report for the period of January 1, 1987--September 30, 1987

    International Nuclear Information System (INIS)

    Peters, F.E.; Leap, D.R.

    1987-11-01

    The final stage of the West Valley solidification program will be to place the high-level waste canisters in interim storage until a federal repository is ready to receive them. The waste canisters will be stored in the largest former fuel reprocessing cell at West Valley modified for this purpose. This report provides a description of the preliminary design of the Waste Canister Storage Facility. 9 refs., 14 figs., 1 tab

  18. The role of the canister in a system for the final disposal of spent fuel or high-level waste

    International Nuclear Information System (INIS)

    Papp, T.

    1986-01-01

    A final repository for radioactive waste must isolate the toxic substances or distribute their release over time or space to avoid causing harmful concentrations of radionuclides in the biosphere. The Swedish research has focused on a repository 500 m down in crystalline rock where the geochemical environment can give canisters a service life of the order of a million years. These evaluations are discussed and the safety effect of the canister is compared with that of other barriers available in a repository system. Our conclusions are that a combined protection effect of natural and man-made barriers can be achieved that substantially exceeds what could reasonably be required by society. An actual repository design can then be based on an optimization of the cost to reach a level of accepted safety with due regard for the safety margins and redundancy necessary for achieving public confidence. (author)

  19. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    Science.gov (United States)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  20. Canister materials proposed for final disposal of high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E; Odoj, R; Merz, E [eds.

    1981-06-01

    The nuclear waste will be enclosed in corrosion resistant canisters. These will be deposited in repositories in geological formations, such as granite, basalt, clay, bedded or domed salt, or the sediments beneath the deep ocean floor. There the canisters will be exposed to groundwater, brine or seawater at an elevated temperature. Species formed by radiolysis may effect the corrosivity of the agent. The corrosion resistance of candidate canister materials is evaluated by corrosion tests and by thermodynamic and mass transport calculations. Examinations of ancient metal objects after long exposure in nature may give additional information. On the basis of the work carried out so far, the principal candidate canister materials are titanium materials, copper, and highpurity alumina.

  1. A review and analysis of European industrial experience in handling LWR [light water reactor] spent fuel and vitrified high-level waste

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1988-06-01

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performances of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States. 79 refs., 71 figs., 10 tabs

  2. Mechanical failure of SKB spent fuel disposal canisters. Mathematical modelling and scoping calculations

    International Nuclear Information System (INIS)

    Takase, Hiroyasu; Benbow, S.; Grindrod, P.

    1998-10-01

    According to the current design of SKB, a copper overpack with a cast steel inner component will be used as the disposal canister for spent nuclear fuel. A recent study considered the case of a breach in the copper overpack, through which groundwater could enter the canister. It has pointed out that hydrogen gas generated by an anaerobic corrosion could cushion the system and reduce or eventually stop further infiltration of water into the breached canister, and thence the spent fuel. One potential pitfall in this previous study lies in the fact that it did not consider any processes which might violate the following assumptions which are essential for the gas 'cushioning': 1. Hydrogen gas accumulated in the annular gap in the canister forms a free gas phase which is stable indefinitely into future; 2. Elevated gas pressure in the canister prevents further supply of groundwater except for diffusion of vapour. In the current study we developed a set of mathematical models for the above problem and applied it to carry out an independent assessment of the long-term behaviour of the canister. A key aim in this study was to clarify whether there are any alternative processes which may affect the result obtained by the previous study by violating one of the assumptions listed above. For this purpose, a scenario development exercise was conducted. The result supported the concept described in the previous study. One exception is that possible intrusion of bentonite gel followed by its desaturation could leave paths both for the gas and water simultaneously without forming a gas cushion. This is summarised in the first part of the report. In the second part, development of mathematical models and their applications are described. The key results are: 1. The model describing behaviour of gas and pore water in the canister and the buffer material reproduced the main results of the previous study; 2. The model considering intrusion of the bentonite gel pointed out possibility

  3. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  4. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  5. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.; PIEPHO, M.G.

    2000-01-01

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  6. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    1999-01-01

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  7. A Film Canister Colorimeter.

    Science.gov (United States)

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-01-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The student-constructed colorimeter was used to show the Beer-Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for an LED. Makes comparisons between this instrument…

  8. Modelling studies for the assessment of the Advanced Cold Process Canister

    International Nuclear Information System (INIS)

    Henshaw, J.; Hoch, A.R.; Sharland, S.M.

    1991-01-01

    The Advanced Cold Process Canister (ACPC) is a new concept for the encapsulation of spent nuclear fuel for geological disposal. It consists of steel canister encased in a copper overpack. In this paper, modelling studies to assess the performance of the ACPC under repository conditions are presented. The production of nitric acid and ammonia through radiolysis of any water remaining inside the canister under fault conditions has been examined in this study. However, results suggest that only low levels are possible, and the risk of stress-corrosion cracking is considered small. The corrosion behavior subsequent to a breach in the outer canister was also considered. A model was constructed to predict the hydrogen gas production due to corrosion reactions, and evolution of the corrosion behavior

  9. Gas liquid sampling for closed canisters in KW Basin - test plan

    International Nuclear Information System (INIS)

    Pitkoff, C.C.

    1995-01-01

    Test procedures for the gas/liquid sampler. Characterization of the Spent Nuclear Fuel, SNF, sealed in canisters at KW-Basin is needed to determine the state of storing SNF wet. Samples of the liquid and the gas in the closed canisters will be taken to gain characterization information. Sampling equipment has been designed to retrieve gas and liquid from the closed canisters in KW basin. This plan is written to outline the test requirements for this developmental sampling equipment

  10. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    Aalto, H.; Rajainmaeki, H.; Laakso, L.

    1996-10-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for disposal of spent nuclear fuel from reactors of Teollisuuden Voima Oy (TVO) and Imatran Voima Oy (IVO) are discussed. The canister design is based on the Posiva's concept where solid insert structure is surrounded by the copper mantle. During recent years Outokumpu Copper Products and Posiva have continued their work on development of the copper canisters. Outokumpu Copper Products has also increased capability to manufacture these canisters. In the study the most potential manufacturing methods and their costs are discussed. The cost estimates are based on the assumption that Outokumpu will supply complete copper mantles. At the moment there are at least two commercially available production methods for copper cylinder manufacturing. These routes are based on either hot extrusion of the copper tube or hot rolling, bending and EB-welding of the tube. Trial fabrications has been carried out with both methods for the full size canisters. These trials of the canisters has shown that both the forming from rolled plate and the extrusion are possible methods for fabricating copper canisters on a full scale. (orig.) (26 refs.)

  11. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  12. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    Worgan, K.J.; Apted, M.J.

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  13. Analysis of factors influencing the reliability of retrievable storage canisters for containment of solid high-level radioactive waste

    International Nuclear Information System (INIS)

    Mecham, W.J.; Seefeldt, W.B.; Steindler, M.J.

    1976-08-01

    The reliability of stainless steel type 304L canisters for the containment of solidified high-level radioactive wastes in the glass and calcine forms was studied. A reference system, drawn largely from information furnished by Battelle Northwest Laboratories and Atlantic Richfield Hanford Company is described. Operations include filling the canister with the appropriate waste form, interim storage at a reprocessing plant, shipment in water to a Retrievable Surface Storage Facility (RSSF), interim storage at the RSSF, and shipment to a final disposal facility. The properties of stainless steel type 304L, fission product oxides, calcine, and glass were reviewed, and mechanisms of corrosion were identified and studied. The modes of corrosion important for reliability were stress-corrosion cracking, internal pressurization of the canister by residual impurities present, intergranular attack at the waste-canister interface, and potential local effects due to migration of fission products. The key role of temperature control throughout canister lifetime is considered together with interactive effects. Methods of ameliorating adverse effects and ensuring high reliability are identified and described. Conclusions and recommendations are presented

  14. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    International Nuclear Information System (INIS)

    Bryan, Charles R.; Enos, David G.

    2015-01-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  15. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1987-01-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests confirmed the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. This report presents the data generated and the results obtained from a series of four drop tests that included two drops with the test assembly in the vertical position and two drops with the assembly in the horizontal position

  16. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Enos, David G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be present through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.

  17. Fuel canister and blockage pin fabrication for SLSF Experiment P4

    International Nuclear Information System (INIS)

    Rhude, H.V.; Folkrod, J.R.; Noland, R.A.; Schaus, P.S.; Benecke, M.W.; Delucchi, T.A.

    1983-01-01

    As part of its fast breeder reactor safety research program, Argonne National Laboratory (ANL) has conducted an experiment (SLSF Experiment P4) to determine the extent of fuel-failure propagation resulting from the release of molten fuel from one or more heat-generating fuel canisters. The test conditions consisted of 37 full-length FTR fuel pins operating at FTR rated core nominal peak fuel/reduced coolant conditions. Thirty-four of the the fuel pins were prototypical FTR mixed-oxide fuel pins. The other three fuel pins were fabricated with a mid-core section having an enlarged canister containing fully enriched UO 2 . Two of the canisters were cylindrical and one was fluted. The cylindrical canisters were designed to fail and release molten fuel into the 37-pin fuel cluster at near full power

  18. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 2 - EBW

    International Nuclear Information System (INIS)

    Salonen, T.

    2014-05-01

    This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based

  19. The design of in-cell crane handling systems for nuclear plants

    International Nuclear Information System (INIS)

    Hansford, S.M.; Scott, R.

    1992-01-01

    The reprocessing and waste management facilities at (BNFL's) British Nuclear Fuels Limited's Sellafield site make extensive use of crane handling systems. These range from conventional mechanical handling operations as used generally in industry to high integrity applications through to remote robotic handling operations in radiation environments. This paper describes the design methodologies developed for the design of crane systems for remote handling operations - in-cell crane systems. In most applications the in-cell crane systems are an integral part of the plant process equipment and reliable and safe operations are a key design parameter. Outlined are the techniques developed to achieve high levels of crane system availability for operations in hazardous radiation environments. These techniques are now well established and proven through many years of successful plant operation. A recent application of in-cell crane handling systems design for process duty application is described. The benefits of a systematic design approach and a functionally-based engineering organization are also highlighted. (author)

  20. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    Energy Technology Data Exchange (ETDEWEB)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

  1. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    International Nuclear Information System (INIS)

    Geuther, J.; Conrad, E.A.; Rhoadarmer, D.

    2009-01-01

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described

  2. Waste Handling Equipment Development Test and Evaluation Study

    International Nuclear Information System (INIS)

    R.L. Tome

    1998-01-01

    planned and conducted by the appropriate design organization as part of the design process. The scope of this study, therefore, will address only surface development testing activities that will be performed prior to detail design and procurement of the MGR surface waste handling equipment. Testing to support development of additional MGR surface equipment and operations, such as cooling of shipping casks and dual-purpose canisters (DPCs) prior to pool entry, decontamination of disposal containers (DCs), and recovery systems for various equipment, is not addressed in this study. These equipment items/systems were not developed for VA and are not currently identified as specific MGR surface waste handling equipment

  3. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  4. Application of the TEMPEST computer code to canister-filling heat transfer problems

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    1988-03-01

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs

  5. Characterization of materials for waste-canister compatibility studies

    International Nuclear Information System (INIS)

    McCoy, H.E.; Mack, J.E.

    1981-10-01

    Sample materials of 7 waste forms and 15 potential canister materials were procured for compatibility tests. These materials were characterized before being placed in test, and the results are the main topic of this report. A test capsule was designed for the tests in which disks of a single waste form were contacted with duplicate samples of canister materials. The capsules are undergoing short-term tests at 800 0 C and long-term tests at 100 and 300 0 C

  6. Chemical stability of copper-canisters in deep repository

    International Nuclear Information System (INIS)

    Ahonen, L.

    1995-12-01

    The spent fuel from Finnish nuclear reactors is planned to be encapsulated in thick-walled copper-iron canisters and placed deep into the bedrock. The copper wall of the canister provides a long-time shield against corrosion, preventing the high-level nuclear fuel from contact with ground water. In the report, stability of metallic copper and its possible corrosion reactions in the conditions of deep bedrock are evaluated by means of thermo-dynamic calculations. (90 refs., 28 figs., 11 tabs.)

  7. Integrity of copper/steel canisters under crystalline bedrock repository conditions

    International Nuclear Information System (INIS)

    Bowyer, W.H.; Sjoblom, R.; Trolle, M.

    1996-01-01

    In the Swedish nuclear waste disposal programme, the need to store the spent nuclear fuel safely for very long times has prompted a strategy which includes a long life canister. Technical as well as economical considerations related to design, choice of materials and manufacturing technology have lead to the selection of a reference design to be used for the continued development work. The canisters are cylindrical with a diameter close to 1 meter and a height of about 5 meters. In order to meet the need for an appropriate combination of mechanical strength, toughness, durability and corrosion resistance, the canisters comprise an inner vessel made of steel or cast iron to cope with mechanical stresses and an outer vessel made of almost pure copper to provide corrosion resistance. The Swedish nuclear industry has recently extended its development work to full-scale tests. Such experience is needed not least for the evaluation of the long-term integrity of the canister. This work has been closely followed by the Swedish Nuclear Power Inspectorate (SKI) who have also carried out independent investigations and analyses. It should be emphasized that the findings relate to a canister which is under development and cannot, in general, be expected to be relevant for the fully developed canister. Significant results of the analyses include the identification of conceivable modes of canister failures. Such failures may be related to defects, segregation, limitations in inspectability, long term creep properties, adverse mechanical load situations, etc. It is assessed that the distribution functions of these failures might have their largest uncertainties at the tails extending to comparatively short times. Specific issues related to canister manufacture, scaling and non destructive testing which have been found to warrant further investigation are: defects in the copper ingot which may transfer to the rolled copper plate; the amount of work applied during the rolling or

  8. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  9. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  10. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    1999-09-09

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  11. Gas and liquid sampling for closed canisters in KW Basin - Work Plan

    International Nuclear Information System (INIS)

    Pitkoff, C.C.

    1995-01-01

    Work Plan for the design and fabrication of gas/liquid sampler for closed canister sampling in KW Basin. This document defines the tasks associated with the design, fabrication, assembly, and acceptance testing equipment necessary for gas and liquid sampling of the Mark I and Mark II canisters in the K-West basin. The sampling of the gas space and the remaining liquid inside the closed canisters will be used to help understand any changes to the fuel elements and the canisters. Specifically, this work plan will define the scope of work and required task structure, list the technical requirements, describe design configuration control and verification methodologies, detail quality assurance requirements, and present a baseline estimate and schedule

  12. Canisters and nonfuel components at commercial nuclear reactors

    International Nuclear Information System (INIS)

    Gibbard, K.; Thorpe, J.; Moore, R.S.

    1995-01-01

    The Energy Information Administration of the U.S. Department of Energy (DOE) collects data annually from commercial nuclear power reactors via the Nuclear Fuel Data survey, Form RW-859. Over the past three years, the survey has collected data on the quantities and types of nonfuel components and on the quantities and contents of canisters in storage at reactor sites. This paper focuses on the annual changes in the data, specific implications of these changes, and lessons that should be applied to future revisions of the study. The total number of canisters reported by utilities for each year from 1986 to 1993 is listed. Changes in the quantities of nonfuel components report by General Reactors from 1992 to 1993 are also provided. Comparisons of canister and nonfuel components components data from year to year and from reactor to reactor point out that survey questions on these topics have been interpreted differently by reactor personnel

  13. Data handling systems and methods of wiring

    International Nuclear Information System (INIS)

    Grant, J.

    1981-01-01

    An improved data handling system, for monitoring and control of nuclear reactor operations, is described in which time delays associated with scanning are reduced and noise and fault signals in the system are resolved. (U.K.)

  14. The design analysis of ACP-canister for nuclear waste disposal

    International Nuclear Information System (INIS)

    Raiko, H.

    1992-05-01

    The design basis, dimensioning and some manufacturing aspects of the Advanced Cold Process Canister (ACPC) for the nuclear waste disposal is summarized in the report. The strength of the canister has been evaluated in normal design load condition and in extreme high hydrostatic pressure load condition possibly caused by ice age (orig.)

  15. Data-handling system for the Fly's Eye experiment

    International Nuclear Information System (INIS)

    Bergeson, H.E.; Cassiday, G.L.; Cooper, D.A.

    1975-01-01

    The Fly's Eye air scintillation experiment presents severe data-handling requirements for two reasons. First, nearly 1,000 photomultipliers each produce outputs at rates from 100 Khz to 20 Mhz. Second, much of the signal arrives before a trigger is formed. A data handling system which will deal with this problem is described. (orig.) [de

  16. Overhead remote handling systems for the process facility modifications project

    International Nuclear Information System (INIS)

    Wiesener, R.W.; Grover, D.L.

    1987-01-01

    Each of the cells in the process facility modifications (PFM) project complex is provided with a variety of general purpose remote handling equipment including bridge cranes, monorail hoist, bridge-mounted electromechanical manipulator (EMM) and an overhead robot used for high efficiency particulate air (HEPA) filter changeout. This equipment supplements master-slave manipulators (MSMs) located throughout the complex to provide an overall remote handling system capability. The overhead handling equipment is used for fuel and waste material handling operations throughout the process cells. The system also provides the capability for remote replacement of all in-cell process equipment which may fail or be replaced for upgrading during the lifetime of the facility

  17. Spent nuclear fuel canister storage building conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  18. Spent nuclear fuel canister storage building conceptual design report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1996-01-01

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ''Technical Baseline and Updated Cost Estimate for the Canister Storage Building'', dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995

  19. Ontario Hydro Pickering Generating Station fuel handling system performance

    International Nuclear Information System (INIS)

    Underhill, H.J.

    1986-01-01

    The report briefly describes the Pickering Nuclear Generating Station (PNGS) on-power fuel handling system and refuelling cycle. Lifetime performance parameters of the fuelling system are presented, including station incapability charged to the fuel handling system, cost of operating and maintenance, dose expenditure, events causing system unavailability, maintenance and refuelling strategy. It is concluded that the 'CANDU' on-power fuelling system, by consistently contributing less than 1% to the PNGS incapability, has been credited with a 6 to 20% increase in reactor capacity factor, compared to off-power fuelling schemes. (author)

  20. TRADITIONAL CANISTER-BASED OPEN WASTE MANAGEMENT SYSTEM VERSUS CLOSED SYSTEM: HAZARDOUS EXPOSURE PREVENTION AND OPERATING THEATRE STAFF SATISFACTION.

