WorldWideScience

Sample records for cane bio-energy systems

  1. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  2. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  3. Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills.

    Science.gov (United States)

    Kim, Misook; Day, Donal F

    2011-07-01

    A challenge facing the biofuel industry is to develop an economically viable and sustainable biorefinery. The existing potential biorefineries in Louisiana, raw sugar mills, operate only 3 months of the year. For year-round operation, they must adopt other feedstocks, besides sugar cane, as supplemental feedstocks. Energy cane and sweet sorghum have different harvest times, but can be processed for bio-ethanol using the same equipment. Juice of energy cane contains 9.8% fermentable sugars and that of sweet sorghum, 11.8%. Chemical composition of sugar cane bagasse was determined to be 42% cellulose, 25% hemicellulose, and 20% lignin, and that of energy cane was 43% cellulose, 24% hemicellulose, and 22% lignin. Sweet sorghum was 45% cellulose, 27% hemicellulose, and 21% lignin. Theoretical ethanol yields would be 3,609 kg per ha from sugar cane, 12,938 kg per ha from energy cane, and 5,804 kg per ha from sweet sorghum.

  4. System expansion for handling co-products in LCA of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2012-01-01

    This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system...... expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage...... in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use...

  5. Bio energy: Bio energy in the Energy System of the Future

    International Nuclear Information System (INIS)

    Finden, Per; Soerensen, Heidi; Wilhelmsen, Gunnar

    2001-01-01

    This is Chapter 7, the final chapter, of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Factors leading to changes in the energy systems, (2) The energy systems of the future, globally, (3) The future energy system in Norway and (4) Norwegian energy policy at the crossroads

  6. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2009-01-01

    Sugar cane and sugar beet are used for sugar for human consumption. In the US, maize is used, amongst others, for the sweetener High Fructose Maize Syrup (HFMS). Sugar cane, sugar beet and maize are also important for bio-ethanol production. The growth of crops requires water, a scarce resource. The

  7. The Role of Bio-productivity on Bio-energy Yields

    Directory of Open Access Journals (Sweden)

    Marc J. J. Janssens

    2009-04-01

    Full Text Available The principal photosynthetic pathways convert solar energy differently depending on the environmental conditions and the plant morphotype. Partitioning of energy storage within crops will vary according to environmental and seasonal conditions as well. Highest energy concentration is found in terpens like latex and, to a lesser extent, in lipids. Ideally, we want plant ingredients with high energy content easily amenable to ready-to-use bio-fuel. Generally, these crops are adapted to drier areas and tend to save on eco-volume space. Competition with food crops could be avoided by fetching energy from cheap agricultural by-products or waste products such as bagasse in the sugar cane. This would in fact mean that reducing power of agricultural residues should be extracted from the biomass through non-photosynthetic processes like animal ingestion or industrial bio-fermentation. Conversion and transformation efficiencies in the production chain are illustrated for some relevant crops in the light of the maximum power theorem.

  8. Deterioration and fermentability of energy cane juice

    Directory of Open Access Journals (Sweden)

    Sandra Regina Ceccato-Antonini

    Full Text Available ABSTRACT: The main interest in the energy cane is the bioenergy production from the bagasse. The juice obtained after the cane milling may constitute a feedstock for the first-generation ethanol units; however, little attention has been dedicated to this issue. In order to verify the feasibility of the energy cane juice as substrate for ethanol production, the objectives of this research were first to determine the microbiological characteristics and deterioration along the time of the juices from two clones of energy cane (Type I and second, their fermentability as feedstock for utilization in ethanol distilleries. There was a clear differentiation in the bacterial and yeast development of the sugarcane juices assayed, being much faster in the energy canes than in sugarcane. The storage of juice for 8 hours at 30oC did not cause impact in alcoholic fermentation for any sample analyzed, although a significant bacterial growth was detected in this period. A decrease of approximately seven percentage points in the fermentative efficiency was observed for energy cane juice in relation to sugarcane in a 24-hour fermentation cycle with the baking yeast. Despite the faster deterioration, the present research demonstrated that the energy cane juice has potential to be used as feedstock in ethanol-producing industries. As far as we know, it is the first research to deal with the characteristics of deterioration and fermentability of energy cane juices.

  9. Comparing centralized and decentralized bio-energy systems in rural China

    International Nuclear Information System (INIS)

    He, Guizhen; Bluemling, Bettina; Mol, Arthur P.J.; Zhang, Lei; Lu, Yonglong

    2013-01-01

    Under the dual pressures of an energy crisis and rising greenhouse gas emissions, biomass energy development and utilisation has become part of the national energy strategy in China. The last decade has witnessed a strong promotion of both centralised and decentralised bio-energy systems in rural China. The government seems to have a strong preference for centralised (village-based) bio-energy systems in recent years. However, these government-driven systems have not worked without difficulties, particularly regarding economic and technological viability and maintenance. Studies on the advantages and disadvantages of decentralised and centralised bio-energy systems are rare. This study aims to shed light on the performances of these two systems in terms of social, economic and environmental effects. Through interviewing local officials and village leaders and surveying farmers in 12 villages in Shandong Province, it was found that bio-energy systems should be selected based on the local circumstances. The diversity of the local natural, economic and social situations determines the size, place, technology and organisational model of the bio-energy system. - Highlights: • Biomass energy development has become part of the national energy strategy in China. • The dis-/advantages of decentralized and centralized bio-energy systems are evaluated. • Bio-energy systems should be selected based on the local circumstances

  10. Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Mesa-Pérez, Juan Miguel; Rocha, José Dilcio; Barbosa-Cortez, Luis Augusto; Penedo-Medina, Margarita; Luengo, Carlos Alberto; Cascarosa, Esther

    2013-01-01

    This study focuses on the technical viability evaluation of the fast pyrolysis of sugar cane straw for its energy use. By means of this thermochemical process, the sugar cane straw is converted into bio-fuels (biochar, bio-oil) and non-condensable gases. The bio-fuels obtained could be used as fuel or as raw material in the chemical industry. The fast pyrolysis of sugar cane straw has been developed in a fluidized bed reactor. In order to improve this process to obtain high bio-oil yield, the influence of the operational conditions (equivalence ratio and temperature) on the product yields and on their characteristics was evaluated. The product yields of bio-oil and char were up to 35.5 wt.% and 48.2 wt.% respectively. The maximum bio-oil yield was achieved at temperature and equivalence ratio conditions of 470 °C and 0.14. The bio-oil obtained has low oxygen content (38.48 wt.% dry basis), very low water content, and a lower heating value of 22.95 MJ/kg. The gas chromatographic analyses allowed the identification of oxygenated compounds and heterocyclic aromatic hydrocarbons. The bio-oil pH ranged between 3.14 and 3.57 due to the presence of acid organic compounds. The char obtained has a high fixed carbon and volatile matter content. Its HHV value is 13.54 MJ/kg. -- Highlights: • Pyrolysis of sugar cane straw was studied in a fluidized bed reactor. • The product yields were evaluated. • The composition of the liquid and solid products obtained was analyzed. • This is an environmentally friendly use for this waste

  11. Full chain energy analysis of fuel ethanol from cane molasses in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T.; Gheewala, Shabbir H.; Garivait, Savitri [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2008-08-15

    An analysis of energy performance and supply potential was performed to evaluate molasses utilization for fuel ethanol in Thailand. The Thai government recently has set up a production target of 1.925 million litres a day of sugar-based ethanol. The molasses-based ethanol (MoE) system involves three main segments: sugar cane cultivation, molasses generation, and ethanol conversion. Negative net energy value found for MoE is a consequence of not utilizing system co-products (e.g. stillage and cane trash) for energy. Taking into account only fossil fuel or petroleum inputs in the production cycle, the energy analysis provides results in favour of ethanol. A positive net energy of 5.95 MJ/L which corresponds to 39% energy gain shows that MoE is efficient as far as its potential to replace fossil fuels is concerned. Another encouraging result is that each MJ of petroleum inputs can produce 6.12 MJ of ethanol fuel. Regarding supply potential, if only the surplus molasses is utilized for ethanol, a shift of 8-10% sugar cane produce to fuel ethanol from its current use in sugar industry could be a probable solution. (author)

  12. Study of Sugar Cane Management Systems in Brazil Using Laser Induced Fluorescence

    Science.gov (United States)

    Cabral, Jader; Villas-Boas, Paulino; Carvalho, Camila; Corá, José Eduardo; Milori, Débora

    2014-05-01

    Brazil is the largest producer of cane sugar, consequently, is a leader in the production of bio-ethanol, a clean and renewable energy that fits the model of sustainable economy as discussed and pursued by our society. Our state of São Paulo concentrates 60% of national production, representing a sizeable share in the range of world production. All this economic potential is closely monitored by the scientific community, which develops numerous studies seeking an improvement in production efficiency and reduced environmental impacts caused by the planting. However, the study of soil samples, in plantation areas, demands results about the content and structural forms of organic matter (OM). Also, the soil carbon stocks depend on the type of management. Our goal is to study OM of soil samples from four sugar cane management systems: (i) unburned cane harvest, (ii) preharvest burned, (iii) addition of sugarcane bagasse ash and (iv) addition of residue from the extraction of sucrose, using Laser Induced Fluorescence Spectroscopy of solid state. All the emission spectra were acquired using the system called LIFS-405, which consists of a diode laser Coherent, model cube with excitation at 405 nm, maximum output power of 50mJ and a mini-spectrometer, Ocean Optics USB2000-high sensitivity, with range of 194-894 nm and a fiber-optic bundle design (six excitation fibers in a circular path and one central fiber the collect the fluorescence). In this work, we will present the preliminary results evolving the humification index (HLIFS) of soil OM and total carbon amount (TC) for the different types of management. HLIFS shows a close correlation with the humification index of humic acid in solution obtained by means 2D conventional fluorescence spectroscopy.

  13. The future of sugar cane in China and India - Supply constraints and expansion potential

    International Nuclear Information System (INIS)

    Kostka, Genia; Polzin, Christine; Scharrer, Jenny

    2009-01-01

    The last decade has seen a surging demand for biofuels in the wake of increasing oil prices and rising environmental concerns. The most common biofuel is bio-ethanol accounting for more than 90% of total biofuel usage. It is increasingly produced from sugar cane making cane a strategic crop for biofuels. Given the growing demand for 'green' fuels, bio-ethanol production has been supported by energy policies in the past decade, which have consequently been accused of contributing to the global trend of rising food prices and thus jeopardising food security. However, while biofuel policies are an important driver, prices as much as food security will ultimately be determined by supply constraints of strategic crops. This paper hence investigates drivers of and constraints to sugar cane production in China and India and shows that supply side constraints vary significantly in the two countries. China and India both face serious limitations with regard to suitable available land for the further expansion of sugar cane production. Equally they are both faced with challenges to increasing yield output per hectare, albeit different ones. With regard to productivity, China achieved 2.7% annual yield growth since 1997, while India has seen yield decreases of -0.1% p.a. over the same period. The authors conclude that cane used as a feedstock to meet the rising energy demand will come at the expense of converting fertile land for non-food purposes.

  14. Chemistry Based on Renewable Raw Materials: Perspectives for a Sugar Cane-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Murillo Villela Filho

    2011-01-01

    Full Text Available Carbohydrates are nowadays a very competitive feedstock for the chemical industry because their availability is compatible with world-scale chemical production and their price, based on the carbon content, is comparable to that of petrochemicals. At the same time, demand is rising for biobased products. Brazilian sugar cane is a competitive feedstock source that is opening the door to a wide range of bio-based products. This essay begins with the importance of the feedstock for the chemical industry and discusses developments in sugar cane processing that lead to low cost feedstocks. Thus, sugar cane enables a new chemical industry, as it delivers a competitive raw material and a source of energy. As a result, sugar mills are being transformed into sustainable biorefineries that fully exploit the potential of sugar cane.

  15. Bio-ethanol: from the Brazilian experience to the formation of a global market

    International Nuclear Information System (INIS)

    Poppe, M.; Horta Nogueira, L.A.

    2009-01-01

    Almost a century of regular use as a car fuel and a few decades of significant technical progress have now made sugar cane bio ethanol a viable option to replace efficiently fossil fuels. This article sets out the main steps of the development of Brazil's bio ethanol industry as well as the growth of demand, while underlining the role of public policies that have been gradually introduced to help reach economic competitiveness, at the same time favouring sustainable development. Currently, 33 million cars made locally or imported into Brazil run on pure bio ethanol, or mixed with gasoline (E25) and a significant part of Brazil's electricity is produced by cogeneration systems that use sugar cane bagasse. This positive experience stands a good chance of spreading, thus extending the contribution of renewable energies to meeting global energy demand. This, on condition that a global bio fuel market emerges, stimulating trade between producing countries, located in the humid tropics, and consumer countries, which have a sufficient number of suitably adapted vehicles in use, with environmental, economic and social benefits for all concerned and for the planet. (authors)

  16. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production

    International Nuclear Information System (INIS)

    Nguyen, Thu Lan T.; Hermansen, John E.

    2012-01-01

    Highlights: → A challenging issue in LCA is how to account for co-products' environmental burdens. → The two most commonly used procedures are system expansion and allocation. → System expansion appears to be more appropriate than allocation. → Indirect land use change is a consequence of diverting molasses from feed to fuel. → The inclusion of land use change worsens the GHG balance of molasses ethanol. -- Abstract: This study aims to establish a procedure for handling co-products in life cycle assessment (LCA) of a typical sugar cane system. The procedure is essential for environmental assessment of ethanol from molasses, a co-product of sugar which has long been used mainly for feed. We compare system expansion and two allocation procedures for estimating greenhouse gas (GHG) emissions of molasses ethanol. As seen from our results, system expansion yields the highest estimate among the three. However, no matter which procedure is used, a significant reduction of emissions from the fuel stage in the abatement scenario, which assumes implementation of substituting bioenergy for fossil-based energy to reduce GHG emissions, combined with a negligible level of emissions from the use stage, keeps the estimate of ethanol life cycle GHG emissions below that of gasoline. Pointing out that indirect land use change (ILUC) is a consequence of diverting molasses from feed to fuel, system expansion is the most adequate method when the purpose of the LCA is to support decision makers in weighing the options and consequences. As shown in the sensitivity analysis, an addition of carbon emissions from ILUC worsens the GHG balance of ethanol, with deforestation being a worst-case scenario where the fuel is no longer a net carbon saver but carbon emitter.

  17. Technological change of the energy innovation system: From oil-based to bio-based energy

    International Nuclear Information System (INIS)

    Wonglimpiyarat, Jarunee

    2010-01-01

    This paper concerns the structural developments and the direction of technological change of the energy innovation system, based on the studies of Kuhn's model of scientific change and Schumpeter's model of technological change. The paper uses the case study of Thai government agencies for understanding the way governments can facilitate technological innovation. The analyses are based on a pre-foresight exercise to examine the potential of the bio-based energy and investigate a set of development policies necessary for the direction of energy system development. The results have shown that bio-based energy is seen as the next new wave for future businesses and one of the solutions to the problem of high oil prices to improve the world's economic security and sustainable development. (author)

  18. Bio energy: Bio fuel - Properties and Production

    International Nuclear Information System (INIS)

    Wilhelmsen, Gunnar; Martinsen, Arnold Kyrre; Sandberg, Eiliv; Fladset, Per Olav; Kjerschow, Einar; Teslo, Einar

    2001-01-01

    This is Chapter 3 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Definitions and properties, (2) Bio fuel from the forest, (3) Processed bio fuel - briquettes, pellets and powder, (4) Bio fuel from agriculture, (5) Bio fuel from agro industry, (6) Bio fuel from lakes and sea, (7) Bio fuel from aquaculture, (8) Bio fuel from wastes and (9) Hydrogen as a fuel. The exposition largely describes the conditions in Norway. The chapter on energy from the forest includes products from the timber and sawmill industry, the pulp and paper industry, furniture factories etc. Among agricultural sources are straw, energy forests, vegetable oil, bio ethanol, manure

  19. Bio-fuels of the first generation

    International Nuclear Information System (INIS)

    2012-04-01

    After having briefly recalled the objective of use of renewable energies and the role bio-fuels may play, this publication briefly presents various bio-fuels: bio-diesel (from colza, soybean or sunflower oil), and ethanol (from beet, sugar cane, wheat or corn). Some key data regarding bio-fuel production and use in France are briefly commented. The publication outlines strengths (a positive energy assessment, a decreased dependency on imported fossil fuels and a higher supply safety, a diversification of agriculture revenues and prospects, a reduction of greenhouse gas emissions) and weaknesses (uncertainty regarding the evolution of soil use, an environmental impact related to farming methods) of this sector. Actions undertaken by the ADEME in collaboration with other agencies and institutions are briefly overviewed

  20. Bio energy - Environment, technique and market

    International Nuclear Information System (INIS)

    Hohle, Erik Eid

    2001-01-01

    Leading abstract. In this book, a group of experts discusses everything about the use of bio fuels, from the briquettes of dry alder used in automobile gas generators during World War II to the most advanced present-day use. The chapters are: (1) Energy and society, (2) Production of biomass, (3) Bio fuel - properties and production, (4) Bio fuel - conversion and use, (5) Environment and environmental engineering, (6) Economy and planning and (7) Bio energy in the energy system of the future. There is a list of literature and a glossary at the end of the book

  1. Governance of the emerging bio-energy markets

    International Nuclear Information System (INIS)

    Verdonk, M.; Dieperink, C.; Faaij, A.P.C.

    2007-01-01

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  2. Governance of the emerging bio-energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M. [Department of Water and Energy, Grontmij Nederland BV, P.O. Box 203, 3730 AE, De Bilt (Netherlands); Dieperink, C. [Department of Innovation and Environmental Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands); Faaij, A.P.C. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands)

    2007-07-15

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  3. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  4. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  5. Hydropyrolysis of sugar cane bagasse: effect of sample configuration on bio-oil yields and structures from two bench-scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Pindoria, R.V.; Chatzakis, I.N.; Lim, J.-Y.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    1999-01-01

    A wire-mesh reactor has been used as base-case in the study of product yields and structures from the pyrolysis and hydropyrolysis of a sample of sugar cane bagasse in a fixed bed `hot-rod` reactor. Results from the two reactors have been compared to determine how best to assess bench-scale data which might be used for eventual process development. Experiments have been carried out at 600{degree}C at pressures up to 70 bar. Structural features of the bio-oils have been examined by size exclusion chromatography and FT-infrared spectroscopy. In both reactors the effect of increasing pressure was to reduce the bio-oil and total volatile yields: hydropyrolysis bio-oil yields were marginally higher than pyrolysis yields under equivalent operating conditions. The data indicate that about one-third of the original biomass may be converted to oil by direct pyrolysis. 33 refs., 10 figs.

  6. Bio-energy status document 2012; Statusdocument bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.L.; Van Grinsven, A.H.; Bergsma, G.C.; Croezen, H.C.

    2013-05-15

    In 2012 bio-energy contributed over 71 PJ to the Dutch energy supply, a rise of almost 2 PJ over 2011. This means that 75% of the renewable energy consumed in the Netherlands is now derived from biomass. The growth is due mainly to the increase in the mandatory biotransport fuel percentage from 4.25% to 4.5%. The use of energy from 'other biomass combustion' (incl. paper sludge, green waste and chicken excrement) recovered to the level of 2010, following a marked drop in 2011 due to plant maintenance, termination of the MEP ('Environmental Quality of Power Generation') subsidy scheme and high biomass prices. At large power stations there was a considerable decrease in co-incineration of biomass because of incidents (a fire at the Nijmegen coal-fired plant) and a maintenance backlog (at the Amer power station). These are some of the results reported in the 'Bio-energy status document 2012', prepared by CE Delft for NL Agency. In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] De bijdrage van bio-energie aan de Nederlandse energievoorziening bedroeg in 2012 ruim 71 PJ, een stijging van bijna 2 PJ ten opzichte van 2011. Daarmee is 75% van het verbruik van hernieuwbare energie in Nederland afkomstig van bio-energie. De stijging wordt vooral veroorzaakt door de oplopende bijmengplicht van biotransportbrandstoffen van 4,25% naar 4,5%. Verbruik van energie uit 'overige biomassaverbranding' (o.a. papierslib, groenafval en kippenmest) herstelde zicht tot het niveau van 2010, na een forse daling in 2011 door onderhoud aan installaties, afloop van MEP-subsidies en hoge prijzen van biomassa. Het bij- en meestoken van biomassa in grote elektriciteitscentrales daalde juist aanzienlijk door calamiteiten en uitloop van onderhoud (brand kolencentrale bij Nijmegen

  7. The water footprint of sweeteners and bio-ethanol

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2012-01-01

    An increasing demand for food together with a growing demand for energy crops result in an increasing demand for and competition over water. Sugar cane, sugar beet and maize are not only essential food crops, but also important feedstock for bio-ethanol. Crop growth requires water, a scarce

  8. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  9. Ethanol from sugar cane with simultaneous production of electrical energy and biofertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Filgueiras, G.

    1981-08-04

    A flexible nonpolluting industrial scheme is described for converting sugar cane into fuel-grade ethanol, fertilizer, and electric power. The cleaned cane is treated in a diffuser to separate the juice, which is enzymically hydrolyze d to ethanol, and bagasse containing 65-85% moisture, which is mechanically ground with the rest of the cane plant (leaves and buds) and biochemically digested to provide liquid and solid fertilizers as well as a methane-containing gas, which is burned in a gas turbine to generate electricity. The vinasse from the ethanol fermentation is also cycled to the digestion step. The process conditions can be varied depending upon the desired product ratio; if fuel is preferred, each ton of cane (dry weight) can produce 135 L ethanol, 50 kW electric power, and 150 kg fertilizer; if electric energy is preferred, each ton can give 75 L ethanol, 115 kW power, and 220 kg fertilizer.

  10. 2010 World bio-energy conference

    International Nuclear Information System (INIS)

    2010-01-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  11. Nitrogen dynamics in a soil-sugar cane system

    International Nuclear Information System (INIS)

    Oliveira, Julio Cesar Martins de; Reichardt, Klaus; Bacchi, Osny O.S.; Timm, Luis Carlos; Tominaga, Tania Toyomi; Castro Navarro, Roberta de; Cassaro, Fabio Augusto Meira; Dourado-Neto, Durval; Trivelin, Paulo Cesar Ocheuse; Piccolo, Marisa de Cassia

    2000-01-01

    Results of an organic matter management experiment of a sugar cane crop are reported for the first cropping year. Sugar cane was planted in October 1997, and labeled with a 15 N fertilizer pulse to study the fate of organic matter in the soil-plant system. A nitrogen balance is presented, partitioning the system in plant components (stalk, tip and straw), soil components (five soil organic matter fractions) and evaluating leaching losses. The 15 N label permitted to determine, at the end of the growing season, amounts of nitrogen derived from the fertilizer, present in the above mentioned compartments. (author)

  12. Process contribution evaluation for COD removal and energy production from molasses wastewater in a BioH2-BioCH4-MFC-integrated system.

    Science.gov (United States)

    Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk

    2017-01-01

    In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.

  13. Breeding Energy Cane Cultivars as a Biomass Feedstock for Coal Replacement

    Science.gov (United States)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  14. Sugarcane bio ethanol and bioelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches the Brazilian sugar cane production and processing model, sugarcane processing, sugarcane reception, sugarcane preparation and juice extraction, juice treatment, fermentation, distillation, sector efficiencies and future improvement - 2007, 2015 and 2025, present situation (considering the 2007/2008 harvesting season), prospective values for 2015 and for 2025, bioelectricity generation, straw recovery, bagasse availability, energy balance, present situation, perspective for improvements in the GHG mitigation potential, bio ethanol production chain - from field to tank, and surplus electricity generation.

  15. The basis for a Platform Bio-Energy. Combining forces for the Dutch bio-energy business

    International Nuclear Information System (INIS)

    Van Halen, C.J.G.

    1998-02-01

    It appears that there is a need for a community of interests in the field of bio-energy to solve numerous problems and to answer many questions with respect to the development of businesses that are active in the field of bio-energy. The title study was carried out in the third and fourth quarter of 1997 by means of surveys and depth interviews among representatives of bio-energy businesses, interest groups and research institutes. The majority of the respondents supports the foundation of the Platform Bio-Energy and suggests many different activities

  16. Tactical Garbage to Energy Refinery

    Science.gov (United States)

    2009-10-01

    Petroleum based Pyrolysis to bio-oil Biodiesel (fluid .6) Fuel cells, PEMs generators * Bio-based Gasification to energy Methane (gas .97) Liquid fuel for...Biotechnol. 2007, 108, 67-93. 9. Patzek, T.W. Thermodynamics of the Corn -Ethanol Biofuel Cycle. Curr. Rev. Plant Sci. 2004,23,519-567 10. Canes, M.E

  17. FY 1997 report on the research study on the effect of the active use of bio-technology on energy and social systems; 1997 nendo chosa hokokusho (bio-technology no katsuyo ni yoru energy shakai system ni oyobosu koka no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For construction of a sustainable society by active use of bio-technology, a research study was made on the current state of active use of bio-technology for every industrial or social field, and the basic recognition and orientation for practice and diffusion of bio-technology. The previous typical examples of the effect of bio-technology on energy and social systems were evaluated from not only an affirmative viewpoint but also a compensatory viewpoint. Based on these examples, promising features of bio-technology and measures for active use of such features were showed for the future energy and social systems from a technological viewpoint. As a scenario for sustainable development of a society, some approaches and values about collection of rare resources, agriculture based on mass circulation, and recurrence to high-protein traditional foods such as fermented food were showed for balanced development of environment, population, and resources including energy and food. 8 refs., 14 figs., 8 tabs.

  18. Environmental effects of bio energy systems in Sudan

    International Nuclear Information System (INIS)

    Mohammed Nour, Salah Eldin Ali

    1999-01-01

    Biomass plays a vital role in Sudan and constitutes about 87% of the total energy consumption. Firewood and charcoal are the main sources of fuel representing more than 90% of household energy. The utilization of the bio energy i.e fuelwood, charcoal, agricultural residues and animal wastes has negative and positive effects on the environment. This paper summarize the environmental impacts and health effects resulting from energy production, supply and consumption

  19. Biosynthesis of Bio surfactant by Egyptian Local Bacterial Isolates Using Different Agricultural Wastes

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.

    2014-01-01

    Fifteen bacterial isolates were isolated from sea water from the coast of the General Petroleum Company on Suez Gulf. They were screened for bio surfactant production using emulsification activity and haemolytic activity. The most potent isolate B11 were selected according to two parameters: The ability to grow and produce surfactant and its haemolytic activity on blood agar plates. The isolate B11 was characterized and identified as Bacillus licheniformis according to API system. The isolate was subjected to different doses of gamma irradiation in a trial to improve its ability for bio surfactant production which resulted in a passive effect on bio surfactant production. Three types of agricultural wastes (Rice straw, Cane Bagasse, Corn straw) were used as fertilizers for bio surfactant biosynthesis by the promising isolate in concentrations of 1, 2, 3, 4, 5 g/l. At five g/l concentration cane bagasse gave high production of bio surfactant with maximum capacity at (32%) flowed by rice straw at 18% and corn straw at 9.8 %.

  20. Wearable Gait Measurement System with an Instrumented Cane for Exoskeleton Control

    Directory of Open Access Journals (Sweden)

    Modar Hassan

    2014-01-01

    Full Text Available In this research we introduce a wearable sensory system for motion intention estimation and control of exoskeleton robot. The system comprises wearable inertial motion sensors and shoe-embedded force sensors. The system utilizes an instrumented cane as a part of the interface between the user and the robot. The cane reflects the motion of upper limbs, and is used in terms of human inter-limb synergies. The developed control system provides assisted motion in coherence with the motion of other unassisted limbs. The system utilizes the instrumented cane together with body worn sensors, and provides assistance for start, stop and continuous walking. We verified the function of the proposed method and the developed wearable system through gait trials on treadmill and on ground. The achievement contributes to finding an intuitive and feasible interface between human and robot through wearable gait sensors for practical use of assistive technology. It also contributes to the technology for cognitively assisted locomotion, which helps the locomotion of physically challenged people.

  1. Linearity between temperature peak and bio-energy CO2 emission rates

    International Nuclear Information System (INIS)

    Cherubini, Francesco; Bright, Ryan M.; Stromman, Anders H.; Gasser, Thomas; Ciais, Philippe

    2014-01-01

    Many future energy and emission scenarios envisage an increase of bio-energy in the global primary energy mix. In most climate impact assessment models and policies, bio-energy systems are assumed to be carbon neutral, thus ignoring the time lag between CO 2 emissions from biomass combustion and CO 2 uptake by vegetation. Here, we show that the temperature peak caused by CO 2 emissions from bio-energy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR) to fossil fuel emissions is approximately constant, the CCR to bio-energy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bio-energy CO 2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO 2 emissions from bio-energy matters. Under the international agreement to limit global warming to 2 C by 2100, early emissions from bio-energy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bio-energy is sourced from biomass with medium (50-60 years) or long turnover times (100 years). (authors)

  2. Bio-fuels are not so green

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2007-01-01

    Today there is an unrelenting trend for bio-fuels but some scientists question their utility. Some surveys show that the environmental balance sheet for bio-fuels is strongly positive for instance it is assessed that the production of 1 MJ of ethanol from beet roots of wheat requires only 0.49 MJ of fossil energy, interesting figure when compared to the 1.14 MJ of fossil energy needed to produce 1 MJ of gasoline. Other studies are less optimistic, all depends strongly on the basic data used and on the approach followed. Some scientists wonder whether all the pollutants generated in the transformation processes are well taken into account. In fact the environment benefit of the first generation of bio-fuels is mild because scientists do not know how to use efficiently the wood-cellulose by-products of plants. There is a notably exception to that, it is the sugar cane in Brazil, this plant has a good energy conversion rate and its by-products are completely and efficiently used in industry. A way to valorize cellulose by-products is to transform them in ethanol and hydrogen through the use of mushroom enzymes. (A.C.)

  3. "RecognizeCane" : The new concept of a cane which recognizes the most common objects and safety clues.

    Science.gov (United States)

    Scherlen, Anne-Catherine; Dumas, Jean Claude; Guedj, Benjamin; Vignot, Alexandre

    2007-01-01

    This paper introduces the new concept of an electronic cane for blind people. While some systems inform the subject only of the presence of the object and its relative distance, RecognizeCane is also able to recognize most common objects and environment clues to increase the safety and confidence of the navigation process. The originality of RecognizeCane is the use of simple sensors, such as infrared, brilliance or water sensors to inform the subject of the presence, for example, of a stairway, a water puddle, a zebra crossing or a trash can. This cane does not use an embedded vision system. RecognizeCane is equipped with several sensors and microprocessors to collect sensor data and extract the desired information about the close environment by means of a dynamic analysis of output signals.

  4. Analysis of Calorific Value of Tibarau Cane Briquette

    Science.gov (United States)

    Nurdin, H.; Hasanuddin, H.; Darmawi, D.; Prasetya, F.

    2018-04-01

    The development of product diversification through tibarau cane briquettes as an effort in obtaining alternative fuels. Tibarau cane is one of the potential materials of renewable energy sources that can be processed into briquette. So as to reduce dependence on energy fuel oil, which for the middle to lower class is the main requirement. Efforts and innovations tibarau cane briquettes in producing fuel that has quality and performance can be measured with calorific value. Prior to development of this potential required the existence of test and evaluation stages according to the order of the flow of new material product development. Through process technology of briquette product making with compaction and optimization of composition content on tapioca adhesive and mesh particles suitable to get optimum calorific value. The results obtained in this research are the development of tibarau cane briquette model which is recommended as replacement fuel. Where the calorific value of tibarau cane briquette is 11.221,72 kJ / kg at composition percentage 80: 20 and its density is 0,565 gr/cm3. The comparison of mass tibarau with tapioca, particle size, pressure force (compaction), can affect the calorific value and density of tibarau cane briquette.

  5. Urban Wood-Based Bio-Energy Systems in Seattle

    Energy Technology Data Exchange (ETDEWEB)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  6. A self-reliant avian bio-logger: energy storage considerations

    International Nuclear Information System (INIS)

    Schlichting, Alexander D; Garcia, Ephrahim

    2014-01-01

    This work presents an analysis of a self-reliant avian bio-logger to be utilized for long-term migration studies. The system is a microcontroller-based sensing system for uric acid measurements. It is capable of wirelessly transmitting its saved data to a base station. Power and energy budgets for the system modalities and tasks were calculated to determine the necessary energy storage performance. Two thin-film lithium batteries, which possess the highest specific power of the devices surveyed, were experimentally shown to have the capability to provide the necessary specific power and specific energy levels in packages around 0.5 g. Also, estimates for the amount of harvested energy which can be expected from photovoltaic cells and piezoelectric harvesters are calculated, showing that energy-neutral operation is achievable with the presented system. Our analyses and measurements show that the presented system is able to provide the energy and power levels necessary for a self-reliant avian bio-logger. These findings aid in the design of wireless measurement systems which can perform rigorous studies as the more energy available to the system, the more data it can collect and transmit. (paper)

  7. Energy balances in sugar cane, coffee and natural vegetation in the northeastern side of the São Paulo state, Brazil

    Science.gov (United States)

    de C. Teixeira, Antônio H.; Leivas, Janice F.; Ronquim, Carlos C.; Bayma-Silva, Gustavo; de C. Victoria, Daniel

    2016-10-01

    Under land and climate change scenarios, agriculture has experienced water competitions among other sectors in the São Paulo state, Brazil. On the one hand, in several occasions, in the northeastern side of this state, nowadays sugar-cane is expanding, while coffee plantations are losing space. On the other hand, both crops have replaced the natural vegetation composed by Savannah and Atlantic Coastal Forest species. Under this dynamic situation, geosciences are valuable tools for evaluating the large-scale energy and mass exchanges between these different agro-ecosystems and the lower atmosphere. For quantification of the energy balance components in these mixed agro-ecosystems, the bands 1 and 2 from the MODIS product MOD13Q1 were used throughout SAFER (Surface Algorithm for Evapotranspiration Retrieving) algorithm, which was applied together with a net of 12 automatic weather stations, during the year 2015 in the main sugar cane and coffee growing regions, located at the northeastern side of the state. The fraction of the global solar radiation (RG) transformed into net radiation (Rn) was 52% for sugar cane and 53% for both, coffee and natural vegetation. The respective annual fractions of Rn used as λE were 0.68, 0.87 and 0.77, while for the sensible heat (H) fluxes they were 0.27, 0.07 and 0.16. From April to July, heat advection raised λE values above Rn promoting negative H, however these effects were much and less strong in coffee and sugar cane crops, respectively. The smallest daily Rn fraction for all agro-ecosystems was for the soil heat flux (G), with averages of 5%, 6% and 7% in sugar cane, coffee and natural vegetation. From the energy balance analyses, we could conclude that, sugar-cane crop presented lower annual water consumption than that for coffee crop, what can be seen as an advantage in situations of water scarcity. However, the replacement of natural vegetation by sugar cane can contribute for warming the environment, while when this

  8. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.

    Directory of Open Access Journals (Sweden)

    Benjamin D Duval

    Full Text Available Bioenergy related land use change would likely alter biogeochemical cycles and global greenhouse gas budgets. Energy cane (Saccharum officinarum L. is a sugarcane variety and an emerging biofuel feedstock for cellulosic bio-ethanol production. It has potential for high yields and can be grown on marginal land, which minimizes competition with grain and vegetable production. The DayCent biogeochemical model was parameterized to infer potential yields of energy cane and how changing land from grazed pasture to energy cane would affect greenhouse gas (CO2, CH4 and N2O fluxes and soil C pools. The model was used to simulate energy cane production on two soil types in central Florida, nutrient poor Spodosols and organic Histosols. Energy cane was productive on both soil types (yielding 46-76 Mg dry mass · ha(-1. Yields were maintained through three annual cropping cycles on Histosols but declined with each harvest on Spodosols. Overall, converting pasture to energy cane created a sink for GHGs on Spodosols and reduced the size of the GHG source on Histosols. This change was driven on both soil types by eliminating CH4 emissions from cattle and by the large increase in C uptake by greater biomass production in energy cane relative to pasture. However, the change from pasture to energy cane caused Histosols to lose 4493 g CO2 eq · m(-2 over 15 years of energy cane production. Cultivation of energy cane on former pasture on Spodosol soils in the southeast US has the potential for high biomass yield and the mitigation of GHG emissions.

  9. Future bio-energy potential under various natural constraints

    International Nuclear Information System (INIS)

    Vuuren, Detlef P. van; Vliet, Jasper van; Stehfest, Elke

    2009-01-01

    Potentials for bio-energy have been estimated earlier on the basis of estimates of potentially available land, excluding certain types of land use or land cover (land required for food production and forests). In this paper, we explore how such estimates may be influenced by other factors such as land degradation, water scarcity and biodiversity concerns. Our analysis indicates that of the original bio-energy potential estimate of 150, 80 EJ occurs in areas classified as from mild to severe land degradation, water stress, or with high biodiversity value. Yield estimates were also found to have a significant impact on potential estimates. A further 12.5% increase in global yields would lead to an increase in bio-energy potential of about 50%. Changes in bio-energy potential are shown to have a direct impact on bio-energy use in the energy model TIMER, although the relevant factor is the bio-energy potential at different cost levels and not the overall potential.

  10. Bioenergy Status Document 2012; Statusdocument Bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.; Croezen, H. [CE Delft, Delft (Netherlands)

    2013-05-15

    In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] Het statusdocument bio-energie 2012 geeft de huidige status weer van bio-energie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken in de ontwikkelingen van bio-energie, voor overheden en marktpartijen.

  11. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2011-01-01

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  12. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Spitzer, J.

    1997-01-01

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  13. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    ethanol. Fuel ethanol is known as bio-ethanol, since it is produced from plant materials by biological processes. Bioethanol is mainly produced by fermentation of sugar containing crops like corn, maize, wheat, sugar cane, sugar beet, potatoes, ...

  14. Bio energy: Environment and Environmental Engineering

    International Nuclear Information System (INIS)

    Soma, Morten; Noreng, Katrina; Soerensen, Heidi; Teslo, Einar; Daehlen, Knut; Liodden, Ole Joergen; Wilhelmsen, Gunnar; Hohle, Erik Eid

    2001-01-01

    This is Chapter 5 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Environmental issues in the use of energy, (2) Environmental issues in the production of biomass, (3) Forestry, (4) Agriculture, (5) Environmental issues in fuel production and storage, (6) Environmental issues in combustion, (7) Environmental issues in using bio fuel, (8) Life cycle analyses, (9) Laws, regulations and norms for the use of bio fuel. Unlike the other sections, the one on laws is mostly concerned with Norwegian conditions

  15. 76 FR 42154 - BioMETRX, Inc., Biopure Corp. (n/k/a PBBPC, Inc.), Distributed Energy Systems Corp., Fortified...

    Science.gov (United States)

    2011-07-18

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] BioMETRX, Inc., Biopure Corp. (n/k/a PBBPC, Inc.), Distributed Energy Systems Corp., Fortified Holdings Corp., Knobias, Inc., and One IP Voice... securities of Distributed Energy Systems Corp. because it has not filed any periodic reports since the period...

  16. [Reflection on developing bio-energy industry of large oil company].

    Science.gov (United States)

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  17. Bio-energy in Europe: changing technology choices

    International Nuclear Information System (INIS)

    Faaij, Andre P.C.

    2006-01-01

    Bio-energy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. This is certainly evident in Europe, where a kaleidoscope of activities and programs was and is executed for developing and stimulating bio-energy. Over the past 10-15 years in the European Union, heat and electricity production from biomass increased with some 2% and 9% per year, respectively, between 1990 and 2000 and biofuel production increased about eight-fold in the same period. Biomass contributed some two-thirds of the total renewable energy production in the European Union (EU) (2000 PJ) or 4% of the total energy supply in 1999. Given the targets for heat, power and biofuels, this contribution may rise to some 10% (6000 PJ) in 2010. Over time, the scale at which bio-energy is being used has increased considerably. This is true for electricity and combined heat and power plants, and how biomass markets are developing from purely regional to international markets, with increasing cross-border trade-flows. So far, national policy programs proved to be of vital importance for the success of the development of bio-energy, which led to very specific technological choices in various countries. For the future, a supra-national approach is desired: comprehensive research development, demonstration and deployment trajectories for key options as biomass integrated gasification/combined cycle and advanced biofuel concepts, develop an international biomass market allowing for international trade and an integral policy approach for bio-energy incorporating energy, agricultural, forestry, waste and industrial policies. The Common Agricultural Policy of the (extended) EU should fully incorporate bio-energy and perennial crops in particular

  18. Smart Cane-Assistive Cane for Visually-impaired People

    OpenAIRE

    Mohd Helmy Abd Wahab; Amirul A Talib; Herdawatie A Kadir; Ayob Johari; A Noraziah; Roslina M Sidek; Ariffin A Mutalib

    2011-01-01

    This paper reports on a study that helps visually-impaired people to walk more confidently. The study hypothesizes that a smart cane that alerts visually-impaired people over obstacles in front could help them in walking with less accident. The aim of the paper is to address the development work of a cane that could communicate with the users through voice alert and vibration, which is named Smart Cane. The development work involves coding and physical installation. A series of tests have bee...

  19. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  20. Bio-flex obtained from pyrolysis of biomass as fuel; Bio-flex obtido da pirolise de biomassa como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Mesa Perez, Juan Miguel; Viltre Rodriguez, Roberto Alfonso; Marin Mesa, Henry Ramon [Bioware Tecnologia, Campinas, SP (Brazil); Rocha, Jose Dilcio [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico; Samaniego, Manuel Raul Pelaez [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Planejamento de Sistemas Energeticos; Cortez, Luis Augusto Barbosa [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    This paper describes the BIOWARE experience in the bio fuel production from biomass residues. Fast pyrolysis of a mixture of sugar cane trash and elephant grass carried out in a fluidized bed reactor with capacity of 200 kg/h dry feed (12% w/w). The co-products particulate charcoal, acid extract, and bio-oil were obtained. The fast pyrolysis pilot plant PPR-200 belonged to UNICAMP and is operated by BIOWARE personnel. This paper presents the chemical rote to bio-flex production (a kind of bio diesel from acid esterification) from pyrolytic carboxylic acids. Both ethanol and methanol were used as reactant but higher yields were found with methanol. (author)

  1. Bio-based products from solar energy and carbon dioxide.

    Science.gov (United States)

    Yu, Jian

    2014-01-01

    Producing bio-based products directly from CO₂ and solar energy is a desirable alternative to the conventional biorefining that relies on biomass feedstocks. The production paradigm is based on an artificial photosynthetic system that converts sunlight to electricity and H₂ via water electrolysis. An autotrophic H₂-oxidizing bacterium fixes CO₂ in dark conditions. The assimilated CO₂ is stored in bacterial cells as polyhydroxybutyrate (PHB), from which a range of products can be derived. Compared with natural photosynthesis of a fast-growing cyanobacterium, the artificial photosynthetic system has much higher energy efficiency and productivity of bio-based products. The new technology looks promising because of possible cost reduction in feedstock, equipment, and operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Dirt in cane removal influenced by soil characteristics

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1997-01-01

    Dirt level in sugar cane consignments delivered to the factory is dependent on soil type, in association with harvesting system and weather conditions. Efforts for reducing soil in harvested cane have been made by sugar cane millers, especially improving the washing system installed before crushing. Instrumental neutron activation analysis has shown its potential for assessing dirt reductions in the washed material. Knowledge of elemental concentrations in the different soil fractions highlights the reliability of such measurements especially when taking into account the soil characteristics. (author)

  3. BioOil presents: Free-flowing alternative to traditional biomass energy generation

    Energy Technology Data Exchange (ETDEWEB)

    McChesney, S.

    2003-12-01

    A new technology, called fast pyrolysis, is described. Fast pyrolysis is a process for converting biomass collected from agricultural and forest residues into an organic liquid fuel, called BioOil, that's easily transported, stored and handled. BioOil's principal virtue is that it can be used to generate carbon-neutral, cost-effective process heat and electricity; it also disposes of organic waste, and creates new jobs and industries. As an indication of interest in BioOil, two recent developments are cited as worthy of note: an award of $23 million for biomass research jointly by the USDA and the USDOE and a commitment of $30 million by the Government of Canada to support the development and demonstration of bio-based systems and technologies. (The Canadian investment is part of the $1 billion commitment toward implementation of the Climate Change Program for Canada). The fast pyrolysis process is carbon dioxide neutral, i.e. when biomass is converted into thermal energy, the carbon dioxide that is released is equal to the amount of carbon dioxide that went into growing the biomass. The process is particularly appealing to energy companies in areas with large forestry or agricultural potential. In Canada, DynaMotive Energy Systems Corporation is the most advanced in developing and commercializing environmentally friendly fuels produced from biomass; the company is also a world leader in fast pyrolysis technology. Ontario Power Generation is cooperating with DynaMotive on a project to produce BioOil from residue supplied by Erie Flooring and Wood Products. The 2.5 megawatt gas turbine that will combust the bio-oil and generate electricity will be supplied by the Magellan Aerospace Corporation. Beyond meeting the energy requirements of Erie Flooring and Wood Products, the project will also contribute about 1.5 megawatts of power to OPG's green energy portfolio in 2004. It is expected that the example of a commercial project of this scale, will serve

  4. Assessment of abandoned agricultural land resource for bio-energy production in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, Liia; Astover, Alar; Roostalu, Hugo; Suuster, Elsa; Noormets, Merrit; Sepp, Kalev (Estonian Univ. of Life Sciences, Inst. of Agricultural and Environmental Sciences, Tartu (Estonia)); Muiste, Peeter (Estonian Univ. of Life Sciences, Inst. of Forestry and Rural Engineering, Tartu (Estonia))

    2010-03-15

    The current study locates and quantifies abandoned agricultural areas using the Geographic Information System (GIS) and evaluates the suitability of abandoned fields for bio-energy production in Tartumaa (Tartu County) in Estonia. Soils of abandoned areas are generally of low quality and thereby limited suitability for crop production; as a result soil-crop suitability analyses could form the basis of knowledge-based bio-energy planning. The study estimated suitable areas for bio-energy production using willow (Salix sp), grey alder [Alnus incana (L.) Moench], hybrid aspen (Populus tremuloides Michx.Populus tremula L.), reed canary grass (Phalaris arundinacea L.), and Caucasian goat's rue (Galega orientalis Lam.) in separate plantations. A combined land-use strategy is also presented as these crops are partially suitable to the same areas. Reed canary grass and grey alder have the highest energy potentials and each would re-use more than 80% of the available abandoned agricultural land. Energy grasses and short-rotation forestry in combined land-use strategy represents the opportunity of covering approximately a quarter of county's annual energy demand. The study estimates only agronomic potential, so further bio-energy analysis should take into account technical and economic limitations. Developed framework supports knowledge-based decision-making processes from field to regional scale to achieve sustainable bio-energy production

  5. Solar energy and ecosystem. ; Simulation system for the ecological system (Bios-3 as an example). Taiyo energy to ecosystem. ; Seitaikei mogi system (Bios-3 wo rei to shite)

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, K [National Aerospace Laboratory, Tokyo (Japan)

    1992-11-30

    The present report gives inspectional opinions about the Bios-3 which is a Russian artificial ecological system and explains the simulation system for the ecological system. The Bios-3 installed in a semi-underground dome of Biophysics Research Institute, Krasnoyarsk is a stainless steel-made enclosed box which is 120m[sup 2] and 3m in total area and height, respectively. Such an internal volume is structurally divided into two botanical cultivation rooms, oxygen supply use chlorella cultivation room and living room where the human living experiment can be done without interruption during half a year. It is judged that the ecological environment can not sufficiently condition both the autotrophic substances which are plants and mosses, and hetrotrophic ones which are animals and microbes. As for the conditional control of ecological system, neither BS-II, USA nor Bios-3 can arbitrarily change the environmental condition. However by utilizing buffers, air blowers and other physico-chemical controllers, development must be done of a new simulator which can change the environment, and elucidate the correlation between the environment and biological beings. That simulator may play an important role also for preparing the IGBP's global model. 5 figs.

  6. Relationships among cane fitting, function, and falls.

    Science.gov (United States)

    Dean, E; Ross, J

    1993-08-01

    Although canes are among the most commonly used mobility aids, little is known about the relationship between cane prescription and effectiveness. The purpose of this study was to examine the relationships among cane fitting (ie, cane fitter, cane band, and cane length), reported improvements in function, and reduction in falls. Cane users living in the community (86 women and 58 men with a median age distribution of 61 to 80 years) and sampled from seven urban shopping centers in British Columbia, Canada, participated in the study. The primary reasons cited for using a cane were joint problems (39%), general balance difficulties (30%), and a combination of joint and balance problems (15%). Measures included appropriateness of cane length and responses to closed-ended questions related to qualifications of the cane fitter, cane band, functional ability with a cane, and falling frequency. Overall, cane use was associated with improved confidence and functional ability. Canes fitted by health care workers approximated the clinically recommended length compared with canes fitted by non-health care workers, which tended to be greater than this length. There was no relationship, however, between cane fitting (cane fitter, cane hand, and appropriateness of cane length) and functional ability with a cane and falling frequency [corrected]. We concluded that health care workers may need to reconsider the variables for optimal cane prescription and their specifications for a given individual. The notion of a correct length and cane hand, for example, may be less important than factors such as the indications for cane use, comfort, and enhanced confidence.

  7. BioBoost. Biomass based energy intermediates boosting bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Niebel, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Institut fuer Katalyseforschung und -technologie (IKFT)

    2013-10-01

    To increase the share of biomass for renewable energy in Europe conversion pathways which are economic, flexible in feedstock and energy efficient are needed. The BioBoost project concentrates on dry and wet residual biomass and wastes as feedstock for de-central conversion by fast pyrolysis, catalytic pyrolysis and hydrothermal carbonization to the intermediate energy carriers oil, coal or slurry. Based on straw the energy density increases from 2 to 20-30 GJ/m{sup 3}, enabling central GW scale gasification plants for bio-fuel production. A logistic model for feedstock supply and connection of de-central with central conversion is set up and validated allowing the determination of costs, the number and location of de-central and central sites. Techno/economic and environmental assessment of the value chain supports the optimization of products and processes. The utilization of energy carriers is investigated in existing and coming applications of heat and power production and synthetic fuels and chemicals. (orig.)