    Science.gov (United States)

    Horn, M; Patel, N; MacLellan, D M; Millard, N

    2016-06-01

    Exposure to blood and body fluids is a major concern to health care professionals working in operating rooms (ORs). Thus, it is essential that hospitals use fluid waste management systems that minimise risk to staff, while maximising efficiency. The current study compared the utility of a 'closed' system with a traditional canister-based 'open' system in the OR in a private hospital setting. A total of 30 arthroscopy, urology, and orthopaedic cases were observed. The closed system was used in five, four, and six cases, respectively and the open system was used in nine, two, and four cases, respectively. The average number of opportunities for staff to be exposed to hazardous fluids were fewer for the closed system when compared to the open during arthroscopy and urology procedures. The open system required nearly 3.5 times as much staff time for set-up, maintenance during procedures, and post-procedure disposal of waste. Theatre staff expressed greater satisfaction with the closed system than with the open. In conclusion, compared with the open system, the closed system offers a less hazardous and more efficient method of disposing of fluid waste generated in the OR.

  1. Waste canister closure welding using the inertia friction welding process

    International Nuclear Information System (INIS)

    Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.

    1986-02-01

    Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs

  2. Uncertainty analysis of multiple canister repository model by large-scale calculation

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Okuda, H.; Ahn, J.

    2007-01-01

    A prototype uncertainty analysis has been made by using the multiple-canister radionuclide transport code, VR, for performance assessment for the high-level radioactive waste repository. Fractures in the host rock determine main conduit of groundwater, and thus significantly affect the magnitude of radionuclide release rates from the repository. In this study, the probability distribution function (PDF) for the number of connected canisters in the same fracture cluster that bears water flow has been determined in a Monte-Carlo fashion by running the FFDF code with assumed PDFs for fracture geometry. The uncertainty for the release rate of 237 Np from a hypothetical repository containing 100 canisters has been quantitatively evaluated by using the VR code with PDFs for the number of connected canisters and the near field rock porosity. The calculation results show that the mass transport is greatly affected by (1) the magnitude of the radionuclide source determined by the number of connected canisters by the fracture cluster, and (2) the canister concentration effect in the same fracture network. The results also show the two conflicting tendencies that the more fractures in the repository model space, the greater average value but the smaller uncertainty of the peak fractional release rate is. To perform a vast amount of calculation, we have utilized the Earth Simulator and SR8000. The multi-level hybrid programming method is applied in the optimization to exploit high performance of the Earth Simulator. The Latin Hypercube Sampling has been utilized to reduce the number of samplings in Monte-Carlo calculation. (authors)

  3. Design basis for the copper/steel canister. Stage three. Final report

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1997-02-01

    The development of the copper/iron canister proposed for the containment of high-level waste in the Swedish disposal programme has been studied from the points of view of choice of materials, manufacturing technology and Q A. This report describes the observations on progress which has been made between March 1995 and February 1996 and the results of further literature studies. A first trial canister has been produced by SKB using a fabricated steel liner and an extruded copper tubular, a second one using a fabricated tubular is at an advanced stage. A change from a fabricated steel inner canister to a proposed cast canister has been justified by a criticality argument but the technology for producing a cast canister is at present untried. It is considered that such a change will require a significant development programme. The microstructure achieved in the extruded copper tubular for the first canister is unacceptable. An improved microstructure may be achieved by extruding at a lower temperature but this remains to be demonstrated. Similar problems exist with plate used for the fabricated tubular but some more favourable structures have been achieved already by this route. Seam welding of the first tubular failed through a suspected material problem. The second fabricated tubular welded without difficulty. However it was necessary to constrain it during welding and it subsequently distorted during machining. There was some evidence of hot tearing close to the weld. The distortion problem may be overcome by a stress relieving anneal but this could cause further grain size problems. 19 refs

  4. Evolution of a test article handling system for the SP-100 ground engineering system test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Devies, S.M.

    1987-04-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the Nuclear Assembly Test Article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operations. Westinghouse Hanford Company, the Test Site Operator, working in conjunction with General Electric Company, the Test Article supplier, developed and evaluated several handling concepts resulting in the selection of a reference Test Article Handling System. The development of the reference concept for the handling system is presented

  5. The remote handling systems for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Isabel, E-mail: mir@isr.ist.utl.pt [Institute for Systems and Robotics/Instituto Superior Tecnico, Lisboa (Portugal); Damiani, Carlo [Fusion for Energy, Barcelona (Spain); Tesini, Alessandro [ITER Organization, Cadarache (France); Kakudate, Satoshi [ITER Tokamak Device Group, Japan Atomic Energy Agency, Ibaraki (Japan); Siuko, Mikko [VTT Systems Engineering, Tampere (Finland); Neri, Carlo [Associazione EURATOM ENEA, Frascati (Italy)

    2011-10-15

    The ITER remote handling (RH) maintenance system is a key component in ITER operation both for scheduled maintenance and for unexpected situations. It is a complex collection and integration of numerous systems, each one at its turn being the integration of diverse technologies into a coherent, space constrained, nuclearised design. This paper presents an integrated view and recent results related to the Blanket RH System, the Divertor RH System, the Transfer Cask System (TCS), the In-Vessel Viewing System, the Neutral Beam Cell RH System, the Hot Cell RH and the Multi-Purpose Deployment System.

  6. Scoping calculations for canister-tunnel migration of corrodants, oxidants and radionuclides

    International Nuclear Information System (INIS)

    Shaw, W.; Worth, D.

    1992-03-01

    This report presents the mathematical models and results obtained for a set of scooping calculations which estimate the possible extent of the vertical migration of canister corrodants, oxidants (forming a redox front) and radionuclides between a copper canister containing spent nuclear fuel, and an overlying emplacement tunnel. The KBS-3 concept for the disposal of spent nuclear fuel is copper canisters, vertically emplaced in deposition holes bored in the floor of a tunnel, situated deep underground. The deposition holes are filled with a buffer of bentonite and the tunnel is backfilled with a mixture of sand and bentonite. (au)

  7. Criticality safety evaluation report for the Cold Vacuum Drying Facility's process water handling system

    International Nuclear Information System (INIS)

    Roblyer, S.D.

    1998-01-01

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO's interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck

  8. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    Rajainmaeki, H.; Nieminen, M.; Laakso, L.

    1991-08-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for spent fuel repository are discussed. The capsule design is based on the TVO's new advanced cold process concept where a steel canister is surrounded by the oxygen free copper canister. This study shows that already at present there exist several possible manufacturing routes, which result in consistently high quality canisters. Hot rolling, bending and EB-welding the seam is the best way to assure the small grain size which is preferable for the best inspectability of the final EB-welded seam of the lid. The same route turns out also to be the most economical

  9. Production methods and costs of oxygen free copper canisters for nuclear waste disposal

    International Nuclear Information System (INIS)

    Rajainmaeki, H.; Nieminen, M.; Laakso, L.

    1991-06-01

    The fabrication technology and costs of various manufacturing alternatives to make large copper canisters for spent fuel repository are discussed. The capsule design is based on the TVO's new advanced cold process concept where a steel canister is surrounded by the oxygen free copper canister. This study shows that already at present there exist several possible manufacturing routes, which results in consistently high quality canisters. Hot rolling, bending and EB-welding the seam is the best way to assure the small grain size which is preferable for the best inspectability of the final EB-welded seam of the lid. The same route turns out also to be the most economical. (au)

  10. Mechanical Integrity of Copper Canister Lid and Cylinder. Sensitivity study

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-08-01

    This report is part of a study of the mechanical integrity of canisters used for disposal of nuclear fuel waste. The overall objective is to determine and ensure the static and long-term strength of the copper canister lid and cylinder casing. The canisters used for disposal nuclear fuel waste of type BWR consists of an inner part (insert) of ductile cast iron and an outer part of copper. The copper canister is to provide a sealed barrier between the contents of the canister and the surroundings. The study in this report complements the finite element analyses performed in an earlier study. The analyses aim to evaluate the sensitivity of the canister to tolerances regarding the gap between the copper cylinder and the cast iron insert. Since great uncertainties regarding the material's long term creep properties prevail, analyses are also performed to evaluate the effect of different creep data on the resulting strain and stress state. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from groundwater at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; and Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are performed for two of the load cases. For all considered designs high principal stresses appear on the outside of the copper cylinder in the region from the weld down to the level of the lid lower edge. Altering the gap between lid and cylinder and/or between cylinder and insert only marginally affects the resulting stress state. Fitting the lid in the cylinder

  11. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    Science.gov (United States)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  12. Design features of the radioactive Liquid-Fed Ceramic Melter system

    International Nuclear Information System (INIS)

    Holton, L.K. Jr.

    1985-06-01

    During 1983, the Pacific Northwest Laboratory (PNL), at the request of the Department of Energy (DOE), undertook a program with the principal objective of testing the Liquid-Fed Ceramic Melter (LFCM) process in actual radioactive operations. This activity, termed the Radioactive LFCM (RLFCM) Operations is being conducted in existing shielded hot-cell facilities in B-Cell of the 324 Building, 300 Area, located at Hanford, Washington. This report summarizes the design features of the RLFCM system. These features include: a waste preparation and feed system which uses pulse-agitated waste preparation tanks for waste slurry agitation and an air displacement slurry pump for transferring waste slurries to the LFCM; a waste vitrification system (LFCM) - the design features, design approach, and reasoning for the design of the LFCM are described; a canister-handling turntable for positioning canisters underneath the RLFCM discharge port; a gamma source positioning and detection system for monitoring the glass fill level of the product canisters; and a primary off-gas treatment system for removing the majority of the radionuclide contamination from the RLFCM off gas. 8 refs., 48 figs., 6 tabs

  13. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    International Nuclear Information System (INIS)

    Xiong, Rui; Siegel, David; Ross, David

    2014-01-01

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity

  14. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  15. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Energy Technology Data Exchange (ETDEWEB)

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)

    2001-04-01

    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  16. Shippingport Spent Fuel Canister (SSFC) Design Report Project W-518

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    The SSFC Design Report Describes A spent fuel canister for Shippingport Core 2 blanket fuel assemblies. The design of the SSFC is a minor modification of the MCO. The modification is limited to the Shield Plug which remains unchanged with regard to interfaces with the canister shell. The performance characteristics remain those for the MCO, which bounds the payload of the SSFC

  17. Tests for manufacturing technology of disposal canisters for nuclear spent fuel

    International Nuclear Information System (INIS)

    Raiko, H.; Salonen, T.; Meuronen, I.; Lehto, K.

    1999-06-01

    The summary and status of the results of the manufacturing technology programmes concerning the disposal canister for spent nuclear fuel conducted by Posiva Oy are given in this report. Posiva has maintained a draft plan for a disposal canister design and an assessment of potential manufacturing technologies for about ten years in Finland. Now, during the year 1999, the first full scale demonstration canister is manufactured in Finland. The technology used for manufacturing of this prototype is developed by Posiva Oy mainly in co-operation with domestic industry. The main partner in developing the manufacturing technology for the copper shell has been Outokumpu Poricopper Oy, Pori, Finland, and the main partner in developing the technology for the iron insert of the canister has been Valmet Oyj Rautpohja Foundry, Jyvaeskylae, Finland. In both areas many subcontractors have been used, predominantly domestic engineering workshops, but also some foreign subcontractors, e.g. for EB-welding, who have had large enough welding equipment. This report describes the developing programmes for canister manufacturing, evaluates the results and presents some alternative methods, and tries to evaluate the pros and contras of them. In addition, the adequacy of the achieved technological know-how is assessed in respect of the required quality of the disposal canister. The following manufacturing technologies have been the concrete topics of the development programme: Electron beam welding technology development for thick-walled copper, Casting of massive copper billets, Hot rolling of thick-walled copper plates, Hot pressing and forging in lid manufacture, Extrusion and drawing of copper tubes, Bending of copper plates by roller or press, Machining of copper, Residual stress removal by heat treatment, Non-destructive testing, Long-term strength of EB-welds, Casting and machining of the iron insert of the canister The specialists from all the main developing partner companies have

  18. Enhanced Earthquake-Resistance on the High Level Radioactive Waste Canister

    International Nuclear Information System (INIS)

    Choi, Youngchul; Yoon, Chanhoon; Lee, Jeaowan; Kim, Jinsup; Choi, Heuijoo

    2014-01-01

    In this paper, the earthquake-resistance type buffer was developed with the method protecting safely about the earthquake. The main parameter having an effect on the earthquake-resistant performance was analyzed and the earthquake-proof type buffer material was designed. The shear analysis model was developed and the performance of the earthquake-resistance buffer material was evaluated. The dynamic behavior of the radioactive waste disposal canister was analyzed in case the earthquake was generated. In the case, the disposal canister gets the serious damage. In this paper, the earthquake-resistance buffer material was developed in order to prevent this damage. By putting the buffer in which the density is small between the canister and buffer, the earthquake-resistant performance was improved about 80%

  19. Protecting worker health and safety using remote handling systems

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reed, R.K.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is currently developing and installing two large-scale, remotely controlled systems for use in improving worker health and safety by minimizing exposure to hazardous and radioactive materials. The first system is a full-scale liquid feed system for use in delivering chemical reagents to LLNL's existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). The Tank Farm facility is used to remove radioactive and toxic materials in aqueous wastes prior to discharge to the City of Livermore Water Reclamation Plant (LWRP), in accordance with established discharge limits. Installation of this new reagent feed system improves operational safety and process efficiency by eliminating the need to manually handle reagents used in the treatment processes. This was done by installing a system that can inject precisely metered amounts of various reagents into the treatment tanks and can be controlled either remotely or locally via a programmable logic controller (PLC). The second system uses a robotic manipulator to remotely handle, characterize, process, sort, and repackage hazardous wastes containing tritium. This system uses an IBM-developed gantry robot mounted within a special glove box enclosure designed to isolate tritiated wastes from system operators and minimize the potential for release of tritium to the atmosphere. Tritiated waste handling is performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. The system is compatible with an existing portable gas cleanup unit designed to capture any gas-phase tritium inadvertently released into the glove box during waste handling

  20. Test manufacturing of copper canisters with cast inserts. Assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C.G

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  1. Test manufacturing of copper canisters with cast inserts. Assessment report

    International Nuclear Information System (INIS)

    Andersson, C.G.

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  2. Test plan for K Basin Sludge Canister and Floor Sampling Device

    International Nuclear Information System (INIS)

    Meling, T.A.

    1995-01-01

    This document provides the test plan and procedure forms for conducting the functional and operational acceptance testing of the K Basin Sludge Canister and Floor Sampling Device(s). These samplers samples sludge off the floor of the 100K Basins and out of 100K fuel storage canisters

  3. A smartphone controlled handheld microfluidic liquid handling system.

    Science.gov (United States)

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  4. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  5. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  6. Spent nuclear fuel project multi-canister overpack, additional NRC requirements

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1998-01-01

    The US Department of Energy (DOE), established in the K Basin Spent Nuclear Fuel Project Regulatory Policy, dated August 4, 1995 (hereafter referred to as the Policy), the requirement for new Spent Nuclear Fuel (SNF) Project facilities to achieve nuclear safety equivalency to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. For activities other than during transport, when the Multi-Canister Overpack (MCO) is used and resides in the Canister Storage Building (CSB), Cold Vacuum Drying (CVD) facility or Hot Conditioning System, additional NRC requirements will also apply to the MCO based on the safety functions it performs and its interfaces with the SNF Project facilities. An evaluation was performed in consideration of the MCO safety functions to identify any additional NRC requirements needed, in combination with the existing and applicable DOE requirements, to establish nuclear safety equivalency for the MCO. The background, basic safety issues and general comparison of NRC and DOE requirements for the SNF Project are presented in WHC-SD-SNF-DB-002

  7. MFTF exception handling system

    International Nuclear Information System (INIS)

    Nowell, D.M.; Bridgeman, G.D.

    1979-01-01

    In the design of large experimental control systems, a major concern is ensuring that operators are quickly alerted to emergency or other exceptional conditions and that they are provided with sufficient information to respond adequately. This paper describes how the MFTF exception handling system satisfies these requirements. Conceptually exceptions are divided into one of two classes. Those which affect command status by producing an abort or suspend condition and those which fall into a softer notification category of report only or operator acknowledgement requirement. Additionally, an operator may choose to accept an exception condition as operational, or turn off monitoring for sensors determined to be malfunctioning. Control panels and displays used in operator response to exceptions are described

  8. Development of a facility for fabricating nuclear waste canisters from radioactively contaminated steel

    International Nuclear Information System (INIS)

    Logan, J.A.; Larsen, M.M.

    1986-01-01

    This paper describes design of a facility and processes capable of using radioactively contaminated waste steel as the principal raw material for fabricating stainless steel canisters to be used for disposal of nuclear high-level waste. By such action, expenditure (i.e., permanent loss to society) of thousands of tons of uncontaminated chromium and nickel to fabricate such canisters can be avoided. Moreover, the cost and risks involved in disposing of large accumulations of radioactively contaminated steel as low-level radioactive waste (LLRW), that would otherwise be necessary, can also be avoided. The canister fabrication processes (involving centrifugal casting) described herein have been tested and proven for this application. The performance characteristics of stainless steel canisters so fabricated have been tested and agreed to by the organizations that have been involved in this development work (Battelle Memorial Institute, DuPont, EGandG and the Savannah River Laboratory) as equivalent to the performance characteristics of canisters fabricated of uncontaminated wrought stainless steel. It is estimated that the production cost for fabricating canisters by the methods described will not differ greatly from the production cost using uncontaminated wrought steel, and the other costs avoided by not having to dispose of the contaminated steel as LLRW could cause this method to produce the lowest ultimate overall costs

  9. Gas-handling system for studies of tritium-containing materials

    International Nuclear Information System (INIS)

    Carstens, D.H.W.

    1975-01-01

    A gas handling system for preparation and study of tritium containing compounds and materials is described. The system at any one time can handle amounts of DT gas up to about 3 moles and has provisions for purification, storage, and measurement of the gas. Experimental conditions covering the ranges 20 to 800 0 C and 0.1 Pa to 137 MPa (10 -2 torr to 20,000 psi) can be maintained. (auth)

  10. Corrosion resistance of metal materials for HLW canister

    International Nuclear Information System (INIS)

    Furuya, Takashi; Muraoka, Susumu; Tashiro, Shingo

    1982-02-01

    In order to verify the materials as an important artificial barrier for canister of vitrified high-level waste from spent fuel reprocessing, data and reports were researched on corrosion resistance of the materials under conditions from glass form production to final disposal. Then, in this report, investigated subjects, improvement methods and future subjects are reviewed. It has become clear that there would be no problem on the inside and outside corrosion of the canister during glass production, but long term corrosion and radiation effect tests and the vitrification methods would be subjects in future on interim storage and final disposal conditions. (author)

  11. Cost analysis for application of solidified waste fission product canisters in U.S. Army steam plants

    International Nuclear Information System (INIS)

    Sande, W.E.; Bjorklund, W.J.; Brooks, N.A.