  8. Ethanol from sugar cane in Brazil: analysis and discussion; O etanol de cana-de-acucar no Brasil: analise e discussoes

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Albemerc Moura de; Polasse, Belisa Athayde; Simao, Nathalia Machado [Universidade Federal do ABC, Santo Andre, SP (Brazil). Curso de Pos-graduacao Stricto Sensu em Energia

    2008-07-01

    Nowadays, the intense investment in renewable energy reflects the search for alternative solutions to politician-economic and socio-environment originated by energy' source predominance of fossil origin in the global energy matrix. In this case, the ethanol from Brazil's sugar cane is more and more writing your history on the International bio fuels market. That's mainly due to Brazil's commercial maturity, agricultural, technological achieved in last decades. However, some negatives socio environments, such as deforestation, fires and precarious job conditions, among others are a discredit for a probable future hegemony of Brazilian ethanol. In this way, it is important to set guide-line discussions about this topic, analyzing and overcoming problems that avoid a better sustainable posture. (author)

  9. Bio energy in Norway

    International Nuclear Information System (INIS)

    Hamnaberg, Haavard; Sidelnikova, Maria

    2011-01-01

    The main conclusion in this report is that it is possible to make available about 14 TWh bio energy in Norway than what is used today to a charge that is located less than ca. 30 oere / kWh. Almost all this potential come from the forest and requires an increase in output up to the net sustained yield. Further 5 TWh may be available in the form of biogas at a cost that is both higher and have greater uncertainty than the fixed bio energy. It is set up a cost curve based on this work, which is quoted here. This reflects only the technical costs, and does not regard wages, commissions, taxes or fees. The value of alternative uses of biomass are not considered. The cost curve must therefore not be mixed with a supply curve. (eb)

  10. Commercial electric energy generation in sugar cane industry; Geracao comercial de energia eletrica no setor sucro-alcooleiro

    Energy Technology Data Exchange (ETDEWEB)

    Koblitz, Luiz Otavio Gomes [Koblitz Ltda., Recife, PE (Brazil)

    1988-12-31

    The sugar cane has been cultivated in Brazil since 400 years ago. It is a crop that can be used in extensive way and features the most efficient solar energy conversion process in the world: the photosynthesis. Unfortunately, despite of the elapsed time, only 50% of this solar energy has been effectively used. Now, because the crisis in the electric power production in Brazil today we have possibility to exploit this wasted energy, converting it into electric energy. (author) 1 fig., 3 tabs.

  11. Chinese academic experts' assessment for forest bio-energy development in China

    International Nuclear Information System (INIS)

    Qu Mei; Ahponen, Pirkkoliisa; Tahvanainen, Liisa; Pelkonen, Paavo

    2010-01-01

    The aim of this study was to assess the current situation of the forest bio-energy development in China. This assessment is based on opinions of Chinese academic experts. Key drivers and uncertainties regarding the implementation, and the strategies for the future practices in the development of forest bio-energy were investigated. In addition, the purpose of this study was also to determine whether there is a consensus among the experts concerning forest bio-energy and if this consensus agrees with policy-makers in China. A thorough assessment was conducted using a two-round Delphi survey of sixty-one bio-energy experts in China. The results revealed the advantages, potential problems, and the experts' recommendations for the future development. Furthermore, the experts agreed that the Chinese government plays a dominant role in the development process of forest bio-energy in the country. The experts recognized that the process of developing forest bio-energy is a challenging task both domestically and globally. At the same time they also highlighted the potential benefits of developing forest bio-energy in China during the next ten years. The outcomes of this study could be used to give advice to policy-makers and to support the implementation of the future forest bio-energy policies in China.

  12. Complex biological and bio-inspired systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    The understanding and characterization ofthe fundamental processes of the function of biological systems underpins many of the important challenges facing American society, from the pathology of infectious disease and the efficacy ofvaccines, to the development of materials that mimic biological functionality and deliver exceptional and novel structural and dynamic properties. These problems are fundamentally complex, involving many interacting components and poorly understood bio-chemical kinetics. We use the basic science of statistical physics, kinetic theory, cellular bio-chemistry, soft-matter physics, and information science to develop cell level models and explore the use ofbiomimetic materials. This project seeks to determine how cell level processes, such as response to mechanical stresses, chemical constituents and related gradients, and other cell signaling mechanisms, integrate and combine to create a functioning organism. The research focuses on the basic physical processes that take place at different levels ofthe biological organism: the basic role of molecular and chemical interactions are investigated, the dynamics of the DNA-molecule and its phylogenetic role are examined and the regulatory networks of complex biochemical processes are modeled. These efforts may lead to early warning algorithms ofpathogen outbreaks, new bio-sensors to detect hazards from pathomic viruses to chemical contaminants. Other potential applications include the development of efficient bio-fuel alternative-energy processes and the exploration ofnovel materials for energy usages. Finally, we use the notion of 'coarse-graining,' which is a method for averaging over less important degrees of freedom to develop computational models to predict cell function and systems-level response to disease, chemical stress, or biological pathomic agents. This project supports Energy Security, Threat Reduction, and the missions of the DOE Office of Science through its efforts to

  13. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  14. A bio-energy plant in your neighborhood. Answers to your questions; Een bio-energiecentrale bij u in de buurt. Antwoorden op uw vragen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    This brochure is intended for municipalities and initiators and discusses the following subjects: What is a bio-energy plant?; How large is a bio-energy plant?; What do you see?; Renewable energy: clean and always available; Bio-energy: what is it? [mk]. [Dutch] De brochure is bedoeld voor gemeenten en initiatiefnemers en behandelt de volgende onderwerpen: Wat is een bio-energiecentrale?; Hoe groot is een bio-energiecentrale?; Wat neem je waar?; Duurzame energie: schoon en altijd aanwezig; Bio-energie: wat is dat?.

  15. Modelling the costs of energy crops. A case study of US corn and Brazilian sugar cane

    International Nuclear Information System (INIS)

    Mejean, Aurelie; Hope, Chris

    2010-01-01

    High crude oil prices, uncertainties about the consequences of climate change and the eventual decline of conventional oil production raise the prospects of alternative fuels, such as biofuels. This paper describes a simple probabilistic model of the costs of energy crops, drawing on the user's degree of belief about a series of parameters as an input. This forward-looking analysis quantifies the effects of production constraints and experience on the costs of corn and sugar cane, which can then be converted to bioethanol. Land is a limited and heterogeneous resource: the crop cost model builds on the marginal land suitability, which is assumed to decrease as more land is taken into production, driving down the marginal crop yield. Also, the maximum achievable yield is increased over time by technological change, while the yield gap between the actual yield and the maximum yield decreases through improved management practices. The results show large uncertainties in the future costs of producing corn and sugar cane, with a 90% confidence interval of 2.9-7.2$/GJ in 2030 for marginal corn costs, and 1.5-2.5$/GJ in 2030 for marginal sugar cane costs. The influence of each parameter on these supply costs is examined. (author)

  16. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    The conversion of biomass in an energy combine based on primary gasification yields a gas that can be used as fuels gas, for synthesis of motor fuels (methanol or other) or for electric power production. The study gives examples of alternative product mixes. The conclusions of the study are: (1) Potential of new, not yet utilised biomass is available, and new areas of applications, where oil is presently used, are needed to develop the potential. Motor fuel production (methanol, DME) is a presumption in the BioMeeT-study. (2) Yield figures in the energy combine are comparable to those of now used bio-systems for power and co-generation. (3) Which one of the cases in the BioMeeT-project is the most favourable cannot be decided on a plant-to-plant basis alone but the entire system for supply energy carriers in the region has to be considered, as the all plants within the system may change. This would require further investigations. Moreover, the results will be different in various regions in Sweden and Europe due to the markets for all energy carriers. (4) At today's conditions in the Trollhaettan region it must be stated that there is only room for dedicated bio-methanol/DME production (provided such a market will come) with moderate addition to the district heating system as in the BAL-project. (5) In the longer term the future supply of all energy carriers, including new electric power and new bio-fuels, has to be considered for new plants and at renewals. In such a case an energy combine as in the BioMeeT-project may be a central conversion plant with gas deliveries to satellites such as local co-generation, district heat and industries in a regional system within a 50 - 100 km radius. This should be included in regional planning for the future. (6) Estimated investment costs per kW feedstock input is higher for the energy combine compared to present technologies (mature technologies for power and heat) but have to be judged for all plants taken together in

  17. BioMeeT. Planning of biomass based methanol energy combine - Trollhaettan region. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brandberg, Aake; Hjortsberg, Hans; Saevbark, Bengt [Ecotraffic R and D AB, Stockholm (Sweden); Ekbom, Tomas; Hjerpe, Carl-Johan; Landaelv, Ingvar [Nykomb Synergetics AB, Stockholm (Sweden)

    2000-04-01

    The conversion of biomass in an energy combine based on primary gasification yields a gas that can be used as fuels gas, for synthesis of motor fuels (methanol or other) or for electric power production. The study gives examples of alternative product mixes. The conclusions of the study are: (1) Potential of new, not yet utilised biomass is available, and new areas of applications, where oil is presently used, are needed to develop the potential. Motor fuel production (methanol, DME) is a presumption in the BioMeeT-study. (2) Yield figures in the energy combine are comparable to those of now used bio-systems for power and co-generation. (3) Which one of the cases in the BioMeeT-project is the most favourable cannot be decided on a plant-to-plant basis alone but the entire system for supply energy carriers in the region has to be considered, as the all plants within the system may change. This would require further investigations. Moreover, the results will be different in various regions in Sweden and Europe due to the markets for all energy carriers. (4) At today's conditions in the Trollhaettan region it must be stated that there is only room for dedicated bio-methanol/DME production (provided such a market will come) with moderate addition to the district heating system as in the BAL-project. (5) In the longer term the future supply of all energy carriers, including new electric power and new bio-fuels, has to be considered for new plants and at renewals. In such a case an energy combine as in the BioMeeT-project may be a central conversion plant with gas deliveries to satellites such as local co-generation, district heat and industries in a regional system within a 50 - 100 km radius. This should be included in regional planning for the future. (6) Estimated investment costs per kW feedstock input is higher for the energy combine compared to present technologies (mature technologies for power and heat) but have to be judged for all plants taken together in the

  18. Ergonomic factors related to drop-off detection with the long cane: effects of cane tips and techniques.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert S Wall; Curtis, Amy B

    2010-06-01

    This study examined the effect of cane tips and cane techniques on drop-off detection with the long cane. Blind pedestrians depend on a long cane to detect drop-offs. Missing a drop-off may result in falls or collision with moving vehicles in the street. Although cane tips appear to affect a cane user's ability to detect drop-offs, few experimental studies have examined such effect. A repeated-measures design with block randomization was used for the study. Participants were 17 adults who were legally blind and had no other disabilities. Participants attempted to detect the drop-offs of varied depths using different cane tips and cane techniques. Drop-off detection rates were similar between the marshmallow tip (77.0%) and the marshmallow roller tip (79.4%) when both tips were used with the constant contact technique, p = .294. However, participants detected drop-offs at a significantly higher percentage when they used the constant contact technique with the marshmallow roller tip (79.4%) than when they used the two-point touch technique with the marshmallow tip (63.2%), p marshmallow roller tip (perceived as a less advantageous tip) was more effective than the two-point touch technique used with a marshmallow tip (perceived as a more advantageous tip) in detecting drop-offs. The findings of the study may help cane users and orientation and mobility specialists select appropriate cane techniques and cane tips in accordance with the cane user's characteristics and the nature of the travel environment.

  19. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ. Northern, Havre, MT (United States); Windy Boy, Jessica [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Maglinao, Randy Latayan [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Abedin, Md. Joynal [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence

    2017-03-02

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additives considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally

  20. Bio-SNG. Prospective renewable energy carrier in the E.ON gas grid; Bio-SNG. Zukuenftiger regenerativer Energietraeger im E.ON Gasnetz

    Energy Technology Data Exchange (ETDEWEB)

    Adelt, Marius; Vogel, Alexander [E.ON Ruhrgas AG, Essen (Germany)

    2010-10-15

    Biogas processing and injection into the natural gas pipeline system on an industrial scale has been around in Germany for some time. E.ON operates a number of biogas plants with a production capacity of 200-1700 m{sup 3}/h. More plants are under construction or planned. The German government is looking to increase the share of biogas (upgraded to natural gas quality) in the pipeline system to 6 billion m{sup 3}/a by 2020, so significantly more production capacity is needed. Biogas is produced mainly from dedicated energy crops (maize) as well as several catch crops and, depending on the processing plant, various amounts of bio residues. The biogas is upgraded to natural gas quality and fed into the pipeline system as biomethane (E.ON: bio natural gas). To achieve the ambitious production targets it will be necessary to tap the unused potential of wood for gasification and subsequent methanisation into bio-SNG. E.ON AG actively promotes the development and introduction of this technology. This article provides an overview of different aspects of bio-SNG production and use including: Utilisation paths for biomethane/bio-SNG (heat, fuel, CHP), Potential of wood for bio-SNG production, Bio-SNG production technologies, Current E.ON activities and projects. (orig.)

  1. Energy Balance of Bio-ethanol - A Review; Energibalans foer bioetanol - en kunskapsoeversikt

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Paal

    2006-03-15

    This review presents a synthesis of various Swedish and international studies on the bio-ethanol energy balance, and an analysis of how and why their results differ. Other methods, such as exergy- and emergy analysis, are discussed and compared with the energy analysis method. Finally, potential improvements of the energy efficiency in bio-ethanol production are discussed. The energy balance is here expressed as the ratio of the energy content of the fuel to the primary energy input for the entire production cycle of the fuel. The energy balance of ethanol from cereals is, on average, 1.6, and varies between 0.7 and 2.8. Corresponding average figures for ethanol from corn, sugar beets and lignocellulosic biomass (e.g. energy forest) are 1.4, 1.8 and 3.2, respectively. There are several reasons why the energy balances differ between the different studies, even where the feedstock is identical. The sources of differences can be divided between those related to differences in local and geographical conditions, and those related to differences in the methodological approach applied. Depending on the definition of the system that is studied (systems boundaries), and how the energy input is divided between the ethanol and the by-products generated in the process (allocation methods), the energy balance may differ by a factor of 5. Thus, it is impossible to make reliable and fair comparisons between different studies unless all assumptions are clearly presented and defined. Results from exergy- and emergy analysis of bio-ethanol often show significantly different results from those presented in energy analyses. It is, however, not useful to compare these different results since the various methods have different focuses and are answering different questions. The energy balance of cereal-based ethanol can be improved by more efficient cultivation methods, but mainly by improved conversion processes. One possibility is by using bio-refineries where not only ethanol but also

  2. Bio energy: Production of Biomass; Produksjon av biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Noreng, Katrina; Indergaard, Mentz; Liodden, Ole Joergen; Hohle, Erik Eid; Sandberg, Eiliv

    2001-07-01

    This is Chapter 2 of the book ''Bio energy - Environment, technique and market''. Its main sections are: (1) Biomass resources in Norway, (2) The foundation - photosynthesis, (3) Biomass from forestry, (4) Biomass from peat lands, (5) Biomass from agriculture and (6) Biomass from lakes and sea. The exposition largely describes the conditions in Norway, where the use of bio energy can be increased from 15 TWh to 35 TWh using available technology. At present, water-borne heating systems are not extensively used in Norway and 30% of the biomass that is cut in the forests remains there as waste. Using this waste for energy generation would not only contribute to reduce the emission of greenhouse gases, but would often lead to improved forest rejuvenation. Use of a few per thousand of the Norwegian peat lands would produce 2 - 3 TWh. According to calculations, along the coast of Norway, there are at least 15 mill tonnes of kelp and sea tangle and these resources can be utilized in a sustainable way.

  3. Design and Installation of Irrigation System for the Expansion of Sugar cane- Industries in Ahvaz, IRAN.

    Science.gov (United States)

    Afshari, E.; Afshari, S.

    2005-12-01

    This paper presents achievements of a twelve years ongoing project expansion of sugar cane- industries as a major agricultural development in Ahvaz, IRAN. The entire project is divided in to seven units and each unit provides irrigation water for 30,000 acres of sugar cane farms in Ahwaz. Absou Inc. is one of the consulting firms that is in charge of design and overseeing installation of irrigation system as well as the development of lands for sugar-cane cultivation at one of the units, called Farabi unit .In general, the mission of project is to Pump fresh water from Karoon River and direct it to the sugar cane farm for irrigation. In particular, the task of design and installation include, (1) build a pumping station at Karoon River with capacity of 1271 ft3/sec, (2) transfer water by main channel from Karoon rive to the farm site 19 miles (3) install a secondary pumping stations which direct water from main channel to drainage pipes and provides water for local farms (4) build a secondary channels which carries water with pipe lines with total length of 42 miles and diameter of 16 to 32 inch. (5) install drainage pump stations and collectors (6) level the ground surface and prepare it for irrigation (7) build railroad for carrying sugar canes (23 miles). Thus far, more than 15,000 acres of farm in Farabi unit is under sugar cane cultivation. The presentation will illustrate more details about different aspects of the project including design, installation and construction phases.

  4. 78 FR 56264 - Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc...

    Science.gov (United States)

    2013-09-12

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc., South Texas Oil Co., and Synova Healthcare Group, Inc... that there is a lack of current and accurate information concerning the securities of Big Bear Mining...

  5. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  6. BioSystems

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NCBI BioSystems Database provides integrated access to biological systems and their component genes, proteins, and small molecules, as well as literature...

  7. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter (ed.); Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  8. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    International Nuclear Information System (INIS)

    Helby, Peter; Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  9. Bioenergy Status Document 2011; Statusdocument Bio-energie 2011

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.

    2011-03-15

    The Dutch status document on bio-energy has been updated with data for the year 2011. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets. The status document shows there has been a slight increase in the share of bio-energy in overall energy consumption as well as in the total amount of renewable energy generated (which now stands at a little over 4% of gross final consumption). The question, however, is whether this growth is sufficient to meet the European target of 14% renewables in 2020. The limited growth is due partly to the decrease in the amount of energy generated in the category 'other incineration'. In addition, there was a decline in the physical delivery of transport biofuels because certain types of fuel can be 'double-counted' in the records, although they do not contribute to the 14% target. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets [Dutch] Het statusdocument bio-energie 2011 geeft de huidige status weer van bioenergie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken aan overheden en marktpartijen in de ontwikkelingen van bio-energie. De kabinetsdoelstellingen voor hernieuwbare energie zijn conform de doelstellingen uit de richtlijn voor hernieuwbare energie (2009/28/EG), die is vastgesteld door de EC. In 2020 moet 14% van het nationale bruto finaal eindgebruik afkomstig zijn van hernieuwbare bronnen, de Nederlandse overheid schat dat dat overeenkomt met 300 PJ. Naar schatting is in 2011 ongeveer 88 PJ aan hernieuwbare energie geproduceerd, ongeveer evenveel

  10. Bio-fuels: energies between decline and revival; Les biocombustibles: des energies entre declin et renouveau

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, A.

    1999-12-01

    The development of bio-fuels is highly dependent of the variations of the prices of major energies, of the agriculture prices and of the situation of the environmental concerns. Thus at the crossroad of various sectors of activity one can question the relevance of the use of bio-fuels, today marginalized. Their development is always taken into consideration during crisis periods (agriculture, energy and pollution). However, once the crisis is gone, it remains the question of the economical viability and sustainability of the infatuation for these non-conventional energies. This paper presents some modalities of valorization of bio-fuels in France and in foreign countries: 1 - the renewable energy sources in France and in the European Union; 2 - the development of bio-fuels at the service of foresters and agriculturists: present day situation and perspectives of wood fuel in France (individual and collective uses), perspectives of biomass energy after the common agricultural policy reform, the objectives of the European Union; 3 - the energy valorization of biomass at the service of environment: forestry exploitation (land planning, pollution abatement), management of public dumps and water processing plants (incineration of household wastes, biogas generation); 4 - the bio-fuels competitiveness. (J.S.)

  11. Bio-Energy during Finals: Stress Reduction for a University Community.

    Science.gov (United States)

    Running, Alice; Hildreth, Laura

    2016-01-01

    To re-examine the effectiveness of a bio-energy intervention on self-reported stress for a convenience sample of university students during dead week, a quasi-experimental, single-group pretest-posttest design was used. Thirty-three students participated, serving as their own controls. After participants had consented, a 15-min Healing Touch intervention followed enrollment. Self-reported stress was significantly reduced after the bio-energy (Healing Touch) intervention. Bio-energy therapy has shown to be beneficial in reducing stress for students during dead week, the week before final examinations. Further research is needed.

  12. Seasonal variation of prices of sugar cane, ethanol and electric power

    International Nuclear Information System (INIS)

    Melo, Carmem Ozana de; Silva, Gerson Henrique da; Bueno, Osmar de Carvalho; Esperancini, Maura Seiko Tsutsui

    2010-01-01

    The aim of this study was to assess the seasonal price of sugar cane, fuel alcohol (hydrated and anhydrous) and electricity tariffs as a way of aiding tool for optimization of energy generation, using biomass originating from cane sugar. Using the method of moving average centered was concluded that cane and electricity rates were close to seasonal average, with low range of prices, suggesting the non-occurrence of seasonal variation in prices. Unlike the seasonal indices of ethanol showed seasonal variation of prices with greater amplitude of seasonal index. Thus, the results suggest that the utilization of by-products of sugar cane to produce electrical power points to the prospect of reducing risks associated with variations in the price of ethanol, thereby contributing to greater stability and possibility to those involved in planning alcohol sector. (author)

  13. Overcoming barriers to increased bio-energy use. Suggestions for a high impact policy

    International Nuclear Information System (INIS)

    Chanakya, H.N.; Ravindranath, N.H.

    1997-01-01

    A few options that are likely to result in a high impact policy towards ensuring increased use of bio-energy in the developing world are discussed. Such options are: Moving towards greater energy security /guarantee, bio-energy technology transfer platforms, documentation in bio-energy businesses, removing risk perceptions in financing, increasing private entrepreneur stakes, etc. (K.A.)

  14. Renewable energy from vegetation; Les energies renouvelables d'origine vegetale

    Energy Technology Data Exchange (ETDEWEB)

    Sales, C. [Centre francais de cooperation international en recherche agronomique pour le developpement (France)

    2009-07-15

    Currently, vegetation accounts for 3 major types of energy sources, notably woody biomass, starches and vegetable oils. Bio-ethanol and biodiesel is produced from the fermentation of starches, such as sugar cane, beet sugar, sorghum, corn and potatoes. Biofuels can be produced from palm tree oil, coconut oil , soya oil, sunflower oil or any type of vegetable based oil. This article discussed energy efficiency issues and the environmental impact of developing these energies. In general, the lower energy efficiency of the starches can be attributed to the enzymes responsible for the catalysis. The article also reviewed the thermochemistry and energy efficiency regarding second generation fuels. It also discussed the burning of biomass, including woody biomass, forest waste and agricultural waste. 1 ref., 2 figs.

  15. Potential of Trichoderma species on Helminthosporium causing leaf spot on cane palm, Chrysalidocarpus lutescens.

    Science.gov (United States)

    Jegathambigai, V; Karunaratne, M D S D; Svinningen, A; Mikunthan, G

    2008-01-01

    The cane palm, Chrysalidocarpus lutescens is one among the plant material of the export industries in Sri Lanka. The export quality of C. lutescens was declined due to the repeated occurrence of a leaf spot caused by Helminthosporium. Widespread occurrence of the leaf spot affected the cane palm production and succumb it to a huge setback in the floriculture industry in Sri Lanka. Being an export industry eco-friendly means of disease control was the prime focus for a better management of such vulnerable disease. Trichoderma is a potential bio agent, which has definite role in suppressing the inoculum of Helminthosporium sp. This study aims to evaluate the efficacy of Trichoderma species to control naturally established leaf spot in cane palm under field conditions. Three isolates of T. viride and two isolates of T. harzianum were evaluated. All the Trichoderma species performed significantly in reducing the disease incidence. T. viride + T. harzianum combination (1 x 10(10) cfu/ml) was the best compared to chemical in decreasing the mean disease severity index and improving the frequency of healthy plants. The colour of the leaves regained due to the application of Trichoderma sp. The results revealed that leaf spot incidence was lowered significantly in cane palms treated with Trichoderma species followed by treatment with combination of Trichoderma sp. and fungicides. The fungicide mixture (hexaconozole 50 g/l + Isoprothiolane 400 g/l) failed to lower the disease incidence and had no effect in suppressing the inocula of Helminthosporium, although recommended. Mixing of Trichoderma species with fungicide did not exhibit any additive effect. The combination of different species of Trichoderma would target species of Helminthosporium that exist as a complex group under field conditions. The results also proved that the existence of heterogeneity in Helminthosporium that could be tackled and effectively controlled by a combination of different species of the bio

  16. Bio fertilizer Application in a Fertigation System

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Hoe, P.C.K.

    2011-01-01

    Bio fertilizers contain live beneficial microorganisms that provide nutrients and other benefits to crops. At present, bio fertilizers can be found in solid and liquid forms. Liquid bio fertilizer can be one of the alternatives to chemical fertilizers and pesticides. Liquid bio fertilizer is produced through culturing of microorganisms that are known to have specific capabilities in helping plant growth. However, application of bio fertilizers in the form of solution is more tedious than that of solid bio fertilizers, which can be applied directly to plants, whereas the liquid form requires several stages of preparation before it can be applied to crops. In Malaysian Nuclear Agency, a study on the distribution of liquid bio fertilizers to crops through the fertigation system has been conducted. In Malaysia, this study has not been conducted in depth, since the present fertigation system is associated to delivery of solubilised mineral fertilizers. This paper discusses the application of liquid bio fertilizers through a fertigation system. Discussions cover technical aspects of bio fertilizer preparation and its application via the said system. Tomato plant was used as test crop to determine the capability and efficiency of bio fertilizer application through the fertigation system. (author)

  17. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Balat, Mustafa; Balat, Havva

    2009-01-01

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially.

  18. Strategies Needed to Maximize Industry Support for Breeding of Energy Cane as a Biomass Feedstock for Coal and other Co-Products

    Science.gov (United States)

    Research and advanced breeding have demonstrated that energy cane possesses all of the attributes desirable in a biofuel feedstock: extremely good biomass yield in a small farming footprint; negative/neutral carbon footprint; maximum outputs from minimum inputs; well-established growing model for fa...

  19. Use of a cane for recovery from backward balance loss during treadmill walking.

    Science.gov (United States)

    Hyodo, Masaki; Saito, Mayumi; Ushiba, Junichi; Tomita, Yutaka; Masakado, Yoshihisa

    2013-06-01

    To study whether a cane improved balance recovery after perturbation during walking. This study was a crossover comparison comparing the effect of walking with and without a cane for balance recovery after perturbation during treadmill walking. Five normal young volunteers participated. The velocity and acceleration of a marker sited on the seventh cerebral vertebra (C7) and vertical hand motion were measured by a motion analysis system. When using a cane, C7 backward velocity increased by approximately 15% (413 SD 95 mm/s with cane vs. 358 SD 88 mm/s without). In addition, C7 backward acceleration increased by approximately 23% (3.2 SD 0.7 m/s(2) with cane vs. 2.6 SD 0.8 m/s(2) without) and the vertical motion of the right hand decreased (187 SD 98 mm with cane vs. 372 SD 260 mm without). Additionally, no subject was able to use a cane to broaden their base of support. The ability to limit trunk extension is crucial for preventing falls. Therefore, using a cane jeopardizes recovery from backward balance loss. The results encourage further research on the risk of a cane on balance recovery for the elderly population and habitual cane users.

  20. Effect of a cane on sit-to-stand transfer in subjects with hemiparesis.

    Science.gov (United States)

    Hu, Po-Ting; Lin, Kwan-Hwa; Lu, Tung-Wu; Tang, Pei-Fang; Hu, Ming-Hsia; Lai, Jin-Shin

    2013-03-01

    The aim of this study was to determine the effect of using a cane on movement time, joint moment, weight symmetry, and muscle activation patterns during sit-to-stand (STS) transfer in healthy subjects and subjects who have had a stroke. Nine subjects with hemiparesis (mean [SD] age, 61.11 [12.83] yrs) and nine healthy adults (mean [SD] age, 63.11 [10.54] yrs) were included. The subjects with hemiparesis performed STS transfer in two randomly assigned conditions: (1) without a cane and (2) with a cane. The healthy subjects performed only STS transfer without a cane. A three-dimensional motion system, force plates, and eletromyography were used to examine STS transfer. The symmetry index between the two limbs was calculated. The movement time of the subjects with hemiparesis in both conditions without a cane and with a cane was longer than that of the healthy subjects without a cane (P hemiparesis resulted in shorter movement time, greater knee extensor moment of the paretic limb, and more symmetry of weight bearing than in those without a cane (P hemiparesis. Cane use may promote more symmetrical STS transfers rather than compensation by the unaffected limb.

  1. Bio-energy and youth: Analyzing the role of school, home, and media from the future policy perspectives

    International Nuclear Information System (INIS)

    Halder, Pradipta; Havu-Nuutinen, Sari; Pietarinen, Janne; Pelkonen, Paavo

    2011-01-01

    The study investigated the relationships between students' perceived information on bio-energy from school, home and media and their perceptions, attitudes, and knowledge regarding bio-energy. The study also analyzed the scope of future policies to raise awareness among young students about bio-energy. Data drawn from 495 Finnish students studying in ninth grade revealed that the students were more positive in their attitudes towards bio-energy compared to their perceptions of it. They were very positive about learning about bio-energy, while not so eager towards its utilization. It appeared that school, home, and media all had statistically significant effects on students' perceptions, attitudes, and level of knowledge related to bio-energy. Three principal components emerged from students' perceptions and attitudes towards bio-energy viz. 'motivation' revealing students' eagerness to know more about bio-energy; 'considering sustainability' revealing their criticality of forest bio-energy; and 'utilization' revealing their state of interests to use bio-energy. Bio-energy policies to be effective must consider the role of school, home, and media as important means to engage young students in bio-energy related discussions. It is also desirable to establish interactions between energy and educational policies to integrate the modern renewable energy concepts in the school curriculum.

  2. SILAGE CANE SUGAR ADDED WITH DRIED BREWER

    Directory of Open Access Journals (Sweden)

    W. J. R. Castro

    2015-02-01

    Full Text Available The objective of this experiment was to evaluate the fermentative parameters and chemical composition of silage cane sugar added with residue dried brewery. The experimental design was completely randomized with four treatments and four replications: 100% cane sugar; 90% of cane sugar + 10% residue dried brewer; 80% of cane sugar + 20% residue dried brewer and 70% cane sugar + 30% dried brewer based on natural matter, composed silages. The sugar cane was chopped in a stationary machine with forage particle size of approximately 2 cm, and homogenized manually with the additives. For storage chopped fresh weight were used in experimental silos capacity of about 4 liters. The results showed that the contents of dry matter and crude protein showed positive linear (P0.05 with mean value of 3.81, while for ether extract and ash results were positive linear (P0.05 for N ammonia presented average value of 4.18. It is concluded that the addition of brewer dehydrated improves the fermentation process of silage cane sugar, in addition to improving their nutritional characteristics.

  3. Bio-energy and youth: Analyzing the role of school, home, and media from the future policy perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Pradipta; Pelkonen, Paavo [School of Forest Sciences, University of Eastern Finland, P.O. Box 111, 80101 Joensuu (Finland); Havu-Nuutinen, Sari [School of Applied Educational Science and Teacher Education, University of Eastern Finland, P.O. Box 111, 80101 Joensuu (Finland); Pietarinen, Janne [School of Educational Sciences and Psychology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu (Finland)

    2011-04-15

    The study investigated the relationships between students' perceived information on bio-energy from school, home and media and their perceptions, attitudes, and knowledge regarding bio-energy. The study also analyzed the scope of future policies to raise awareness among young students about bio-energy. Data drawn from 495 Finnish students studying in ninth grade revealed that the students were more positive in their attitudes towards bio-energy compared to their perceptions of it. They were very positive about learning about bio-energy, while not so eager towards its utilization. It appeared that school, home, and media all had statistically significant effects on students' perceptions, attitudes, and level of knowledge related to bio-energy. Three principal components emerged from students' perceptions and attitudes towards bio-energy viz. 'motivation' revealing students' eagerness to know more about bio-energy; 'considering sustainability' revealing their criticality of forest bio-energy; and 'utilization' revealing their state of interests to use bio-energy. Bio-energy policies to be effective must consider the role of school, home, and media as important means to engage young students in bio-energy related discussions. It is also desirable to establish interactions between energy and educational policies to integrate the modern renewable energy concepts in the school curriculum. (author)

  4. Square baler field test under different sugar cane crop residue conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Arthur Miola de; Ripoli, Tomaz Caetano Cannavan; Gadanha Junior, Casimiro [Escola Superior de Agricultura Luiz de Queiroz (ESALQ-USP), Piracicaba (Brazil). Dept. de Engenharia Rural], E-mail: ammello@esalq.usp.br; Ripoli, Marco Lorezzo Cunali [John Deere, Ribeirao Preto, SP (Brazil)

    2008-07-01

    The energy demand increase of the country allows the sugar cane business sector to be a major player in production and commercialization areas of electric energy using cogeneration powered by bagasse and sugar cane residues. The objective of the study was to evaluate some of the performance parameters of an Express 5040 baler, brand Nogueira, used to collect residues. The tests were conducted in a sugar cane mechanized harvest area. The baler was submitted to three different conditions of residues windrowing: 'in natura', under single and double raking operations. For all treatments soil sampling analyzes were done to find out ground homogeneity conditions were the test took place. The simple raking operation offered better conditions for the machine: Effective Capacity of 8.21 t.{sup h}-{sup 1} and 0.88 ha.h{sup -1}; average bale weight of 22.33 kg (SD=3.58, CV=16.01 %); costs of 7.45 R$.t{sup -1} of baled residue; 0.17 R$.fardo{sup -1} and 69.47 R$.ha{sup -1}. (author)

  5. DEMONSTRATION OF EQUIVALENCY OF CANE AND SOFTWOOD BASED CELOTEX FOR MODEL 9975 SHIPPING PACKAGES

    International Nuclear Information System (INIS)

    Watkins, R; Jason Varble, J

    2008-01-01

    Cane-based Celotex(trademark) has been used extensively in various Department of Energy (DOE) packages as a thermal insulator and impact absorber. Cane-based Celotex(trademark) fiberboard was only manufactured by Knight-Celotex Fiberboard at their Marrero Plant in Louisiana. However, Knight-Celotex Fiberboard shut down their Marrero Plant in early 2007 due to impacts from hurricane Katrina and other economic factors. Therefore, cane-based Celotex(trademark) fiberboard is no longer available for use in the manufacture of new shipping packages requiring the material as a component. Current consolidation plans for the DOE Complex require the procurement of several thousand new Model 9975 shipping packages requiring cane-based Celotex(trademark) fiberboard. Therefore, an alternative to cane-based Celotex(trademark) fiberboard is needed. Knight-Celotex currently manufactures Celotex(trademark) fiberboard from other cellulosic materials, such as hardwood and softwood. A review of the relevant literature has shown that softwood-based Celotex(trademark) meets all parameters important to the Model 9975 shipping package

  6. The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems

    Science.gov (United States)

    Pang, Xiao-feng

    2012-05-01

    The mechanism and properties of bio-photon emission and absorption in bio-tissues were studied using Pang's theory of bio-energy transport, in which the energy spectra of protein molecules are obtained from the discrete dynamic equation. From the energy spectra, it was determined that the protein molecules could both radiate and absorb bio-photons with wavelengths of energy level transitions of the excitons. These results were consistent with the experimental data; this consisted of infrared absorption data from collagen, bovine serum albumin, the protein-like molecule acetanilide, plasma, and a person's finger, and the laser-Raman spectra of acidity I-type collagen in the lungs of a mouse, and metabolically active Escherichia coli. We further elucidated the mechanism responsible for the non-thermal biological effects produced by the infrared light absorbed by the bio-tissues, using the above results. No temperature rise was observed; instead, the absorbed infrared light promoted the vibrations of amides as well the transport of the bio-energy from one place to other in the protein molecules, which changed their conformations. These experimental results, therefore, not only confirmed the validity of the mechanism of bio-photon emission, and the newly developed theory of bio-energy transport mentioned above, but also explained the mechanism and properties of the non-thermal biological effects produced by the absorption of infrared light by the living systems.

  7. Conversion of grazed pastures to energy cane as a biofuel feedstock alters the emission of GHGs from soils in Southeastern United States

    Science.gov (United States)

    The cultivation of energy cane throughout the Southeastern United States may displace grazed pastures on organic soil (Histosols) to meet growing demands for biofuels. We combined results from a field experiment with a biogeochemical model to improve our understanding of how the conversion of pastur...

  8. Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms

    International Nuclear Information System (INIS)

    Qu Mei; Tahvanainen, Liisa; Ahponen, Pirkkoliisa; Pelkonen, Paavo

    2009-01-01

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on (www.Google.cn). A thorough analysis was conducted by focusing on one of them: (www.china5e.com). The news articles on (www.china5e.com) were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future.

  9. Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China)], E-mail: qu@cc.joensuu.fi; Tahvanainen, Liisa [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on (www.Google.cn). A thorough analysis was conducted by focusing on one of them: (www.china5e.com). The news articles on (www.china5e.com) were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future.

  10. Bio-energy in China. Content analysis of news articles on Chinese professional internet platforms

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Mei [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Northwest Agriculture and Forestry University, College of Forestry (China); Tahvanainen, Liisa; Pelkonen, Paavo [Faculty of Forest Sciences, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland); Ahponen, Pirkkoliisa [Faculty of Social Sciences and Regional Studies, University of Joensuu, P.O. Box 111, FI-80101 Joensuu (Finland)

    2009-06-15

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on www.Google.cn. A thorough analysis was conducted by focusing on one of them: www.china5e.com. The news articles on www.china5e.com were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future. (author)

  11. The NCBI BioSystems database.

    Science.gov (United States)

    Geer, Lewis Y; Marchler-Bauer, Aron; Geer, Renata C; Han, Lianyi; He, Jane; He, Siqian; Liu, Chunlei; Shi, Wenyao; Bryant, Stephen H

    2010-01-01

    The NCBI BioSystems database, found at http://www.ncbi.nlm.nih.gov/biosystems/, centralizes and cross-links existing biological systems databases, increasing their utility and target audience by integrating their pathways and systems into NCBI resources. This integration allows users of NCBI's Entrez databases to quickly categorize proteins, genes and small molecules by metabolic pathway, disease state or other BioSystem type, without requiring time-consuming inference of biological relationships from the literature or multiple experimental datasets.

  12. Microbial bio-fuels: a solution to carbon emissions and energy crisis.

    Science.gov (United States)

    Kumar, Arun; Kaushal, Sumit; Saraf, Shubhini A; Singh, Jay Shankar

    2018-06-01

    Increasing energy demand, limited fossil fuel resources and climate change have prompted development of alternative sustainable and economical fuel resources such as crop-based bio-ethanol and bio-diesel. However, there is concern over use of arable land that is used for food agriculture for creation of biofuel. Thus, there is a renewed interest in the use of microbes particularly microalgae for bio-fuel production. Microbes such as micro-algae and cyanobacteria that are used for biofuel production also produce other bioactive compounds under stressed conditions. Microbial agents used for biofuel production also produce bioactive compounds with antimicrobial, antiviral, anticoagulant, antioxidant, antifungal, anti-inflammatory and anticancer activity. Because of importance of such high-value compounds in aquaculture and bioremediation, and the potential to reduce carbon emissions and energy security, the biofuels produced by microbial biotechnology might substitute the crop-based bio-ethanol and bio-diesel production.

  13. Ethanol as an alternative source of energy

    International Nuclear Information System (INIS)

    Haroon, M.; Benjamin, S.E.

    2011-01-01

    Pakistan, at present facades huge shortage of energy that has disabled several industries and has worsened the living standards of a common man. Its economy mainly depends upon agriculture but relies heavily on imported petroleum to meet the necessities. The importance of national resources as an alternative energy resource is thus greatly felt. The sugar cane industry of Pakistan holds a potential to provide such an alternative fuel as bio ethanol that can be produced entirely from molasses. This paper looks deeper into scope of ethanol as one replacement that can reduce the financial and environmental cost of petroleum based fuels. (author)

  14. Improved molecular tools for sugar cane biotechnology.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  15. Bio energy in Norway; Bioenergi i Noreg

    Energy Technology Data Exchange (ETDEWEB)

    Hamnaberg, Haavard; Sidelnikova, Maria

    2011-07-01

    The main conclusion in this report is that it is possible to make available about 14 TWh bio energy in Norway than what is used today to a charge that is located less than ca. 30 oere / kWh. Almost all this potential come from the forest and requires an increase in output up to the net sustained yield. Further 5 TWh may be available in the form of biogas at a cost that is both higher and have greater uncertainty than the fixed bio energy. It is set up a cost curve based on this work, which is quoted here. This reflects only the technical costs, and does not regard wages, commissions, taxes or fees. The value of alternative uses of biomass are not considered. The cost curve must therefore not be mixed with a supply curve. (eb)

  16. determination of bio-energy potential of palm kernel shell

    African Journals Online (AJOL)

    88888888

    2012-11-03

    Nov 3, 2012 ... most viable application in Renewable Energy options such as bioenergy and biomass utilization. Its higher heating ... enable it release volatile matter necessary for bio-energy production. ..... ment and Efficiency. Ministry of ...

  17. Viability analysis of electric energy cogeneration in combined cycle with sugar-cane biomass gasification and natural gas; Analise de viabilidade da cogeracao de energia eletrica em ciclo combinado com gaseificacao de biomassa de cana-de-acucar e gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Correa Neto, Vicente

    2001-03-15

    The objective of this thesis is evaluate the technical and economic viability of electric energy generation projects using as fuel the biomass produced in the sugar cane Brazilian industry, specifically the cane trash, the straw and the leaves of the plant, as complemental option to the expansion of the Brazilian electric system, hour in phase of deep modification in the institutional scenery, through the sale of electric energy for direct consumers or utilities, characterizing the business possibilities for the ethanol distilleries already integrated into the energy reality of the country. The analyzed technology is thermoelectric generation with combined cycle, operating in cogeneration, integrated to biomass gasification systems for the production of combustible gas, with and without addition of natural gas. The considered technology is known by the acronym BIG/GTCC, originated in Biomass Integrate Gasification Combined Cycle Gas Turbine. The economic analysis is made herself through a modeling and construction of economy project curves based on the prices of the electric energy, of the natural gas and in the costs of the retired biomass in an mechanized way.(author)

  18. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  19. Environmental sustainability assessment of bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2009-01-01

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  20. Residual effect of sugar cane ratoon of urea nitrogen foliar application to plant cane

    International Nuclear Information System (INIS)

    Trivelin, P.C.O.; Lara Cabezas, W.A.R.; Coleti, J.T.

    1984-01-01

    The residual effect of urea - N, foliar applied to plant cane, on sugar cane ratoon is studied. Setts grown in drums containing washed sand are used. 180 days from planting, foliar fertilizer (43.5% urea solution) labelled with 3.95 atom % 15 N is applied. The first harvest is made 7 days after application and final harvest of resprouting at 123 days. (M.A.C.) [pt

  1. Assessment of Cane Yields on Well-drained Ferralsols in the Sugar-cane Estate of Central Cameroon

    Directory of Open Access Journals (Sweden)

    Van Ranst, E.

    1999-01-01

    Full Text Available The potential yields of irrigated and of rainfed sugar-cane on three ferrallitic soil series, well represented in the Nkoteng sugar-cane estate of Central Cameroon, are estimated following different methods. The potential yield of irrigated sugar-cane is estimated from the total maximum evapotranspiration during the crop cycle. The potential yield of rainfed sugar-cane is estimated following two methods for the establishment of a water balance and for the determination of a yield reduction as a result of a water deficit. The calculated potential yields are higher than the observed ones. The yield reduction due to rain fed cropping can mainly be attributed to water shortage during the late yield formation and the ripening periods. A supplementary yield decline is due to a combined action of an acid soil reaction, a possible Al-toxicity a low base saturation, an inadequate CEC, organic matter content and P-availability which may adequately explain the actual yield level.

  2. Mechanical behavior of cementitious composites with processed sugar cane bagasse ashes

    International Nuclear Information System (INIS)

    Bezerra, Augusto C.S.; Saraiva, Sergio L.C.; Sena, Natalia O.; Pereira, Gabriela M.; Rodrigues, Conrado S.; Ferreira, Maria C.N.F.; Castro, Laurenn W.A.; Silva, Marcos V.M.S.; Gomes, Romero C.; Aguilar, Maria T.P.

    2014-01-01

    Sugar cane bagasse is waste from the sugar and ethanol industry and is primarily intended for burning in boilers to generate energy. As waste from the cogeneration of energy, sugar cane bagasse ashes (SCBA) are produced with no honorable destination. This paper studies the use of SCBA to partially replace Portland cement in producing cementitious composites. The ashes were processed by reburning and grinding, and after processing were characterized by a scanning electron microscope, x-ray diffraction, laser granulometry, and x-ray fluorescence spectrometry. After characterization, cement compounds were fashioned, replacing 0, 10, 20 and 30% of the cement with SCBA. The composites were mechanically evaluated by means of compression strength tests, tensile strength tests by bending. The results proved significant, indicating the possible use of SCBA when added to the cement on manufacture. (author)

  3. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  4. Assessment of canes used by older adults in senior living communities.

    Science.gov (United States)

    Liu, Hao Howe; Eaves, Joshua; Wang, Wen; Womack, Jill; Bullock, Paige

    2011-01-01

    The purpose of this cross-sectional study is to provide basic but essential information about how older cane users obtain their canes and how they use these canes for their daily mobility, since there is still lack of information on these areas. Ninety-three older (≥65 years old) subjects who use canes for daily activities were recruited from four assisted living facilities and five retirement centers for this cross-sectional study. The assessment involved interviewing cane users with a questionnaire, examining their canes, and investigating how these canes were used by their owners during ambulation. The commonly used canes are (from most to least): adjustable single-tip, un-adjustable (wooden), small quad, and large quad. Five major problems from data analysis were identified: lack of medical consultation for device selection/use, incorrect cane height/maintenance, placement of cane in improper hand, inability to maintain the proper reciprocal gait pattern, and improper posture during ambulation. Only forward-leaning posture during ambulation might be associated with increased falls among the older cane users. Knowledge of these problems could assist health professionals to implement appropriate interventions in clinical settings and to provide community service to address all problems related to cane use. Published by Elsevier Ireland Ltd.

  5. Potential use and the energy conversion efficiency analysis of fermentation effluents from photo and dark fermentative bio-hydrogen production.

    Science.gov (United States)

    Zhang, Zhiping; Li, Yameng; Zhang, Huan; He, Chao; Zhang, Quanguo

    2017-12-01

    Effluent of bio-hydrogen production system also can be adopted to produce methane for further fermentation, cogeneration of hydrogen and methane will significantly improve the energy conversion efficiency. Platanus Orientalis leaves were taken as the raw material for photo- and dark-fermentation bio-hydrogen production. The resulting concentrations of acetic, butyric, and propionic acids and ethanol in the photo- and dark-fermentation effluents were 2966mg/L and 624mg/L, 422mg/L and 1624mg/L, 1365mg/L and 558mg/L, and 866mg/L and 1352mg/L, respectively. Subsequently, we calculated the energy conversion efficiency according to the organic contents of the effluents and their energy output when used as raw material for methane production. The overall energy conversion efficiencies increased by 15.17% and 22.28%, respectively, when using the effluents of photo and dark fermentation. This two-step bio-hydrogen and methane production system can significantly improve the energy conversion efficiency of anaerobic biological treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  6. Sustainable Systems Analysis of Production and Transportation Scenarios for Conventional and Bio-based Energy Commodities

    Science.gov (United States)

    Doran, E. M.; Golden, J. S.; Nowacek, D. P.

    2013-12-01

    International commerce places unique pressures on the sustainability of water resources and marine environments. System impacts include noise, emissions, and chemical and biological pollutants like introduction of invasive species into key ecosystems. At the same time, maritime trade also enables the sustainability ambition of intragenerational equity in the economy through the global circulation of commodities and manufactured goods, including agricultural, energy and mining resources (UN Trade and Development Board 2013). This paper presents a framework to guide the analysis of the multiple dimensions of the sustainable commerce-ocean nexus. As a demonstration case, we explore the social, economic and environmental aspects of the nexus framework using scenarios for the production and transportation of conventional and bio-based energy commodities. Using coupled LCA and GIS methodologies, we are able to orient the findings spatially for additional insight. Previous work on the sustainable use of marine resources has focused on distinct aspects of the maritime environment. The framework presented here, integrates the anthropogenic use, governance and impacts on the marine and coastal environments with the natural components of the system. A similar framework has been highly effective in progressing the study of land-change science (Turner et al 2007), however modification is required for the unique context of the marine environment. This framework will enable better research integration and planning for sustainability objectives including mitigation and adaptation to climate change, sea level rise, reduced dependence on fossil fuels, protection of critical marine habitat and species, and better management of the ocean as an emerging resource base for the production and transport of commodities and energy across the globe. The framework can also be adapted for vulnerability analysis, resilience studies and to evaluate the trends in production, consumption and

  7. Analysis of Norwegian bio energy statistics. Quality improvement proposals; Analyse av norsk bioenergistatistikk. Forslag til kvalitetsheving

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report is an assessment of the current model and presentation form of bio energy statistics. It appears proposed revision and enhancement of both collection and data representation. In the context of market development both in general for energy and particularly for bio energy and government targets, a good bio energy statistics form the basis to follow up the objectives and means.(eb)

  8. IN VITRO FERMENTATION EFFICIENCY OF MIXTURES OF Cynodon nlemfuensis, Leucaena leucocephala AND TWO ENERGY SOURCES (MAIZE OR SUGAR CANE MOLASSES

    Directory of Open Access Journals (Sweden)

    Juan Martin Estrada-Liévano

    2009-07-01

    Full Text Available The in vitro fermentation efficiency of Cynodon nlemfuensis forage (star grass and Leucaena leucocephala foliage (leucaena and two energy sources (i.e. maize and sugar cane molasses mixture was evaluated. Mixture samples (1 g DM were incubated for 24 h. All the mixtures were added with 500 mg of polyetilenglycol (PEG. Adding molasses to star grass increased dry matter true digestibility and carbohydrate fermentation (P

  9. Feasibility of waste to Bio-diesel production via Nuclear-Biomass hybrid model. System dynamics analysis

    International Nuclear Information System (INIS)

    Nam, Hoseok; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility. (author)

  10. Energy and GHG balances of ethanol production from cane molasses in Indonesia

    International Nuclear Information System (INIS)

    Khatiwada, Dilip; Venkata, Bharadwaj K.; Silveira, Semida; Johnson, Francis X.