    1977-04-01

    The main objectives of the present study are to design steam plants using projected waste fission product canister characteristics, to analyze the overall impact and cost/benefit to the nuclear fuel cycle associated with these plants, and to develop plans for this application if the cost analysis so warrants it. The construction and operation of a steam plant fueled with waste fission product canisters would require the involvement and cooperation of various government agencies and private industry; thus the philosophies of these groups were studied. These philosophies are discussed, followed by a forecast of canister supply, canister characteristics, and strategies for Army canister use. Another section describes the safety and licensing of these steam plants since this affects design and capital costs. The discussion of steam plant design includes boiler concepts, boiler heat transfer, canister temperature distributions, steam plant size, and steam plant operation. Also, canister transportation is discussed since this influences operating costs. Details of economics of Army steam plants are provided including steam plant capital costs, operating costs, fuel reprocessor savings due to Army canister storage, and overall economics. Recommendations are made in the final section

  12. Inspection of disposal canisters components

    International Nuclear Information System (INIS)

    Pitkaenen, J.

    2013-12-01

    This report presents the inspection techniques of disposal canister components. Manufacturing methods and a description of the defects related to different manufacturing methods are described briefly. The defect types form a basis for the design of non-destructive testing because the defect types, which occur in the inspected components, affect to choice of inspection methods. The canister components are to nodular cast iron insert, steel lid, lid screw, metal gasket, copper tube with integrated or separate bottom, and copper lid. The inspection of copper material is challenging due to the anisotropic properties of the material and local changes in the grain size of the copper material. The cast iron insert has some acoustical material property variation (attenuation, velocity changes, scattering properties), which make the ultrasonic inspection demanding from calibration point of view. Mainly three different methods are used for inspection. Ultrasonic testing technique is used for inspection of volume, eddy current technique, for copper components only, and visual testing technique are used for inspection of the surface and near surface area

  13. Miniature Canister (MiniCan) Corrosion Experiment Progress Report 3 for 2008-2010

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Reddy, B.; Rance, A.P. (Serco (United Kingdom))

    2011-08-15

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small-scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2010. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows two earlier progress reports presenting results up to December 2009. The current document (progress report 3) describes work up to December 2010. The current report presents the results of the water analyses

  14. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  15. Very deep borehole. Deutag's opinion on boring, canister emplacement and retrievability

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Tim [Well Engineering Partners BV, The Hague (Netherlands)

    2000-05-01

    An engineering feasibility study has been carried out to determine whether or not it is possible to drill the proposed Very Deep Borehole concept wells required by SKB for nuclear waste disposal. A conceptual well design has been proposed. All aspects of well design have been considered, including drilling tools, rig design, drilling fluids, casing design and annulus isolation. The proposed well design is for 1168.4 mm hole to be drilled to 500 m. A 1066.8 mm outer diameter (OD) casing will be run and cemented. A 1016 mm hole will be drilled to approximately 2000 m, where 914.4 mm OD casing will be run. This annulus will be sealed with bentonite slurry apart from the bottom 100 m which will be cemented. 838.2 mm hole will be drilled to a final depth of 4000 m, where 762 mm OD slotted casing will be run. All the hole sections will be drilled using a downhole hammer with foam as the drilling fluid medium. Prior to running each casing string, the hole will be displaced to mud to assist with casing running and cementing. The waste canisters will be run on a simple J-slot tool, with integral backup system in case the J-slot fails. The canisters will all be centralised. Canisters can be retrieved using the same tool as used to run them. Procedures are given for both running and retrieving. Logging and testing is recommended only in the exploratory wells, in a maximum hole size of 311.1 mm. This will require the drilling of pilot holes to enable logging and testing to take place. It is estimated that each well will take approximately 137 days to drill and case, at an estimated cost of 4.65 Meuro per well. This time and cost estimate does not include any logging, testing, pilot hole drilling or time taken to run the canisters. New technology developments to enhance the drilling process are required in recyclable foam systems, in hammer bit technology, and in the development of robust under-reamers. It is the authors conclusion that it is possible to drill the well with

  16. Very deep borehole. Deutag's opinion on boring, canister emplacement and retrievability

    International Nuclear Information System (INIS)

    Harrison, Tim

    2000-05-01

    An engineering feasibility study has been carried out to determine whether or not it is possible to drill the proposed Very Deep Borehole concept wells required by SKB for nuclear waste disposal. A conceptual well design has been proposed. All aspects of well design have been considered, including drilling tools, rig design, drilling fluids, casing design and annulus isolation. The proposed well design is for 1168.4 mm hole to be drilled to 500 m. A 1066.8 mm outer diameter (OD) casing will be run and cemented. A 1016 mm hole will be drilled to approximately 2000 m, where 914.4 mm OD casing will be run. This annulus will be sealed with bentonite slurry apart from the bottom 100 m which will be cemented. 838.2 mm hole will be drilled to a final depth of 4000 m, where 762 mm OD slotted casing will be run. All the hole sections will be drilled using a downhole hammer with foam as the drilling fluid medium. Prior to running each casing string, the hole will be displaced to mud to assist with casing running and cementing. The waste canisters will be run on a simple J-slot tool, with integral backup system in case the J-slot fails. The canisters will all be centralised. Canisters can be retrieved using the same tool as used to run them. Procedures are given for both running and retrieving. Logging and testing is recommended only in the exploratory wells, in a maximum hole size of 311.1 mm. This will require the drilling of pilot holes to enable logging and testing to take place. It is estimated that each well will take approximately 137 days to drill and case, at an estimated cost of 4.65 Meuro per well. This time and cost estimate does not include any logging, testing, pilot hole drilling or time taken to run the canisters. New technology developments to enhance the drilling process are required in recyclable foam systems, in hammer bit technology, and in the development of robust under-reamers. It is the authors conclusion that it is possible to drill the well with

  17. Effect of canister size on costs of disposal of SRP high-level wastes

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1982-01-01

    The current plan for managing the high-level nuclear wastes at the Savannah River Plant (SRP) calls for processing them into solid forms contained in stainless steel canisters for eventual disposal in a federal geologic repository. A new SRP facility called the Defense Waste Processing Facility (DWPF) is being designed for the onsite waste processing operations. Preliminary evaluations indicate that costs of the overall disposal operation will depend significantly on the size of the canisters, which determines the number of waste forms to be processed. The objective of this study was to evaluate the effects of canister size on costs of DWPF process operations, including canister procurement, waste solidification, and interim storage, on offsite transport, and on repository costs of disposal, including provision of suitable waste packages

  18. Development and demonstration of prototype transportation equipment for emplacing HL vitrified waste canisters into small diameter bored horizontal disposal cells

    International Nuclear Information System (INIS)

    Seidler, Wolf K.; Bosgiraud, Jean-Michel; Londe, Louis

    2008-01-01

    Over a period of 4 and years the National Radioactive Waste Management Agency (Andra), working with a variety of Contractors mostly specializing in nuclear orientated mechanical applications, successfully designed, fabricated and demonstrated 2 very different prototype high level waste transport systems. The first system, based on air cushion technology, was developed primarily for very heavy loads (17 to 45 tonnes). The results of this work are described in a separate presentation (Paper 21) at this Conference. The second system, developed by Andra within the framework of the ESDRED Project, generally referred to as the 'Pushing Robot System' for vitrified waste canisters, is the subject of this paper. The 'Pushing Robot System' is a part of the French national disposal concept that is described in Andra's 'Dossier 2005'. The latter is a public document that can be viewed on Andra's web site (www.andra.fr). The 'Pushing Robot System' system is designed for the deep geological disposal (in clay formations) of 'C' type vitrified waste canisters. In its entirety the system provides for the transport, emplacement and, if necessary, the retrieval of those canisters. Nothing in the design of the Andra emplacement equipment would preclude its utilization in horizontal openings in other types of geological settings. Over a period of some 8 years Andra has developed the 'Pushing Robot System' in 3 phases. Initially there was only the 'Conceptual Design' (Phase 1) which was incorporated in the Dossier 2005. This was followed by Phase 2 i.e. the design and fabrication of a simplified full scale prototype system henceforth referred to a P1, which includes a Pushing Robot, a Dummy Canister and a Test Bench. P1 details were also incorporated in the Dossier 2005. Finally, during Phase 3, a second more comprehensive full scale prototype system P2 has been designed and is being assembled and tested this month. This system includes a Transport Shuttle, a Transfer Shielding Cask, a

  19. Friction stir welding - an alternative method for sealing nuclear waste storage canisters

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.E. [TWI Ltd, Cambridge (United Kingdom)

    2004-12-01

    When welding 50 mm thick copper a very high heat input is required to combat the high thermal diffusivity and only the Electron Beam Welding (EBW) process had this capability when this copper canister concept was conceived. Despite the encouraging results achieved using EBW with thick section copper, SKB felt that it would be prudent to assess other joining methods. This assessment concluded that friction welding, could also provide very high quality welds to satisfy the service life requirements of the SKB canister design. A friction welding variant called Friction Stir Welding (FSW) was shown to have the capability of welding 3 mm thick copper sheet with excellent integrity and reproducibility. This later provided sufficient encouragement for SKB to consider the potential of FSW as a method for joining thick section copper, using relatively simple machine tool based technology. It was thought that FSW might provide an alternative or complementary method for welding lids, or bases to canisters. In 1997 an FSW development programme started at TWI, focussed on the feasibility of welding 10 mm thick copper plate. Once this task was successfully completed, work continued to demonstrate that progressively thicker plate, up to 50 mm thick, could be joined. At this stage, with process viability established, a full size experimental FSW canister machine was designed and built. Work with this machine finished in January 2003, when it had been shown that FSW could definitely be used to weld lids to full size canisters. This report summarises the TWI development of FSW for SKB from 1997 to January 2003. It also highlights the important aspects of the process and the project milestones that will help to ensure that SKB has a welding technology that can be used with confidence for production fabrication of copper waste storage canisters in the future. The overall conclusion to this FSW development is that there is no doubt that the FSW process could be used to produce full

  20. Friction stir welding - an alternative method for sealing nuclear waste storage canisters

    International Nuclear Information System (INIS)

    Andrews, R.E.

    2004-12-01

    When welding 50 mm thick copper a very high heat input is required to combat the high thermal diffusivity and only the Electron Beam Welding (EBW) process had this capability when this copper canister concept was conceived. Despite the encouraging results achieved using EBW with thick section copper, SKB felt that it would be prudent to assess other joining methods. This assessment concluded that friction welding, could also provide very high quality welds to satisfy the service life requirements of the SKB canister design. A friction welding variant called Friction Stir Welding (FSW) was shown to have the capability of welding 3 mm thick copper sheet with excellent integrity and reproducibility. This later provided sufficient encouragement for SKB to consider the potential of FSW as a method for joining thick section copper, using relatively simple machine tool based technology. It was thought that FSW might provide an alternative or complementary method for welding lids, or bases to canisters. In 1997 an FSW development programme started at TWI, focussed on the feasibility of welding 10 mm thick copper plate. Once this task was successfully completed, work continued to demonstrate that progressively thicker plate, up to 50 mm thick, could be joined. At this stage, with process viability established, a full size experimental FSW canister machine was designed and built. Work with this machine finished in January 2003, when it had been shown that FSW could definitely be used to weld lids to full size canisters. This report summarises the TWI development of FSW for SKB from 1997 to January 2003. It also highlights the important aspects of the process and the project milestones that will help to ensure that SKB has a welding technology that can be used with confidence for production fabrication of copper waste storage canisters in the future. The overall conclusion to this FSW development is that there is no doubt that the FSW process could be used to produce full

  1. WWER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2001-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two FHM Control System units have been already supplied for Temelin NPP and others supplies are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China. The Fuel Handling Machine (FHM) Control System is an integrated system capable of a complete management of nuclear fuel assemblies. The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide. The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders). All control logic components were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing an easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure

  2. Test design requirements: Canister-scale heater test

    International Nuclear Information System (INIS)

    Schauer, M.I.; Craig, P.A.; Stickney, R.G.

    1986-03-01

    This document establishes the Test Design Requirements for the design of a canister scale heater test to be performed in the Exploratory Shaft test facility. The purpose of the test is to obtain thermomechanical rock mass response data for use in validation of the numerical models. The canister scale heater test is a full scale simulation of a high-level nuclear waste container in a prototypic emplacement borehole. Electric heaters are used to simulate the heat loads expected in an actual waste container. This document presents an overview of the test including objectives and justification for the test. A description of the test as it is presently envisioned is included. Discussions on Quality Assurance and Safety are also included in the document. 12 refs., 1 fig

  3. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    International Nuclear Information System (INIS)

    Pierce, G.D.; Wolaver, R.W.; Carson, P.H.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs

  4. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  5. Recommendations for codes and standards to be used for design and fabrication of high level waste canister

    International Nuclear Information System (INIS)

    Bermingham, A.J.; Booker, R.J.; Booth, H.R.; Ruehle, W.G.; Shevekov, S.; Silvester, A.G.; Tagart, S.W.; Thomas, J.A.; West, R.G.

    1978-01-01

    This study identifies codes, standards, and regulatory requirements for developing design criteria for high-level waste (HLW) canisters for commercial operation. It has been determined that the canister should be designed as a pressure vessel without provision for any overpressure protection type devices. It is recommended that the HLW canister be designed and fabricated to the requirements of the ASME Section III Code, Division 1 rules, for Code Class 3 components. Identification of other applicable industry and regulatory guides and standards are provided in this report. Requirements for the Design Specification are found in the ASME Section III Code. It is recommended that design verification be conducted principally with prototype testing which will encompass normal and accident service conditions during all phases of the canister life. Adequacy of existing quality assurance and licensing standards for the canister was investigated. One of the recommendations derived from this study is a requirement that the canister be N stamped. In addition, acceptance standards for the HLW waste should be established and the waste qualified to those standards before the canister is sealed. A preliminary investigation of use of an overpack for the canister has been made, and it is concluded that the use of an overpack, as an integral part of overall canister design, is undesirable, both from a design and economics standpoint. However, use of shipping cask liners and overpack type containers at the Federal repository may make the canister and HLW management safer and more cost effective. There are several possible concepts for canister closure design. These concepts can be adapted to the canister with or without an overpack. A remote seal weld closure is considered to be one of the most suitable closure methods; however, mechanical seals should also be investigated

  6. Multi-Canister overpack inservice inspection and maintenance

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The factors to be considered in establishing inservice inspection and maintenance requirements for the Multi-Canister Overpack (MCO) include evaluating the likelihood of degradation to the MCO pressure boundary due to erosion and corrosion, reviewing commercial practice for NRC licensed spent nuclear fuel storage systems, and examining the individual MCO components for maintenance needs. Reviews of the potential for MCO erosion and corrosion conclude that neither will pose a threat to the MCO pressure boundary. Consistent with commercial practice for spent fuel storage systems, the MCO closure weld will be helium leak tested prior to placement in interim storage. Beyond the CSB facility related monitoring plans (radiological monitoring, emissions monitoring, vault cooling data, etc.), no inservice inspection or maintenance of the MCO is required during interim storage

  7. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  8. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    International Nuclear Information System (INIS)

    Colleen Shelton-Davis

    2005-01-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system

  9. SLSF loop handling system. Volume I. Structural analysis

    International Nuclear Information System (INIS)

    Ahmed, H.; Cowie, A.; Ma, D.

    1978-10-01

    SLSF loop handling system was analyzed for deadweight and postulated dynamic loading conditions, identified in Chapters II and III in Volume I of this report, using a linear elastic static equivalent method of stress analysis. Stress analysis of the loop handling machine is presented in Volume I of this report. Chapter VII in Volume I of this report is a contribution by EG and G Co., who performed the work under ANL supervision

  10. The effect of discontinuities on the corrosion behaviour of copper canisters

    International Nuclear Information System (INIS)

    King, F.

    2004-03-01

    Discontinuities may remain in the weld region of copper canisters following the final closure welding and inspection procedures. Although the shell of the copper canister is expected to exhibit excellent corrosion properties in the repository environment, the question remains what impact these discontinuities might have on the long-term performance and service life of the canister. A review of the relevant corrosion literature has been carried out and an expert opinion of the impact of these discontinuities on the canister lifetime has been developed. Since the amount of oxidant in the repository is limited and the maximum wall penetration is expected to be 2 O/Cu(OH) 2 film at a critical electrochemical potential determines where and when pits initiate, not the presence of pit-shaped surface discontinuities. The factors controlling pit growth and death are well understood. There is evidence for a maximum pit radius for copper in chloride solutions, above which the small anodic: cathodic surface area ratio required for the formation of deep pits cannot be sustained. This maximum pit radius is of the order of 0.1-0.5 mm. Surface discontinuities larger than this size are unlikely to propagate as pits, and pits generated from smaller discontinuities will die once they reach this maximum size. Death of propagating pits will be compounded by the decrease in oxygen flux to the canister as the repository environment becomes anoxic. Surface discontinuities could impact the SCC behaviour either through their effect on the local environment or via stress concentration or intensification. There is no evidence that surface discontinuities will affect the initiation of SCC by ennoblement of the corrosion potential or the formation of locally aggressive conditions. Stress concentration at pits could lead to crack initiation under some circumstances, but the stress intensity factor for the resultant cracks, or for pre-existing crack-like discontinuities, will be smaller than the

  11. 42 CFR 84.1155 - Filters used with canisters and cartridges; location; replacement.

    Science.gov (United States)

    2010-10-01

    ...; location; replacement. 84.1155 Section 84.1155 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1155 Filters used with canisters and cartridges; location; replacement. (a) Particulate matter filters used in conjunction with a canister or cartridge...

  12. Acceptance for Beneficial Use for the Canister Cleaning System for the K West basin Project - A.2.A

    International Nuclear Information System (INIS)

    FARWICK, C.C.

    2000-01-01

    This documents the documentation that is required to be turned over to Operations with the Canister Cleaning System (CCS). The Acceptance for Beneficial Use will be updated as required prior to turnover. This document is prepared for the purposes of documenting an agreement among the various disciplines and organizations within the Spent Nuclear Fuel (SNF) Project as to what is required in terms of installed components of the CCS. This documentation will be used to achieve project closeout and turnover of ownership of the CCS to K Basins Operations

  13. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    International Nuclear Information System (INIS)

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses

  14. High-level waste canister envelope study: structural analysis

    International Nuclear Information System (INIS)

    1977-11-01

    The structural integrity of waste canisters, fabricated from standard weight Type 304L stainless steel pipe, was analyzed for sizes ranging from 8 to 24 in. diameter and 10 to 16 feet long under normal, abnormal, and improbable life cycle loading conditions. The canisters are assumed to be filled with vitrified high-level nuclear waste, stored temporarily at a fuel reprocessing plant, and then transported for storage in an underground salt bed or other geologic storage. In each of the three impact conditions studies, the resulting impact force is far greater than the elastic limit capacity of the material. Recommendations are made for further study

  15. VVER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2002-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two Fuel Handling Machine (FHM) Control System units have been already supplied for Temelin NPP and others supply are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China.The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide.The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders).All control logic were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing and easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure of 1090 Work-stations (APMS - Advanced Plant Monitoring System, or Tenore NT) has been successfully used to interface the

  16. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    International Nuclear Information System (INIS)

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  17. Multi-canister overpack operations and maintenance manual

    International Nuclear Information System (INIS)

    PIERCE, S.R.

    1999-01-01

    This manual provides general operating and maintenance instructions for the Multi-Canister Overpack. Procedure outlines included are conceptual in nature and will be modified, expanded, and refined during preparation of detailed operating procedures

  18. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Gorpani, B.

    2000-01-01

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed

  19. Handling system for nuclear fuel pellet inspection

    International Nuclear Information System (INIS)

    Nyman, D.H.; McLemore, D.R.; Sturges, R.H.

    1978-11-01

    HEDL is developing automated fabrication equipment for fast reactor fuel. A major inspection operation in the process is the gaging of fuel pellets. A key element in the system has been the development of a handling system that reliably moves pellets at the rate of three per second without product damage or excessive equipment wear

  20. Criticality safety for TMI-2 canister storage at INEL

    International Nuclear Information System (INIS)

    Jones, R.R.; Briggs, J.B.; Ayers, A.L. Jr.

    1986-01-01

    Canisters containing Three Mile Island Unit 2 (TMI-2) core debris will be researched, stored, and prepared for final disposition at the Idaho National Engineering Laboratory (INEL). The canisters will be placed into storage modules and assembled into a storage rack, which will be located in the Test Area North (TAN) storage pool. Criticality safety calculations were made (a) to ensure that the storage rack is safe for both normal and accident conditions and (b) to determine the effects of degradation of construction materials (Boraflex and polyethylene) on criticality safety

  1. Numerical Modelling of Mechanical Integrity of the Copper-Cast Iron Canister. A Literature Review

    International Nuclear Information System (INIS)

    Lanru Jing

    2004-04-01

    This review article presents a summary of the research works on the numerical modelling of the mechanical integrity of the composite copper-cast iron canisters for the final disposal of Swedish nuclear wastes, conducted by SKB and SKI since 1992. The objective of the review is to evaluate the outstanding issues existing today about the basic design concepts and premises, fundamental issues on processes, properties and parameters considered for the functions and requirements of canisters under the conditions of a deep geological repository. The focus is placed on the adequacy of numerical modelling approaches adopted in regards to the overall mechanical integrity of the canisters, especially the initial state of canisters regarding defects and the consequences of their evolution under external and internal loading mechanisms adopted in the design premises. The emphasis is the stress-strain behaviour and failure/strength, with creep and plasticity involved. Corrosion, although one of the major concerns in the field of canister safety, was not included

  2. Drop of canistered spent fuel segments into a deep borehole and subsequent aerosol release

    International Nuclear Information System (INIS)

    Bantle, S.; Herbe, H.; Miu, J.

    1991-09-01

    The source term of the released aerosols is estimated. First, the number of failing canisters is calculated for the case of an axial symmetric canister (POLLUX) pile, and then, for the case of a 'zig-zag' pile, as found in reality. The weight-specific energy acting on the fuel - a measure for the degree of fuel fractioning - is determined from the acceleration acting on the pin segments. In the borehole prevails a steady-state flow pattern which is stimulated by the heat of the disposed waste canister, and is also influenced by the ventilation of the drift above the borehole. Based on this stationary flow pattern flow velocities are calculated by means of fluid mechanical methods. Further investigations deal with the unsteady case which occurs during and immediately after the canister drop as well as with the wake behind the canister. The most relevant result is that under the considered boundary conditions no release form the borehole into the repository is to be expected. (orig./HP) [de

  3. Physical properties of encapsulate spent fuel in canisters; Comportamiento fisico de las capsulas de almacenamiento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Spent fuel and high-level wastes will be permanently stored in a deep geological repository (AGP). Prior to this, they will be encapsulated in canisters. The present report is dedicated to the study of such canisters under the different physical demands that they may undergo, be those in operating or accident conditions. The physical demands of interest include mechanical demands, both static and dynamic, and thermal demands. Consideration is given to the complete file of the canister, from the time when it is empty and without lid to the final conditions expected in the repository. Thermal analyses of canisters containing spent fuel are often carried out in two dimensions, some times with hypotheses of axial symmetry and some times using a plane transverse section through the centre of the canister. The results obtained in both types of analyses are compared here to those of complete three-dimensional analyses. The latter generate more reliable information about the temperatures that may be experienced by the canister and its contents; they also allow calibrating the errors embodied in the two-dimensional calculations. (Author)

  4. Feasibility study of CANDU-9 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.

    1996-12-01

    CANDU`s combination of natural uranium, heavy water and on-power refuelling is unique in its design and remarkable for reliable power production. In order to offer more output, better site utilization, shorter construction time, improved station layout, safety enhancements and better control panel layout, CANDU-9 is now under development with design improvement added to all proven CANDU advantages or applicable technologies. One of its major improvement has been applied to fuel handling system. This system is very similar to that of CANDU-3, and some parts of the system are applied to those of the existing CANDU-6 or CANDU-9. Design concepts and design requirements of fuel handling system for CANDU-9 have been identified to compare with those of the existing CANDU and the design feasibilities have been evaluated. (author). 4 tabs., 13 figs., 9 refs.

  5. Canister storage building natural phenomena design loads

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site

  6. Thermal-hydraulic assessment of concrete storage cubicle with horizontal 3013 canisters

    Energy Technology Data Exchange (ETDEWEB)

    HEARD, F.J.

    1999-04-08

    The FIDAP computer code was used to perform a series of analyses to assess the thermal-hydraulic performance characteristics of the concrete plutonium storage cubicles, as modified for the horizontal placement of 3013 canisters. Four separate models were developed ranging from a full height model of the storage cubicle to a very detailed standalone model of a horizontal 3013 canister.

  7. Thermal-hydraulic assessment of concrete storage cubicle with horizontal 3013 canisters

    International Nuclear Information System (INIS)

    Heard, F.J.

    1999-01-01

    The FIDAP computer code was used to perform a series of analyses to assess the thermal-hydraulic performance characteristics of the concrete plutonium storage cubicles, as modified for the horizontal placement of 3013 canisters. Four separate models were developed ranging from a full height model of the storage cubicle to a very detailed standalone model of a horizontal 3013 canister

  8. SOURCE TERMS FOR HLW GLASS CANISTERS

    International Nuclear Information System (INIS)

    J.S. Tang

    2000-01-01

    This calculation is prepared by the Monitored Geologic Repository (MGR) Waste Package Design Section. The objective of this calculation is to determine the source terms that include radionuclide inventory, decay heat, and radiation sources due to gamma rays and neutrons for the high-level radioactive waste (HLW) from the, West Valley Demonstration Project (WVDP), Savannah River Site (SRS), Hanford Site (HS), and Idaho National Engineering and Environmental Laboratory (INEEL). This calculation also determines the source terms of the canister containing the SRS HLW glass and immobilized plutonium. The scope of this calculation is limited to source terms for a time period out to one million years. The results of this calculation may be used to carry out performance assessment of the potential repository and to evaluate radiation environments surrounding the waste packages (WPs). This calculation was performed in accordance with the Development Plan ''Source Terms for HLW Glass Canisters'' (Ref. 7.24)

  9. Test manufacture of a canister insert

    International Nuclear Information System (INIS)

    Raiko, H.

    2004-11-01

    This report describes the insert-manufacturing test of a disposal canister for spent nuclear fuel that was made by Metso Paper Oy, Jyvaeskylae Foundry, in 2003 on contract for Posiva Oy. The test manufacture was a part of the co-operation development programme of encapsulation technology between SKB AB and Posiva Oy. Insert casting was specified according to the current manufacturing specifications of SKB. The canister insert was of BWR-type with integral bottom. This was the first trial manufacture of this type of insert in Finland and, in total, the second test manufacture of insert by Metso Paper. The result fulfilled all the requirements but the material mechanical properties and metallurgical structure of the cast material. The measured tensile strength, ultimate strength and elongation at rupture were lower than specified. The reason for this was revealed in the metallurgical investigation of the cast material. The nodulizing of the graphite was not occurred during the casting process according to the requirements. (orig.)

  10. Mockup of an automated material transport system for remote handling

    International Nuclear Information System (INIS)

    Porter, M.L.

    1992-01-01

    An Automated Material Transport System (AMTS) was identified for transport of samples within a Material and Process Control Laboratory (MPCL). The MPCL was designed with a dry sample handling laboratory and a wet chemistry analysis laboratory. Each laboratory contained several processing gloveboxes. The function of the AMTS was to automate the handling of materials, multiple process samples, and bulky items between process stations with a minimum of operator intervention and with minimum o[ waiting periods and nonproductive activities. This paper discusses the system design features, capabilities and results of initial testing. The overall performance of the AMTS is very good. No major problems or concerns were identified. System commands are simple and logical making the system user friendly. Operating principle and design of individual components is simple. With the addition of various track modules, the system can be configured in most any configuration. The AMTS lends itself very well for integration with other automated systems or products. The AMTS is suited for applications involving light payloads which require multiple sample and material handling, lot tracking, and system integration with other products

  11. Biological Research in Canisters (BRIC) - Light Emitting Diode (LED)

    Science.gov (United States)

    Levine, Howard G.; Caron, Allison

    2016-01-01

    The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.

  12. Conceptual design of the handling and storage system for spent target vessel

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Junichi; Sasaki, Shinobu; Kaminaga, Masanori; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    A conceptual design of a handling and storage system for spent target vessels has been carried out, in order to establish spent target technology for the neutron scattering facility. The spent target vessels must be treated remotely with high reliability and safety, since they are highly activated and contain the poisonous mercury. The system is composed of a target exchange trolley to exchange the target vessel, remote handling equipment such as manipulators, airtight casks for the spent target vessel, storage pits and so on. This report presents the results of conceptual design study on a basic plan, a handling procedure, main devices and their arrangement of a handling and storage system for the spent target vessels. (author)

  13. Study on radon concentration monitoring using activated charcoal canisters in high humidity environments

    International Nuclear Information System (INIS)

    Wang Yuexing; Wang Haijun; Yang Yifang; Qin Sichang; Wang Zhentao; Zhang Zhenjiang

    2009-01-01

    The effects of humidity on the sensitivity using activated charcoal canisters for measuring radon concentrations in high humidity environments were studied. Every canister filled with 80 g of activated charcoal, and they were exposed to 48 h or 72 h in the relative humidity of 68%, 80%, 88% and 96% (28 degree C), respectively. The amount of radon absorbed in the canisters was determined by counting the gamma rays from 214 Pb and 214 Bi (radon progeny). The results showed that counts decreased with the increase of relative humidity. There was a negative linear relationship between count and humidity. In the relative humidity range of 68%-96%, the sensitivity of radon absorption decreased about 2.4% for every 1% (degree)rise in humidity. The results also showed that the exposure time of the activated charcoal canisters should be less than 3 days. (authors)

  14. Corrosion of high-level radioactive waste iron-canisters in contact with bentonite.

    Science.gov (United States)

    Kaufhold, Stephan; Hassel, Achim Walter; Sanders, Daniel; Dohrmann, Reiner

    2015-03-21

    Several countries favor the encapsulation of high-level radioactive waste (HLRW) in iron or steel canisters surrounded by highly compacted bentonite. In the present study the corrosion of iron in contact with different bentonites was investigated. The corrosion product was a 1:1 Fe layer silicate already described in literature (sometimes referred to as berthierine). Seven exposition test series (60 °C, 5 months) showed slightly less corrosion for the Na-bentonites compared to the Ca-bentonites. Two independent exposition tests with iron pellets and 38 different bentonites clearly proved the role of the layer charge density of the swelling clay minerals (smectites). Bentonites with high charged smectites are less corrosive than bentonites dominated by low charged ones. The type of counterion is additionally important because it determines the density of the gel and hence the solid/liquid ratio at the contact to the canister. The present study proves that the integrity of the multibarrier-system is seriously affected by the choice of the bentonite buffer encasing the metal canisters in most of the concepts. In some tests the formation of a patina was observed consisting of Fe-silicate. Up to now it is not clear why and how the patina formed. It, however, may be relevant as a corrosion inhibitor. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    Roland, V.; Solignac, Y.; Chiguer, M.; Guenon, Y.

    2003-01-01

    time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs requirement for this type of solution is minimal, so depending on the chosen discount rate of the investor, they have an additional attraction. Those smaller modules allow to change course in back end policy more easily. Priority of modularity yields two other solutions, dual-purpose metal casks of the TN24TM family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS. These solutions, implemented by COGEMA LOGISTICS, TRANSNUCLEAR Inc. and FRAMATOME-ANP, are very flexible and have been adapted also to quite different fuels. Among what influences the choice, we can consider: in favor of metal casks (minimal ancillary equipment, ready to move to final or centralized repository or reprocessing or other ISFSI, compact systems, easy rearrangement, easy handling), in favor of concrete shielded canisters based systems (economics when initial quantity is sufficient to spread out up front equipment, significant cost-shielding advantage, easy local production of the relatively light canisters). Both approaches, when transportable, are also a factor for public acceptance because of the non-permanent characteristics and because transport licensing refers to internationally recognized rules, standards and methods. (authors)

  16. Multi-dimensional modeling of a thermal energy storage canister. M.S. Thesis - Cleveland State Univ., Dec. 1990

    Science.gov (United States)

    Kerslake, Thomas W.

    1991-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change material (PCM) contained in toroidal canisters for thermal energy storage. Presented are the results from heat transfer analyses of a PCM containment canister. One and two dimensional finite difference computer models are developed to analyze heat transfer in the canister walls, PCM, void, and heat engine working fluid coolant. The modes of heat transfer considered include conduction in canister walls and solid PCM, conduction and pseudo-free convection in liquid PCM, conduction and radiation across PCM vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid PCM phases) are prescribed based on engineering judgment. The PCM phase change process is analyzed using the enthalpy method. The discussion of the results focuses on how canister thermal performance is affected by free convection in the liquid PCM and void heat transfer. Characterizing these effects is important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Void regions accentuate canister hot spots and temperature gradients due to their large thermal resistance. Free convection reduces the extent of PCM superheating and lowers canister temperatures during a portion of the PCM thermal charge period. Surprisingly small differences in canister thermal performance result from operation on the ground and operation on-orbit. This lack of a strong gravity dependency is attributed to the large contribution of container walls in overall canister energy redistribution by conduction.

  17. The Meaning of the Sampling of the ZPPR Canisters And Proposed New Surveillance Operating Instructions

    Energy Technology Data Exchange (ETDEWEB)

    Charles W. Solbrig

    2007-01-01

    Analysis of the sample data taken from the ZPPR canisters containing Uranium plate fuel indicates that (as of February 2004) hydriding could be occurring in 35 of them. Since there appears to be no way of determining that a getter is functional, the getters in all the canisters should be replaced now (unless canister residence time can be determined) to prevent further hydriding. In addition, the surveillance procedure should be modified. Canisters to be inspected should be selected sequentially, 12 each quarter resulting in all being opened once every five years. Three of the 12 should be sampled and results reported before opening any of the canisters. Water vapor and pressure should be measured as well as the current hydrogen, oxygen, and nitrogen. Then all 12 canisters should be opened for physical evaluation of the plate conditions and correlation with the sample measurements. The getters should be replaced at each inspection ensuring that no getter is used more than five years. The data should be analyzed each year and a conclusion made on the adequacy of the surveillance procedure and modifications made if it is inadequate.

  18. Measurement and control system for the ITER remote handling mock-up test

    International Nuclear Information System (INIS)

    Oka, K.; Kakudate, S.; Takiguchi, Y.; Ako, K.; Taguchi, K.; Tada, E.; Ozaki, F.; Shibanuma, K.

    1998-01-01

    The mock-up test platforms composed of full-scale remote handling (RH) equipment were developed for demonstrating remote replacement of the ITER blanket and divertor. In parallel, the measurement and control system for operating these RH equipment were constructed on the basis of open architecture with object oriented feature, aiming at realization of fully-remoted automatic operation required for ITER. This paper describes the design concept of the measurement and control system for the remote handling equipment of ITER, and outlines the measured performances of the fabricated measurement system for the remote handling mock-up tests, which includes Data Acquisition System (DAS), Visual Monitoring System (VMS) and Virtual Reality System (VRS). (authors)

  19. A review of materials and corrosion issues regarding canisters for disposal of spent fuel and high-level waste in Opalinus clay

    International Nuclear Information System (INIS)

    Landolt, D.; Davenport, A.; Payer, J.; Shoesmith, D.