    2016-01-01

    Highlights: • This study performs LCA analysis of sugarcane-based bioethanol production. • Energy and GHG balances are evaluated in the entire production chain. • Sensitivity analysis is performed to identify key influencing parameters. • Efficient cogeneration and biogas recovery enhances energy and climate gains. • Results of LCA studies and issues related to land use change impact are discussed. - Abstract: This study analyses the sustainability of fuel ethanol production from cane molasses in Indonesia. Life cycle assessment (LCA) is performed to evaluate the net emissions (climate change impact) and energy inputs (resource consumption) in the production chain. The lifecycle greenhouse gas (GHG) emissions in the production and use of ethanol are estimated at 29 gCO 2eq per MJ of ethanol produced which is a 67% reduction in comparison to gasoline emissions. Net Energy Value (NEV) and Net Renewable Energy Value (NREV) are −7 MJ/l and 17.7 MJ/l, while the energy yield ratio (ER) is 6.1. Economic allocation is chosen for dividing environmental burdens and resource consumption between sugar (i.e. main product) and molasses (i.e. co-product used for fuel production). Sensitivity analysis of various parameters is performed. The emissions and energy values are highly sensitive to sugarcane yield, ethanol yield, and the price of molasses. The use of sugarcane biomass residues (bagasse/trash) for efficient cogeneration, and different waste management options for the treatment of spent wash (effluent of distilleries) are also explored. Surplus bioelectricity generation in the efficient cogeneration plant, biogas recovery from wastewater treatment plant, and their use for fossil fuel substitution can help improve energy and environmental gains. The study also compares important results with other relevant international studies and discusses issues related to land use change (LUC) impact.

  11. Cogeneration/auto production influences form sugar cane bagasse for the electric power market in Northeast

    International Nuclear Information System (INIS)

    Rocha, P.G. da; Fiscina, G.B.

    1990-01-01

    This work intends to evaluate to what extent the co-generation/auto production influences the electric power market. For that purpose, two sceneries have been developed considering sugar cane bagasse remains, taking as a basis the historic content (per Northeast state) and the energy policy for PROALCOOL. The installed potential in plants/distilleries for utilization of the bagasse industrial remains has also been considered. It has been determined the investments required for new facilities, enabling the use of all bagasse remains for electric energy, the benefits for the North/Northeast electric system resulting from such measures (as the decrease in deficit risks), and the value of energy sale by the system auto producers/co-generators. (author)

  12. Status of bio energy based on forest material - from the stub to the stove door; Status for bioenergi basert paa skogsvirke - fra stubben til ovnsdoera

    Energy Technology Data Exchange (ETDEWEB)

    Lileng, Joern K.; Gjoelsjoe, Simen

    1999-07-01

    It is not well documented in Norway who possesses the competence and who is the user of forest material as bio fuel. Forest material is forest chips, secondary products from forestry, and firewood. The project reported was a literature study that throws light on the problem by referring to central persons and institutions in this field. The report also is a general introduction to bio energy based on forest material. The principle sections deal with (1) Climate policy, (2) Energy carriers based on forest material, (3) Systems for selection and treatment of bio fuel, (4) Methods for calculation of the supply of biomass in the forest, (5) Returning ash to the forest, (6) Transport, (7) Storage, (8) Assessment of bio energy, (9) Abstract of relevant Norwegian reports, (10) Bio energy projects and bio energy actors in Norway and (11) Proposed research projects and research work on forest material as fuel.

  13. First steps in translating human cognitive processes of cane pruning grapevines into AI rules for automated robotic pruning

    Directory of Open Access Journals (Sweden)

    Saxton Valerie

    2014-01-01

    Full Text Available Cane pruning of grapevines is a skilled task for which, internationally, there is a dire shortage of human pruners. As part of a larger project developing an automated robotic pruner, we have used artificial intelligence (AI algorithms to create an expert system for selecting new canes and cutting off unwanted canes. A domain and ontology has been created for AI, which reflects the expertise of expert human pruners. The first step in the creation of an expert system was to generate virtual vines, which were then ‘pruned’ by human pruners and also by the expert system in its infancy. Here we examined the decisions of 12 human pruners, for consistency of decision, on 60 virtual vines. 96.7% of the 12 pruners agreed on at least one cane choice after which there was diminishing agreement on which further canes to select for laying. Our results indicate that techniques developed in computational intelligence can be used to co-ordinate and synthesise the expertise of human pruners into a best practice format. This paper describes first steps in this knowledge elicitation process, and discusses the fit between cane pruning expertise and the expertise that can be elicited using AI based expert system techniques.

  14. Limits to the potential of bio-fuels and bio-sequestration of carbon

    International Nuclear Information System (INIS)

    Pearman, Graeme I.

    2013-01-01

    This document examines bio-physical limits of bio-fuels and bio-sequestration of carbon by examining available solar radiation and observed efficiencies with which natural ecosystems and agricultural systems convert that energy to biomass. It compares these energy/carbon exchanges with national levels of energy use and carbon emissions for Australia, Brazil, China, Japan, Republic of Korea, New Zealand, Papua New Guinea, Singapore, Sweden, United Kingdom and United States. Globally primary energy consumption (related carbon emissions) is currently equivalent to ∼0.06% of the incident solar energy, and 43% of the energy (carbon) captured by photosynthesis. The nations fall into three categories. Those with primary energy consumption that is: 1–10% (Japan, Korea and Singapore); ∼0.1% (China, UK and the US) and; 0.1–0.01% (Australia, Brazil, Papua New Guinea, New Zealand and Sweden) of incident solar radiation. The percentage of energy captured in biomass follows this pattern, but generally lower by ∼3 orders of magnitude. The energy content of traded wheat, corn and rice represents conversion efficiencies of solar radiation of 0.08–0.17% and for sugar close to 1%, ignoring energy use in production and conversion of biomass to fuels. The study implies that bio-fuels or bio-sequestration can only be a small part of an inclusive portfolio of actions towards a low carbon future and minimised net emissions of carbon to the atmosphere. - Highlights: • Global energy consumption is ∼0.06% of solar; 43% of net primary production. • 11 nations studied fall into 3 groups: consumption/solar=1–10%; ∼0.1%; 0.1–0.01%. • % of energy captured in biomass is lower by ∼3 orders of magnitude. • Crops and natural ecosystems capture 0.1–0.3% and sugar 1% of solar energy. • Significant bio-energy/carbon sequestration via biomass is unrealistic

  15. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Prospective evaluation of biorefinery routes in Brazil, from sugar cane bagasse as a basic feedstock; Avaliacao prospectiva das rotas de biorefinaria no Brasil, a partir do bagaco de cana-de-acucar como materia-prima basica

    Energy Technology Data Exchange (ETDEWEB)

    Ely, Romulo Neves

    2009-12-15

    Bio refineries have been identified either as an alternative to oil refineries or as a supplement. This work seeks to understand these plants applied to the Brazilian case, which has in the alcohol-sugar sector a large number of lignocellulose material (sugar-cane bagasse) produced in large scale as a residue of the process of sugar and alcohol production. In this case, technological routes that are able to use this product as a basic feedstock for the industrial process will be described. Therefore, a model based on a set of economical and technological variables is applied to the routes. In this model, different profiles of bio refinery plants are described and compared with different hypothetical regions, which are characterized by a combination of both access to different amounts of raw material and different types of consumers. Overall, this work describes a model of both location and competition of the main bio refinery technological routes in Brazil that have the sugar-cane bagasse as the basic raw material. (author)

  17. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  18. Comparative evaluation of hybrid systems of natural gas cogeneration and sugar cane bagasse; Avaliacao comparativa de sistemas hibridos de cogeracao a gas natutral e bagaco de cana

    Energy Technology Data Exchange (ETDEWEB)

    Zamboni, Leonardo Moneci; Tribess, Arlindo [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: leonardo.zamboni@poli.usp.br; atribess@usp.br

    2006-07-01

    The consumption of electricity in Brazil and mainly in the State of Sao Paulo is increasing gradually. On the other hand, the hydraulic potential is practically exhausted and the government has no resources for such new investments. One solution is the construction of thermo electrical plants with the use of the natural gas and sugar cane bagasse. The natural gas has the advantage of being available in great amount and less pollutant. And the sugar cane bagasse, besides being a by-product of low value, does not cause a global pollution. The work consists of the determination of the best option considering criterion of minimum cost for kWh of energy produced. For such, thermo economic analysis with electricity and steam production costs evaluation in exergetic basis, was accomplished. In the evaluations the consumption of natural gas and the costs of the sugar cane bagasse were varied. The results show that the cogeneration plant with combined cycle using natural gas and burning sugar cane bagasse in the recovery boiler presents the smallest cost of electricity and steam generation (even not being the cycle with larger exergetic efficiency). On the other hand, for a natural gas cost of 140 US$/t and a cost of sugar cane bagasse superior to 10,50 US$/t the cogeneration plant with combined cycle using only natural gas (and, therefore not burning or gasifying sugar cane bagasse) presented the smallest cost of electricity and steam generation. (author)

  19. Diversifying bio-petro fuel sources for future energy sustainability and its challenges

    Science.gov (United States)

    Othman, M. R.; Helwani, Z.; Idris, I.

    2018-04-01

    Petroleum has been important in the energy industry since 19th century when the refining of paraffin from crude oil began. The industry recently appears to be in a downtown and fragile moment despite the price of oil is slowly rising. Renewable alternatives such as biofuels have gained increasing traction while petroleum fuel seemingly concedes to bio-fuels due to the rising public concern on the environment and stricter emission regulations. To be a strategic fuel in the energy security matrix, both fossil and bio-fuels options should be considered. However, the use of bio-fuels to achieve a degree of carbon neutrality is not without challenges. Among the challenges are land development and socio-political issue, carbon neutrality due to ILUC, high 2G bio-fuel feedstock and production cost, competing technology from electric vehicles and the impending fourth industrial revolution, NOx emissions and variation in biodiesel quality. This paper briefly reviews the potential of fuels source diversification and the challenges and how they can raise up to the challenges in order to be sustainable and attractive. In order to achieve this objective, first carbon credit through carbon trading needs to continue to stabilize the energy price. Second, 1G bio-fuel needs to forgo the use of natural, peat forest, rubber estate since these are an effective carbon sink and oxygen source. Third, advanced bio-fuels with high yield, process economics and sustainability need to be innovated. Fourth, the quality and standard bio-fuel that reduces NOx emission need to be improved. Finally and most importantly, carbon capture technology needs to be deployed immediately in fossil fuel power plants.

  20. Optimization of palm kernel shell torrefaction to produce energy densified bio-coal

    International Nuclear Information System (INIS)

    Asadullah, Mohammad; Adi, Ag Mohammad; Suhada, Nurul; Malek, Nur Hanina; Saringat, Muhammad Ilmam; Azdarpour, Amin

    2014-01-01

    Highlights: • Around 70% of bio-coal yield was achieved from PKS torrefaction at 300 °C. • The higher heating value of optimized bio-coal was 24.5 MJ/kg. • Around 94% of thermal yield was achieved with 70% mass yield. • The grindability of optimized bio-coal was comparable with coal. - Abstract: Biomass torrefaction is a thermal process, which is similar to a mild form of pyrolysis at temperatures ranging from 200 to 320 °C to produce energy densified solid fuel. The torrefied biomass is almost equivalent to coal and is termed as bio-coal. During torrefaction, highly volatile fraction of biomass including moisture and hemicellulose are released as vapors, providing energy enriched solid fuel, which is hydrophobic and brittle. In this study, bio-coal is produced from palm kernel shell (PKS) in a batch feeding reactor. The operating variables such as temperature, residence time and swiping gas flow rate are optimized. Around 73% yield of bio-coal with calorific value of 24.5 MJ/kg was achieved at optimum temperature 300 °C with residence time of 20 min and nitrogen gas flow rate of 300 mL/min. The thermal yield was calculated to be maximum of 94% for the bio-coal produced at 300 °C. The temperature and residence time of torrefaction are found to be the most sensitive parameters in terms of product yield, calorific value and thermal yield of bio-coal

  1. Alternative scenarios for implementing the E U bio fuels directive in Italy: the potential of bio ethanol

    International Nuclear Information System (INIS)

    Di Tucci, F.; Lodi, A.; Massarutto, A.

    2008-01-01

    This article discusses the perspective scenarios of the Italian market for bi oethanol, face to the Eu 2003/30 directive and more generally to the world market for oil and fuels. We examine first the convenience of substituting bio ethanol for gasoline; we discuss alternative scenarios for gathering ethanol to the Italian market, comparing import with internal production. We finally try to forecast the impact on the final price of gasoline for final consumption. We show that rising oil prices, more than the internalization of environmental cost, is the main driver that increases the convenience of introducing bio fuels. We also argue that for the Italian market imports are actually cheaper than internal product, although this judgment might change in the future in case the world price of agricultural commodities increases and/or tropical ethanol from sugar cane will not be sufficient to satisfy demand. [it

  2. The sustainability of small scale cane growers through youth ...

    African Journals Online (AJOL)

    Cane farming makes an important contribution to the socio-economic development of the rural areas where it takes place. These cane growing areas are characterised by high levels of poverty and youth unemployment. The current crop of cane growers is ageing and there is a need to prepare to handover the baton to the ...

  3. Utilization of bio-resources by low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  4. Electricity cogeneration evaluation from cane bagasse in gasifier systems/gas turbine; Avaliacao da cogeracao de eletricidade a partir de bagaco de cana em sistemas de gaseificador/turbina a gas

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira

    1992-07-01

    Before the beginning of PROALCOOL in 1975, the first effective program in the world using biomass in large scale as an automotive fuel, sugar/alcohol industries already used sugar cane bagasse - a by-product of sugar/alcohol production - to generate energy for sugar production. Currently, besides the fact that they are self-sufficient in thermal/electrical energy, sugar/alcohol industries produce small electricity excess which is exported to local utilities. Gasifier/gas turbine systems are more advanced technologies which are being developed and shall be commercialized in eight to ten years approximately, presenting much higher efficiency, at low cost and inducing more exportable electricity. In this study, possibilities of gasifier/gas turbine systems are evaluated and projections of bagasse based electricity production are presented, until year 2010, for Sao Paulo state and Brazil. Generation costs of gasified bagasse based electricity are calculated: they shall be lower than electricity cost from fossil origin. Influence of electricity sale on the reduction of alcohol production cost are also evaluated for several opportunity costs of bagasse. Environmental and social impacts are analyzed, including evaluation of the cost of avoided carbon, related to the substitution of fossil fuel by sugar cane bagasse in thermoelectric power plants. (author)

  5. In situ determination of K, Ca, S and Si in fresh sugar cane leaves by handheld Energy Dispersive X-Ray Fluorescence Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Marcelo B.B.; Adame, Andressa; Almeida, Eduardo de; Brasil, Marcos A.S.; Krug, Francisco J., E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil); Schaefer, Carlos E.G.R. [Departamento de Solos, Universidade Federal de Viçosa, MG (Brazil)

    2018-05-01

    A portable energy dispersive X-ray fluorescence spectrometer was evaluated in the in situ analysis of fresh sugar cane leaves for real time plant nutrition diagnosis. Fresh leaf fragments (n = 10 sugar cane varieties; 20 fragments per leaf; 2 measurement sites per fragment) were irradiated and the averaged data from X-ray characteristic emission lines intensities (for K, Ca, S and Si Kα lines) were in close agreement with mass fraction data obtained by a validated comparative method. The linear correlation coefficients (r) ranged from 0.9575 for Ca to 0.9851 for Si. The obtained limits of detection were at least two-fold lower than the critical nutrient levels. Manganese can also be properly determined, but validation still requires more robust calibration models. The proposed method is a straightforward approach towards the fast evaluation of the nutritional profile of plants avoiding time-consuming steps, which involve drying, grinding, weighing, and acid digestion. (author)

  6. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery.

    Science.gov (United States)

    Gao, Changfei; Liu, Lifen; Yang, Fenglin

    2018-02-01

    A novel bio-electrochemical system (BES) was developed by integrating micro-electrolysis/electro-flocculation from attaching a sacrificing Al anode to the bio-anode, it effectively treated high load wastewater with energy recovery (maximum power density of 365.1 mW/m 3 and a maximum cell voltage of 0.97 V), and achieving high removals of COD (>99.4%), NH 4 + -N (>98.7%) and TP (>98.6%). The anode chamber contains microbes, activated carbon (AC)/graphite granules and Al anode. It was separated from the cathode chamber containing bifunctional catalytic and filtration membrane cathode (loaded with Fe/Mn/C/F/O catalyst) by a multi-medium chamber (MMC) filled with manganese sand and activated carbon granules, which replaced expensive PEM and reduced cost. An air contact oxidation bed for aeration was still adopted before liquid entering the cathode chamber. micro-electrolysis/electro-flocculation helps in achieving high removal efficiencies and contributes to membrane fouling migration. The increase of activated carbon in the separator MMC increased power generation and reduced system electric resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sugar cane stillage: a potential source of natural antioxidants.

    Science.gov (United States)

    Caderby, Emma; Baumberger, Stéphanie; Hoareau, William; Fargues, Claire; Decloux, Martine; Maillard, Marie-Noëlle

    2013-11-27

    Biorefinery of sugar cane is the first economic activity of Reunion Island. Some sugar cane manufactured products (juice, syrup, molasses) have antioxidant activities and are sources of both phenolic compounds and Maillard Reaction Products (MRP). The study aimed to highlight the global antioxidant activity of sugar cane stillage and understand its identity. Chromatographic fractionation on Sephadex LH-20 resin allowed the recovery of a MRP-rich fraction, responsible for 58 to 66% of the global antioxidant activity according to the nature of the sugar cane stillage (DPPH test), and a phenolic compounds-rich fraction for 37 to 59% of the activity. A good correlation was recorded between the antioxidant activity of the sugar cane stillage and its content in total reducing compounds amount (Folin-Ciocalteu assay), among them 2.8 to 3.9 g/L of phenolic compounds (in 5-caffeoylquinic acid equivalent). Preliminary experiments by HPLC-DAD-MS allowed to identify several free phenolic acids and gave clues to identify esters of quinic acids.

  8. Ultrasound-Assisted Extraction of Stilbenes from Grape Canes.

    Science.gov (United States)

    Piñeiro, Zulema; Marrufo-Curtido, Almudena; Serrano, Maria Jose; Palma, Miguel

    2016-06-16

    An analytical ultrasound-assisted extraction (UAE) method has been optimized and validated for the rapid extraction of stilbenes from grape canes. The influence of sample pre-treatment (oven or freeze-drying) and several extraction variables (solvent, sample-solvent ratio and extraction time between others) on the extraction process were analyzed. The new method allowed the main stilbenes in grape canes to be extracted in just 10 min, with an extraction temperature of 75 °C and 60% ethanol in water as the extraction solvent. Validation of the extraction method was based on analytical properties. The resulting RSDs (n = 5) for interday/intraday precision were less than 10%. Furthermore, the method was successfully applied in the analysis of 20 different grape cane samples. The result showed that grape cane byproducts are potentially sources of bioactive compounds of interest for pharmaceutical and food industries.

  9. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic

  10. Assessment of TS-1, a thick cane mutant

    International Nuclear Information System (INIS)

    Shama Rao, H.K.

    1979-01-01

    A true breeding thick cane mutant TS-1, induced by radiations, was obtained in variety Co-419. TS-1 was found to be superior to Co-419 with respect to cane size, weight, yield and juice quality. The thick canes of TS-1 were found to be solid even at 14 months age and so also their ratoons. The tillering habit of TS-1 has a definite advantage over other varieties with respect to easy intercultural field operations. TS-1 is now being tested under various agroclimatic zones in Karnataka, Maharashtra and U.P. (auth.)

  11. Historical carbon budget of the brazilian ethanol program

    International Nuclear Information System (INIS)

    Pacca, Sergio; Moreira, Jose R.

    2009-01-01

    This work models the carbon neutralization capacity of Brazil's ethanol program since 1975. In addition to biofuel, we also assessed the mitigation potential of other energy products, such as, bioelectricity, and CO 2 emissions captured during fermentation of sugar cane's juice. Finally, we projected the neutralization capacity of sugar cane's bio-energy system over the next 32 years. The balance between several carbon stocks and flows was considered in the model, including the effects of land-use change. Our results show that the neutralization of the carbon released due to land-use change was attained only in 1992, and the maximum mitigation potential of the sugar cane sector was 128 tonnes of CO 2 per ha in 2006. An ideal reconstitution of the deployment of the sugar cane sector, including the full exploitation of bio-electricity's potential, plus the capture of CO 2 released during fermentation, shows that the neutralization of land-use change emissions would have been achieved in 1988, and its mitigation potential would have been 390 tCO 2 /ha. Finally, forecasts of the sector up to 2039 shows that the mitigation potential in 2039 corresponds to 836 tCO 2 /ha, which corresponds to 5.51 kg of CO 2 per liter of ethanol produced, or 55% above the negative emission level.

  12. Consolidated Afloat Networks and Enterprise Services (CANES)

    Science.gov (United States)

    2016-03-01

    Information Assurance IATO - Interim Authority to Operate ICD - Initial Capability Document IEA - Information Enterprise Architecture IOC - Initial...2016 Major Automated Information System Annual Report Consolidated Afloat Networks and Enterprise Services (CANES) Defense Acquisition Management...Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA

  13. Study on the current status of biomass energy development; Bio mass energy no kaihatsu jokyo chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was conducted on the present status of biomass energy in Japan and abroad and the developmental trend of the latest biomass energy technology. Brazil and the U.S. are most advancing in the biomass energy utilization. Brazil uses sugar cane which is plenty in supply as a raw material, and the U.S. does corn which is the surplus crop. Both countries use the conventional ethanol fermentation technology and produce the petroleum substitution liquid fuel which is in greatest need. As to the technology to convert biomass resource into energy, attention has so far been paid to the development of the production process of the liquid fuel. The latest technology for ethanol fermentation using saccharin and starch as raw materials has already been established in Japan, and the energy-saving type alcohol recovery technology has also reached the stage of practical application. Moreover, as to the ethanol conversion technology with cellulose substrate, the development of the saccharification process will be needed in future. 15 figs., 10 tabs.

  14. Regional-based estimates of water use for commercial sugar-cane ...

    African Journals Online (AJOL)

    derived by Thompson in 1976 is applied in conjunction with regional cane production records in South Africa. These were used to provide regional estimates of water use of commercial rain-fed and irrigated sugar-cane as affected by environmental limitations. The mean water use of sugar-cane at an industry scale was 598 ...

  15. Ultrasound-Assisted Extraction of Stilbenes from Grape Canes

    Directory of Open Access Journals (Sweden)

    Zulema Piñeiro

    2016-06-01

    Full Text Available An analytical ultrasound-assisted extraction (UAE method has been optimized and validated for the rapid extraction of stilbenes from grape canes. The influence of sample pre-treatment (oven or freeze-drying and several extraction variables (solvent, sample-solvent ratio and extraction time between others on the extraction process were analyzed. The new method allowed the main stilbenes in grape canes to be extracted in just 10 min, with an extraction temperature of 75 °C and 60% ethanol in water as the extraction solvent. Validation of the extraction method was based on analytical properties. The resulting RSDs (n = 5 for interday/intraday precision were less than 10%. Furthermore, the method was successfully applied in the analysis of 20 different grape cane samples. The result showed that grape cane byproducts are potentially sources of bioactive compounds of interest for pharmaceutical and food industries.

  16. Engineering and economic analysis for the utilization of geothermal fluids in a cane sugar processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Humme, J.T.; Tanaka, M.T.; Yokota, M.H.; Furumoto, A.S.

    1979-07-01

    The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from the binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.

  17. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  18. Biomass - Energy - Climate - From photosynthesis to bio-economy. V. 1: 'the energy from the fields'; V. 2: 'the energy from the woods'

    International Nuclear Information System (INIS)

    Brulhet, Jacques; Figuet, Raymond; Bardon, Eric; Bour-Poitrinal, Emmanuelle; Dereix, Charles; Leblanc-Cuvillier, Anick

    2011-10-01

    A fist volume presents, outlines and comments the possibilities of energy generation from the biomass produced in fields, the development potential of biomass production and of food industry, the challenge of bio-wastes and soil structure, the relationship between renewable energies and new crops, the development of agriculture to supply bio-refineries, produce biofuels and develop vegetal chemistry. Examples of biomass valorisation in la Reunion are presented. The second volume addresses the possibilities related to wood exploitation. It outlines ways to mobilise this resource, discusses the issue of forest exploitation in Guyana, gives an overview of wood applications, describes how to valorise forest carbon storage, gives an overview of innovation, governance and information for this specific sector, and evokes the place of bio-economy on markets

  19. Bio-based targeted chemical engineering education : Role and impact of bio-based energy and resourcedevelopment projects

    NARCIS (Netherlands)

    N.M. Márquez Luzardoa; Dr. ir. Jan Venselaar

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically

  20. Electronic white cane with GPS radar-based concept as blind mobility enhancement without distance limitation

    Science.gov (United States)

    Halim, Suharsono; Handafiah, Finna; Aprilliyani, Ria; Udhiarto, Arief

    2018-02-01

    The Indonesian Ministry of Social Affairs, in July 2012, informed that the number of blind in Indonesia has been the largest among to the people with other disabilities. The most common tools utilized to help the blind was a conventional cane which has limited features and therefore it was difficult to be used as a mobilization tools. Moreover, the conventional cane cannot assist them or their family when the blind gets lost. In this research, we designed and implemented an electronic white cane with the concept of radar and global positioning system (GPS). The purpose of this research was to design and develop an electronic white cane which can enhance the mobility of the blind without distance coverage limitation. Utilizing ultrasonic sensors as a distance measurement and a servo motor as an actuator, the produced radar system is able to map an area with maximum distance and coverage angle of 5 meters and 180° respectively. The blind senses the obstacle around them from the vibration generated by five vibration motors. The vibration becomes more intense when the obstacle is detected closer. In addition, we implemented a GPS to monitor the blind's position and allow their family to find them easily when the blind need a help. Based on the tests performed, we have successfully developed an electronic white cane that can be a solution to improve the blind's mobility.

  1. 7 CFR 1435.305 - State cane sugar allotments.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Flexible Marketing Allotments... of 325,000 short tons, raw value, of the cane sugar allotment. (b) A new entrant cane State will receive an allotment to accommodate a new processor's allocation under 1435.308. (c) Subject to paragraphs...

  2. Soil-plant relation in Cuban sugar cane by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Diaz Riso, O.; Griffith Martinez, J.

    1996-01-01

    This paper shows the result of soil-plant relation in samples from Cuban sugar canes of different soil types and cane varieties, using the INAA from thermal reactor. The behaviour of minor and trace elements in sugar cane leaves is uniform and independent of sugar cane variety or type of soil. The soil-plant relation shows four principal groups of micro elements, according to their absorption by the plant

  3. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production

    NARCIS (Netherlands)

    Jonker, J.G.G.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2013-01-01

    This paper determines the energy consumption ratio and overall bio-energy production costs of microalgae cultivation, harvesting and conversion to secondary energy carriers, thus helping to clarify future perspectives of micro-algae production for energy purposes. A limitation growth model is

  4. The environmentally friendly technology for bio fuel production

    International Nuclear Information System (INIS)

    Bekers, M.; Danilevics, A.; Guriniece, E.; Gulbis, V.

    2003-01-01

    Full text: Bio fuel production and use have been discussed this time in EC and in Latvia as alternative energy sources. The national resources allow producing liquid fuels - bio diesel and bi oethanol from rape seeds and grain correspondingly. Liquid bio fuels can be recommended especially for auto transport in big towns to reduce the pollution of air. A system for environmentally friendly production of bio fuel from agricultural raw materials has been developed, which permit a complex utilization of byproducts an wastes for obtaining of valuable food-stuffs and industrial products, providing the agricultural production requirements and supporting with local mineral fertilizers. Such a bio fuel production includes the agricultural and industrial productions in a united biotechnological system. Production objects of system interact: the products, by-products and wastes from one object are used as raw materials, auxiliary materials or heat carriers in other system's objects. This integrated agro-industrial production system would allow the production of feeds and chemical products, along with bio fuels. In this work, a model of a system for a conventional administrative rural region is presented, exemplified with the case of Latvia. The model is developed for three forms of bio fuel production, i.e. ethanol, bio diesel and biogas as local energy source. Bio diesel is produced using ethanol as transesterifying agent of rape-seed oil fatty acids. This bio diesel is a blend of rape-seed oil fatty acid ethyl esters (REE) and consists solely from renewable raw materials. The capacity of distillery of system is 40 million litters per year and bio diesel 35000 ton. Important for agriculture is protein reach press cakes the byproduct from bio diesel production (66000 t/y). This byproduct can be exported as well. Biogas reactors of system can be used for utilization of wastes from town if necessary. Recommended bio system occupates up to 150.000 ha of agriculture lands

  5. Geothermal resource utilization: paper and cane sugar industries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hornburg, C.D.; Morin, O.J.

    1975-03-01

    This study was made as a specific contribution to an overall report by the United States in the area of industrial utilization of geothermal resources. This is part of an overall study in non-electrical uses of geothermal resources for a sub-committee of the North Atlantic Treaty Organization. This study was restricted to the geopressured zone along the Northern Gulf of Mexico Coast. Also, it was limited to utilizing the thermal energy of this ''geoenergy'' resource for process use in the Pulp and Paper Industry and Cane Sugar Industry. For the selected industries and resource area, this report sets forth energy requirements; identifies specific plant and sites; includes diagrams of main processes used; describes process and equipment modifications required; describes energy recovery systems; sets forth waste disposal schemes and problems; and establishes the economics involved. The scope of work included considerable data collection, analysis and documentation. Detailed technical work was done concerning existing processes and modifications to effectively utilize geothermal energy. A brief survey was made of other industries to determine which of these has a high potential for utilizing geothermal energy.

  6. Impacts of harvesting methods of sugar cane on the soil macrofauna in production area in Espírito Santo – Brazil

    Directory of Open Access Journals (Sweden)

    Eloísa dos Santos Benazzi

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effects of harvesting methods on the macrofauna, a known indicator of soil quality that detects changes in the system and indicates management alternatives. The experimental design was randomized blocks with six replications, with each block consisting of four parcels that corresponded to treatments green cane (CC, burnt cane (CQ, green cane – burnt cane (CC-Q and burnt cane – green cane (CQ-C. Samples were collected in February and July 2010. The animals were divided into major taxonomic groups and accounted. Were evaluated ecological indexes (Shannon, Pielou and richness and average total density of individuals and groups. Data were analyzed by the nonparametric statistical tools by Friedman or Signal test at 5%. To check relationships between soil fauna and environmental variables, was used a multivariate conditional ordination method, the redundancy analysis (RDA. The index richness was more efficient than the total average density to evaluate the influence of cane harvesting systems, with the highest values related to areas harvested without burning. Further, the occurrence of key groups in the areas harvested without burning configures the establishment of a trophic web. There was dominance of the social group Formicidae in all treatments

  7. Optimisation of power generation in the Local Cane Sugar Factories ...

    African Journals Online (AJOL)

    ) system by investing in high pressure boilers and generating on a firm basis throughout the year. However, it is shown that by using bagasse and cane tops and leaves and investing in high pressure boilers and condensing-extraction ...

  8. Feasibility study on plan to utilize livestock excreta for bio-gas in Miyagi Village (Gunma Prefecture). Investigations on projects including district new energy vision establishment in fiscal 2000, and on feasibility for commercialization; Miyagimura chikusan haisetsubutsu bio gas ka energy riyo keikaku feasibility study. 2000 nendo chiiki shin energy vision sakutei nado jigyo, jigyoka feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    With objectives to utilize energy available from livestock excreta, and to properly treat the livestock excreta, a feasibility study was performed on a plan to utilize livestock excreta for bio-gas. The system to be developed is a livestock wastes treatment system to utilize gas generated by efficiently fermenting the excreta as fuel, and residual sludge solids as compost. The activity achievements were put into order by the following nine items: 1) purpose of the feasibility study, 2) method for the feasibility study, 3) the situation where the livestock industry and the hog raising industry were selected as the object of the investigation, 4) properties of hog excreta, characteristics in urine foul water treatment, technologies for urine foul water treatment (biological treatment), 5) bio-gasification of livestock wastes, 6) the basic conditions for investigating the demonstration bio-bas plants, 7) proposals and standard cases of the demonstration bio gas plants, 8) discussions and positioning of the basic system for the demonstration bio gas plants, and 9) conclusion. (NEDO)

  9. Reproductive history of cane rat: a review of the reproduction and ...

    African Journals Online (AJOL)

    This study evaluates in a review the reproduction and reproductive performance of cane rat. Breeding time in cane rat depends on which part of Africa the Animal is found and the weather. In the wild, cane rat lives in groups of males and females during the breeding season. The wet season of the year is the usual breeding ...

  10. Energy advantage of the cane bagasse in the sugar industry; Aprovechamiento energetico del bagazo de cana en la industria azucarera

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Alarcon, Luis Alfredo

    1987-07-01

    The present study makes an analysis of the production and bagasse consumption in Mexico related to those indicators that orient and affect the energy advantage of the fiber within the energy structure and global sugar energy balance of the subsector. This global analysis is at the end concentrated on the evaluation of the steam generators of a sugar mill, that like Casasano, went from burning fuel oil only until 1984, to use bagasse and fuel oil simultaneously, in an attempt to reduce its specific consumption of energy, one of highest of the country. In 1985, 534 thousand hectares of sugar cane were cultivated, with field yields of 68.8 t/ha; of the 36.7 million tons of sugar cane produced, 35.7 million were ground to obtain, in the 69 sugar mills of the country 3.2 million tons of sugar, satisfying again the national consumption. In the respective grinding season 12 million tons of humid bagasse, were produced, representing the 34.5% of the total of the ground sugar cane; this bagasse was dedicated in 86.5% to the steam generation, with an average ratio of 1.87 kg of steam per kg of bagasse, contributing to the own energy balance the equivalent of 17.6 trillions of kilo-calories that correspond to the 66.2% of the total energy consumed by the sector, being left 33.8% contributed by the fuel oil. In order to generate steam in 1985 it had installed 543859 HP used with a weighed efficiency of 56.4%, of which the 91.5% used, in simultaneous form bagasse and fuel oil, the 6.38% only fuel oil and the 2.1% only bagasse. In the Casasano sugar mill a similar analysis is made, ending with the evaluation of the energy advantage of the bagasse in their boilers and of the factors that influence the specific energy consumption. In this form one settles down that the bagasse consumed in the last grinding season was burned generating 1.4 kg of steam per kg of bagasse in boilers working with an efficiency of 60% and consuming 1,090 kg of steam per ton of ground sugar cane

  11. EMBIO - The Danish Energy Agency's model for economic and environmental evaluation of bio-fuels. Appendix

    International Nuclear Information System (INIS)

    1997-01-01

    A methodological concept is established for a life-cycle based model which can be used for socio- and private economic and environmental assessment of automotive bio-fuels. The calculation method must be able to calculate socio-economic, energy, environmental, and other consequences by alternative productions and uses of bio-fuels. The main emphasis in the development of the model has been put on the relation between CO 2 reduction and economics. The appendix presents details of the model used for evaluating two specific projects: 'Bio-diesel in the Lemvig area (Denmark), rape seeds as energy crops'; 'Ethanol in the green bio-refining plant'. The results from the use of the model are presented and sensitivity analyses of the model results are performed. Furthermore, a number of background information is presented to be used in relation to the model for evaluating alternative production methods and uses of bio-fuels. Primarily Danish and other European sources of information are selected. (LN)

  12. Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production

    International Nuclear Information System (INIS)

    Lettens, Suzanna; Muys, Bart; Ceulemans, Reinhart; Moons, Ellen; Garcia, Juan; Coppin, Pol

    2003-01-01

    The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr. Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most

  13. Bio-charcoal production from municipal organic solid wastes

    Science.gov (United States)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  14. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    International Nuclear Information System (INIS)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Lima, Isabel M.; Laird, David A.; Hicks, Kevin B.

    2010-01-01

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ∼20 MJ kg -1 , and densities >1.0 Mg m -3 ) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, ∼20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed 'farm scale' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields.

  15. Factors associated with cane use among community dwelling older adults.

    Science.gov (United States)

    Aminzadeh, F; Edwards, N

    2000-01-01

    Guided by the Theory of Planned Behavior (TPB), this study examined factors associated with cane use among community dwelling older adults. Data were collected in a cross-sectional survey of a convenience sample of 106 community residing older adults in Ottawa, Canada. Using a stepwise discriminant analysis, subjective norms, attitudes, and age surfaced as the key variables associated with cane use in this sample. The discriminant function accounted for 67% of the variance in cane use and correctly classified 91% of cases (Wilks's lambda = 0.33, lambda2 = 110.12, df = 3, p cane use behaviors of older persons and have important implications for the design of theory-based fall prevention interventions to enhance the acceptance and effective use of mobility aids.

  16. Spatial Distribution of Biomass and Woody Litter for Bio-Energy in Biscay (Spain

    Directory of Open Access Journals (Sweden)

    Esperanza Mateos

    2018-05-01

    Full Text Available Forest management has been considered a subject of interest, because they act as carbon (C sinks to mitigate CO 2 emissions and also as producers of woody litter (WL for bio-energy. Overall, a sustainably managed system of forests and forest products contributes to carbon mitigation in a positive, stable way. With increasing demand for sustainable production, the need to effectively utilise site-based resources increases. The utilization of WL for bio-energy can help meet the need for renewable energy production. The objective of the present study was to investigate biomass production (including C sequestration from the most representative forestry species (Pinus radiata D. Don and Ecualyptus globulus Labill of Biscay (Spain. Data from the third and fourth Spanish Forest Inventories (NFI3-2005 and NFI4-2011 were used. We also estimated the potential WL produced in the forest activities. Our findings were as follows: Forests of Biscay stored 12.084 Tg of biomass (dry basis, with a mean of 147.34 Mg ha - 1 in 2005 and 14.509 Tg of biomass (dry basis, with a mean of 179.82 Mg ha - 1 in 2011. The total equivalent CO 2 in Biscay’s forests increased by 1.629 Tg year - 1 between 2005 and 2011. The study shows that the energy potential of carbon accumulated in the WL amounted to 1283.2 million MJ year - 1 . These results suggest a considerable potential for energy production.

  17. (Bio)electrochemical ammonia recovery

    NARCIS (Netherlands)

    Kuntke, P.; Sleutels, T.H.J.A.; Rodríguez Arredondo, M.; Georg, S.; Barbosa, S.G.; Heijne, Ter A.; Hamelers, Hubertus V.M.; Buisman, C.J.N.

    2018-01-01

    In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an

  18. BioEnergy Feasibility in South Africa

    Science.gov (United States)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  19. BioEnergy transport systems. Life cycle assessment of selected bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Goeran

    1999-07-01

    Biomass for energy conversion is usually considered as a local resource. With appropriate logistic systems, access to biomass can be improved over a large geographical area. In this study, life cycle assessment (LCA) has been used as method to investigate the environmental impacts of selected bioenergy transport chains. As a case study, chains starting in Sweden and ending in Holland have been investigated. Biomass originates from tree sections or forest residues, the latter upgraded to bales or pellets. The study is concentrated on production of electricity, hot cooling water is considered as a loss. Electricity is, as the main case, produced from solid biomass in the importing country. Electricity can also be produced in the country of origin and exported via the trans-national grid as transportation media. As an alternative, a comparison is made with a coal cycle. The results show that contribution of emissions from long-range transportation is of minor importance. The use of fuels and electricity for operating machines and transportation carriers requires a net energy input in bioenergy systems which amounts to typically 7-9% of delivered electrical energy from the system. Emissions of key substances such as NO{sub x}, CO, S, hydrocarbons, and particles are low. Emissions of CO{sub 2} from biocombustion are considered to be zero since there is approximately no net contribution of carbon to the biosphere in an energy system based on biomass. A method to quantify non-renewability is presented. For coal, the non-renewability factor is calculated to be 110%. For most of the cases with bioenergy, the non-renewability factor is calculated to be between 6 and 11%. Reclamation of biomass results in certain losses of nutrients such as nitrogen, phosphorus and base cations such as K, Ca and Mg. These are balanced by weathering, vitalisation or ash recirculation procedures. Withdrawal of N from the ecological system is approximately 10 times the load from the technical

  20. Material requirements for bio-inspired sensing systems

    Science.gov (United States)

    Biggins, Peter; Lloyd, Peter; Salmond, David; Kusterbeck, Anne

    2008-10-01

    The aim of developing bio-inspired sensing systems is to try and emulate the amazing sensitivity and specificity observed in the natural world. These capabilities have evolved, often for specific tasks, which provide the organism with an advantage in its fight to survive and prosper. Capabilities cover a wide range of sensing functions including vision, temperature, hearing, touch, taste and smell. For some functions, the capabilities of natural systems are still greater than that achieved by traditional engineering solutions; a good example being a dog's sense of smell. Furthermore, attempting to emulate aspects of biological optics, processing and guidance may lead to more simple and effective devices. A bio-inspired sensing system is much more than the sensory mechanism. A system will need to collect samples, especially if pathogens or chemicals are of interest. Other functions could include the provision of power, surfaces and receptors, structure, locomotion and control. In fact it is possible to conceive of a complete bio-inspired system concept which is likely to be radically different from more conventional approaches. This concept will be described and individual component technologies considered.

  1. A study of the development of bio-energy resources and the status of eco-society in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xia; Huang, Yongmei; Gong, Jirui [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Zhang, Xinshi [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Institute of Botany, CAS, Beijing 100093 (China)

    2010-11-15

    Industrialization of bio-energy relies on the supply of resources on a large scale. The theoretical biomass resources could reach 2.61-3.51 billion tce (tons of coal equivalent)/a in China, while the available feedstock is about 440-640 million tce/a, however, among this only 1.5-2.5% has been transferred into energy at present. Marginal land utilization has great prospects of supplying bio-energy resources in China, with co-benefits, such as carbon sequestration, water/soil conservation, and wind erosion protection. There is a large area of marginal land in China, especially in northern China, including about 263 million ha of desertification land, 173 million ha of sand-land, and 17 million ha of salinizatin land. The plant species suitable to be grown in marginal lands, including some species in Salix, Hippophae, Tamarix, Caragana, and Prunus is also abundant Biomass feedstock in marginal lands would be 100 million tce/a in 2020, and 200 million tce/a in 2050. As a result, a win-win situation of eco-society and bio-energy development could be realized, with an expected 4-5% reduction of total CO{sub 2} emission in China in 2020-2050. Although much progress has been made in the field of bio-energy research in China, yet significant efforts should be taken in the future to fulfill large-scale industrialization of bio-energy. (author)

  2. Bio energy heating plant heats municipal buildings in Nord-Odal; Bioenergisentral varmer kommunale bygg i Nord-Odal

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    When Nord-Odal planned to build a new nursing home, they wanted to find a more environmental friendly heating system than based on oil and electricity. Several energy consultants evaluated the task. But when all consultants concluded there would be no cost benefit in this task, local experts looked into it - and because they got a long term agreement, it was possible to finance a local bio energy heat plant. (AG)

  3. G-InforBIO: integrated system for microbial genomics

    Directory of Open Access Journals (Sweden)

    Abe Takashi

    2006-08-01

    Full Text Available Abstract Background Genome databases contain diverse kinds of information, including gene annotations and nucleotide and amino acid sequences. It is not easy to integrate such information for genomic study. There are few tools for integrated analyses of genomic data, therefore, we developed software that enables users to handle, manipulate, and analyze genome data with a variety of sequence analysis programs. Results The G-InforBIO system is a novel tool for genome data management and sequence analysis. The system can import genome data encoded as eXtensible Markup Language documents as formatted text documents, including annotations and sequences, from DNA Data Bank of Japan and GenBank encoded as flat files. The genome database is constructed automatically after importing, and the database can be exported as documents formatted with eXtensible Markup Language or tab-deliminated text. Users can retrieve data from the database by keyword searches, edit annotation data of genes, and process data with G-InforBIO. In addition, information in the G-InforBIO database can be analyzed seamlessly with nine different software programs, including programs for clustering and homology analyses. Conclusion The G-InforBIO system simplifies genome analyses by integrating several available software programs to allow efficient handling and manipulation of genome data. G-InforBIO is freely available from the download site.

  4. Comparing the value of bioenergy in the heating and transport sectors of an electricity-intensive energy system in Norway

    International Nuclear Information System (INIS)

    Assefa Hagos, Dejene; Gebremedhin, Alemayehu; Folsland Bolkesjø, Torjus

    2015-01-01

    The objective of this paper is to identify the most valuable sector for the use of bioenergy in a flexible energy system in order to meet the energy policy objectives of Inland Norway. A reference system was used to construct alternative systems in the heating and transport sectors. The alternative system in the heating sector is based on heat pumps and bio-heat boilers while the alternative systems in the transport sector are based on three different pathways: bio-dimethyl ether, hydrogen fuel cell vehicles and battery electric vehicles. The alternative systems were compared with the reference system after a business-economic optimisation had been made using an energy system analysis tool. The results show that the excess electricity availability due to increased energy efficiency measures hampers the competitiveness and penetration of bio-heating over heat pumps in the heating sector. Indeed, the synergy effect of using bio-dimethyl ether in the transport sector for an increased share of renewable energy sources is much higher than that of the hydrogen fuel cell vehicle and battery electric vehicle pathways. The study also revealed that increasing renewable energy production would increase the renewable energy share more than what would be achieved by an increase in energy efficiency. -- Highlights: •Bio-heating is less competitive over heat pump for low quality heat production. •Renewable energy production meets policy objectives better than system efficiency. •Bioenergy is more valuable in the transport sector than the heating sector

  5. Sugar-cane juice induces pectin lyase and polygalacturonase in Penicillium griseoroseum

    Directory of Open Access Journals (Sweden)

    Minussi Rosana Cristina

    1998-01-01

    Full Text Available The use of other inducers as substitutes for pectin was studied aiming to reduce the production costs of pectic enzymes. The effects of sugar-cane juice on the production of pectin lyase (PL and polygalacturonase (PG by Penicillium griseoroseum were investigated. The fungus was cultured in a mineral medium (pH 6.3 in a rotary shaker (150 rpm for 48 h at 25oC. Culture media were supplemented with yeast extract and sucrose or sugar-cane juice. Sugar-cane juice added singly to the medium promoted higher PL activity and mycelial dry weight when compared to pectin and the use of sugar-cane juice and yeast extract yielded levels of PG activity that were similar to those obtained with sucrose-yeast extract or pectin. The results indicated that, even at low concentrations, sugar-cane juice was capable of inducing pectin lyase and polygalacturonase with no cellulase activity in P. griseoroseum.

  6. Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: Understanding alcohol participation, chemical composition, and energy efficiency

    International Nuclear Information System (INIS)

    Jo, Heuntae; Prajitno, Hermawan; Zeb, Hassan; Kim, Jaehoon

    2017-01-01

    Highlights: • Non-catalytic and non-hydrogen based bio-oil upgrading was conducted using scMeOH. • 16–40 wt% alcohols were consumed during the upgrading. • High bio-oil yield of 78.4 wt% and low TAN of 4.0 mg KOH/g were achieved. • Effect of supercritical alcohols, reaction times, temperature and bio-oil concentration was conducted. • scMeOH upgrading has good energy recovery (ER) and energy efficiency (EE) compared with scEtOH and scIPA. - Abstract: Herein, a supercritical methanol (scMeOH) route for efficient upgrading of the low-boiling fraction of fast pyrolysis bio-oil containing a large amount of low-molecular-weight acids and water was investigated. The effects of various reaction parameters, including the temperature, concentration, and time, were explored. The yield of bio-oil and the energy efficiency of the scMeOH upgrading process were determined based on the amount of methanol that participated in the reaction during upgrading and fractionation of the upgraded heavy-fraction bio-oils (UHBOs) and upgraded light-fraction bio-oils (ULBOs). Upgrading at 400 °C with 9.1 wt% bio-oil for 30 min generated a high bio-oil yield of 78.4 wt% with a low total acid number (TAN) of 4.0 mg-KOH/g-oil and a higher heating value of 29.9 MJ kg −1 . The energy recovery (ER) was 94–131% and the energy efficiency (EE) was in the range of 79–109% depending on the calorific values of the ULBOs. Compared with upgrading in supercritical ethanol and supercritical isopropanol, less alcohol participation, a lower TAN, and higher ER and EE were achieved with scMeOH upgrading. Plausible pathways for bio-oil upgrading in supercritical alcohols based on detailed compositional analysis of the UHBO, ULBO, and gaseous products were discussed.

  7. BioSmalltalk: a pure object system and library for bioinformatics.

    Science.gov (United States)

    Morales, Hernán F; Giovambattista, Guillermo

    2013-09-15

    We have developed BioSmalltalk, a new environment system for pure object-oriented bioinformatics programming. Adaptive end-user programming systems tend to become more important for discovering biological knowledge, as is demonstrated by the emergence of open-source programming toolkits for bioinformatics in the past years. Our software is intended to bridge the gap between bioscientists and rapid software prototyping while preserving the possibility of scaling to whole-system biology applications. BioSmalltalk performs better in terms of execution time and memory usage than Biopython and BioPerl for some classical situations. BioSmalltalk is cross-platform and freely available (MIT license) through the Google Project Hosting at http://code.google.com/p/biosmalltalk hernan.morales@gmail.com Supplementary data are available at Bioinformatics online.

  8. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  9. The water footprint of energy from biomass: a quantitative assessment and consequences of an increasing share of bio-energy in energy supply

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.

    2009-01-01

    This paper assesses the water footprint (WF) of different primary energy carriers derived from biomass expressed as the amount of water consumed to produce a unit of energy (m3/GJ). The paper observes large differences among the WFs for specific types of primary bio-energy carriers. The WF depends

  10. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, Charles A.; Boateng, Akwasi A.; Goldberg, Neil M.; Hicks, Kevin B. [Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038 (United States); Lima, Isabel M. [Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124 (United States); Laird, David A. [National Soil Tilth Laboratory, U.S. Agricultural Research Service, U.S. Department of Agriculture, 2110 University Blvd., Ames, IA 50011 (United States)

    2010-01-15

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are {proportional_to}20 MJ kg{sup -1}, and densities >1.0 Mg m{sup -3}) were realized from both corn cobs and from corn stover. The high energy density of bio-oil, {proportional_to}20-32 times on a per unit volume basis over the raw corn residues, offers potentially significant savings in transportation costs particularly for a distributed ''farm scale'' bio-refinery system. Bio-char yield was 18.9% and 17.0% (mass/mass) from corn cobs and corn stover, respectively. Deploying the bio-char co-product, which contains most of the nutrient minerals from the corn residues, as well as a significant amount of carbon, to the land can enhance soil quality, sequester carbon, and alleviate environmental problems associated with removal of crop residues from fields. (author)

  11. Landscape management for sustainable supplies of bio energy feedstock and enhanced soil quality

    International Nuclear Information System (INIS)

    Douglas, K.; Muth, D.

    2013-01-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. Our objective is to present a landscape management concept as an approach for integrating multiple bio energy feedstock sources into current crop production systems. This is done to show how multiple, increasing global challenges can be met in a sustainable manner. We discuss how collaborative research among Usda-Agricultural Research Service (ARS), US Department of Energy (DOE) Idaho National Laboratory (INL), several university extension and research partners, and industry representatives [known as the Renewable Energy Assessment Project (Reap) team] has led to the development of computer-based decision aids for guiding sustainable bio energy feedstock production. The decision aids, known initially as the Corn Stover Tool and more recently as the Landscape Environmental Assessment Framework (Leaf) are tools designed to recognize the importance of nature s diversity and can therefore be used to guide sustainable feedstock production without having negative impacts on critical ecosystem services. Using a 57 ha farm site in central Iowa, USA, we show how producer decisions regarding corn (Zea mays L.) stover harvest within the US Corn Belt can be made in a more sustainable manner. This example also supports Reap team conclusions that stover should not be harvested if average grain yields are less than 11 Mg ha-1 unless more balanced landscape management practices are implemented. The tools also illustrate the importance of sub-field management and site-specific stover harvest strategies

  12. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin; Heilmeier, Hermann; Bringezu, Stefan

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of non-renewable energy resources and greenhouse gas emissions. However, the production of biomass requires agricultural land and is often associated with adverse environmental effects such as eutrophication of surface and ground water. Decision making in favor of or against bio-based and conventional fossil product alternatives therefore often requires weighing of environmental impacts. In this article, we apply distance-to-target weighing methodology to aggregate LCA results obtained in four different environmental impact categories (i.e., non-renewable energy consumption, global warming potential, eutrophication potential, and acidification potential) to one environmental index. We include 45 bio- and fossil-based product pairs in our analysis, which we conduct for Germany. The resulting environmental indices for all product pairs analyzed range from -19.7 to +0.2 with negative values indicating overall environmental benefits of bio-based products. Except for three options of packaging materials made from wheat and cornstarch, all bio-based products (including energy, fuels, and materials) score better than their fossil counterparts. Comparing the median values for the three options of biomass utilization reveals that bio-energy (-1.2) and bio-materials (-1.0) offer significantly higher environmental benefits than bio-fuels (-0.3). The results of this study reflect, however, subjective value judgments due to the weighing methodology applied. Given the uncertainties and controversies associated not only with distance-to-target methodologies in particular but also with weighing approaches in general, the authors strongly recommend using weighing for decision finding only as a

  13. Bio-oil production from cotton stalk

    International Nuclear Information System (INIS)

    Zheng Jilu; Yi Weiming; Wang Nana

    2008-01-01

    Cotton stalk was fast pyrolyzed at temperatures between 480 deg. C and 530 deg. C in a fluidized bed, and the main product of bio-oil is obtained. The experimental result shows that the highest bio-oil yield of 55 wt% was obtained at 510 deg. C for cotton stalk. The chemical composition of the bio-oil acquired was analyzed by GC-MS, and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that the bio-oil obtained can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles. Furthermore, the energy performance of the pyrolysis process was analyzed. In the pyrolysis system used in our experiment, some improvements to former pyrolysis systems are done. Two screw feeders were used to prevent jamming the feeding system, and the condenser is equipped with some nozzles and a heat exchanger to cool quickly the cleaned hot gas into bio-oil

  14. Prospect of bio-gas as one of the sources of energy in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Karki, A B; Coburn, B A

    1977-01-01

    Nepal is a small Himalayan country plagued by a severe indigenous energy shortage, with wood for cooking constituting the vast bulk of the domestic energy consumption. Forest cutting for fuelwood exceeds growth by a factor of seven to one. Petrofuels and hydro-electricity, currently limited to small areas, will require importation or expensive foreign technology if they are to be developed on a large scale. The recovery of methane gas (CH/sub 4/) and an enriched fertilizer by-product from animal and human wastes is a technology which has proven itself in India (over 35,000 operating plants) and has been successful for the more than 250 plants now operating in Nepal. These bio-gas digestor plants are largely adaptable from local materials, and the socio-economic barriers to their development are minor. Over 10,000 homesteads have sites where a bio-gas digestor system would yield a benefit-to-cost ratio of greater than 2:1. To reach the poorer farmer who cannot afford or who does not have the organic matter necessary to operate a 'gobar (dung) gas' plant, current research has shown that large-scale community gas-cum-fertilizer digestor plants can operate effectively. A single-unit community latrine gas plant in the Kathmandu Valley, which digests and stores the sewage from 800 to 1000 persons daily, is producing gas for cooking, valuable fertilizer and is the city's only successful sanitation scheme. The technologies of cost reduction and temperature control, heretofore limiting factors in bio-gas application, are being continually improved.

  15. Payback time for soil carbon and sugar-cane ethanol

    Science.gov (United States)

    Mello, Francisco F. C.; Cerri, Carlos E. P.; Davies, Christian A.; Holbrook, N. Michele; Paustian, Keith; Maia, Stoécio M. F.; Galdos, Marcelo V.; Bernoux, Martial; Cerri, Carlos C.

    2014-07-01

    The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO2 savings attributed to bioenergy crops. There have been few direct field measurements that quantify the effects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world's largest producer . We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1 m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.

  16. Corrosion of Modified Concrete with Sugar Cane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    R. E. Núñez-Jaquez

    2012-01-01

    Full Text Available Concrete is a porous material and the ingress of water, oxygen, and aggressive ions, such as chlorides, can cause the passive layer on reinforced steel to break down. Additives, such as fly ash, microsilica, rice husk ash, and cane sugar bagasse ash, have a size breakdown that allows the reduction of concrete pore size and, consequently, may reduce the corrosion process. The objective of this work is to determine the corrosion rate of steel in reinforced concrete by the addition of 20% sugar cane bagasse ash by weight of cement. Six prismatic specimens (7×7×10 cm with an embedded steel rod were prepared. Three contained 20% sugar cane bagasse ash by weight of cement and the other three did not. All specimens were placed in a 3.5% NaCl solution and the corrosion rate was determined using polarization resistance. The results showed that reinforced concrete containing sugar cane bagasse ash has the lowest corrosion rates in comparison to reinforced concrete without the additive.

  17. Sugar Cane Genome Numbers Assumption by Ribosomal DNA FISH Techniques

    NARCIS (Netherlands)

    Thumjamras, S.; Jong, de H.; Iamtham, S.; Prammanee, S.

    2013-01-01

    Conventional cytological method is limited for polyploidy plant genome study, especially sugar cane chromosomes that show unstable numbers of each cultivar. Molecular cytogenetic as fluorescent in situ hybridization (FISH) techniques were used in this study. A basic chromosome number of sugar cane

  18. Bio diesel energy potential in the Republic of Macedonia, v. 14(55)

    International Nuclear Information System (INIS)

    Armenski, Slave; Davkova, Katitsa

    2006-01-01

    Bio diesel ia a liquid fuel produced from raw vegetable oil, animal fats and cooking oils and can be used like substitute or addition of petroleum diesel. Bio diesel is alternative fuel and can be use in diesel engines, to obtain power similar lake petroleum diesel. During his combustion it realises small quantities of carbon dioxide and sulfur oxides. In this paper is carrying out an investigation of the sources of raw vegetables oils on the quantities which are produced from agriculture and livestock in the R. of Macedonia, in the term of their quantities estimation, bio diesel quantity estimation and energy value estimation. For this reason it is analyzed used arable area, as well as available free pasture area with: soybean, rapes sed, sun-flower and other vegetable oil plants. By defined areas and average quantities production in the past five years (1997-2001), it is determined the whole raw vegetable oil quantities from source of row material. In the area of livestock in this paper is defined the number of animal and poultry slaughtered and the quantity of waste fats. In the base of determined quantities from row vegetable oils, used cooking oils and restaurant frying oils and waste animal fats, it is determined mass and energy quantities of bio diesel which can be produced in the R. of Macedonia. (Author)

  19. Bio diesel energy potential in the Republic of Macedonia, v. 15(56)

    International Nuclear Information System (INIS)

    Armenski, Slave; Davkova, Katitsa

    2007-01-01

    Bio diesel ia a liquid fuel produced from raw vegetable oil, animal fats and cooking oils and can be used like substitute or addition of petroleum diesel. Bio diesel is alternative fuel and can be use in diesel engines, to obtain power similar lake petroleum diesel. During his combustion it realises small quantities of carbon dioxide and sulfur oxides. In this paper is carrying out an investigation of the sources of raw vegetables oils on the quantities which are produced from agriculture and livestock in the R. of Macedonia, in the term of their quantities estimation, bio diesel quantity estimation and energy value estimation. For this reason it is analyzed used arable area, as well as available free pasture area with: soybean, rapes sed, sun-flower and other vegetable oil plants. By defined areas and average quantities production in the past five years (1997-2001), it is determined the whole raw vegetable oil quantities from source of row material. In the area of livestock in this paper is defined the number of animal and poultry slaughtered and the quantity of waste fats. In the base of determined quantities from row vegetable oils, used cooking oils and restaurant frying oils and waste animal fats, it is determined mass and energy quantities of bio diesel which can be produced in the R. of Macedonia. (Author)

  20. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  1. Process systems engineering studies for catalytic production of bio-based platform molecules from lignocellulosic biomass

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2017-01-01

    Highlights: • A process-systems engineering study for production of bio-based platform molecules to is presented. • Experimentally verified catalysis studies for biomass conversion are investigated. • New separations for effective recovery of bio-based platform molecules are developed. • Separations are integrated with catalytic biomass conversions. • Proposed process can compete economically with the current production approaches. - Abstract: This work presents a process-system engineering study of an integrated catalytic conversion strategy to produce bio-based platform molecules (levulinic acid (LA), furfural (FF), and propyl guaiacol (PG)) from hemicellulose (C_5), cellulose (C_6), and lignin fractions of lignocellulosic biomass. A commercial-scale process based on the strategy produces high numerical carbon yields (overall yields: 35.2%; C_6-to-LA: 20.4%, C_5-to-FF: 69.2%, and Lignin-to-PG: 13.3%) from a dilute concentration of solute (1.3–30.0 wt.% solids), but a high recovery of these molecules requires an efficient separation system with low energy requirement. A heat exchanger network significantly reduced the total energy requirements of the process. An economic analysis showed that the minimum selling price of LA as the highest value-added product (42.3 × 10"3 t of LA/y using 700 × 10"3 dry t/y of corn stover) is US$1707/t despite using negative economic parameters, and that this system can be cost-competitive with current production approaches.

  2. Canes Implementation: Analysis of Budgetary, Business, and Policy Challenges

    Science.gov (United States)

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT CANES IMPLEMENTATION: ANALYSIS OF BUDGETARY, BUSINESS...REPORT TYPE AND DATES COVERED December 2014 MBA Professional Rep01t 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS CANES IMPLEMENTATION: ANALYSIS OF...PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10

  3. Analytical color analysis of irradiated sugar cane spirit with grapes

    International Nuclear Information System (INIS)

    Pires, Juliana A.; Delabio, Aline S.; Harder, Marcia N.C.; Moraes, Liz M.B.; Silva, Lucia C.A.; Arthur, Paula B.; Arthur, Valter

    2013-01-01

    The aim of this work was to irradiate a Sugar Cane Spirit with grapes by gamma radiation (Co60) aiming the color alteration like an aging parameter. The Sugar Cane Spirit is a distilled beverage and in order that bouquet and flavor are enhanced, usually the Sugar Cane Spirit goes through a process of maturation in wooden barrels or in bottles with the presence of wood chips, which alters their appearance. However, is possible to get this same result with the use of gamma radiation from Co60 and there is a possibility of indicative the premature aging by the Sugar Cane Spirit color change, through the extraction of grape phenolic compounds. The Sugar Cane Spirit samples were prepared with grapes type Crimson in polypropylene bottles. The samples was irradiated at doses of 0 (control); 0.3KGy; 2kGy and 6kGy, subsequently were performed the colorimetric analyzes in periods of 5; 10; 20 and 50 days after the irradiation treatment. There was no significant statistical difference for the parameters L; a; b; Chrome and Hue-Angle, at 5; 10 and 20 days. On the 50th day only the parameter a shows significant statistical difference at the dose of 0.3kGy, that was higher than 2kGy and 6kGy doses, but not differ the between the control sample. So by the showed results was concluded that the irradiation at doses of 0.3Gy, 2kGy and 6kGy, do not change the color of the Sugar Cane Spirit. (author)

  4. Analytical color analysis of irradiated sugar cane spirit with grapes

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Juliana A.; Delabio, Aline S., E-mail: jujuba_angelo@yahoo.com.br, E-mail: aline_sd_timao@hotmail.com [Faculdade de Tecnologia em Piracicaba (FATEP), Piracicaba, SP (Brazil); Harder, Marcia N.C.; Moraes, Liz M.B.; Silva, Lucia C.A.; Arthur, Paula B.; Arthur, Valter, E-mail: mnharder@terra.com.br, E-mail: lizmarybueno@gmail.com, E-mail: lcasilva@cena.usp.br, E-mail: paula.arthur@hotmail.com, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    The aim of this work was to irradiate a Sugar Cane Spirit with grapes by gamma radiation (Co60) aiming the color alteration like an aging parameter. The Sugar Cane Spirit is a distilled beverage and in order that bouquet and flavor are enhanced, usually the Sugar Cane Spirit goes through a process of maturation in wooden barrels or in bottles with the presence of wood chips, which alters their appearance. However, is possible to get this same result with the use of gamma radiation from Co60 and there is a possibility of indicative the premature aging by the Sugar Cane Spirit color change, through the extraction of grape phenolic compounds. The Sugar Cane Spirit samples were prepared with grapes type Crimson in polypropylene bottles. The samples was irradiated at doses of 0 (control); 0.3KGy; 2kGy and 6kGy, subsequently were performed the colorimetric analyzes in periods of 5; 10; 20 and 50 days after the irradiation treatment. There was no significant statistical difference for the parameters L; a; b; Chrome and Hue-Angle, at 5; 10 and 20 days. On the 50th day only the parameter a shows significant statistical difference at the dose of 0.3kGy, that was higher than 2kGy and 6kGy doses, but not differ the between the control sample. So by the showed results was concluded that the irradiation at doses of 0.3Gy, 2kGy and 6kGy, do not change the color of the Sugar Cane Spirit. (author)

  5. BioRadioTransmitter: a self-powered wireless glucose-sensing system.

    Science.gov (United States)

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    2011-09-01

    Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.

  6. Development of ice cream based sugar cane juice and sensory evaluation with children

    Directory of Open Access Journals (Sweden)

    Vanessa Pedro da Silva

    2014-02-01

    Full Text Available Ice cream is a tasty and nutritious source of protein and calcium, but it is deficient in some minerals, as iron, but it is found in sugar cane juice, which is a source of minerals such as iron, phosphorus, calcium, sodium among others. The objective of the present study are: to develop sugar cane juice ice cream, in order to increase the mineral content replacing refined sugar and water during the manufacturing process by sugar cane juice; to analyze its physical-chemical composition; to check your sensory acceptance with children. Three formulations were prepared from sugar cane juice ice cream: sugar cane juice ice cream (SC, sugar cane juice ice cream with molasses (SCM and sugar cane juice ice cream with brown sugar (SCR. Sensory evaluation was conducted with 120 children (62 boys and 58 girls from 8 to 10 years old, students from 3rd to 5th years of primary school. Sensory tests were ordering-preference, intention to use and acceptance with facial hedonic scale of 7 points. The results of physico-chemical and acceptance testing were statistically analyzed by analysis of variance (ANOVA, the scores compared by Tukey test (p ? 0.05 and the result of the sensory test ordering-preference were assessed using the Friedman. The ice cream it presents has a reduced fat content because it was formulated with palm trans-fat free. The use of sugar cane juice in the formulation of the ice cream increased the amount of minerals when compared to ordinary ice cream. Therefore, sugar cane juice ice cream demonstrated to be more healthy and nutritious compared with traditional ice cream, besides being source of calcium, iron and phosphorus; serving the needs of the recommended daily intake (IDR for children from 7 to 10 years old. About the sensory evaluation, all formulations of sugar cane juice ice cream obtained great sensory acceptance among children in all sensory attributes evaluated, showing excellent percentages of acceptance and intention to use by

  7. Performance evaluation of the Trans-PET®BioCaliburn® SH system

    Science.gov (United States)

    Zhu, Jun; Wang, Luyao; Kao, Chien-Min; Kim, Heejong; Xie, Qingguo

    2015-03-01

    The Trans-PET®BioCaliburn® SH system, recently introduced by the Raycan Technology Co. Ltd. (Suzhou, China), is a commercial positron emission tomography (PET) system designed for rodent imaging. The system contains 6 basic detector modules (BDMs) arranged on a 10.8 cm diameter ring to provide a transaxial field of view (FOV) of 6.5 cm and an axial FOV of 5.3 cm. In this paper, we report on its performance properties in accordance with the National Electrical Manufacturers Association (NEMA) 2008 NU-4 standards with modifications. The measured spatial resolution at the center of the FOV was 1.05 mm, 1.12 mm and 1.13 mm in the tangential, radial and axial directions, respectively. The measured system sensitivity was 3.29% for a point source at the center of the FOV when using a 350-650 keV energy window and a 5 ns coincidence time window. When a wider 250-750 keV energy window was used, it increased to 4.21%. For mouse- and rat-sized phantoms, the scatter fraction was 10.7% and 16.1%, respectively. The peak noise equivalent count rate were 36 kcps@8.52 MBq for the mouse-sized phantom and 16 kcps@6.79 MBq for the rat-sized phantom. The Derenzo phantom image showed that the system can resolve 1.0 mm diameter rods. The measured performance properties of the system indicate that the Trans-PET®BioCaliburn® SH is a versatile imaging device that can provide high spatial resolution for rodent imaging while offering competitive sensitivity and count-rate performance.

  8. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.

    Science.gov (United States)

    Chen, Jinbo

    2018-06-14

    Hyper-accumulator biomass, Pteris vittata L., was hydrothermally converted into bio-oils via hydrothermal liquefaction (HTL) in sub-supercritical water. The distributions and characterizations of various products as well as energy recovery under different temperatures (250-390 °C) were investigated. The highest bio-oil yield of 16.88% was obtained at 350 °C with the hydrothermal conversion of 61.79%, where the bio-oil was dominated by alcohols, esters, phenols, ketones and acidic compounds. The higher heating values of bio-oil were in the range of 19.93-35.45 MJ/kg with a H/C ratio of 1.26-1.46, illustrating its high energy density and potential for use as an ideal liquid fuel. The main gaseous products were CO 2 , H 2 , CO, and CH 4 with the H 2 yield peaking at 22.94%. The total energy recovery from bio-oils and solid residues fell within the range of 37.72-45.10%, highlighting the potential of HTL to convert hyper-accumulator biomass into valuable fuels with high conversion efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ., Bozeman, MT (United States); Alcorn-Windy Boy, Jessica [Montana State Univ., Bozeman, MT (United States); Abedin, Md. Joynal [Montana State Univ., Bozeman, MT (United States); Maglinao, Randy [Montana State Univ., Bozeman, MT (United States)

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy duty diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.

  10. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  11. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C and four residence times (between ~1.2 and 12 s. The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals on pyrolysis products is: 1 to increase the dry bio-oil yield, 2 to decrease the amount of undetected material, 3 to produce a slight increase in CO yield or no change, 4 to slightly decrease CO2 yield or no change, and 5 to produce a more stable bio-oil (less aging. Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  12. Haptic Cues for Balance: Use of a Cane Provides Immediate Body Stabilization

    Directory of Open Access Journals (Sweden)

    Stefania Sozzi

    2017-12-01

    Full Text Available Haptic cues are important for balance. Knowledge of the temporal features of their effect may be crucial for the design of neural prostheses. Touching a stable surface with a fingertip reduces body sway in standing subjects eyes closed (EC, and removal of haptic cue reinstates a large sway pattern. Changes in sway occur rapidly on changing haptic conditions. Here, we describe the effects and time-course of stabilization produced by a haptic cue derived from a walking cane. We intended to confirm that cane use reduces body sway, to evaluate the effect of vision on stabilization by a cane, and to estimate the delay of the changes in body sway after addition and withdrawal of haptic input. Seventeen healthy young subjects stood in tandem position on a force platform, with eyes closed or open (EO. They gently lowered the cane onto and lifted it from a second force platform. Sixty trials per direction of haptic shift (Touch → NoTouch, T-NT; NoTouch → Touch, NT-T and visual condition (EC-EO were acquired. Traces of Center of foot Pressure (CoP and the force exerted by cane were filtered, rectified, and averaged. The position in space of a reflective marker positioned on the cane tip was also acquired by an optoelectronic device. Cross-correlation (CC analysis was performed between traces of cane tip and CoP displacement. Latencies of changes in CoP oscillation in the frontal plane EC following the T-NT and NT-T haptic shift were statistically estimated. The CoP oscillations were larger in EC than EO under both T and NT (p < 0.001 and larger during NT than T conditions (p < 0.001. Haptic-induced effect under EC (Romberg quotient NT/T ~ 1.2 was less effective than that of vision under NT condition (EC/EO ~ 1.5 (p < 0.001. With EO cane had little effect. Cane displacement lagged CoP displacement under both EC and EO. Latencies to changes in CoP oscillations were longer after addition (NT-T, about 1.6 s than withdrawal (T-NT, about 0.9 s of haptic

  13. Discovering the desirable alleles contributing to the lignocellulosic biomass traits in Saccharum germplasm collections for energy cane improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianping [Univ. of Florida, Gainesville, FL (United States); Sandhu, Hardev [Univ. of Florida, Gainesville, FL (United States)

    2017-03-23

    1) The success in crop improvement programs depends largely on the extent of genetic variability available. Germplasm collections assembles all the available genetic resources and are critical for long-term crop improvement. This world sugarcane germplasm collection contains enormous genetic variability for various morphological traits, biomass yield components, adaptation and many quality traits, prospectively imbeds a large number of valuable alleles for biofuel traits such as high biomass yield, quantity and quality of lignocelluloses, stress tolerance, and nutrient use efficiency. The germplasm collection is of little value unless it is characterized and utilized for crop improvement. In this project, we phenotypically and genotypically characterized the sugarcane world germplasm collection (The results were published in two papers already and another two papers are to be published). This data will be made available for public to refer to for germplasm unitization specifically in the sugarcane and energy cane breeding programs. In addition, we are identifying the alleles contributing to the biomass traits in sugarcane germplasm. This part of project is very challenging due to the large genome and highly polyploid level of this crop. We firstly established a high throughput sugarcane genotyping pipeline in the genome and bioinformatics era (a paper is published in 2016). We identified and modified a software for genome-wide association analysis of polyploid species. The results of the alleles associated to the biomass traits will be published soon, which will help the scientific community understand the genetic makeup of the biomass components of sugarcane. Molecular breeders can develop markers for marker assisted selection of biomass traits improvement. Further, the development and release of new energy cane cultivars through this project not only improved genetic diversity but also improved dry biomass yields and resistance to diseases. These new cultivars

  14. Seasonal variation of prices of sugar cane, ethanol and electric power; Variacao estacional dos precos da cana-de-acucar, alcool combustivel e energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Carmem Ozana de; Silva, Gerson Henrique da; Bueno, Osmar de Carvalho [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Esperancini, Maura Seiko Tsutsui [Universidade Estadual do Oeste do Parana (UNIOESTE), Francisco Beltrao, PR (Brazil)

    2010-07-01

    The aim of this study was to assess the seasonal price of sugar cane, fuel alcohol (hydrated and anhydrous) and electricity tariffs as a way of aiding tool for optimization of energy generation, using biomass originating from cane sugar. Using the method of moving average centered was concluded that cane and electricity rates were close to seasonal average, with low range of prices, suggesting the non-occurrence of seasonal variation in prices. Unlike the seasonal indices of ethanol showed seasonal variation of prices with greater amplitude of seasonal index. Thus, the results suggest that the utilization of by-products of sugar cane to produce electrical power points to the prospect of reducing risks associated with variations in the price of ethanol, thereby contributing to greater stability and possibility to those involved in planning alcohol sector. (author)

  15. Bio-Refineries Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization

    Science.gov (United States)

    Keith Cowan, A.

    2010-04-01

    Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also, potable water is becoming a scarce resource in many parts of the world, and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non-GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food, fiber, and other biology-based products, including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific-attribute raw materials for differentiated markets, we can argue that processes such as mass cultivation of microalgae and the concept of bio-refineries be seen as part of a `new' agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste-water treatment, water polishing and endocrine disruptor (EDC) removal, sustainable energy production, and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings, and for commercial extraction of bulk commodities such as bio-oils and lecithin. This presentation will address efforts to establish a fully operational solar-driven microalgae bio-refinery for use not only in waste remediation but to transform waste and biomass to energy, fuels, and other useful materials (valorisation), with particular focus on environmental quality and sustainability goals.

  16. Rice polishings as a supplement in sugar cane diets: effect of giving it as a separate meal or mixed with sugar cane

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J M; Priego, A; Wilson, A; Preston, T R

    1977-01-01

    Two experiments were carried out. In the first, 40 Zebu bulls in groups of 5 were used in a 2 x 2 factorial design to study the following main treatments in a basal feed of chopped whole sugar cane and urea: (1) 500 or 1000 g/day of rice polishings; (2) mixing the supplement with the sugar cane or giving it as a separate meal before the cane was offered. In the second experiment, a changeover design was used with 3 rumen - cannulated Zebu bulls to study the effect on rumen fermentation of giving the rice polishings (500 g/day) mixed with the sugar cane or as a separate meal. In experiment 1, the rate of liveweight gain was increased from 421 to 559 g/day by the higher level of supplementation with rice polishings but there were no differences due to the method of giving this supplement. Voluntary dry matter intake was increased by the higher level of supplementation and there was an improvement in feed conversion. Neither of these parameters was affected by the method of giving the rice polishings. In the second experiment, there was an indication of slightly lower values for pH of rumen fluid between 11:00 am and 5:00 pm, but no effects on the molar proportion of the VFA (volatile fatty acids), when rice polishings were given as a separate meal rather than mixed in the cane. There were significant changes in molar proportions of VFA with time of sampling, with increases in C/sub 3/ and decreases in C/sub 2/ after feeding; C/sub 4/ molar proportions did not change.

  17. Sugar cane juice as a retarding admixture in concrete production ...

    African Journals Online (AJOL)

    Sugar cane juice (SCJ) was investigated as a retarding agent in concrete production. Slump values and compressive strength of concrete with partial replacement of water by sugar cane juice was also investigated. The concrete cubes were prepared by replacing water with SCJ in the following proportions 0, 3, 5, 10 and ...

  18. Natural radionuclides as dirt tracers in sugar cane consignments

    International Nuclear Information System (INIS)

    Bacchi, M.A.; Fernandes, E.A.N.

    1998-01-01

    Soil is usually carried out to the mills, as an impurity in sugar cane, leading to economic drawbacks for the industry. The quantification of this dirt is important to identify its causes and for routine quality control. Several methods have been used for this purpose, however, no single one has been pointed out as an industrial standard. The use of a γ-ray emitting radionuclide of natural occurence was investigated and, after several soil and cane radioactivity analyses, 212 Pb was chosen as the best tracer. Calibration curves developed with the addition of soil in clean cane, from 0 to 10% (dry mass), demonstrated the linearity of the method. Analyses of eleven samples taken from consignments showed that the procedure was consistent and reliable when compared to the traditional ash method. (author)

  19. PEM Fuel Cells with Bio-Ethanol Processor Systems A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control

    CERN Document Server

    Feroldi, Diego; Outbib, Rachid

    2012-01-01

    An apparently appropriate control scheme for PEM fuel cells may actually lead to an inoperable plant when it is connected to other unit operations in a process with recycle streams and energy integration. PEM Fuel Cells with Bio-Ethanol Processor Systems presents a control system design that provides basic regulation of the hydrogen production process with PEM fuel cells. It then goes on to construct a fault diagnosis system to improve plant safety above this control structure. PEM Fuel Cells with Bio-Ethanol Processor Systems is divided into two parts: the first covers fuel cells and the second discusses plants for hydrogen production from bio-ethanol to feed PEM fuel cells. Both parts give detailed analyses of modeling, simulation, advanced control, and fault diagnosis. They give an extensive, in-depth discussion of the problems that can occur in fuel cell systems and propose a way to control these systems through advanced control algorithms. A significant part of the book is also given over to computer-aid...

  20. Analysis of energy performance in two systems of cogeneration used in plants of sugar cane; Analise de desempenho energetico em dois sistemas de cogeracao empregados em usinas de cana de acucar

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Felipe A.A.; Rosa, Rodrigo A. [Cogeracao Sistemas de Energia Ltda., Recife, PE (Brazil)

    2004-07-01

    One of the options to overcome the current volatility in Brazil's power consumption outlook relates to the employment of other sources for power generation, namely solar energy, wind power or the use of biomass, namely the power generation through the cane bagasse. One should realize, however, that the economic accomplishment for launching a generation system should depend on the level of effectiveness of all processes and/or equipment comprising the system thereof. As far as the sugar-alcohol industry is concerned, the larger the system effectiveness is, the bigger the surplus of bagasse becomes and, hence, the better the chance of achieving financial earnings. Two generation systems shall be evaluated, aiming to thermo-dynamically identify the differences between the use of small equipment-driven turbines (like choppers, shredders and mills) and multi-stage turbo-generators, in order to replace the electric-powered drive units. Therefore, one shall follow thermodynamic-based criteria, namely the steam specific consumption, the equipment availability and effectiveness, thus allowing a comparison for each engine. Such survey shows that the effectiveness reaches nearly 68% for the turbo-generators and 43% for the small turbines. Under the economic perspective, one can find a saving of 89.500 tonnes per crop of bagasse, standing for an additional turnover of US$ 895.000,00 annually. (author)

  1. Characteristics of fermentation of refined cane sugar syrup for alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Raev, Z A; Bazilevich, K K

    1956-01-01

    Technological properties of cane sugar syrup, obtained on refining of raw cane sugar, were investigated. Its poor fermentation is caused by the lack of nitrous substances (1/10 as much as in sugar beet) necessary for the nutrition of yeast. It is necessary to introduce into the mixture of yeast and must 0.8% (NH/sub 4/)/sub 2/SO/sub 4/ based on weight of syrup (at a permanent aeration the assimilability of N from (NH/sub 4/)/sub 2/SO/sub 4/ by the yeast will be higher and the dosage has to be increased), 1% of superphosphate or 0.12% of a 70% phosphoric acid solution, and 0.5% of a yeast autolyst. For the fermentation of cane sugar syrup the mixture of yeast and must has to be prepared with a concentration of 10 to 11/sup 0/ by the saccharometer scale, but the average initial concentration of the fermentive must has to be 17 to 18/sup 0/ with the intention to keep the alcohol content of the ripe must at 8.7 to 8.8% by volume. Considering the low buffer ability of the syrup from cane sugar, the acidity of the must, mixed with yeast, has to be kept less than or equal to 0.4 to 0.5/sup 0/, the pH at 4.6 to 4.8; on a higher acidity the pH drops to a value which inhibits the fission of the yeast cells. On a joint fermentation of syrup from sugar cane and sugar beets 1% of superphosphate in the form of an aqueous extract and an autolyst of yeast in an amount of 0.5% of the weight of syrup was introduced into the must; the yield of alcohol from cane sugar syrup increased compared with the yield on separate processing.

  2. Regional based estimates of water use for commercial sugar-cane ...

    African Journals Online (AJOL)

    The water use of rain-fed sugar-cane has come under the spotlight in South Africa, largely as a result of changes in legislation and a focus on streamflow reduction activities. In this study a robust relationship between sugar-cane yield and evapotranspiration derived by Thompson in 1976 is applied in conjunction with ...

  3. Bio politics - The bio-environment - bio-culture of the Danube

    International Nuclear Information System (INIS)

    Vlavianos-Arvanitis, A.

    1997-01-01

    The bio-environment has been the single most important correlation in human history and can successfully promote international co-operational co-operation and understanding. With the construction of a network for collaboration, the 'Danube Countries' can come together in celebration of their culture and heritage. As the Danube flows from the Black Forest to the Black Sea, it carries messages of peace, hope and co-operation. Applying these messages to every endeavour can improve our quality of life and lead to a brighter future. Since its inception in 1985, the Bio politics International Organization (B.I.O.) has been labouring to raise awareness of the urgent need to instate a new system of norms and principles, compatible with sound environmental management and with the most important task of ensuring global literacy on environmental issues. Along with critically re-assessing the concept of profit, the goal is to adopt a system of bio centric values, where respect for the bio-environment will govern our every action and thought

  4. The sugar cane agro-industry - its contribution to reducing CO2 emissions in Brazil

    International Nuclear Information System (INIS)

    Macedo, I. de C.

    1992-01-01

    Production of sugar cane in Brazil is 222 million tonnes (harvested wet weight)/year and is processed to sugar (7.5 million tonnes) and ethanol (11.8 million m 3 ) in 1990. The use of fossil fuels in sugar cane production is 271 MJ/t of cane. Sugar cane bagasse and ethanol substitute for fuel oil in the food and chemical industry (including sugar production) and for gasoline (9.75 million m 3 /year), thus avoiding CO 2 emissions from fossil fuels. Considering the fast carbon cycling in sugar cane production and use, net emissions of 9.45 million tonnes of C/year are avoided; this corresponds roughly to 18% of the total CO 2 emissions from fossil fuels in Brazil. (author)

  5. Study of bio-oil and bio-char production from algae by slow pyrolysis

    International Nuclear Information System (INIS)

    Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C.

    2013-01-01

    This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49. -- Highlights: •Bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. •Suitable temperature to obtained bio-oil and bio-char were at about 550 and 500 °C. •Saturated functional carbon of bio-oil was heavy naphtha, kerosene, diesel oil. •ECR had an average value of 0.49

  6. Chapter 16 - Predictive Analytics for Comprehensive Energy Systems State Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingchen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Rui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Jie [University of Texas at Dallas; Weng, Yang [Arizona State University

    2017-12-01

    Energy sustainability is a subject of concern to many nations in the modern world. It is critical for electric power systems to diversify energy supply to include systems with different physical characteristics, such as wind energy, solar energy, electrochemical energy storage, thermal storage, bio-energy systems, geothermal, and ocean energy. Each system has its own range of control variables and targets. To be able to operate such a complex energy system, big-data analytics become critical to achieve the goal of predicting energy supplies and consumption patterns, assessing system operation conditions, and estimating system states - all providing situational awareness to power system operators. This chapter presents data analytics and machine learning-based approaches to enable predictive situational awareness of the power systems.

  7. Can use of walkers or canes impede lateral compensatory stepping movements?

    Science.gov (United States)

    Bateni, Hamid; Heung, Evelyn; Zettel, John; McLlroy, William E; Maki, Brian E

    2004-08-01

    Although assistive devices, such as walkers and canes are often prescribed to aid in balance control, recent studies have suggested that such devices may actually increase risk of falling. In this study, we investigated one possible mechanism: the potential for walkers or canes to interfere with, or constrain, lateral movement of the feet and thereby impede execution of compensatory stepping reactions during lateral loss of balance. Lateral stepping reactions were evoked, in 10 healthy young adults (ages 22-27 years), by means of sudden unpredictable medio-lateral support surface translation. Subjects were tested while holding and loading a standard pickup walker or single-tip cane or while using no assistive device (hands free or holding an object). Results supported the hypothesis that using a walker or cane can interfere with compensatory stepping. Collisions between the swing-foot and mobility aid were remarkably frequent when using the walker (60% of stepping reactions) and also occurred in cane trials (11% of stepping reactions). Furthermore, such collisions were associated with a significant reduction (26-37%) in lateral step length. It appeared that subjects were sometimes able to avoid collision by increasing the forward or backward displacement of the swing-foot or by moving the cane; however, attempts to lift the walker out of the way occurred rarely and were usually impeded due to collision between the contralateral walker post and stance foot. The fact that compensatory stepping behavior was altered significantly in such a healthy cohort clearly demonstrates some of the safety limitations inherent to these assistive devices, as currently designed. Copyright 2003 Elsevier B.V.

  8. Stereo camera based virtual cane system with identifiable distance tactile feedback for the blind.

    Science.gov (United States)

    Kim, Donghun; Kim, Kwangtaek; Lee, Sangyoun

    2014-06-13

    In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user's pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.

  9. Bio fuels. Environment and Energy Aspects and Future Prospects

    International Nuclear Information System (INIS)

    Chiaramonti, D.; Grassi, G.; Tondi, G.; Martelli, F.

    2000-01-01

    The present work aims at describing some of the most important bio fuels (bio diesel, bio methanol, bi oethanol, bio-crude-oil). Environmental effects are also presented, as well as some cost data. Europe and USA are compared, when appropriate. The motivations for a justified and beneficial market penetration of bio fuels in urban areas are reported [it

  10. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949-2015).

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-02-19

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  11. Unintentional fall injuries associated with walkers and canes in older adults treated in U.S. emergency departments.

    Science.gov (United States)

    Stevens, Judy A; Thomas, Karen; Teh, Leesia; Greenspan, Arlene I

    2009-08-01

    To characterize nonfatal, unintentional, fall-related injuries associated with walkers and canes in older adults. Surveillance data of injuries treated in hospital emergency departments (EDs), January 1, 2001, to December 31, 2006. The National Electronic Injury Surveillance System All Injury Program, which collects data from a nationally representative stratified probability sample of 66 U.S. hospital EDs. People aged 65 and older treated in EDs for 3,932 nonfatal unintentional fall injuries and whose records indicated that a cane or a walker was involved in the fall. Sex, age, whether the fall involved a cane or walker, primary diagnosis, part of the body injured, disposition, and location and circumstances of the fall. An estimated 47,312 older adult fall injuries associated with walking aids were treated annually in U.S. EDs: 87.3% with walkers, 12.3% with canes, and 0.4% with both. Walkers were associated with seven times as many injuries as canes. Women's injury rates exceeded those for men (rate ratios=2.6 for walkers, 1.4 for canes.) The most prevalent injuries were fractures and contusions or abrasions. Approximately one-third of subjects were hospitalized for their injuries. Injuries and hospital admissions for falls associated with walking aids were frequent in this highly vulnerable population. The results suggest that more research is needed to improve the design of walking aids. More information also is needed about the circumstances preceding falls, both to better understand the contributing fall risk factors and to develop specific and effective fall prevention strategies.

  12. TO APPLICATION OF BIO-GAS UNITS: ORGANIZATIONAL AND TECHNOLOGICAL MODEL

    Directory of Open Access Journals (Sweden)

    Thuy Nga Nguyen

    2011-01-01

    Full Text Available Analysis of the published papers written by national and foreign researchers reveals that an increasing global energy deficit, exhaustion of  fossil organic and nuclear fuels, chemical and radio-active contamination of the environment are main reasons in favour of  thorough investigation  and wide introduction of non-conventional and renewable energy sources. Nowadays Vietnamese Institute of Energy Science has been developing the state-of-the-art bio-gas technologies on the  basis of application and modernization of Chinese and Dutch family-style technologies. The most rational technologies are combined ones which operate using various types of energy raw materials, for example, solar and bio-gas energy because usage of solar energy expands operational possibilities of the bio-gas system, ensures its operation within wide temperature range creating necessary parameters for the required technological task.

  13. Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions

    Energy Technology Data Exchange (ETDEWEB)

    Suntana, Asep S. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Indonesian Ecolabeling Institute/Lembaga Ekolabel Indonesia (LEI), Taman Bogor Baru Blok BIV No. 12, Bogor 16152 (Indonesia); Vogt, Kristiina A. [Forest Systems and Bio-Energy Program, College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100 (United States); Interforest LLC, Holderness, NH 03245 (United States); Renewol LLC, 63260 Overtree Road, Bend, OR 97701 (United States); Turnblom, Eric C. [Forest Biometrics Program, College of Forest Resources, University of Washington, Box 352100, WA 98195-2100 (United States); Upadhye, Ravi [ARU Associates, Pleasanton, CA 94566 (United States)

    2009-11-15

    Since Indonesia has significant land area in different forest types that could be used to produce biofuels, the potential to sustainably collect and convert forest materials to methanol for use in energy production was examined. Using the annually available aboveground forest biomass, from 40 to 168 billion l of bio-methanol could be produced for use as a transportation fuel and/or to supply fuel cells to produce electricity. When a lower forest biomass availability estimate was used to determine how much electricity (methanol fed into fuel cells) could be produced in Indonesia, more than 10 million households or about 12,000 villages (20% of the total rural villages in Indonesia) would be supplied annually with electricity. Collecting forest biomass at the higher end of the estimated available biomass and converting it to methanol to supply fuel cells could provide electricity to more than 42 million households annually. This would be approximately 52,000 villages, or 86% of the total rural villages in Indonesian. When electricity is produced with bio-methanol/fuel cells, it could potentially supply from half to all of the current electricity consumed in Indonesia. By generating electricity using bio-methanol/fuel cells instead of from fossil fuels, from 9 to 38% of the total carbon currently emitted each year in Indonesia could be avoided. In contrast, substituting this same amount of bio-methanol for gasoline could provide all of the annual gasoline needs of Indonesia and contribute towards reducing their carbon emissions by about 8-35%. (author)

  14. Organic solvents from sugar cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Oeser, H

    1970-01-01

    The production of organic solvents by fermentation of low priced cane molasses is discussed. Processes described and illustrated in detail include the production of acetone, butanol, ethanol, acetic acid, ethyl acetate and butyl acetate.

  15. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2011-12-01

    Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.

  16. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  17. Utilization of agricultural sugar cane wastes as fuel in modern cogeneration systems applied in sugar cane mills; Aprovechamiento de los residuos agricolas caneras como combustible en sistemas de cogeneracion modernos aplicados a ingenios

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); De Buen Rodriguez, Odon [Comision Nacional para el Ahorro de la Energia, Mexico, D. F. (Mexico)

    1998-12-31

    Considering the new legal frame on cogeneration in Mexico, the possibility of heat and electricity supply required by the sugar mills to be made by an independent cogenerator of the sugar mill, operating with the sugar cane bagasse and agricultural sugar cane wastes, has been evaluated. Such modern cogenerator would be characterized, besides operating in an independent way of the sugar mill, by the use of high efficiency equipment in its process of heat and electricity generation. In this sense the Comision Nacional para el Ahorro de Energia (CONAE) through its Coordination Program and the Instituto de Investigaciones Electricas (IIE) carried out a joint project to determine the technical and economical viability that the sugar industry maintains the present sugar production without the need of burning fuel oil, installing adjacent to every sugar mill, a modern cogeneration system, operated by independent producers, that using sugar cane bagasse and agricultural sugar cane wastes, allows the supply of all the steam and electricity required by the sugar mill, and additionally can add firm capacity and the supply of electric power to the national grid, during the grinding season as well as out of grinding season. [Espanol] En consideracion al nuevo marco juridico de la cogeneracion en Mexico se ha evaluado la posibilidad de que el suministro de calor y electricidad requerido por los ingenios azucareros sea proporcionado por un cogenerador independiente de la planta de azucar, el cual opere utilizando el bagazo y residuos agricolas caneras (biomasa canera). Dicho cogenerador moderno se caracterizaria, ademas de operar de manera independiente a la planta de azucar, por el uso de equipos de alta eficiencia en su proceso de produccion de calor y electricidad. En este sentido la Comision Nacional para el Ahorro de Energia (CONAE) a traves de la Coordinacion de Programacion y el Instituto de Investigaciones Electricas (IIE) realizaron un trabajo en conjunto para determinar

  18. Utilization of agricultural sugar cane wastes as fuel in modern cogeneration systems applied in sugar cane mills; Aprovechamiento de los residuos agricolas caneras como combustible en sistemas de cogeneracion modernos aplicados a ingenios

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); De Buen Rodriguez, Odon [Comision Nacional para el Ahorro de la Energia, Mexico, D. F. (Mexico)

    1999-12-31

    Considering the new legal frame on cogeneration in Mexico, the possibility of heat and electricity supply required by the sugar mills to be made by an independent cogenerator of the sugar mill, operating with the sugar cane bagasse and agricultural sugar cane wastes, has been evaluated. Such modern cogenerator would be characterized, besides operating in an independent way of the sugar mill, by the use of high efficiency equipment in its process of heat and electricity generation. In this sense the Comision Nacional para el Ahorro de Energia (CONAE) through its Coordination Program and the Instituto de Investigaciones Electricas (IIE) carried out a joint project to determine the technical and economical viability that the sugar industry maintains the present sugar production without the need of burning fuel oil, installing adjacent to every sugar mill, a modern cogeneration system, operated by independent producers, that using sugar cane bagasse and agricultural sugar cane wastes, allows the supply of all the steam and electricity required by the sugar mill, and additionally can add firm capacity and the supply of electric power to the national grid, during the grinding season as well as out of grinding season. [Espanol] En consideracion al nuevo marco juridico de la cogeneracion en Mexico se ha evaluado la posibilidad de que el suministro de calor y electricidad requerido por los ingenios azucareros sea proporcionado por un cogenerador independiente de la planta de azucar, el cual opere utilizando el bagazo y residuos agricolas caneras (biomasa canera). Dicho cogenerador moderno se caracterizaria, ademas de operar de manera independiente a la planta de azucar, por el uso de equipos de alta eficiencia en su proceso de produccion de calor y electricidad. En este sentido la Comision Nacional para el Ahorro de Energia (CONAE) a traves de la Coordinacion de Programacion y el Instituto de Investigaciones Electricas (IIE) realizaron un trabajo en conjunto para determinar

  19. Bio-Inspired Autonomous Communications Systems with Anomaly Detection Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate BioComm, a bio-inspired autonomous communications system (ACS) aimed at dynamically reconfiguring and redeploying autonomous...

  20. Basic analysis of sugar cane lead and cane fields of an AIC

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Saunders, M.; Herrerra, E.; Rodriguez, R.; Mendoza, A.; Meneses, N.; Griffith, J.; Mesa, S.; Zhuk, L.I.; Danilova, E.A.

    1991-01-01

    The concentration of minor and trace elements in sugar cane leaves and soils samples from a cuban sugar factory were determine by means of thermal reactor neutron activation analysis (NAA) and X-ray Fluorescence Analysis (XRFA). The samples were taken according to the methodology of Sugar Minister for leaves and soils analysis. The concentration of 28 elements was determinate. the concentration values obtained by NAA, XRFA and previous analysis are compared

  1. Multiphysics of bio-hybrid systems: shape control and electro-induced motion

    Science.gov (United States)

    Lucantonio, Alessandro; Nardinocchi, Paola; Pezzulla, Matteo; Teresi, Luciano

    2014-04-01

    We discuss the control of the bending pattern of a bio-hybrid system made using the muscular thin film technique. We study the medusoid presented in Nawroth et al (2012 Nature Biotechnol. 30 792-7) as a prototypical bio-hybrid system. Specifically, we evaluate the contraction field within the biological layer that is necessary to produce a target curvature of the system, and determine an admissible range of the design parameters that correspond to the same bending solution. We also propose an electromechanical model of the bio-hybrid system and study the propagation of the action potential. Our results compare well with the experimental data reported in Nawroth et al (2012 Nature Biotechnol. 30 792-7).

  2. Effect of the use of molasses and efficient microorganisms, over the rate of decomposition of the sugar cane leaf (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Óscar Eduardo Sanclemente Reyes

    2011-10-01

    Full Text Available The rate of decomposition of sugar cane leaves mixed with an organic fertilizer compost type was evaluated, using a finite accelerator (molasses and an infinity accelerator (effective microorganisms. The trial was conducted in the greenhouse facilities of the National University of Colombia in Palmira. The results showed that molasses is a decomposition accelerator of the wastes of sugar cane leaf, since it shows a marked influence on the initial decomposition rate of the waste, but once the carbohydrates that constitute it are consumed, the rate of decomposition decreases significantly. Then the potential is evident on the waste of sugar cane leaf elements for the maintenance and/or biophysical capital improvement in the productive system of the sugar cane, as the result of their high photosynthetic efficiency.

  3. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  4. Sugarcane ethanol: contributions to climate change mitigation and the environment

    NARCIS (Netherlands)

    Zuurbier, P.J.P.; Vooren, van de J.G.

    2008-01-01

    Climate change is a challenge facing human life. It will change mobility and asks for new energy solutions. Bioenergy has gained increased attention as an alternative to fossil fuels. Energy based on renewable sources may offer part of the solution. Bio ethanol based on sugar cane offers advantages

  5. The scientometric biography of a leading scientist working on the field of bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    Konur, Ozcan [Sirnak University Faculty of Engineering, Department of Mechanical Engineering (Turkey)], email: okonur@hotmail.com

    2011-07-01

    This paper presents a scientometric biography of a Turkish scientist, Prof. Dr. Ayhan Demirbas, who is a leading figure in the field of bio-energy. It describes the method and importance of doing such biographies and suggests that there are too few of them, this one being the first in this specific area. It provides insight into the individual, his work, his research and links in his field of studies and research. Prof. Dr. Demirbas has spent almost three decades in research, particularly in the field of bio-energy. He has researched and taught in the field of renewable energies including biodiesels, biofuels, biomass pyrolysis, liquefaction and gasification, biogas, bioalcohols, and biohydrogen. He has also studied a great variety of subjects, such as the development of pulp from plants, chemical and engineering thermodynamics, chemical and energy education, global climate change, drinking water and cereal analyses. He has published 454 articles as of 2011.

  6. Guide for a building energy label. Promoting bio-climatic and solar construction and renovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Technically speaking, building experts have the knowledge to deal with thermal inertia of buildings, solar gains, insulation, efficient ventilation, and daylighting... to get low energy buildings that provide comfort for the users. Buildings should always be designed according to the specificities of the local climate, according to a ''solar and bio-climatic construction'' approach. It is not always possible to fully apply these principles, particularly in urban areas with high density. However, this is unacceptable to keep building with such errors as insufficient insulation and direct electrical heating, single glazing, thermal bridges, low efficiency heating systems. This guide aims at encouraging the building experts to take into account the energy efficiency. Implementing a building energy label will allow general public to be aware of this issue and then, and will then lead to develop better practices. (author)

  7. BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID.

    Science.gov (United States)

    Kim, Sun; Islamaj Doğan, Rezarta; Chatr-Aryamontri, Andrew; Chang, Christie S; Oughtred, Rose; Rust, Jennifer; Batista-Navarro, Riza; Carter, Jacob; Ananiadou, Sophia; Matos, Sérgio; Santos, André; Campos, David; Oliveira, José Luís; Singh, Onkar; Jonnagaddala, Jitendra; Dai, Hong-Jie; Su, Emily Chia-Yu; Chang, Yung-Chun; Su, Yu-Chen; Chu, Chun-Han; Chen, Chien Chin; Hsu, Wen-Lian; Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K; Aydın, Ferhat; Hüsünbeyi, Zehra Melce; Özgür, Arzucan; Shin, Soo-Yong; Kwon, Dongseop; Dolinski, Kara; Tyers, Mike; Wilbur, W John; Comeau, Donald C

    2016-01-01

    BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  8. Characteristics and properties of sugar cane trash; Caracteristicas e propriedades do palhico de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Innocente, Andreia F. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Saglietti, Jose R. C. [Universidade Estadual Paulista (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias de Botucatu], E-mail: jroberto@ibb.unesp.br

    2010-07-01

    The sugar cane processing wastes (bagasse and trash) became an important energy source which may be used in the electrical energy co-generation. This work is aimed to determine the trash physical properties, define its energetic value and ideal combination of bagasse + trash to use in conventional boilers. The trash productivity (20 t/ha), green (14.9%) and dry (71.3%) leaves, and remaining material (8.3%) was found one day after the cane crop. The trash moisture content was measured for each component and the final average value was 28.7%. The bagasse showed a 49.81% moisture average content. The higher heating value (HHV) was found for the bagasse (19.27 MJ/kg), trash (17.90 MJ/kg) and bagasse + trash mixtures in different proportions. For the lower heating value (LHV), we observed that the released energy in the trash (12.11 MJ/kg) was higher than the one in the bagasse (8.55 MJ/kg). This result was expected due to the higher bagasse moisture content. From the analysed mixtures, the 50%-50% one had the highest LHV (10.08 MJ/kg), showing that the trash left in the field after the crop may be efficient for the energy production mixed to the bagasse in 50% proportion. (author)

  9. 21 CFR 890.3790 - Cane, crutch, and walker tips and pads.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cane, crutch, and walker tips and pads. 890.3790 Section 890.3790 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., crutch, and walker tips and pads. (a) Identification. Cane, crutch, and walker tips and pads are rubber...