    2009-01-01

    corrosion behavior of canisters, the CMRB distinguished four phases during which the corrosive environment is expected to gradually change from aerobic dry to anoxic wet conditions. Possible damage mechanisms of steel were identified for each phase and critically examined, including effects due to radiation, solid reaction products, microbial activity and the occurrence of stress assisted failures. The expected performance of other canister materials was also considered. The CMRB concludes that NAGRA presents a convincing case that using steel canisters surrounded by bentonite as part of a multi-barrier system using Opalinus clay as the geological barrier is a viable concept for the safe disposal of SF/HLW under the assumption that the maximum acceptable hydrogen production rates given by NAGRA can be confirmed in future. A few issues related to the long term performance of steel canisters need to be further elaborated and clarified by NAGRA, but the CMRB found no major issue that would invalidate the use of steel canisters as part of the NAGRA multi-barrier concept. The CMRB deems that the research program pursued by NAGRA is carefully managed, effective and credible. Within the planning horizon for implementation of a repository for SF/HLW in Switzerland, the time table for canister development presented by NAGRA is realistic. While vigorously pursuing the evaluation of the evolution of the near field environment and its effect on the corrosion of steel, NAGRA should from now on initiate a comprehensive program on the evaluation of technological solutions for fabrication, welding, surface finishing and stress mitigation of thick walled steel canisters. (authors)

  20. Miniature Canister (MiniCan) Corrosion experiment progress report 4 for 2008-2011

    International Nuclear Information System (INIS)

    Smart, Nick; Reddy, Bharti; Rance, Andy

    2012-06-01

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2011. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows the earlier progress reports presenting results up to December 2010. The current document (progress report 4) describes work up to December 2011. The current report presents the results of the water analyses obtained in

  1. Miniature Canister (MiniCan) Corrosion experiment progress report 4 for 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Nick; Reddy, Bharti; Rance, Andy [Serco, Hook (United Kingdom)

    2012-06-15

    To ensure the safe encapsulation of spent nuclear fuel rods for geological disposal, SKB of Sweden are considering using the Copper-Iron Canister, which consists of an outer copper canister and a cast iron insert. Over the years a programme of laboratory work has been carried out to investigate a range of corrosion issues associated with the canister, including the possibility of expansion of the outer copper canister as a result of the anaerobic corrosion of the cast iron insert. Previous experimental work using stacks of test specimens has not shown any evidence of corrosion-induced expansion. However, as a further step in developing an understanding of the likely performance of the canister in a repository environment, Serco has set up a series of experiments in SKB's Aespoe Hard Rock Laboratory (HRL) using inactive model canisters, in which leaks were deliberately introduced into the outer copper canister while surrounded by bentonite, with the aim of obtaining information about the internal corrosion evolution of the internal environment. The experiments use five small scale model canisters (300 mm long x 150 mm diameter) that simulate the main features of the SKB canister design (hence the project name, 'MiniCan'). The main aim of the work is to examine how corrosion of the cast iron insert will evolve if a leak is present in the outer copper canister. This report describes the progress on the five experiments running at the Aespoe Hard Rock Laboratory and the data obtained from the start of the experiments in late 2006 up to Winter 2011. The full details of the design and installation of the experiments are given in a previous report and this report concentrates on summarising and interpreting the data obtained to date. This report follows the earlier progress reports presenting results up to December 2010. The current document (progress report 4) describes work up to December 2011. The current report presents the results of the water analyses

  2. Experimental assessment of the thermal performance of storage canister/holding fixture configurations for the Los Alamos Nuclear Materials Storage Facility

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Naffziger, D.C.; Gregory, W.S.

    1997-11-01

    This report presents experimental results on the thermal performance of various nested canister configurations and canister holding fixtures to be used in the Los Alamos Nuclear Materials Storage Facility. The experiment consisted of placing a heated aluminum billet (to represent heat-generating nuclear material) inside curved- and flat-bottom canisters with and without holding plate fixtures and/or extended fin surfaces. Surface temperatures were measured at several locations on the aluminum billet, inner and outer canisters, and the holding plate fixture to assess the effectiveness of the various configurations in removing and distributing the heat from the aluminum billet. Results indicated that the curved-bottom canisters, with or without holding fixtures, were extremely ineffective in extracting heat from the aluminum billet. The larger thermal contact area provided by the flat-bottom canisters compared with the curved-bottom design, greatly enhanced the heat removal process and lowered the temperature of the aluminum billet considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. The addition of the fixture plates to the flat-bottom canister geometry greatly enhances the heat removal rates and lowers the canister operating temperatures considerably. Finally, the addition of extended fin surfaces to the outer flat-bottom canister positioned on a fixture plate, reduced the canister temperatures still further

  3. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  4. Progress in the understanding of the long-term corrosion behaviour of copper canisters

    Science.gov (United States)

    King, Fraser; Lilja, Christina; Vähänen, Marjut

    2013-07-01

    Copper has been proposed as a canister material for the disposal of spent nuclear fuel in a deep geologic repository in a number of countries worldwide. Since it was first proposed for this purpose in 1978, a significant number of studies have been performed to assess the corrosion performance of copper under repository conditions. These studies are critically reviewed and the suitability of copper as a canister material for nuclear waste is re-assessed. Over the past 30-35 years there has been considerable progress in our understanding of the expected corrosion behaviour of copper canisters. Crucial to this progress has been the improvement in the understanding of the nature of the repository environment and how it will evolve over time. With this improved understanding, it has been possible to predict the evolution of the corrosion behaviour from the initial period of warm, aerobic conditions in the repository to the long-term phase of cool, anoxic conditions dominated by the presence of sulphide. An historical review of the treatment of the corrosion behaviour of copper canisters is presented, from the initial corrosion assessment in 1978, through a major review of the corrosion behaviour in 2001, through to the current level of understanding based on the results of on-going studies. Compared with the initial corrosion assessment, there has been considerable progress in the treatment of localised corrosion, stress corrosion cracking, and microbiologically influenced corrosion of the canisters. Progress in the mechanistic modelling of the evolution of the corrosion behaviour of the canister is also reviewed, as is the continuing debate about the thermodynamic stability of copper in pure water. The overall conclusion of this critical review is that copper is a suitable material for the disposal of spent nuclear fuel and offers the prospect of containment of the waste for an extended period of time. The corrosion behaviour is influenced by the presence of the

  5. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  6. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  7. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  8. 20 CFR 658.401 - Types of complaints handled by the JS complaint system.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Types of complaints handled by the JS... § 658.401 Types of complaints handled by the JS complaint system. (a)(1) The types of complaints (JS related complaints) which shall be handled to resolution by the JS complaint system are as follows: (i...

  9. Evolution of a test article handling system for the SP-100 GES test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Davies, S.M.

    1987-01-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the nuclear assembly test article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operation. The test site operator, working in conjunction with the test article supplier, developed and evaluated several handling concepts resulting in the selection of a reference test article handling system. The development of the reference concept for the handling system is presented

  10. Event detection and exception handling strategies in the ASDEX Upgrade discharge control system

    International Nuclear Information System (INIS)

    Treutterer, W.; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2013-01-01

    Highlights: •Event detection and exception handling is integrated in control system architecture. •Pulse control with local exception handling and pulse supervision with central exception handling are strictly separated. •Local exception handling limits the effect of an exception to a minimal part of the controlled system. •Central Exception Handling solves problems requiring coordinated action of multiple control components. -- Abstract: Thermonuclear plasmas are governed by nonlinear characteristics: plasma operation can be classified into scenarios with pronounced features like L and H-mode, ELMs or MHD activity. Transitions between them may be treated as events. Similarly, technical systems are also subject to events such as failure of measurement sensors, actuator saturation or violation of machine and plant operation limits. Such situations often are handled with a mixture of pulse abortion and iteratively improved pulse schedule reference programming. In case of protection-relevant events, however, the complexity of even a medium-sized device as ASDEX Upgrade requires a sophisticated and coordinated shutdown procedure rather than a simple stop of the pulse. The detection of events and their intelligent handling by the control system has been shown to be valuable also in terms of saving experiment time and cost. This paper outlines how ASDEX Upgrade's discharge control system (DCS) detects events and handles exceptions in two stages: locally and centrally. The goal of local exception handling is to limit the effect of an unexpected or asynchronous event to a minimal part of the controlled system. Thus, local exception handling facilitates robustness to failures but keeps the decision structures lean. A central state machine deals with exceptions requiring coordinated action of multiple control components. DCS implements the state machine by means of pulse schedule segments containing pre-programmed waveforms to define discharge goal and control

  11. Event detection and exception handling strategies in the ASDEX Upgrade discharge control system

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de; Neu, G.; Rapson, C.; Raupp, G.; Zasche, D.; Zehetbauer, T.

    2013-10-15

    Highlights: •Event detection and exception handling is integrated in control system architecture. •Pulse control with local exception handling and pulse supervision with central exception handling are strictly separated. •Local exception handling limits the effect of an exception to a minimal part of the controlled system. •Central Exception Handling solves problems requiring coordinated action of multiple control components. -- Abstract: Thermonuclear plasmas are governed by nonlinear characteristics: plasma operation can be classified into scenarios with pronounced features like L and H-mode, ELMs or MHD activity. Transitions between them may be treated as events. Similarly, technical systems are also subject to events such as failure of measurement sensors, actuator saturation or violation of machine and plant operation limits. Such situations often are handled with a mixture of pulse abortion and iteratively improved pulse schedule reference programming. In case of protection-relevant events, however, the complexity of even a medium-sized device as ASDEX Upgrade requires a sophisticated and coordinated shutdown procedure rather than a simple stop of the pulse. The detection of events and their intelligent handling by the control system has been shown to be valuable also in terms of saving experiment time and cost. This paper outlines how ASDEX Upgrade's discharge control system (DCS) detects events and handles exceptions in two stages: locally and centrally. The goal of local exception handling is to limit the effect of an unexpected or asynchronous event to a minimal part of the controlled system. Thus, local exception handling facilitates robustness to failures but keeps the decision structures lean. A central state machine deals with exceptions requiring coordinated action of multiple control components. DCS implements the state machine by means of pulse schedule segments containing pre-programmed waveforms to define discharge goal and control

  12. Mechanical Integrity of Copper Canister Lid and Cylinder

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-01-01

    This report compiles finite element analyses performed to ensure the structural integrity of canisters used for storing of nuclear fuel waste of type BWR. The report comprises analyses performed on the canister lid and cylinder casing in order to determine static and long-term strength of the structure. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from ground water at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are also performed in order to estimate the stresses that will arise when the canister is placed in the repository. The analyses in this report are recreated from the original analyses but the models differ in geometry. Also, there is no information in the original reports on material data, time-independent as well as creep data, and analysis procedure. The data used in the recreated analyses are based on information from References 2, 3, 6 and 7. The results presented in this report are based on the supplementary analyses. These results differ from the original results. Most likely this is due to differences in model geometry. The original results are appended to the report and are summarised for comparison with results from the supplementary analyses. Otherwise, these results are not further discussed. For all load cases, high tensile stresses are found in the lid fillet between the planar part and the flange. High tensile stresses are also found in the weld surface and on the outer side of the

  13. Simulation of residual stresses and deformations in electron beam-welded copper canisters

    International Nuclear Information System (INIS)

    Aronen, A.; Leikko, J.; Taskinen, P.; Karvinen, R.

    2013-07-01

    This report presents the modelling of residual stresses and deformations of an EB-welded copper canister. Two different mock-up lengths are modelled with the Abaqus FEA program, and the similarity of those results is studied. Canister mock-ups of 450 mm and 915 mm were chosen for the test cases. The heat treatment results presented in Taskinen 2009 are used as input data for the mechanical model. For the mechanical analysis some simplifications were made to the model. The contact surface between pipe and lid is assumed to be tied and support from the bottom surface is provided with four support points. Results show that, due to the similarity of 450 mm and 915 mm canisters, the short mock-up can be used to predict the stresses and deformation on a full-length canister (5000 mm). The similarity of the temperature fields has already been shown in the previous reports (Taskinen 2009). The main result in the deformation is the shape of the canister in the residual state. The top of the canister tries to shrink, resulting in the lid buckling inwards. The deformation of the lid of the canister is about 2.2 mm at the centre of the lid. The main results in the stresses are the stress level on the surface, the deviation of stresses over the circle and the stresses near the welding. On the surface there are areas where the circumferential stress is at tension. However, radial and axial stresses are usually in compression on the surface. The deviation of the stress level over the circle is quite small, except in the overlap area and near it. The residual stresses from 0 deg C to 45 deg C change remarkably, but over the rest of the area the stresses are more constant. Near the welding the stresses on the top surface are in compression, but in the centre of the welding the stresses are in tension. In the modelling, the possibility of calculating a mechanical model with the contact surface between pipe and lid, so that they could be separated during the welding, was also tested

  14. Simulation of residual stresses and deformations in electron beam-welded copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    Aronen, A.; Leikko, J.; Taskinen, P.; Karvinen, R. [Tampere Univ. of Technology (Finland)

    2013-07-15

    This report presents the modelling of residual stresses and deformations of an EB-welded copper canister. Two different mock-up lengths are modelled with the Abaqus FEA program, and the similarity of those results is studied. Canister mock-ups of 450 mm and 915 mm were chosen for the test cases. The heat treatment results presented in Taskinen 2009 are used as input data for the mechanical model. For the mechanical analysis some simplifications were made to the model. The contact surface between pipe and lid is assumed to be tied and support from the bottom surface is provided with four support points. Results show that, due to the similarity of 450 mm and 915 mm canisters, the short mock-up can be used to predict the stresses and deformation on a full-length canister (5000 mm). The similarity of the temperature fields has already been shown in the previous reports (Taskinen 2009). The main result in the deformation is the shape of the canister in the residual state. The top of the canister tries to shrink, resulting in the lid buckling inwards. The deformation of the lid of the canister is about 2.2 mm at the centre of the lid. The main results in the stresses are the stress level on the surface, the deviation of stresses over the circle and the stresses near the welding. On the surface there are areas where the circumferential stress is at tension. However, radial and axial stresses are usually in compression on the surface. The deviation of the stress level over the circle is quite small, except in the overlap area and near it. The residual stresses from 0 deg C to 45 deg C change remarkably, but over the rest of the area the stresses are more constant. Near the welding the stresses on the top surface are in compression, but in the centre of the welding the stresses are in tension. In the modelling, the possibility of calculating a mechanical model with the contact surface between pipe and lid, so that they could be separated during the welding, was also tested

  15. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  16. Evolution of the Darlington NGS fuel handling computer systems

    International Nuclear Information System (INIS)

    Leung, V.; Crouse, B.

    1996-01-01

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs

  17. Evolution of the Darlington NGS fuel handling computer systems

    Energy Technology Data Exchange (ETDEWEB)

    Leung, V; Crouse, B [Ontario Hydro, Bowmanville (Canada). Darlington Nuclear Generating Station

    1997-12-31

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs.

  18. Technical note. A review of the mechanical integrity of the canister

    International Nuclear Information System (INIS)

    Segle, Peter

    2012-01-01

    Background: The Swedish Radiation Safety Authority (SSM) reviews the Swedish Nuclear Fuel Company's (SKB) applications under the Act on Nuclear Activities (SFS 1984:3) for the construction and operation of a repository for spent nuclear fuel and for an encapsulation facility. As part of the review, SSM commissions consultants to carry out work in order to obtain information on specific issues. The results from the consultants' tasks are reported in SSM's Technical Note series. Objectives of the project: This project is part of SSM:s review of SKB:s license application for final disposal of spent nuclear fuel. The assignment concerns a review of the mechanical integrity of the canister. Summary by the author: An introductory review of SR-Site has been conducted with respect to the mechanical integrity of the canister. The review is focused on the copper canister and the nodular cast iron insert. Review results show that a number of loads and loading scenarios for the copper canister has not been analysed by SKB. The importance of sufficient creep ductility of the copper material and sufficient ductility and fracture toughness of the nodular cast iron material is pointed out in the review. A sensitivity study is suggested where the impact of these properties on the mechanical integrity of the canister is investigated. It is also suggested that potential damage mechanisms influencing these properties are further investigated. SKB's modelling of creep elongation at rupture under repository conditions is questioned. Needs for complementary information from SKB for the main review of SR-Site is listed. A list of review topics for SSM is also suggested

  19. Hanford Waste Vitrification Plant: Preliminary description of waste form and canister

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1986-01-01

    In July 1985, the US Department of Energy's Office of Civilian Radioactive Waste Management established the Waste Acceptance Process as the means by which defense high-level waste producers, such as the Hanford Waste Vitrification Plant, will develop waste acceptance requirements with the candidate geologic repositories. A complete description of the Waste Acceptance Process is contained in the Preliminary Hanford Waste Vitrification Plant Waste Form Qualification Plan. The Waste Acceptance Process defines three documents that high-level waste producers must prepare as a part of the process of assuming that a high-level waste product will be acceptable for disposal in a geologic repository. These documents are the Description of Waste Form and Canister, Waste Compliance Plan, and Waste Qualification Report. This document is the Hanford Waste Vitrification Plant Preliminary Description of Waste Form and Canister for disposal of Neutralized Current Acid Waste. The Waste Acceptance Specifications for the Hanford Waste Vitrification Plant have not yet been developed, therefore, this document has been structured to corresponds to the Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form. Not all of the information required by these specifications is appropriate for inclusion in this Preliminary Description of Waste Form and Canister. Rather, this description is limited to information that describes the physical and chemical characteristics of the expected high-level waste form. The content of the document covers three major areas: waste form characteristics, canister characteristics, and canistered waste form characteristics. This information will be used by the candidate geologic repository projects as the basis for preliminary repository design activities and waste form testing. Periodic revisions are expected as the Waste Acceptance Process progresses

  20. Safety evaluation for the inner canister closure station

    International Nuclear Information System (INIS)

    Glasscock, J.R.

    1987-01-01

    The Inner Canister Closure Station (ICCS), built by Remote Technology Corporation, will be operability tested. The ICCS is used to remotely leak test Inner Canister Closures (ICC's) and replace ICC's that are not water tight. After operability testing, the ICCS will be inspected and sent to the 717-F mock-up shop for remotability demonstration and dimensional checks, then installed in the Vitrification Building, 221-S. An analysis of potential safety hazards, equipment safety features, and procedural controls indicates that the ICCS can be operated without undue hazard to employees or to the public. A safety inspection and a new equipment inspection will be held before operation to verify that the ICCS meets Savannah River Site safety requirements. 4 refs., 6 figs

  1. Enbridge system : crude types, transportation and handling systems

    Energy Technology Data Exchange (ETDEWEB)

    Anand, A. [Enbridge Corp., Edmonton, AB (Canada)

    2009-07-01

    The supply of crude oil from the Western Canada Sedimentary Basin is expected to increase by approximately 2.1 million barrels per day by 2015. The crudes that Enbridge handles range from 19 API to 40 API and 0.1 per cent sulphur to 4.7 per cent sulphur. The diverse supply of crude oil that the Enbridge system handles includes conventional heavy, synthetic heavy, heavy high tan, heavy low residual, medium, light sour, heavy sour, light sweet, light sweet synthetic, condensate and olefinic crudes. This presentation discussed Enbridge's plans for infrastructure expansion, crude types and quality assurance program. The company's infrastructure plans include the expansion of regional pipelines to bring more supplies to the mainline; expansion of the mainline capacity to existing markets; and providing pipeline access to new markets. Merchant storage terminals will be provided in some locations. The quality of various crude types will be maintained through judicious sequencing and tank bottoms crossings. tabs., figs.

  2. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Michael B. Heiser; Clark B. Millet

    2005-01-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 x 10-ft) and Concept B (2 x 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 x 17.5-ft) canister (also called the ''super canister''), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine ''as-is'' would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years

  3. Chemical durability of copper canisters under crystalline bedrock repository conditions

    International Nuclear Information System (INIS)

    Sjoeblom, R.; Hermansson, H.P.; Amcoff, Oe.