  10. Bio-fouling and its control in the cooling water system of PFBR

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Kannan, S.E.

    2004-06-01

    This report gives an overview of the bio-fouling problems that could be visualized in the different sections of the cooling system of PFBR, which is based on the experience observed at MAPS as well as from the experience of some of the work carried out at Kalpakkam. International as well as the MAPS practices of bio-fouling control are discussed. Based on these, an appropriate method for bio-fouling control is suggested. In addition, a few time bound, field, as well as laboratory experiments are proposed to be carried out, for deciding precise and accurate method of bio-fouling control for PFBR cooling water system. (author)

  11. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015)

    Science.gov (United States)

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-01-01

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish. PMID:26907306

  12. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015

    Directory of Open Access Journals (Sweden)

    Chao-Chen Chung

    2016-02-01

    Full Text Available This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS. Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1 fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2 comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  13. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  14. The "EyeCane", a new electronic travel aid for the blind: Technology, behavior & swift learning.

    Science.gov (United States)

    Maidenbaum, Shachar; Hanassy, Shlomi; Abboud, Sami; Buchs, Galit; Chebat, Daniel-Robert; Levy-Tzedek, Shelly; Amedi, Amir

    2014-01-01

    Independent mobility is one of the most pressing problems facing people who are blind. We present the EyeCane, a new mobility aid aimed at increasing perception of environment beyond what is provided by the traditional White Cane for tasks such as distance estimation, navigation and obstacle detection. The "EyeCane" enhances the traditional White Cane by using tactile and auditory output to increase detectable distance and angles. It circumvents the technical pitfalls of other devices, such as weight, short battery life, complex interface schemes, and slow learning curve. It implements multiple beams to enables detection of obstacles at different heights, and narrow beams to provide active sensing that can potentially increase the user's spatial perception of the environment. Participants were tasked with using the EyeCane for several basic tasks with minimal training. Blind and blindfolded-sighted participants were able to use the EyeCane successfully for distance estimation, simple navigation and simple obstacle detection after only several minutes of training. These results demonstrate the EyeCane's potential for mobility rehabilitation. The short training time is especially important since available mobility training resources are limited, not always available, and can be quite expensive and/or entail long waiting periods.

  15. Generation and export of electric energy by sugar and alcohol plants; Geracao e exportacao de energia eletrica por usinas sucroalcooleiras

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Gil Mesquita de Oliveira Rabello; Paschoareli Junior, Dionizio; Faria Junior, Max Jose de Araujo [Universidade Estadual Paulista (DEE/UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica. Grupo de Pesquisa em Fontes Alternativas e Aproveitamento de Energia Eletrica

    2008-07-01

    This paper presents technical aspects necessary to allow a sugar-cane mill, which promotes cogeneration, to operate as an electrical energy producer. Changes and optimization in the process to produce alcohol and sugar-cane, which results in the increase of electrical energy to export are discussed. A case of a sugarcane mill, working as a thermoelectric power plant is presented. The necessary components to generate energy and to connect the thermoelectric plant to the main transmission system are described. (author)

  16. Bio digester : anaerobic methanogenesis

    NARCIS (Netherlands)

    Bullema, Marten; Hulzen, Hans; Keizer, Melvin; Pruisscher, Gerlof; Smint, Martin; Vincent, Helene

    2014-01-01

    As part of the theme 13 and 14, our group have to realize a project in the field of the renewable energy. This project consist of the design of a bio-digester for the canteen of Zernikeplein. Gert Hofstede is our client. To produce energy, a bio-digester uses the anaerobic digestion, which is made

  17. Analysis of the market for bio energy - locally and internationally. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    This report aims to describe the market potential for biogas and biomass heat and power applications, and to assess the opportunities and barriers for development of such biomass markets locally and internationally. The project has been commissioned by ENERCOAST whose overall aim is to create a market for bio energy in the North Sea area. The project uses Denmark, Central Denmark Region, and three Danish municipalities (Randers, Norddjurs, and Syddjurs) to illustrate the challenges related to developing a more substantial market for bio energy trade. A parallel study also commissioned by ENERCOAST and carried out by Ea Energy Analyses assessed the sustainability of relevant biomass supply chains related to the resource accessibility in the three municipalities. The primary focus was on biogas, straw, wood residues, and energy crops for combined heat and power production and the results were presented in a report released in July of 2010 entitled 'SSCM Analysis of the Bioenergy Resources in Randers, Norddjurs and Syddjurs' (Ea Energy Analyses, 2010). The data basis for both studies is very similar, and as such the current report incorporates and builds upon many of the SSCM reports findings. The present report describes the market structures and price developments of the aforementioned biomass resources. The market structures and trade conditions are described on a local (the 3 municipalities), national (Denmark) and regional/international (European/global) level. (LN)

  18. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    Zhang, Yanan; Brown, Tristan R.; Hu, Guiping; Brown, Robert C.

    2013-01-01

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus ® for a 2000 t d −1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d −1 for the bio-oil gasification pathway and 160 t d −1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  19. Proteomic analysis of Herbaspirillum seropedicae cultivated in the presence of sugar cane extract.

    Science.gov (United States)

    Cordeiro, Fabio Aparecido; Tadra-Sfeir, Michelle Zibetti; Huergo, Luciano Fernandes; de Oliveira Pedrosa, Fábio; Monteiro, Rose Adele; de Souza, Emanuel Maltempi

    2013-03-01

    Bacterial endophytes of the genus Herbaspirillum colonize sugar cane and can promote plant growth. The molecular mechanisms that mediate plant- H. seropedicae interaction are poorly understood. In this work, we used 2D-PAGE electrophoresis to identify H. seropedicae proteins differentially expressed at the log growth phase in the presence of sugar cane extract. The differentially expressed proteins were validated by RT qPCR. A total of 16 differential spots (1 exclusively expressed, 7 absent, 5 up- and 3 down-regulated) in the presence of 5% sugar cane extract were identified; thus the host extract is able to induce and repress specific genes of H. seropedicae. The differentially expressed proteins suggest that exposure to sugar cane extract induced metabolic changes and adaptations in H. seropedicae presumably in preparation to establish interaction with the plant.

  20. Butanol-acetone fermentation of sugar-cane juice

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, E V

    1958-01-01

    Sixteen new varieties of Clostridium acetobutylicum of varying activity were isolated from different sources. The most active one was obtained from sugar-cane roots. The effects of 86 additives were studied. The following formulation gave a 32% yield (with respect to sucrose) of solvent mixture (73% BuOH, 19 to 23% acetone, and 3 to 4% EtOH) sugar-cane juice (I) (20/sup 0/ Brix) 250 ml, ground Vicia sativa 1 g, KH/sub 2/PO/sub 4/ 2.5 g, CaCO/sub 3/ 4 g, H/sub 2/O 1000 ml; the pH of this solution was 5.6 to 6.0. Unclarified, it was inverted by invertase; the other components were added and the mixture was sterilized (20 minutes, 15 pounds).

  1. Proceedings of the Bio-Energy '80 world congress and exposition

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Many countries are moving with increasing urgency to obtain larger fractions of their energy from biomass. Over 1800 leading experts from 70 countries met on April 21 to 24 in Atlanta to conduct a World Congress and Exposition on Bio-Energy. This summary presents highlights of the Congress and thoughts stimulated by the occasion. Topics addressed include a comparison of international programs, world and country regionalism in the development of energy supplies, fuel versus food or forest products, production of ethyl alcohol, possibilities for expanded production of terrestrial vegetation and marine flora, and valuable chemicals from biomass. Separate abstracts have been prepared for 164 papers for inclusion in the Energy Data Base.

  2. Study of doping non-PMMA polymer fibre canes with UV photosensitive compounds

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Janting, Jakob

    2016-01-01

    and hollow-core TOPAS canes were doped with a solution of dopants in acetone/methanol and hexane/methanol, respectively. Doping time, solvent mixture concentration and doping temperature were optimised. A long and stepwise drying process was applied to the doped canes to ensure complete solvent removal...

  3. Stereo Camera Based Virtual Cane System with Identifiable Distance Tactile Feedback for the Blind

    Directory of Open Access Journals (Sweden)

    Donghun Kim

    2014-06-01

    Full Text Available In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user’s pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.

  4. Mathematical algorithm to transform digital biomass distribution maps into linear programming networks in order to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  5. Pengaruh Jenis Bahan pada Proses Pirolisis Sampah Organik menjadi Bio-Oil sebagai Sumber Energi Terbarukan

    Directory of Open Access Journals (Sweden)

    M. Sigit Cahyono

    2013-06-01

    Full Text Available Sampah organik merupakan potensi sumber energi yang melimpah di Indonesia. Sampah organik berupa daun dan ranting kering bisa dikonversi menjadi bahan bakar berupa bio-oil melalui proses fast pirolisis. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh jenis bahan terhadap rendemen dan nilai kalor bio-oil yang dihasilkan dari proses pirolisis sampah organik. Bahan baku berupa daun dan ranting kering campuran tanaman angsana, mahoni dan mangga dengan komposisi daun bervariasi 0%, 50%, dan 100%, dipotong-potong dengan ukuran maksimal 10 cm. Kemudian bahan baku tersebut dipanaskan di dalam reaktor pirolisis pada suhu 500 C selama 1 jam. Hasil penelitian menunjukkan bahwa nilai kalor tertinggi (5175,35 J/g dan rendemen tertinggi (24,5% didapatkan pada bio-oil yang dihasilkan dari pirolisis ranting 100%. Kata kunci: Sampah Organik, Bio-oil, Pirolisis, Rendemen, Nilai Kalor

  6. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hori, Hiroaki; Deguchi, Shinguo; Yano, Junya; Sakai, Shinichi

    2010-01-01

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x10 6 t-wet/ yr (0.14x10 6 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  7. Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system.

    Science.gov (United States)

    Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J

    2012-09-21

    Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all

  8. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials.

    Science.gov (United States)

    Castaldelli, Vinícius N; Akasaki, Jorge L; Melges, José L P; Tashima, Mauro M; Soriano, Lourdes; Borrachero, María V; Monzó, José; Payá, Jordi

    2013-07-25

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter ( ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.

  9. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y J; Ju, U S; Park, Y C [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  10. EMBIO - The Danish Energy Agency's model for economic and environmental evaluation of bio-fuels. Main report

    International Nuclear Information System (INIS)

    1997-01-01

    A methodological concept is established for a life-cycle based model which can be used for socio- and private economic and environmental assessment of automotive bio-fuels. The calculation method must be able to calculate socio-economic, energy, environmental, and other consequences by alternative productions and uses of bio-fuels in a way that makes it possible to compare advantages and disadvantages across alternative production technologies. Furthermore it must be possible to perform private cost-benefit calculations from the model. The model must also be able to evaluate specific bio-fuel project, and therefore the method has been developed in close interaction with analyses of two bio-fuel projects. The main emphasis in the development of the model has been put on the relation between CO 2 reduction and economics. One main result of the model analyses is therefore the calculated shadow price for the CO 2 reduction which expresses the socio-economic costs per ton saved CO 2 . The socio-economic analyses of the model do not include a monetary account of other environmental impacts than the CO 2 emission or other relevant consequences like impacts on employment, balance of payments etc. Thus the socio-economic analyses cannot be the only decision basis for assessing bio-fuel projects. The other environmental aspects are treated only briefly. The model may, however, very easily be extended to a more formalized account of these other aspects. The model may be used for specific experimental projects and for implementation of large full-scale projects. The model development has been limited to use of bio-fuels in the transportation sector. The model may, however, also be used for evaluating bio-fuels in general or other biomass-based energy use in other sectors. (LN) 113 refs

  11. A Comprehensive Evaluation System for Military Hospitals' Response Capability to Bio-terrorism.

    Science.gov (United States)

    Wang, Hui; Jiang, Nan; Shao, Sicong; Zheng, Tao; Sun, Jianzhong

    2015-05-01

    The objective of this study is to establish a comprehensive evaluation system for military hospitals' response capacity to bio-terrorism. Literature research and Delphi method were utilized to establish the comprehensive evaluation system for military hospitals' response capacity to bio-terrorism. Questionnaires were designed and used to survey the status quo of 134 military hospitals' response capability to bio-terrorism. Survey indicated that factor analysis method was suitable to for analyzing the comprehensive evaluation system for military hospitals' response capacity to bio-terrorism. The constructed evaluation system was consisted of five first-class and 16 second-class indexes. Among them, medical response factor was considered as the most important factor with weight coefficient of 0.660, followed in turn by the emergency management factor with weight coefficient of 0.109, emergency management consciousness factor with weight coefficient of 0.093, hardware support factor with weight coefficient of 0.078, and improvement factor with weight coefficient of 0.059. The constructed comprehensive assessment model and system are scientific and practical.

  12. Production of bio-synthetic natural gas in Canada.

    Science.gov (United States)

    Hacatoglu, Kevork; McLellan, P James; Layzell, David B

    2010-03-15

    Large-scale production of renewable synthetic natural gas from biomass (bioSNG) in Canada was assessed for its ability to mitigate energy security and climate change risks. The land area within 100 km of Canada's network of natural gas pipelines was estimated to be capable of producing 67-210 Mt of dry lignocellulosic biomass per year with minimal adverse impacts on food and fiber production. Biomass gasification and subsequent methanation and upgrading were estimated to yield 16,000-61,000 Mm(3) of pipeline-quality gas (equivalent to 16-63% of Canada's current gas use). Life-cycle greenhouse gas emissions of bioSNG-based electricity were calculated to be only 8.2-10% of the emissions from coal-fired power. Although predicted production costs ($17-21 GJ(-1)) were much higher than current energy prices, a value for low-carbon energy would narrow the price differential. A bioSNG sector could infuse Canada's rural economy with $41-130 billion of investments and create 410,000-1,300,000 jobs while developing a nation-wide low-carbon energy system.

  13. Towards an integrated system for bio-energy: hydrogen production by Escherichia coli and use of palladium-coated waste cells for electricity generation in a fuel cell.

    Science.gov (United States)

    Orozco, R L; Redwood, M D; Yong, P; Caldelari, I; Sargent, F; Macaskie, L E

    2010-12-01

    Escherichia coli strains MC4100 (parent) and a mutant strain derived from this (IC007) were evaluated for their ability to produce H(2) and organic acids (OAs) via fermentation. Following growth, each strain was coated with Pd(0) via bioreduction of Pd(II). Dried, sintered Pd-biomaterials ('Bio-Pd') were tested as anodes in a proton exchange membrane (PEM) fuel cell for their ability to generate electricity from H(2). Both strains produced hydrogen and OAs but 'palladised' cells of strain IC007 (Bio-Pd(IC007)) produced ~threefold more power as compared to Bio-Pd(MC4100) (56 and 18 mW respectively). The power output used, for comparison, commercial Pd(0) powder and Bio-Pd made from Desulfovibrio desulfuricans, was ~100 mW. The implications of these findings for an integrated energy generating process are discussed.

  14. Residual of fosforo in ratoon-cane for forage yield in the noth of Mato Grosso

    Directory of Open Access Journals (Sweden)

    Tiago de Lisboa Parente

    2016-08-01

    Full Text Available The sugar cane can be used as bovine supplementation option in the Centro Oeste region during dry periods. However, the low phosphorus availability in the soil becomes a limiting factor in the development of culture, mainly for ratoon cane. Thus, the objective of this study was to evaluate the performance of ratoon cane under different levels of phosphorus, applied in corrective phosphate and of the maintenance in the plant cane. The experiment was conducted in Alta Floresta (MT, end the experimental design was a randomized block with split plots, being four doses of corrective phosphate and five of maintenance. The corrective phosphating was carried out in the entire area with natural reactive phosphate Arad in the doses of 0, 90, 180 and 270 kg ha-1 of P2O5, and the maintenance done in the furrow with triple superphosphate, at rates of 0, 50, 100, 150 and 200 kg ha-1 of P2O5. The fertilization in plant cane promoted residual effect for cane ratoon, however, only the Arad phosphate promoted significant differences in green mass productivity, occurring linear increase for the tested doses.

  15. Directed influence on anaerobic energy supply systems of qualified free style wrestlers

    Directory of Open Access Journals (Sweden)

    M.G. Sybil

    2015-07-01

    Full Text Available Purpose: to experimentally prove effectiveness of directed influence on anaerobic energy supply systems of free style wrestlers, considering individual characteristics of their bio energetic. Material: in this article the data of laboratory bicycle stress test «Vita maxima» and results of special control testing have been presented. 40 sportsmen participated in the experiment. Results: individual characteristics of dominating type of anaerobic energy supply have been determined. Statistically confident difference between development of lactate and a-lactate anaerobic energetic components were found. By the data of bio-chemical indicators’ changes the authors observed increase of adenosine triphosphate (glycolytic or creatine-phosphate in some, weaker developed mechanisms of anaerobic re-synthesis. Ways of influence on anaerobic energy supply systems, considering individual characteristics of dominating of different components (lactate or a-lactate have been found. Conclusions: it is recommended to take in consideration individual dominating type of energy supply.

  16. Nitrogen derived from fertilization and straw for plant cane nutrition

    International Nuclear Information System (INIS)

    Vitti, Andre Cesar; Faroni, Carlos Eduardo

    2011-01-01

    The objective of this work was to evaluate the recovery, by plant cane, of the nitrogen ( 15 N) from urea and from sugarcane (Saccharum spp.) crop residues - straw and root system - incorporated into the soil. The experiment was settled in 2005/2006 with the sugarcane cultivar SP81 3250. At planting, microplots of 2 m length and 1.5 m width were installed, and N applications were done with 80 kg ha-1 N (urea with 5.05% in 15 N atoms) and 14 Mg ha -1 crop residues - 9 Mg ha -1 of sugarcane straw and 5 Mg ha -1 of root system, labeled with 15 N (1.07 and 0.81% in 15 N atoms, respectively). The total N accumulation by plants was determined during the crop cycle. Although the N use by shoot from crop residue mineralization (PA and SR) increased significantly over time, this source hardly contributed to crop nutrition. The recovery of the 15 N-urea, 15 N-SS and 15 N-RS by plant cane was 30.3 +- 3.7%, 13.9 +- 4.5% and 6.4 +- 0.9%, respectively, representing 15.9, 4.7 and 1.4% of total nitrogen uptake by shoot. (author)

  17. Philippines sugar cane ethanol plant

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-06

    The Philippines' National Alcohol Commission has called for international tenders for the construction of ethanol from sugar cane plants. Interested companies have been asked to quote for capacities of 60,000, 120,000 and 180,000 litre per day. The initial tender calls for three plants but the figure could rise to ten which would then be worth about $20 million.

  18. Smut resistance in sugar cane

    International Nuclear Information System (INIS)

    1989-01-01

    Full text: From a mutation breeding programme with the popular early maturing sugar cane variety CoC 671 fourteen clones could be selected which were found to be free of smut infection after three successive years of artificial testing. Smut resistance was also found after in-vitro culture propagation of susceptible cultivars G80-454 and CoC 671. (author)

  19. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.

    Science.gov (United States)

    Fukuoka, Yasuhiro; Fukino, Kota; Habu, Yasushi; Mori, Yoshikazu

    2015-08-04

    We have proposed a bio-inspired gait modulation method, by means of which a simulated quadruped model can successfully perform smooth, autonomous gait transitions from a walk to a trot to a gallop, as observed in animals. The model is equipped with a rhythm generator called a central pattern generator (CPG) for each leg. The lateral neighbouring CPGs are mutually and inhibitorily coupled, and the CPG network is hardwired to produce a trot. Adding only the simple feedback of body tilt to each CPG, which was based on input from the postural reflex, led to the emergence of un-programmed walking and galloping at low and high speeds, respectively. Although this autonomous gait transition was a consequence of postural adaptation, it coincidentally also resulted in the minimization of energy consumption, as observed in real animals. In simulations at a variety of constant speeds the energy cost was lower for walking at low speeds and for galloping at high speeds than it was for trotting. Moreover, each gait transition occurred at the optimal speed, such that the model minimised its energy consumption. Thus, gait transitions in simulations that included the bio-inspired gait modulation method were similar to those observed in animals, even from the perspective of energy consumption. This method should therefore be a preferred choice for motion generation and control in biomimetic quadrupedal locomotion.

  20. Bio-diesel: A candidate for a Nigeria energy mix

    International Nuclear Information System (INIS)

    Eze, T.; Dim, L. A.; Funtua, I. I.; Oladipo, M. O. A.

    2011-01-01

    This paper presents a review of bio-diesel development and economic potentials. The basics of biodiesel and its production technology are described. Attention is given to development potential, challenges and prospests of bio-diesel in Nigeria with ground facts on bio-diesel production feasibility in Nigeria highlighted.

  1. Sugar cane yield response to deficit irrigation at two growth stages

    International Nuclear Information System (INIS)

    Pene, C.B.G.

    1995-01-01

    A field study on sugar cane (Saccharum officinarum L.) yield response to deficit irrigation during both tillering and stem elongation stages, in order to increase crop water use efficiency, was carried out at Institut des Savanes (IDESSA) experimental station of Ferkessedougou, in Northern Ivory Coast. This cane crop tested was Co 449, an early - maturing genotype of indian origin. This experiment has been conducted for three consecutive years as virgin crop ( from November, 1991 to December 1992 ), first ratoon crop ( from December 1992 to January 1994 ) and as second ratoon crop ( from January 1994 to January 1995 ). The experimental design was a randomized complete block with 10 irrigation treatments in 4 replicates of 54 m sup2 sized plots. Water was applied through an improved furrow irrigation system. Crop water consumption was estimated using the water balance approach based on neutron probe and tensiometer measurements. This field water balance method required the determination of soil hydraulic conductivity as a function of water content and the neutron calibration curve. Data presented are related to the two ratoon crops for which field water balance measurements were investigated. It has been shown in the study that sugar cane growth and yield decline due to water deficit is significantly high during stem elongation as compared to tillering. As a result, the sugar cane tested was much more sensitive to water stress at stem elongation than at tillering. Therefore, deficit irrigation practice as to increase crop water use efficiency might be recommended at tillering rather than stem elongation. The water management strategy to be suggested here may consist of omitting irrigation during tillering ( assuming that the crop is successfully established ), for the benefit of stem elongation. As far as stem elongation is concerned, a moderate water deficit of about 25% with respect to the full irrigation regime appears to increase crop water use efficiency.6 figs

  2. Effect of process parameters on solvolysis liquefaction of Chlorella pyrenoidosa in ethanol–water system and energy evaluation

    International Nuclear Information System (INIS)

    Peng, Xiaowei; Ma, Xiaoqian; Lin, Yousheng; Wang, Xusheng; Zhang, Xiaoshen; Yang, Cheng

    2016-01-01

    Highlights: • Microalgae liquefaction in ethanol–water promoted bio-oil yield and property. • There existed synergistic effect between ethanol and water. • Ethanol contributed to deoxygenation and hydrogen-donating for bio-oil. • Net energy ratios of 20% and 40% ethanol were larger than pyrolysis technology. - Abstract: In this work, Chlorella pyrenoidosa was converted into bio-oil via solvolysis liquefaction in sub/supercritical ethanol–water system. The influence of reaction temperature (220–300 °C), retention time (0–120 min), solid/liquid ratio (6.3/75–50.0/75 g/mL) and ethanol content (0–100%) on bio-oil yield and property was investigated. The increase of reaction temperature and retention time both improved the bio-oil yield. The bio-oil yield increased firstly and then decreased when the solid/liquid ratio and ethanol content exceeded 18.8/75 g/mL and 80%, respectively. As the reaction temperature <260 °C and retention time <30 min, a soft and unsticky product was insoluble in dichloromethane (DCM) during the extraction process. The chemical composition of the DCM-insoluble product was analyzed by FTIR (Fourier Transform Infrared Spectrometry). The change tendency of O/C and H/C atomic ratio of bio-oil indicated that the addition of ethanol contributed to deoxygenation and hydrogen-donating for bio-oil, due to the dehydration and decarboxylation reaction. "1H NMR (hydrogen-1 nuclear magnetic resonance) analysis indicated that the main chemical compositions of bio-oil were aliphatic functional groups and heteroatomic functionalities (80.00–83.58%). The addition of ethanol enhanced the transesterification to form more ester. The NER (net energy ratio, the ratio of energy output to energy consumption) of solvolysis liquefaction in ethanol–water system (NER < 1) was less than that of hydrothermal liquefaction in sole water system (NER = 1.29), but the NERs of 20% and 40% ethanol content (NER = 0.91, 0.70 for 20% and 40% ethanol content

  3. Utilization of distillery slop for sugar cane production and environmental pollution reduction

    Directory of Open Access Journals (Sweden)

    Tasanee Thitakamol

    2010-07-01

    Full Text Available The research aimed to study the effect of distillery slop and chemical fertilizer on soil fertility, growth and yield of sugar cane. The field experiment was conducted on Mahasarakam soil series, using the K 88-92 variety of sugar cane. The results showed that distillery slop significantly increased some nutrients in soil, particularly potassium, magnesium, sulfur and chloride. The results also showed that application of distillery slop did not affect most of the physical properties of soil. Only the saturated hydraulic conductivity was significantly decreased under non-application of fertilizer. Under the application of distillery slop, chemical fertilizer had no significant effect on the yield and the juice quality of sugar cane for both crop years. However, under non-application of distillery slop in the first crop year, application of 21-0-0 and 20-20-0 fertilizer had a significant effect on cane yield. With the application of chemical fertilizer, distillery slop had an influence on the yield of sugar cane in both crop years while different doses of slop did not make any significant difference on cane yield. The average yields of the first crop year were 126.7, 195.6, 203.0 and 187.2 ton/hectare and those of the second crop year were 85.0, 150.0, 150.8 and 142.4 ton/hectare after the application of 0, 187.5, 375 and 562.5 m3/hectare, respectively. The results also showed that application of distillery slop did not have any significant effect on juice quality for both crop years. Investigation of slop trace under the ground surface indicated that application of distillery slop did not affect the quality of underground water as the deepest level of trace was only 50 centimeters.

  4. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  5. Mathematical algorithm to relate digital maps of distribution of biomass with algorithms of linear programming to optimize bio-energy delivery chains

    NARCIS (Netherlands)

    Velazquez-Marti, B.; Annevelink, E.

    2008-01-01

    Many linear programming models have been developed to model the logistics of bio-energy chains. These models help to determine the best set-up of bio-energy chains. Most of them use network structures built up from nodes with one or more depots, and arcs connecting these depots. Each depot is source

  6. Engineering BioBrick vectors from BioBrick parts

    Directory of Open Access Journals (Sweden)

    Knight Thomas F

    2008-04-01

    Full Text Available Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1 use the process to make and share new BioBrick vectors; (2 expand the current collection of BioBrick vector parts; and (3 characterize and improve the available collection of BioBrick vector parts.

  7. Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: From nano- to macro scopes.

    Science.gov (United States)

    Kim, Bongkyu; An, Junyeong; Fapyane, Deby; Chang, In Seop

    2015-11-01

    The current trend of bio-electrochemical systems is to improve strategies related to their applicability and potential for scaling-up. To date, literature has suggested strategies, but the proposal of correlations between each research field remains insufficient. This review paper provides a correlation based on platform techniques, referred to as bio-electronics platforms (BEPs). These BEPs consist of three platforms divided by scope scale: nano-, micro-, and macro-BEPs. In the nano-BEP, several types of electron transfer mechanisms used by electrochemically active bacteria are discussed. In the micro-BEP, factors affecting the formation of conductive biofilms and transport of electrons in the conductive biofilm are investigated. In the macro-BEP, electrodes and separators in bio-anode are debated in terms of real applications, and a scale-up strategy is discussed. Overall, the challenges of each BEP are highlighted, and potential solutions are suggested. In addition, future research directions are provided and research ideas proposed to develop research interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modelling energy systems for developing countries

    International Nuclear Information System (INIS)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of industrialised countries, which has consequences for energy modelling. New requirements need to be met by present-day energy models to adequately explore the future of developing countries' energy systems. This paper aims to assess if the main characteristics of developing countries are adequately incorporated in present-day energy models. We first discuss these main characteristics, focusing particularly on developing Asia, and then present a model comparison of 12 selected energy models to test their suitability for developing countries. We conclude that many models are biased towards industrialised countries, neglecting main characteristics of developing countries, e.g. the informal economy, supply shortages, poor performance of the power sector, structural economic change, electrification, traditional bio-fuels, urban-rural divide. To more adequately address the energy systems of developing countries, energy models have to be adjusted and new models have to be built. We therefore indicate how to improve energy models for increasing their suitability for developing countries and give advice on modelling techniques and data requirements

  9. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Larson, E.D.; Williams, R.H.; Ogden, J.M.; Hylton, M.G.

    1991-01-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  10. The impact of invasive cane toads on native wildlife in southern Australia.

    Science.gov (United States)

    Jolly, Christopher J; Shine, Richard; Greenlees, Matthew J

    2015-09-01

    Commonly, invaders have different impacts in different places. The spread of cane toads (Rhinella marina: Bufonidae) has been devastating for native fauna in tropical Australia, but the toads' impact remains unstudied in temperate-zone Australia. We surveyed habitat characteristics and fauna in campgrounds along the central eastern coast of Australia, in eight sites that have been colonized by cane toads and another eight that have not. The presence of cane toads was associated with lower faunal abundance and species richness, and a difference in species composition. Populations of three species of large lizards (land mullets Bellatorias major, eastern water dragons Intellagama lesueurii, and lace monitors Varanus varius) and a snake (red-bellied blacksnake Pseudechis porphyriacus) were lower (by 84 to 100%) in areas with toads. The scarcity of scavenging lace monitors in toad-invaded areas translated into a 52% decrease in rates of carrion removal (based on camera traps at bait stations) and an increase (by 61%) in numbers of brush turkeys (Alectura lathami). The invasion of cane toads through temperate-zone Australia appears to have reduced populations of at least four anurophagous predators, facilitated other taxa, and decreased rates of scavenging. Our data identify a paradox: The impacts of cane toads are at least as devastating in southern Australia as in the tropics, yet we know far more about toad invasion in the sparsely populated wilderness areas of tropical Australia than in the densely populated southeastern seaboard.

  11. Ergonomics productivity enhancement at government-owned sugar cane factories in east Java, Indonesia.

    Science.gov (United States)

    Manuaba, A

    1995-06-01

    To cope, both with the increasing demand for sugar and to win the global competition as well, government-owned sugar cane limited number xxi-xxii, has decided to enhance its productivity, among other things, by implementing ergonomics principles within their factories. In the execution, ergonomics application have been carried out since 1992, which resulted in safer, healthier, and more efficient working conditions and environment. Some of the improvements yielded economic gains through higher productivity via increased output, lower cost, faster processing, etc. Improvements related to cane transloading and unloading processes resulted in a higher amount of cane being transferred from the trucks to the lorries as well as from the lorries to the cane table. Fewer clinical visits, lower health care costs, more efficient inspection, and fewer fatigue complaints are also achieved by improvement steps, which increase the productivity as end results. With all those economic gains, full and long lasting management's concern and commitment could be created without a doubt.

  12. Cane pruning on Chardonnay grapevine in the high-altitude regions of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Filho José Luiz Marcon

    2016-01-01

    Full Text Available High-altitude regions of southern Brazil, located above 900 m above sea level, the cordon training with spur pruning is widely used because of easier application. In these regions, Chardonnay wine grape shows potential to produce quality wines, however, in commercial vineyards, the training system used has not provided productivities that makes economically viable the cultivation of this variety. Given this, the present study aimed to evaluate the effect of different cane-pruning systems on the vegetative, productive and enological potential of Chardonnay grapevines grown in the high-altitude region of Southern Brazil. The experiment was conducted in a commercial Chardonnay vineyard, located in São Joaquim – Santa Catarina State (28o17 ′39”S and 49∘ 55′56” W, to 1230 m a.s.l during 2015 and 2016 vintages. Chardonnay vines (grafted on 1103 Paulsen were planted in 2010, with a 3.0 m (row × 1.0 m (vine spacing. The treatments consisted of different cane-pruning systems: Cordon spur-pruning (control; Sylvoz; Cazenave; Capovolto; single Guyot and double Guyot. Pruning was performed in August of each year when the buds were in the green tip developmental stage. Data was analyzed by Scott Knott test (p < 0.05 following a randomized block design with four replicates, each consisting of 12 vines per plot. We observed higher yield in the Cazenave and double Guyot training system with three and two more tons of grapes than spur-pruning respectively. The bud fertility was higher in plants trained in double Guyot. Vines spur-pruned showed higher relation of leaf area: production, with values above 100 cm2 g−1 grape at 2016 vintage. Commercial maturity of grapes (soluble solids, acidity and polyphenols did not differ among training systems studied. The results suggest that cane-pruning systems could be an alternative to increase production efficiency of Chardonnay in high-altitude region of southern Brazil.

  13. Microdrive- A research program on sustainable bio-ethanol and biogas systems

    International Nuclear Information System (INIS)

    Schnurer, J.; Schnurer, A.

    2009-01-01

    Microdrive Microbially Derived Energy is a thematic research program on sustainable bio fuel production at the Faculty for Natural Resources and Agriculture (NL), Swedish University of Agricultural Sciences (SLU). The program has the following long term goals: To maximise the energy yield of ethanol and biogas processes, improve overall process economy through development of novel co-products, and to minimise environmental impact. (Author)

  14. 75 FR 14479 - Reallocation of Unused Fiscal Year 2010 Tariff-Rate Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2010-03-25

    ...-Rate Quota Volume for Raw Cane Sugar AGENCY: Office of the United States Trade Representative. ACTION... (TRQ) for imported raw cane sugar. DATES: Effective Date: March 25, 2010. ADDRESSES: Inquiries may be... (HTS), the United States maintains TRQs for imports of raw cane and refined sugar. Section 404(d)(3) of...

  15. 75 FR 26316 - Allocation of Additional Fiscal Year (FY) 2010 In-Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2010-05-11

    ...-Quota Volume for Raw Cane Sugar AGENCY: Office of the United States Trade Representative. ACTION: Notice...) for imported raw cane sugar. DATES: Effective Date: May 11, 2010. ADDRESSES: Inquiries may be mailed... (HTS), the United States maintains TRQs for imports of raw cane and refined sugar. Section 404(d)(3) of...

  16. Production of Microbial Transglutaminase on Media Made from Sugar Cane Molasses and Glycerol

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez

    2009-01-01

    Full Text Available Transglutaminase is an enzyme that catalyses an acyl transfer reaction between γ-carboxamide groups of glutaminyl residues and lysine residues in proteins. Due to this property, this enzyme is used for enhancing textural properties of protein-rich food. The transglutaminase used as food additive is obtained by microorganisms, mainly by Streptoverticillium ladakanum. On the other hand, sugar cane molasses is a viscous liquid rich in noncrystallized carbohydrates (saccharose, glucose and fructose. In this work, the feasibility of using sugar cane molasses as a carbon source for the production of microbial transglutaminase by Streptoverticillium ladakanum NRRL 3191 has been studied. Carbon sources including sugar cane molasses (60 g of total sugars per L, glycerol (60 g/L and their mixture in a ratio of 1:1 (30 g/L of each were evaluated. Time course of microbial growth, transglutaminase activity and carbon source consumption were determined every 24 h during 120 h of fermentations at three agitation speeds (200, 300 or 400 rpm. The results showed that with the increase in agitation speed, the biomass concentration increased up to 8.39 g/L in the medium containing sugar cane molasses alone or the mixture of molasses and glycerol. The highest transglutaminase activity was obtained at 400 rpm in the medium containing a mixture of molasses and glycerol, reaching 0.460 U/mL, while in the medium containing sugar cane molasses alone, the activity was 0.240 U/mL, and using glycerol alone it was 0.250 U/mL. These results show that sugar cane molasses is a suitable medium for transglutaminase production when it is combined with glycerol.

  17. Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation

    NARCIS (Netherlands)

    Salim, S.; Vermuë, M.H.; Wijffels, R.H.

    2012-01-01

    The effect of ratio between autoflocculating and target microalgae in bio-flocculation was studied with emphasis on the recovery, sedimentation rate and energy demand for harvesting the target microalgae. When the autoflocculating microalgae Ettlia texensis, Ankistrodesmus falcatus and Scenedesmus

  18. CANE WEAVING IN ONITSHA: PROCESSES, TECHNIQUES AND ...

    African Journals Online (AJOL)

    printserver

    generally are “hollow or pith filled and are usually slender and flexible plants which grow ... This local cane industry provides jobs for the jobless and local .... of Structural Adjustment Programme (SAP), when there was a ban on the importation ...

  19. Soil water nitrate concentrations in giant cane and forest riparian buffer zones

    Science.gov (United States)

    Jon E. Schoonover; Karl W. J. Williard; James J. Zaczek; Jean C. Mangun; Andrew D. Carver

    2003-01-01

    Soil water nitrate concentrations in giant cane and forest riparian buffer zones along Cypress Creek in southern Illinois were compared to determine if the riparian zones were sources or sinks for nitrogen in the rooting zone. Suction lysimeters were used to collect soil water samples from the lower rooting zone in each of the two vegetation types. The cane riparian...

  20. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  1. Granulated bog iron ores as sorbents in passive (bio)remediation systems for arsenic removal

    Science.gov (United States)

    Debiec, Klaudia; Rzepa, Grzegorz; Bajda, Tomasz; Uhrynowski, Witold; Sklodowska, Aleksandra; Krzysztoforski, Jan; Drewniak, Lukasz

    2018-03-01

    The main element of PbRS (passive (bio)remediation systems) are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (ad)sorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (micro)organisms used in these systems. Our previous studies showed that bog iron ores (BIOs) meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i) to investigate the ability of granulated BIOs (gBIOs) to remove arsenic from various types of contaminated waters, and (ii) to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (ad)sorption of other elements, i.e. zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite) were effectively removed. Arsenic concentration after treatment was <100 µg/L, which is below the limit for industrial water.

  2. Antioxidant Effects of Grape Vine Cane Extracts from Different Chinese Grape Varieties on Edible Oils

    OpenAIRE

    Min, Zhuo; Guo, Zemei; Wang, Kai; Zhang, Ang; Li, Hua; Fang, Yulin

    2014-01-01

    This study involved the determination of the peroxide value (POV) as a measure of the resistance of the oxidation of edible oil with grape vine cane additives to assess their antioxidation potential. The study demonstrated that grape extracts of canes could effectively inhibit the lipid oxidation of edible oils and that this ability varied significantly due to the different extraction solvents employed, as well as to the different varieties of canes used. Lipid oxidation of edible oils was si...

  3. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  4. Energy conservation and use of renewable energies in the bio-industries 2

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, F.

    1982-01-01

    The proceedings are presented of the Second International Seminar on Energy Conservation and the Use of Renewable Energies in the Bio-industries. Of 106 papers presented, the following 5 are of particular forestry interest: Brewbaker, J.L.; MacDicken, K.; Beldt, R. van den. Tropical nitrogen-fixing fuelwood trees. 108-119 (Refs. 15). Farnham, R.S.; Garton, S.; Louis, K.A.; Read, P.E. Propagating and establishing bioenergy plantations. 274-283 (Refs. 14). Salix and Alnus spp. in the marginal wetlands of northern Minnesota, USA. Kio, P.R.O. Factors and policies affecting forest resources use and conservation in Africa. 425-432 (Refs. 9), including discussion of the causes and consequences of deforestation. Plumptre, R.A.; Sandells, A. Construction, performance and economics of simple solar timber drying kilns. 577-586 (Refs. 11). Yermanos, D.M. Jojoba - outlook for maximizing oil production. 738-748 (Refs. 1). It describes experiments on seed and oil yields of Simmondsia chinensis in California.

  5. Energy harvesting for human wearable and implantable bio-sensors.

    Science.gov (United States)

    Mitcheson, Paul D

    2010-01-01

    There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.

  6. Antioxidant Effects of Grape Vine Cane Extracts from Different Chinese Grape Varieties on Edible Oils

    Directory of Open Access Journals (Sweden)

    Zhuo Min

    2014-09-01

    Full Text Available This study involved the determination of the peroxide value (POV as a measure of the resistance of the oxidation of edible oil with grape vine cane additives to assess their antioxidation potential. The study demonstrated that grape extracts of canes could effectively inhibit the lipid oxidation of edible oils and that this ability varied significantly due to the different extraction solvents employed, as well as to the different varieties of canes used. Lipid oxidation of edible oils was significantly reduced under an accelerated storage condition of 70 ± 1 °C in the presence of Vitamin C (VC, which was chosen as a synergist of grape vine cane extract. A 4:1 ratio of Victoria Blanc-ethyl acetate fraction (EAF and VC led to a significant lowering of the peroxide value and indicated a better antioxidant effect. Thus, these results indicated that some varieties of grape vine cane extracts could be applied as natural antioxidants for elevation of the quality of edible oils in the food industry.

  7. Utilisation of biological and secondary raw materials VI. Recycling - conversion to energy; Bio- und Sekundaerrohstoffverwertung VI. Stofflich - energetisch

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, Klaus; Kern, Michael

    2011-07-01

    In a lot of contributions the Kasseler waste and bio-energy forum reports on a sustainable management of wastes. The organizers hope that this results in a lively dialogue on sustainable activities in waste management corresponding to the responsibility towards future generations. Within the 23rd Kasseler waste and bio-energy forum at 12th to 14th April, 2010 in Kassel (Federal Republic of Germany) lectures were held to the following themes: (1) Perspectives of the waste management; (2) Ressource conservation and securing of raw material; (3) Common capture of packages and high-grade materials; (4) Bin for reusable materials - system trusteeship, material flows, qualities, financing, practical examples; (5) Industrial waste flows, EBS quality assurance and increase of efficiency; (6) New technological developments in the area of fermentation of biological wastes; (7) Perspectives of material and energetical utilization of biological wastes; (8) Renewable Energy Law and direct marketing of 'green' electricity; (9) Technology and experiences with biogas processing; (10) Fermentation of biogenic residues and catering waste; (11) Increase of efficiency of mechanical-biological treatment plants; (12) Mechanical-biological treatment technology in an international environment; (13) Concepts of energetic utilization for landfill sites; (14) Landfill law and landfill after-care; (15) Renaturation of landfills.

  8. 76 FR 42160 - Allocation of Additional Fiscal Year (FY) 2011 In-Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2011-07-18

    ...-Quota Volume for Raw Cane Sugar AGENCY: Office of the United States Trade Representative. ACTION: Notice...) for imported raw cane sugar. USTR is also reallocating a portion of the unused original FY 2011 TRQ... imports of raw cane and refined sugar. Section 404(d)(3) of the Uruguay Round Agreements Act (19 U.S.C...

  9. Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996)

    International Nuclear Information System (INIS)

    Macedo, Isaias de Carvalho

    1998-01-01

    Production of sugar cane in Brazil in the 1996/97 season was 273 million t (harvested wet wt)/year, leading to 13.7 million m 3 ethanol and 13.5 million t of sugar. Emissions of greenhouse gases were evaluated for the agronomic/industrial production processes and product utilization including N 2 O and methane. Up-dating the energy balance from 1985 to 1995 indicated the effect of the main technological trends; apparently, fossil fuel consumption due to the increasing agricultural mechanization is largely off-set by technological advances in transportation and overall conversion efficiencies (agricultural and industrial). Output/input energy ratio in ethanol grew to 9.2 (average) and 11.2 (best values). Net savings in CO 2 (equivalent) emissions, due to ethanol and bagasse substitution for fossil fuels, correspond to 46.7 x 10 6 t CO 2 (equivalent)/year, nearly 20% of all CO 2 emissions from fuels in Brazil. Ethanol alone is responsible for 64% of the net avoided emissions. (author)

  10. Energy-Water Microgrid Case Study at the University of Arizona's BioSphere 2

    Science.gov (United States)

    Daw, J.; Macknick, J.; Kandt, A.; Giraldez, J.

    2016-12-01

    Microgrids can provide reliable and cost-effective energy services in a variety of conditions and locations. To date, there has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage the synergies associated with designing and operating renewable energy and water systems in a coordinated framework. Water and wastewater treatment equipment can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Co-management and optimization of energy and water resources could lead to improved reliability and economic operating conditions. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributed generation, Defense operations, and many parts of the world lacking critical infrastructure.The National Renewable Energy Laboratory (NREL) and the University of Arizona have been jointly researching energy-water microgrid opportunities through an effort at the university's BioSphere 2 (B2) Earth systems science research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the existence and criticality of water and energy infrastructure, and its ability to operate connected-to or disconnected-from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs in the food-energy-water nexus. The research effort at B2 identified the technical potential and associated benefits of an energy-water microgrid through the evaluation of energy ancillary services and peak load reductions and quantified the potential for B2 water-related loads to be utilized and modified to provide

  11. A Life Cycle Analysis on a Bio-DME production system considering the species of biomass feedstock in Japan and Papua New Guinea

    International Nuclear Information System (INIS)

    Higo, Masashi; Dowaki, Kiyoshi

    2010-01-01

    This paper describes the performance and/or CO 2 intensities of a Bio-DME (Biomass Di-methyl Ether) production system, considering the differences of biomass feedstock. In the past LCA studies on an energy chain model, there is little knowledge on the differences of biomass feedstock and/or available condition. Thus, in this paper, we selected Papua New Guinea (PNG) which has good potential for supply of an energy crop (a short rotation forestry), and Japan where wood remnants are available, as model areas. Also, we referred to 9 species of biomass feedstock of PNG, and to 8 species in Japan. The system boundary on our LCA consists of (1) the pre-treatment process, (2) the energy conversion process, and (3) the fuel transportation process. Especially, since the pre-treatment process has uncertainties related to the moisture content of biomass feedstock, as well as the distance from the cultivation site to the energy plant, we considered them by the Monte Carlo simulation. Next, we executed the process design of the Bio-DME production system based on the basic experimental results of pyrolysis and char gasification reactions. Due to these experiments, the gas components of pyrolysis and the gasification rate under H 2 O (steam) and CO 2 were obtained. Also, we designed the pressurized fluid-bed gasification process. In a liquefaction process, that is, a synthesis process of DME, the result based on an equilibrium constant was used. In the proposed system, a steam turbine for an auxiliary power was assumed to be equipped, too. The energy efficiencies are 39.0-56.8 LHV-%, depending upon the biomass species. Consequently, CO 2 intensities in the whole system were 16.3-47.2 g-CO 2 /MJ-DME in the Japan case, and 12.2-36.7 g-CO 2 /MJ-DME in the PNG one, respectively. Finally, using the results of CO 2 intensities and energy efficiencies, we obtained the regression equations as parameters of hydrogen content and heating value of a feedstock. These equations will be

  12. Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process

    International Nuclear Information System (INIS)

    Fujishima, Hidekatsu; Takekoshi, Kenichi; Kuroki, Tomoyuki; Tanaka, Atsushi; Otsuka, Keiichi; Okubo, Masaaki

    2013-01-01

    Highlights: • A multi-fuel boiler system combined with NO x aftertreatment is developed. • NO x is removed from flue gas by a plasma-chemical hybrid process. • Waste bio-oils are utilized as renewable energy source and for CO 2 reduction. • Ultra low NO x emission less than 2 ppm is achieved. • The boiler system is applicable for industrial use. - Abstract: A super-clean boiler system comprising a multi-fuel boiler and a reactor for plasma-chemical hybrid NO x aftertreatment is developed, and its industrial applications are examined. The purpose of this research is to optimally reduce NO x emission and utilize waste bio-oil as a renewable energy source. First, NO oxidation using indirect plasma at elevated flue gas temperatures is investigated. It is clarified that more than 98% of NO is oxidized when the temperature of the flue gas is less than 130 °C. Three types of waste bio-oils (waste vegetable oil, rice bran oil, and fish oil) are burned in the boiler as fuels with a rotary-type burner for CO 2 reduction considering carbon neutrality. NO x in the flue gases of these bio-oils is effectively reduced by the indirect plasma-chemical hybrid treatment. Ultralow NO x emission less than 2 ppm is achieved for 450 min in the firing of city natural gas fuel. The boiler system can be successfully operated automatically according to unsteady steam demand and using an empirical equation for Na 2 SO 3 supply rate, and can be used in industries as an ideal NO x control technology

  13. Cane (Rattan) entreprises as family business in Bangladesh : a case study

    OpenAIRE

    Alam, Mahbubul; Furukawa, Yasushi

    2009-01-01

    Cane (Calamus spp), also known as rattan, is an important non-timber forest product used extensively all over Bangladesh as a raw material for making furniture, handi-craft and other household articles. The study has attempted to generate information on existing state of cane based family business, identify problems, and recommend solu-tions. Structured questionnaire has been employed in the field survey. During survey it was found that about 80% enterprises are traditionally inherited to the...