    1995-01-01

    In the Swedish waste management programme, the copper canister is expected to provide containment of the radionuclides for a very long time, perhaps million of years. The purpose of the present paper is to analyze prerequisites for assessments of corrosion lifetimes for copper canisters. The analysis is based on compilations of literature from the following areas: chemical literature on copper and copper corrosion, mineralogical literature with emphasis on the stability of copper in near surface environments, and chemical and mineralogical literature with emphasis on the stabilities and thermodynamics of species and phases that may exist in a repository environment. Three main types of situations are identified: (1) under oxidizing and low chloride conditions, passivating oxide type of layers may form on the copper surface; (2) under oxidizing and high chloride conditions, the species formed may all be dissolved; and (3) under reducing conditions, non-passivating sulfide type layers may form on the copper surface. Considerable variability and uncertainty exists regarding the chemical environment for the canister, especially in certain scenarios. Thus, the mechanisms for corrosion can be expected to differ greatly for different situations. The lifetime of a thick-walled copper canister subjected to general corrosion appears to be long for most reasonable chemistries. Localized corrosion may appear for types (1) and (3) above but the mechanisms are widely different in character. The penetration caused by localized corrosion can be expected to be very sensitive to details in the chemistry. 20 refs, 3 figs, 1 tab

  4. Transportation system (TRUPACT) for contact-handled transuranic wastes

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Pope, R.B.; Burgoyne, R.M.

    1982-04-01

    Contact-handled transuranic defense waste is being, and will continue to be, moved between a number of locations in the United States. The DOE is sponsoring development of safe, efficient, licensable, and cost-effective transportation systems to handle this waste. The systems being developed have been named TRUPACT which stands for TRansUranic PACkage Transporter. The system will be compatible with Type A packagings used by waste generators, interim storage facilities, and repositories. TRUPACT is required to be a Type B packaging since larger than Type A quantities of some radionuclides (particularly plutonium) may be involved in the collection of Type A packagings. TRUPACT must provide structural and thermal protection to the waste in hypothetical accident environments specified in DOT regulations 49CFR173 and NRC regulations 10CFR71. Preliminary design of the systems has been completed and final design for a truck system is underway. The status of the development program is reviewed in this paper and the reference design is described. Tests that have been conducted are discussed and long-term program objectives are reviewed

  5. Automated waste canister docking and emplacement using a sensor-based intelligent controller

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1992-08-01

    A sensor-based intelligent control system is described that utilizes a multiple degree-of-freedom robotic system for the automated remote manipulation and precision docking of large payloads such as waste canisters. Computer vision and ultrasonic proximity sensing are used to control the automated precision docking of a large object with a passive target cavity. Real-time sensor processing and model-based analysis are used to control payload position to a precision of ± 0.5 millimeter

  6. Evaluation of the Frequencies for Canister Inspections for SCC

    Energy Technology Data Exchange (ETDEWEB)

    Stockman, Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-02

    This report fulfills the M3 milestone M3FT-15SN0802042, “Evaluate the Frequencies for Canister Inspections for SCC” under Work Package FT-15SN080204, “ST Field Demonstration Support – SNL”. It reviews the current state of knowledge on the potential for stress corrosion cracking (SCC) of dry storage canisters and evaluates the implications of this state of knowledge on the establishment of an SCC inspection frequency. Models for the prediction of SCC by the Japanese Central Research Institute of Electric Power Industry (CRIEPI), the United States (U.S.) Electric Power Research Institute (EPRI), and Sandia National Laboratories (SNL) are summarized, and their limitations discussed.

  7. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Queral, V., E-mail: vicentemanuel.queral@ciemat.es [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Urbon, J. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Garcia, A.; Cuarental, I.; Mota, F. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Micciche, G. [CR ENEA Brasimone, I-40035 Camugnano (BO) (Italy); Ibarra, A. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Casal, N. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain)

    2011-10-15

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  8. Preliminary definition of the remote handling system for the current IFMIF Test Facilities

    International Nuclear Information System (INIS)

    Queral, V.; Urbon, J.; Garcia, A.; Cuarental, I.; Mota, F.; Micciche, G.; Ibarra, A.; Rapisarda, D.; Casal, N.

    2011-01-01

    A coherent design of the remote handling system with the design of the components to be manipulated is vital for reliable, safe and fast maintenance, having a decisive impact on availability, occupational exposures and operational cost of the facility. Highly activated components in the IFMIF facility are found at the Test Cell, a shielded pit where the samples are accurately located. The remote handling system for the Test Cell reference design was outlined in some past IFMIF studies. Currently a new preliminary design of the Test Cell in the IFMIF facility is being developed, introducing important modifications with respect to the reference one. This recent design separates the previous Vertical Test Assemblies in three functional components: Test Modules, shielding plugs and conduits. Therefore, it is necessary to adapt the previous design of the remote handling system to the new maintenance procedures and requirements. This paper summarises such modifications of the remote handling system, in particular the assessment of the feasibility of a modified commercial multirope crane for the handling of the weighty shielding plugs for the new Test Cell and a quasi-commercial grapple for the handling of the new Test Modules.

  9. Fabrication and handling of bentonite blocks

    International Nuclear Information System (INIS)

    1978-06-01

    In accordance with the project for the final storage of spent nuclear fuel, the waste will be encapsulated into copper canisters, which will be deposited in a final repository located in rock 500 m below ground level. The canisters will be placed in vertical holes in the bottoms of the tunnels, where the copper cylinders will be surrounded by blocks of highly compacted bentonite. When the blocks are saturated with water and expansion is essentially retained as in the actual case, a very high swelling pressure will arise. The bentonite will be extremely impermeable and thus it will form a barrier against transport of corrosive matters to the canister. The blocks are fabricated by means of cold isostatic pressing of bentonite powder. The base material in the form of powder is enclosed in flexible forms, which are introduced into pressure vessels where the forms are surrounded by oil or water. Thus the powder is compacted into rigid bodies with a bulk density of about 2.2 t/m 3 for ''air dry'' bentonite, which might be compared with a specific density of about 2.7 t/m 3 . The placing of a canister is preceded by piling up bentonite blocks to a level just below the canister lid position, after which the slot around the blocks is filled with bentonite powder. The rest of the blocks are mounted after filling bentonite powder into the inner slot around the canister as well. Finally the storage tunnels will be sealed by filling them with a mixture o02067NRM 0000181 45

  10. Inert gas handling in ion plating systems

    International Nuclear Information System (INIS)

    Goode, A.R.; Burden, M.St.J.

    1979-01-01

    The results of an investigation into the best methods for production and monitoring of the inert gas environment for ion plating systems are reported. Work carried out on Pirani gauges and high pressure ion gauges for the measurement of pressures in the ion plating region (1 - 50mtorr) and the use of furnaces for cleaning argon is outlined. A schematic of a gas handling system is shown and discussed. (UK)

  11. Combined application of Product Lifecycle and Software Configuration Management systems for ITER remote handling

    International Nuclear Information System (INIS)

    Muhammad, Ali; Esque, Salvador; Aha, Liisa; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti; Jaervenpaeae, Jorma; Irving, Mike; Damiani, Carlo; Semeraro, Luigi

    2009-01-01

    The advantages of Product Lifecycle Management (PLM) systems are widely understood among the industry and hence a PLM system is already in use by International Thermonuclear Experimental Reactor (ITER) Organization (IO). However, with the increasing involvement of software in the development, the role of Software Configuration Management (SCM) systems have become equally important. The SCM systems can be useful to meet the higher demands on Safety Engineering (SE), Quality Assurance (QA), Validation and Verification (V and V) and Requirements Management (RM) of the developed software tools. In an experimental environment, such as ITER, the new remote handling requirements emerge frequently. This means the development of new tools or the modification of existing tools and the development of new remote handling procedures or the modification of existing remote handling procedures. PLM and SCM systems together can be of great advantage in the development and maintenance of such remote handling system. In this paper, we discuss how PLM and SCM systems can be integrated together and play their role during the development and maintenance of ITER remote handling system. We discuss the possibility to investigate such setup at DTP2 (Divertor Test Platform 2), which is the full scale mock-up facility to verify the ITER divertor remote handling and maintenance concepts.

  12. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past

  13. Superphenix 1 primary handling system fabrication and testing

    International Nuclear Information System (INIS)

    Branchu, J.; Ebbinghaus, K.; Gigarel, C.

    1985-01-01

    Primary handling covers the operations performed for spent fuel removal, new fuel insertion, and the insodium storage outside the new or spent fuel vessel. This equipment typifies many of the difficulties encountered with the project as a whole: fabrication coordination when several countries are involved and design and construction of very large, relatively complex components. Detailed design studies were mainly influenced by thermal and seismic requirements, as applicable to sodium-immersed structures. Where possible, well-tried mechanical solutions were used, but widely differing techniques were involved, ranging from the high precision fabrication of structures and mechanisms comprising numerous component parts, implying complex machining operations. No particular problems were encountered during the sodium testing of the primary handling equipment. Trends for the 1500-MW (electric) breeder include investigation of the advisability of fuel storage in the core lattice and the possibility of handling system simplification

  14. Multi Canister Overpack (MCO) Topical Report [SEC 1 THRU 3

    Energy Technology Data Exchange (ETDEWEB)

    LORENZ, B.D.

    2000-05-11

    In February 1995, the US Department of Energy (DOE) approved the Spent Nuclear Fuel (SNF) Project's ''Path Forward'' recommendation for resolution of the safety and environmental concerns associated with the deteriorating SNF stored in the Hanford Site's K Basins (Hansen 1995). The recommendation included an aggressive series of projects to design, construct, and operate systems and facilitates to permit the safe retrieval, packaging, transport, conditions, and interim storage of the K Basins' SNF. The facilities are the Cold VAcuum Drying Facility (CVDF) in the 100 K Area of the Hanford Site and the Canister Storage building (CSB) in the 200 East Area. The K Basins' SNF is to be cleaned, repackaged in multi-canister overpacks (MCOs), removed from the K Basins, and transported to the CVDF for initial drying. The MCOs would then be moved to the CSB and weld sealed (Loscoe 1996) for interim storage (about 40 years). One of the major tasks associated with the initial Path Forward activities is the development and maintenance of the safety documentation. In addition to meeting the construction needs for new structures, the safety documentation for each must be generated.

  15. Planning and control of automated material handling systems: The merge module

    NARCIS (Netherlands)

    Haneyah, S.W.A.; Hurink, Johann L.; Schutten, Johannes M.J.; Zijm, Willem H.M.; Schuur, Peter; Hu, Bo; Morasch, Karl; Pickl, Stefan; Siegle, Markus

    2011-01-01

    We address the field of internal logistics, embodied in Automated Material Handling Systems (AMHSs), which are complex installations employed in sectors such as Baggage Handling, Physical Distribution, and Parcel & Postal. We work on designing an integral planning and real-time control architecture,

  16. SIMULASI GROUP TECHNOLOGY SYSTEM UNTUK MEMINIMALKAN BIAYA MATERIAL HANDLING DENGAN METODE HEURISTIC

    Directory of Open Access Journals (Sweden)

    Much. Djunaidi

    2006-04-01

    Full Text Available Group Technology System merupakan metode pengaturan fasilitas produksi (machine groups yang dibutuhkan untuk memproses suatu part family tertentu ke dalam sel-sel manufaktur. Pengaturan tata letak di CV. Sonytex yang berdasarkan process layout mengakibatkan perusahaan menghadapi permasalahan berupa tingginya kebutuhan material handling. Salah satu kriteria kinerja dalam pembentukan sel manufaktur pada GTS adalah meminimasi total jarak material handling, sehingga dapat mengurangi biaya material handling dan meningkatkan produktivitas. Dalam penelitian ini digunakan tiga metode, yaitu Bond Energy Algorithm (BEA, Rank Order Clustering (ROC dan Rank Order Clustering 2 (ROC2. Hasil dari penelitian ini adalah dengan menerapkan group technology systems diperoleh total pengurangan jarak material handling sebesar 70 m dan penghematan biaya material handling sebesar Rp 1.534.978,-. Berdasarkan model simulasi, relayout dengan metode BEA meningkatkan jumlah produksi sebesar 1 unit produk/hari dan penurunan waktu tunggu sebesar 0,575 menit.

  17. The Swedish Concept for Disposal of Spent Nuclear Fuel: Differences Between Vertical and Horizontal Waste Canister Emplacement

    International Nuclear Information System (INIS)

    Bennett, D.G.; Hicks, T.W.

    2005-10-01

    The Swedish Nuclear Power Inspectorate (SKI) is preparing for the review of licence applications related to the disposal of spent nuclear fuel. The Swedish Nuclear Fuel and Waste Management Company (SKB) refers to its proposals for the disposal of spent nuclear fuel as the KBS-3 concept. In the KBS-3 concept, SKB plans that, after 30 to 40 years of interim storage, spent fuel will be disposed of at a depth of about 500 m in crystalline bedrock, surrounded by a system of engineered barriers. The principle barrier to radionuclide release is a cylindrical copper canister. Within the copper canister, the spent fuel is supported by a cast iron insert. Outside the copper canister is a layer of bentonite clay, known as the buffer, which is designed to provide mechanical protection for the canisters and to limit the access of groundwater and corrosive substances to their surfaces. The bentonite buffer is also designed to sorb radionuclides released from the canisters, and to filter any colloids that may form within the waste. SKB is expected to base its forthcoming licence applications on a repository design in which the waste canisters are emplaced in vertical boreholes (KBS-3V). However, SKB has also indicated that it might be possible and, in some respects, beneficial to dispose of the waste canisters in horizontal tunnels (KBS-3H). There are many similarities between the KBS-3V and KBS-3H designs. There are, however, uncertainties associated with both of the designs and, when compared, both possess relative advantages and disadvantages. SKB has identified many of the key factors that will determine the evolution of a KBS-3H repository and has plans for research and development work in many of the areas where the differences between the KBS-3V and KBS-3H designs mean that they could be significant in terms of repository performance. With respect to the KBS-3H design, key technical issues are associated with: 1. The accuracy of deposition drift construction. 2. Water

  18. Multi-Canister Overpack (MCO) Combustible Gas Management Leak Test Acceptance Criteria (OCRWM)

    International Nuclear Information System (INIS)

    SHERRELL, D.L.

    2000-01-01

    The purpose of this document is to support the Spent Nuclear Fuel Project's combustible gas management strategy while avoiding the need to impose any requirements for oxygen free atmospheres within storage tubes that contain multi-canister overpacks (MCO). In order to avoid inerting requirements it is necessary to establish and confirm leak test acceptance criteria for mechanically sealed and weld sealed MCOs that are adequte to ensure that, in the unlikely event the leak test results for any MCO were to approach either of those criteria, it could still be handled and stored in stagnant air without compromising the SNF Project's overall strategy to prevent accumulation of combustible gas mixtures within MCOs or within their surroundings. To support that strategy, this document: (1) establishes combustible gas management functions and minimum functional requirements for the MCO's mechanical seals and closure weld(s); (2) establishes a maximum practical value for the minimum required initial MCO inert backfill gas pressure; and (3) based on items 1 and 2, establishes and confirms leak test acceptance criteria for the MCO's mechanical seal and final closure weld(s)

  19. Dew point, internal gas pressure, and chemical composition of the gas within the free volume of DWPF canistered waste forms

    International Nuclear Information System (INIS)

    Harbour, J.R.; Herman, D.T.; Crump, S.; Miller, T.J.; McIntosh, J.

    1996-01-01

    The Defense Waste Processing Facility (DWPF) produced 55 canistered waste forms containing simulated waste glass during the four Waste Qualification campaigns of the DWPF Startup Test Program. Testing of the gas within the free volume of these canisters for dew point, internal gas pressure, and chemical composition was performed as part of a continuing effort to demonstrate compliance with the Waste Acceptance Product Specifications. Results are presented for six glass-filled canisters. The dew points within the canisters met the acceptance criterion of < 20 degrees C for all six canisters. Factors influencing the magnitude of the dew point are presented. The chemical composition of the free volume gas was indistinguishable from air for all six canisters. Hence, no foreign materials were present in the gas phase of these canisters. The internal gas pressures within the sealed canisters were < 1 atm at 25 degrees C for all six canisters which readily met the acceptance criterion of an internal gas pressure of less than 1.5 atm at 25 degrees C. These results provided the evidence required to demonstrate compliance with the Waste Acceptance Product Specifications

  20. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident

  1. Analysis of probability of defects in the disposal canisters

    International Nuclear Information System (INIS)

    Holmberg, J.-E.; Kuusela, P.

    2011-06-01

    This report presents a probability model for the reliability of the spent nuclear waste final disposal canister. Reliability means here that the welding of the canister lid has no critical defects from the long-term safety point of view. From the reliability point of view, both the reliability of the welding process (that no critical defects will be born) and the non-destructive testing (NDT) process (all critical defects will be detected) are equally important. In the probability model, critical defects in a weld were simplified into a few types. Also the possibility of human errors in the NDT process was taken into account in a simple manner. At this moment there is very little representative data to determine the reliability of welding and also the data on NDT is not well suited for the needs of this study. Therefore calculations presented here are based on expert judgements and on several assumptions that have not been verified yet. The Bayesian probability model shows the importance of the uncertainty in the estimation of the reliability parameters. The effect of uncertainty is that the probability distribution of the number of defective canisters becomes flat for larger numbers of canisters compared to the binomial probability distribution in case of known parameter values. In order to reduce the uncertainty, more information is needed from both the reliability of the welding and NDT processes. It would also be important to analyse the role of human factors in these processes since their role is not reflected in typical test data which is used to estimate 'normal process variation'.The reported model should be seen as a tool to quantify the roles of different methods and procedures in the weld inspection process. (orig.)

  2. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  3. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments

  4. Mock-up test on key components of ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Matsumoto, Yasuhiro; Taguchi, Koh; Kozaka, Hiroshi; Shibanuma, Kiyoshi; Tesini, Alessandro

    2009-01-01

    The maintenance operation of the ITER in-vessel component, such as a blanket and divertor, must be executed by the remote equipment because of the high gamma-ray environment. During the Engineering Design Activity (EDA), the Japan Atomic Energy Agency (then called as Japan Atomic Energy Research Institute) had been fabricated the prototype of the vehicle manipulator system for the blanket remote handling and confirmed feasibility of this system including automatic positioning of the blanket and rail deployment procedure of the articulated rail. The ITER agreement, which entered into force in the last year, formally decided that Japan will procure the blanket remote handling system and the JAEA, as the Japanese Domestic Agency, is continuing several R and Ds so that the system can be procured smoothly. The residual key issues after the EDA are rail connection and cable handling. The mock-ups of the rail connection mechanism and the cable handling system were fabricated from the last year and installed at the JAEA Naka Site in this March. The former was composed of the rail connecting mechanism, two rail segments and their handling systems. The latter one utilized a slip ring, which implemented 80 lines for power and 208 lines for signal, because there is an electrical contact between the rotating spool and the fixed base. The basic function of these systems was confirmed through the mock-up test. The rail connection mechanism, for example, could accept misalignment of 1.5-2 mm at least. The future test plan is also mentioned in the paper.

  5. The FMEA Analysis for Fuel Handling System at Cernavoda Unit 2

    International Nuclear Information System (INIS)

    Park, Jin Hee; Kim, Tae Woon; Rhee, Bo Wook; Yoon, Chul; Kim, Hyeong Tae; Cho, In Gil; Kim, Seong Ho

    2006-01-01

    A Nuclear Safety Evaluation was performed by an independent assessor at the request of the regulatory authority CNCAN (Comisia Nationala pentru Controlul Activitatilor Nucleare. National Committee for Nuclear Activities Control in Romania) to provide an independent overview of all the nuclear safety aspects of Cernavoda Unit 2 under construction and an expert opinion whether the completed Cernavoda Unit-2 Nuclear Power Plant would satisfy current Western European nuclear safety objectives and practices. A report was produced (Cernavoda 2 Nuclear Safety Expert Project, 'Task 10 . Safety Evaluation Report', A.F.Parsons, NNC Limited, December 2001) and contains recommendations either mandatory or advisory. The FMEA study, one of the mandatory recommendations, is performing now for fuel handling system and radioactive waste handling system for Cernavoda unit 2 in Romania sponsored by KHNP. In this paper, only the FMEA study for fuel handling system is presented

  6. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    International Nuclear Information System (INIS)

    Enos, David; Bryan, Charles R.

    2016-01-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the work described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.

  7. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the work described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.

  8. Remote systems and automation in radioactive waste package handling

    International Nuclear Information System (INIS)

    Gneiting, B.C.; Hayward, M.L.

    1987-01-01

    A proof-of-principle test was conducted at the Hanford Engineering Development Laboratory (HEDL) to demonstrate the feasibility of performing cask receiving and unloading operations in a remote and partially automated manner. This development testing showed feasibility of performing critical cask receipt, preparation, and unloading operations from a single control station using remote controls and indirect viewing. Using robotics and remote automation in a cask handling system can result in lower personnel exposure levels and cask turnaround times while maintaining operational flexibility. An automated cask handling system presents a flexible state-of-the-art, cost effective alternative solution to hands-on methods that have been used in the past. 7 refs., 13 figs

  9. JOYO operation support system 'JOYCAT' based on intelligent alarm handling

    International Nuclear Information System (INIS)

    Tamaoki, Tetsuo; Yamamoto, Hiroki; Sato, Masuo; Yoshida, Megumu; Kaneko, Tomoko; Terunuma, Seiichi; Takatsuto, Hiroshi; Morimoto, Makoto.

    1992-01-01

    An operation support system for the experimental fast reactor 'JOYO' was developed based on an intelligent alarm-handling. A specific feature of this system, called JOYCAT (JOYO Consulting and Analyzing Tool), is in its sequential processing structure that a uniform treatment by using design knowledge base is firstly applied for all activated alarms, and an exceptional treatment by using heuristic knowledge base is then applied only for the former results. This enables us to achieve real-time and flexible alarm-handling. The first alarm-handling determines the candidates of causal alarms, important alarms with which the operator should firstly cope, through identifying the cause-consequence relations among alarms based on the design knowledge base in which importance and activating conditions are described for each of 640 alarms in a frame format. The second alarm-handling makes the final judgement with the candidates by using the heuristic knowledge base described as production rules. Then, operation manuals concerning the most important alarms are displayed to operators. JOYCAT has been in commission since September of 1990, after a wide scope of validation tests by using an on-site full-scope training simulator. (author)

  10. Development of remote handling system based on 3-D shape recognition technique

    International Nuclear Information System (INIS)

    Tomizuka, Chiaki; Takeuchi, Yutaka

    2006-01-01

    In a nuclear facility, the maintenance and repair activities must be done remotely in a radioactive environment. Fuji Electric Systems Co., Ltd. has developed a remote handling system based on 3-D recognition technique. The system recognizes the pose and position of the target to manipulate, and visualizes the scene with the target in 3-D, enabling an operator to handle it easily. This paper introduces the concept and the key features of this system. (author)

  11. The use of physical model simulation to emulate an AGV material handling system

    International Nuclear Information System (INIS)

    Hurley, R.G.; Coffman, P.E.; Dixon, J.R.; Walacavage, J.G.

    1987-01-01

    This paper describes an application of physical modeling to the simulation of a prototype AGV (Automatic Guided Vehicle) material handling system. Physical modeling is the study of complex automated manufacturing and material handling systems through the use of small scale components controlled by mini and/or microcomputers. By modeling the mechanical operations of the proposed AGV material handling system, it was determined that control algorithms and AGV dispatch rules could be developed and evaluated. This paper presents a brief explanation of physical modeling as a simulation tool and addresses in detail the development of the control algorithm, dispatching rules, and a prototype physical model of a flexible machining system

  12. Department of the Navy final environmental impact statement for a container system for the management of naval spent nuclear fuel

    International Nuclear Information System (INIS)

    1996-11-01

    This Final Environmental Impact Statement (EIS) addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination. This EIS describes environmental impacts of (1) producing and implementing the container systems (including those impacts resulting from the addition of the capability to load the containers covered in this EIS in dry fuel handling facilities at Idaho National Engineering Laboratory (INEL)); (2) loading of naval spent nuclear fuel at the Expended Core Facility or at the Idaho Chemical Processing Plant with subsequent storage at INEL; (3) construction of a storage facility (such as a paved area) at alternative locations at INEL; and (4) loading of containers and their shipment to a geologic repository or to a centralized interim storage site outside the State of Idaho once one becomes available. As indicated in the EIS, the systems and facilities might also be used for handling low-level radiological waste categorized as special case waste. The Navy's preferred alternative for a container system for the management of naval spent fuel is a dual-purpose canister system. The primary benefits of a dual-purpose canister system are efficiencies in container manufacturing and fuel reloading operations, and potential reductions in radiation exposure

  13. Performance Assessment and Sensitivity Analyses of Disposal of Plutonium as Can-in-Canister Ceramic

    International Nuclear Information System (INIS)

    Rainer Senger

    2001-01-01

    The purpose of this analysis is to examine whether there is a justification for using high-level waste (HLW) as a surrogate for plutonium disposal in can-in-canister ceramic in the total-system performance assessment (TSPA) model for the Site Recommendation (SR). In the TSPA-SR model, the immobilized plutonium waste form is not explicitly represented, but is implicitly represented as an equal number of canisters of HLW. There are about 50 metric tons of plutonium in the U. S. Department of Energy inventory of surplus fissile material that could be disposed. Approximately 17 tons of this material contain significant quantities of impurities and are considered unsuitable for mixed-oxide (MOX) reactor fuel. This material has been designated for direct disposal by immobilization in a ceramic waste form and encapsulating this waste form in high-level waste (HLW). The remaining plutonium is suitable for incorporation into MOX fuel assemblies for commercial reactors (Shaw 1999, Section 2). In this analysis, two cases of immobilized plutonium disposal are analyzed, the 17-ton case and the 13-ton case (Shaw et al. 2001, Section 2.2). The MOX spent-fuel disposal is not analyzed in this report. In the TSPA-VA (CRWMS M and O 1998a, Appendix B, Section B-4), the calculated dose release from immobilized plutonium waste form (can-in-canister ceramic) did not exceed that from an equivalent amount of HLW glass. This indicates that the HLW could be used as a surrogate for the plutonium can-in-canister ceramic. Representation of can-in-canister ceramic as a surrogate is necessary to reduce the number of waste forms in the TSPA model. This reduction reduces the complexity and running time of the TSPA model and makes the analyses tractable. This document was developed under a Technical Work Plan (CRWMS M and O 2000a), and is compliant with that plan. The application of the Quality Assurance (QA) program to the development of that plan (CRWMS M and O 2000a) and of this Analysis is

  14. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    International Nuclear Information System (INIS)

    Hernelind, Jan

    2010-08-01

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  15. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    Energy Technology Data Exchange (ETDEWEB)

    Hernelind, Jan (5T Engineering AB (Sweden))

    2010-08-15

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  16. Design analysis report for the canister

    International Nuclear Information System (INIS)

    Raiko, Heikki; Sandstroem, Rolf; Ryden, Haakan; Johansson, Magnus

    2010-04-01

    The mechanical strength of the canister (BWR and PWR types) has been studied. The loading processes are taken from the design premises report and some of them, especially the uneven bentonite swelling cases, are further developed in this study and in its references. The canister geometry is described in detail including the manufacturing tolerances of the dimensions. The canister material properties are summarised and the wide material testing programmes and model developments are referenced. The combination of various load cases are rationalised and the conservative combinations are defined. Also the probabilities of various load cases and combinations are assessed for setting reasonable safety margins. The safety margins are used according to ASME Code principles for safety class 1 components. The governing load cases are analysed with 2D- or global 3D-finite-element models including large deformation and non-linear material modelling and, in some cases, also creep. The integrity assessments are partly made from the stress and strain results using global models and partly from fracture resistance analyses using the sub-modelling technique. The sub-model analyses utilize the deformations from the global analyses as constraints on the sub-model boundaries and more detailed finite-element meshes are defined with defects included in the models together with elastic-plastic material models. The J-integral is used as the fracture parameter for the postulated defects. The allowable defect sizes are determined using the measured fracture resistance curves of the insert iron as a reference with respective safety factors according to the ASME Pressure Vessel Code requirements. Based on the BWR canister analyses, the following conclusions can be drawn. The 45 MPa isostatic pressure load case shows very robust and distinct results in that the risk for local collapse is vanishingly small. The probabilistic analysis of plastic collapse only considers the initial local collapse

  17. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    Krahn, D.E.; Garvin, L.J.

    1997-01-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  18. CHLOE: a system for the automatic handling of spark pictures

    International Nuclear Information System (INIS)

    Butler, J.W.; Hodges, D.; Royston, R.

    The system for automatic data handling uses commercially available or state-of-the-art components. The system is flexible enough to accept information from various types of experiments involving photographic data acquisition

  19. A review of the possible effects of hydrogen on lifetime of carbon steel nuclear waste canisters

    International Nuclear Information System (INIS)

    Turnbull, A.

    2009-07-01

    In Switzerland, the National Cooperative for the Disposal of Radioactive Waste (Nagra) is responsible for developing an effective method for the safe disposal of vitrified high level waste (HLW) and spent fuel. One of the options for disposal canisters is thick-walled carbon steel. The canisters, which would have a diameter of about 1 m and a length of about 3 m (HLW) or about 5 m (spent fuel), will be embedded in horizontal tunnels and surrounded with bentonite clay. The regulatory requirement for the minimum canister lifetime is 1000 years but demonstration of a minimum lifetime of 10,000 years would be desirable. The pore-water to which the canister will be exposed is of marine origin with about 0.1-0.3 M Cl-. Since hydrogen is generated during the corrosion process, it is necessary to assess the probability of hydrogen assisted cracking modes and to make recommendations to eliminate that probability. To that aim, key reports detailing projections for the local environment and associated corrosion rate of the waste canister have been evaluated with the focus on the implication for the absorbed hydrogen concentration in the steel. Simple calculations of hydrogen diffusion and accumulation in the inner compartment of the sealed canister indicate that a pressure equivalent to that for gas pockets external to the canister (envisaged to be about 10 MPa) may be attained in the proposed exposure time, an important consideration since it is not possible to modify the internal surface of the closure weld. Current ideas on mechanisms of hydrogen assisted cracking are assessed from which it is concluded that the mechanistic understanding and associated models of hydrogen assisted cracking are insufficient to provide a framework for quantitative prediction for this application. The emphasis then was to identify threshold conditions for cracking and to evaluate the likelihood that these may be exceeded over the lifetime of the containment. Based on an analysis of data in the

  20. Theoretical predictions for glass flow into an evacuated canister

    International Nuclear Information System (INIS)

    Routt, K.R.; Crow, K.R.

    1983-01-01

    Radioactive waste currently stored at the Savannah River Plant in liquid form is to be immobilized by incorporating it into a borosilicate glass. The glass melter for this process will consist of a refractory lined, steel vessel operated at a glass temperature of 1150 0 C. At the end of a two-year projected melter lifetime, the glass inside the melter is to be drained prior to disposition of the melter vessel. One proposed technique for accomplishing this drainage is by sucking the glass into an evacuated canister. The theoretical bases for design of an evacuated canister for draining a glass melter have been developed and tested. The theoretical equations governing transient and steady-state flow were substantiated with both a silicone glass simulant and molten glass

  1. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  2. Development and implementation of automated radioactive materials handling systems

    International Nuclear Information System (INIS)

    Jacoboski, D.L.

    1992-12-01

    Material handling of radioactive and hazardous materials has forced the need to pursue remotely operated and robotic systems in light of operational safety concerns. Manual maneuvering, repackaging, overpacking and inspecting of containers which store radioactive and hazardous materials is the present mode of operation at the Department of Energy (DOE) Fernald Environmental Management Project (FEMP) in Fernald Ohio. The manual methods are unacceptable in the eyes of concerned site workers and influential community oversight committees. As an example to respond to the FEMP material handling needs, design efforts have been initiated to provide a remotely operated system to repackage thousands of degradated drums containing radioactive Thorium: Later, the repackaged Thorium will be shipped offsite to a predesignated repository again requiring remote operation

  3. Analysis of operational possibilities and conditions of remote handling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Hourfar, D.

    1989-01-01

    Accepting the development of the occupational radiation exposure in nuclear facilities, it will be showing possibilities of cost effective reduction of the dose rate through the application of robots and manipulators for the maintenance of nuclear power plants, fuel reprocessing plants, decommissioning and dismantling of the mentioned plants. Based on the experiences about industrial robot applications by manufacturing and manipulator applications by the handling of radioactive materials as well as analysis of the handling procedures and estimation of the dose intensity, it will be defining task-orientated requirements for the conceptual design of the remote handling systems. Furthermore the manifold applications of stationary and mobil arranged handling systems in temporary or permanent operation are described. (orig.) [de

  4. Initial results from the canistered waste forms produced during the first campaign of the DWPF Startup Test Program

    International Nuclear Information System (INIS)

    Harbour, J.R.

    1995-01-01

    As part of the Defense Waste Processing Facility (DWPF) Startup Test Program, approximately 90 canisters will be filled with glass containing simulated radioactive waste during five separate campaigns. The first campaign is a facility acceptance test to demonstrate the operability of the facility and to collect initial data on the glass and the canistered waste forms. During the next four campaigns (the waste qualification campaigns) data will be obtained which will be used to demonstrate that the DWPF product meets DOE's Waste Acceptance Product Specifications (WAPS). Currently 12 of the 16 canisters have been filled with glass during the first campaign (FA-13). This paper describes the tests that have been carried out on these 12 glass-filled canisters and presents the data with reference to the acceptance criteria of the WAPS. These tests include measurement of canister dimensions prior to and after glass filling. dew point, composition, and pressure of the gas within the free volume of the canister, fill height, free volume, weight, leak rates of welds and temporary seals, and weld parameters

  5. Advanced operator interface design for CANDU-3 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Arapakota, D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System`. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author).

  6. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    Arapakota, D.

    1995-01-01

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  7. Multiple-canister flow and transport code in 2-dimensional space. MCFT2D: user's manual

    International Nuclear Information System (INIS)

    Lim, Doo-Hyun

    2006-03-01

    A two-dimensional numerical code, MCFT2D (Multiple-Canister Flow and Transport code in 2-Dimensional space), has been developed for groundwater flow and radionuclide transport analyses in a water-saturated high-level radioactive waste (HLW) repository with multiple canisters. A multiple-canister configuration and a non-uniform flow field of the host rock are incorporated in the MCFT2D code. Effects of heterogeneous flow field of the host rock on migration of nuclides can be investigated using MCFT2D. The MCFT2D enables to take into account the various degrees of the dependency of canister configuration for nuclide migration in a water-saturated HLW repository, while the dependency was assumed to be either independent or perfectly dependent in previous studies. This report presents features of the MCFT2D code, numerical simulation using MCFT2D code, and graphical representation of the numerical results. (author)

  8. Decontamination of Savannah River Plant waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant (SRP) liquid, high-level radioactive waste into a solid form, such as borosilicate glass. The outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF to prevent the spread of radioactivity. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated byproducts which are difficult to immobilize by vitrification

  9. Multi-Canister overpack internal HEPA filters

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The rationale for locating a filter assembly inside each Multi-Canister Overpack (MCO) rather than include the filter in the Cold Vacuum Drying (CVD) process piping system was to eliminate the potential for contamination to the operators, processing equipment, and the MCO. The internal HEPA filters provide essential protection to facility workers from alpha contamination, both external skin contamination and potential internal depositions. Filters installed in the CVD process piping cannot mitigate potential contamination when breaking the process piping connections. Experience with K-Basin material has shown that even an extremely small release can result in personnel contamination and costly schedule disruptions to perform equipment and facility decontamination. Incorporating the filter function internal to the MCO rather than external is consistent with ALARA requirements of 10 CFR 835. Based on the above, the SNF Project position is to retain the internal HEPA filters in the MCO design

  10. Test manufacture of the canister insert 135

    International Nuclear Information System (INIS)

    Raiko, H.

    2005-10-01

    This report describes the insert-manufacturing test of a disposal canister for spent nuclear fuel that was made by Metso Foundries Jyvaeskylae Oy, in June 2004 on contract for Posiva Oy. The test manufacture was a part of the co-operation development programme of encapsulation technology between SKB AB and Posiva Oy. Insert casting was specified according to the current manufacturing specifications of SKB. The canister insert was of BWR-type with integral bottom. This was the second trial manufacture of this type of insert in Finland and, in total, the third test manufacture of insert by Metso Foundries Jyvaeskylae Oy. The result fulfilled all the requirements but the material mechanical properties of the cast material. The measured ultimate strength and elongation at rupture were lower than specified in the upper part of the cast. The reason for this was revealed in the metallurgical investigation of the cast material. The cast contained slag (dross). Avoiding the dross formation will be the most demanding challenge of the forthcoming development of the cast procedure. (orig.)

  11. Adaptive and energy efficient SMA-based handling systems

    Science.gov (United States)

    Motzki, P.; Kunze, J.; Holz, B.; York, A.; Seelecke, S.