  14. WHITE PAPER: DEMONSTRATION OF EQUIVALENCY OF CANE AND SOFTWOOD BASED CELOTEX FOR 9975 PACKAGING

    International Nuclear Information System (INIS)

    Varble, J

    2007-01-01

    Cane-based Celotex(trademark) has been used extensively in various DOE packages as a thermal insulator and impact absorber. Cane-based Celotex(trademark) for the 9975 was manufactured by Knight-Celotex Fiberboard at their Marrero Plant in Louisiana. However, Knight-Celotex Fiberboard shut down their Marrero Plant in early 2007 due to impacts from hurricane Katrina and other economic factors. Therefore, cane-based Celotex(trademark) is no longer available for use in the manufacture of new 9975 packages. Knight-Celotex Fiberboard has Celotex(trademark) manufacturing plants in Danville, VA and Sunbury, PA that use softwood and hardwood, respectively, as a raw material in the manufacturing of Celotex(trademark). The purpose of this White Paper is to demonstrate that softwood-based Celotex(trademark) from the Knight-Celotex Danville Plant has performance equivalent to cane-based Celotex(trademark) from the Knight-Celotex Marrero Plant for transportation in a 9975 package

  15. Distribution and importance of spiders inhabiting a Brazilian sugar cane plantation

    Directory of Open Access Journals (Sweden)

    Isabela Maria Piovesan Rinaldi

    2002-07-01

    Full Text Available The spider fauna (Araneae of a sugar eane plantation was surveyed monthly by hand colteetion and beating vegetation in sugar cane fields across Botucatu, State of São Paulo, Brazil. Composition and rchness (family and species where identifieation to species was possible microhabitat preferenees were reeorded, and diversity and evenness indices were calculated. A total of 1291 spiders belonging to 73 species and 20 families were collected. The most diverse families were Theridiidae, Salticidae, and Araneidae, and the most abundant ones were Theridiidae, Saltieidae, Anyphaenidae, and Araneidae, Seven species represented 58.6% of the total fauna, with Crysso pulcherrima (Mello-Leitão,1917 (Theridiidae composing 28.2%. About 65% of the spiders occupied the upper part of the plants (above 20 cm. Five spider species were present in the sugar cane throughout crop development. Evidence of spiders feeding on sugar cane pest species was observed.

  16. A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

    Science.gov (United States)

    Shi, Cong; Luo, Gang

    2018-04-01

    This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

  17. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

    OpenAIRE

    Alves, Vanessa N.; Borges, Simone S. O.; Coelho, Nivia M. M.

    2011-01-01

    This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese), using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extr...

  18. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    Science.gov (United States)

    Goyal, Garima

    Fossil fuels have been the major source for liquid transportation fuels for ages. However, decline in oil reserves and environmental concerns have raised a lot of interest in alternative and renewable energy sources. One promising alternative is the conversion of plant biomass into ethanol. The primary biomass feed stocks currently being used for the ethanol industry have been food based biomass (corn and sugar cane). However, interest has recently shifted to replace these traditional feed-stocks with more abundant, non-food based cellulosic biomass such as agriculture wastes (corn stover) or crops (switch grass). The use of cellulosic biomass as feed stock for the production of ethanol via bio-chemical routes presents many technical challenges not faced with the use of corn or sugar-cane as feed-stock. Recently, a new process called consolidated Bio-processing (CBP) has been proposed. This process combines simultaneous saccharification of lignocellulose with fermentation of the resulting sugars into a single process step mediated by a single microorganism or microbial consortium. Although there is no natural microorganism that possesses all properties of lignocellulose utilization and ethanol production desired for CBP, some bacteria and fungi exhibit some of the essential traits. The yeast Saccharomyces cerevisiae is the most attractive host organism for the usage of this strategy due to its high ethanol productivity at close to theoretical yields (0.51g ethanol/g glucose consumed), high osmo- and ethanol- tolerance, natural robustness in industrial processes, and ease of genetic manipulation. Introduction of the cellulosome, found naturally in microorganisms, has shown new directions to deal with recalcitrant biomass. In this case enzymes work in synergy in order to hydrolyze biomass more effectively than in case of free enzymes. A microbial consortium has been successfully developed, which ensures the functional assembly of minicellulosome on the yeast surface

  19. Soil, water and nutrient losses by interrill erosion from green cane cultivation

    Directory of Open Access Journals (Sweden)

    Gilka Rocha Vasconcelos da Silva

    2012-06-01

    Full Text Available Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface, and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.

  20. Use of non-conventional energy sources for power generation

    International Nuclear Information System (INIS)

    Umapathaiah, R.; Sharma, N.D.

    1999-01-01

    India being a developing country, cannot afford to meet the power and energy demand only from conventional sources. Power generation can be augmented by using non-conventional energy sources. Sufficient importance must be given for recovery of energy from industrial/urban waste. Solar heating system must replace industrial and domestic sectors. Solar photovoltaic, biogas plant, biomass based gasified system must also be given sufficient place in energy sector. More thrust has to be given for generation of power by using sugar cane which is a perennial source

  1. Granulated Bog Iron Ores as Sorbents in Passive (BioRemediation Systems for Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Klaudia Debiec

    2018-03-01

    Full Text Available The main element of PbRS (passive (bioremediation systems are sorbents, which act as natural filters retaining heavy metals and carriers of microorganisms involved in water treatment. Thus, the effectiveness of PbRS is determined by the quality of the (adsorbents, which should be stable under various environmental conditions, have a wide range of applications and be non-toxic to (microorganisms used in these systems. Our previous studies showed that bog iron ores (BIOs meet these requirements. However, further investigation of the physical and chemical parameters of BIOs under environmental conditions is required before their large-scale application in PbRS. The aim of this study was (i to investigate the ability of granulated BIOs (gBIOs to remove arsenic from various types of contaminated waters, and (ii to estimate the application potential of gBIOs in technologies dedicated to water treatment. These studies were conducted on synthetic solutions of arsenic and environmental samples of arsenic contaminated water using a set of adsorption columns filled with gBIOs. The experiments performed in a static system revealed that gBIOs are appropriate arsenic and zinc adsorbent. Dynamic adsorption studies confirmed these results and showed, that the actual sorption efficiency of gBIOs depends on the adsorbate concentration and is directly proportional to them. Desorption analysis showed that As-loaded gBIOs are characterized by high chemical stability and they may be reused for the (adsorption of other elements, i.e., zinc. It was also shown that gBIOs may be used for remediation of both highly oxygenated waters and groundwater or settling ponds, where the oxygen level is low, as both forms of inorganic arsenic (arsenate and arsenite were effectively removed. Arsenic concentration after treatment was <100 μg/L, which is below the limit for industrial water.

  2. Creation and modelling of bio-cleaning, and rehabilitation systems of territories

    International Nuclear Information System (INIS)

    Mineeva, N.Ya.; Markelov, A.V.; Markelov, D.A.; Dmitriev, S.A.; Sobolev, A.I.; Petrov, A.S.; Prokuronov, I.B.

    2005-01-01

    Classification and inventory of bio-cleaning and rehabilitation system for areas were developed on the basis of functional capabilities of biota. The paper provides the principal schemes and models of biopotential use in target barriers - 'Radioactive contamination localization', 'Environmental Sanitation','Contaminated Areas Restoration' - and algorithms for creation of bio-barriers and determination of tolerance of regional limits. (author)

  3. Decomposition of sugar cane crop residues under different nitrogen rates

    Directory of Open Access Journals (Sweden)

    Douglas Costa Potrich

    2014-09-01

    Full Text Available The deposition of organic residues through mechanical harvesting of cane sugar is a growing practice in sugarcane production system. The maintenance of these residues on the soil surface depends mainly on environmental conditions. Nitrogen fertilization on dry residues tend to retard decomposition of these, providing benefits such as increased SOM. Thus, the object of this research was to evaluate the effect of different doses of nitrogen on sugar cane crop residues, as its decomposition and contribution to carbon sequestration in soil. The experiment was conducted in Dourados-MS and consisted of a randomized complete block design. Dried residues were placed in litter bags and the treatments were arranged in a split plot, being the four nitrogen rates (0, 50, 100 and 150 kg ha-1 N the plots, and the seven sampling times (0, 30, 60, 90, 120, 150 and 180 the spit plots. Decomposition rates of residues, total organic carbon and labile carbon on soil were analysed. The application of increasing N doses resulted in an increase in their decomposition rates. Despite this, note also the mineral N application as a strategy to get higher levels of labile carbon in soil.

  4. Preparation of the soil for the energy policy turnaround. With bio-energy for more climate protection and sustainability. Collection of essays with contributions from science, practice and policy; Den Boden bereiten fuer die Energiewende. Mit Bioenergie fuer mehr Klimaschutz und Nachhaltigkeit. Aufsatzsammlung mit Beitraegen aus Wissenschaft, Praxis und Politik

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    In order to create acceptance by understanding and in order to support the energy policy turnaround, the Agency for Renewable Energies (Berlin, Federal Republic of Germany) supplies several contributions to the following topics: (1) Bio-energy and the energy policy turnaround; (2) Sustainability by means of bio-energy, but how?; (3) How can energy crops modify the region?; (4) Bio-Energy and the landscape of the future; (5) Isles with green energy: Bio-Energy for decentralized solutions; (6) Bio-energy and organic agriculture; (7) Forest and field in the climate protection.

  5. An integrated approach for the validation of energy and environmental system analysis models : used in the validation of the Flexigas Excel BioGas model

    NARCIS (Netherlands)

    Pierie, Frank; van Someren, Christian; Liu, Wen; Bekkering, Jan; Hengeveld, Evert Jan; Holstein, J.; Benders, René M.J.; Laugs, Gideon A.H.; van Gemert, Wim; Moll, Henri C.

    2016-01-01

    A review has been completed for a verification and validation (V&V) of the (Excel) BioGas simulator or EBS model. The EBS model calculates the environmental impact of biogas production pathways using Material and Energy Flow Analysis, time dependent dynamics, geographic information, and Life Cycle

  6. 76 FR 21418 - Fiscal Year 2011 Allocation of Additional Tariff-Rate Quota Volume for Raw Cane Sugar and...

    Science.gov (United States)

    2011-04-15

    ...-Rate Quota Volume for Raw Cane Sugar and Reallocation of Unused Fiscal Year 2011 Tariff-Rate Quota Volume for Raw Cane Sugar AGENCY: Office of the United States Trade Representative. ACTION: Notice...) for imported raw cane sugar and of country-by-country reallocations of the FY 2011 in-quota quantity...

  7. 76 FR 50285 - Fiscal Year 2012 Tariff-Rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2011-08-12

    ... for Raw Cane Sugar, Refined and Specialty Sugar and Sugar-Containing Products AGENCY: Office of the... quantity of the tariff-rate quotas for imported raw cane sugar, refined and specialty sugar and sugar...), the United States maintains tariff-rate quotas (TRQs) for imports of raw cane sugar and refined sugar...

  8. 77 FR 25012 - Fiscal Year 2012 Allocation of Additional Tariff-Rate Quota Volume for Raw Cane Sugar and...

    Science.gov (United States)

    2012-04-26

    ...-Rate Quota Volume for Raw Cane Sugar and Reallocation of Unused Fiscal Year 2012 Tariff-Rate Quota Volume for Raw Cane Sugar AGENCY: Office of the United States Trade Representative. ACTION: Notice...) for imported raw cane sugar and of country-by-country reallocations of the FY 2012 in-quota quantity...

  9. Assessment of multifunctional bio fertilizers on tomato plants cultivated under a fertigation system

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Ahmad Nazrul Abdul Wahid; Khairuddin Abdul Rahim

    2012-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) has developed a series of multifunctional bio organic fertilizers, namely, MULTIFUNCTIONAL BIOFERT PG and PA and MF-BIOPELLET, in an effort to reduce dependency on chemical fertilizer for crop production. These products contain indigenous microorganisms that have desired characteristics, which include plant growth promoting, phosphate solubilising, antagonistic towards bacterial wilt disease and enhancing N 2 -fixing activity. These products were formulated as liquid inoculants, and introduced into a fertigation system in an effort to reduce usage of chemical fertilizers. A greenhouse trial was conducted to evaluate the effectiveness of multifunctional bio fertilizers on tomato plants grown under a fertigation system. Multifunctional bio fertilizer products were applied singly and in combination with different rates of NPK in the fertigation system. Fresh and dry weights of tomato plants were determined. Application of multifunctional bio fertilizer combined with 20 g NPK resulted in significantly higher fresh and dry weights as compared to other treatments. (author)

  10. Effect of organic matter and Si liquid fertilizer on growth and yield of sugar cane

    Directory of Open Access Journals (Sweden)

    Djajadi Djajadi

    2017-02-01

    Full Text Available Sugarcane is known to absorb more Si than any other nutrient from the soil; therefore continuous cropping of the plant at the same soil would bring consequences of more Si and organic matter depletion. Silicon (Si is considered as a beneficial nutrient for sugarcane production while organic matter is well known as soil amendment. Field study was carried out to know the effect of organic and Si liquid fertilizer on growth, Si and N uptake, and yield of cane variety of PSBM 901. The study field was located at Kempleng village, Purwoasri, East Java and the study was done from May 2013 up to September 2014. Split plot design with three replicates was employed to arrange treatments. Organic matter types (no organic matter, Crotalaria juncea and manure were set as main plots while Si liquid fertilizer concentration (0, 15% Si and 30% S were arranged as sub plots. C juncea was planted at 15 days before planting of sugar cane, and after 35 days the C juncea were chopped and mixed into the soil. Manure was added one week before sugar cane was planted. Si liquid fertilizer was sprayed to the whole part of sugar cane plant at 30 and 50 days after sugar cane was planted. All treatments received basal fertilizer of 800 kg ZA/ha, 200 kg SP 36/ha and 300 kg KCl/ha. Results showed that interaction between organic matter and Si liquid fertilizer significantly affected on Si and N absorption, length of stem, yield and rendement of sugar cane. Addition of manure and followed by spraying of 30% Si liquid fertilizer gave the highest value of S and N absorption (869 g SiO2/plant and 720 g N/plant, cane yield (155.74 tons/ha and rendement (8.15%.

  11. Bio-methanol. How energy choices in the western United States can help mitigate global climate change

    International Nuclear Information System (INIS)

    Vogt, Kristiina A.; Vogt, Daniel J.; Edmonds, Robert L.; Suntana, Asep S.; Patel-Weynand, Toral; Upadhye, Ravi; Edlund, David; Gordon, John C.; Sigurdardottir, Ragnhildur; Miller, Michael; Roads, Patricia A.; Andreu, Michael G.

    2009-01-01

    Converting available biomass from municipal, agricultural and forest wastes to bio-methanol can result in significant environmental and economic benefits. Keeping these benefits in mind, one plausible scenario discussed here is the potential to produce energy using bio-methanol in five states of the western United States. In this scenario, the bio-methanol produced is from different biomass sources and used as a substitute for fossil fuels in energy production. In the U.S. West, forest materials are the dominant biomass waste source in Idaho, Montana, Oregon and Washington, while in California, the greatest amount of available biomass is from municipal wastes. Using a 100% rate of substitution, bio-methanol produced from these sources can replace an amount equivalent to most or all of the gasoline consumed by motor vehicles in each state. In contrast, when bio-methanol powered fuel cells are used to produce electricity, it is possible to generate 12-25% of the total electricity consumed annually in these five states. As a gasoline substitute, bio-methanol can optimally reduce vehicle C emissions by 2-29 Tg of C (23-81% of the total emitted by each state). Alternatively, if bio-methanol supported fuel cells are used to generate electricity, from 2 to 32 Tg of C emissions can be avoided. The emissions avoided, in this case, could equate to 25-32% of the total emissions produced by these particular western states when fossil fuels are used to generate electricity. The actual C emissions avoided will be lower than the estimates here because C emissions from the methanol production processes are not included; however, such emissions are expected to be relatively low. In general, there is less carbon emitted when bio-methanol is used to generate electricity with fuel cells than when it is used as a motor vehicle fuel. In the state of Washington, thinning 'high-fire-risk' small stems, namely 5.1-22.9 cm diameter trees, from wildfire-prone forests and using them to produce

  12. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  13. Sugar cane fresh or ensiled with or without bacterial additive in diets for dairy cows

    Directory of Open Access Journals (Sweden)

    Jeruzia Vitória Moreira

    2014-09-01

    Full Text Available This study evaluated the effect of using fresh sugar cane, sugar cane silage with or without Lactobacillus buchneri, and burnt sugar cane silage with or without L. buchneri on ingestive behavior, nitrogen balance and synthesis of microbial nitrogen compounds of dairy cows. Five ¾ Holstein x Gir crossbred cows, assigned to a 5 x 5 Latin square design, were given diets with a 60:40 forage: concentrate ratio on a dry matter basis, to meet an average body weight of 550 kg and production of 15 kg of milk per day. The treatment with fresh sugar cane showed higher values (p 0.05 the nitrogen intake and balance, but led to a greater (p 0.05, and showed an average value of 204.32 g microbial crude protein kg-1 total digestible nutrients.

  14. 75 FR 39612 - Allocation of Second Additional Fiscal Year (FY) 2010 In-Quota Volume for Raw Cane Sugar

    Science.gov (United States)

    2010-07-09

    ...) 2010 In-Quota Volume for Raw Cane Sugar AGENCY: Office of the United States Trade Representative... the tariff-rate quota (TRQ) for imported raw cane sugar. DATES: Effective Date: July 9, 2010... cane and refined sugar. Section 404(d) (3) of the Uruguay Round Agreements Act (19 U.S.C. 3601(d)(3...

  15. Bi-Modal Face and Speech Authentication: a BioLogin Demonstration System

    OpenAIRE

    Marcel, Sébastien; Mariéthoz, Johnny; Rodriguez, Yann; Cardinaux, Fabien

    2006-01-01

    This paper presents a bi-modal (face and speech) authentication demonstration system that simulates the login of a user using its face and its voice. This demonstration is called BioLogin. It runs both on Linux and Windows and the Windows version is freely available for download. Bio\\-Login is implemented using an open source machine learning library and its machine vision package.

  16. BIOS Security Analysis and a Kind of Trusted BIOS

    Science.gov (United States)

    Zhou, Zhenliu; Xu, Rongsheng

    The BIOS's security threats to computer system are analyzed and security requirements for firmware BIOS are summarized in this paper. Through discussion about TCG's trust transitivity, a new approach about CRTM implementation based on BIOS is developed. In this paper, we also put forward a new trusted BIOS architecture-UTBIOS which is built on Intel Framework for EFI/UEFI. The trustworthiness of UTBIOS is based on trusted hardware TPM. In UTBIOS, trust encapsulation and trust measurement are used to construct pre-OS trust chain. Performance of trust measurement is also analyzed in the end.

  17. BioPig: a Hadoop-based analytic toolkit for large-scale sequence data.

    Science.gov (United States)

    Nordberg, Henrik; Bhatia, Karan; Wang, Kai; Wang, Zhong

    2013-12-01

    The recent revolution in sequencing technologies has led to an exponential growth of sequence data. As a result, most of the current bioinformatics tools become obsolete as they fail to scale with data. To tackle this 'data deluge', here we introduce the BioPig sequence analysis toolkit as one of the solutions that scale to data and computation. We built BioPig on the Apache's Hadoop MapReduce system and the Pig data flow language. Compared with traditional serial and MPI-based algorithms, BioPig has three major advantages: first, BioPig's programmability greatly reduces development time for parallel bioinformatics applications; second, testing BioPig with up to 500 Gb sequences demonstrates that it scales automatically with size of data; and finally, BioPig can be ported without modification on many Hadoop infrastructures, as tested with Magellan system at National Energy Research Scientific Computing Center and the Amazon Elastic Compute Cloud. In summary, BioPig represents a novel program framework with the potential to greatly accelerate data-intensive bioinformatics analysis.

  18. Bio-oil and bio-char production from biomass and their structural analyses

    International Nuclear Information System (INIS)

    Kilic, Murat; Özsin, Gamzenur; Pütün, Ayşe E.; Pütün, Ersan

    2015-01-01

    Energy demand is increasing day by day because of the rapid developments in the population, industrialization and urbanisation. Since, fossil fuels will be at the verge of getting extinct, researches are mostly focused on the renewable sources, such as biomass, in recent years. This paper provides an environmentally friendly process to convert waste biomass samples to bio-oil and bio-char by pyrolysis. For this purpose, pyrolysis characteristics of pomegranate peels under inert atmosphere were studied by using both TGA to analysis decomposition behaviour and a batch reactor to investigate product yields and properties. The properties of bio-oil and bio-char were investigated by different analytical techniques such as GC-MS, FT-IR, SEM, He pycnometry and elemental analysis. As a consequence, it is possible to obtain bio-oil, which has similar properties like petroleum hydrocarbons, and to obtain bio-char, which can be further used as a solid fuel or a carbonaceous adsorbent material via pyrolysis process. (full text)

  19. Thoracic ROM measurement system with visual bio-feedback: system design and biofeedback evaluation.

    Science.gov (United States)

    Ando, Takeshi; Kawamura, Kazuya; Fujitani, Junko; Koike, Tomokazu; Fujimoto, Masashi; Fujie, Masakatsu G

    2011-01-01

    Patients with diseases such as chronic obstructive pulmonary disease (COPD) need to improve their thorax mobility. Thoracic ROM is one of the simplest and most useful indexes to evaluate the respiratory function. In this paper, we have proposed the prototype of a simple thoracic ROM measurement system with real-time visual bio-feedback in the chest expansion test. In this system, the thoracic ROM is measured using a wire-type linear encoder whose wire is wrapped around the thorax. In this paper, firstly, the repeatability and reliability of measured thoracic ROM was confirmed as a first report of the developed prototype. Secondly, we analyzed the effect of the bio-feedback system on the respiratory function. The result of the experiment showed that it was easier to maintain a large and stable thoracic ROM during deep breathing by using the real-time visual biofeedback system of the thoracic ROM.

  20. A Bio-Electro-Fenton System Employing the Composite FePc/CNT/SS316 Cathode

    Directory of Open Access Journals (Sweden)

    Yi-Ta Wang

    2017-02-01

    Full Text Available Bio-electro-Fenton microbial fuel cells generate energy through the decomposition of organic matter by microorganisms. The generated electricity drives a Fenton reaction in a cathode chamber, which can be used for the decolorization of dye wastewater. Most of the previous works added expensive platinum catalyst to improve the electrical property of the system. In this research, aligned carbon nanotubes (CNTs were generated on the surface of SS316 stainless steel by chemical vapor deposition, and an iron phthalocyanine (FePc catalyst was added to fabricate a compound (FePc/CNT/SS316 that was applied to the cathode electrode of the fuel cell system. This was expected to improve the overall electricity generation efficiency and extent of decolorization of the system. The results showed that the maximum current density of the system with the modified electrode was 3206.30 mA/m2, and the maximum power was 726.55 mW/m2, which were increased by 937 and 2594 times, respectively, compared to the current and power densities of a system where only the SS316 stainless steel electrode was used. In addition, the decolorization of RB5 dye reached 84.6% within 12 h. Measurements of the electrical properties of bio-electro-Fenton microbial fuel cells and dye decolorization experiments with the FePc/CNT/SS316 electrode showed good results.

  1. Ion beam processing of bio-ceramics

    International Nuclear Information System (INIS)

    Ektessabi, A.M.

    1995-01-01

    Thin films of bio-inert (TiO 2+α , Al 2 O 3+α ) and bio-active (compounds of calcium and phosphorus oxides, hydroxy-apatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate. (orig.)

  2. Ion beam processing of bio-ceramics

    Science.gov (United States)

    Ektessabi, A. M.

    1995-05-01

    Thin films of bio-inert (TiO 2+α, Al 2O 3+α) and bio-active (compounds of calcium and phosphorus oxides, hydroxyapatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate.

  3. Preparation and Characterization of Sugar Cane Wax Microspheres ...

    African Journals Online (AJOL)

    ... and characterize indomethacin (IM) microspheres prepared with sugar cane wax microsperes. Methods: Microspheres were prepared by melt-emulsified dispersion and cooling-induced solidification method. The microspheres were characterized by scanning electron microscopy (SEM) and differntial scanning calorimetry ...

  4. Reduction of methane emission from landfills using bio-mitigation systems – from lab tests to full scale implementation

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    , or open or closed bed biofilter systems. The objective of this paper is to describe the relationship between research on process understanding of the oxidation of landfill gas contained methane and the up-scale to full bio-mitigation systems implemented at landfills. The oxidation of methane is controlled...... for implementing a bio-mitigation system is presented, and the reported landfill-implemented bio-mitigation systems either established as full-scale or pilot-scale systems are reviewed. It is concluded that bio-mitigation systems have a large potential for providing cost-efficient mitigation options for reducing...

  5. Impact of European policy trends on bio-energy in the Netherlands

    International Nuclear Information System (INIS)

    Ruijgrok, W.; Erbrink, J.J.

    2000-03-01

    Energy extraction from biomass and waste is intended to account for a significant portion of the long-term objective of the Dutch government concerning sustainable energy. A major part of the task for energy from biomass and waste still has to come about, however. In the practical situation, the various parties in the Netherlands are experiencing different kinds of problems with this. In January 1999, the Ministry of Economic Affairs and Novern organised a round table conference concerning these bottlenecks with the participants representing a wide field of activity. The participants of this round table conference stated that insight into European policy developments is very important for the further market introduction of bio-energy in the Netherlands. Commissioned by Novem, this study surveys the consequences of the differences between European policy and Dutch policy in realising the target for energy from biomass and waste in the Netherlands in the medium term (2007). In addition, the following items were considered: sustainable energy; emission policy concerning waste, energy and biomass; waste policy and liberalisation of this market; energy policy and liberalisation of this market; agricultural policy; andfinancing of sustainable energy

  6. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Xianguo Li

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers. (Author)

  7. Diversification and localization of energy systems for sustainable development and energy security

    International Nuclear Information System (INIS)

    Li Xianguo

    2005-01-01

    The dominance of a single-energy system inevitably leads to excessive burden on, and eventually weakening, a particular aspect of the environment, and can cause environmental fatigue and failure (permanent damage) or even catastrophe if dominated for too long; thus it inevitably poses the health and environmental risk. This is the case for our currently fossil-fuel-based energy systems. In fact, each energy system, including renewables and alternative fuels, has its own unique adverse impact on the environment, as dictated by the second law of thermodynamics. A truly sustainable development may be achieved with the diversification and localization of energy sources and systems if the adverse impact of each energy system is sufficiently small and well within the tolerance limit of the environment. Energy diversification and localization would also provide a security for the energy supply and distribution as well for the energy consumers - a specifically important issue in the wake of blackout (electric power failure) in the Northeastern states to the Midwest of the United States and part of Canada on August 14, 2003. The idea of diversified energy systems for the good of humanity and environment is similar to many analogies in other fields, such as bio-diversity is the best means to prevent the spread and damage of diseases and pests, and diversified investment is the best strategy to guarantee the overall best investment return. It is concluded that the diversification and localization of energy systems is the best future energy systems that would be environmentally compatible, and allow for sustainable development as well as energy security for both supply and distribution to the energy consumers

  8. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  9. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  10. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    International Nuclear Information System (INIS)

    Podwin, Agnieszka; Dziuban, Jan A

    2017-01-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO 2 —a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells. (paper)

  11. A bio-thermic seawater desalination system using halophytes

    NARCIS (Netherlands)

    Finck, C.

    2014-01-01

    A bio-thermic seawater desalination system using halophytes was developed and successfully tested. A greenhouse as part of a test rig, with different sorts of mangroves, was installed. Measurements showed promising results concerning fresh water relative yielding rates up to 1.4 kg/h/m2 (leaf

  12. Parâmetros físico-químicos e cromatográficos em aguardentes de cana queimada e não queimada Physicochemical and chromatographic parameters in sugar cane brandies from burnt and non-burnt cane

    Directory of Open Access Journals (Sweden)

    José Masson

    2007-12-01

    Full Text Available Este trabalho teve por objetivo avaliar as concentrações de furfural, álcoois superiores, ésteres, aldeídos, cobre, acidez volátil, metanol e grau alcoólico de aguardentes obtidas de cana, com e sem queima prévia. Foram utilizadas amostras de aguardente artesanal de cana queimada e não queimada, fermentadas com a mesma levedura e destiladas no mesmo destilador; amostras de produtor de aguardente industrial de cana queimada e amostras obtidas de outro produtor artesanal de cana não queimada. As análises físico-químicas e cromatográficas (CG foram realizadas no Laboratório de Análise Físico-Química de Aguardente - LAFQA/DQI na Universidade Federal de Lavras. As concentrações de furfural apresentaram diferença significativa (PThis work was intended to evaluate the concentrations of furfural, higher alcohols, esters, aldehydes, copper, volatile acidity methanol and alcoholic degree of sugar cane brandies obtained from sugar cane both with and without previous burning. Samples of artisanal brandies from burnt and non-burnt cane, fermented with the same yeast and distilled in the same still, samples of burnt cane from an industrial brandy producer and samples of non-burnt cane obtained from another artisanal producer were utilized. The physicochemical and chromatographic (CG analyses were accomplished in the Sugar Cane Brandy Physicochemical Analysis Laboratory at the Federal University of Lavras. The concentrations of furfural showed significant differences (P<0.01 among the groups of artisanal brandies obtained from sugar cane with and without previous burning, coming from the same manufacturing process with means of 1.48 mg.100mL-1 ethanol and 0.63mg.100mL-1 ethanol, respectively, although they have been bellow the maximum limit (5.0 mg.100mL-1 ethanol allowed. The other components of the brandies studied were not affected significantly by the previous burning of sugar cane.

  13. Mechanical behavior of cementitious composites with processed sugar cane bagasse ashes; Comportamento mecanico de cimento Portland com cinza de bagaco de cana-de-acucar processada

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Augusto C.S.; Saraiva, Sergio L.C.; Sena, Natalia O.; Pereira, Gabriela M.; Rodrigues, Conrado S.; Ferreira, Maria C.N.F., E-mail: augustobezerra@des.cefetmg.br [Centro Federal de Educacao Tecnologica Minas Gerais (CEFET-MG), MG (Brazil); Castro, Laurenn W.A.; Silva, Marcos V.M.S. [Companhia Energetica de Minas Gerais, MG (Brazil); Gomes, Romero C. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Aguilar, Maria T.P. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    Sugar cane bagasse is waste from the sugar and ethanol industry and is primarily intended for burning in boilers to generate energy. As waste from the cogeneration of energy, sugar cane bagasse ashes (SCBA) are produced with no honorable destination. This paper studies the use of SCBA to partially replace Portland cement in producing cementitious composites. The ashes were processed by reburning and grinding, and after processing were characterized by a scanning electron microscope, x-ray diffraction, laser granulometry, and x-ray fluorescence spectrometry. After characterization, cement compounds were fashioned, replacing 0, 10, 20 and 30% of the cement with SCBA. The composites were mechanically evaluated by means of compression strength tests, tensile strength tests by bending. The results proved significant, indicating the possible use of SCBA when added to the cement on manufacture. (author)

  14. Longevity of Cane Corso Italiano dog breed and its relationship with hair colour

    Directory of Open Access Journals (Sweden)

    Evžen Korec

    2017-06-01

    Full Text Available The Cane Corso Italiano belongs among the new dog breeds that were fully recognised by Federation Cynologique Internationale (FCI in 2007. For the first time, this study describes a median lifespan using the data of 232 dogs of the Cane Corso Italiano breed collected from kennels and individual owners from 25 countries. The median lifespan of the whole examined group is 9.29 years (IQR 6.98-11.12, IQR = Interquartile Range. This paper is the first to describe the possible relationship between median lifespan and hair colour within one breed. The longest living group is formed by black brindle coloured dogs, with a median of 10.30 years (IQR 8.33-13.00, and brindle coloured dogs, with a median of 10.13 years (IQR 7.12-11.25. The median lifespan of black brindle dogs exceeded the overall median lifespan of all dogs by 1.01 year and the median lifespan of other colour dogs by 2.21 years. Our results suggest a possible way for a prolongation of age at death of the Cane Corso Italiano breed using appropriate breeding. The median lifespan of male Cane Corso Italiano dogs is 9.25 years (IQR 6.97-11.00 and female Cane Corso Italiano dogs 9.33 years (IQR 7.00-11.31. The statistical analysis using the Independent Samples Student’s t test confirmed that the lifespan of female dogs did not exceed the median lifespan of male dogs (P>0.01.

  15. Decarbonizing Sweden’s energy and transportation system by 2050

    DEFF Research Database (Denmark)

    Bramstoft, Rasmus; Skytte, Klaus

    2017-01-01

    Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG) emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS......) and the other with high biofuel and biomethane utilization (BIOS). The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road...... transportation yields the least systems cost. However, in the least-cost scenario (EVS), bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative...

  16. Vapor-fed bio-hybrid fuel cell.

    Science.gov (United States)

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  17. Development and application of a thermophysical property model for cane fiberboard subjected to high temperatures

    International Nuclear Information System (INIS)

    Hensel, S.J.; Gromada, R.J.

    1994-01-01

    A thermophysical property model has been developed to analytically determine the thermal response of cane fiberboard when exposed to temperatures and heat fluxes associated with the 10 CFR 71 hypothetical accident condition (HAC) and associated post fire cooling. The complete model was developed from high temperature cane fiberboard 1-D test results and consists of heating and cooling sub-models. The heating property model accounts for the enhanced heat transfer of the hot gases in the fiberboard, the loss of energy via venting, and the loss of mass from venting during the heating portion of the test. The cooling property model accounts for the degraded material effects and the continued heat transfer associated with the hot gases after removal of the external heating source. Agreement between the test results of a four inch thick fiberboard sample with the analytical application of the complete property model is quite good and will be presented. A comparison of analysis results and furnace test data for the 9966 package suggests that the property model sufficiently accounts for the heat transfer in an actual package

  18. Impact of European and Dutch policy on the market introduction of bio-energy in the Netherlands. Report of the workshop at Novem, Utrecht, Netherlands, 21 September 2000

    International Nuclear Information System (INIS)

    2001-04-01

    The report comprises copies of overhead sheets of some of the lectures that were held at the workshop. The subjects of those presentations are: Targets for bio-energy in a financial perspective; Developments in the Dutch renewable energy policy (text and sheets not in this report); Similarities and differences in the Dutch waste policy; Differences in policy for bio-energy in the Netherlands and the European Union; Emission regulations for the combustion of wastes and biomass; Impact of policy on the market introduction of bio-energy in the Netherlands

  19. Impurities in sugar cane and their influence on industrial processing evaluated by nuclear techniques

    International Nuclear Information System (INIS)

    Bacchi, M.A.; Fernandes, E.A.N.; Ferraz, E.S.B.

    1990-01-01

    During the cutting and loading operations, impurities, mainly soil, are added to sugar cane in amounts that can impair industrial processing due to excessive wear of metallic members and contamination of juice and bagasse. Mechanization of loading operation has showed a considerable enhancement of the impurity content, leading to the improvement of cane washing technology. Nevertheless, for a correct understanding of the problem and the process optimization, it is necessary and exact and fast quantification of these impurities as well as of its consequences. Nuclear techniques, in special neutron activation analysis, have been proved to be appropriate for estimating soil level in sugar cane, washing process efficiency and wearing of cases and moving parts. (author)

  20. Public Perception of Bio fuels; Percepcion Publica de los Biocombustibles

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C.; Priolo, V.

    2011-11-10

    The deployment of bio fuels has generated a significant controversy in the energy, agricultural and environmental fields. Governments and promoters around the world have advocated for developing bio fuels based on their potential contribution to emissions reduction and energy security. But opposition to bio fuels has growth in the last years. Environmental NGO's and other stake holders have called for a review of the environmental and social sustainability of energy crops. This controversy has characterized the public debate around bio fuels. In this context, and given the need to improve public involvement in energy technologies, this article reports an investigation of Spanish citizens' perceptions about bio fuels. The study investigated the perceptions of informed citizens and the reasoning basis underlying beliefs and attitudes. The study finds an initial positive association of bio fuels to a clean and natural fuel that is mitigated by participants' concerns on the practical usage of bio fuels and the social and environmental impacts. Study participants' reactions show the need to differentiate among the diverse groups of publics holding differing views and a different reaction to information on the benefits and costs of bio fuels. (Author) 9 refs.

  1. Public Perception of Bio fuels; Percepcion Publica de los Biocombustibles

    Energy Technology Data Exchange (ETDEWEB)

    Oltra, C; Priolo, V

    2011-11-10

    The deployment of bio fuels has generated a significant controversy in the energy, agricultural and environmental fields. Governments and promoters around the world have advocated for developing bio fuels based on their potential contribution to emissions reduction and energy security. But opposition to bio fuels has growth in the last years. Environmental NGO's and other stake holders have called for a review of the environmental and social sustainability of energy crops. This controversy has characterized the public debate around bio fuels. In this context, and given the need to improve public involvement in energy technologies, this article reports an investigation of Spanish citizens' perceptions about bio fuels. The study investigated the perceptions of informed citizens and the reasoning basis underlying beliefs and attitudes. The study finds an initial positive association of bio fuels to a clean and natural fuel that is mitigated by participants' concerns on the practical usage of bio fuels and the social and environmental impacts. Study participants' reactions show the need to differentiate among the diverse groups of publics holding differing views and a different reaction to information on the benefits and costs of bio fuels. (Author) 9 refs.

  2. Algal Turf Scrubbers: Cleaning Water while Capturing Solar Energy for Bio fuel Production

    International Nuclear Information System (INIS)

    Jeffrey Bannon, J.; Adey, W.

    2010-01-01

    Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. Since they are controlled ecosystems, using local algae, ATS does not suffer the major disadvantages of agricultural crops, which for maximum efficiency require fertilizers, herbicides and pesticides. ATS removes CO 2 from water and the atmosphere, and can be configured to remove CO 2 from power plant stack gases. As a normal part of operations, ATS removes heavy metals, break down toxic hydrocarbons, and oxygenates treated waters. ATS systems are capable of removing nitrogen and phosphorous from surface waters in the mid latitude US at $0.60/kg and $10.60/kg respectively (10% of the cost certified by the Chesapeake Bay Commission), and independently producing an energy product at $0.85/gallon. Given a nutrient credit system for rewarding nutrient removal from rivers and lakes, this price can be driven down to below $.40/gallon. Conservatively ATS can produce the equivalent of US imported oil on less than 30 M acres of land along major rivers

  3. Bio-Inspired Energy-Aware Protocol Design for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Perrucci, Gian Paolo; Anggraeni, Puri Novelti; Wardana, Satya Ardhy

    2011-01-01

    In this work, bio-inspired cooperation rules are applied to wireless communication networks. The main goal is to derive cooperative behaviour rules to improve the energy consumption of each mobile device. A medium access control (MAC) protocol particularly designed for peer-to-peer communication...... be achieved by this architecture using game theoretic approaches. As an extension, this work explores the impact of the MAC protocol on the power saving capabilities. This result shows that standard MAC mechanisms are not optimised for the considered cooperative setup. A new MAC protocol is proposed...... among cooperative wireless mobile devices is described. The work is based on a novel communication architecture, where a group of mobile devices are connected both to a cellular base station and among them using short-range communication links. A prior work has investigated the energy saving that can...

  4. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS.

    Science.gov (United States)

    Alves, Vanessa N; Borges, Simone S O; Coelho, Nivia M M

    2011-01-01

    This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese), using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extraction conditions were obtained using a sample pH of 4.0, a sample flow rate of 6.0 mL min(-1), 30.0 mg of sorbent mass, and 1.0 mol L(-1) HNO(3) as the eluent at a flow rate of 4.0 mL min(-1). The limit of detection for zinc was 1.9 μg L(-1), and the precision was below 0.82% (20.0 μg L(-1), n = 7). The analytical curve was linear from 2 to 50 μg L(-1), with a correlation coefficient of 0.9996. The method developed was successfully applied to spiked Brazilian sugar cane spirit, and accuracy was assessed through recovery tests, with results ranging from 83% to 100%.

  5. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

    Directory of Open Access Journals (Sweden)

    Vanessa N. Alves

    2011-01-01

    Full Text Available This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese, using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extraction conditions were obtained using a sample pH of 4.0, a sample flow rate of 6.0 mL min-1, 30.0 mg of sorbent mass, and 1.0 mol L-1 HNO3 as the eluent at a flow rate of 4.0 mL min-1. The limit of detection for zinc was 1.9 μg L-1, and the precision was below 0.82% (20.0 μg L-1, n=7. The analytical curve was linear from 2 to 50 μg L-1, with a correlation coefficient of 0.9996. The method developed was successfully applied to spiked Brazilian sugar cane spirit, and accuracy was assessed through recovery tests, with results ranging from 83% to 100%.

  6. Phenolic compounds and antioxidant activities of grape canes extracts from vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Y.; Zhang, A.; Fang, Y.; Liu, M.; Zhao, X.; Wang, H.; Zhang, Z.

    2016-11-01

    Grape canes are the main agro-wastes from vineyards. This work studied the antioxidant activities of the defatted methanolic extracts (ME) of canes from 11 genotypes: 5 Vitis vinifera widely known cultivars and 6 Chinese wild varieties from three species (V. amurensis, V. davidii, and V. pentagona) and the antioxidant activities of the ME’s chloroform fractions (CF), ethyl acetate fractions (EAF) and water fractions (WF). Among ME and its three fractions, EAF’s total phenolic contents (TPC) and total flavonoid contents (TFC) were the highest, at 586 mg/g of gallic acid equivalent and 320 mg/g of quercetin equivalent, respectively. The antioxidant power of the fractions/extracts was in the order EAF > ME > WF > CF, based on the DPPH radical-scavenging power and ferric-reducing antioxidant activity, while the order was EAF > CF > WF >ME based on the β-carotene-linoleic acid bleaching activity. Methanolic extracts demonstrated the strongest Fe2+-chelating activity. The antioxidant activities of the extracts/fractions generally correlated with the TPC and TFC in all assays, except with the Fe2+-chelating test. Grape canes from V. davidii had the highest TPC, TFC and antioxidant activities compared with those from other grape species. Catechin, epicatechin and trans-resveratrol were the predominant phenolic components of fractions/extracts. In light of these valuable bioactivities, grape canes from annual pruning practice considered as waste material have good commercial potential for utilization as a promising natural antioxidant in the food, pharmaceutical and cosmetic industries, given its low cost and availability in large amounts. (Author)

  7. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation. 2014 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Agblevor, Foster [Utah State Univ., Logan, UT (United States); Petkovic, Lucia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bennion, Edward [Utah State Univ., Logan, UT (United States); Quinn, Jason [Utah State Univ., Logan, UT (United States); Moses, John [CF Technologies, Hyde Park, MA (United States); Newby, Deborah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ginosar, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalytic pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by

  8. Sugar cane bagasse prehydrolysis using hot water

    Directory of Open Access Journals (Sweden)

    D. Abril

    2012-03-01

    Full Text Available Results are presented on the hot water prehydrolysis of sugar cane bagasse for obtaining ethanol by fermentation. The experimental study consisted of the determination of the effect of temperature and time of prehydrolysis on the extraction of hemicelluloses, with the objective of selecting the best operating conditions that lead to increased yield of extraction with a low formation of inhibitors. The study, carried out in a pilot plant scale rotational digester, using a 3² experimental design at temperatures of 150-190ºC and times of 60-90 min, showed that it is possible to perform the hot water prehydrolysis process between 180-190ºC in times of 60-82 min, yielding concentrations of xylose > 35 g/L, furfural < 2.5 g/L, phenols from soluble lignin < 1.5 g/L, and concentrations < 3.0 g/L of hemicelluloses in the cellolignin residue. These parameters of temperature and prehydrolysis time could be used for the study of the later hydrolysis and fermentation stages of ethanol production from sugar cane bagasse.

  9. Analysis of a feasible trigeneration system taking solar energy and biomass as co-feeds

    International Nuclear Information System (INIS)

    Zhang, Xiaofeng; Li, Hongqiang; Liu, Lifang; Zeng, Rong; Zhang, Guoqiang

    2016-01-01

    Highlights: • A feasible trigeneration system is proposed to generate power, heating and cooling. • The steam for biomass gasification process is provided by solar energy. • The thermodynamic properties of the proposed system are investigated. • Effects of ER and SBR on gasification process is presented. • The sensitivity of the economic performance of trigeneration system is evaluated. - Abstract: The trigeneration systems are widely used owing to high efficiency, low greenhouse gas emission and high reliability. Especially, those trigeneration systems taking renewable energy as primary input are paid more and more attention. This paper presents a feasible trigeneration system, which realizes biomass and solar energy integrating effective utilization according to energy cascade utilization and energy level upgrading of chemical reaction principle. In the proposed system, the solar energy with mid-and-low temperature converted to the chemical energy of bio-gas through gasification process, then the bio-gas will be taken as the fuel for internal combustion engine (ICE) to generate electricity. The jacket water as a byproduct generated from ICE is utilized in a liquid desiccant unit for providing desiccant capacity. The flue gas is transported into an absorption chiller and heat exchanger consequently, supplying chilled water and domestic hot water. The thermodynamic performance of the trigeneration system was investigated by the help of Aspen plus. The results indicate that the overall energy efficiency and the electrical efficiency of the proposed system in case study are 77.4% and 17.8%, respectively. The introduction of solar energy decreases the consumption of biomass, and the solar thermal energy input fraction is 8.6%. In addition, the primary energy saving ratio and annual total cost saving ratio compared with the separated generation system are 16.7% and 25.9%, respectively.

  10. Differences in the Limits of Stability Between Older Rolling Walker Users and Older Single-Tip-Cane Users - A Preliminary Study.

    Science.gov (United States)

    Liu, Hao Howe; Quiben, Myles; Holmes, Clayton; Connors, Michael; Salem, Yasser

    To identify the differences in the limits of stability (LOS) between older rolling walker and single-tip-cane users. This was a matched paired t-test design with repeated measure. Eighteen older subjects were matched based on age, gender, and functional level. The subjects were assessed using the multidirectional reach test initially and 5-month later in four directions: forward, backward, leftward, and rightward. Initially, there were no differences between cane users and rolling walker users in the LOS in all directions. However, 5-month later, the cane users who held their canes in their right hand had significantly better stability in forward and rightward reach than the walker users (p walker users demonstrated significantly decreased functional reach in forward reach (p walker users in the forward direction and in the direction toward the side holding the cane. This study may provide guide for clinicians including nurses for selecting appropriate rehabilitative interventions for older adults using walkers and canes.

  11. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  12. Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Lincoln C. [Fundacao Centro Tecnologico de Minas Gerais, Setor de Biotecnologia e Tecnologia Quimica, Minas Geraid (Brazil); Linden, James C.; Schroeder, Herbert A. [Colorado State Univ., Dept. of Chemical and Bioresource Engineering, Fort Collins, CO (United States)

    1999-01-01

    The use of several lignocellulosic materials for ethanol fuel production has been studied exhaustively in the U.S.A. Strong environmental legislation has been driving efforts by enterprise, state agencies, and universities to make ethanol from biomass economically viable. Production costs for ethanol from biomass have been decreasing year by year as a consequence of this massive effort. Pretreatment, enzyme recovery, and development of efficient microorganisms are some promising areas of study for reducing process costs. Sugar cane bagasse constitutes the most important lignocellulosic material to be considered in Brazil as new technology such as the production of ethanol fuel. At present, most bagasse is burned, and because of its moisture content, has a low value fuel. Ethanol production would result in a value-added product. The bagasse is available at the sugar mill site at no additional cost because harvesting, transportation and storage costs are borne by the sugar production. The present paper presents an alternative pretreatment with low energy input where biomass is treated in a silo type system without need for expensive capitalisation. Experimentally, ground sugar cane bagasse is placed in plastic bags and a peracetic acid solution is added to the biomass at concetrations of 0, 6, 9, 15, 21, 30 and 60% w/w of peracetic acid based on over dried biomass. The ratio of solution to wood is 6:1; a seven day storage period had been used. Tests using hydrolysing enzymes as an indicator for SSCF have been performed to evaluated the pretreatment efficiency. As an auxiliary method, a series of pre-pretreatments using stoichiometric amounts of sodium hydroxide and ammonium hydroxide based on 4-methyl-glucuronic acid and acetate content in the sugar cane bagasse have been performed before addition of peracetic acid. The alkaline solutions are added to the raw bagasse in a ratio of 17:1 solution to biomass and mixed for 24 hours at room temperature. Biomass is filled

  13. Social Science Insights for the BioCCS Industry

    Directory of Open Access Journals (Sweden)

    Anne-Maree Dowd

    2015-05-01

    Full Text Available BioCCS is a technology gaining support as a possible emissions reduction policy option to address climate change. The process entails the capture, transport and storage of carbon dioxide produced during energy production from biomass. Globally, the most optimistic energy efficiency scenarios cannot avoid an average temperature increase of +2 °C without bioCCS. Although very much at the commencement stage, bioCCS demonstration projects can provide opportunity to garner knowledge, achieve consensus and build support around the technology’s properties. Yet many challenges face the bioCCS industry, including no guarantee biomass will always be from sustainable sources or potentially result in carbon stock losses. The operating environment also has no or limited policies, regulations and legal frameworks, and risk and safety concerns abound. Some state the key problem for bioCCS is cultural, lacking in a ‘community of support’, awareness and credibility amongst its own key stakeholders and the wider public. Therefore, the industry can benefit from the growing social science literature, drawing upon other energy and resource based industries with regard to social choice for future energy options. To this end, the following scoping review was conducted in order to ascertain gaps in existing public perception and acceptance research focusing on bioCCS.

  14. Performance Assessment of the CapitalBio Mycobacterium Identification Array System for Identification of Mycobacteria

    Science.gov (United States)

    Liu, Jingbo; Yan, Zihe; Han, Min; Han, Zhijun; Jin, Lingjie; Zhao, Yanlin

    2012-01-01

    The CapitalBio Mycobacterium identification microarray system is a rapid system for the detection of Mycobacterium tuberculosis. The performance of this system was assessed with 24 reference strains, 486 Mycobacterium tuberculosis clinical isolates, and 40 clinical samples and then compared to the “gold standard” of DNA sequencing. The CapitalBio Mycobacterium identification microarray system showed highly concordant identification results of 100% and 98.4% for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM), respectively. The sensitivity and specificity of the CapitalBio Mycobacterium identification array for identification of Mycobacterium tuberculosis isolates were 99.6% and 100%, respectively, for direct detection and identification of clinical samples, and the overall sensitivity was 52.5%. It was 100% for sputum, 16.7% for pleural fluid, and 10% for bronchoalveolar lavage fluid, respectively. The total assay was completed in 6 h, including DNA extraction, PCR, and hybridization. The results of this study confirm the utility of this system for the rapid identification of mycobacteria and suggest that the CapitalBio Mycobacterium identification array is a molecular diagnostic technique with high sensitivity and specificity that has the capacity to quickly identify most mycobacteria. PMID:22090408

  15. 21 CFR 173.320 - Chemicals for controlling microorganisms in cane-sugar and beet-sugar mills.

    Science.gov (United States)

    2010-04-01

    ...-sugar and beet-sugar mills. 173.320 Section 173.320 Food and Drugs FOOD AND DRUG ADMINISTRATION... controlling microorganisms in cane-sugar and beet-sugar mills. Agents for controlling microorganisms in cane-sugar and beet-sugar mills may be safely used in accordance with the following conditions: (a) They are...

  16. "Candy cane syndrome:" an underappreciated cause of abdominal pain and nausea after Roux-en-Y gastric bypass surgery.