    2015-04-01

    Shape Memory Alloys (SMA's) are known as actuators with very high energy density. This fact allows for the construction of very light weight and energy-efficient systems. In the field of material handling and automated assembly process, the avoidance of big moments of inertia in robots and kinematic units is essential. High inertial forces require bigger and stronger robot actuators and thus higher energy consumption and costs. For material handling in assembly processes, many different individual grippers for various work piece geometries are used. If one robot has to handle different work pieces, the gripper has to be exchanged and the assembly process is interrupted, which results in higher costs. In this paper, the advantages of using high energy density Shape Memory Alloy actuators in applications of material-handling and gripping-technology are explored. In particular, light-weight SMA actuated prototypes of an adaptive end-effector and a vacuum-gripper are constructed via rapid-prototyping and evaluated. The adaptive end-effector can change its configuration according to the work piece geometry and allows the handling of multiple different shaped objects without exchanging gripper tooling. SMA wires are used to move four independent arms, each arm adds one degree of freedom to the kinematic unit. At the tips of these end-effector arms, SMA-activated suction cups can be installed. The suction cup prototypes are developed separately. The flexible membranes of these suction cups are pulled up by SMA wires and thus a vacuum is created between the membrane and the work piece surface. The self-sensing ability of the SMA wires are used in both prototypes for monitoring their actuation.

  12. Feasibility of long-life and corrosion-resistant canister with titanium cladding

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Tokiwai, Moriyasu; Saegusa, Toshiari

    2008-01-01

    In order to store nuclear spent fuels for a long term, we propose the concept of stainless steel canister with titanium cladding. The stainless canister is first brazed to titanium plates, and then the brazed joints are covered with other titanium plates. A MIG brazing for titanium and stainless steel was demonstrated with a brazing metal of Cu-1Mn-3Si alloy (MG960). JIS G 0601 shear strength, tensile shear stress and peel strength tests are conducted for the optimized MIG brazing conditions. These results showed the MIG brazing specimens possess adequate structural strength. After the salt spray test on the basis of JIS Z 2371, there were no pitting and general corrosions on a TIG welding specimen between titanium plates. The corrosion resistance is therefore, sufficiently high. Manufacturing cost estimation suggests that the titanium cladding concept is feasible thereby using 1-mm-thick titanium plates to reduce the material cost. In addition to this concept, we propose another concept of the canister by using titanium-stainless steel cladding plates to reduce a number of brazing joints. (author)

  13. Remote handling machines

    International Nuclear Information System (INIS)

    Sato, Shinri

    1985-01-01

    In nuclear power facilities, the management of radioactive wastes is made with its technology plus the automatic techniques. Under the radiation field, the maintenance or aid of such systems is important. To cope with this situation, MF-2 system, MF-3 system and a manipulator system as remote handling machines are described. MF-2 system consists of an MF-2 carrier truck, a control unit and a command trailer. It is capable of handling heavy-weight objects. The system is not by hydraulic but by electrical means. MF-3 system consists of a four-crawler truck and a manipulator. The truck is versatile in its posture by means of the four independent crawlers. The manipulator system is bilateral in operation, so that the delicate handling is made possible. (Mori, K.)

  14. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  15. Modelling dust liberation in bulk material handling systems

    NARCIS (Netherlands)

    Derakhshani, S.M.

    2016-01-01

    Dust has negative effects on the environmental conditions, human health as well as industrial equipment and processes. In this thesis, the transfer point of a belt conveyor as a bulk material handling system with a very high potential place for dust liberation is studied. This study is conducted

  16. Contamination confinement system of irradiated materials handling laboratories

    International Nuclear Information System (INIS)

    Lobao, A. dos S.T.; Araujo, J.A. de; Camilo, R.L.

    1988-06-01

    A study to prevent radioctivity release in lab scale is presented. As a basis for the design all the limits established by the IAEA for ventilation systems were observed. An evaluation of the different parameters involved in the design have been made, resulting in the especification of the working areas, ducts and filtering systems in order to get the best conditions for the safe handling of irradiated materials. (author) [pt

  17. Draft report: Results of stainless steel canister corrosion studies and environmental sample investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Charles R. [Sandia National Laboratories, Albuquerque, NM (United States); Enos, David [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of used nuclear fuel. The work involves both characterization of the potential physical and chemical environment on the surface of the storage canisters and how it might evolve through time, and testing to evaluate performance of the canister materials under anticipated storage conditions.

  18. TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM

    International Nuclear Information System (INIS)

    T. A. Misiak

    1998-01-01

    This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications

  19. Three-dimensional television system for remote handling

    International Nuclear Information System (INIS)

    Dumbreck, A.A.; Abel, E.

    1988-01-01

    The paper refers to work previously described on the development of 3-D Television Systems. 3-D TV had been developed with a view to proving whether it was a useful remote handling tool which would be easy to use and comfortable to view. The paper summarizes the work of evaluation trials at UK facilities and reviews the developments which have subsequently taken place. 3-D TV systems have been found to give improved performance in terms of speed and accuracy of operations and to reduce the number of camera views required. (author)

  20. Estimates of durability of TMI-2 core debris canisters and cask liners

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Lund, A.L.; Pednekar, S.P.

    1994-04-01

    Core debris from the Three Mile Island-2 (TMI-2) reactor is currently stored in stainless steel canisters. The need to maintain the integrity of the TMI-2 core debris containers through the period of extended storage and possibly into disposal prompted this assessment. In the assessment, corrosion-induced degradation was estimated for two materials: type 304L stainless steel (SS) canisters that contain the core debris, and type 1020 carbon steel (CS) liners in the concrete casks planned for containing the canisters from 2000 AD until the TMI-2 core debris is placed in a repository. Three environments were considered: air-saturated water (with 2 ppM Cl - ) at 20 degree C, and air at 20 degree C with two relative humidities (RHs), 10 and 40%. Corrosion mechanisms assessed included general corrosion (failure criterion: 50% loss of wall thickness) and localized attack (failure criterion: through-wall pinhole penetration). Estimation of carbon steel corrosion after 50 y also was requested

  1. Application of a cold spray technique to the fabrication of a copper canister for the geological disposal of CANDU spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo, E-mail: hjchoi@kaeri.re.k [Korea Atomic Energy Research Institute, Radioactive Waste Management Technology Development, 150 Dukjin-dong, Yuseong, Daejon, 305-353 (Korea, Republic of); Lee, Minsoo; Lee, Jong Youl [Korea Atomic Energy Research Institute, Radioactive Waste Management Technology Development, 150 Dukjin-dong, Yuseong, Daejon, 305-353 (Korea, Republic of)

    2010-10-15

    A new method was proposed for the manufacture of a copper-cast iron canister for the spent fuel disposal based on the cold spray coating technique. The thickness of a copper shell could be fabricated to be as thin as 10 mm with the new method. Around 6 tons of copper could be saved with a 10 mm thick canister compared with a 50 mm thick canister. The electrochemical properties of the cold sprayed copper layer and forged copper were measured through a polarization test. The two copper layers showed very similar electrochemical properties. The lifetime of a 10 mm copper canister was estimated with a mathematical model based on the mass transport of sulfide ions through the buffer. The results showed that the canister lifetime was more than 140,000 years under the Korean granite groundwater condition. The thermal analysis with a current pre-conceptual design of a CANDU spent fuel canister showed that the maximum temperature between the canister and the saturated buffer was below the thermal criteria, 100 {sup o}C. Finally, the mechanical stability of the copper canister was confirmed with a computer program, ABAQUS, under the rock movement scenario.

  2. Multi-Canister overpack pressure testing

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The Multi-Canister Overpack (MCO) shield plug closure assembly will be hydrostatically tested at the fabricator's shop to the 150 psig design test requirement in accordance with the ASME Code. Additionally, the MCO shell and collar will be hydrostatically tested at the fabricator's shop to the 450 psig design test requirement. Commercial practice has not required a pressure test of the closure weld after spent fuel is loaded in the containers. Based on this precedent and Code Case N-595-I, the MCO closure weld will not be pressure tested in the field

  3. Sediment mechanical response due to emplacement of a waste canister

    International Nuclear Information System (INIS)

    Karnes, C.H.; Dawson, P.R.; Silva, A.J.; Brown, W.T.

    1980-01-01

    Preliminary studies have been conducted to determine the interaction between a waste canister and seabed sediment during and after emplacement. Empirical and approximate methods for determining the depth reached by a freefall penetrator indicate that a boosted penetrator emplacement method may be necessary. Hole closure is necessary, but has not been verified because calculations and laboratory experiments show sensitivity to boundary conditions which control the degree of dynamic hole closure. Laboratory studies show that closure will take place by creep deformation but closure times in seabed environments are uncertain. For assumed thermomechanical properties of sediments, it is shown that a heat generating waste canister will probably not move a significant distancce during the heat generation period

  4. Development of a Remote Handling System in an Integrated Pyroprocessing Facility

    Directory of Open Access Journals (Sweden)

    Hyo Jik Lee

    2013-10-01

    Full Text Available Over the course of a decade-long research programme, the Korea Atomic Energy Research Institute (KAERI has developed several remote handling systems for use in pyroprocessing research facilities. These systems are now used successfully for the operation and maintenance of processing equipment. The most recent remote handling system is the bridge-transported dual arm servo-manipulator system (BDSM, which is used for remote operation at the world's largest pyroprocess integrated inactive demonstration facility (PRIDE. Accurate and reliable servo-control is the basic requirement for the BDSM to accomplish any given tasks successfully in a hotcell environment. To achieve this end, the hardware and software of a digital signal processor-based remote control system were fully custom-developed and implemented to control the BDSM. To reduce the residual vibration of the BDSM, several input profiles, including input shaping, were carefully chosen and evaluated. Furthermore, a time delay controller was employed to achieve good tracking performance and systematic gain tuning. The experimental results demonstrate that the applied control algorithms are more effective than conventional approaches. The BDSM successfully completed its performance tests at a mock-up and was installed at PRIDE for real-world operation. The remote handling system at KAERI is expected to advance the actualization of pyroprocessing.

  5. A high intensity beam handling system at the KEK-PS new experimental hall

    International Nuclear Information System (INIS)

    Tanaka, K.H.; Minakawa, M.; Yamanoi, Y.

    1991-01-01

    We would like to summarize newly developed technology for handling high-intensity beams. This was practically employed in the beam-handling system of primary protons at the KEK-PS new experimental hall. (author)

  6. Challenges and innovative technologies on fuel handling systems for future sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into account various items and in particular operating strategies such as core design and management and core configuration. Moreover, the FHS will have to cope with safety assessments: a permanent cooling strategy to prevent fuel clad rupture, plus provisions to handle short-cooled fuel and criteria to ensure safety during handling. In addition, the handling and elimination of residual sodium must be investigated; it implies specific cleaning treatment to prevent chemical risks such as corrosion or excess hydrogen production. The objective of this study is to identify the challenges of a SFR fuel handling system. It will then present the range of technical options incorporating innovative technologies under development to answer the GENERATION IV SFR requirements. (author)

  7. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  8. Bifurcation methods of dynamical systems for handling nonlinear ...

    Indian Academy of Sciences (India)

    physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.

  9. Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories

    International Nuclear Information System (INIS)

    Apps, J.A.

    1982-01-01

    Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 350 0 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials

  10. Corrosion test plan to guide canister material selection and design for a tuff repository

    International Nuclear Information System (INIS)

    McCright, R.D.; van Konynenburg, R.A.; Ballou, L.B.

    1983-11-01

    Corrosion rates and the mode of corrosion attack form a most important basis for selection of canister materials and design of a nuclear waste package. Type 304L stainless steel was selected as the reference material for canister fabrication because of its generally excellent corrosion resistance in water, steam and air. However, 304L may be susceptible to localized and stress-assisted forms of corrosion under certain conditions. Alternative alloys are also investigated; these alloys were chosen because of their improved resistance to these forms of corrosion. The fabrication and welding processes, as well as the glass pouring operation for defense and commercial high-level wastes, may influence the susceptibility of the canister to localized and stress forms of corrosion. 12 references, 2 figures, 4 tables

  11. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    International Nuclear Information System (INIS)

    1995-01-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains ampersand Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer

  12. OCRWM Bulletin: Westinghouse begins designing multi-purpose canister

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This publication consists of two parts: OCRWM (Office of Civilian Radioactive Waste Management) Bulletin; and Of Mountains & Science which has articles on the Yucca Mountain project. The OCRWM provides information about OCRWM activities and in this issue has articles on multi-purpose canister design, and transportation cask trailer.

  13. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    International Nuclear Information System (INIS)

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs

  14. Potential Multi-Canister Overpack (MCO) Cask Drop in the K West Basin South Loadout Pit

    International Nuclear Information System (INIS)

    POWERS, T.B.

    1999-01-01

    This calculation note documents the probabilistic calculation of a potential drop of a multi-canister overpack (MCO) cask or MCO cask and immersion pail at the K West Basin south loadout pit. The calculations are in support of the cask loading system (CLS) subproject alignment of CLS equipment in the K West Basin south loadout pit

  15. Conceptual design of divertor cassette handling by remote handling system for JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2007-01-01

    The JT-60SA aims to contribute and supplement ITER toward DEMO reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is prohibited. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor modules. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor module, which is 10 degrees wide in toroidal direction and weighs 500kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor module to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the module by a pallet installed from outside the VV. (author)

  16. Conceptual design of divertor cassette handling by remote handling system of JT-60SA

    International Nuclear Information System (INIS)

    Hayashi, Takao; Sakurai, Shinji; Masaki, Kei; Tamai, Hiroshi; Yoshida, Kiyoshi; Matsukawa, Makoto

    2008-01-01

    The JT-60SA aims to contribute and supplement ITER toward demonstration fusion reactor based on tokamak concept. One of the features of JT-60SA is its high power long pulse heating, causing the large annual neutron fluence. Because the expected dose rate at the vacuum vessel (VV) may exceed 1 mSv/hr after 10 years operation and three month cooling, the human access inside the VV is restricted. Therefore a remote handling (RH) system is necessary for the maintenance and repair of in-vessel components. This paper described the RH system of JT-60SA, especially the expansion of the RH rail and exchange of the divertor cassettes. The RH rail is divided into nine and three-point mounting. The nine sections can cover 225 degrees in toroidal direction. A divertor cassette, which is 10 degrees wide in toroidal direction and weighs 500 kg itself due to the limitations of port width and handling weight, can be exchanged by heavy weight manipulator (HWM). The HWM brings the divertor cassette to the front of the other RH port, which is used for supporting the rail and/or carrying in and out equipments. Then another RH device receives and brings out the cassette by a pallet installed from outside the VV. (author)

  17. Aespoe Hard Rock Laboratory Canister Retrieval Test. Microorganisms in buffer from the Canister Retrieval Test - numbers and metabolic diversity

    International Nuclear Information System (INIS)

    Lydmark, Sara; Pedersen, Karsten

    2011-03-01

    'Canister Retrieval Test' (CRT) is an experiment that started at Aespoe Hard Rock Laboratory (HRL) 2000. CRT is a part of the investigations which evaluate a possible KBS-3 storage of nuclear waste. The primary aim was to see whether it is possible or not to retrieve a copper canister after storage under authentic KBS-3 conditions. However, CRT also provided a unique opportunity to investigate if bacteria survived in the bentonite buffer during storage. Therefore, in connection to the retrieval of the canister microbiological samples were extracted from the bentonite buffer and the bacterial composition was studied. In this report, microbiological analyses of a total of 66 samples at the C2, R10, R9 and R6 levels in the bentonite from CRT are presented and discussed. By culturing bacteria from the bentonite in specific media the following bacterial parameters were investigated: The total amount of culturable heterotrophic aerobic bacteria, sulphate-reducing bacteria, and bacteria that produce the organic compound acetate (acetogens). The biovolume in the bentonite was determined by detection of the ATP content. In addition, bacteria from the bentonite were cultured in different sulphate-reducing media. In these cultures, the presence of the biotic compounds sulphide and acetate was investigated, since these have potentially negative effect on the copper canister in a KBS-3 repository. The results were to some extent compared to density, water content, and temperature data provided by Clay Technology AB. The results showed that 10 0 -10 2 viable sulphate-reducing and acetogenic bacteria and 10 2 -10 4 heterotrophic aerobic bacteria g -1 bentonite were present after five years of storage in the rock. Bacteria with several morphologies could be found in the cultures with bentonite. The most bacteria were detected in the bentonite buffer close to the rock but in a few samples also in bentonite close to the copper canister. When the presence of bacteria in the bentonite

  18. Aespoe Hard Rock Laboratory Canister Retrieval Test. Microorganisms in buffer from the Canister Retrieval Test - numbers and metabolic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara; Pedersen, Karsten (Microbial Analytics Sweden AB (Sweden))

    2011-03-15

    'Canister Retrieval Test' (CRT) is an experiment that started at Aespoe Hard Rock Laboratory (HRL) 2000. CRT is a part of the investigations which evaluate a possible KBS-3 storage of nuclear waste. The primary aim was to see whether it is possible or not to retrieve a copper canister after storage under authentic KBS-3 conditions. However, CRT also provided a unique opportunity to investigate if bacteria survived in the bentonite buffer during storage. Therefore, in connection to the retrieval of the canister microbiological samples were extracted from the bentonite buffer and the bacterial composition was studied. In this report, microbiological analyses of a total of 66 samples at the C2, R10, R9 and R6 levels in the bentonite from CRT are presented and discussed. By culturing bacteria from the bentonite in specific media the following bacterial parameters were investigated: The total amount of culturable heterotrophic aerobic bacteria, sulphate-reducing bacteria, and bacteria that produce the organic compound acetate (acetogens). The biovolume in the bentonite was determined by detection of the ATP content. In addition, bacteria from the bentonite were cultured in different sulphate-reducing media. In these cultures, the presence of the biotic compounds sulphide and acetate was investigated, since these have potentially negative effect on the copper canister in a KBS-3 repository. The results were to some extent compared to density, water content, and temperature data provided by Clay Technology AB. The results showed that 100-102 viable sulphate-reducing and acetogenic bacteria and 102-104 heterotrophic aerobic bacteria g-1 bentonite were present after five years of storage in the rock. Bacteria with several morphologies could be found in the cultures with bentonite. The most bacteria were detected in the bentonite buffer close to the rock but in a few samples also in bentonite close to the copper canister. When the presence of bacteria in the

  19. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  20. Predicted peak temperature-rises around a high-level radioactive waste canister emplaced in the deep ocean bed

    International Nuclear Information System (INIS)

    Kipp, K.L.

    1978-06-01

    A simple mathematical model of heat conduction was used to evaluate the peak temperature-rise along the wall of a canister of high-level radioactive waste buried in deep ocean sediment. Three different amounts of vitrified waste, corresponding to standard Harvest, large Harvest, and AVM canisters, and three different waste loadings were studied. Peak temperature-rise was computed for the nine cases as a function of canister geometry and storage time between reprocessing and burial. Lower waste loadings or longer storage times than initially envisaged are necessary to prevent the peak temperature-rise from exceeding 200 0 C. The use of longer, thinner cylinders only modestly reduces the storage time for a given peak temperature. Effects of stacking of waste canisters and of close-packing were also studied. (author)