    Science.gov (United States)

    Aryaie, Amir H; Fayezizadeh, Mojtaba; Wen, Yuxiang; Alshehri, Mohammed; Abbas, Mujjahid; Khaitan, Leena

    2017-09-01

    "Candy cane" syndrome (a blind afferent Roux limb at the gastrojejunostomy) has been implicated as a cause of abdominal pain, nausea, and emesis after Roux-n-Y gastric bypass (RYGB) but remains poorly described. To report that "candy cane" syndrome is real and can be treated effectively with revisional bariatric surgery SETTING: All patients underwent "candy cane" resection at University Hospitals of Cleveland. All patients who underwent resection of the "candy cane" between January 2011 and July 2015 were included. All had preoperative workup to identify "candy cane" syndrome. Demographic data; pre-, peri-, and postoperative symptoms; data regarding hospitalization; and postoperative weight loss were assessed through retrospective chart review. Data were analyzed using Student's t test and χ 2 analysis where appropriate. Nineteen patients had resection of the "candy cane" (94% female, mean age 50±11 yr), within 3 to 11 years after initial RYGB. Primary presenting symptoms were epigastric abdominal pain (68%) and nausea/vomiting (32%), particularly with fibrous foods and meats. On upper gastrointestinal study and endoscopy, the afferent blind limb was the most direct outlet from the gastrojejunostomy. Only patients with these preoperative findings were deemed to have "candy cane" syndrome. Eighteen (94%) cases were completed laparoscopically. Length of the "candy cane" ranged from 3 to 22 cm. Median length of stay was 1 day. After resection, 18 (94%) patients had complete resolution of their symptoms (Psyndrome is a real phenomenon that can be managed safely with excellent outcomes with resection of the blind afferent limb. A thorough diagnostic workup is paramount to proper identification of this syndrome. Surgeons should minimize the size of the blind afferent loop left at the time of initial RYGB. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  17. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  18. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  19. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    International Nuclear Information System (INIS)

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-01-01

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels

  20. Decarbonizing Sweden’s energy and transportation system by 2050

    Directory of Open Access Journals (Sweden)

    Rasmus Bramstoft

    2017-01-01

    Full Text Available Decarbonizing Sweden’s transportation sector is necessary to realize its long-term vision of eliminating net greenhouse gas (GHG emissions from the energy system by 2050. Within this context, this study develops two scenarios for the transportation sector: one with high electrification (EVS and the other with high biofuel and biomethane utilization (BIOS. The energy system model STREAM is utilized to compute the socioeconomic system cost and simulate an integrated transportation, electricity, gas, fuel refinery, and heat system. The results show that electrifying a high share of Sweden’s road transportation yields the least systems cost. However, in the least-cost scenario (EVS, bioenergy resources account for 57% of the final energy use in the transportation sector. Further, a sensitivity analysis shows that the costs of different types of cars are the most sensitive parameters in the comparative analysis of the scenarios.

  1. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  2. Bio-fuels for the gas turbine: A review

    International Nuclear Information System (INIS)

    Gupta, K.K.; Rehman, A.; Sarviya, R.M.

    2010-01-01

    Due to depletion of fossil fuel, bio-fuels have generated a significant interest as an alternative fuel for the future. The use of bio-fuels to fuel gas turbine seems a viable solution for the problems of decreasing fossil-fuel reserves and environmental concerns. Bio-fuels are alternative fuels, made from renewable sources and having environmental benefit. In recent years, the desire for energy independence, foreseen depletion of nonrenewable fuel resources, fluctuating petroleum fuel costs, the necessity of stimulating agriculture based economy, and the reality of climate change have created an interest in the development of bio-fuels. The application of bio-fuels in automobiles and heating applications is increasing day by day. Therefore the use of these fuels in gas turbines would extend this application to aviation field. The impact of costly petroleum-based aviation fuel on the environment is harmful. So the development of alternative fuels in aviation is important and useful. The use of liquid and gaseous fuels from biomass will help to fulfill the Kyoto targets concerning global warming emissions. In addition, to reduce exhaust emission waste gases and syngas, etc., could be used as a potential gas turbine fuel. The term bio-fuel is referred to alternative fuel which is produced from biomass. Such fuels include bio-diesel, bio-ethanol, bio-methanol, pyrolysis oil, biogas, synthetic gas (dimethyl ether), hydrogen, etc. The bio-ethanol and bio-methanol are petrol additive/substitute. Bio-diesel is an environment friendly alternative liquid fuel for the diesel/aviation fuel. The gas turbine develops steady flame during its combustion; this feature gives a flexibility to use alternative fuels. Therefore so the use of different bio-fuels in gas turbine has been investigated by a good number of researchers. The suitability and modifications in the existing systems are also recommended. (author)

  3. Thermoelectric power plant selection using natural gas and sugar cane bagasse; Selecao de centrais termoeletricas utilizando gas natural e bagaco de cana

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Caio de Paula [UNIFei - Faculdade de Engenharia Industrial, Sao Bernardo do Campo, SP (Brazil). Dept. de Engenharia Mecanica]. E-mail: cleite@edu.fei.br; Tribess, Arlindo [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br

    2003-07-01

    The electric power consumption in Brazil is growing about 4.2% a year, according to ELETROBRAS Decenal Plan in 1999. The capacity of installed electrical power is approximately 50000 MW, of the which 75% are in the Southern, South eastern and Middle western regions of the country. The growth rate indicates the need of an increase of the installed capacity of 2100 MW a year to avoid the risk of the lack of energy. On the other hand, the hydraulic potential sources of the region are practically exhausted and the government budget is low for this kind of investment. Therefore the solution would be the construction of new thermoelectric plants, with the possibility using natural gas and cane bagasse. The present work consists of the evaluation of the best option considering criterion of minimum cost for kWh of energy produced for the thermo electrical plants selection. Thermo economic analysis was made evaluating the production costs of steam and electricity in exergetic basis. The results show that the power cycles and cogeneration plants that use natural gas and cane bagasse are much more economical than the ones that just use natural gas, with 48% reduction of steam cost, 40% reduction of electricity cost generated b the steam turbine in the power cycle and 37% reduction of electricity cost generated by the steam turbine in the cogeneration plant, for cane bagasse price at 4 US$ /t and natural gas price at 140 US$/t. (author)

  4. Production Of Bio fuel Starter From Biomass Waste Using Rocking Kiln Fluidized Bed System

    International Nuclear Information System (INIS)

    Mohamad Azman Che Mat Isa; Muhd Noor Muhd Yunus; Zulkafli Ghazali; Mohd Zaid Mohamed; Phongsakorn, P.T.; Mohamad Puad Abu

    2014-01-01

    The biggest biomass source in Malaysia comes from oil palm industry. According to the statistic in 2010, Malaysia produced 40 million tones per year of biomass of which 30 million tones of biomass originated from the oil palm industries. The biomass waste such as palm kernel shell can be used to produce activated carbon and bio fuel starter. A new type of rotary kiln, called Rocking Kiln Fluidized Bed (RKFB) was developed in Nuclear Malaysia to utilize the large amount of the biomass to produce high value added products. This system is capable to process biomass with complete combustion to produce bio fuel starter. With this system, the produced charcoal has calorific value, 33MJ/ kg that is better than bituminous coal with calorific value, 25-30 MJ/ kg. In this research, the charcoals produced were further used to produce the bio fuel starter. This paper will elaborate the experimental set-up of the Rocking Kiln Fluidized Bed (RKFB) for bio fuel starter production and the quality of the produced bio fuel starter. (author)

  5. Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion

    DEFF Research Database (Denmark)

    Yin, Weizhao; Li, Yongtao; Wu, Jinhua

    2017-01-01

    Abstract A one-pot bio-iron system was established to investigate synergetic abiotic and biotic effects between iron and microorganisms on Cr(VI) removal. More diverse iron corrosion and reactive solids, such as green rusts, lepidocrocite and magnetite were found in the bio-iron system than...... transfer on the solid phase. The results also showed that the reduction of Cr(VI) by microorganisms was insignificant, indicating the adsorption/co-precipitation of Cr by iron oxides on iron surface was responsible for the overall Cr(VI) removal. Our study demonstrated that the bio-amended iron corrosion...... in the Fe0-H2O system, leading to 4.3 times higher Cr(VI) removal efficiency in the bio-iron system than in the Fe0-H2O system. The cycling experiment also showed that the Cr(VI) removal capacity of Fe0 in the bio-iron system was 12.4 times higher than that in the Fe0-H2O system. A 62 days of life...

  6. Utilization of cane molasses as a source of energy in the diet of young pigs

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A.K.; Pathak, N.N.; Anjaneyulu, A.S.R.; Lakshmanan, V.

    1986-01-01

    The effect of addition of different levels of cane molasses in the diet of young pigs was studied. During early periods (0-7 weeks) growth rate was depressed by above 10% levels of molasses but in later periods (7-19 weeks) compensatory growth in the high molasses groups (20, 40% levels) resulted in no overall (0-19 weeks) difference in growth performance among different groups. While feed efficiency was reduced in high molasses groups, there was no effect on carcass quality. It was concluded that more than 10% molasses was not safe for young pigs, but adult, or near-adult, pigs could tolerate up to 47.5% of molasses in their diets. 6 references.

  7. Liquid Bio fuels: Vegetable Oils and Bi oethanol

    International Nuclear Information System (INIS)

    Ballesteros, M.; Ballesteros, I.; Oliva, J. M.; Navarro, A. A.

    1998-01-01

    The European energy policy has defined clear objectives to reduce the high dependency on fossil petroleum imports, and to increase the security of sustainable energy supply for the transport sector. Moreover, the European environmental policy is requesting clean fuels that reduce environmental risks. Liquid Bio fuels (vegetable oils and bio ethanol) appear to be in a good position to contribute to achieve these goals expressed by the established objective of European Union to reach for bio fuels a market share of 5% of motor vehicle consumption. This work presents the current state and perspectives of the production and utilisation of liquid fuels from agricultural sources by reviewing agricultural feedstocks for energy sector, conversion technologies and different ways to use bio fuels. Environmental and economical aspects are also briefly analysed. (Author) 10 refs

  8. Bio-inspired networking

    CERN Document Server

    Câmara, Daniel

    2015-01-01

    Bio-inspired techniques are based on principles, or models, of biological systems. In general, natural systems present remarkable capabilities of resilience and adaptability. In this book, we explore how bio-inspired methods can solve different problems linked to computer networks. Future networks are expected to be autonomous, scalable and adaptive. During millions of years of evolution, nature has developed a number of different systems that present these and other characteristics required for the next generation networks. Indeed, a series of bio-inspired methods have been successfully used to solve the most diverse problems linked to computer networks. This book presents some of these techniques from a theoretical and practical point of view. Discusses the key concepts of bio-inspired networking to aid you in finding efficient networking solutions Delivers examples of techniques both in theoretical concepts and practical applications Helps you apply nature's dynamic resource and task management to your co...

  9. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bio-MTBE. A new option to fulfil biofuel quota for gasoline; Bio-MTBE. Eine neue Option zur Erfuellung der Biokraftstoffquote in Ottokraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Oliver M.; Schade, Arnd; Locher, Annette [Evonik Industries AG, Essen (Germany)

    2013-05-15

    To meet the legally required bio-fuel quota in gasoline, an alternative to the ethanol blend E10 is nowavailable for nearly one year. Evonik Industries has introduced a bio-version of methyl tert-butyl ether (MTBE), an anti-knock agent, on the market. Chemically, both products are identical, because in production methanol is exchanged for bio-methanol. Bio-methanol is produced from raw glycerine, which arises as a byproduct from biodiesel production. This makes bio-MTBE an ideal bio-fuel component as defined by the EU's Renewable Energy Directive: Fuel components made from waste and residues are ''double counted'' regarding their bio-energy content. The product is widely used in the German and Dutch markets. In both countries, bio- MTBE is legally recognized as a bio-fuel component fulfilling double counting requirements. In the meantime, also other European countries have been introducing double counting for second-generation biofuel components. The EU Commission proposed to allow components based on residual materials to be calculated fourfold in the future. Should this be the case, bio-MTBE would become significantly more valuable. (orig.)

  11. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    International Nuclear Information System (INIS)

    Henke, J.M.; Klepper, G.; Schmitz, N.

    2005-01-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  12. Tax exemption for bio fuels in Germany: is bio-ethanol really an option for climate policy?

    Energy Technology Data Exchange (ETDEWEB)

    Henke, J.M.; Klepper, G. [Kiel Institute for World Economics, Kiel (Germany); Schmitz, N. [Meo Consulting Team, Koeln (Germany)

    2005-11-01

    In 2002 the German Parliament decided to exempt biofuels from the gasoline tax to increase their competitiveness compared to conventional gasoline. The policy to promote biofuels is being justified by their allegedly positive effects on climate, energy, and agricultural policy goals. An increased use of biofuels would contribute to sustainable development by reducing greenhouse-gas emissions and the use of non-renewable resources. The paper takes a closer look at bio-ethanol as a substitute for gasoline. It analyzes the underlying basic German, European, and worldwide conditions that provide the setting for the production and promotion of biofuels. It is shown that the production of bio-ethanol in Germany is not competitive and that imports are likely to increase. Using energy and greenhouse-gas balances we then demonstrate that the promotion and a possible increased use of bio-ethanol to reduce greenhouse-gas emissions are economically inefficient and that there are preferred alternative strategies. In addition, scenarios of the future development of the bio-ethanol market are derived from a model that allows for variations in all decisive variables and reflects the entire production and trade chain of bio-ethanol, from the agricultural production of wheat and sugar beet to the consumption of bio-ethanol in the fuel sector. (author)

  13. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry.

    Science.gov (United States)

    Srikanth, Sandipam; Kumar, Manoj; Puri, S K

    2018-02-15

    Petroleum industry is one of the largest and fast growing industries due to the ever increasing global energy demands. Petroleum refinery produces huge quantities of wastes like oily sludge, wastewater, volatile organic compounds, waste catalyst, heavy metals, etc., because of its high capacity and continuous operation of many units. Major challenge to this industry is to manage the huge quantities of waste generated from different processes due to the complexity of waste as well as changing stringent environmental regulations. To decrease the energy loss for treatment and also to conserve the energy stored in the chemical bonds of these waste organics, bio-electrochemical system (BES) may be an efficient tool that reduce the economics of waste disposal by transforming the waste into energy pool. The present review discusses about the feasibility of using BES as a potential option for harnessing energy from different waste generated from petroleum refineries. Copyright © 2018. Published by Elsevier Ltd.

  14. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Black liquor gasification (BLG) for bio-fuel or electricity production at the modern pulp mills is a field in continuous evolution and the efforts are considerably driven by the climate change, fuel security, and renewable energy. This paper evaluates and compares two BLG systems for methanol production: (i) oxygen blown pressurized thermal BLG; and (ii) dry BLG with direct causticization, which have been regarded as the most potential technology candidates for the future deployment. A key objective is to assess integration possibilities of BLG technologies with the reference Kraft pulp mill producing 1000 air dried tonnes (ADt) pulp/day replacing conventional recovery cycle. The study was performed to compare the systems’ performance in terms of potential methanol production, energy efficiency, and potential CO 2 reductions. The results indicate larger potential of black liquor conversion to methanol from the pressurized BLG system (about 77 million tonnes/year of methanol) than the dry BLG system (about 30 million tonnes/year of methanol) utilizing identical amount of black liquor available worldwide (220 million tDS/year). The potential CO 2 emissions reduction from the transport sector is substantially higher in pressurized BLG system (117 million tonnes/year CO 2 reductions) as compared to dry BLG system (45 million tonnes/year CO 2 reductions). However, the dry BLG system with direct causticization shows better results when considering consequences of additional biomass import. In addition, comparison of methanol production via BLG with other bio-refinery products, e.g. hydrogen, dimethyl ether (DME) and bio-methane, has also been discussed.

  15. The effect of sugar cane molasses on the immune and male reproductive systems using in vitro and in vivo methods

    Directory of Open Access Journals (Sweden)

    Farzana Rahiman

    2016-10-01

    Full Text Available Objective(s: Sugar cane molasses is a commonly used ingredient in several food products. Contrasting reports suggest that molasses may have potential adverse or beneficial effects on human health. However, little evidence exists that examines the effects of molasses on the different physiological systems. This study investigated the effects of sugar cane molasses on various physiological systems using in vivo and in vitro methods. Materials and Methods: Molasses was administered orally to BALB/c, male mice and animals were randomly assigned into either a treatment or control group. General physiological changes, body weight and molasses intake of animals were monitored. At the end of the exposure period, collected blood samples were evaluated for potential toxicity using plasma biomarkers and liver enzyme activity. Immunised treated and untreated mice were evaluated for antibody titre to determine the effect of molasses on the immune response. To investigate the impact of molasses on testicular steroidogenesis, testes from both treated and control groups were harvested, cultured and assayed for testosterone synthesis.  Results: Findings suggest that fluid intake by molasses-treated animals was significantly increased and these animals showed symptoms of loose faeces. Molasses had no significant effect on body weight, serum biomarkers or liver enzyme activity (P>0.05.  Immunoglobulin-gamma anti-antigen levels were significantly suppressed in molasses-treated groups (P=0.004. Animals subjected to molasses exposure also exhibited elevated levels of testosterone synthesis (P=0.001. Conclusion: Findings suggests that molasses adversely affects the humoral immune response. The results also promote the use of molasses as a supplement to increase testosterone levels.

  16. Know Your Personal Computer Basic Input-Output System (BIOS)

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 7. Know Your Personal Computer Basic Input-Output System (BIOS). Siddhartha Kumar Ghoshal. Series Article Volume 2 Issue 7 July 1997 pp 48-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. CANE WEAVING IN ONITSHA: PROCESSES, TECHNIQUES AND ...

    African Journals Online (AJOL)

    printserver

    reveals that the local craft industry of cane weaving possesses latent potentialities in terms of skill and market ... Great care and efforts are usually taken to collect them from the jungle. A very sharp knife is needed to be able to cut the tough flexible stems covered with spikes, which can easily tear one‟s skin. The stems are ...

  18. Sistema de sincronismo entre a colhedora de cana-de-açúcar e o veículo de transbordo System of synchronism between sugar cane harvest machine and infield wagon

    Directory of Open Access Journals (Sweden)

    Paulo S. G. Magalhães

    2008-06-01

    Full Text Available Um dos problemas encontrados na colheita mecanizada da cana-de-açúcar é a falta de sincronismo entre a colhedora e o transbordo, ocasionando perdas tanto de material como de capacidade operacional. A presente pesquisa teve como objetivo desenvolver um sistema capaz de auxiliar no sincronismo entre a colhedora e o veículo de transbordo por meio de comunicação sem fio. Dois sensores de ultra-som acoplados ao elevador e um microprocessador gerenciam tais informações, gerando correta sincronia entre as máquinas. O sistema foi testado em laboratório e em campo, cumprindo corretamente a função de manter as máquinas em sincronia, indicando e alertando aos operadores as suas posições relativas. O sistema desenvolvido reduziu as perdas de rebolo em cerca de 60 kg ha-1, comparado com a colheita realizada com o sistema desligado.One of the problems found in mechanical harvest of sugar cane is the lack of synchronism between the harvest machine and the infield wagon, causing crop losses as well as operational capacity. The objective of the present research was to design a system capable of helping to synchronize the sugar cane harvest machine with the wagon. The communication between tractor and harvest machine is wireless. Two ultrasound sensors coupled to the elevator and a microprocessor manage such information, generating a correct synchronization among the machines. The system was tested in laboratory and on field performing its function adequately, maintaining the two machines in synchronization, indicating and alerting the operators their relative positions. The developed system reduced the sugar cane lost in 60 kg ha-1 comparing to the harvest with the system turned off.

  19. Pyrolysis of Jatropha curcas pressed cake for bio-oil production in a fixed-bed system

    International Nuclear Information System (INIS)

    Jourabchi, Seyed Amirmostafa; Gan, Suyin; Ng, Hoon Kiat

    2014-01-01

    Highlights: • The pyrolysis of Jatropha curcas waste in a fixed-bed rig was studied. • Yield, calorific value, water content and acidity of bio-oil were compared. • Empirical correlations for bio-oil yield and specifications were developed. • Optimisation of bio-oil production based on combined specifications was achieved. - Abstract: This study investigated the effects of pyrolysis parameters on the yield and quality of bio-oil from Jatropha curcas pressed cake. This biomass was pyrolysed in a fixed-bed reactor over a temperature range of 573.15 K to 1073.15 K and a nitrogen linear speed range of 7.8 × 10 −5 m/s to 6.7 × 10 −2 m/s. The heating rate and biomass grain size were 50 K/min and <2 mm, respectively. The bio-oils were tested for the gross calorific value, water content and acidity. The pyrolysis process was simulated using Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) for mass and energy balances analyses. Empirical correlations between the bio-oil specifications and pyrolysis parameters were developed using linear and nonlinear multiple regression methods for process optimisation. At optimum pyrolysis conditions, above 50% of the waste is converted to bio-oil with less than 30% water content, a gross calorific value of 15.12 MJ/kg and a pH of 6.77

  20. Energy analysis in a swine production system with use of manure as bio fertilizer in pasture; Analise energetica em sistema de producao de suinos com aproveitamento dos dejetos como biofertilizante em pastagem

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Cassio V. [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil)], email: agro.cassio@hotmail.com; Campos, Alessandro T. [Universidade Federal de Lavras (DEG/UFLA), MG (Brazil). Dept. de Engenharia], email: campos@deg.ufla.br; Bueno, Osmar C [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas; Silva, Enilson B [Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG (Brazil). Dept. de Agronomia

    2009-07-01

    This work objective was to esteem the amount of energy employed in a complete cycle swine production and the energy balance of the system with utilization of the generated manure as bio fertilizer in pasture area, by using five cycles' average data, in a commercial farm in Diamantina municipal district - MG Brazil. The energy coefficient of each involved component was quantified in the productive process of finished swine, residues treatment and Brachiaria decumbens pasture production, in the form of ration, human labor, electric power, machines and equipment, fuel and lubricants, buildings, finished swine production and Brachiaria decumbens production. The average quantity of energy to produce 1 kg of alive swine was of 53.35 MJ. Of total employed energy in the system 76.03% (1,067,106.07 MJ) refers to the inputs and 23.97% (331,400 MJ) refers to the outputs, resulting in an energy efficiency coefficient of 0.31. The energy converted in swine for abate corresponded to 55.58% (184,200 MJ) of the outputs, while the pasture of Brachiaria decumbens reached a value of 44.42% (147,200 MJ). (author)

  1. The biggest bio-fuel plant in Norway - a profitable environmental investment

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2002-01-01

    A few years ago, Norske Skog Saugbrugs in Halden, Norway, invested NOK 180 mill in a new combustion plant for bio-fuel. In 2001, the plant produced 400 GWh and so replaced about 35 000 tonnes of oil. Considering the Kyoto Agreement, the profitability is even greater. The capacity of the boiler is 400 - 450 GWh, which covers more than 40 percent of the paper factory's need for thermal energy. The paper factory in Halden is one of the largest in Europe. About half of the bio-fuel derives from the factory's own production, which is an important reason why the price of bio-energy is less than the price of oil. At the same time the use of the biomass for energy production implies that bark and mud does not pile up in the factory. The remaining half of the biomass, the external half, is wood returned from building activities in the form of wood chippings, one-time pallets and similar. This also solves a social problem. The bio-fuel plant uses a fluidized bed boiler of very high efficiency. This implies very small emissions of NOx and CO. Particles are removed by means of an electro filter. The system meets the requirements made by the EU and by Norwegian pollution control authorities

  2. Pairing mechanism in Bi-O superconductors: A finite-size chain calculation

    International Nuclear Information System (INIS)

    Aligia, A.A.; Nunez Regueiro, M.D.; Gagliano, E.R.

    1989-01-01

    We have studied the pairing mechanism in BiO 3 systems by calculating the binding energy of a pair of holes in finite Bi-O chains, for parameters that simulate three-dimensional behavior. In agreement with previous results using perturbation theory in the hopping t, for covalent Bi-O binding and parameters for which the parent compound has a disproportionate ground state, pairing induced by the presence of biexcitons is obtained for sufficiently large interatomic Coulomb repulsion. The analysis of appropriate correlation functions shows a rapid metallization of the system as t and the number of holes increase. This fact shrinks the region of parameters for which the finite-size calculations can be trusted without further study. The same model for other parameters yields pairing in two other regimes: bipolaronic and magnetic excitonic

  3. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    International Nuclear Information System (INIS)

    Yang, Henry T Y; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J; Hansma, Paul K

    2010-01-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force–displacement–velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators

  4. Bio-inspired passive actuator simulating an abalone shell mechanism for structural control

    Science.gov (United States)

    Yang, Henry T. Y.; Lin, Chun-Hung; Bridges, Daniel; Randall, Connor J.; Hansma, Paul K.

    2010-10-01

    An energy dispersion mechanism called 'sacrificial bonds and hidden length', which is found in some biological systems, such as abalone shells and bones, is the inspiration for new strategies for structural control. Sacrificial bonds and hidden length can substantially increase the stiffness and enhance energy dissipation in the constituent molecules of abalone shells and bone. Having been inspired by the usefulness and effectiveness of such a mechanism, which has evolved over millions of years and countless cycles of evolutions, the authors employ the conceptual underpinnings of this mechanism to develop a bio-inspired passive actuator. This paper presents a fundamental method for optimally designing such bio-inspired passive actuators for structural control. To optimize the bio-inspired passive actuator, a simple method utilizing the force-displacement-velocity (FDV) plots based on LQR control is proposed. A linear regression approach is adopted in this research to find the initial values of the desired parameters for the bio-inspired passive actuator. The illustrative examples, conducted by numerical simulation with experimental validation, suggest that the bio-inspired passive actuator based on sacrificial bonds and hidden length may be comparable in performance to state-of-the-art semi-active actuators.

  5. Bio diesel production from algae

    International Nuclear Information System (INIS)

    Khola, G.; Ghazala, B.

    2011-01-01

    Algae appear to be an emerging source of biomass for bio diesel that has the potential to completely displace fossil fuel. Two thirds of earth's surface is covered with water, thus alga e would truly be renewable option of great potential for global energy needs. This study discusses specific and comparative bio diesel quantitative potential of Cladophora sp., also highlighting its biomass (after oil extraction), pH and sediments (glycerine, water and pigments) quantitative properties. Comparison of Cladophora sp., with Oedogonium sp., and Spirogyra sp., (Hossain et al., 2008) shows that Cladophora sp., produce higher quantity of bio diesel than Spirogyra sp., whereas biomass and sediments were higher than the both algal specimens in comparison to the results obtained by earlier workers. No prominent difference in pH of bio diesel was found. In Pakistan this is a first step towards bio diesel production from algae. Results indicate that Cladophora sp., provide a reasonable quantity of bio diesel, its greater biomass after oil extraction and sediments make it a better option for bio diesel production than the comparing species. (author)

  6. Continuous ethanol production using yeast immobilized on sugar-cane stalks

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, J.N. de [Alagoas Univ., Maceio, AL (Brazil). Dept. de Engenharia Quimica]. E-mail: jnunes@ctec.ufal.br; Lopes, C.E. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Antibioticos; Franca, F.P. de [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Engenharia Bioquimica

    2004-09-01

    Sugar-cane stalks, 2.0 cm long, were used as a support for yeast immobilization envisaging ethanol production. The assays were conducted in 38.5 L fermenters containing a bed of stalks with 50% porosity. The operational stability of the immobilized yeast, the efficiency and stability of the process, as well as the best dilution rate were evaluated. Molasses from demerara sugar production was used in the medium formulation. It was diluted to obtain 111.75 {+-} 1.51 g/L without any further treatment. Sulfuric acid was used to adjust the pH value to around 4.2. Every two days Kamoran HJ (10 ppm) or with a mixture containing penicillin (10 ppm) and tetracycline (10 ppm), was added to the medium. Ethanol yield and efficiency were 29.64 g/L.h and 86.40%, respectively, and the total reducing sugars conversion was 74.61% at a dilution rate of 0.83 h{sup -1}. The yeast-stalk system was shown to be stable for over a 60 day period at extremely variable dilution rates ranging from 0.05 h{sup -1} to 3.00 h{sup -1}. The concentration of immobilized cell reached around 109 cells/gram of dry sugar-cane stalk when the fermenter was operating at the highest dilution rate (3.00 h{sup -1}). (author)

  7. A cane reduces loss of balance in patients with peripheral neuropathy: results from a challenging unipedal balance test.

    Science.gov (United States)

    Ashton-Miller, J A; Yeh, M W; Richardson, J K; Galloway, T

    1996-05-01

    To test the hypothesis that use of a cane in the nondominant hand during challenging balance tasks would significantly decrease loss of balance in patients with peripheral neuropathy while transferring from bipedal to unipedal stance on an unsteady surface. Nonrandomized control study. Tertiary-care institution. Eight consecutive patients with peripheral neuropathy (PN) and eight age- and gender-matched controls (C) with a mean (SD) age of 65 (8.2) years. Subjects were asked to transfer their weight onto their right foot, despite a rapid +/- 2 degrees or +/- 4 degrees frontal plane tilt of the support surface at 70% of weight transfer, and balance unipedally for at least 3 seconds. The efficacy of their weight transfer was evaluated over 112 consecutive randomized and blocked trials by calculating loss of balance as failure rates (%FR) with and without visual feedback, and with and without use of a cane in the nondominant (left) hand. Results were analyzed using a 2 x 2 x 2 x 2 x 2 repeated-measures analysis of variance (rm-ANOVA) and post hoc t tests. The rm-ANOVA showed that the FR of the PN subjects (47.6% [18.1%]) was significantly higher than C (29.2% [15.2%], p = .036). Removing visual feedback, simulating the dark of night, increased the FR fourfold (p = .000). Use of a cane in the contralateral nondominant hand significantly reduced the FR (p = .000), particularly in the PN group (cane x disease interaction: p = .055). Post hoc t tests showed that with or without visual feedback, the cane reduced the FR of the PN group fourfold and enabled them to perform more reliably than matched controls not using a cane (p = .011). An inversion perturbation resulted in a higher FR than an eversion perturbation (p = .007). The PN group employed larger mean peak cane forces (21.9% BW) than C (13.6% BW) in restoring their balance (p = .000). Use of a cane by PN patients significantly reduced their risk of losing balance on unstable surfaces, especially under low

  8. Negated bio-events: analysis and identification

    Science.gov (United States)

    2013-01-01

    Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The

  9. Bio-energy in global and local policy and planning in developing countries, in particular in Africa

    International Nuclear Information System (INIS)

    Riedacker, A.

    1997-01-01

    Biomass energy is investigated from different viewpoints; in business as usual developments, in local and global perspectives trying to promote sustainable development. The objectives and the methodology are clarified. It is considered how these principles are applicable in particular in sub-Saharan Africa. Local planning and implementation is also discussed. Activities of the RABEDE, an African Network on Bio-resources and Energies for Development and Environment are presented. (K.A.)

  10. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    Science.gov (United States)

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment.

    Science.gov (United States)

    Salam, Jaseetha Abdul; Das, Nilanjana

    2015-03-01

    The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.

  12. Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production

    International Nuclear Information System (INIS)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Glasius, Marianne; Rudolf, Andreas; Iversen, Steen Brummerstedt

    2012-01-01

    Bio-refinery concepts are currently receiving much attention due to the drive toward flexible, highly efficient systems for utilization of biomass for food, feed, fuel and bio-chemicals. One way of achieving this is through appropriate process integration, in this particular case combining enzymatic bio-ethanol production with catalytic liquefaction of the wet distillers grains with soluble, a byproduct from the bio-ethanol process. The catalytic liquefaction process is carried out at sub-critical conditions (280–370 °C and 25 MPa) in the presence of a homogeneous alkaline and a heterogeneous Zirconia catalyst, a process known as the Catliq ® process. In the current work, catalytic conversion of WDGS was performed in a continuous pilot plant with a maximum capacity of 30 dm 3 h −1 of wet biomass. In the process, WDGS was converted to bio-oil, gases and water-soluble organic compounds. The oil obtained was characterized using several analysis methods, among them elementary analysis and GC–MS. The study shows that WDGS can be converted to bio oil with high yields. The results also indicate that through the combination of bio-ethanol production and catalytic liquefaction, it is possible to significantly increase the liquid product yield and scope, opening up for a wider end use applicability. -- Highlights: ► Hydrothermal liquefaction of wet biomass. ► Product phase analysis: oil, acqeous, gas and mineral phase. ► Energy and mass balance evaluation.

  13. Brazilian energy statistics - 2000. Annual bulletin of the Brazilian Committee of the World Energy Council

    International Nuclear Information System (INIS)

    2001-01-01

    This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydroelectric energy, petroleum, natural gas, nuclear energy and coal. It also contains data on ethyl alcohol derived of sugar cane since it is of special importance in Brazil's energy scenario

  14. Brazilian energy statistics - 1999. Annual bulletin of the Brazilian Committee of the World Energy Council

    International Nuclear Information System (INIS)

    1999-01-01

    This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydroelectric energy, petroleum, natural gas, nuclear energy and coal. It also contains data on ethyl alcohol derived of sugar cane since it is of special importance in Brazil's energy scenario

  15. Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Ivo Soural

    2015-04-01

    Full Text Available Grape cane, leaves and grape marc are waste products from viticulture, which can be used to obtain secondary stilbene derivatives with high antioxidant value. The presented work compares several extraction methods: maceration at laboratory temperature, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction, and accelerated solvent extraction. To obtain trans-resveratrol, trans-ε-viniferin and r2-viniferin from grape cane of the V. vinifera variety Cabernet Moravia, various conditions were studied: different solvents, using powdered versus cut cane material, different extraction times, and one-step or multiple extractions. The largest concentrations found were 6030 ± 680 µg/g dry weight (d.w. for trans-resveratrol, 2260 ± 90 µg/g d.w. for trans-ε-viniferin, and 510 ± 40 µg/g d.w. for r2-viniferin. The highest amounts of stilbenes (8500 ± 1100 µg/g d.w. were obtained using accelerated solvent extraction in methanol.

  16. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  17. What is the future for biofuels and bio-energy crops

    International Nuclear Information System (INIS)

    2005-01-01

    This seminar is part of the Ifri research program on agricultural policies. It aims to evaluate the future prospects for the development of bio-energy crops in light of the new energetic and environmental order. Within one generation the hydrocarbon market will likely be under great pressure. The prospect of a lasting high oil price will lead to the use of renewable resources like biofuels. Moreover growing environmental concern about global warming give one more credibility to the development of biofuels. These fuels emit a limited amount of greenhouse gas compared to standard fuels. We have to therefore examine the development possibility of these fuels taking into account the agronomic features of the crops used, the technology of the transformation process and existing initiative policies with respect to the regions studied. Also, we have to evaluate the impact of the energy crisis on food supply via the substitution effect in land allocation. (author)

  18. Sugar cane wastes drier and pellet plant; Instalacao de secagem e peletizacao de bagaco de cana

    Energy Technology Data Exchange (ETDEWEB)

    Ferres, Juan Diego; Macias, Eduardo; Rasi, Jose Roberto [Granol Industria, Comercio e Exportacao S.A., Tupa, SP (Brazil)

    1988-12-31

    This paper shows the design of a sugar cane waste drier and boiler in a alcohol distillery that produce about 65-70% of partially dried wastes to be burned in the distillery boiler with much better thermal efficiency than the one obtained with standard sugar cane wastes. (author) 5 figs., 1 tab.

  19. A simulation-based robust biofuel facility location model for an integrated bio-energy logistics network

    Directory of Open Access Journals (Sweden)

    Jae-Dong Hong

    2014-10-01

    Full Text Available Purpose: The purpose of this paper is to propose a simulation-based robust biofuel facility location model for solving an integrated bio-energy logistics network (IBLN problem, where biomass yield is often uncertain or difficult to determine.Design/methodology/approach: The IBLN considered in this paper consists of four different facilities: farm or harvest site (HS, collection facility (CF, biorefinery (BR, and blending station (BS. Authors propose a mixed integer quadratic modeling approach to simultaneously determine the optimal CF and BR locations and corresponding biomass and bio-energy transportation plans. The authors randomly generate biomass yield of each HS and find the optimal locations of CFs and BRs for each generated biomass yield, and select the robust locations of CFs and BRs to show the effects of biomass yield uncertainty on the optimality of CF and BR locations. Case studies using data from the State of South Carolina in the United State are conducted to demonstrate the developed model’s capability to better handle the impact of uncertainty of biomass yield.Findings: The results illustrate that the robust location model for BRs and CFs works very well in terms of the total logistics costs. The proposed model would help decision-makers find the most robust locations for biorefineries and collection facilities, which usually require huge investments, and would assist potential investors in identifying the least cost or important facilities to invest in the biomass and bio-energy industry.Originality/value: An optimal biofuel facility location model is formulated for the case of deterministic biomass yield. To improve the robustness of the model for cases with probabilistic biomass yield, the model is evaluated by a simulation approach using case studies. The proposed model and robustness concept would be a very useful tool that helps potential biofuel investors minimize their investment risk.

  20. Opponent note no. 5b:: Support to Organic Farming and Bio-energy as rural development drivers

    NARCIS (Netherlands)

    Reinhard, A.J.

    2006-01-01

    Given the current competitive strength of North West European agriculture, organic farming and bio-energy production will not expand without subsidies. Technical research shows that high tech agriculture can be viable in the future if it is both efficient with respect to the environment and with

  1. Bio fuels and family farming in Uruguay: A feasible alliance?

    International Nuclear Information System (INIS)

    Carambula, M.; Chiappe, M.; Fernandez, E.; Figueredo, S.

    2011-01-01

    The global energy crisis caused by high levels of fossil fuels consumption and the signs of oil depletion explain the search for alternative energy to traditional sources. Progress towards bio-fuels policy is positioned in a central place in Uruguay s political agenda. This context converges with a scenario of expansion of agricultural activity, marked by a dynamism based on the domestic economic environment changes, and major transformations in the productive base. In this context, in order to assess the social impacts resulting from the expansion of crops for energy purposes, this research was carried out. It explores the social impact of bio fuels production in Uruguay taking as a reference the situation of family farm production. It assumes that the demand of land for energy crop production puts pressure on other production systems. Related to this, it is possible to establish a continuum between a view that holds that family farms are marginal to bio fuel production, and an inclusive view which encourages the incorporation of family farmers into national production chains. In this scenario, the paper attempts to provide elements to answer the question about whether this new line of national production generates opportunities or threats to family farming

  2. Electrical Energy Storage Systems Feasibility; the Case of Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Rodrigues

    2017-07-01

    Full Text Available The Azores Regional Government, through the Sustainable Energy Action Plan for the Azorean Islands, assumed that by the year 2018, 60% of electricity would be generated from renewable energy sources. Nevertheless, by increasing renewable energy sources share in the electricity mix, peak energy that exceeds grid capacity cannot be used unless when considering energy storage systems. Therefore, this article aims at determining, among batteries and Pumped Hydro Systems, the most cost-effective energy storage system to deploy in Terceira Island, along with geothermal, wind, thermal and bio waste energy, while considering demand and supply constraints. It is concluded that a pumped hydro system sited in Serra do Morião-Nasce Água is the best option for storage of the excess generated energy when compared with batteries. However, further studies should analyze environmental constraints. It is demonstrated that by increasing the storage power capacity, a pumped hydro system improves its cost efficiency when compared with batteries. It is also demonstrated that, to ensure quality, economic feasibility, reliability and a reduction of external costs, it is preferable to replace fuel-oil by wind to generate electricity up to a conceivable technical limit, while building a pumped hydro system, or dumping the excess peak energy generated.

  3. A prototype machine using thermal type Stirling solar energy and bio fuel as a primary energy source

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carlos Cesar; Sousa, Regina Celia de; Santos, Jose Maria Ramos dos; Oliveira, Antonio Jose Silva [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Fisica

    2011-07-01

    Full text. Depending on the energy crisis and global warming became necessary to seek new sources of energy that could minimize the serious problems arising from this situation. The energy base that supported our growth in recent decades has supported - heavily on fossil fuel, highly polluting since its extraction and consumption, causing great environmental impact. Before his coal, also harmful to human health and nature. Modern life has been moved at the expense of exhaustible resources that took millions of years to form and will end one day. In this work we developed a prototype that uses a heat engine cycle of the Stirling engine with a heat source, arising from the burning of bio fuels or solar power. The main bio fuel used was ethanol. Ethanol is a product of today's diverse market applications, widely used as automotive fuel in hydrated form or blended with gasoline. The main layout of our prototype are: the four-cylinder, two for expansion and the other two for compression, a heat spreader and heat sinks. These simple components can be arranged in various configurations allowing a large space to the adequacy and efficiency of the machine. In experimental measurements made in our prototype, we have an angular speed of 360.1 rpm (revolutions per minute) with an average temperature of 215.6 deg C camera hot (expansion cylinder) and 30 deg C cold source (compression cylinders) and torque generated by our machine is 0.388 Nm Our device is multi-fuel and can be used virtually any source of energy: gasoline, ethanol, methanol, natural gas, diesel, biogas, LPG and solar energy. The construction of this device allowed us to investigate the processes of transformation of energy: chemical, thermal, and mechanical and maximize efficiency of the Stirling engine. To complete the monitoring apparatus, use equipment such as notebook, digital tachometer and a data acquisition Agilent 34970A model. These devices were used in monitoring the angular velocity and

  4. Effects of cane girdling on yield, fruit quality and maturation of (Vitis vinifera L. cv. Flame Seedless

    Directory of Open Access Journals (Sweden)

    Soltekin Oguzhan

    2016-01-01

    Full Text Available This study was carried out to determine the effects of cane girdling on coloration, maturation, yield and some quality characteristics of Vitis vinifera L. cv. Flame Seedless table grape variety. Cane girdling practices were treated at pea-size stage (G2 and veraison period (G1 over two growing seasons, 2013–2014, at the facility of Manisa Viticultural Research Institute in Turkey. Cane girdling was performed on the canes after first shoot was left from the bottom and 4 mm-wide ring of bark was completely removed with a doubleded knife. On the other hand control vines were left untouched. Statistical analyses showed that TSS, berry length, colour parameters, CIRG index and anthocyanin content of Flame Seedless was significantly affected by the cane girdling treatments in both years, 2013 and 2014. In addition it was detected that any effect of girdling treatments cannot be determined statistically significant on total yield, marketable yield, titrable acidity and 50 berry weight. Total and marketable yields of girdled vines had higher value than control vines although they were not statistically significant. Furthermore it was observed 9 and 12 days earliness with G2 treatments compare to the control vines in 2013 and 2014, respectively.

  5. Collective commitment for local bio energy projects. Motives and experiences of the initiators: An interview study of German renewable energy projects; Kollektives Engagement fuer kommunale Bioenergieprojekte. Motive und Erfahrungen der Initiatoren: Eine Interviewstudie deutschlandweiter erneuerbarer Energieprojekte

    Energy Technology Data Exchange (ETDEWEB)

    Rehatschek, Anja

    2009-07-01

    With the help of a sustainable power production, local bio energy projects connect ecological, economic and social solutions for the climate protection and the environment protection, for the support of the agriculture and forestry as well as for living together in the rural area. Past investigations concern primarily consider the collective commitment and the effects of such projects on the population. Under this aspect, the contribution under consideration is occupied with the acting of the initiators of the bio energy projects during the management of their tasks: Which conditions and motives of the initiators affect the conversion process? Under which conditions do the initiators arrive their goal? Which cognitive abilities, strategies of motivation and experiences particularly are important? For the qualitative investigation of these questions, five initiators of German local bio energy projects were interviewed. The results of these interviews are presented by means of paradigm models. It could be shown that both the person of the initiator and the relation of the person to the environment crucially contribute to the conversion of local bio energy projects.

  6. Farmers as providers of raw materials and energy. Proceedings; Der Landwirt als Energie- und Rohstoffwirt. Konferenzbeitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Within the 10th EUROSOLAR conference at 14th to 15th April, 2008, at Leipzig (Federal Republic of Germany), the following lectures were held: (a) Bioenergy in the Federal Republic of Germany: Potentials, state of the art and perspectives (M. Kaltschmitt, V. Lenz, D. Thraen); (b) Chances and risks of the energy production from biomass in rural area (G. Thalheim); (c) To the compatibility of utilizing bio energy and environmental preservation (K. Mueschen); (d) Biorefinery systems - industrial material use of regenerative raw materials (B. Kamm); (e) Agriculturists and forestry experts as producers of raw material - current risks and new chances (H. Fischer); (f) Potentials of the improvement of productivity by means of an expansion of options of useful plants (K. Goedeke); (g) Farmers as providers of energy and raw materials (H. Loick); (h) Problems and challenges of the utilization of biomass (P. Volkmer); (i) Energetic recycling management (G. Mehler); (j) Pure fuels instead of fuel mixtures - The farmer as providers of energy and raw materials (P. Schrum); (k) Feed and distribution of bio-natural gas from the view of a regional provider (J. Horn); (l) Biogasification and feed into natural gas networks - by the example of BGA Darmstadt-Wixhausen (M. Schlegel); (m) The right framework for the feed of bio methane into natural gas nets (S. Reichelt); (n) Virtual power plants - Efficient option of the local energy production (G. Weissmueller); (o) The role of bio energy in the power mix renewable energies (R. Bischof); (p) The autonomous power supply - from the bio energy village to the autonomous solar energy village (K. Scheffer); (q) Bio energy villages at the Lake Constance - Model projects for the rural area (B. Mueller); (r) Bio energy region Mureck / Steiermark (K. Totter); (s) The bio energy in the current German legislation process (H.-J. Fell).

  7. Brazilian energy statistics - 1998. Annual bulletin of the Brazilian Committee of the World Energy Council

    International Nuclear Information System (INIS)

    1998-01-01

    This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydroelectric energy, petroleum, natural gas and coal. It also contains data on ethyl alcohol derived of sugar cane since it is of special importance in Brazil's energy scenario

  8. Avaliação de biocombustível derivado do bio-óleo obtido por pirólise rápida de biomassa lignocelulósica como aditivo para gasolina Evaluation of biofuel derived from lignocellulosic biomass fast pyrolysis bio-oil for use as gasoline addictive

    Directory of Open Access Journals (Sweden)

    Carmen Luisa Barbosa Guedes

    2010-01-01

    Full Text Available A biofuel was prepared from acid aqueous fraction (pH = 2 of bio-oil produced by fast pyrolysis (Bioware Technology of lignocellulosic biomass (sugar cane residue and tested in blends (2, 5, 10 e 20% v/v with gasoline type C (common marketed in Brazil. The specification tests made in the Refinery President Getúlio Vargas (PETROBRAS showed increasing in the octane number (MON and antiknock index (AKI with reduction in the residue generation during the combustion. The physicochemical characteristics of the biofuel were similar that combustible alcohol allowing its use as gasoline additive.

  9. Anaerobic Treatment of Cane Sugar Effluent from Muhoroni Sugar ...

    African Journals Online (AJOL)

    It was therefore concluded that anaerobic treatment, particularly with pH control and seeding shows potential in first stage management of sugar mill wastewater. Keywords: cane sugar mill effluent, anaerobic treatment, batch reactor, waste stabilization ponds. Journal of Civil Engineering Research and Practice Vol.

  10. Energy systems and climate change: Approaches to formulating responses

    International Nuclear Information System (INIS)

    Wilson, Deborah.

    1993-04-01

    A method is presented for computing the direct and indirect radiative forcings of emissions of carbon dioxide, nitrous oxide and methane and comparing them in terms of their carbon-equivalent radiative forcing potential as a common unit. Examples illustrate application of the method in comparisons of the carbon-equivalent emissions from coal-, oil- and natural gas-based electricity and combined heat and power production assuming near-, medium- and long-term perspectives. The second article provides a systematic approach to calculating the net cost of avoiding greenhouse-gas emissions by adopting individual supply- and demand-side fuel switching and energy efficiency measures instead of proceeding down business as usual energy paths. Individual measures are grouped and ranked to form scenario packages for total and average costs of avoided carbon equivalent emissions. Examples are presented for Sweden, the United States and the state of Karnataka, India. A key finding is that there appears to exist significant emission avoiding potential that can be exploited at a net economic benefit to society. This potential is insufficient, however, to stabilize atmospheric concentrations of the greenhouse gases. The suggestion that changes can be made to energy systems leading to significant levels of avoided carbon dioxide emissions at little or no cost to society has been refuted by economic theoreticians, whose writings warn that policies aimed at avoiding greenhouse gas emissions will incur exorbitant costs. A case study of the potential to use ethanol produced from sugar cane as a transportation fuel in Thailand is used to illustrate an integrated approach to evaluating components of alternative energy systems

  11. ELSAM/ELKRAFT: Draft for the plan of management for bio-energy. ELSAM/ELKRAFT: The electricity companies' programme for gasification of coal and biomass

    International Nuclear Information System (INIS)

    1992-08-01

    The Danish power companies have, since the middle of the 80's carried through a technology development effort for the use of bio-fuels in power (and dual-purpose power) plants. This note concerns the current status of the development and a sketch for an action programme for future effort. Straw is the largest unexploited potential. The use of bio-fuels does not produce so much carbon dioxide, but on the other hand biomass supply can fluctuate. Biofuels are also difficult to stoke, and expensive. Close co-operation between agriculture and forestry is necessary and risks are high for the involved sectors. It must be possible to use bio-fuels combined with coal to secure a sturdy and economic energy production, it is necessary to have a stable energy and industrial policy to maintain interest in the long term development effort, the contrasts of interest between natural gas and bio-fuels on the decentralized thermal power market must be clarified and the prices of bio-fuels must be made competitive by making supply and subsidies more effective. The main areas for future development are the bio-fuel resources, logistics and economy, straw in central power plants, gasification of coal and biomass, bio-fuels in decentralized cogeneration plants, biogas plants, conversion of biomass to synthetic fuels etc. A close co-ordination of ELSAM/ELKRAFT's development activities and cooperation between organizations in Denmark and abroad should be aimed at. (AB)

  12. Computing Pathways in Bio-Models Derived from Bio-Science Text Sources

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik; Nilsson, Jørgen Fischer

    2015-01-01

    This paper outlines a system, OntoScape, serving to accomplish complex inference tasks on knowledge bases and bio-models derived from life-science text corpora. The system applies so-called natural logic, a form of logic which is readable for humans. This logic affords ontological representations...... of complex terms appearing in the text sources. Along with logical propositions, the system applies a semantic graph representation facilitating calculation of bio-pathways. More generally, the system aords means of query answering appealing to general and domain specic inference rules....

  13. Bio-fuels production and the environmental indicators

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Mechanical Engineering Department/Pontifical Catholic University of Rio de Janeiro - PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, CEP 22453-900, Rio de Janeiro, RJ (Brazil); Muylaert de Araujo, Maria Silvia [Energy and Environment Planning Program/Federal University of Rio de Janeiro - COPPE/UFRJ, Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP: 21945-970, Caixa Postal: 68501, Rio de Janeiro, RJ (Brazil)

    2009-10-15

    The paper evaluates the role of the bio-fuels production in the transportation sector in the world, for programs of greenhouse gases emissions reductions and sustainable environmental performance. Depending on the methodology used to account for the local pollutant emissions and the global greenhouse gases emissions during the production and consumption of both the fossil and bio-fuels, the results can show huge differences. If it is taken into account a life cycle inventory approach to compare the different fuel sources, these results can present controversies. A comparison study involving the American oil diesel and soybean diesel developed by the National Renewable Energy Laboratory presents CO{sub 2} emissions for the bio-diesel which are almost 20% of the emissions for the oil diesel: 136 g CO{sub 2}/bhp-h for the bio-diesel from soybean and 633 g CO{sub 2}/bhp-h for the oil diesel [National Renewable Energy Laboratory - NREL/SR-580-24089]. Besides that, important local environmental impacts can also make a big difference. The water consumption in the soybean production is much larger in comparison with the water consumption for the diesel production [National Renewable Energy Laboratory - NREL/SR-580-24089]. Brazil has an important role to play in this scenario because of its large experience in bio-fuels production since the seventies, and the country has conditions to produce bio-fuels for attending great part of the world demand in a sustainable pathway. (author)

  14. The bio-energies development: the role of biofuels and the CO2 price

    International Nuclear Information System (INIS)

    Jouvet, Pierre-Andre; Lantz, Frederic; Le Cadre, Elodie

    2012-01-01

    Reduction in energy dependency and emissions of CO 2 via renewable energies targeted in the European Union energy mix and taxation system, might trigger the production of bio-energy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO 2 price affects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO 2 price and feed-in tariffs. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelled. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO 2 price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO 2 emission price lower than 20 euros/tCO 2 , which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO 2 price. (authors)

  15. Biogas between renewable energy and bio-economy policies—opportunities and constraints resulting from a dual role

    NARCIS (Netherlands)

    Pfau, S.F.; Hagens, J.E.; Dankbaar, B.

    2017-01-01

    BACKGROUND - Biogas plays a major role in two policy domains: the renewable energy domain and the bio-economy domain. The purpose of this paper is to examine the relationship of current biogas practices with the two policy domains and to identify how biogas can contribute to both. METHODS - The

  16. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum

    Science.gov (United States)

    2012-01-01

    Background The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. Results By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. Conclusions The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation. PMID:22243621

  17. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum.

    Science.gov (United States)

    Schneider, Jens; Peters-Wendisch, Petra; Stansen, K Corinna; Götker, Susanne; Maximow, Stanislav; Krämer, Reinhard; Wendisch, Volker F

    2012-01-13

    The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation.

  18. Production of amino acids by mucor geophillus using sugar cane waste as a substrate

    International Nuclear Information System (INIS)

    Almani, F.; Dahot, U.

    2006-01-01

    In this study Mucor geophillus was used for amino acid production from acid/base hydrolysates of sugar cane bagasse. The Effects of substrate as well as influence of hydrolyzing agent on amino acid production by Mucor geophillus were investigated. Result reveals that higher amount of amino acids were accumulated when acid hydrolysates of sugar cane bagasse were used as substrate in comparison to NH/sub 4/OH and H/sub 2/O/sub 2/ hydrolysates. (author)

  19. Analyzing the Dynamics of the Bio-methane Production Chain and the Effectiveness of Subsidization Schemes under Uncertainty

    NARCIS (Netherlands)

    Eker, S.; Van Daalen, C.

    2014-01-01

    Bio-methane is a renewable gas option that can be injected to the natural gas grids to increase the sustainability of the energy system and to deal with natural gas supply problems. However, being based on several factors such as resource availability, competition between bio-methane and electricity

  20. Feasibility study of utilizing jatropha curcas oil as bio-diesel in an oil firing burner system

    Science.gov (United States)

    Shaiful, A. I. M.; Jaafar, M. N. Mohd; Sahar, A. M.

    2017-09-01

    Jatropha oil derived from the Jatropha Curcas Linnaeus is one of the high potential plants to be use as bio-diesel. The purpose of this research is to carry out a feasibility study of using jatropha oil as bio-diesel on oil firing burner system. Like other bio-diesels, jatropha oil can also be used in any combustion engine and the performance and emissions such as NOx, SO2, CO and CO2 as well as unburned hydocarbon (UHC) from the engine will vary depending on the bio-diesel blends. The properties of Conventional Diesel Fuel (CDF) obtained will be used as baseline and the jatropha oil properties will be compared as well as other bio-diesels. From several researches, the properties of jatropha oil was found to be quite similar with other bio-diesel such as palm oil, neem, keranja and pongamia bio-diesel and complying with the ASTM standard for bio-diesel. Still, there are factors and issues concerning the use of jatropha oil such as technology, economy, legislation and resource. Plus, there several challenges to the growth of bio-diesel industry development since the world right now do not totally depend on the bio-diesel.

  1. Do Canes or Walkers Make Any Difference? NonUse and Fall Injuries.

    Science.gov (United States)

    Luz, Clare; Bush, Tamara; Shen, Xiaoxi

    2017-04-01

    Examine patterns of cane and walker use as related to falls and fall injuries. Among people who fall at home, most do not have an assistive device with them when they fall. Nonusers who fall sustain more severe injuries. This was a cross-sectional study using a self-administered written survey completed by 262 people aged 60 and older who were community dwelling, cognitively intact, and current cane/walker users with a history of falls. They were recruited through clinical practice sites, churches, and senior housing in central Michigan. Outcomes of interest included patterns of device use, reasons for nonuse, device use at time of fall, and fall-related injuries. Seventy-five percent of respondents who fell were not using their device at the time of fall despite stating that canes help prevent falls. Reasons for nonuse included believing it was not needed, forgetfulness, the device made them feel old, and inaccessibility. Perceived risk was not high enough to engage in self-protective behavior. However, nonuse led to a significantly higher proportion of falls resulting in surgery than among device users. Among respondents requiring surgery, 100% were nonusers. Most respondents never received a home safety evaluation (68%) and only 50% received training on proper device use. Providers must place increased emphasis on the importance of cane/walker use for injury prevention through patient education to promote personal relevance, proper fitting, and training. New strategies are needed to improve device acceptability and accessibility. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens.

    LENUS (Irish Health Repository)

    O'Leary, James

    2009-11-01

    The EntericBio system uses a multiplex PCR assay for the simultaneous detection of Campylobacter spp., Salmonella enterica, Shigella spp., and Escherichia coli O157 from feces. It combines overnight broth enrichment with PCR amplification and detection by hybridization. An evaluation of this system was conducted by comparing the results obtained with the system with those obtained by routine culture, supplemented with alternative PCR detection methods. In a study of 773 samples, routine culture and the EntericBio system yielded 94.6 and 92.4% negative results, respectively. Forty-two samples had positive results by culture, and all of these were positive with the EntericBio system. This system detected an additional 17 positive samples (Campylobacter spp., n = 12; Shigella spp., n = 1; E. coli O157, n = 4), but the results for 5 samples (Campylobacter spp., n = 2; Shigella spp., n = 1; E. coli O157, n = 2) could not be confirmed. The target for Shigella spp. detected by the EntericBio system is the ipaH gene, and the molecular indication of the presence of Shigella spp. was investigated by sequence analysis, which confirmed that the ipaH gene was present in a Klebsiella pneumoniae isolate from the patient. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 99.3%, 91.5%, and 100%, respectively. Turnaround times were significantly reduced with the EntericBio system, and a result was available between 24 and 32 h after receipt of the sample in the laboratory. In addition, the amount of laboratory waste was significantly reduced by use of this system. In summary, the EntericBio system proved convenient to use, more sensitive than the conventional culture used in this study, and highly specific; and it generated results significantly faster than routine culture for the pathogens tested.

  3. The role of bio-fuels in satisfying US transportation fuel demands

    Energy Technology Data Exchange (ETDEWEB)

    Akinci, Berk; Fitch, Jonathan V. [Department of Electrical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 (United States); Kassebaum, Paul G. [Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 (United States); Thompson, Robert W. [Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609 (United States)

    2008-09-15

    In spite of the abundant interest in conversion of agricultural products into useful energy carriers, there have been relatively few studies assessing the magnitude of the impact these fuels can make on satisfying US energy demands. There have been fewer studies of unintended consequences stemming from these enterprises, although several research groups have begun questioning the appropriate levels of subsidies provided to individuals and companies to stimulate production of bio-fuels. In this paper, the production capacities for bio-fuels - ethanol and biodiesel - are evaluated for their potential impact on the US energy market. Several ramifications of these technologies are reviewed. This study concludes that ethanol or biodiesel production do not appear scalable to make a significant difference on the US fossil fuel demand for transportation. Aspects of this study point to systemic changes that may be required in lifestyles and attitudes toward energy consumption. Finally, comments regarding US energy policies are included to stimulate discussion. (author)

  4. The role of bio-fuels in satisfying US transportation fuel demands

    International Nuclear Information System (INIS)

    Akinci, Berk; Kassebaum, Paul G.; Fitch, Jonathan V.; Thompson, Robert W.

    2008-01-01

    In spite of the abundant interest in conversion of agricultural products into useful energy carriers, there have been relatively few studies assessing the magnitude of the impact these fuels can make on satisfying US energy demands. There have been fewer studies of unintended consequences stemming from these enterprises, although several research groups have begun questioning the appropriate levels of subsidies provided to individuals and companies to stimulate production of bio-fuels. In this paper, the production capacities for bio-fuels-ethanol and biodiesel-are evaluated for their potential impact on the US energy market. Several ramifications of these technologies are reviewed. This study concludes that ethanol or biodiesel production do not appear scalable to make a significant difference on the US fossil fuel demand for transportation. Aspects of this study point to systemic changes that may be required in lifestyles and attitudes toward energy consumption. Finally, comments regarding US energy policies are included to stimulate discussion

  5. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  6. Analysis of first and second law of an engine operating with bio diesel from palm oil. Part 1: global energy balance

    International Nuclear Information System (INIS)

    Agudelo, John R; Agudelo, Andres F; Cuadrado, Ilba G.

    2006-01-01

    A first law of thermodynamics analysis in a diesel engine operating with palm oil bio diesel and its blends with diesel fuel is presented. Measurements were carried out in a test bench under stationary conditions varying engine load at constant speed and vice versa. The variation in energy distribution, efficiency, performance and emissions were obtained under several operating points. It was found that fuel type do not affect energy distribution and effective efficiency. On the other hand, engine operating conditions have an important effect on energy balance and performance. CO 2 emissions didn't exhibit a clear tendency with bio diesel concentration in the blend. Nevertheless, O 2 concentration in exhaust gases exhibits a direct relationship with this concentration, independent of engine operating condition.

  7. Coupling of bio-PRB and enclosed in-well aeration system for remediation of nitrobenzene and aniline in groundwater.

    Science.gov (United States)

    Liu, Na; Ding, Feng; Wang, Liu; Liu, Peng; Yu, Xiaolong; Ye, Kang

    2016-05-01

    A laboratory-scale bio-permeable reactive barrier (bio-PRB) was constructed and combined with enclosed in-well aeration system to treat nitrobenzene (NB) and aniline (AN) in groundwater. Batch-style experiments were first conducted to evaluate the effectiveness of NB and AN degradation, using suspension (free cells) of degrading consortium and immobilized consortium by a mixture of perlite and peat. The NB and AN were completely degraded in 4 mg L(-1) when the aeration system was applied into the bio-PRB system. The NB and AN were effectively removed when the aeration system was functional in the bio-PRB. The removal efficiency decreased when the aeration system malfunctioned for 20 days, thus indicating that DO was an important factor for the degradation of NB and AN. The regain of NB and AN removal after the malfunction indicates the robustness of degradation consortium. No original organics and new formed by-products were observed in the effluent. The results indicate that NB and AN in groundwater can be completely mineralized in a bio-PRB equipped with enclosed in-well aeration system and filled with perlite and peat attached with degrading consortium.

  8. Electro-Quasistatic Simulations in Bio-Systems Engineering and Medical Engineering

    Directory of Open Access Journals (Sweden)

    U. van Rienen

    2005-01-01

    Full Text Available Slowly varying electromagnetic fields play a key role in various applications in bio-systems and medical engineering. Examples are the electric activity of neurons on neurochips used as biosensors, the stimulating electric fields of implanted electrodes used for deep brain stimulation in patients with Morbus Parkinson and the stimulation of the auditory nerves in deaf patients, respectively. In order to simulate the neuronal activity on a chip it is necessary to couple Maxwell's and Hodgkin-Huxley's equations. First numerical results for a neuron coupling to a single electrode are presented. They show a promising qualitative agreement with the experimentally recorded signals. Further, simulations are presented on electrodes for deep brain stimulation in animal experiments where the question of electrode ageing and energy deposition in the surrounding tissue are of major interest. As a last example, electric simulations for a simple cochlea model are presented comparing the field in the skull bones for different electrode types and stimulations in different positions.

  9. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System

    Directory of Open Access Journals (Sweden)

    Alireza Valipour

    2015-01-01

    Full Text Available onstructed wetland applications have been limited by a large land requirement and capital investment. This study aimed to improve a shallow pond water hyacinth system by incorporating the advantages of engineered attached microbial growth technique (termed Bio-hedge for on-site domestic wastewater treatment. A laboratory scale continuous-flow system consists of the mesh type matrix providing an additional biofilm surface area of 54 m2/m3. Following one year of experimentation, the process showed more stability and enhanced performance in removing organic matter and nutrients, compared to traditional water hyacinth (by lowering 33%–67% HRT and facultative (by lowering 92%–96% HRT ponds. The wastewater exposed plants revealed a relative growth rate of 1.15% per day, and no anatomical deformities were observed. Plant nutrient level averaged 27 ± 1.7 and 44 ± 2.3 mg N/g dry weight, and 5 ± 1.4 & 9±1.2 mg P/g dry weight in roots and shoots, respectively. Microorganisms immobilized on Bio-hedge media (4.06 × 107 cfu/cm2 and plant roots (3.12 × 104 cfu/cm were isolated and identified (a total of 23 strains. The capital cost was pre-estimated for 1 m3/d wastewater at 78 US$/m3inflow and 465 US$/kg BOD5 removed. This process is a suitable ecotechnology due to improved biofilm formation, reduced footprint, energy savings, and increased quality effluent.

  10. BioCMOS Interfaces and Co-Design

    CERN Document Server

    Carrara, Sandro

    2013-01-01

    The application of CMOS circuits and ASIC VLSI systems to problems in medicine and system biology has led to the emergence of Bio/CMOS Interfaces and Co-Design as an exciting and rapidly growing area of research. The mutual inter-relationships between VLSI-CMOS design and the biophysics of molecules interfacing with silicon and/or onto metals has led to the emergence of the interdisciplinary engineering approach to Bio/CMOS interfaces. This new approach, facilitated by 3D circuit design and nanotechnology, has resulted in new concepts and applications for VLSI systems in the bio-world. This book offers an invaluable reference to the state-of-the-art in Bio/CMOS interfaces. It describes leading-edge research in the field of CMOS design and VLSI development for applications requiring integration of biological molecules onto the chip. It provides multidisciplinary content ranging from biochemistry to CMOS design in order to address Bio/CMOS interface co-design in bio-sensing applications.

  11. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications.

    Science.gov (United States)

    Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing

    2013-03-04

    This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system.

  12. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy field. Final year report. R and D on the bio-fuel production by high functional bio-reactor; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy bun'ya. Kokino bio reactor ni yoru bio nenryo seisan ni kansuru kenkyu kaihatsu (saishu nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A system was developed for producing automobile fuel from the recycled paper and waste cooking oil using high functional intelligent yeast. Element technology is the functional yeast creation technology and the online intelligent control technology of the process into which the fixed bio-reactor was inserted. Studies were made on the following: 1) creation of high activity lipase production/ethanol production yeasts; 2) bio-fuel production by intelligent bio-reactor; 3) process optimization control technology by fuzzy control; 4) stabilization of bio-fuel production yeast; 5) comprehensive investigational study. In FY 2000, the results were obtained as written below: development of the stable lipase coming from rhizopus japonicus, fixed bacterium using rhizopus oryzae fungus body which can be used more than ten times, direct ethanol fermentation from starch by developing the multi-copy glucoamylase manifestation yeast, operation of a 20L capacity bench plant, etc. (NEDO)

  13. Brazilian energy statistics - 1994. Annual bulletin of the Brazilian Committee of the World Energy Council

    International Nuclear Information System (INIS)

    1994-01-01

    This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydraulic energy, petroleum, natural gas and coal. It also contains data on ethyl alcohol derived from sugar cane since it is of special importance in Brazil's energy scenario. 10 figs., 11 tabs

  14. The Acceptability of Caning Children in Singapore: The Fine Line Between Discipline and Physical Maltreatment.

    Science.gov (United States)

    Ngiam, Xin Ying; Tung, Serena S W

    2016-01-01

    Child maltreatment is a worldwide phenomenon with far-reaching negative consequences, and physical abuse is its most visible and widely reported form of maltreatment. There is a fine line between nonabusive physical punishment and physical child abuse, and where this line is drawn is often influenced by prevailing cultural practices and child-rearing beliefs. This article focus on Singapore-a modern Asian society that remains rooted in traditional attitudes and practices-as a case study in exploring the boundaries. In particular, the local practice of caning (hitting with a rattan cane) as a disciplinary measure for children, the ambiguity of the law on the issue of physical abuse, and the influence of judicial caning on the acceptability of this common practice are examined. Finally, the possible means of safeguarding children and discouraging the use of physical punishment in the home are discussed.

  15. Developing capacities in aging studies in the Middle East: Implementation of an Arabic version of the CANE IV among community-dwelling older adults in Lebanon.

    Science.gov (United States)

    AbiHabib, Laurie E; Chemaitelly, Hiam S; Jaalouk, Lina Y; Karam, Nadim E

    2011-07-01

    To assess the feasibility, reliability, and construct validity of the Camberwell Assessment of Need for the Elderly (CANE) in identifying needs among community-dwelling older adults in South Lebanon with a view towards expanding ageing research in the country. A cross-sectional study was undertaken with 322 individuals, using the CANE, the EQ5d and a socio-demographic questionnaire. Reliability was determined through measuring internal consistency of the CANE. Construct validity was performed through examining CANE inter-item correlations, and comparing correlations with the EQ5d and socio-demographic indicators. A factor analysis was conducted using varimax orthogonal rotation. Cronbach alpha was 0.71. For construct validity, correlations were highest in items measuring needs in looking after the house and food (r = 0.557); company and intimate relationships (r = 0.572); and medication and written/verbal information (r = 0.586). Moderate correlations were found with EQ5d items assessing the same measure, including: EQ5d 'problems taking care of self' and CANE self-care (r = 0.578) and daytime activities (r = 0.523); EQ5d 'problems performing usual activities' and CANE daytime activities (r = 0.553), self-care (r = 0.511) and mobility (r = 0.500); and EQ5d 'problems while walking' and CANE mobility/falls (r = 0.509). Corresponding items of the CANE and EQ-5d were significantly correlated with similar socio-demographic variables. The factor analysis supported results obtained in the CANE inter-item correlations. The Arabic version of the CANE appears acceptable in assessing needs of older adults in South Lebanon. Given that the CANE is an interesting tool that promotes the integration of older persons' perspectives for appropriate interventions, further research is recommended to establish its validity and applicability in other communities in Lebanon and the region.

  16. Bio-inspired fuel cells for miniaturized body-area-networks applications

    NARCIS (Netherlands)

    Xu, Wei; Gao, Lu; Danilov, Dmitri; Pop, V.; Notten, Peter

    2010-01-01

    The improvement in quality of modern health-care is closely related to the need for medical autonomous systems that enable people to ‘carry’ their personal wireless Body-Area-Network (BAN). Bio-inspired fuel cells (BFC) are a promising approach of energy harvesting to achieve autonomy and

  17. Brazilian energy statistics - 1991. Annual bulletin of the Brazilian National Committee of the World Energy Council

    International Nuclear Information System (INIS)

    1991-01-01

    This bulletin deals with the primary sources that carry most weight in the Brazilian energy balance: hydraulic energy, petroleum, natural gas and coal. It contains data on ethyl alcohol derived from sugar cane since it is of special importance in Brazil's energy scenario. 13 figs., 22 tabs

  18. Influence of gamma radiation on microbiological parameters of the ethanolic fermentation of sugar-cane must

    International Nuclear Information System (INIS)

    Alcarde, A.R.; Walder, J.M.M.; Horii, J.

    2003-01-01

    The influence of gamma radiation on reducing the population of some bacteria Bacillus and Lactobacillus that usually contaminate the sugar-cane must and its effects on acidity of the medium and viability of the yeast during fermentation were evaluated. The treatment with gamma radiation reduced the bacterial load of the sugar-cane must. Consequently, the volatile acidity produced during the fermentation of the must decreased and the viability of the yeast afterwards added increased

  19. 75 FR 53013 - Fiscal Year 2011 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2010-08-30

    ... for Raw Cane Sugar, Refined and Specialty Sugar, and Sugar-containing Products; Revision AGENCY... August 17, 2010 concerning Fiscal Year 2011 tariff-rate quota allocations of raw cane sugar, refined and special sugar, and sugar-containing products. USTR is revising the effective date of that notice to...

  20. THE HISTORY OF RESEARCH AND DEVELOPMENT OF FAST PYROLYSIS PLANT FOR BIO-OIL PRODUCTION AT THE FACULTY OF AGRICULTURAL ENGINEERING OF UNICAMP / HISTÓRICO DA PESQUISA E DESENVOLVIMENTO DA PLANTA DE PIRÓLISE RÁPIDA PARA PRODUÇAO DE BIO-ÓLEO DA FACULDADE DE E

    Directory of Open Access Journals (Sweden)

    LUIS A. B. CORTEZ

    2009-11-01

    Full Text Available This article is dedicated to describe the fast pyrolysis plant of biomass PPR-200 settled at UNICAMP School of Agricultural Engineering (FEAGRI. This fast pyrolysis plant, the first in Brazil to produce oil with fluidized bed reactor , began operating in 1998 with studies in a reactor for gasification, adapted to obtain bio-oil. Currently, PPR-200 operates with a 200 kg h-1 biomass capacity, and is used to conduct exploratory testing with various vegetable raw materials, such as sugar cane trash and bagasse, elephant grass, sawdust from wood, rice straw, coffee straw, orange bagasse, etc.. Around 15% of biomass is burnt to provide heat to the process. The remainder turns into the following products: bio-oil (20-40%, fine charcoal (20-30%, extract acid (10-15% and pyrolysis gas (15-35%. The pyrolysis gas is composed mainly by CH4, the H2, CO and CO2.Keywords: Biomass, bioenergy, reactor, fluidized bed.

  1. Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Meier, Dietrich; Oasmaa, Anja; van de Beld, Bert; Bridgwater, Anthony V.; Marklund, Magnus

    2017-04-06

    An international round robin study of the production of fast pyrolysis bio-oil was undertaken. Fifteen institutions in six countries contributed. Three biomass samples were distributed to the laboratories for processing in fast pyrolysis reactors. Samples of the bio-oil produced were transported to a central analytical laboratory for analysis. The round robin was focused on validating the pyrolysis community understanding of production of fast pyrolysis bio-oil by providing a common feedstock for bio-oil preparation. The round robin included: •distribution of 3 feedstock samples from a common source to each participating laboratory; •preparation of fast pyrolysis bio-oil in each laboratory with the 3 feedstocks provided; •return of the 3 bio-oil products (minimum 500 ml) with operational description to a central analytical laboratory for bio-oil property determination. The analyses of interest were: density, viscosity, dissolved water, filterable solids, CHN, S, trace element analysis, ash, total acid number, pyrolytic lignin, and accelerated aging of bio-oil. In addition, an effort was made to compare the bio-oil components to the products of analytical pyrolysis through GC/MS analysis. The results showed that clear differences can occur in fast pyrolysis bio-oil properties by applying different reactor technologies or configurations. The comparison to analytical pyrolysis method suggested that Py-GC/MS could serve as a rapid screening method for bio-oil composition when produced in fluid-bed reactors. Furthermore, hot vapor filtration generally resulted in the most favorable bio-oil product, with respect to water, solids, viscosity, and total acid number. These results can be helpful in understanding the variation in bio-oil production methods and their effects on bio-oil product composition.

  2. Biogas production from waste water of sugar cane washing; Producao de biogas a partir de vinhoto e agua de lavagem de cana

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Bruno Barbosa Moura [NATT Cooperativa Regional dos Produtores de Acucar e Alcool de Alagoas, Maceio, (Brazil); Viana, Cicero Eloi [Destilaria Paisa, Penedo, AL (Brazil)

    1988-12-31

    Pilot and full scale experimental results ascertain the feasibility of anaerobic digestion of sugar cane liquid wastes and other effluents. In this paper the possibility of increasing the ethanol distilleries energy output with the utilization of anaerobic digestion is discussed. An analysis of the prospects of a wide use of this technology is also made. (author) 10 refs., 4 figs., 1 tab.

  3. Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

    Directory of Open Access Journals (Sweden)

    Paula Eveline Ribeiro D’Anunciação

    2013-01-01

    Full Text Available In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture. There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use.

  4. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  5. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    International Nuclear Information System (INIS)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-01

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy

  6. Chemometric characterization of alembic and industrial sugar cane spirits from cape verde and ceará, Brazil.

    Science.gov (United States)

    Pereira, Regina F R; Vidal, Carla B; de Lima, Ari C A; Melo, Diego Q; Dantas, Allan N S; Lopes, Gisele S; do Nascimento, Ronaldo F; Gomes, Clerton L; da Silva, Maria Nataniela

    2012-01-01

    Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate); copper; and sulfates.

  7. Indagine retrospettiva sulle neoplasie testicolari del cane in Abruzzo e Molise, Italia

    Directory of Open Access Journals (Sweden)

    Anna Rita D’Angelo

    2012-09-01

    Full Text Available Le neoplasie testicolari sono piuttosto frequenti nel cane e condividono alcune caratteristiche con quelle umane, rendendole un potenziale modello in patologia comparata. Si riportano i dati relativi ai tumori testicolari del cane conferiti ed esaminati Istituto G. Caporale nel corso degli ultimi 12 anni, dal 2000 al 2011. In totale, sono stati diagnosticati 183 tumori: 108 seminomi, 37 sertoliomi, 18 tumori a cellule interstiziali del Leydig, 10 tumori misti, 9 neoplasie primitive di diversa natura una metastasi. La raccolta dettagliata di informazioni (segnala-mento, anamnesi, manifestazioni cliniche e follow-up messa in atto, consentirà di valutare al meglio il comportamento biologico delle neoplasie animali il potenziale oncogeno di specifici fattori, sia intrinseci che estrinseci.

  8. LIFE CYCLE BASED STUDIES ON BIOETHANOL FUEL FOR SUSTAINABLE TRANSPORTATION: A LITERATURE REVIEW

    Science.gov (United States)

    A literature search was conducted and revealed 45 publications (1996-2005) that compare bio-ethanol systems to conventional fuel on a life-cycle basis, or using life cycle assessment. Feedstocks, such as sugar beets, wheat, potato, sugar cane, and corn, have been investigated in...

  9. Work and health conditions of sugar cane workers in Brazil.

    Science.gov (United States)

    Rocha, Fernanda Ludmilla Rossi; Marziale, Maria Helena Palucci; Hong, Oi-Saeng

    2010-12-01

    This is an exploratory research, with a quantitative approach, developed with the objective of analyzing the work and of life situations that can offer risks to the workers' health involved in the manual and automated cut of the sugar cane. The sample was composed by 39 sugar cane cutters and 16 operators of harvesters. The data collection occurred during the months of July and August of 2006, by the technique of direct observation of work situations and workers' homes and through interviews semi-structured. The interviews were recorded and later transcribed. Data were analyzed according to Social Ecological Theory. It was observed that the workers deal with multiple health risk situations, predominantly to the risks of occurrence of respiratory, musculoskeletal and psychological problems and work-related accidents due to the work activities. The interaction of individual, social and environmental factors can determine the workers' tendency to falling ill.

  10. A comparison of pipeline versus truck transport of bio-oil.

    Science.gov (United States)

    Pootakham, Thanyakarn; Kumar, Amit

    2010-01-01

    Biomass-based energy and fuels are receiving attention because they are considered carbon neutral; i.e. the amount of CO(2) released during combustion of this biomass is nearly the same as that taken up by the plants during their growth. Bio-oil is a dark viscous liquid consisting of hydrocarbons. These are produced by fast pyrolysis of biomass. "As-is" biomass material has a low energy density (MJ m(-3)), hence, the cost of transporting this energy is high. Bio-oil has a high energy density as compared to "as-is" biomass material, consequently it helps in reducing the cost of energy transport. This study compares the life cycle assessment of transportation of bio-oil by pipeline with that by truck. The scope of the work includes the transportation of bio-oil by truck or pipeline from a centralized plant (supplied with forest biomass) to an end-user. Two cases are studied for pipeline transport of bio-oil: the first case considers a coal-based electricity supply for pumping the bio-oil through a pipeline; the second case considers an electricity supply from a renewable resource. The two cases of pipeline transport are compared to two cases of truck transport (truck trailer and super B-train truck). The life cycle greenhouse gas (GHG) emissions from the pipeline transport of bio-oil for the two cases of electricity supply are 345 and 17 g of CO(2) m(-3) km(-1), respectively. Similar values for transport by trailer (capacity - 30 m(3)) and super B-train truck (capacity - 60 m(3)) are 89 and 60 g of CO(2) m(-3) km(-1), respectively. Energy input for bio-oil transport is 3.95 MJ m(-3) km(-1) by pipeline, 2.59 MJ m(-3) km(-1) by truck and 1.66 MJ m(-3) km(-1) by super B-train truck. The results show that GHG emissions in pipeline transport are largely dependent on the source of electricity (higher for coal-based electricity). Substituting 250 m(3) day(-1) of pipeline-transported bio-oil for coal-based electricity can mitigate about 5.1 million tonnes of CO(2) per year

  11. Crescimento da parte aérea de cana crua e queimada Shoot growth of green and burned canes

    Directory of Open Access Journals (Sweden)

    Ivan André Alvarez

    1999-01-01

    Full Text Available Este trabalho teve como objetivos: 1. comparar o crescimento de cana colhida crua, mecanizada e de cana após a queima, colhida manualmente; 2. avaliar a influência do clima sobre as duas condições de crescimento e 3. analisar o comportamento do crescimento de cana crua e cana queimada nos 1º e 2º anos de rebrota, através de curvas adaptadas. A pesquisa foi realizada no município de Morro Agudo, SP, de julho de 1995 a julho de 1997. A variedade cultivada foi a SP 70 -1143. Utilizaram-se como indicadores de crescimento os seguintes índices biométricos: número de perfilhos, número de folhas, matéria seca de colmos e de folhas, IAF e avaliou-se a influência das temperaturas e das umidades do ar, do solo e das folhas. Adotou-se regressão polinomial e regressão não-linear para se adaptar os dados às curvas de crescimento. O crescimento no primeiro ciclo foi semelhante para cana crua e cana queimada. No início do segundo ciclo ocorreu maior crescimento em cana crua, enquanto que no final, foi maior em cana queimada. O perfilhamento da cana crua não apresentou diferenças significativas que confirmem a influência negativa da palha na rebrota. Os fatores climatológicos, isoladamente, não provocaram mudanças nos ciclos de crescimento de maneira que se identificasse uma tendência geral. As diferenças expressas na curva de crescimento do 1º para o 2º ano são devidas aos fatores climatológicos, tanto para cana crua como para cana queimada.This work had as objectives: 1. to compare the shoot growth between green cane, mechanically harvested and burned cane, harvested manually; 2. to evaluate the influence of the weather on the two conditions of growth and 3. to analyze the growth of green cane and cane burned in the 1st and 2nd years of second ratoon cane crop, by means of adapted curves. The research was performed in Morro Agudo, SP, Brazil from July 1995 to July 1997. The cultivar was the SP 70 -1143. As growth indicators the

  12. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Science.gov (United States)

    2012-01-01

    Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the

  13. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2012-04-01

    Full Text Available Abstract Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves, i.e. second generation (2G bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G, as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the

  14. Solitary BioY Proteins Mediate Biotin Transport into Recombinant Escherichia coli

    Science.gov (United States)

    Finkenwirth, Friedrich; Kirsch, Franziska

    2013-01-01

    Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [3H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane. PMID:23836870

  15. Report on survey for possibility of applying bio-technologies to biomass in fiscal 1999. Aiming at developing a kitchen refuse and waste water treatment and energy production system that can be installed as an ancillary facility of buildings; 1999 nendo biomass eno bio technology oyo kanosei chosa hokokusho. Biru nado no futai setsubi to shite secchi kanona, chukai, haisui nado no shori narabi ni energy seisan system no kaihatsu wo mezashite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper describes the survey and discussion on a system to treat microorganisms generated from organic wastes and recover bio-gas energy as an ancillary facility of buildings. The roof of a building is the most suitable location in terms of open space and odor problem, and because the waste liquid after energy recovery can be flown into the city sewage system. Suitable processes for energy recovery are the primary fermentation, followed further by second stage fermentation purposed of reducing BOD. Since rapid enhancement of the efficiency cannot be expected from the present methane fermentation technologies, it is worth discussing to convert the first step from methane fermentation to hydrogen fermentation, for which technological development is indispensable. Permission by the national or local government would be an important condition. Organic wastes treatment systems with different scales may be considered from wastes treatment in each house to treatment of wastes after collection on the whole city basis. Treating wastes with high water content, such as kitchen refuses and human waste is beneficial among organic wastes being collected and treated by local governments. It is beneficial because sorted collection for that purpose can be carried out, and existing incineration systems can be operated more efficiently. (NEDO)

  16. Anaerobic co-digestion of cassava peels and manure: a technological approach for biogas generation and bio-fertilizer production

    International Nuclear Information System (INIS)

    Bayitse, R.; Laryea, G. N.; Selormey, G.; Oduro, W. O.; Aggey, M.; Mensah, B.; Gustavsson, M.; Bjerre, A.B.

    2014-01-01

    The modern global society faces great challenges in supply of energy and management of wastes in sustainable ways. One way of resolving the local challenges is to develop environmentally appropriate and socio economically viable biotechnological processes for converting biomass to energy. The general principles of anaerobic bio-digestion, digester design and features of bio-digestion are presented in the feature article, focusing on the prospects of utilizing cassava peels as a readily available lignocellulose feedstock for co-digestion with manure for the production of biogas and bio-fertilizer. Aside of the high cyanogenic properties, cassava peels would require pre-treatment before use as a substrate, hence, a multi-stage and high rate digestion system might be adopted in efficient digestion of cassava peels. To optimize carbon-nitrogen ratio for efficient digestion, cassava should be co-digested with manure. The socio-economic benefits of the anaerobic co-digestion technology and key policy measures to be implemented to harness bio-energy from agricultural wastes are also outlined. (au)

  17. 75 FR 22095 - USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff...

    Science.gov (United States)

    2010-04-27

    ... USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff-Rate... announced a reassignment of surplus sugar under domestic cane sugar allotments of 200,000 short tons raw value (STRV) to imports, and increased the fiscal year (FY) 2010 raw sugar tariff-rate quota (TRQ) by...

  18. 75 FR 38764 - USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff...

    Science.gov (United States)

    2010-07-06

    ... USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2010 Raw Sugar Tariff-Rate... announced a reassignment of surplus sugar under domestic cane sugar allotments of 300,000 short tons raw value (STRV) to imports, and increased the fiscal year (FY) 2010 raw sugar tariff-rate quota (TRQ) by...

  19. 76 FR 20305 - USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2011 Raw Sugar Tariff...

    Science.gov (United States)

    2011-04-12

    ... USDA Reassigns Domestic Cane Sugar Allotments and Increases the Fiscal Year 2011 Raw Sugar Tariff-Rate... announced a reassignment of surplus sugar under domestic cane sugar allotments of 325,000 short tons raw value (STRV) to imports, and increased the fiscal year (FY) 2011 raw sugar tariff-rate quota (TRQ) by...

  20. Bio-diesel. Initiatives, potential and prospects in Thailand. A review

    International Nuclear Information System (INIS)

    Siriwardhana, Manjula; Opathella, G.K.C.; Jha, M.K.

    2009-01-01

    Thailand experiences a great economic and industrial development and is the second largest energy consumer in South East Asia. Being a net oil importer, Thai government has declared a renewable energy development programme in order to secure sustainable development and energy security. Thailand spends more than 10% of GDP for energy imports and transport sector accounts for 36% of total final energy consumption of which 50% is diesel. Diesel marks a huge impact on Thai economy. Thai government's bio-diesel development strategy is to replace 10% of petro-diesel in transport sector by bio-diesel by 2012. The plan is to increase the use of bio-diesel from 365 million liters in 2007 to 3100 million liters by 2012. This paper reviews the current status and potential of bio-diesel in Thailand and investigates and discusses the qualities and weaknesses of the proposed road-map. The proposed road-map definitely gives immediate solution for soaring oil prices, but the long-term economic, environmental and social impacts need to be examined. (author)

  1. Comparison of second-generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms of energy efficiency, pinch point analysis and Life Cycle Analysis

    International Nuclear Information System (INIS)

    Petersen, A.M.; Melamu, Rethabi; Knoetze, J.H.; Görgens, J.F.

    2015-01-01

    Highlights: • Process evaluation of thermochemical and biological routes for bagasse to fuels. • Pinch point analysis increases overall efficiencies by reducing utility consumption. • Advanced biological route increased efficiency and local environmental impacts. • Thermochemical routes have the highest efficiencies and low life cycle impacts. - Abstract: Three alternative processes for the production of liquid transportation biofuels from sugar cane bagasse were compared, on the perspective of energy efficiencies using process modelling, Process Environmental Assessments and Life Cycle Assessment. Bio-ethanol via two biological processes was considered, i.e. Separate Hydrolysis and Fermentation (Process 1) and Simultaneous Saccharification and Fermentation (Process 2), in comparison to Gasification and Fischer Tropsch synthesis for the production of synthetic fuels (Process 3). The energy efficiency of each process scenario was maximised by pinch point analysis for heat integration. The more advanced bio-ethanol process was Process 2 and it had a higher energy efficiency at 42.3%. Heat integration was critical for the Process 3, whereby the energy efficiency was increased from 51.6% to 55.7%. For both the Process Environmental and Life Cycle Assessment, Process 3 had the least potential for detrimental environmental impacts, due to its relatively high energy efficiency. Process 2 had the greatest Process Environmental Impact due to the intensive use of processing chemicals. Regarding the Life Cycle Assessments, Process 1 was the most severe due to its low energy efficiency

  2. Conceptual evaluation of hybrid energy system comprising wind-biomass-nuclear plants for load balancing and for production of renewable synthetic transport fuels

    International Nuclear Information System (INIS)

    Carlsson, Johan; Purvins, Arturs; Papaioannou, Ioulia T.; Shropshire, David; Cherry, Robert S.

    2014-01-01

    Future energy systems will increasingly need to integrate variable renewable energy in order to reduce greenhouse gas emissions from power production. Addressing this trend the present paper studies how a hybrid energy systems comprising aggregated wind farms, a biomass processing plant, and a nuclear cogeneration plant could support high renewable energy penetration. The hybrid energy system operates so that its electrical output tends to meet demand. This is achieved mainly through altering the heat-to-power ratio of the nuclear reactor and by using excess electricity for hydrogen production through electrolysis. Hybrid energy systems with biomass treatment processes, i.e. drying, torrefaction, pyrolysis and synthetic fuel production were evaluated. It was shown that the studied hybrid energy system comprising a 1 GWe wind farm and a 347 MWe nuclear reactor could closely follow the power demand profile with a standard deviation of 34 MWe. In addition, on average 600 m"3 of bio-gasoline and 750 m"3 bio-diesel are produced daily. The reduction of greenhouse gas emissions of up to 4.4 MtCO_2eq annually compared to power generation and transport using conventional fossil fuel sources. (author)

  3. Compact Wireless BioMetric Monitoring and Real Time Processing System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — BioWATCH is a modular ambulatory compact wireless biomedical data acquisition system. More specifically, it is a data acquisition unit for acquiring signals from...

  4. Bio-integrated electronics and sensor systems

    Science.gov (United States)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  5. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    International Nuclear Information System (INIS)

    O'Toole, M D; Marsh, L A; Davidson, J L; Tan, Y M; Armitage, D W; Peyton, A J

    2015-01-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz–2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes. (paper)

  6. 77 FR 57180 - Fiscal Year 2013 Tariff-rate Quota Allocations for Raw Cane Sugar, Refined and Specialty Sugar...

    Science.gov (United States)

    2012-09-17

    ... Sugar, Refined and Specialty Sugar, and Sugar-Containing Products AGENCY: Office of the United States... quantity of the tariff-rate quotas for imported raw cane sugar, refined and specialty sugar, and sugar... imports of raw cane sugar and refined sugar. Pursuant to Additional U.S. Note 8 to Chapter 17 of the HTS...

  7. pH measurements of FET-based (bio)chemical sensors using portable measurement system.

    Science.gov (United States)

    Voitsekhivska, T; Zorgiebel, F; Suthau, E; Wolter, K-J; Bock, K; Cuniberti, G

    2015-01-01

    In this study we demonstrate the sensing capabilities of a portable multiplex measurement system for FET-based (bio)chemical sensors with an integrated microfluidic interface. We therefore conducted pH measurements with Silicon Nanoribbon FET-based Sensors using different measurement procedures that are suitable for various applications. We have shown multiplexed measurements in aqueous medium for three different modes that are mutually specialized in fast data acquisition (constant drain current), calibration-less sensing (constant gate voltage) and in providing full information content (sweeping mode). Our system therefore allows surface charge sensing for a wide range of applications and is easily adaptable for multiplexed sensing with novel FET-based (bio)chemical sensors.

  8. Sustainable development and bioeconomic prosperity in Africa: Bio ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... High–cost fossil fuel prices and national security concerns have sparked interest in bio-fuels .... Energy security (bio or fossil origin) like food security in. Africa is a crucial ..... wherein Mauritius, Malaysia and. China provide the ...

  9. Study On Ethanol Production From Sugar Cane Molasses By Using Irradiated Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Botros, H.W.; Armed, A.S.; Farag, S.S.; Hassan, L.A.

    2012-01-01

    In commercial ethanol production procedures often use sugar cane molasses as a raw material due to- their abundance and low costs. The most employed microorganisms used for fermentation is Saccharomyces cerevisiae yeasts due to their ability to hydrolyze sucrose from sugar cane molasses into glucose and fructose; two easily assimilable hexoses. The aim of this study was to evaluate the effect of gamma irradiation on the activity of S. cerevisiae in the ethanol production yeast cells exposed to different doses of gamma rays (0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 KGy. The sugar cane substrate was optimized after maintaining deferent levels of sugar concentrations (12-21%), medium ph (4.0-5.5), incubation temperature (25-40 degree C) and rate of fermentation (24-168 h). The data showed that the rate of ethanol production reached its maximum by using the irradiated S. cerevisiae cells at 0.1 kGy dose at fermentation conditions as 15% sugar concentration, ph 4.5, incubation temperature 30 degree C, fermentation time 96 h at a fermentation medium volume 250 ml found in 500 ml Erlenmeyer flasks.

  10. Study on Ethanol Production from Sugar Cane Molasses by Using Irradiated Saccharomyces cervisiae

    International Nuclear Information System (INIS)

    Botros, H.W.; Ahmed, A.S.; Farag, S.S.; Hassan, I.A.

    2012-01-01

    In commercial ethanol production procedures often use sugar cane molasses as a raw material due to their abundance and low costs. The most employed microorganisms used for fermentation is Saccharomyces cerevisiae yeasts due to its ability to hydrolyze sucrose from sugar cane molasses into glucose and fructose, two easily assimilable hexoses.The aim of this study was to evaluate the effect of gamma irradiation on the activity of S. cerevisiae in the ethanol production yeast cells exposed to different doses of gamma rays (0.05, 0.10, 0.2, 0.4, 0.6, 0.8 and 1.0 kGy. The sugar cane substrate was optimized after maintaining deferent levels of sugar concentrations (12-21%), medium ph (4.0-5.5), incubation temperature (25-40 degree C) and rate of fermentation (24-168) h. Data showed that rate of ethanol production was maximum by using the irradiated S. cerevisiae cells at 0.1 kGy. dose at fermentation conditions as 15% sugar concentration, initial ph 4.5, incubation temperature 30 degree C, fermentation time 96 h at a fermentation medium volume 250 ml found in 500 ml erlenmyer flasks.

  11. Bio-methane. Challenges and technical solutions

    International Nuclear Information System (INIS)

    Blaisonneau, Laurent; Carlu, Elieta; Feuillette, Vincent

    2012-06-01

    Among the new energy sectors in development, biogas has many benefits: several valorization possibilities (bio-methane, electricity and heat), continuous production, easy storage. In Europe, and particularly in France, the bio-methane market will be in the next years a driver for the improvement of the economic, environmental and social performance of the actors of the value chain of biogas. ENEA releases a report on the current state of the bio-methane market in Europe. This publication mainly describes: An outlook of the market evolution and the corresponding stakes for the actors of this sector, the technical and economic characteristics, maturity level and specificities of each biogas upgrading process, An analysis of the French regulatory framework for bio-methane injection into the grid

  12. Optimizing Waste Heat Utilization in Vehicle Bio-Methane Plants

    Directory of Open Access Journals (Sweden)

    Feng Zhen

    2018-06-01

    Full Text Available Current vehicle bio-methane plants have drawbacks associated with high energy consumption and low recovery levels of waste heat produced during the gasification process. In this paper, we have optimized the performance of heat exchange networks using pinch analysis and through the introduction of heat pump integration technology. Optimal results for the heat exchange network of a bio-gas system producing 10,000 cubic meters have been calculated using a pinch point temperature of 50 °C, a minimum heating utility load of 234.02 kW and a minimum cooling utility load of 201.25 kW. These optimal parameters are predicted to result in energy savings of 116.08 kW (19.75%, whilst the introduction of new heat pump integration technology would afford further energy savings of 95.55 kW (16.25%. The combined energy saving value of 211.63 kW corresponds to a total energy saving of 36%, with economic analysis revealing that these reforms would give annual savings of 103,300 USD. The installation costs required to introduce these process modifications are predicted to require an initial investment of 423,200 USD, which would take 4.1 years to reach payout time based on predicted annual energy savings.

  13. Hydraulic Systems with Tap Water versus Bio-oils

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry.......Deals with the advantages of using pure tap water hydraulics versus bio-oils for suiteable applications. Focus is in particular on food processing industry....

  14. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    International Nuclear Information System (INIS)

    Tao, Junliang; Yu, Xiong

    2012-01-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts. (topical review)

  15. Fluidized bed gasification of sugar cane bagasse. Influence on gas composition

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, E.; Aleman, Y. [Univ. of las Villas, Santa Clara (Cuba). Biomass Thermoconversion group/CETA; Arauzo, J.; Gea, G. [Univ. of Zaragoza (Spain). Chemical and Environmental Engineering Dept.

    1999-07-01

    Air and steam gasification of biomass has been studied at different temperatures. The experiments have been carried out in a bench scale plant. It consists of an atmospheric bubbling fluidized bed gasifier heated by an electric furnace. The gasification process have been carried out at high heating rates and low residence time of the gases. The biomass used has been Cuban sugar cane bagasse. Three operating parameters have been evaluated to improve the gas composition: Equivalence Ratio (E.R.) in the range of 0.15 to 0.55; the bed temperature from 780 to 920 deg C; and steam/biomass ratio (S/B) from 0.1 g/g to 0.5 g/g. The results obtained show the effect of these operating parameters in gas composition and the conditions to obtain higher yield to gas and else the maximum energy.

  16. The classification of wood chips parameters by crushing of waste cane from different varieties of grapevine

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2008-01-01

    Full Text Available This work deales with exploitatives parameters monitoring of wood shreder PEZZOLATO 110 Mb by crushing of waste cane of six varieties. The results shows that the wood shreders efficiency, fuel consumption and the wood chips elements size can be influenced by varieties characters of cane. The va­lued machines efficiency was 230–470 kg . h−1 by average volume 40.70 % water in wood. The hig­hest values by cane crushing had the variety Saint Laurent (0.47 t . h−1 and the lowest variety ­Blauer Portugieser (0.23 t . h−1. The specific consumption of petrol Natural 95 was 4.52.10−3–8.12.10−3 l . kg−1. The average middle elements lenght was 6.64 mm by crushed varieties.

  17. Chemometric Characterization of Alembic and Industrial Sugar Cane Spirits from Cape Verde and Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Regina F. R. Pereira

    2012-01-01

    Full Text Available Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate; copper; and sulfates.

  18. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    NARCIS (Netherlands)

    Weiss, M.|info:eu-repo/dai/nl/156419912; Patel, M.K.|info:eu-repo/dai/nl/18988097X; Heilmeier, H.; Bringezu, S.

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of

  19. Genetic improvement of sugar cane for bioenergy: the Brazilian experience in network research with RIDESA

    Directory of Open Access Journals (Sweden)

    Luiz Alexandre Peternelli

    2012-01-01

    Full Text Available In this paper, it is presented RIDESA’s model for sugar cane breeding to ethanol, and its scientific, technological and human resources training contributions. RIDESA is an inter-university network for the development of sugar cane industry in Brazil, and was formed by a technical cooperation agreement between ten public universities. The model of network management is presented in this study, which involves, among other things, the public-private partnership (Universities-Mills for the development of cultivars. RIDESA has produced 59 cultivars since 1990 and is now responsible for 59% of the total area cultivated with this plant in Brazil. In the last five years, 286 agronomists were trained in breeding programs at universities that comprise RIDESA. In this same period, the network formed 35 professors, 24 doctors and 7 post-docs in researches with this crop. It is also presented a conceptual approach on methods of sugar cane breeding involving families and genome-wide selection.

  20. [The sugar cane blight of the 1860s: science applied to agriculture].

    Science.gov (United States)

    Bediaga, Begonha

    2012-12-01

    The Imperial Instituto Fluminense de Cultura (Fluminense Imperial Institute of Agriculture) encouraged debate with a view to eradicating the blight that devastated sugar cane plantations in the State of Bahia. Rural landowners, government officials and men of science participated in the discussions. The article presents the context of the sciences applied to agriculture, especially agricultural chemistry and the repercussions of the 'discoveries' of Justus Liebig in Brazil. The debate at the Imperial Instituto about the sugar cane blight was analyzed, together with the ideas espoused there and the characters involved in the issue. The procedures and solutions presented are studied, as well as the formation of knowledge networks around the agricultural sciences, which was in the process of institutionalization at the time.